Sample records for outer planetary systems

  1. Radioisotope Reduction Using Solar Power for Outer Planetary Missions

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    2008-01-01

    Radioisotope power systems have historically been (and still are) the power system of choice from a mass and size perspective for outer planetary missions. High demand for and limited availability of radioisotope fuel has made it necessary to investigate alternatives to this option. Low mass, high efficiency solar power systems have the potential for use at low outer planetary temperatures and illumination levels. This paper documents the impacts of using solar power systems instead of radioisotope power for all or part of the power needs of outer planetary spacecraft and illustrates the potential fuel savings of such an approach.

  2. Variety in planetary systems

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    1993-01-01

    Observation of circumstellar disks, regular satellite systems of outer planets, and planet-size objects orbiting pulsars support the supposition that formation of planetary systems is a robust, rather than a fragile, byproduct of the formation and evolution of stars. The extent to which these systems may be expected to resemble one another and our Solar System, either in overall structure or in detail remains uncertain. When the full range of possible stellar masses, disk masses, and initial specific angular momenta are considered, the possible variety of planetary configurations is very large. Numerical modeling indicates a difference between the formation of small, inner, terrestrial planets and the outer planets.

  3. Definition phase of Grand Tour missions/radio science investigations study for outer planets missions

    NASA Technical Reports Server (NTRS)

    Tyler, G. L.

    1972-01-01

    Scientific instrumentation for satellite communication and radio tracking systems in the outer planet exploration mission is discussed. Mission planning considers observations of planetary and satellite-masses, -atmospheres, -magnetic fields, -surfaces, -gravitational fields, solar wind composition, planetary radio emissions, and tests of general relativity in time delay and ray bending experiments.

  4. Planetary/DOD entry technology flight experiments. Volume 2: Planetary entry flight experiments

    NASA Technical Reports Server (NTRS)

    Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.

    1976-01-01

    The technical feasibility of launching a high speed, earth entry vehicle from the space shuttle to advance technology for the exploration of the outer planets' atmospheres was established. Disciplines of thermodynamics, orbital mechanics, aerodynamics propulsion, structures, design, electronics and system integration focused on the goal of producing outer planet environments on a probe shaped vehicle during an earth entry. Major aspects of analysis and vehicle design studied include: planetary environments, earth entry environment capability, mission maneuvers, capabilities of shuttle upper stages, a comparison of earth entry planetary environments, experiment design and vehicle design.

  5. The Elephant in the Room: Effects of Distant, Massive Companions on Planetary System Architectures

    NASA Astrophysics Data System (ADS)

    Knutson, Heather

    2016-06-01

    Over the past two decades ongoing radial velocity and transit surveys have been astoundingly successful in detecting thousands of new planetary systems around nearby stars. These systems include apparently single gas giant planets on short period orbits, closely packed systems of up to 5-6 “super-Earths”, and relatively empty systems with either one or no small planets interior to 0.5 AU. Despite our success in cataloguing the diverse properties of these systems, we are still struggling to develop narratives that can explain their apparently divergent formation and migration histories. This is in large part due to our lack of knowledge about the potential presence of massive outer companions in these systems, which can play a pivotal role in the shaping the final properties of the inner planets. In my talk I will discuss current efforts to complete the census for known planetary systems by searching for outer gas giant planets with long term radial velocity monitoring and wide separation stellar companions with high contrast imaging and spectroscopy. I will then demonstrate how statistical constraints on this population of outer companions can be used to test current theories for planet formation and migration.

  6. Strategy for outer planets exploration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    NASA's Planetary Programs Office formed a number of scientific working groups to study in depth the potential scientific return from the various candidate missions to the outer solar system. The results of these working group studies were brought together in a series of symposia to evaluate the potential outer planet missions and to discuss strategies for exploration of the outer solar system that were consistent with fiscal constraints and with anticipated spacecraft and launch vehicle capabilities. A logical, scientifically sound, and cost effective approach to exploration of the outer solar system is presented.

  7. Strategy for exploration of the outer planets: 1986-1996

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Over the past decade COMPLEX has published three strategy reports which, taken together, encompass the entire planetary system and recommend a coherent program of planetary exploration. The highest priority for outer planet exploration during the next decade is intensive study of Saturn (the planet, satellites, rings, and magnetosphere) as a system. The Committee additionally recommends that NASA engage in the following supporting activities: increased support of laboratory and theoretical studies; pursuit of earth-based and earth-orbital observations; commitment to continued operation of productive spacecraft; implementation of the instrument development plan as appropriate for the outer solar system; studies of deep atmospheric probes; development of penetrators or other hard landers; development of radiation-hardened spacecraft; and development of low-thrust propulsion systems. Longer-term objectives include exploration and intensive study of: the Uranus and Neptune systems; planetology of the Galilean satellites and Titan; and the inner Jovian system.

  8. Planet-Planet Scattering in Planetesimal Disks. II. Predictions for Outer Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2010-03-01

    We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ("planetesimals"). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M ⊕ from 10 to 20 AU. For large planet masses (M >~ M Sat), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a <~ 3 AU) is consistent with isolated planet-planet scattering. We explain the observed mass dependence—which is in the opposite sense from that predicted by the simplest scattering models—as a consequence of strong correlations between planet masses in the same system. At somewhat larger radii, initial planetary mass correlations and disk effects can yield similar modest changes to the eccentricity distribution. Nonetheless, strong damping of eccentricity for low-mass planets at large radii appears to be a secure signature of the dynamical influence of disks. Radial velocity measurements capable of detecting planets with K ≈ 5 m s-1 and periods in excess of 10 years will provide constraints on this regime. Finally, we present an analysis of the predicted separation of planets in two-planet systems, and of the population of planets in mean-motion resonances (MMRs). We show that, if there are systems with ~ Jupiter-mass planets that avoid close encounters, the planetesimal disk acts as a damping mechanism and populates MMRs at a very high rate (50%-80%). In many cases, resonant chains (in particular the 4:2:1 Laplace resonance) are set up among all three planets. We expect such resonant chains to be common among massive planets in outer planetary systems.

  9. Magnetour: Surfing planetary systems on electromagnetic and multi-body gravity fields

    NASA Astrophysics Data System (ADS)

    Lantoine, Gregory; Russell, Ryan P.; Anderson, Rodney L.; Garrett, Henry B.

    2017-09-01

    A comprehensive tour of the complex outer planet systems is a central goal in space science. However, orbiting multiple moons of the same planet would be extremely prohibitive using traditional propulsion and power technologies. In this paper, a new mission concept, named Magnetour, is presented to facilitate the exploration of outer planet systems and address both power and propulsion challenges. This approach would enable a single spacecraft to orbit and travel between multiple moons of an outer planet, without significant propellant or onboard power source. To achieve this free-lunch 'Grand Tour', Magnetour exploits the unexplored combination of magnetic and multi-body gravitational fields of planetary systems, with a unique focus on using a bare electrodynamic tether for power and propulsion. Preliminary results indicate that the Magnetour concept is sound and is potentially highly promising at Jupiter.

  10. Reports of planetary geology program, 1983

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Compiler)

    1984-01-01

    Several areas of the Planetary Geology Program were addressed including outer solar system satellites, asteroids, comets, Venus, cratering processes and landform development, volcanic processes, aeolian processes, fluvial processes, periglacial and permafrost processes, geomorphology, remote sensing, tectonics and stratigraphy, and mapping.

  11. Stability Analysis of the Planetary System Orbiting Upsilon Andromedae

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Rivera, Eugenio J.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    We present results of long-term numerical orbital integrations designed to test the stability of the three-planet system orbiting Upsilon Andromedae and short-term integrations to test whether mutual perturbations among the planets can be used to determine planetary masses. Our initial conditions are based on the latest fits to the radial velocity data obtained by the planet-search group at Lick Observatory. The new fits result in significantly more stable systems than did the initially announced planetary parameters. An analytic analysis of the star and the two outer planets shows that this subsystem is Hill stable up to five. Our integrations involving all three planets show that the system is stable for at least 100 Myr for up to four. In our simulations, we still see a secular resonance between the outer two planets and in some cases large oscillations in the eccentricity of the inner planet.

  12. The Whole Heliosphere Interval: Campaign Summaries and Early Results

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara J.; Gibson, Sarah E.; Kozyra, Janet U.

    2008-01-01

    The Whole Heliosphere Interval (WHI) is an internationally coordinated observing and modeling effort to characterize the 3-dimensional interconnected solar-heliospheric-planetary system - a.k.a. the "heliophysical" system. The heart of the WHI campaign is the study of the interconnected 3-D heliophysical domain, from the interior of the Sun, to the Earth, outer planets, and into interstellar space. WHI observing campaigns began with the 3-0 solar structure from solar Carrington Rotation 2068, which ran from March 20 - April 16, 2008. Observations and models of the outer heliosphere and planetary impacts extended beyond those dates as necessary; for example, the solar wind transit time to outer planets can take months. WHI occurs during solar minimum, which optimizes our ability to characterize the 3-D heliosphere and trace the structure to the outer limits of the heliosphere. A summary of some of the key results from the WHI first workshop in August 2008 will be given.

  13. Urey Prize Lecture - Planetary evolution and the origin of life

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.

    1991-01-01

    One of the principal questions concerning planetary evolution and life's origins relates to the early-earth organic material's origination in situ, outer solar system importation, or simple irrelevance to the emergence of organisms. Additional considerations encompass the character of interstellar organic material and its relationship to outer solar system organic compounds, and the possibility of life's emergence in the early Mars. Attention is given to the essentiality of liquid water for life-forms, in the role not only of a reaction medium among molecules but that of a basis for hydrophylic and hydrophobic groups' bonding.

  14. A Planetary Park system for the Moon and beyond

    NASA Astrophysics Data System (ADS)

    Cockell, Charles; Horneck, Gerda

    Deutschland International space exploration programs foresee the establishment of human settlements on the Moon and on Mars within the next decades, following a series of robotic precursor missions. These increasing robotic visits and eventual human exploration and settlements may have an environmental impact on scientifically important sites and sites of natural beauty in the form of contamination with microorganisms and spacecraft parts, or even pollution as a consequence of in situ resource use. This concern has already been reflected in the Moon Treaty, "The Agreement Governing the Activities of States on the Moon and Other Celestial Bodies" of the United Nations, which follows the Outer Space Treaty of the UN. However, so far, the Moon Treaty has not been ratified by any nation which engages in human space programs or has plans to do so. Planetary protection guidelines as formulated by the Committee on Space Research (COSPAR) are based on the Outer Space Treaty and follow the objectives: (i) to prevent contamination by terrestrial microorganisms if this might jeopardize scientific investi-gations of possible extraterrestrial life forms, and (ii) to protect the Earth from the potential hazard posed by extraterrestrial material brought back to the Earth. As a consequence, they group exploratory missions according to the type of mission and target body in five different categories, requesting specific means of cleaning and sterilization. However, the protection of extraterrestrial environments might also encompass ethical and other non-instrumental reasons. In order to allow intense scientific research and exploitation, and on the other hand to preserve regions of the Moon for research and use by future generations, we proposed the introduction of a planetary (or lunar) park system, which would protect areas of scientific, historic and intrinsic value under a common scheme. A similar placePlaceNamePlanetary PlaceTypePark system could be established on Mars well ahead of human settlement. References: United Nations. Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies (the "Outer Space Treaty") referenced 610 UNTS 205 -resolution 2222(XXI) of December 1966. Cockell C.S. and Hor-neck G. (2004) A Planetary Park system for Mars. Space Policy 20, 291-295. Cockell, C.S. and PersonNameHorneck G. (2006) PlaceNameplacePlanetary PlaceTypeParks -formulating a wilderness policy for planetary bodies. Space Policy 22, 256-261.

  15. Colors of Outer Solar System Objects Measured with VATT

    NASA Astrophysics Data System (ADS)

    Romanishin, William; Tegler, S. C.; Consolmagno, G. J.

    2010-10-01

    Over the past 7 years, we have measured optical B-V and V-R colors for about 40 minor outer solar system objects using the 1.8-m Vatican Advanced Technology Telescope (VATT) located on Mt. Graham in southeast Arizona. We will present these colors and use them to update the discussion of colors of minor bodies in the outer solar system. We gratefully acknowledge funding from the NASA Planetary Astronomy Program to Northern Arizona University and the U. of Oklahoma which helped support this work.

  16. Reacting to nuclear power systems in space: American public protests over outer planetary probes since the 1980s

    NASA Astrophysics Data System (ADS)

    Launius, Roger D.

    2014-03-01

    The United States has pioneered the use of nuclear power systems for outer planetary space probes since the 1970s. These systems have enabled the Viking landings to reach the surface of Mars and both Pioneers 10 and 11 and Voyagers 1 and 2 to travel to the limits of the solar system. Although the American public has long been concerned about safety of these systems, in the 1980s a reaction to nuclear accidents - especially the Soviet Cosmos 954 spacecraft destruction and the Three Mile Island nuclear power plant accidents - heightened awareness about the hazards of nuclear power and every spacecraft launch since that time has been contested by opponents of nuclear energy. This has led to a debate over the appropriateness of the use of nuclear power systems for spacecraft. It has also refocused attention on the need for strict systems of control and rigorous checks and balances to assure safety. This essay describes the history of space radioisotope power systems, the struggles to ensure safe operations, and the political confrontation over whether or not to allow the launch the Galileo and Cassini space probes to the outer planets. Effectively, these efforts have led to the successful flights of 12 deep space planetary probes, two-thirds of them operated since the accidents of Cosmos 954, Three Mile Island, and Chernobyl.

  17. Voyager Outreach Compilation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This NASA JPL (Jet Propulsion Laboratory) video presents a collection of the best videos that have been published of the Voyager mission. Computer animation/simulations comprise the largest portion of the video and include outer planetary magnetic fields, outer planetary lunar surfaces, and the Voyager spacecraft trajectory. Voyager visited the four outer planets: Jupiter, Saturn, Uranus, and Neptune. The video contains some live shots of Jupiter (actual), the Earth's moon (from orbit), Saturn (actual), Neptune (actual) and Uranus (actual), but is mainly comprised of computer animations of these planets and their moons. Some of the individual short videos that are compiled are entitled: The Solar System; Voyage to the Outer Planets; A Tour of the Solar System; and the Neptune Encounter. Computerized simulations of Viewing Neptune from Triton, Diving over Neptune to Meet Triton, and Catching Triton in its Retrograde Orbit are included. Several animations of Neptune's atmosphere, rotation and weather features as well as significant discussion of the planet's natural satellites are also presented.

  18. Lunar and Planetary Science XXXV: Outer Solar System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Outer Solar System" included the following reports:New Data About Seasonal Variations of the North-South Asymmetry of Polarized Light of Jupiter; Appearance of Second Harmonic in the Jupiter Spectrum; Dynamics of Confined Liquid Mass, Spreading on Planet Surface; "Cassini" will Discover 116 New Satellites of Saturn!; Jupiter's Light Reflection Law;and Internal Structure Modelling of Europa.

  19. The Dynamics of Tightly-packed Planetary Systems in the Presence of an Outer Planet: Case Studies Using Kepler-11 and Kepler-90

    NASA Astrophysics Data System (ADS)

    Granados Contreras, A. P.; Boley, A. C.

    2018-03-01

    We explore the effects of an undetected outer giant planet on the dynamics, observability, and stability of Systems with Tightly-packed Inner Planets (STIPs). We use direct numerical simulations along with secular theory and synthetic secular frequency spectra to analyze how analogues of Kepler-11 and Kepler-90 behave in the presence of a nearly co-planar, Jupiter-like outer perturber with semimajor axes between 1 and 5.2 au. Most locations of the outer perturber do not affect the evolution of the inner planetary systems, apart from altering precession frequencies. However, there are locations at which an outer planet causes system instability due to, in part, secular eccentricity resonances. In Kepler-90, there is a range of orbital distances for which the outer perturber drives planets b and c, through secular interactions, onto orbits with inclinations that are ∼16° away from the rest of the planets. Kepler-90 is stable in this configuration. Such secular resonances can thus affect the observed multiplicity of transiting systems. We also compare the synthetic apsidal and nodal precession frequencies with the secular theory and find some misalignment between principal frequencies, indicative of strong interactions between the planets (consistent with the system showing TTVs). First-order libration angles are calculated to identify MMRs in the systems, for which two near-MMRs are shown in Kepler-90, with a 5:4 between b and c, as well as a 3:2 between g and h.

  20. Outward to the Beginning: the CRAF and Cassini Missions of the Mariner Mark 2 Program

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Two successive journeys will soon offer a perspective on the origin of the solar system and perhaps provide clues on the origin of life as well. The missions, the Comet Rendezvous Asteroid Flyby (CRAF) and Cassini (the Saturn orbiter/Titan probe), combine to form the first initiative of the Mariner Mark 2 program, a series of planetary missions whose common objective is to explore primitive bodies and the outer solar system, toward the ultimate goal of understanding the nature of our origins. Cassini and CRAF are exciting planetary missions. The objectives that they share, the region of the solar system in which comets, asteroids, and the Saturnian system have evolved and now reside, and the spacecraft that will carry both sets of experiments to their targets in the outer solar system are described.

  1. Radioisotope Electric Propulsion for Fast Outer Planetary Orbiters

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Benson, Scott; Gefert, Leon; Patterson, Michael; Schreiber, Jeffrey

    2002-01-01

    Recent interest in outer planetary targets by the Office of Space Science has spurred the search for technology options to enable relatively quick missions to outer planetary targets. Several options are being explored including solar electric propelled stages combined with aerocapture at the target and nuclear electric propulsion. Another option uses radioisotope powered electric thrusters to reach the outer planets. Past work looked at using this technology to provide faster flybys. A better use for this technology is for outer planet orbiters. Combined with medium class launch vehicles and a new direct trajectory these small, sub-kilowatt ion thrusters and Stirling radioisotope generators were found to allow missions as fast as 5 to 12 years for objects from Saturn to Pluto, respectively. Key to the development is light spacecraft and science payload technologies.

  2. Reports of Planetary Geology Program, 1982

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Compiler)

    1982-01-01

    Work conducted in the Planetary Geology program is summarized. The following categories are presented: outer solar system satellites; asteroids and comets; Venus; cratering processes and landform development; volcanic processes and landforms; aolian processes and landforms; fluvial processes and landform development; periglacial and permafrost processes; structure, tectonics and stratigraphy; remote sensing and regolith studies; geologic mapping, cartography and geodesy.

  3. Collisional and Dynamical Evolution of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Weidenschilling, Stuart J.

    2004-01-01

    Senior Scientst S. J. Weidenschilling presents his final administrative report in the research program entitled "Collisional and Dynamical Evolution of Planetary Systems," on which he was the Principal Investigator. This research program produced the following publications: 1) "Jumping Jupiters" in binary star systems. F. Marzari, S. J. Weidenschilling, M. Barbieri and V. Granata. Astrophys. J., in press, 2005; 2) Formation of the cores of the outer planets. To appear in "The Outer Planets" (R. Kallenbach, ED), ISSI Conference Proceedings (Space Sci. Rev.), in press, 2005; 3) Accretion dynamics and timescales: Relation to chondrites. S. J. Weidenschilling and J. Cuzzi. In Meteorites and the Early Solar System LI (D. Lauretta et al., Eds.), Univ. of Arizona Press, 2005; 4) Asteroidal heating and thermal stratification of the asteroid belt. A. Ghosh, S. J.Weidenschilling, H. Y. McSween, Jr. and A. Rubin. In Meteorites and the Early Solar System I1 (D. Lauretta et al., Eds.), Univ. of Arizona Press, 2005.

  4. Depletion of the Outer Asteroid Belt

    PubMed

    Liou; Malhotra

    1997-01-17

    During the early history of the solar system, it is likely that the outer planets changed their distance from the sun, and hence, their influence on the asteroid belt evolved with time. The gravitational influence of Jupiter and Saturn on the orbital evolution of asteroids in the outer asteroid belt was calculated. The results show that the sweeping of mean motion resonances associated with planetary migration efficiently destabilizes orbits in the outer asteroid belt on a time scale of 10 million years. This mechanism provides an explanation for the observed depletion of asteroids in that region.

  5. Depletion of the Outer Asteroid Belt

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Malhotra, Renu

    1997-01-01

    During the early history of the solar system, it is likely that the outer planets changed their distance from the sun, and hence, their influence on the asteroid belt evolved with time. The gravitational influence of Jupiter and Saturn on the orbital evolution of asteroids in the outer asteroid belt was calculated. The results show that the sweeping of mean motion resonances associated with planetary migration efficiently destabilizes orbits in the outer asteroid belt on a time scale of 10 million years. This mechanism provides an explanation for the observed depletion of asteroids in that region.

  6. Stability of outer planetary orbits around binary stars - A comparison of Hill's and Laplace's stability criteria

    NASA Technical Reports Server (NTRS)

    Kubala, A.; Black, D.; Szebehely, V.

    1993-01-01

    A comparison is made between the stability criteria of Hill and that of Laplace to determine the stability of outer planetary orbits encircling binary stars. The restricted, analytically determined results of Hill's method by Szebehely and coworkers and the general, numerically integrated results of Laplace's method by Graziani and Black (1981) are compared for varying values of the mass parameter mu. For mu = 0 to 0.15, the closest orbit (lower limit of radius) an outer planet in a binary system can have and still remain stable is determined by Hill's stability criterion. For mu greater than 0.15, the critical radius is determined by Laplace's stability criterion. It appears that the Graziani-Black stability criterion describes the critical orbit within a few percent for all values of mu.

  7. Outer planet probe cost estimates: First impressions

    NASA Technical Reports Server (NTRS)

    Niehoff, J.

    1974-01-01

    An examination was made of early estimates of outer planetary atmospheric probe cost by comparing the estimates with past planetary projects. Of particular interest is identification of project elements which are likely cost drivers for future probe missions. Data are divided into two parts: first, the description of a cost model developed by SAI for the Planetary Programs Office of NASA, and second, use of this model and its data base to evaluate estimates of probe costs. Several observations are offered in conclusion regarding the credibility of current estimates and specific areas of the outer planet probe concept most vulnerable to cost escalation.

  8. Planetary geosciences, 1989-1990

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T. (Editor); James, Odette B. (Editor); Lunine, Jonathan I. (Editor); Macpherson, Glenn J. (Editor); Phillips, Roger J. (Editor)

    1992-01-01

    NASA's Planetary Geosciences Programs (the Planetary Geology and Geophysics and the Planetary Material and Geochemistry Programs) provide support and an organizational framework for scientific research on solid bodies of the solar system. These research and analysis programs support scientific research aimed at increasing our understanding of the physical, chemical, and dynamic nature of the solid bodies of the solar system: the Moon, the terrestrial planets, the satellites of the outer planets, the rings, the asteroids, and the comets. This research is conducted using a variety of methods: laboratory experiments, theoretical approaches, data analysis, and Earth analog techniques. Through research supported by these programs, we are expanding our understanding of the origin and evolution of the solar system. This document is intended to provide an overview of the more significant scientific findings and discoveries made this year by scientists supported by the Planetary Geosciences Program. To a large degree, these results and discoveries are the measure of success of the programs.

  9. Preface to the special issue of PSS on "Surfaces, atmospheres and magnetospheres of the outer planets, their satellites and ring systems: Part XII″

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Atreya, S.; Castillo-Rogez, J.; Mueller-Wodarg, I.; Spilker, L.; Strazzulla, G.

    2018-06-01

    This issue contains six articles on original research and review papers presented in the past year in sessions organized during several international meetings and congresses including the European Geosciences Union (EGU), European Planetary Science Congress (EPSC) and others. The manuscripts cover recent observations and models of the atmospheres, magnetospheres and surfaces of the giant planets and their satellites based on ongoing and recent planetary missions. Concepts of architecture and payload for future space missions are also presented. The six articles in this special issue cover a variety of objects in the outer solar system ranging from Jupiter to Neptune and the possibilities for their exploration. A brief introductory summary of their findings follows.

  10. Analysis of Sel-Gravitating Planetary Satellites in the Solar System

    NASA Astrophysics Data System (ADS)

    Yasenev, S. O.

    As of today there have been more than 180 planetary satellites discovered in the Solar system, and the number of outer moons found continues to grow. Most of those natural satellites have insufficient mass and are able to retain their shape only due to the strength of the electromagnetic force. The purpose of this paper is to analyze the moons' physical properties. The analysis of planetary satellites as self-gravitating bodies, i.e. celestial bodies which rely on the weight of their own mass and resulting gravitational force to maintain their shape and tend to bring it closer to the hydrostatic equilibrium, was performed.

  11. Cryovolcanism in the outer solar system

    USGS Publications Warehouse

    Geissler, Paul E.

    2015-01-01

    Cryovolcanism is defined as the extrusion of liquids and vapors of materials that would be frozen solid at the planetary surface temperatures of the icy bodies of the outer solar system. Active cryovolcanism is now known to occur on Saturn's moon Enceladus and on Neptune's moon Triton and is suspected on Jupiter's moon Europa, while evidence for past cryovolcanic activity is widespread throughout the outer solar system. This chapter examines the mechanisms and manifestations of cryovolcanism, beginning with a review of the materials that make up these unusual ‘‘magmas’’ and the means by which they might erupt and concluding with a volcanologist's tour of the farthest reaches of the solar system.

  12. Planetary maps

    USGS Publications Warehouse

    ,

    1992-01-01

    An important goal of the USGS planetary mapping program is to systematically map the geology of the Moon, Mars, Venus, and Mercury, and the satellites of the outer planets. These geologic maps are published in the USGS Miscellaneous Investigations (I) Series. Planetary maps on sale at the USGS include shaded-relief maps, topographic maps, geologic maps, and controlled photomosaics. Controlled photomosaics are assembled from two or more photographs or images using a network of points of known latitude and longitude. The images used for most of these planetary maps are electronic images, obtained from orbiting television cameras, various optical-mechanical systems. Photographic film was only used to map Earth's Moon.

  13. The signatures of the parental cluster on field planetary systems

    NASA Astrophysics Data System (ADS)

    Cai, Maxwell Xu; Portegies Zwart, Simon; van Elteren, Arjen

    2018-03-01

    Due to the high stellar densities in young clusters, planetary systems formed in these environments are likely to have experienced perturbations from encounters with other stars. We carry out direct N-body simulations of multiplanet systems in star clusters to study the combined effects of stellar encounters and internal planetary dynamics. These planetary systems eventually become part of the Galactic field population as the parental cluster dissolves, which is where most presently known exoplanets are observed. We show that perturbations induced by stellar encounters lead to distinct signatures in the field planetary systems, most prominently, the excited orbital inclinations and eccentricities. Planetary systems that form within the cluster's half-mass radius are more prone to such perturbations. The orbital elements are most strongly excited in the outermost orbit, but the effect propagates to the entire planetary system through secular evolution. Planet ejections may occur long after a stellar encounter. The surviving planets in these reduced systems tend to have, on average, higher inclinations and larger eccentricities compared to systems that were perturbed less strongly. As soon as the parental star cluster dissolves, external perturbations stop affecting the escaped planetary systems, and further evolution proceeds on a relaxation time-scale. The outer regions of these ejected planetary systems tend to relax so slowly that their state carries the memory of their last strong encounter in the star cluster. Regardless of the stellar density, we observe a robust anticorrelation between multiplicity and mean inclination/eccentricity. We speculate that the `Kepler dichotomy' observed in field planetary systems is a natural consequence of their early evolution in the parental cluster.

  14. Distant Comets in the Early Solar System

    NASA Technical Reports Server (NTRS)

    Meech, Karen J.

    2000-01-01

    The main goal of this project is to physically characterize the small outer solar system bodies. An understanding of the dynamics and physical properties of the outer solar system small bodies is currently one of planetary science's highest priorities. The measurement of the size distributions of these bodies will help constrain the early mass of the outer solar system as well as lead to an understanding of the collisional and accretional processes. A study of the physical properties of the small outer solar system bodies in comparison with comets in the inner solar system and in the Kuiper Belt will give us information about the nebular volatile distribution and small body surface processing. We will increase the database of comet nucleus sizes making it statistically meaningful (for both Short-Period and Centaur comets) to compare with those of the Trans-Neptunian Objects. In addition, we are proposing to do active ground-based observations in preparation for several upcoming space missions.

  15. The journey of Typhon-Echidna as a binary system through the planetary region

    NASA Astrophysics Data System (ADS)

    Araujo, R. A. N.; Galiazzo, M. A.; Winter, O. C.; Sfair, R.

    2018-06-01

    Among the current population of the 81 known trans-Neptunian binaries (TNBs), only two are in orbits that cross the orbit of Neptune. These are (42355) Typhon-Echidna and (65489) Ceto-Phorcys. In this work, we focused our analyses on the temporal evolution of the Typhon-Echidna binary system through the outer and inner planetary systems. Using numerical integrations of the N-body gravitational problem, we explored the orbital evolutions of 500 clones of Typhon, recording the close encounters of those clones with planets. We then analysed the effects of those encounters on the binary system. It was found that only {≈ }22 per cent of the encounters with the giant planets were strong enough to disrupt the binary. This binary system has an ≈ 3.6 per cent probability of reaching the terrestrial planetary region over a time-scale of approximately 5.4 Myr. Close encounters of Typhon-Echidna with Earth and Venus were also registered, but the probabilities of such events occurring are low ({≈}0.4 per cent). The orbital evolution of the system in the past was also investigated. It was found that in the last 100 Myr, Typhon might have spent most of its time as a TNB crossing the orbit of Neptune. Therefore, our study of the Typhon-Echidna orbital evolution illustrates the possibility of large cometary bodies (radii of 76 km for Typhon and 42 km for Echidna) coming from a remote region of the outer Solar system and that might enter the terrestrial planetary region preserving its binarity throughout the journey.

  16. Fourier transform spectroscopy for future planetary missions

    NASA Astrophysics Data System (ADS)

    Brasunas, John; Kolasinski, John; Kostiuk, Ted; Hewagama, Tilak

    2017-01-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system. Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, we have developed CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. We discuss the roadmap for making CIRS-lite a viable candidate for future planetary missions, including the recent increased emphasis on ocean worlds (Europa, Encelatus, Titan) and also on smaller payloads such as CubeSats and SmallSats.

  17. Guidance and navigation requirements for unmanned flyby and swingby missions to the outer planets. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Unmanned spacecraft missions to the outer planets are of current interest to planetary scientists, and are being studied for the post 1970 time period. Flyby, entry and orbiter missions are all being considered using both direct and planetary swingby trajectory modes. The navigation and guidance requirements for a variety of missions to the outer planets and comets including both the three and four planet Grand Tours, are summarized.

  18. Report of the December 2009 Titan Planetary Protection workshop

    NASA Astrophysics Data System (ADS)

    Raulin, Francois; Rummel, John; Kminek, Gerhard; Conley, Catharine; Ehrenfreund, Pascale

    The status of planning for space missions to explore the outer solar system has identified the need to define the proper planetary protection categories and implementation guidelines for outer planet satellites. A COSPAR planetary protection workshop was held in Vienna in April 2009 on that subject, and a consensus was found regarding the planetary protection status of many of these objects. However, it was determined that for the planetary protection categorization of Titan further data and studies were required, to conclude whether there is only a remote (Cat. II) or significant (Cat. III) chance that contamination carried by a spacecraft could jeopardize future exploration. The main issue to be resolved is the uncertainty surrounding the communication between the surface and the potentially liquid water in the subsurface with regard to (feasible) processes and associated time frames. It was thus decided to have a planetary protection workshop fully dedicated to the case of Titan, both to focus greater expertise on the subject and to make use of additional Cassini-Huygens mission data. A two days Titan Planetary Protection workshop was thus organized at Caltech, on December 9 and 10, 2009. The meeting was sponsored by NASA and ESA, with the participation of the COSPAR Panel on Planetary Protection. It was attended by 25 participants. The goal of this workshop was to resolve the mission category for Titan (and Ganymede) and develop a consensus on the Category II (remote chance that contamination jeopardize future exploration) versus II+ /III (less remote or significant chance of contamination jeopardize future exploration) dichotomy, taking into account both the conservative nature of planetary protection policy and the physical constraints on the Titan and Ganymede systems. The outcome of this workshop will be presented and discussed during the PPP1 session of the COSPAR General Assembly meeting in Bremen. Note: all participants of the Titan PP workshop are associated to this presentation.

  19. Mission Steering Profiles of Outer Planetary Orbiters Using Radioisotope Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas; Oleson, Steven

    2004-01-01

    Radioisotope Electric Propulsion (REP) has the potential to enable small spacecraft to orbit outer planetary targets with trip times comparable to flyby missions. The ability to transition from a flyby to an orbiter mission lies in the availability of continuous low power electric propulsion along the entire trajectory. The electric propulsion system s role is to add and remove energy from the spacecraft s trajectory to bring it in and out of a heliocentric hyperbolic escape trajectory for the outermost target bodies. Energy is added and the trajectory is reshaped to rendezvous with the closer-in target bodies. Sample REP trajectories will be presented for missions ranging for distances from Jupiter orbit to the Pluto-Kuiper Belt.

  20. Outer-planet scattering can gently tilt an inner planetary system

    NASA Astrophysics Data System (ADS)

    Gratia, Pierre; Fabrycky, Daniel

    2017-01-01

    Chaotic dynamics are expected during and after planet formation, and a leading mechanism to explain large eccentricities of gas giant exoplanets is planet-planet gravitational scattering. The same scattering has been invoked to explain misalignments of planetary orbital planes with respect to their host star's spin. However, an observational puzzle is presented by Kepler-56, which has two inner planets (b and c) that are nearly coplanar with each other, yet are more than 45° inclined to their star's equator. Thus, the spin-orbit misalignment might be primordial. Instead, we further develop the hypothesis in the discovery paper, that planets on wider orbits generated misalignment through scattering, and as a result gently torqued the inner planets away from the equator plane of the star. We integrated the equations of motion for Kepler-56 b and c along with an unstable outer system initialized with either two or three Jupiter-mass planets. We address here whether the violent scattering that generates large mutual inclinations can leave the inner system intact, tilting it gently. In almost all of the cases initially with two outer planets, either the inner planets remain nearly coplanar with each other in the star's equator plane, or they are scattered violently to high mutual inclination and high spin-orbit misalignment. On the contrary, of the systems with three unstable outer planets, a spin-orbit misalignment large enough to explain the observations is generated 28 per cent of the time for coplanar inner planets, which is consistent with the observed frequency of this phenomenon reported so far. We conclude that multiple-planet scattering in the outer parts of the system may account for this new population of coplanar planets hosted by oblique stars.

  1. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1988-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The key activity for this grant year has continued to be laboratory measurements of the microwave and millimeter-wave properties of the simulated atmospheres of the outer planets and their satellites. A Fabry-Perot spectrometer system capable of operation from 32 to 41 GHz was developed. Initially this spectrometer was used to complete laboratory measurements of the 7.5 to 9.3 mm absorption spectrum of ammonia. Laboratory measurements were begun at wavelengths near 3.2 mm, where a large number of observations of the emission from the outer planets were made. A description of this system is presented.

  2. Evidence for dust grain growth in young circumstellar disks.

    PubMed

    Throop, H B; Bally, J; Esposito, L W; McCaughrean, M J

    2001-06-01

    Hundreds of circumstellar disks in the Orion nebula are being rapidly destroyed by the intense ultraviolet radiation produced by nearby bright stars. These young, million-year-old disks may not survive long enough to form planetary systems. Nevertheless, the first stage of planet formation-the growth of dust grains into larger particles-may have begun in these systems. Observational evidence for these large particles in Orion's disks is presented. A model of grain evolution in externally irradiated protoplanetary disks is developed and predicts rapid particle size evolution and sharp outer disk boundaries. We discuss implications for the formation rates of planetary systems.

  3. Plasma Flow Past Cometary and Planetary Satellite Atmospheres

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.; Gombosi, Tamas I.; Kabin, Konstantin

    2000-01-01

    The tenuous atmospheres and ionospheres of comets and outer planet satellites share many common properties and features. Such similarities include a strong interaction with their outer radiation, fields and particles environs. For comets the interaction is with the magnetized solar wind plasma, whereas for satellites the interaction is with the strongly magnetized and corotating planetary magnetospheric plasma. For this reason there are many common or analogous physical regimes, and many of the same modeling techniques are used to interpret remote sensing and in situ measurements in order to study the important underlying physical phenomena responsible for their appearances. We present here a review of various modeling approaches which are used to elucidate the basic properties and processes shaping the energetics and dynamics of these systems which are similar in many respects.

  4. Sublimation of icy planetesimals and the delivery of water to the habitable zone around solar type stars

    NASA Astrophysics Data System (ADS)

    Brunini, Adrián; López, María Cristina

    2018-06-01

    We present a semi analytic model to evaluate the delivery of water to the habitable zone around a solar type star carried by icy planetesimals born beyond the snow line. The model includes sublimation of ice, gas drag and scattering by an outer giant planet located near the snow line. The sublimation model is general and could be applicable to planetary synthesis models or N-Body simulations of the formation of planetary systems. We perform a short series of simulations to asses the potential relevance of sublimation of volatiles in the process of delivery of water to the inner regions of a planetary system during early stages of its formation. We could anticipate that erosion by sublimation would prevent the arrival of much water to the habitable zone of protoplanetary disks in the form of icy planetesimals. Close encounters with a massive planet orbiting near the outer edge of the snow line could make possible for planetesimals to reach the habitable zone somewhat less eroded. However, only large planetesimals could provide appreciable amounts of water. Massive disks and sharp gas surface density profiles favor icy planetesimals to reach inner regions of a protoplanetary disk.

  5. Effects of Extreme Obliquity Variations on the Habitability of Exoplanets

    NASA Technical Reports Server (NTRS)

    Armstrong, J. C.; Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T. R.; Meadows, V. S.

    2014-01-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.

  6. Effects of extreme obliquity variations on the habitability of exoplanets.

    PubMed

    Armstrong, J C; Barnes, R; Domagal-Goldman, S; Breiner, J; Quinn, T R; Meadows, V S

    2014-04-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 10(8) years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.

  7. Debris disks as signposts of terrestrial planet formation

    NASA Astrophysics Data System (ADS)

    Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.

    2011-06-01

    There exists strong circumstantial evidence from their eccentric orbits that most of the known extra-solar planetary systems are the survivors of violent dynamical instabilities. Here we explore the effect of giant planet instabilities on the formation and survival of terrestrial planets. We numerically simulate the evolution of planetary systems around Sun-like stars that include three components: (i) an inner disk of planetesimals and planetary embryos; (ii) three giant planets at Jupiter-Saturn distances; and (iii) an outer disk of planetesimals comparable to estimates of the primitive Kuiper belt. We calculate the dust production and spectral energy distribution of each system by assuming that each planetesimal particle represents an ensemble of smaller bodies in collisional equilibrium. Our main result is a strong correlation between the evolution of the inner and outer parts of planetary systems, i.e. between the presence of terrestrial planets and debris disks. Strong giant planet instabilities - that produce very eccentric surviving planets - destroy all rocky material in the system, including fully-formed terrestrial planets if the instabilities occur late, and also destroy the icy planetesimal population. Stable or weakly unstable systems allow terrestrial planets to accrete in their inner regions and significant dust to be produced in their outer regions, detectable at mid-infrared wavelengths as debris disks. Stars older than ~100 Myr with bright cold dust emission (in particular at λ ~ 70 μm) signpost dynamically calm environments that were conducive to efficient terrestrial accretion. Such emission is present around ~16% of billion-year old Solar-type stars. Our simulations yield numerous secondary results: 1) the typical eccentricities of as-yet undetected terrestrial planets are ~0.1 but there exists a novel class of terrestrial planet system whose single planet undergoes large amplitude oscillations in orbital eccentricity and inclination; 2) by scaling our systems to match the observed semimajor axis distribution of giant exoplanets, we predict that terrestrial exoplanets in the same systems should be a few times more abundant at ~0.5 AU than giant or terrestrial exoplanets at 1 AU; 3) the Solar System appears to be unusual in terms of its combination of a rich terrestrial planet system and a low dust content. This may be explained by the weak, outward-directed instability that is thought to have caused the late heavy bombardment. The movie associated to Fig. 2 is available in electronic form at http://www.aanda.org

  8. COSPAR Workshop on Planetary Protection for Titan and Ganymede

    NASA Astrophysics Data System (ADS)

    Rummel, J. D.; Raulin, F.; Ehrenfreund, P.

    2010-06-01

    During the deliberations of the COSPAR Workshop on Planetary Protection for Outer Planet Satellites and Small Solar System Bodies (Rummel et al., 2009), held in Vienna in April 2009, a number of bodies in the outer Solar System were identified as being potentially in the "II+" category consistent with the COSPAR categorization scheme, referring to a body that is of interest to chemical evolution and the origin of life, but whose potential to support living organisms is undecided, including at least Titan, Ganymede, Triton, and the Pluto-Charon system (see Appendix C). Of these objects, Titan is the highest priority target for a near-term robotic flagship mission and Ganymede is also the subject of flagship mission interest. To address the concerns that were raised in Vienna about the categorization of Titan and Ganymede (as "II+") required another dedicated workshop to concentrate on those two bodies, a meeting was planned and held jointly by NASA, ESA, and COSPAR during the winter of 2009- 2010. This workshop included additional experts on Titan and Ganymede who were not able to participate in the Vienna meeting, and allowed the attendees to inspect detailed information about the most recent Cassini-Huygens results as well as the most current interpretation of the data available for both Titan and Ganymede. The goal of this workshop was to resolve the mission category for Titan and Ganymede and to develop a consensus on the II versus II+ dichotomy, taking into account both the conservative nature of planetary protection policy and the physical constraints on the Titan system and on Ganymede - the two largest moons in our solar system. This report summarizes the findings and recommendations from the workshop. The document will be distributed to the COSPAR Planetary Protection panel for consideration prior to the next General Assembly meeting in Bremen (Germany) during July 2010. Results from the Titan/Ganymede study will also be coordinated in a larger evaluation of outer planet icy satellites that has been requested from the US National Research Council.

  9. Intelligent systems for the autonomous exploration of Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Furfaro, Roberto; Lunine, Jonathan I.; Kargel, Jeffrey S.; Fink, Wolfgang

    2008-04-01

    Future planetary exploration of the outer satellites of the Solar System will require higher levels of onboard automation, including autonomous determination of sites where the probability of significant scientific findings is highest. Generally, the level of needed automation is heavily influenced by the distance between Earth and the robotic explorer(s) (e.g. spacecraft(s), rover(s), and balloon(s)). Therefore, planning missions to the outer satellites mandates the analysis, design and integration within the mission architecture of semi- and/or completely autonomous intelligence systems. Such systems should (1) include software packages that enable fully automated and comprehensive identification, characterization, and quantification of feature information within an operational region with subsequent target prioritization and selection for close-up reexamination; and (2) integrate existing information with acquired, "in transit" spatial and temporal sensor data to automatically perform intelligent planetary reconnaissance, which includes identification of sites with the highest potential to yield significant geological and astrobiological information. In this paper we review and compare some of the available Artificial Intelligence (AI) schemes and their adaptation to the problem of designing expert systems for onboard-based, autonomous science to be performed in the course of outer satellites exploration. More specifically, the fuzzy-logic framework proposed is analyzed in some details to show the effectiveness of such a scheme when applied to the problem of designing expert systems capable of identifying and further exploring regions on Titan and/or Enceladus that have the highest potential to yield evidence for past or present life. Based on available information (e.g., Cassini data), the current knowledge and understanding of Titan and Enceladus environments is evaluated to define a path for the design of a fuzzy-based system capable of reasoning over collected data and capable of providing the inference required to autonomously optimize future outer satellites explorations.

  10. Lunar and Planetary Science XXXV: Origin of Planetary Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session titled Origin of Planetary Systems" included the following reports:Convective Cooling of Protoplanetary Disks and Rapid Giant Planet Formation; When Push Comes to Shove: Gap-opening, Disk Clearing and the In Situ Formation of Giant Planets; Late Injection of Radionuclides into Solar Nebula Analogs in Orion; Growth of Dust Particles and Accumulation of Centimeter-sized Objects in the Vicinity of a Pressure enhanced Region of a Solar Nebula; Fast, Repeatable Clumping of Solid Particles in Microgravity ; Chondrule Formation by Current Sheets in Protoplanetary Disks; Radial Migration of Phyllosilicates in the Solar Nebula; Accretion of the Outer Planets: Oligarchy or Monarchy?; Resonant Capture of Irregular Satellites by a Protoplanet ; On the Final Mass of Giant Planets ; Predicting the Atmospheric Composition of Extrasolar Giant Planets; Overturn of Unstably Stratified Fluids: Implications for the Early Evolution of Planetary Mantles; and The Evolution of an Impact-generated Partially-vaporized Circumplanetary Disk.

  11. Final Blaze of Glory

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This video gives an overview of planetary nebulae through a computerized animation, images from the Hubble Space Telescope (HST), and interviews with Space Telescope Science Institute Theorist Dr. Mario Livio. A computerized animation simulates a giant star as it swallows its smaller companion. HST images display various planetary nebulae, such as M2-9 Twinjet Nebula, NGC 3568, NGC 3918, NGC 5307, NGC 6826, NGC 7009, and Hubble 5. An artist's concept shows what our solar system might look like in a billion years when the Sun has burned out and cast off its outer layers in a shell of glowing gas. Dr. Livio describes the shapes of the planetary nebulae, gives three reasons to study planetary nebulae, and what the observations made by HST have meant to him. A succession of 17 HST images of planetary nebulae are accompanied by music by John Serrie.

  12. Planetary Interiors

    NASA Technical Reports Server (NTRS)

    Banerdt, W. Bruce; Abercrombie, Rachel; Keddie, Susan; Mizutani, Hitoshi; Nagihara, Seiichi; Nakamura, Yosio; Pike, W. Thomas

    1996-01-01

    This report identifies two main themes to guide planetary science in the next two decades: understanding planetary origins, and understanding the constitution and fundamental processes of the planets themselves. Within the latter theme, four specific goals related to interior measurements addressing the theme. These are: (1) Understanding the internal structure and dynamics of at least one solid body, other than the Earth or Moon, that is actively convecting, (2) Determine the characteristics of the magnetic fields of Mercury and the outer planets to provide insight into the generation of planetary magnetic fields, (3) Specify the nature and sources of stress that are responsible for the global tectonics of Mars, Venus, and several icy satellites of the outer planets, and (4) Advance significantly our understanding of crust-mantle structure for all the solid planets. These goals can be addressed almost exclusively by measurements made on the surfaces of planetary bodies.

  13. Planetary quarantine: Principles, methods, and problems

    NASA Technical Reports Server (NTRS)

    Hall, L. B.

    1975-01-01

    Requirements for planetary quarantine programs focus on microbial life forms as the primary contamination threat carried by spacecraft to a planet, or back to earth from another planet or outer space. Constraints on planetary flight missions and forthcoming Martian landings are depicted.

  14. Modelling the Diversity of Outer Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Levison, H. F.; Duncan, M. J.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    The process of planetary growth is extremely complicated, involving a myriad of physical and chemical processes, many of which are poorly understood. The ultimate configuration that a planetary system attains depends upon the properties of the disk out of which it grew, of the star at the center of the disk and, at least in some cases, of the interstellar environment. In an effort to numerically survey the possible diversity of planetary systems, we have constructed synthetic systems of giant planets and integrated their orbits to determine the dynamical lifetimes and thus the viability of these systems. Our construction algorithm begins with 110 -- 180 planetesimals located between 4 and 40 AU from a one solar mass star; most initial planetesimals have masses several tenths that of Earth. We integrate the orbits of these bodies subject to mutual gravitational perturbations and -as drag for 10(exp 6) - 10(exp 7) years, merging any pair of planetesimals which pass within one-tenth of a Hill Sphere of one another and adding "gas" to embryos larger than 10 Earth masses. Use of such large planetesimal radii provided sufficient damping to prevent the system from excessive dynamical heating. Subsequently, systems were evolved without gas drag, either with the enlarged radii or with more realistic radii. Systems took from a few million years to greater than ten billion years to become stable (10(exp 9) years without mergers of ejections). Some of the systems produced with the enlarged radii closely resemble our outer Solar System. Many systems contained only Uranus-mass objects. Encounters in simulations using realistic radii resulted in ejections, typically leaving only a few planets per system, most of which were on very eccentric orbits. Some of the systems that we constructed were stable for at least a billion years despite undergoing macroscopic orbital changes on much shorter timescales.

  15. Phase Behaviour of Methane Hydrate Under Conditions Relevant to Titan's Interior

    NASA Astrophysics Data System (ADS)

    Sclater, G.; Fortes, A. D.; Crawford, I. A.

    2018-06-01

    The high-pressure behaviour Clathrate hydrates, thought to be abundant in the outer solar system, underpins planetary modelling efforts of the interior of Titan, where clathrates are hypothesised to be the source of the dense N2, CH4 atmosphere.

  16. Grand Tour outer planet missions definition phase. Part 2: Minutes of meetings and official correspondence

    NASA Technical Reports Server (NTRS)

    Belton, M. J. S.; Aksnes, K.; Davies, M. E.; Hartmann, W. K.; Millis, R. L.; Owen, T. C.; Reilly, T. H.; Sagan, C.; Suomi, V. E.; Collins, S. A., Jr.

    1972-01-01

    A variety of imaging systems proposed for use aboard the Outer Planet Grand Tour Explorer are discussed and evaluated in terms of optimal resolution capability and efficient time utilization. It is pointed out that the planetary and satellite alignments at the time of encounter dictate a high degree of adaptability and versatility in order to provide sufficient image enhancement over earth-based techniques. Data compression methods are also evaluated according to the same criteria.

  17. Effects of Extreme Obliquity Variations on the Habitability of Exoplanets

    PubMed Central

    Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T.R.; Meadows, V.S.

    2014-01-01

    Abstract We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes. Key Words: Exoplanets—Habitable zone—Energy balance models. Astrobiology 14, 277–291. PMID:24611714

  18. SOLAR SYSTEM EXPLORATION: NASA Blasted for Rising Costs, Cancellations.

    PubMed

    Lawler, A

    2000-12-01

    When NASA cancelled a project last month that would have sent a tiny rover crawling over an asteroid, the community of planetary scientists issued a public tongue lashing of the agency. Its letter warned of larger problems in the U.S. program caused by spiraling costs and recommended a sweeping reexamination of the outer solar system effort.

  19. New vision solar system mission study: Use of space reactor bimodal system with microspacecraft to determine origin and evolution of the outer plants in the solar system

    NASA Technical Reports Server (NTRS)

    Mondt, Jack F.; Zubrin, Robert M.

    1996-01-01

    The vision for the future of the planetary exploration program includes the capability to deliver 'constellations' or 'fleets' of microspacecraft to a planetary destination. These fleets will act in a coordinated manner to gather science data from a variety of locations on or around the target body, thus providing detailed, global coverage without requiring development of a single large, complex and costly spacecraft. Such constellations of spacecraft, coupled with advanced information processing and visualization techniques and high-rate communications, could provide the basis for development of a 'virtual presence' in the solar system. A goal could be the near real-time delivery of planetary images and video to a wide variety of users in the general public and the science community. This will be a major step in making the solar system accessible to the public and will help make solar system exploration a part of the human experience on Earth.

  20. The detection and characterization of a nontransiting planet by transit timing variations.

    PubMed

    Nesvorný, David; Kipping, David M; Buchhave, Lars A; Bakos, Gáspár Á; Hartman, Joel; Schmitt, Allan R

    2012-06-01

    The Kepler mission is monitoring the brightness of ~150,000 stars, searching for evidence of planetary transits. As part of the Hunt for Exomoons with Kepler (HEK) project, we report a planetary system with two confirmed planets and one candidate planet discovered with the publicly available data for KOI-872. Planet b transits the host star with a period P(b) = 33.6 days and exhibits large transit timing variations indicative of a perturber. Dynamical modeling uniquely detects an outer nontransiting planet c near the 5:3 resonance (P(c) = 57.0 days) with a mass 0.37 times that of Jupiter. Transits of a third planetary candidate are also found: a 1.7-Earth radius super-Earth with a 6.8-day period. Our analysis indicates a system with nearly coplanar and circular orbits, reminiscent of the orderly arrangement within the solar system.

  1. Papers presented to the Conference on Origins of Planetary Magnetism. [magnetic properties of meteorites and solar, lunar, and planetary magnetic fields

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Abstracts of 63 papers accepted for publication are presented. Topics cover geomagnetism in the context of planetary magnetism, lunar magnetism, the dynamo theory and nondynamo processes, comparative planetary magnetism (terrestrial and outer planets), meteoritic magnetism, and the early solar magnetic field. Author and subject indexes are provided.

  2. Kepler-424 b: A 'lonely' hot Jupiter that found A companion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endl, Michael; Caldwell, Douglas A.; Barclay, Thomas

    Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31 day orbit accompanied by a more massive outer companion in an eccentric (e = 0.3) 223 day orbit. The outer giant planet, Kepler-424c, is not detected transiting the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). Inmore » stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets; they appear to be {sup l}onely{sup .} This might be a consequence of these systems having a highly dynamical past. The Kepler-424 planetary system has a hot Jupiter in a multiple system, similar to υ Andromedae. We also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127), Kepler-43 (KOI-135), and Kepler-423 (KOI-183). These results are based on spectroscopic data collected with the Nordic Optical Telescope (NOT), the Keck 1 telescope, and HET. For all systems, we rule out false positives based on various follow-up observations, confirming the planetary nature of these companions. We performed a comparison with planetary evolutionary models which indicate that these five hot Jupiters have heavy element contents between 20 and 120 M {sub ⊕}.« less

  3. Studies of extra-solar Oort Clouds and the Kuiper Disk

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1994-01-01

    The March 1994 Semi-Annual report for Studies of Extra-Solar Oort Clouds and the Kuiper Disk is presented. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. Our three-year effort consists of two major efforts: observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and modeling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including beta Pic.

  4. Ground Based Studies of the Outer Planets

    NASA Technical Reports Server (NTRS)

    Trafton, Laurence M.

    2005-01-01

    This report covers progress to date under this grant on our continuing program to conduct ground based studies of the outer solar system planets and satellites, with emphasis on spectroscopy and atmospheric phenomena. The research continues under our new PAST grant, NNG04G131G beginning 5/1/2004. The original period of performance of the subject grant was 3/1/2001 to 2/28/2004, but was extended one year at no cost. Although there is some overlap in the scientific projects conducted during the extended year with those of the new grant, this report is confined to the portion of the work funded under NAG5-10435. The primary goals for this grant period were a comparative study of outer planet thermospheres/ionospheres near solar maximum, extended to the mid-IR, and the investigation of molecular dimers in outer solar system atmospheres. This project supports NASA's planned space missions, Jupiter Polar Orbiter, outer Planet Microprobes, and the recent Cassini flyby of Jupiter. It also supports the OSS strategic plan themes, The Exploration of the Solar System and The Sun-Earth Connection/ Understanding comparative planetary space environments.

  5. A gaseous metal disk around a white dwarf.

    PubMed

    Gänsicke, B T; Marsh, T R; Southworth, J; Rebassa-Mansergas, A

    2006-12-22

    The destiny of planetary systems through the late evolution of their host stars is very uncertain. We report a metal-rich gas disk around a moderately hot and young white dwarf. A dynamical model of the double-peaked emission lines constrains the outer disk radius to just 1.2 solar radii. The likely origin of the disk is a tidally disrupted asteroid, which has been destabilized from its initial orbit at a distance of more than 1000 solar radii by the interaction with a relatively massive planetesimal object or a planet. The white dwarf mass of 0.77 solar mass implies that planetary systems may form around high-mass stars.

  6. Fourier transform spectroscopy for future planetary missions

    NASA Astrophysics Data System (ADS)

    Brasunas, John C.; Hewagama, Tilak; Kolasinski, John R.; Kostiuk, Theodor

    2015-11-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system.Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, NASA Goddard was funded via the Planetary Instrument Definition and Development Progrem (PIDDP) to develop CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. Following the initial validation of CIRS-lite operation in the laboratory, we have been acquiring atmospheric data in the 8-12 micron window at the 1.2 m telescope at the Goddard Geophysical and Astronomical Observatory (GGAO) in Greenbelt, MD. Targets so far have included Earth's atmosphere (in emission, and in absorption against the moon), and Venus.We will present the roadmap for making CIRS-lite a viable candidate for future planetary missions.

  7. Debris disks as signposts of terrestrial planet formation. II. Dependence of exoplanet architectures on giant planet and disk properties

    NASA Astrophysics Data System (ADS)

    Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.

    2012-05-01

    We present models for the formation of terrestrial planets, and the collisional evolution of debris disks, in planetary systems that contain multiple marginally unstable gas giants. We previously showed that in such systems, the dynamics of the giant planets introduces a correlation between the presence of terrestrial planets and cold dust, i.e., debris disks, which is particularly pronounced at λ ~ 70 μm. Here we present new simulations that show that this connection is qualitatively robust to a range of parameters: the mass distribution of the giant planets, the width and mass distribution of the outer planetesimal disk, and the presence of gas in the disk when the giant planets become unstable. We discuss how variations in these parameters affect the evolution. We find that systems with equal-mass giant planets undergo the most violent instabilities, and that these destroy both terrestrial planets and the outer planetesimal disks that produce debris disks. In contrast, systems with low-mass giant planets efficiently produce both terrestrial planets and debris disks. A large fraction of systems with low-mass (M ≲ 30 M⊕) outermost giant planets have final planetary separations that, scaled to the planets' masses, are as large or larger than the Saturn-Uranus and Uranus-Neptune separations in the solar system. We find that the gaps between these planets are not only dynamically stable to test particles, but are frequently populated by planetesimals. The possibility of planetesimal belts between outer giant planets should be taken into account when interpreting debris disk SEDs. In addition, the presence of ~ Earth-mass "seeds" in outer planetesimal disks causes the disks to radially spread to colder temperatures, and leads to a slow depletion of the outer planetesimal disk from the inside out. We argue that this may explain the very low frequency of >1 Gyr-old solar-type stars with observed 24 μm excesses. Our simulations do not sample the full range of plausible initial conditions for planetary systems. However, among the configurations explored, the best candidates for hosting terrestrial planets at ~1 AU are stars older than 0.1-1 Gyr with bright debris disks at 70 μm but with no currently-known giant planets. These systems combine evidence for the presence of ample rocky building blocks, with giant planet properties that are least likely to undergo destructive dynamical evolution. Thus, we predict two correlations that should be detected by upcoming surveys: an anti-correlation between debris disks and eccentric giant planets and a positive correlation between debris disks and terrestrial planets. Three movies associated to Figs. 1, 3, and 7 are available in electronic form at http://www.aanda.org

  8. The Outer Planetary Mission Design Project

    NASA Astrophysics Data System (ADS)

    Benfield, Michael; Turner, M. W.

    2010-10-01

    With the recent focus from the planetary science community on the outer planets of the solar system, The University of Alabama in Huntsville Integrated Product Team program is embarking on a new challenge to develop an outer planetary mission for the academic year 2010-2011. Currently four bodies are of interest for this mission: Titan, Europa, Triton, and Enceledus, with one body being chosen by the instructors by the beginning of the fall semester. This project will use the 2010 Discovery Announcement of Opportunity as its Request for Proposal (RFP). All of the teams competing in this project will use the AO to respond with a proposal to the instructors for their proposed mission and spacecraft concept. The project employs the two-semester design sequence of the IPT program to provide a framework for the development of this mission. This sequence is divided into four phases. Phase 1 - Requirements Development - focuses on the development of both the scientific and engineering requirements of the mission. During this phase the teams work very closely with the PI organization, represented by the College of Charleston. Phase 2 - Team Formation and Architecture Development - concentrates on the assessment of the overall mission architecture from the launch vehicle to the ground operations of the proposed spacecraft. Phase 3 - System Definition - provides for spacecraft subsystem trade studies and further refinement of the specific spacecraft to meet the scientific requirements and objectives developed in Phase 1. Phase 4 - Design - is the phase where the engineers provide the spacecraft design that is required for the mission of interest. At the conclusion of Phases 2 and 4, an external review board evaluates the proposed designs and chooses one winner of the competition.

  9. Historical trends of participation of women in robotic spacecraft missions

    NASA Astrophysics Data System (ADS)

    Rathbun, Julie A.; Dones, Luke; Gay, Pamela; Cohen, Barbara; Horst, Sarah; Lakdawalla, Emily; Spickard, James; Milazzo, Moses; Sayanagi, Kunio M.; Schug, Joanna

    2015-11-01

    For many planetary scientists, being involved in a spacecraft mission is the highlight of a career. Many young scientists hope to one day be involved in such a mission. We will look at the science teams of several flagship-class spacecraft missions to look for trends in the representation of groups that are underrepresented in science. We will start with The Galileo, Cassini, and Europa missions to the outer solar system as representing missions that began in the 1980s, 1990s and 2010s respectively. We would also like to extend our analysis to smaller missions and those to targets other than the outer solar system.

  10. The Outer Halos of Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin; Arnaboldi, Magda; Longobardi, Alessia

    2015-04-01

    The outer halos of massive early-type galaxies (ETGs) are dark matter dominated and may have formed by accretion of smaller systems during galaxy evolution. Here a brief report is given of some recent work on the kinematics, angular momentum, and mass distributions of simulated ETG halos, and of corresponding properties of observed halos measured with planetary nebulae (PNe) as tracers. In the outermost regions of the Virgo-central galaxy M87, the PN data show that the stellar halo and the co-spatial intracluster light are distinct kinematic components.

  11. Exploration of Icy Moons in the Outer Solar System: Updated Planetary Protection Requirements for Missions to Enceladus and Europa

    NASA Astrophysics Data System (ADS)

    Rummel, J. D.; Race, M. S.

    2016-12-01

    Enceladus and Europa are bodies with icy/watery environments and potential habitable conditions for life, making both of great interest in astrobiological studies of chemical evolution and /or origin of life. They are also of significant planetary protection concern for spacecraft missions because of the potential for harmful contamination during exploration. At a 2015 COSPAR colloquium in Bern Switzerland, international scientists identified an urgent need to establish planetary protection requirements for missions proposing to return samples to Earth from Saturn's moon Enceladus. Deliberations at the meeting resulted in recommended policy updates for both forward and back contamination requirements for missions to Europa and Enceladus, including missions sampling plumes originating from those bodies. These recently recommended COSPAR policy revisions and biological contamination requirements will be applied to future missions to Europa and Encealadus, particularly noticeable in those with plans for in situ life detection and sample return capabilities. Included in the COSPAR policy are requirementsto `break the chain of contact' with Europa or Enceladus, to keep pristine returned materials contained, and to complete required biohazard analyses, testing and/or sterilization upon return to Earth. Subsequent to the Bern meeting, additional discussions of Planetary Protection of Outer Solar System bodies (PPOSS) are underway in a 3-year study coordinated by the European Science Foundation and involving multiple international partners, including Japan, China and Russia, along with a US observer. This presentation will provide science and policy updates for those whose research or activities will involve icy moon missions and exploration.

  12. The dynamics of the multi-planet system orbiting Kepler-56

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Gongjie; Naoz, Smadar; Johnson, John Asher

    2014-10-20

    Kepler-56 is a multi-planet system containing two coplanar inner planets that are in orbits misaligned with respect to the spin axis of the host star, and an outer planet. Various mechanisms have been proposed to explain the broad distribution of spin-orbit angles among exoplanets, and these theories fall under two broad categories. The first is based on dynamical interactions in a multi-body system, while the other assumes that disk migration is the driving mechanism in planetary configuration and that the star (or disk) is titled with respect to the planetary plane. Here we show that the large observed obliquity ofmore » Kepler 56 system is consistent with a dynamical origin. In addition, we use observations by Huber et al. to derive the obliquity's probability distribution function, thus improving the constrained lower limit. The outer planet may be the cause of the inner planets' large obliquities, and we give the probability distribution function of its inclination, which depends on the initial orbital configuration of the planetary system. We show that even in the presence of precise measurement of the true obliquity, one cannot distinguish the initial configurations. Finally we consider the fate of the system as the star continues to evolve beyond the main sequence, and we find that the obliquity of the system will not undergo major variations as the star climbs the red giant branch. We follow the evolution of the system and find that the innermost planet will be engulfed in ∼129 Myr. Furthermore we put an upper limit of ∼155 Myr for the engulfment of the second planet. This corresponds to ∼3% of the current age of the star.« less

  13. Chaotic diffusion in the Gliese-876 planetary system

    NASA Astrophysics Data System (ADS)

    Martí, J. G.; Cincotta, P. M.; Beaugé, C.

    2016-07-01

    Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disc, and a natural consequence of irregular motion. In this paper, we show that resonant multiplanetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over time-scales comparable to their age. Using the GJ-876 system as an example, we analyse the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincaré maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behaviour of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.

  14. Kepler-424 b: A "Lonely" Hot Jupiter that Found a Companion

    NASA Astrophysics Data System (ADS)

    Endl, Michael; Caldwell, Douglas A.; Barclay, Thomas; Huber, Daniel; Isaacson, Howard; Buchhave, Lars A.; Brugamyer, Erik; Robertson, Paul; Cochran, William D.; MacQueen, Phillip J.; Havel, Mathieu; Lucas, Phillip; Howell, Steve B.; Fischer, Debra; Quintana, Elisa; Ciardi, David R.

    2014-11-01

    Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31 day orbit accompanied by a more massive outer companion in an eccentric (e = 0.3) 223 day orbit. The outer giant planet, Kepler-424c, is not detected transiting the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). In stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets; they appear to be "lonely". This might be a consequence of these systems having a highly dynamical past. The Kepler-424 planetary system has a hot Jupiter in a multiple system, similar to \\upsilon Andromedae. We also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127), Kepler-43 (KOI-135), and Kepler-423 (KOI-183). These results are based on spectroscopic data collected with the Nordic Optical Telescope (NOT), the Keck 1 telescope, and HET. For all systems, we rule out false positives based on various follow-up observations, confirming the planetary nature of these companions. We performed a comparison with planetary evolutionary models which indicate that these five hot Jupiters have heavy element contents between 20 and 120 M ⊕. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  15. The Possibilities and Challenges in Missions to Europa and Titan for Exploration and as a Stepping Stone to Mankind

    NASA Astrophysics Data System (ADS)

    Ganapathy, Rohan M.

    This enthusiastic project describes a long-term development plan to enable human exploration of the outer solar system, with a focus on Europa and Titan. These are two of the most interesting moons of Jupiter and Saturn, respectively, because they are the places in the solar system with the greatest potential for harboring extraterrestrial life. Since human expeditions to these worlds are considered impossible with current capabilities, the proposal of a well-organized sequence of steps towards making this a reality is formulated. The project includes the necessary development strategies in key scientic and technological areas that are essential for identifying the requirements for the exploration of the outer planetary moons. Some of the topics that are analyzed throughout the project plan include: scientic observations at Europa and Titan, advanced propulsion and nuclear power systems, in-situ resource utilization, radiation mitigation techniques, closed life support systems, habitation for long-term space flight, and artificial gravity. In addition to the scientic and technological aspects of this project, it is recognized that before any research and development work may begin, some level of program management must be established. Within this paper, legal issues, national and international policy, motivation, organization and management, economic considerations, outreach, education, ethics, and social implications are all considered with respect to possible future scenarios which enable human missions to the outer solar system. This project illustrates how such accomplishments could influence a mission to Europa to search for evidence of life in its subsurface oceans. The future remains unpredictable, as does the realization of any of these possibilities. However, projects such as this remind us that the final frontier for humans is truly outer space, and only our imagination will determine where the frontier stops. We can dream of visiting other planetary systems and perhaps even galaxies, but we must begin closer, and considering the scope of our known universe, Europa and Titan are very close indeed.

  16. Outer planets satellites

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1983-01-01

    The present investigation takes into account the published literature on outer planet satellites for 1979-1982. It is pointed out that all but three (the moon and the two Martian satellites) of the known planetary satellites are found in the outer solar system. Most of these are associated with the three regular satellite systems of Jupiter, Saturn, and Uranus. The largest satellites are Titan in the Saturn system and Ganymede and Callisto in the Jupiter system. Intermediate in size between Mercury and Mars, each has a diameter of about 5000 km. Presumably each has an internal composition about 60 percent rock and 40 ice, and each is differentiated with a dense core extending out about 75 percent of the distance to the surface, with a mantle of high-pressure ice and a crust of ordinary ice perhaps 100 km thick. Attention is also given to Io, Europa, the icy satellites of Saturn, the satellites of Uranus, the small satellites of Jupiter and Saturn, Triton and the Pluto system, and plans for future studies.

  17. Planetary Gearbox Fault Detection Using Vibration Separation Techniques

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  18. Laboratory experiments in the study of the chemistry of the outer planets.

    PubMed

    Scattergood, T W

    1987-01-01

    The investigation of chemical evolution of bodies in our solar system has, in the past, included observations, theoretical modeling, and laboratory simulations. Of these programs, the last one has been the most criticized due to the inherent difficulties in accurately recreating alien environments in the laboratory. Processes such as wall reactions and changes in chemistry due to difficulties in achieving realistic conditions of temperature, pressure, composition, and energy flux may yield results which are not truly representative of the systems being modeled. However, many laboratory studies have been done which have yielded data useful in planetary science. Gross simulations of atmospheric chemistry have placed constraints on the nature of complex molecules expected in planetary atmospheres. More precise studies of specific chemical processes have provided information about the sources and properties of product gases and aerosols. Determinations of basic properties such as spectral features and reaction rate constants yield data useful in the interpretation of observations and in computational modeling. Alone, and in conjunction with modeling, laboratory experiments will continue to be used to further our understanding of the outer solar system, and some experiments that need to be done are listed.

  19. Lunar and Planetary Science XXXV: Outer Solar System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session 'Outer Solar System" inlcuded:Monte Carlo Modeling of [O I] 630 nm Auroral Emission on Io; The Detection of Iron Sulfide on Io; Io and Loki in 2003 as Seen from the Infrared Telescope Facility Using Mutual Satellite and Jupiter Occultations; Mapping of the Zamama-Thor Region of Io; First Solar System Results of the Spitzer Space Telescope; Mapping the Surface of Pluto with the Hubble Space Telescope; Experimental Study on Fischer-Tropsch Catalysis in the Circum-Saturnian Subnebula; New High-Pressure Phases of Ammonia Dihydrate; Gas Hydrate Stability at Low Temperatures and High Pressures with Applications to Mars and Europa; Laboratory UV Photolysis of Planetary Ice Analogs Containing H2O + CO2 (1:1); The OH Stretch Infrared Band of Water Ice and Its Temperature and Radiation Dependence; Band Position Variations in Reflectance Spectra of the Jovian Satellite Ganymede; Comparison of Porosity and Radar Models for Europa s Near Surface; Combined Effects of Diurnal and Nonsynchronous Surface Stresses on Europa; Europa s Northern Trailing Hemisphere: Lineament Stratigraphic Framework; Europa at the Highest Resolution: Implications for Surface Processes and Landing Sites; Comparison of Methods to Determine Furrow System Centers on Ganymede and Callisto; Resurfacing of Ganymede by Liquid-Water Volcanism; Layered Ejecta Craters on Ganymede: Comparisons with Martian Analogs; Evaluation of the Possible Presence of CO2-Clathrates in Europa s Icy Shell or Seafloor; Geosciences at Jupiter s Icy Moons: The Midas Touch; Planetary Remote Sensing Science Enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor); and In Situ Surveying of Saturn s Rings.

  20. Stability Analysis of the Planetary System Orbiting Upsilon Andromedae. 2; Simulations Using New Lick Observatory Fits

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Rivera, Eugenio J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    We present results of long-term numerical orbital integrations designed to test the stability of the three-planet system orbiting upsilon Andromedae and short-term integrations to test whether mutual perturbations among the planets can be used to determine planetary masses. Our initial conditions are based on recent fits to the radial velocity data obtained by the planet search group at Lick Observatory. The new fits result in significantly more stable systems than did the initially announced planetary parameters. Our integrations using the 2000 February parameters show that if the system is nearly planar, then it is stable for at least 100 Myr for m(sub f) = 1/sin i less than or = 4. In some stable systems, the eccentricity of the inner planet experiences large oscillations. The relative periastra of the outer two planets' orbits librate about 0 deg. in most of the stable systems; if future observations imply that the periastron longitudes of these planets are very closely aligned at the present epoch, dynamical simulations may provide precise estimates for the masses and orbital inclinations of these two planets.

  1. Comparative Climates of the Trappist-1 Planetary System: Results from a Simple Climate-vegetation Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alberti, Tommaso; Carbone, Vincenzo; Lepreti, Fabio

    The recent discovery of the planetary system hosted by the ultracool dwarf star TRAPPIST-1 could open new paths for investigations of the planetary climates of Earth-sized exoplanets, their atmospheres, and their possible habitability. In this paper, we use a simple climate-vegetation energy-balance model to study the climate of the seven TRAPPIST-1 planets and the climate dependence on various factors: the global albedo, the fraction of vegetation that could cover their surfaces, and the different greenhouse conditions. The model allows us to investigate whether liquid water could be maintained on the planetary surfaces (i.e., by defining a “surface water zone (SWZ)”)more » in different planetary conditions, with or without the presence of a greenhouse effect. It is shown that planet TRAPPIST-1d seems to be the most stable from an Earth-like perspective, since it resides in the SWZ for a wide range of reasonable values of the model parameters. Moreover, according to the model, outer planets (f, g, and h) cannot host liquid water on their surfaces, even with Earth-like conditions, entering a snowball state. Although very simple, the model allows us to extract the main features of the TRAPPIST-1 planetary climates.« less

  2. Studies of extra-solar OORT clouds and the Kuiper disk

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1993-01-01

    This is the second report for NAGW-3023, Studies of Extra-Solar Oort Clouds and the Kuiper Disk. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for infering the presence of planetary systems. Our three-year effort consists of two major efforts: (1) observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and (2) modelling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including Beta Pic. These efforts are referred to as Task 1 and 2, respectively.

  3. Studies of extra-solar Oort Clouds and the Kuiper Disk

    NASA Technical Reports Server (NTRS)

    Stern, Alan

    1995-01-01

    This is the September 1995 Semi-Annual report for Studies of Extra-Solar Oort Clouds and the Kuiper Disk. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This project consists of two major efforts: (1) observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and (2) modelling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including beta Pic. These efforts are referred to as Task 1 and 2.

  4. Planetary quarantine: Space research and technology. [satellite quarantine constraints on outer planet mission

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The impact of satisfying satellite quarantine constraints on current outer planet mission and spacecraft designs is considered. Tools required to perform trajectory and navigation analyses for determining satellite impact probabilities are developed.

  5. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2009-01-01

    During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.

  6. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  7. Radiolysis of Amino Acids in Outer Solar-System Ice Analogs

    NASA Technical Reports Server (NTRS)

    Gerakines, Perry A.; Hudson, Reggie L.

    2011-01-01

    Amino acids have been found in cometary dust particles and in the organic component of meteorites. These molecules, important for pre-biotic chemistry and for active biological systems, might be formed in cold planetary or interstellar environments and then delivered to H20-rich surfaces in the outer solar system. Many models for the availability of organic species on Earth and elsewhere depend on the ability of these molecules to survive in radiation-rich space environments. This poster presents results of O.8-MeV proton radiolysis of ice films at lS-140K. using infrared spectroscopy, the destruction rates of glycine, alanine, and phenylalanine have been determined for both pure films and those containing amino acids diluted in H2o. our results are discussed in terms of the survivability of these molecules in the icy surfaces present in the outer solar system and the possibility of their detection by instruments on board the New Horizons spacecraft

  8. TOWARD A DETERMINISTIC MODEL OF PLANETARY FORMATION. VII. ECCENTRICITY DISTRIBUTION OF GAS GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ida, S.; Lin, D. N. C.; Nagasawa, M., E-mail: ida@geo.titech.ac.jp, E-mail: lin@ucolick.org, E-mail: nagasawa.m.ad@m.titech.ac.jp

    2013-09-20

    The ubiquity of planets and diversity of planetary systems reveal that planet formation encompasses many complex and competing processes. In this series of papers, we develop and upgrade a population synthesis model as a tool to identify the dominant physical effects and to calibrate the range of physical conditions. Recent planet searches have led to the discovery of many multiple-planet systems. Any theoretical models of their origins must take into account dynamical interactions between emerging protoplanets. Here, we introduce a prescription to approximate the close encounters between multiple planets. We apply this method to simulate the growth, migration, and dynamicalmore » interaction of planetary systems. Our models show that in relatively massive disks, several gas giants and rocky/icy planets emerge, migrate, and undergo dynamical instability. Secular perturbation between planets leads to orbital crossings, eccentricity excitation, and planetary ejection. In disks with modest masses, two or less gas giants form with multiple super-Earths. Orbital stability in these systems is generally maintained and they retain the kinematic structure after gas in their natal disks is depleted. These results reproduce the observed planetary mass-eccentricity and semimajor axis-eccentricity correlations. They also suggest that emerging gas giants can scatter residual cores to the outer disk regions. Subsequent in situ gas accretion onto these cores can lead to the formation of distant (∼> 30 AU) gas giants with nearly circular orbits.« less

  9. Structure of the Iconic Vega Debris Disk

    NASA Astrophysics Data System (ADS)

    Su, Kate

    2015-10-01

    Debris structures provide the best means to explore planets down to ice-giant masses in the outer (>5 AU) parts of extrasolar planetary systems. It is thought that the iconic Vega debris disk composes of two separate belts shepherded by unseen planets, similar to the Solar System. We will probe this possibility with SOFIA at 35 microns by: 1.) documenting the structure of the debris with sufficient resolution to distinguish a separate warm belt from the alternative model of dust flowing inward from the outer debris ring; and 2.) testing for traces of dust in its 15-60 AU zone and thus probing the possibility that ice giant planets may be shepherding the debris belts.

  10. Planetary Protection Constraints For Planetary Exploration and Exobiology

    NASA Astrophysics Data System (ADS)

    Debus, A.; Bonneville, R.; Viso, M.

    According to the article IX of the OUTER SPACE TREATY (London / Washington January 27., 1967) and in the frame of extraterrestrial missions, it is required to preserve planets and Earth from contamination. For ethical, safety and scientific reasons, the space agencies have to comply with the Outer Space Treaty and to take into account the related planetary protection Cospar recommendations. Planetary protection takes also into account the protection of exobiological science, because the results of life detection experimentations could have impacts on planetary protection regulations. The validation of their results depends strongly of how the samples have been collected, stored and analyzed, and particularly of their biological and organic cleanliness. Any risk of contamination by organic materials, chemical coumpounds and by terrestrial microorganisms must be avoided. A large number of missions is presently scheduled, particularly on Mars, in order to search for life or traces of past life. In the frame of such missions, CNES is building a planetary protection organization in order handle and to take in charge all tasks linked to science and engineering concerned by planetary protection. Taking into account CNES past experience in planetary protection related to the Mars 96 mission, its planned participation in exobiological missions with NASA as well as its works and involvement in Cospar activities, this paper will present the main requirements in order to avoid celestial bodies biological contamination, focussing on Mars and including Earth, and to protect exobiological science.

  11. Planetary exploration with optical imaging systems review: what is the best sensor for future missions

    NASA Astrophysics Data System (ADS)

    Michaelis, H.; Behnke, T.; Bredthauer, R.; Holland, A.; Janesick, J.; Jaumann, R.; Keller, H. U.; Magrin, D.; Greggio, D.; Mottola, Stefano; Thomas, N.; Smith, P.

    2017-11-01

    When we talk about planetary exploration missions most people think spontaneously about fascinating images from other planets or close-up pictures of small planetary bodies such as asteroids and comets. Such images come in most cases from VIS/NIR- imaging- systems, simply called `cameras', which were typically built by institutes in collaboration with industry. Until now, they have nearly all been based on silicon CCD sensors, they have filter wheels and have often high power-consuming electronics. The question is, what are the challenges for future missions and what can be done to improve performance and scientific output. The exploration of Mars is ongoing. NASA and ESA are planning future missions to the outer planets like to the icy Jovian moons. Exploration of asteroids and comets are in focus of several recent and future missions. Furthermore, the detection and characterization of exo-planets will keep us busy for next generations. The paper is discussing the challenges and visions of imaging sensors for future planetary exploration missions. The focus of the talk is monolithic VIS/NIR- detectors.

  12. Science goals and concepts of a Saturn probe for the future L2/L3 ESA call

    NASA Astrophysics Data System (ADS)

    Schmider, F.-X.; Mousis, O.; Fletcher, L. N.; Altwegg, K.; André, N.; Blanc, M.; Coustenis, A.; Gautier, D.; Geppert, W. D.; Guillot, T.; Irwin, P.; Lebreton, J.-P.; Marty, B.; Sánchez-Lavega, A.; Waite, J. H.; Wurz, P.

    2013-11-01

    Comparative studies of the elemental enrichments and isotopic abundances measured on Saturn can provide unique insights into the processes at work within our planetary system and are related to the time and location of giant planet formation. In situ measurements via entry probes remain the only reliable, unambiguous method for determining the atmospheric composition from the thermosphere to the deep cloud-forming regions of their complex weather layers. Furthermore, in situ experiments can reveal the meteorological properties of planetary atmospheres to provide ``ground truth'' for orbital remote sensing. Following the orbital reconnaissance of the Galileo and Cassini spacecraft, and the single-point in situ measurement of the Galileo probe to Jupiter, we believe that an in situ measurement of Saturn's atmospheric composition should be an essential element of ESA's future cornerstone missions, providing the much-needed comparative planetology to reveal the origins of our outer planets. This quest for understanding the origins of our solar system and the nature of planetary atmospheres is in the heart of ESA's Cosmic Vision, and has vast implications for the origins of planetary systems around other stars.

  13. Planetary and Deep Space Requirements for Photovoltaic Solar Arrays

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Bennett, R. B.; Stella, P. M.

    1995-01-01

    In the past 25 years, the majority of interplanetary spacecraft have been powered by nuclear sources. However, as the emphasis on smaller, low cost missions gains momentum, more deep space missions now being planned have baselined photovoltaic solar arrays due to the low power requirements (usually significantly less than 100 W) needed for engineering and science payloads. This will present challenges to the solar array builders, inasmuch as planetary requirements usually differ from earth orbital requirements. In addition, these requirements often differ greatly, depending on the specific mission; for example, inner planets vs. outer planets, orbiters vs. flybys, spacecraft vs. landers, and so on. Also, the likelihood of electric propulsion missions will influence the requirements placed on solar array developers. This paper will discuss representative requirements for a range of planetary and deep space science missions now in the planning stages. We have divided the requirements into three categories: Inner planets and the sun; outer planets (greater than 3 AU); and Mars, cometary, and asteroid landers and probes. Requirements for Mercury and Ganymede landers will be covered in the Inner and Outer Planets sections with their respective orbiters. We will also discuss special requirements associated with solar electric propulsion (SEP). New technology developments will be needed to meet the demanding environments presented by these future applications as many of the technologies envisioned have not yet been demonstrated. In addition, new technologies that will be needed reside not only in the photovoltaic solar array, but also in other spacecraft systems that are key to operating the spacecraft reliably with the photovoltaics.

  14. Shuttle launched flight tests - Supporting technology for planetary entry missions

    NASA Technical Reports Server (NTRS)

    Vetter, H. C.; Mcneilly, W. R.; Siemers, P. M., III; Nachtsheim, P. R.

    1975-01-01

    The feasibility of conducting Space Shuttle-launched earth entry flight tests to enhance the technology base for second generation planetary entry missions is examined. Outer planet entry environments are reviewed, translated into earth entry requirements and used to establish entry test system design and cost characteristics. Entry speeds up to those needed to simulate radiative heating levels of more than 30 kW/sq cm are shown to be possible. A standardized recoverable test bed concept is described that is capable of accommodating a wide range of entry technology experiments. The economic advantage of shared Shuttle launches are shown to be achievable through a test system configured to the volume constraints of a single Spacelab pallet using existing propulsion components.

  15. Direct imaging of multiple planets orbiting the star HR 8799.

    PubMed

    Marois, Christian; Macintosh, Bruce; Barman, Travis; Zuckerman, B; Song, Inseok; Patience, Jennifer; Lafrenière, David; Doyon, René

    2008-11-28

    Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step toward imaging Earth-like planets. Imaging detections are challenging because of the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our solar system.

  16. Teetering Stars: Resonant Excitation of Stellar Obliquities by Hot and Warm Jupiters with External Companions

    NASA Astrophysics Data System (ADS)

    Anderson, Kassandra; Lai, Dong

    2018-04-01

    Stellar spin-orbit misalignments (obliquities) in hot Jupiter systems have been extensively probed in recent years thanks to Rossiter-McLaughlin observations. Such obliquities may reveal clues about hot Jupiter dynamical and migration histories. Common explanations for generating stellar obliquities include high-eccentricity migration, or primordial disk misalignment. This talk investigates another mechanism for producing stellar spin-orbit misalignments in systems hosting a close-in giant planet with an external, inclined planetary companion. Spin-orbit misalignment may be excited due to a secular resonance, occurring when the precession rate of the stellar spin axis (due to the inner orbit) becomes comparable to the precession rate of the inner orbital axis (due to the outer companion). Due to the spin-down of the host star via magnetic braking, this resonance may be achieved at some point during the star's main sequence lifetime for a wide range of giant planet masses and orbital architectures. We focus on both hot Jupiters (with orbital periods less than ten days) and warm Jupiters (with orbital periods around tens of days), and identify the outer perburber properties needed to generate substantial obliquities via resonant excitation, in terms of mass, separation, and inclination. For hot Jupiters, the stellar spin axis is strongly coupled to the orbital axis, and resonant excitation of obliquity requires a close perturber, located within 1-2 AU. For warm Jupiters, the spin and orbital axes are more weakly coupled, and the resonance may be achieved for more distant perturbers (at several to tens of AU). Resonant excitation of the stellar obliquity is accompanied by a decrease in the planets' mutual orbital inclination, and can thus erase high mutual inclinations in two-planet systems. Since many warm Jupiters are known to have outer planetary companions at several AU or beyond, stellar obliquities in warm Jupiter systems may be common, regardless of the formation/migration mechanism. Future observations probing warm Jupiter obliquities may indicate the presence of a hitherto undetected outer companion.

  17. Proceedings of the 38th Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The sessions in the conference include: Titan, Mars Volcanism, Mars Polar Layered Deposits, Early Solar System Isotopes, SPECIAL SESSION: Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Achondrites: Exploring Oxygen Isotopes and Parent-Body Processes, Solar System Formation and Evolution, SPECIAL SESSION: SMART-1, . Impact Cratering: Observations and Experiments, SPECIAL SESSION: Volcanism and Tectonism on Saturnian Satellites, Solar Nebula Composition, Mars Fluvial Geomorphology, Asteroid Observations: Spectra, Mostly, Mars Sediments and Geochemistry: View from the Surface, Mars Tectonics and Crustal Dichotomy, Stardust: Wild-2 Revealed, Impact Cratering from Observations and Interpretations, Mars Sediments and Geochemistry: The Map View, Chondrules and Their Formation, Enceladus, Asteroids and Deep Impact: Structure, Dynamics, and Experiments, Mars Surface Process and Evolution, Martian Meteorites: Nakhlites, Experiments, and the Great Shergottite Age Debate, Stardust: Mainly Mineralogy, Astrobiology, Wind-Surface Interactions on Mars and Earth, Icy Satellite Surfaces, Venus, Lunar Remote Sensing, Space Weathering, and Impact Effects, Interplanetary Dust/Genesis, Mars Cratering: Counts and Catastrophes?, Chondrites: Secondary Processes, Mars Sediments and Geochemistry: Atmosphere, Soils, Brines, and Minerals, Lunar Interior and Differentiation, Mars Magnetics and Atmosphere: Core to Ionosphere, Metal-rich Chondrites, Organics in Chondrites, Lunar Impacts and Meteorites, Presolar/Solar Grains, Topics for Print Only papers are: Outer Planets/Satellites, Early Solar System, Interplanetary Dust, Comets and Kuiper Belt Objects, Asteroids and Meteoroids, Chondrites, Achondrites, Meteorite Related, Mars Reconnaissance Orbiter, Mars, Astrobiology, Planetary Differentiation, Impacts, Mercury, Lunar Samples and Modeling, Venus, Missions and Instruments, Global Warming, Education and Public Outreach, Poster sessions are: Asteroids/Kuiper Belt Objects, Galilean Satellites: Geology and Mapping, Titan, Volcanism and Tectonism on Saturnian Satellites, Early Solar System, Achondrite Hodgepodge, Ordinary Chondrites, Carbonaceous Chondrites, Impact Cratering from Observations and Interpretations, Impact Cratering from Experiments and Modeling, SMART-1, Planetary Differentiation, Mars Geology, Mars Volcanism, Mars Tectonics, Mars: Polar, Glacial, and Near-Surface Ice, Mars Valley Networks, Mars Gullies, Mars Outflow Channels, Mars Sediments and Geochemistry: Spirit and Opportunity, Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Mars Reconnaissance Orbiter: Geology, Layers, and Landforms, Oh, My!, Mars Reconnaissance Orbiter: Viewing Mars Through Multicolored Glasses; Mars Science Laboratory, Phoenix, and ExoMars: Science, Instruments, and Landing Sites; Planetary Analogs: Chemical and Mineral, Planetary Analogs: Physical, Planetary Analogs: Operations, Future Mission Concepts, Planetary Data, Imaging, and Cartography, Outer Solar System, Presolar/Solar Grains, Stardust Mission; Interplanetary Dust, Genesis, Asteroids and Comets: Models, Dynamics, and Experiments, Venus, Mercury, Laboratory Instruments, Methods, and Techniques to Support Planetary Exploration; Instruments, Techniques, and Enabling Techologies for Planetary Exploration; Lunar Missions and Instruments, Living and Working on the Moon, Meteoroid Impacts on the Moon, Lunar Remote Sensing, Lunar Samples and Experiments, Lunar Atmosphere, Moon: Soils, Poles, and Volatiles, Lunar Topography and Geophysics, Lunar Meteorites, Chondrites: Secondary Processes, Chondrites, Martian Meteorites, Mars Cratering, Mars Surface Processes and Evolution, Mars Sediments and Geochemistry: Regolith, Spectroscopy, and Imaging, Mars Sediments and Geochemistry: Analogs and Mineralogy, Mars: Magnetics and Atmosphere, Mars Aeolian Geomorphology, Mars Data Processing and Analyses, Astrobiology, Engaging Student Educators and the Public in Planetary Science,

  18. Secular dynamics of multiplanetary circumbinary systems: stationary solutions and binary-planet secular resonance

    NASA Astrophysics Data System (ADS)

    Andrade-Ines, Eduardo; Robutel, Philippe

    2018-01-01

    We present an analytical formalism to study the secular dynamics of a system consisting of N-2 planets orbiting a binary star in outer orbits. We introduce a canonical coordinate system and expand the disturbing function in terms of canonical elliptic elements, combining both Legendre polynomials and Laplace coefficients, to obtain a general formalism for the secular description of this type of configuration. With a quadratic approximation of the development, we present a simplified analytical solution for the planetary orbits for both the single planet and the two-planet cases. From the two-planet model, we show that the inner planet accelerates the precession rate of the binary pericenter, which, in turn, may enter in resonance with the secular frequency of the outer planet, characterizing a secular resonance. We calculate an analytical expression for the approximate location of this resonance and apply it to known circumbinary systems, where we show that it can occur at relatively close orbits, for example at 2.4 au for the Kepler-38 system. With a more refined model, we analyse the dynamics of this secular resonance and we show that a bifurcation of the corresponding fixed points can affect the long- term evolution and stability of planetary systems. By comparing our results with complete integrations of the exact equations of motion, we verified the accuracy of our analytical model.

  19. Thermal evolution and differentiation of planetesimals and planetary embryos

    NASA Astrophysics Data System (ADS)

    Šrámek, Ondřej; Milelli, Laura; Ricard, Yanick; Labrosse, Stéphane

    2012-01-01

    In early Solar System during the runaway growth stage of planetary formation, the distribution of planetary bodies progressively evolved from a large number of planetesimals to a smaller number of objects with a few dominant embryos. Here, we study the possible thermal and compositional evolution of these planetesimals and planetary embryos in a series of models with increasing complexities. We show that the heating stages of planetesimals by the radioactive decay of now extinct isotopes (in particular 26Al) and by impact heating can occur in two stages or simultaneously. Depending on the accretion rate, melting occurs from the center outward, in a shallow outer shell progressing inward, or in the two locations. We discuss the regime domains of these situations and show that the exponent β that controls the planetary growth rate R˙∝Rβ of planetesimals plays a crucial role. For a given terminal radius and accretion duration, the increase of β maintains the planetesimals very small until the end of accretion, and therefore allows radioactive heating to be radiated away before a large mass can be accreted. To melt the center of ˜500 km planetesimal during its runaway growth stage, with the value β = 2 predicted by astrophysicists, it needs to be formed within a couple of million years after condensation of the first solids. We then develop a multiphase model where the phase changes and phase separations by compaction are taken into account in 1-D spherical geometry. Our model handles simultaneously metal and silicates in both solid and liquid states. The segregation of the protocore decreases the efficiency of radiogenic heating by confining the 26Al in the outer silicate shell. Various types of planetesimals partly differentiated and sometimes differentiated in multiple metal-silicate layers can be obtained.

  20. Technology requirements for a generic aerocapture system. [for atmospheric entry

    NASA Technical Reports Server (NTRS)

    Cruz, M. I.

    1980-01-01

    The technology requirements for the design of a generic aerocapture vehicle system are summarized. These spacecraft have the capability of completely eliminating fuel-costly retropropulsion for planetary orbit capture through a single aerodynamically controlled atmospheric braking pass from a hyperbolic trajectory into a near circular orbit. This generic system has application at both the inner and outer planets. Spacecraft design integration, navigation, communications, and aerothermal protection system design problems were assessed in the technology requirements study and are discussed in this paper.

  1. Oral Histories in Meteoritics and Planetary Science - XX: Dale Cruikshank

    NASA Astrophysics Data System (ADS)

    Sears, Derek W. G.

    2013-04-01

    In this interview, Dale Cruikshank (Fig. 1) explains how as an undergraduate at Iowa State University he was a summer student at Yerkes Observatory where he assisted Gerard Kuiper in work on his Photographic Lunar Atlas. Upon completing his degree, Dale went to graduate school at the University of Arizona with Kuiper where he worked on the IR spectroscopy of the lunar surface. After an eventful 1968 trip to Moscow via Prague, during which the Soviets invaded Czechoslovakia, Dale assumed a postdoc position with Vasili Moroz at the Sternberg Astronomical Institute and more observational IR astronomy. Upon returning to the United States and after a year at Arizona, Dale assumed a position at the University of Hawai'i that he held for 17 years. During this period Dale worked with others on thermal infrared determinations of the albedos of small bodies beyond the asteroid Main Belt, leading to the recognition that low-albedo material is prevalent in the outer solar system that made the first report of complex organic solids on a planetary body (Saturn's satellite Iapetus). After moving to Ames Research Center, where he works currently, he continued this work and became involved in many outer solar system missions. Dale has served the community through his involvement in developing national policies for science-driven planetary exploration, being chair of the DPS 1990-1991 and secretary/treasurer for 1982-1985. He served as president of Commission 16 (Physics of Planets) of the IAU (2001-2003). He received the Kuiper prize in 2006.

  2. FRESIP: A Discovery Mission Concept To Find Earth-Sized Planets Around Solar Like Stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, D.; Dunham, E.; Cullers, D.; Webster, L.; Granados, A.; Ford, C.; Reitsema, H.; Cochran, W.; Bell, J.; hide

    1994-01-01

    The current nebular theory postulates that planets are. a consequence of the formation of stars from viscous accretion disks. Condensation from the accretion disk favors the formation of small rocky planets in the hot inner region, and the formation of gas giants in the cool outer region. Consequently, terrestrial-type planet in inner orbits should be commonplace. From geometrical considerations , Borucki and Summers have shown that 1% of planetary systems resembling our solar system should show transits for Earth-sized (or larger) planets. Thus a photometric satellite that uses a wide field of view telescope and a large detector array to simultaneously monitor 5000 target stars should detect 50 planetary systems. To differentiate regularly recurring transits from statistical fluctuations of the stellar flux, one must observe over several orbital periods so that the false positive rate can be reduced to one event or less. A one-meter aperture telescope placed in a halo orbit about either the L1 or L2 Lagrange points and viewing perpendicular to both the orbital and ecliptic planes can view continuously for the required period because neither the Sun, Earth, or Moon would enter the field of view. Model calculations show that the observations should provide statistically significant estimates of the distributions of planetary size, orbital radius, coplanarity, and the frequency of planetary systems that have Earth-sized planets in inner orbits. Because approximately one half of the star systems observed will be binary systems, the frequency of planetary systems orbiting either one or both of the stars can also be determined.

  3. Formation of TRAPPIST-1

    NASA Astrophysics Data System (ADS)

    Ormel, C. W.; Liu, B.; Schoonenberg, D.

    2017-09-01

    We present a model for the formation of the recently-discovered TRAPPIST-1 planetary system. In our scenario planets form in the interior regions, by accretion of mm to cm-size particles (pebbles) that drifted from the outer disk. This scenario has several advantages: it connects to the observation that disks are made up of pebbles, it is efficient, it explains why the TRAPPIST-1 planets are ˜Earth mass, and it provides a rationale for the system's architecture.

  4. Scientific need for a cometary mission

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1979-01-01

    Known facts about comets are reviewed including their organic and inorganic content. Photographs are used to show the differences in the physical appearances of the three types of comets. Space missions will provide the opportunity to determine the sequence of events that led to their formation and that of the solar system; how volatiles arrived on earth; and the basis for the existence of life on earth; and the source of the outer planetary system.

  5. Test evaluation of potential heat shield contamination of an Outer Planet Probe's atmospheric sampling system

    NASA Technical Reports Server (NTRS)

    Kessler, W. C.; Woeller, F. H.; Wilkins, M. E.

    1975-01-01

    An Outer Planets Probe which retains the charred heatshield during atmospheric descent must deploy a sampling tube through the heatshield to extract atmospheric samples for analysis. Once the sampling tube is deployed, the atmospheric samples ingested must be free of contaminant gases generated by the heatshield. Outgassing products such as methane and water vapor are present in planetary atmospheres and hence, ingestion of such species would result in gas analyzer measurement uncertainties. This paper evaluates the potential for, and design impact of, the extracted atmospheric samples being contaminated by heatshield outgassing products. Flight trajectory data for Jupiter, Saturn and Uranus entries are analyzed to define the conditions resulting in the greatest potential for outgassing products being ingested into the probe's sampling system. An experimental program is defined and described which simulates the key flow field features for a planetary flight in a ground-based test facility. The primary parameters varied in the test include: sampling tube length, injectant mass flow rate and angle of attack. Measured contaminant levels predict the critical sampling tube length for contamination avoidance. Thus, the study demonstrates the compatibility of a retained heatshield concept and high quality atmospheric trace species measurements.

  6. Wide Field and Planetary Camera for Space Telescope

    NASA Technical Reports Server (NTRS)

    Lockhart, R. F.

    1982-01-01

    The Space Telescope's Wide Field and Planetary Camera instrument, presently under construction, will be used to map the observable universe and to study the outer planets. It will be able to see 1000 times farther than any previously employed instrument. The Wide Field system will be located in a radial bay, receiving its signals via a pick-off mirror centered on the optical axis of the telescope assembly. The external thermal radiator employed by the instrument for cooling will be part of the exterior surface of the Space Telescope. In addition to having a larger (1200-12,000 A) wavelength range than any of the other Space Telescope instruments, its data rate, at 1 Mb/sec, exceeds that of the other instruments. Attention is given to the operating modes and projected performance levels of the Wide Field Camera and Planetary Camera.

  7. Mariner Jupiter/Saturn 1977 - The mission frame.

    NASA Technical Reports Server (NTRS)

    Bourke, R. D.; Miles, R. F., Jr.; Penzo, P. A.; Van Dillen, S. L.; Wallace, R. A.

    1972-01-01

    Following the cancellation of the Outer Planet Grand Tour Project, NASA and JPL examined less ambitious, alternative missions for exploring the outer planets. The mission that proved most attractive scientifically and fits within the projected NASA budget constraints embraces dual flights to Jupiter and Saturn, with launch in 1977. NASA has implemented it as the Mariner Jupiter/Saturn 1977 (MJS77) Project. The MJS77 mission covers exploratory investigations of the Jupiter and Saturn planetary systems and the interplanetary medium out to Saturn. Items of special interest include Jupiter's great red spot, the question of Io's anomalous brightening and phenomena associated with its EM behavior. After Saturn encounter, the spacecraft will escape the solar system in the general direction of the solar apex.

  8. Outer planet entry probe system study. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    General mission considerations and science prospectus, which are of a general nature that applies to several or all planetary applications, are presented. Five probe systems are defined: nominal Jupiter probe system, and Jupiter probe-dedicated alternative probe system, Jupiter spacecraft radiation-compatible alternative probe system, Saturn probe system, and Saturn probe applicability for Uranus. Parametric analysis is summarized for mission analysis of a general nature, and then for specific missions to Jupiter, Saturn, Uranus, and Neptune. The program is also discussed from the hardware availability viewpoint and the aspect of commonality.

  9. Processing of ammonia-containing ices by heavy ions and its relevance to outer Solar System surfaces

    NASA Astrophysics Data System (ADS)

    Pilling, Sergio; Seperuelo Duarte, Eduardo; da Silveira, Enio F.; Domaracka, Alicja; Balanzat, Emmanuel; Rothard, Hermann; Boduch, Philippe

    Ammonia-containing ices have been detected or postulated as important components of the icy surfaces of planetary satellites (e.g. Enceladus, Miranda), in the outer Solar System objects (e.g. Charon, Quaoar) and in Oort cloud comets. We present experimental studies of the interaction of heavy, highly-charged, and energetic ions with ammonia-containing ices (pure NH3 ; NH3 :CO; NH3 :H2 O and NH3 :H2 O:CO) in an attempt to simulate the physical chemistry induced by heavy-ion cosmic rays and heavy-ion solar wind particles at outer Solar System surfaces. The measurements were performed inside a high vacuum chamber at the heavy-ion accelerator GANIL (Grand Accelerateur National d'Ions Lourds) in Caen, France. The gas samples were deposited onto a polished CsI substrate previously cooled to 13 K. In-situ analysis was performed by a Fourier transform infrared spectrometer (FTIR) at different ion fluences. The dissociation cross-section and sputtering yield of ammonia and other ice compounds have been determined. Half-life of frozen ammonia due to heavy ion bombardment at different Solar System surfaces has been estimated. Radiolysis products have been identified and their implications for the chemistry on outer Solar System surfaces are discussed.

  10. Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    André, Nicolas; Grande, Manuel

    2016-04-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end of the programme. Europlanet 2020 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.

  11. Highly Sensitive Tunable Diode Laser Spectrometers for In Situ Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Vasudev, Ram; Mansour, Kamjou; Webster, Christopher R.

    2013-01-01

    This paper describes highly sensitive tunable diode laser spectrometers suitable for in situ planetary exploration. The technology developed at JPL is based on wavelength modulated cavity enhanced absorption spectroscopy. It is capable of sensitively detecting chemical signatures of life through the abundance of biogenic molecules and their isotopic composition, and chemicals such as water necessary for habitats of life. The technology would be suitable for searching for biomarkers, extinct life, potential habitats of extant life, and signatures of ancient climates on Mars; and for detecting biomarkers, prebiotic chemicals and habitats of life in the outer Solar System. It would be useful for prospecting for water on the Moon and asteroids, and characterizing its isotopic composition. Deployment on the Moon could provide ground truth to the recent remote measurements and help to uncover precious records of the early bombardment history of the inner Solar System buried at the shadowed poles, and elucidate the mechanism for the generation of near-surface water in the illuminated regions. The technology would also be useful for detecting other volatile molecules in planetary atmospheres and subsurface reservoirs, isotopic characterization of planetary materials, and searching for signatures of extinct life preserved in solid matrices.

  12. PSF subtraction to search for distant Jupiters with SPITZER

    NASA Astrophysics Data System (ADS)

    Rameau, Julien; Artigau, Etienne; Baron, Frédérique; Lafrenière, David; Doyon, Rene; Malo, Lison; Naud, Marie-Eve; Delorme, Philippe; Janson, Markus; Albert, Loic; Gagné, Jonathan; Beichman, Charles

    2015-12-01

    In the course of the search for extrasolar planets, a focus has been made towards rocky planets very close (within few AUs) to their parent stars. However, planetary systems might host gas giants as well, possibly at larger separation from the central star. Direct imaging is the only technique able to probe the outer part of planetary systems. With the advent of the new generation of planet finders like GPI and SPHERE, extrasolar systems are now studied at the solar system scale. Nevertheless, very extended planetary systems do exist and have been found (Gu Ps, AB Pic b, etc.). They are easier to detect and characterize. They are also excellent proxy for close-in gas giants that are detected from the ground. These planets have no equivalent in our solar system and their origin remain a matter of speculation. In this sense, studying planetary systems from its innermost to its outermost part is therefore mandatory to have a clear understanding of its architecture, hence hints of its formation and evolution. We are carrying out a space-based survey using SPITZER to search for distant companions around a well-characterized sample of 120 young and nearby stars. We designed an observing strategy that allows building a very homogeneous PSF library. With this library, we perform a PSF subtraction to search for planets from 10’’ down to 1’’. In this poster, I will present the library, the different algorithms used to subtract the PSF, and the promising detection sensitivity that we are able to reach with this survey. This project to search for the most extreme planetary systems is unique in the exoplanet community. It is also the only realistic mean of directly imaging and subsequently obtaining spectroscopy of young Saturn or Jupiter mass planets in the JWST-era.

  13. Producing Distant Planets by Mutual Scattering of Planetary Embryos

    NASA Astrophysics Data System (ADS)

    Silsbee, Kedron; Tremaine, Scott

    2018-02-01

    It is likely that multiple bodies with masses between those of Mars and Earth (“planetary embryos”) formed in the outer planetesimal disk of the solar system. Some of these were likely scattered by the giant planets into orbits with semimajor axes of hundreds of au. Mutual torques between these embryos may lift the perihelia of some of them beyond the orbit of Neptune, where they are no longer perturbed by the giant planets, so their semimajor axes are frozen in place. We conduct N-body simulations of this process and its effect on smaller planetesimals in the region of the giant planets and the Kuiper Belt. We find that (i) there is a significant possibility that one sub-Earth mass embryo, or possibly more, is still present in the outer solar system; (ii) the orbit of the surviving embryo(s) typically has perihelion of 40–70 au, semimajor axis less than 200 au, and inclination less than 30° (iii) it is likely that any surviving embryos could be detected by current or planned optical surveys or have a significant effect on solar system ephemerides; (iv) whether or not an embryo has survived to the present day, its dynamical influence earlier in the history of the solar system can explain the properties of the detached disk (defined in this paper as containing objects with perihelia >38 au and semimajor axes between 80 and 500 au).

  14. CHARACTERIZATION OF THE K2-19 MULTIPLE-TRANSITING PLANETARY SYSTEM VIA HIGH-DISPERSION SPECTROSCOPY, AO IMAGING, AND TRANSIT TIMING VARIATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narita, Norio; Hori, Yasunori; Kusakabe, Nobuhiko

    2015-12-10

    K2-19 (EPIC201505350) is an interesting planetary system in which two transiting planets with radii ∼7 R{sub ⊕} (inner planet b) and ∼4 R{sub ⊕} (outer planet c) have orbits that are nearly in a 3:2 mean-motion resonance. Here, we present results of ground-based follow-up observations for the K2-19 planetary system. We have performed high-dispersion spectroscopy and high-contrast adaptive-optics imaging of the host star with the HDS and HiCIAO on the Subaru 8.2 m telescope. We find that the host star is a relatively old (≥8 Gyr) late G-type star (T{sub eff} ∼ 5350 K, M{sub s} ∼ 0.9 M{sub ⊙}, and R{sub s} ∼ 0.9 R{submore » ⊙}). We do not find any contaminating faint objects near the host star that could be responsible for (or dilute) the transit signals. We have also conducted transit follow-up photometry for the inner planet with KeplerCam on the FLWO 1.2 m telescope, TRAPPISTCAM on the TRAPPIST 0.6 m telescope, and MuSCAT on the OAO 1.88 m telescope. We confirm the presence of transit timing variations (TTVs), as previously reported by Armstrong and coworkers. We model the observed TTVs of the inner planet using the synodic chopping formulae given by Deck and Agol. We find two statistically indistinguishable solutions for which the period ratios (P{sub c}/P{sub b}) are located slightly above and below the exact 3:2 commensurability. Despite the degeneracy, we derive the orbital period of the inner planet P{sub b} ∼ 7.921 days and the mass of the outer planet M{sub c} ∼ 20 M{sub ⊕}. Additional transit photometry (especially for the outer planet) as well as precise radial-velocity measurements would be helpful to break the degeneracy and to determine the mass of the inner planet.« less

  15. Studies on possible propagation of microbial contamination in planetary clouds

    NASA Technical Reports Server (NTRS)

    Dimmick, R. L.; Chatigny, M. A.

    1973-01-01

    Current U.S. planetary quarantine standards based on international agreements require consideration of the probability of contamination (Pc) of the outer planets, Venus, Jupiter, Saturn, etc. One of the key parameters in estimation of the Pc of these planets is the probability of growth (Pg) of terrestrial microorganisms on or near these planets. For example, Jupiter and Saturn appear to have an atmosphere in which some microbial species could metabolize and propagate. This study includes investigation of the likelihood of metabolism and propagation of microbes suspended in dynamic atmospheres. It is directed toward providing experimental information needed to aid in rational estimation of Pg for these outer plants.

  16. Feasibility of infrared Earth tracking for deep-space optical communications.

    PubMed

    Chen, Yijiang; Hemmati, Hamid; Ortiz, Gerry G

    2012-01-01

    Infrared (IR) Earth thermal tracking is a viable option for optical communications to distant planet and outer-planetary missions. However, blurring due to finite receiver aperture size distorts IR Earth images in the presence of Earth's nonuniform thermal emission and limits its applicability. We demonstrate a deconvolution algorithm that can overcome this limitation and reduce the error from blurring to a negligible level. The algorithm is applied successfully to Earth thermal images taken by the Mars Odyssey spacecraft. With the solution to this critical issue, IR Earth tracking is established as a viable means for distant planet and outer-planetary optical communications. © 2012 Optical Society of America

  17. Secular dimming of KIC 8462852 following its consumption of a planet

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Shen, Ken J.; Stone, Nicholas

    2017-07-01

    The Kepler-field star KIC 8462852, an otherwise apparently ordinary F3 main-sequence star, showed several highly unusual dimming events of variable depth and duration. Adding to the mystery was the discovery that KIC 8462852 faded by 14 per cent from 1890 to 1989, as well as by another 3 per cent over the 4 yr Kepler mission. Following an initial suggestion by Wright & Sigurdsson, we propose that the secular dimming behaviour is the result of the inspiral of a planetary body or bodies into KIC 8462852, which took place ˜10-104 yr ago (depending on the planet mass). Gravitational energy released as the body inspirals into the outer layers of the star caused a temporary and unobserved brightening, from which the stellar flux is now returning to the quiescent state. The transient dimming events could then be due to obscuration by planetary debris from an earlier partial disruption of the same inspiralling bodies, or due to evaporation and outgassing from a tidally detached moon system. Alternatively, the dimming events could arise from a large number of comet- or planetesimal-mass bodies placed on to high-eccentricity orbits by the same mechanism (e.g. Lidov-Kozai oscillations due to the outer M-dwarf companion) responsible for driving the more massive planets into KIC 8462852. The required high occurrence rate of KIC 8462852-like systems that have undergone recent major planet inspiral event(s) is the greatest challenge to the model, placing large lower limits on the mass of planetary systems surrounding F stars and/or requiring an unlikely probability to catch KIC 8462852 in its current state.

  18. ABUNDANCES OF PLANETARY NEBULAE IN THE OUTER DISK OF M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwitter, Karen B.; Lehman, Emma M. M.; Balick, Bruce

    2012-07-01

    We present spectroscopic observations and chemical abundances of 16 planetary nebulae (PNe) in the outer disk of M31. The [O III] {lambda}4363 line is detected in all objects, allowing a direct measurement of the nebular temperature essential for accurate abundance determinations. Our results show that the abundances in these M31 PNe display the same correlations and general behaviors as Type II PNe in the Milky Way. We also calculate photoionization models to derive estimates of central star properties. From these we infer that our sample PNe, all near the bright-end cutoff of the planetary nebula luminosity function, originated from starsmore » near 2 M{sub Sun }. Finally, under the assumption that these PNe are located in M31's disk, we plot the oxygen abundance gradient, which appears shallower than the gradient in the Milky Way.« less

  19. Reports of Planetary Geology and Geophysics Program, 1984

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Compiler); Watters, T. R. (Compiler)

    1985-01-01

    Topics include outer planets and satellites; asteroids and comets; Venus; lunar origin and solar dynamics; cratering process; planetary interiors, petrology, and geochemistry; volcanic processes; aeolian processes and landforms; fluvial processes; geomorphology; periglacial and permafrost processes; remote sensing and regolith studies; structure, tectonics, and stratigraphy; geological mapping, cartography, and geodesy; and radar applications.

  20. Planetary quarantine. Space research and technology

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The impact of satisfying satellite quarantine constraints on outer planet missions and spacecraft design are studied by considering the effects of planetary radiation belts, solar wind radiation, and space vacuum on microorganism survival. Post launch recontamination studies evaluate the effects of mission environments on particle distributions on spacecraft surfaces and effective cleaning and decontamination techniques.

  1. DYNAMICS OF SELF-GRAVITY WAKES IN DENSE PLANETARY RINGS. I. PITCH ANGLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michikoshi, Shugo; Kokubo, Eiichiro; Fujii, Akihiko

    2015-10-20

    We investigate the dynamics of self-gravity wakes in dense planetary rings. In particular, we examine how the pitch angles of self-gravity wakes depend on ring parameters using N-body simulations. We calculate the pitch angles using the two-dimensional autocorrelation function of the ring surface density. We obtain the pitch angles for the inner and outer parts of the autocorrelation function separately. We confirm that the pitch angles are 15°–30° for reasonable ring parameters, which are consistent with previous studies. We find that the inner pitch angle increases with the Saturnicentric distance, while it barely depends on the optical depth and themore » restitution coefficient of ring particles. The increase of the inner pitch angle with the Saturnicentric distance is consistent with the observations of the A ring. The outer pitch angle does not have a clear dependence on any ring parameters and is about 10°–15°. This value is consistent with the pitch angle of spiral arms in collisionless systems.« less

  2. Capture of irregular satellites at Jupiter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early solar system instability when encounters between the outer planets occurred. Nesvorný et al. already showed that the irregular satellites of Saturn, Uranus, and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encountersmore » with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary disk is found to be (1.3-3.6) × 10{sup –8}. This is roughly enough to explain the observed population of jovian irregular moons. We also confirm Nesvorný et al.'s results for the irregular satellites of Saturn, Uranus, and Neptune.« less

  3. Trigonometric Parallaxes of Central Stars of Planetary Nebulae

    DTIC Science & Technology

    2007-02-01

    is a large nebula with a larger outer halo (Hewett et al. 2003; Rauch et al. 2004). Frew& Parker (2006) find that the nebula may be ionized ISM. 3...TRIGONOMETRIC PARALLAXES OF CENTRAL STARS OF PLANETARY NEBULAE Hugh C. Harris,1 Conard C. Dahn, Blaise Canzian, Harry H. Guetter, S. K. Leggett,2...parallaxes of 16 nearby planetary nebulae are presented, including reduced errors for seven objects with previous initial results and results for six new

  4. Nuclear Thermal Rocket (NTR) Propulsion and Power Systems for Outer Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, S. K.; Cataldo, R. L.

    2001-01-01

    The high specific impulse (I (sub sp)) and engine thrust generated using liquid hydrogen (LH2)-cooled Nuclear Thermal Rocket (NTR) propulsion makes them attractive for upper stage applications for difficult robotic science missions to the outer planets. Besides high (I (sub sp)) and thrust, NTR engines can also be designed for "bimodal" operation allowing substantial amounts of electrical power (10's of kWe ) to be generated for onboard spacecraft systems and high data rate communications with Earth during the course of the mission. Two possible options for using the NTR are examined here. A high performance injection stage utilizing a single 15 klbf thrust engine can inject large payloads to the outer planets using a 20 t-class launch vehicle when operated in an "expendable mode". A smaller bimodal NTR stage generating approx. 1 klbf of thrust and 20 to 40 kWe for electric propulsion can deliver approx. 100 kg using lower cost launch vehicles. Additional information is contained in the original extended abstract.

  5. Comets Kick up Dust in Helix Nebula

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This infrared image from NASA's Spitzer Space Telescope shows the Helix nebula, a cosmic starlet often photographed by amateur astronomers for its vivid colors and eerie resemblance to a giant eye.

    The nebula, located about 700 light-years away in the constellation Aquarius, belongs to a class of objects called planetary nebulae. Discovered in the 18th century, these colorful beauties were named for their resemblance to gas-giant planets like Jupiter.

    Planetary nebulae are the remains of stars that once looked a lot like our sun. When sun-like stars die, they puff out their outer gaseous layers. These layers are heated by the hot core of the dead star, called a white dwarf, and shine with infrared and visible colors. Our own sun will blossom into a planetary nebula when it dies in about five billion years.

    In Spitzer's infrared view of the Helix nebula, the eye looks more like that of a green monster's. Infrared light from the outer gaseous layers is represented in blues and greens. The white dwarf is visible as a tiny white dot in the center of the picture. The red color in the middle of the eye denotes the final layers of gas blown out when the star died.

    The brighter red circle in the very center is the glow of a dusty disk circling the white dwarf (the disk itself is too small to be resolved). This dust, discovered by Spitzer's infrared heat-seeking vision, was most likely kicked up by comets that survived the death of their star. Before the star died, its comets and possibly planets would have orbited the star in an orderly fashion. But when the star blew off its outer layers, the icy bodies and outer planets would have been tossed about and into each other, resulting in an ongoing cosmic dust storm. Any inner planets in the system would have burned up or been swallowed as their dying star expanded.

    So far, the Helix nebula is one of only a few dead-star systems in which evidence for comet survivors has been found.

    This image is made up of data from Spitzer's infrared array camera and multiband imaging photometer. Blue shows infrared light of 3.6 to 4.5 microns; green shows infrared light of 5.8 to 8 microns; and red shows infrared light of 24 microns.

  6. Probe design

    NASA Technical Reports Server (NTRS)

    Cowan, W.

    1974-01-01

    Outer planetary probe designs consider mission characteristics, structural configuration, delivery mode, scientific payload, environmental extremes, mass properties, and the launch vehicle and spacecraft interface.

  7. The exploration of outer space with cameras: A history of the NASA unmanned spacecraft missions

    NASA Astrophysics Data System (ADS)

    Mirabito, M. M.

    The use of television cameras and other video imaging devices to explore the solar system's planetary bodies with unmanned spacecraft is chronicled. Attention is given to the missions and the imaging devices, beginning with the Ranger 7 moon mission, which featured the first successfully operated electrooptical subsystem, six television cameras with vidicon image sensors. NASA established a network of parabolic, ground-based antennas on the earth (the Deep Space Network) to receive signals from spacecraft travelling farther than 16,000 km into space. The image processing and enhancement techniques used to convert spacecraft data transmissions into black and white and color photographs are described, together with the technological requirements that drove the development of the various systems. Terrestrial applications of the planetary imaging systems are explored, including medical and educational uses. Finally, the implementation and functional characteristics of CCDs are detailed, noting their installation on the Space Telescope.

  8. Architecture of Kepler's Multi-transiting Systems: II. New investigations with twice as many candidates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabrycky, Daniel C.; Lissauer, Jack J.; Ragozzine, Darin

    Having discovered 885 planet candidates in 361 multiple-planet systems, Kepler has made transits a powerful method for studying the statistics of planetary systems. The orbits of only two pairs of planets in these candidate systems are apparently unstable. This indicates that a high percentage of the candidate systems are truly planets orbiting the same star, motivating physical investigations of the population. Pairs of planets in this sample are typically not in orbital resonances. However, pairs with orbital period ratios within a few percent of a first-order resonance (e.g. 2:1, 3:2) prefer orbital spacings just wide of the resonance and avoidmore » spacings just narrow of the resonance. Finally, we investigate mutual inclinations based on transit duration ratios. We infer that the inner planets of pairs tend to have a smaller impact parameter than their outer companions, suggesting these planetary systems are typically coplanar to within a few degrees.« less

  9. Physics and chemistry of the solar nebula.

    PubMed

    Lunine, J I

    1997-06-01

    The solar system is thought to have begun in a flattened disk of gas and dust referred to traditionally as the solar nebula. Such a construct seems to be a natural product of the collapse of dense parts of giant molecular clouds, the vast star-forming regions that pepper the Milky Way and other galaxies. Gravitational, magnetic and thermal forces within the solar nebula forced a gradual evolution of mass toward the center (where the sun formed) and angular momentum (borne by a small fraction of the mass) toward the outer more distant regions of the disk. This evolution was accompanied by heating and a strong temperature contrast from the hot, inner regions to the cold, more remote parts of the disk. The resulting chemistry in the disk determined the initial distribution of organic matter in the planets; most of the reduced carbon species, in condensed form, were located beyond the asteroid belt (the 'outer' solar system). The Earth could have received much of its inventory of pre-biological material from comets and other icy fragments of the process of planetary formation in the outer solar system.

  10. Studies of Disks Around the Sun and Other Stars

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan (Principal Investigator)

    1996-01-01

    We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This two-element program consists modeling collisions in the Kuiper Disk and the dust disks around other stars. The modeling effort focuses on moving from our simple, first-generation, Kuiper disk collision rate model, to a time-dependent, second-generation model that incorporates physical collisions, velocity evolution, dynamical erosion, and various dust transport mechanisms. This second generation model will be used to study the evolution of surface mass density and the object-size spectrum in the disk. The observational effort focuses on obtaining submm/mm-wave flux density measurements of 25-30 IR excess stars in order to better constrain the masses, spatial extents and structure of their dust ensembles.

  11. New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, Robert J.; /SLAC; Amini, Rashied

    Today, our questions and hypotheses about the Solar System's origin have surpassed our ability to deliver scientific instruments to deep space. The moons of the outer planets, the Trojan and Centaur minor planets, the trans-Neptunian objects (TNO), and distant Kuiper Belt objects (KBO) hold a wealth of information about the primordial conditions that led to the formation of our Solar System. Robotic missions to these objects are needed to make the discoveries, but the lack of deep-space propulsion is impeding this science. Radioisotope electric propulsion (REP) will revolutionize the way we do deep-space planetary science with robotic vehicles, giving themmore » unprecedented mobility. Radioisotope electric generators and lightweight ion thrusters are being developed today which will make possible REP systems with specific power in the range of 5 to 10 W/kg. Studies have shown that this specific power range is sufficient to perform fast rendezvous missions from Earth to the outer Solar System and fast sample return missions. This whitepaper discusses how mobility provided by REP opens up entirely new science opportunities for robotic missions to distant primitive bodies. We also give an overview of REP technology developments and the required next steps to realize REP.« less

  12. Computations and estimates of rate coefficients for hydrocarbon reactions of interest to the atmospheres of outer solar system

    NASA Technical Reports Server (NTRS)

    Laufer, A. H.; Gardner, E. P.; Kwok, T. L.; Yung, Y. L.

    1983-01-01

    The rate coefficients, including Arrhenius parameters, have been computed for a number of chemical reactions involving hydrocarbon species for which experimental data are not available and which are important in planetary atmospheric models. The techniques used to calculate the kinetic parameters include the Troe and semiempirical bond energy-bond order (BEBO) or bond strength-bond length (BSBL) methods.

  13. Core Formation Process and Light Elements in the Planetary Core

    NASA Astrophysics Data System (ADS)

    Ohtani, E.; Sakairi, T.; Watanabe, K.; Kamada, S.; Sakamaki, T.; Hirao, N.

    2015-12-01

    Si, O, and S are major candidates for light elements in the planetary core. In the early stage of the planetary formation, the core formation started by percolation of the metallic liquid though silicate matrix because Fe-S-O and Fe-S-Si eutectic temperatures are significantly lower than the solidus of the silicates. Therefore, in the early stage of accretion of the planets, the eutectic liquid with S enrichment was formed and separated into the core by percolation. The major light element in the core at this stage will be sulfur. The internal pressure and temperature increased with the growth of the planets, and the metal component depleted in S was molten. The metallic melt contained both Si and O at high pressure in the deep magma ocean in the later stage. Thus, the core contains S, Si, and O in this stage of core formation. Partitioning experiments between solid and liquid metals indicate that S is partitioned into the liquid metal, whereas O is weakly into the liquid. Partitioning of Si changes with the metallic iron phases, i.e., fcc iron-alloy coexisting with the metallic liquid below 30 GPa is depleted in Si. Whereas hcp-Fe alloy above 30 GPa coexisting with the liquid favors Si. This contrast of Si partitioning provides remarkable difference in compositions of the solid inner core and liquid outer core among different terrestrial planets. Our melting experiments of the Fe-S-Si and Fe-O-S systems at high pressure indicate the core-adiabats in small planets, Mercury and Mars, are greater than the slope of the solidus and liquidus curves of these systems. Thus, in these planets, the core crystallized at the top of the liquid core and 'snowing core' formation occurred during crystallization. The solid inner core is depleted in both Si and S whereas the liquid outer core is relatively enriched in Si and S in these planets. On the other hand, the core adiabats in large planets, Earth and Venus, are smaller than the solidus and liquidus curves of the systems. The inner core of these planets crystallized at the center of the core and it has the relatively Si rich inner core and the S enriched outer core. Based on melting and solid-liquid partitioning, the equation of state, and sound velocity of iron-light element alloys, we examined the plausible distribution of light elements in the liquid outer and solid inner cores of the terrestrial planets.

  14. The symbiosis of photometry and radial-velocity measurements

    NASA Technical Reports Server (NTRS)

    Cochran, William D.

    1994-01-01

    The FRESIP mission is optimized to detect the inner planets of a planetary system. According to the current paradigm of planet formation, these planets will probably be small Earth-sized objects. Ground-based radial-velocity programs now have the sensitivity to detect Jovian-mass planets in orbit around bright solar-type stars. We expect the more massive planets to form in the outer regions of a proto-stellar nebula. These two types of measurements will very nicely complement each other, as they have highest detection probability for very different types of planets. The combination of FRESIP photometry and ground-based spectra will provide independent confirmation of the existence of planetary systems in orbit around other stars. Such detection of both terrestrial and Jovian planets in orbit around the same star is essential to test our understanding of planet formation.

  15. Possible Outcomes of Coplanar High-eccentricity Migration: Hot Jupiters, Close-in Super-Earths, and Counter-orbiting Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Yuxin; Masuda, Kento; Suto, Yasushi, E-mail: yuxin@utap.phys.s.u-tokyo.ac.jp

    We investigate the formation of close-in planets in near-coplanar eccentric hierarchical triple systems via the secular interaction between an inner planet and an outer perturber (Coplanar High-eccentricity Migration; CHEM). We generalize the previous work on the analytical condition for successful CHEM for point masses interacting only through gravity by taking into account the finite mass effect of the inner planet. We find that efficient CHEM requires that the systems should have m {sub 1}≪m {sub 0} and m {sub 1} ≪ m {sub 2}. In addition to the gravity for point masses, we examine the importance of the short-range forces,more » and provide an analytical estimate of the migration timescale. We perform a series of numerical simulations in CHEM for systems consisting of a Sun-like central star, giant gas inner planet, and planetary outer perturber, including the short-range forces and stellar and planetary dissipative tides. We find that most of such systems end up with a tidal disruption; a small fraction of the systems produce prograde hot Jupiters (HJs), but no retrograde HJ. In addition, we extend CHEM to super-Earth mass range, and show that the formation of close-in super-Earths in prograde orbits is also possible. Finally, we carry out CHEM simulation for the observed hierarchical triple and counter-orbiting HJ systems. We find that CHEM can explain a part of the former systems, but it is generally very difficult to reproduce counter-orbiting HJ systems.« less

  16. Planetary Space Weather Service: Part of the the Europlanet 2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Grande, Manuel; Andre, Nicolas

    2016-07-01

    Over the next four years the Europlanet 2020 Research Infrastructure will set up an entirely new European Planetary Space Weather service (PSWS). Europlanet RI is a part of of Horizon 2020 (EPN2020-RI, http://www.europlanet-2020-ri.eu). The Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end of the programme. Europlanet 2020 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.

  17. Rings Research in the Next Decade

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.; Albers, N.; Brahic, A.; Brooks, S. M.; Burns, J. A.; Chavez, C.; Colwell, J. E.; Cuzzi, J. N.; de Pater, I.; Dones, L.; Durisen, R. H.; Filacchione, G.; Giuliatti Winter, S. M.; Gordon, M. K.; Graps, A.; Hamilton, D. P.; Hedman, M. M.; Horanyi, M.; Kempf, S.; Krueger, H.; Lewis, M. C.; Lissauer, J. J.; Murray, C. D.; Nicholson, P. D.; Olkin, C. B.; Pappalardo, R. T.; Salo, H.; Schmidt, J.; Showalter, M. R.; Spahn, F.; Spilker, L. J.; Srama, R.; Sremcevic, M.; Stewart, G. R.; Yanamandra-Fisher, P.

    2009-12-01

    The study of planetary ring systems is a key component of planetary science for several reasons: 1) The evolution and current states of planets and their satellites are affected in many ways by rings, while 2) conversely, properties of planets and moons and other solar system populations are revealed by their effects on rings; 3) highly structured and apparently delicate ring systems may be bellwethers, constraining various theories of the origin and evolution of their entire planetary system; and finally, 4) planetary rings provide an easily observable analogue to other astrophysical disk systems, enabling real "ground truth” results applicable to disks much more remote in space and/or time, including proto-planetary disks, circum-stellar disks, and even galaxies. Significant advances have been made in rings science in the past decade. The highest-priority rings research recommendations of the last Planetary Science Decadal Survey were to operate and extend the Cassini orbiter mission at Saturn; this has been done with tremendous success, accounting for much of the progress made on key science questions, as we will describe. Important progress in understanding the rings of Saturn and other planets has also come from Earth-based observational and theoretical work, again as prioritized by the last Decadal Survey. However, much important work remains to be done. At Saturn, the Cassini Solstice Mission must be brought to a successful completion. Priority should also be placed on sending spacecraft to Neptune and/or Uranus, now unvisited for more than 20 years. At Jupiter and Pluto, opportunities afforded by visiting spacecraft capable of studying rings should be exploited. On Earth, the need for continued research and analysis remains strong, including in-depth analysis of rings data already obtained, numerical and theoretical modeling work, laboratory analysis of materials and processes analogous to those found in the outer solar system, and continued Earth-based observations.

  18. HAT-P-44b, HAT-P-45b, AND HAT-P-46b: Three transiting hot Jupiters in possible multi-planet systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, J. D.; Bakos, G. Á.; Bhatti, W.

    2014-06-01

    We report the discovery by the HATNet survey of three new transiting extrasolar planets orbiting moderately bright (V = 13.2, 12.8, and 11.9) stars. The planets have orbital periods of 4.3012, 3.1290, and 4.4631 days, masses of 0.35, 0.89, and 0.49 M {sub J}, and radii of 1.24, 1.43, and 1.28 R {sub J}. The stellar hosts have masses of 0.94, 1.26, and 1.28 M {sub ☉}. Each system shows significant systematic variations in its residual radial velocities, indicating the possible presence of additional components. Based on its Bayesian evidence, the preferred model for HAT-P-44 consists of two planets, includingmore » the transiting component, with the outer planet having a period of 872 days, eccentricity of 0.494 ± 0.081, and a minimum mass of 4.0 M {sub J}. Due to aliasing we cannot rule out alternative solutions for the outer planet having a period of 220 days or 438 days. For HAT-P-45, at present there is not enough data to justify the additional free parameters included in a multi-planet model; in this case a single-planet solution is preferred, but the required jitter of 22.5 ± 6.3 m s{sup –1} is relatively high for a star of this type. For HAT-P-46 the preferred solution includes a second planet having a period of 78 days and a minimum mass of 2.0 M {sub J}, however the preference for this model over a single-planet model is not very strong. While substantial uncertainties remain as to the presence and/or properties of the outer planetary companions in these systems, the inner transiting planets are well characterized with measured properties that are fairly robust against changes in the assumed models for the outer planets. Continued radial velocity monitoring is necessary to fully characterize these three planetary systems, the properties of which may have important implications for understanding the formation of hot Jupiters.« less

  19. Virtual Planetary Space Weather Services offered by the Europlanet H2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    André, N.; Grande, M.; Achilleos, N.; Barthélémy, M.; Bouchemit, M.; Benson, K.; Blelly, P.-L.; Budnik, E.; Caussarieu, S.; Cecconi, B.; Cook, T.; Génot, V.; Guio, P.; Goutenoir, A.; Grison, B.; Hueso, R.; Indurain, M.; Jones, G. H.; Lilensten, J.; Marchaudon, A.; Matthiä, D.; Opitz, A.; Rouillard, A.; Stanislawska, I.; Soucek, J.; Tao, C.; Tomasik, L.; Vaubaillon, J.

    2018-01-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. PSWS will make twelve new services accessible to the research community, space agencies, and industrial partners planning for space missions. These services will in particular be dedicated to the following key planetary environments: Mars (in support of the NASA MAVEN and European Space Agency (ESA) Mars Express and ExoMars missions), comets (building on the outstanding success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUpiter ICy moon Explorer mission), and one of these services will aim at predicting and detecting planetary events like meteor showers and impacts in the Solar System. This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather as well as to space situational awareness in the tools and models available within the partner institutes. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. PSWS will provide the additional research and tailoring required to apply them for these purposes. PSWS will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end of 2017. To achieve its objectives PSWS will use a few tools and standards developed for the Astronomy Virtual Observatory (VO). This paper gives an overview of the project together with a few illustrations of prototype services based on VO standards and protocols.

  20. New Worlds Airship

    NASA Astrophysics Data System (ADS)

    Harness, Anthony; Cash, Webster; Shipley, Ann; Glassman, Tiffany; Warwick, Steve

    2013-09-01

    We review the progress on the New Worlds Airship project, which has the eventual goal of suborbitally mapping the Alpha Centauri planetary system into the Habitable Zone. This project consists of a telescope viewing a star that is occulted by a starshade suspended from an airship. The starshade suppresses the starlight such that fainter planetary objects near the star are revealed. A visual sensor is used to determine the position of the starshade and keep the telescope within the starshade's shadow. In the first attempt to demonstrate starshades through astronomical observations, we have built a precision line of sight position indicator and flew it on a Zeppelin in October (2012). Since the airship provider went out of business we have been redesigning the project to use Vertical Takeoff Vertical Landing rockets instead. These Suborbital Reusable Launch Vehicles will serve as a starshade platform and test bed for further development of the visual sensor. We have completed ground tests of starshades on dry lakebeds and have shown excellent contrast. We are now attempting to use starshades on hilltops to occult stars and perform high contrast imaging of outer planetary systems such as the debris disk around Fomalhaut.

  1. Hubble Finds a Little Gem

    NASA Image and Video Library

    2015-08-07

    This colorful bubble is a planetary nebula called NGC 6818, also known as the Little Gem Nebula. It is located in the constellation of Sagittarius (The Archer), roughly 6,000 light-years away from us. The rich glow of the cloud is just over half a light-year across — humongous compared to its tiny central star — but still a little gem on a cosmic scale. When stars like the sun enter "retirement," they shed their outer layers into space to create glowing clouds of gas called planetary nebulae. This ejection of mass is uneven, and planetary nebulae can have very complex shapes. NGC 6818 shows knotty filament-like structures and distinct layers of material, with a bright and enclosed central bubble surrounded by a larger, more diffuse cloud. Scientists believe that the stellar wind from the central star propels the outflowing material, sculpting the elongated shape of NGC 6818. As this fast wind smashes through the slower-moving cloud it creates particularly bright blowouts at the bubble’s outer layers. Hubble previously imaged this nebula back in 1997 with its Wide Field Planetary Camera 2, using a mix of filters that highlighted emission from ionized oxygen and hydrogen. This image, while from the same camera, uses different filters to reveal a different view of the nebula. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. An extrasolar planetary system with three Neptune-mass planets.

    PubMed

    Lovis, Christophe; Mayor, Michel; Pepe, Francesco; Alibert, Yann; Benz, Willy; Bouchy, François; Correia, Alexandre C M; Laskar, Jacques; Mordasini, Christoph; Queloz, Didier; Santos, Nuno C; Udry, Stéphane; Bertaux, Jean-Loup; Sivan, Jean-Pierre

    2006-05-18

    Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 au (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star.

  3. IR Spectroscopy and Photo-Chemistry of Extraterrestrial Ices

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Mastrapa, Rachel; Elsila, Jamie; Sandford, Scott

    2005-01-01

    Dense molecular clouds from which planetary systems form and the outer Solar System are both cold environments dominated by ices. Infrared (IR) spectroscopy is used to probe these ices, but the IR absorptions of molecules depend on the conditions. As a result appropriate lab data is needed to correctly fit spectra of extraterrestrial ices. Such fits have shown that most of these ices are composed primarily of H2O, but also contain 1-10 percent of other simple molecules such as CO2, CO, CH4, & NH3;. We shall present near IR spectra of ice mixtures of relevance to icy outer Solar System bodies and show that they still hold surprises, such as the Cheshire cat-like CO2 (2v3) overtone near 2.134 micrometers (4685 cm-1) that is absent from spectra of pure CO2 but present in H2O-CO2 mixtures.

  4. Eccentricity in planetary systems and the role of binarity. Sample definition, initial results, and the system of HD 211847

    NASA Astrophysics Data System (ADS)

    Moutou, C.; Vigan, A.; Mesa, D.; Desidera, S.; Thébault, P.; Zurlo, A.; Salter, G.

    2017-06-01

    We explore the multiplicity of exoplanet host stars with high-resolution images obtained with VLT/SPHERE. Two different samples of systems were observed: one containing low-eccentricity outer planets, and the other containing high-eccentricity outer planets. We find that 10 out of 34 stars in the high-eccentricity systems are members of a binary, while the proportion is 3 out of 27 for circular systems. Eccentric-exoplanet hosts are, therefore, significantly more likely to have a stellar companion than circular-exoplanet hosts. The median magnitude contrast over the 68 data sets is 11.26 and 9.25, in H and K, respectively, at 0.30 arcsec. The derived detection limits reveal that binaries with separations of less than 50 au are rarer for exoplanet hosts than for field stars. Our results also imply that the majority of high-eccentricity planets are not embedded in multiple stellar systems (24 out of 34), since our detection limits exclude the presence of a stellar companion. We detect the low-mass stellar companions of HD 7449 and HD 211847, both members of our high-eccentricity sample. HD 7449B was already detected and our independent observation is in agreement with this earlier work. HD 211847's substellar companion, previously detected by the radial velocity method, is actually a low-mass star seen face-on. The role of stellar multiplicity in shaping planetary systems is confirmed by this work, although it does not appear as the only source of dynamical excitation. Based on observations collected with SPHERE on the Very Large Telescope (ESO, Chile).

  5. Characterizing the Disk of a Recent Massive Collisional Event

    NASA Astrophysics Data System (ADS)

    Song, Inseok

    2015-10-01

    Debris disks play a key role in the formation and evolution of planetary systems. On rare occasions, circumstellar material appears as strictly warm infrared excess in regions of expected terrestrial planet formation and so present an interesting opportunity for the study of terrestrial planetary regions. There are only a few known cases of extreme, warm, dusty disks which lack any colder outer component including BD+20 307, HD 172555, EF Cha, and HD 23514. We have recently found a new system TYC 8830-410-1 belonging to this rare group. Warm dust grains are extremely short-lived, and the extraordinary amount of warm dust near these stars can only be plausibly explainable by a recent (or on-going) massive transient event such as the Late Heavy Bombardment (LHB) or plantary collisions. LHB-like events are seen generally in a system with a dominant cold disk, however, warm dust only systems show no hint of a massive cold disk. Planetary collisions leave a telltale sign of strange mid-IR spectral feature such as silica and we want to fully characterize the spectral shape of the newly found system with SOFIA/FORCAST. With SOFIA/FORCAST, we propose to obtain two narrow band photometric measurements between 6 and 9 microns. These FORCAST photometric measurements will constrain the amount and temperature of the warm disk in the system. There are less than a handful systems with a strong hint of recent planetary collisions. With the firmly constrained warm disk around TYC 8830-410-1, we will publish the discovery in a leading astronomical journal accompanied with a potential press release through SOFIA.

  6. Ring Beholds a Delicate Flower

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA's Spitzer Space Telescope finds a delicate flower in the Ring Nebula, as shown in this image. The outer shell of this planetary nebula looks surprisingly similar to the delicate petals of a camellia blossom. A planetary nebula is a shell of material ejected from a dying star. Located about 2,000 light years from Earth in the constellation Lyra, the Ring Nebula is also known as Messier Object 57 and NGC 6720. It is one of the best examples of a planetary nebula and a favorite target of amateur astronomers.

    The 'ring' is a thick cylinder of glowing gas and dust around the doomed star. As the star begins to run out of fuel, its core becomes smaller and hotter, boiling off its outer layers. The telescope's infrared array camera detected this material expelled from the withering star. Previous images of the Ring Nebula taken by visible-light telescopes usually showed just the inner glowing loop of gas around the star. The outer regions are especially prominent in this new image because Spitzer sees the infrared light from hydrogen molecules. The molecules emit infrared light because they have absorbed ultraviolet radiation from the star or have been heated by the wind from the star.

    Download the QuickTime movie for the animated version of this Ring Nebula image.

  7. Planetary protection on international waters: An onboard protocol for capsule retrieval and biosafety control in sample return mission

    NASA Astrophysics Data System (ADS)

    Takano, Yoshinori; Yano, Hajime; Sekine, Yasuhito; Funase, Ryu; Takai, Ken

    2014-04-01

    Planetary protection has been recognized as one of the most important issues in sample return missions that may host certain living forms and biotic signatures in a returned sample. This paper proposes an initiative of sample capsule retrieval and onboard biosafety protocol in international waters for future biological and organic constituent missions to bring samples from possible habitable bodies in the solar system. We suggest the advantages of international waters being outside of national jurisdiction and active regions of human and traffic affairs on the condition that we accept the Outer Space Treaty. The scheme of onboard biological quarantine definitely reduces the potential risk of back-contamination of extraterrestrial materials to the Earth.

  8. Modelling the Diversity of Outer Planetary Systems. 1; Formation and Evolution

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Levison, H. F.; Duncan, M. J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    The process of planetary growth is extremely complicated, involving a myriad of physical and chemical processes, many of which are poorly understood. The ultimate configuration that a planetary system attains depends upon the properties of the disk out of which it grew, of the star at the center of the disk and, at least in some cases, of the interstellar environment. However, this dependence is poorly understood. Thus, in an effort to numerically survey the possible diversity of planetary systems, we have constructed synthetic systems of giant planets and integrated their orbits to determine the dynamical lifetimes and thus the viability of these systems. Our construction algorithm begins with 110 -- 180 planetesimals located between 4 and 40 AU from a one solar mass star; most initial planetesimals have masses several tenths that of Earth. We integrate the orbits of these bodies subject to mutual gravitational perturbations and gas drag for $10^6 - 10^7$ years, merging any pair of planetesimals which passed within one-tenth of a Hill Sphere of one another and adding "gas" to embryos larger than 10 Earth masses. Use of such large planetesimal radii provided sufficient damping to prevent the system from excessive dynamical heating. Subsequently, systems were evolved without gas drag, either with the inflated radii or with more realistic radii. Systems took from a few million years to greater than ten billion years to become stable ($10^9$ years without mergers of ejections). Some of the systems produced with the inflated radii closely resemble our Solar System. Encounters in simulations using realistic radii resulted in ejections, typically leaving only a few planets per system, most of which were in highly eccentric orbits. The structure and dynamics of the resulting "stable" systems is discussed in detail in the abstract by Levison et al.

  9. Generating large misalignments in gapped and binary discs

    NASA Astrophysics Data System (ADS)

    Owen, James E.; Lai, Dong

    2017-08-01

    Many protostellar gapped and binary discs show misalignments between their inner and outer discs; in some cases, ˜70° misalignments have been observed. Here, we show that these misalignments can be generated through a secular resonance between the nodal precession of the inner disc and the precession of the gap-opening (stellar or massive planetary) companion. An evolving protostellar system may naturally cross this resonance during its lifetime due to disc dissipation and/or companion migration. If resonance crossing occurs on the right time-scale, of the order of a few million years, characteristic for young protostellar systems, the inner and outer discs can become highly misaligned, with misalignments ≳ 60° typical. When the primary star has a mass of order a solar mass, generating a significant misalignment typically requires the companion to have a mass of ˜0.01-0.1 M⊙ and an orbital separation of tens of astronomical units. The recently observed companion in the cavity of the gapped, highly misaligned system HD 142527 satisfies these requirements, indicating that a previous resonance crossing event misaligned the inner and outer discs. Our scenario for HD 142527's misaligned discs predicts that the companion's orbital plane is aligned with the outer disc's; this prediction should be testable with future observations as the companion's orbit is mapped out. Misalignments observed in several other gapped disc systems could be generated by the same secular resonance mechanism.

  10. Physical State of Ices in the Outer Solar System. Revised

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Comparison of the identity and abundances of ices observed around protostars and those associated with comets clearly suggests that comets preserve the heritage of the interstellar materials that aggregated to form them. However, the ability to identify these same species on icy satellites in the outer solar system is a complex function of the composition of the original ices, their subsequent thermal histories, and their exposure to various radiation environments. Our ability to identify the ices currently present on objects in the outer solar system relies upon observational and laboratory, and theoretical efforts. To date there is ample observational evidence for crystalline water ice throughout the outer solar system. In addition, there is growing evidence that amorphous ice may be present on some bodies. More volatile ices, e.g. N2, CH4. CO, and other species, e.g. ammonia hydrate, are identified on objects lying at and beyond Uranus. Both photolysis and radiolysis play important roles in altering the original surfaces due to chemical reactions and erosion of the surface. Ultraviolet photolysis appears to dominate alteration of the upper few hundred Angstroms, although sputtering the surface can sometimes be a significantly competitative process; dominating on icy surfaces embedded in a strong planetary magnetospheric field. There is growing observational evidence that the by-products of photolysis and radiolysis, suggested on a theoretical basis, are present on icy surfaces.

  11. Astrobiological benefits of human space exploration.

    PubMed

    Crawford, Ian A

    2010-01-01

    An ambitious program of human space exploration, such as that envisaged in the Global Exploration Strategy and considered in the Augustine Commission report, will help advance the core aims of astrobiology in multiple ways. In particular, a human exploration program will confer significant benefits in the following areas: (i) the exploitation of the lunar geological record to elucidate conditions on early Earth; (ii) the detailed study of near-Earth objects for clues relating to the formation of the Solar System; (iii) the search for evidence of past or present life on Mars; (iv) the provision of a heavy-lift launch capacity that will facilitate exploration of the outer Solar System; and (v) the construction and maintenance of sophisticated space-based astronomical tools for the study of extrasolar planetary systems. In all these areas a human presence in space, and especially on planetary surfaces, will yield a net scientific benefit over what can plausibly be achieved by autonomous robotic systems. A number of policy implications follow from these conclusions, which are also briefly considered.

  12. Estimation and assessment of Mars contamination.

    PubMed

    Debus, A

    2005-01-01

    Since the beginning of the exploration of Mars, more than fourty years ago, thirty-six missions have been launched, including fifty-nine different space systems such as fly-by spacecraft, orbiters, cruise modules, landing or penetrating systems. Taking into account failures at launch, about three missions out of four have been successfully sent toward the Red Planet. The fact today is that Mars orbital environment includes orbiters and perhaps debris, and that its atmosphere and its surface include terrestrial compounds and dormant microorganisms. Coming from the UN Outer Space Treaty [United Nations Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies (the "Outer Space Treaty") referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966] and according to the COSPAR planetary protection policy recommendations [COSPAR Planetary Protection Policy (20 October 2002), accepted by the Council and Bureau, as moved for adoption by SC F and PPP, prepared by the COSPAR/IAU Workshop on Planetary Protection, 4/02 with updates 10/0, 2002], Mars environment has to be preserved so as not to jeopardize the scientific investigations, and the level of terrestrial material brought on and around Mars theoretically has to comply with this policy. It is useful to evaluate what and how many materials, compounds and microorganisms are on Mars, to list what is in orbit and to identify where all these items are. Considering assumptions about materials, spores and gas location and dispersion on Mars, average contamination levels can be estimated. It is clear now that as long as missions are sent to other extraterrestrial bodies, it is not possible to keep them perfectly clean. Mars is one of the most concerned body, and the large number of missions achieved, on-going and planned now raise the question about its possible contamination, not necessarily from a biological point of view, but with respect to all types of contamination. Answering this question, will help to assess the potential effects of such contamination on scientific results and will address concerns relative to any ethical considerations about the contamination of other planets. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  13. Human Missions to Europa and Titan - Why Not?

    NASA Astrophysics Data System (ADS)

    Finarelli, Margaret G.

    2004-04-01

    This report describes a long-term development plan to enable human exploration of the outer solar system, with a focus on Europa and Titan. These are two of the most interesting moons of Jupiter and Saturn, respectively, because they are the places in the solar system with the greatest potential for harboring extraterrestrial life. Since human expeditions to these worlds are considered impossible with current capabilities, the proposal of a well-organized sequence of steps towards making this a reality was formulated. The proposed Development Plan, entitled Theseus, is the outcome of a recent multinational study by a group of students in the framework of the Master of Space Studies (MSS) 2004 course at the International Space University (ISU). The Theseus Program includes the necessary development strategies in key scientific and technological areas that are essential for identifying the requirements for the exploration of the outer planetary moons. Some of the topics that are analysed throughout the plan include: scientific observations at Europa and Titan, advanced propulsion and nuclear power systems, in-situ resource utilization, radiation mitigation techniques, closed life support systems, habitation for long-term spaceflight, and artificial gravity. In addition to the scientific and technological aspects of the Theseus Program, it was recognized that before any research and development work may begin, some level of program management must be established. Within this chapter, legal issues, national and international policy, motivation, organization and management, economic considerations, outreach, education, ethics, and social implications are all considered with respect to four possible future scenarios which enable human missions to the outer solar system. The final chapter of the report builds upon the foundations set by Theseus through a case study. This study illustrates how such accomplishments could influence a mission to Europa to search for evidence of life in its subsurface oceans. The future remains unpredictable, as does the realization of any of these possibilities. However, projects such as this remind us that the final frontier for humans is truly outer space, and only our imagination will determine where the frontier stops. We can dream of visiting other planetary systems and perhaps even galaxies, but we must begin closer, and considering the scope of our known universe, Europa and Titan are very close indeed.

  14. Human Missions to Europa and Titan - Why Not?

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This report describes a long-term development plan to enable human exploration of the outer solar system, with a focus on Europa and Titan. These are two of the most interesting moons of Jupiter and Saturn, respectively, because they are the places in the solar system with the greatest potential for harboring extraterrestrial life. Since human expeditions to these worlds are considered impossible with current capabilities, the proposal of a well-organized sequence of steps towards making this a reality was formulated. The proposed Development Plan, entitled Theseus, is the outcome of a recent multinational study by a group of students in the framework of the Master of Space Studies (MSS) 2004 course at the International Space University (ISU). The Theseus Program includes the necessary development strategies in key scientific and technological areas that are essential for identifying the requirements for the exploration of the outer planetary moons. Some of the topics that are analysed throughout the plan include: scientific observations at Europa and Titan, advanced propulsion and nuclear power systems, in-situ resource utilization, radiation mitigation techniques, closed life support systems, habitation for long-term spaceflight, and artificial gravity. In addition to the scientific and technological aspects of the Theseus Program, it was recognized that before any research and development work may begin, some level of program management must be established. Within this chapter, legal issues, national and international policy, motivation, organization and management, economic considerations, outreach, education, ethics, and social implications are all considered with respect to four possible future scenarios which enable human missions to the outer solar system. The final chapter of the report builds upon the foundations set by Theseus through a case study. This study illustrates how such accomplishments could influence a mission to Europa to search for evidence of life in its subsurface oceans. The future remains unpredictable, as does the realization of any of these possibilities. However, projects such as this remind us that the final frontier for humans is truly outer space, and only our imagination will determine where the frontier stops. We can dream of visiting other planetary systems and perhaps even galaxies, but we must begin closer, and considering the scope of our known universe, Europa and Titan are very close indeed.

  15. The applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.

    1990-01-01

    A review of the applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research during the past four decades is presented with an emphasis on chemical equilibrium models and thermochemical kinetics. Several current problems in planetary atmospheres research such as the origin of the atmospheres of the terrestrial planets, atmosphere-surface interactions on Venus and Mars, deep mixing in the atmospheres of the gas giant planets, and the origin of the atmospheres of outer planet satellites all require laboratory data on the kinetics of thermochemical reactions for their solution.

  16. Organic materials in planetary and protoplanetary systems: nature or nurture?

    NASA Astrophysics Data System (ADS)

    Dalle Ore, C. M.; Fulchignoni, M.; Cruikshank, D. P.; Barucci, M. A.; Brunetto, R.; Campins, H.; de Bergh, C.; Debes, J. H.; Dotto, E.; Emery, J. P.; Grundy, W. M.; Jones, A. P.; Mennella, V.; Orthous-Daunay, F. R.; Owen, T.; Pascucci, I.; Pendleton, Y. J.; Pinilla-Alonso, N.; Quirico, E.; Strazzulla, G.

    2011-09-01

    Aims: The objective of this work is to summarize the discussion of a workshop aimed at investigating the properties, origins, and evolution of the materials that are responsible for the red coloration of the small objects in the outer parts of the solar system. Because of limitations or inconsistencies in the observations and, until recently, the limited availability of laboratory data, there are still many questions on the subject. Our goal is to approach two of the main questions in a systematic way: - Is coloring an original signature of materials that are presolar in origin ("nature") or stems from post-formational chemical alteration, or weathering ("nurture")? - What is the chemical signature of the material that causes spectra to be sloped towards the red in the visible? We examine evidence available both from the laboratory and from observations sampling different parts of the solar system and circumstellar regions (disks). Methods: We present a compilation of brief summaries gathered during the workshop and describe the evidence towards a primordial vs. evolutionary origin for the material that reddens the small objects in the outer parts of our, as well as in other, planetary systems. We proceed by first summarizing laboratory results followed by observational data collected at various distances from the Sun. Results: While laboratory experiments show clear evidence of irradiation effects, particularly from ion bombardment, the first obstacle often resides in the ability to unequivocally identify the organic material in the observations. The lack of extended spectral data of good quality and resolution is at the base of this problem. Furthermore, that both mechanisms, weathering and presolar, act on the icy materials in a spectroscopically indistinguishable way makes our goal of defining the impact of each mechanism challenging. Conclusions: Through a review of some of the workshop presentations and discussions, encompassing laboratory experiments as well as observational data, we infer that both "nature" and "nurture" are instrumental in the coloration of small objects in the outer parts

  17. It's a Trap! A Review of MOMA and Other Ion Traps in Space or Under Development

    NASA Technical Reports Server (NTRS)

    Arevalo, R., Jr.; Brinckerhoff, W. B.; Mahaffy, P. R.; van Amerom, F. H. W.; Danell, R. M.; Pinnick, V. T.; Li, X.; Hovmand, L.; Getty, S. A.; Goesmann, F.; hide

    2014-01-01

    Since the Viking Program, quadrupole mass spectrometer (QMS) instruments have been used to explore a wide survey of planetary targets in our solar system, including (from the inner to outer reaches): Venus (Pioneer); our moon (LADEE); Mars (Viking, Phoenix, and Mars Science Laboratory); and, Saturns largest moon Titan (Cassini-Huygens). More recently, however, ion trap mass spectrometer (ITMS) instruments have found a niche as smaller, versatile alternatives to traditional quadrupole mass analyzers, capable of in situ characterization of planetary environments and the search for organic matter. For example, whereas typical QMS systems are limited to a mass range up to 500 Da and normally require multiple RF frequencies and pressures of less than 10(exp -6) mbar for optimal operation, ITMS instruments commonly reach upwards of 1000 Da or more on a single RF frequency, and function in higher pressure environments up to 10(exp -3) mbar.

  18. Simplified Abrasion Test Methodology for Candidate EVA Glove Lay-Ups

    NASA Technical Reports Server (NTRS)

    Rabel, Emily; Aitchison, Lindsay

    2015-01-01

    During the Apollo Program, space suit outer-layer fabrics were badly abraded after performing just a few extravehicular activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots that penetrated the outer-layer fabric into the thermal protection layers after less than 8 hrs of surface operations. Current plans for the exploration planetary space suits require the space suits to support hundreds of hours of EVA on a lunar or Martian surface, creating a challenge for space suit designers to utilize materials advances made over the last 40 years and improve on the space suit fabrics used in the Apollo Program. Over the past 25 years the NASA Johnson Space Center Crew and Thermal Systems Division has focused on tumble testing as means of simulating wear on the outer layer of the space suit fabric. Most recently, in 2009, testing was performed on 4 different candidate outer layers to gather baseline data for future use in design of planetary space suit outer layers. In support of the High Performance EVA Glove Element of the Next Generation Life Support Project, testing a new configuration was recently attempted in which require 10% of the fabric per replicate of that need in 2009. The smaller fabric samples allowed for reduced per sample cost and flexibility to test small samples from manufacturers without the overhead to have a production run completed. Data collected from this iteration was compared to that taken in 2009 to validate the new test method. In addition the method also evaluated the fabrics and fabric layups used in a prototype thermal micrometeoroid garment (TMG) developed for EVA gloves under the NASA High Performance EVA Glove Project. This paper provides a review of previous abrasion studies on space suit fabrics, details methodologies used for abrasion testing in this particular study, results of the validation study, and results of the TMG testing.

  19. The final fate of planetary systems

    NASA Astrophysics Data System (ADS)

    Gaensicke, Boris

    2015-12-01

    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly contaminated white dwarfs. The derived bulk abundances unambiguously demonstrate the predominantly rocky nature of the accreted material, with two exceptions where we detect volatile-rich debris. The relative abundance ratios suggest a wide range of parent bodies, including both primitive asteroids and fragments from differentiated planetesimals. The growing number of detailed debris abundances can provide important observational constraints on planet formation models.

  20. Ethical Considerations for Planetary Protection in Space Exploration: A Workshop

    PubMed Central

    Rummel, J.D.; Horneck, G.

    2012-01-01

    Abstract With the recognition of an increasing potential for discovery of extraterrestrial life, a diverse set of researchers have noted a need to examine the foundational ethical principles that should frame our collective space activities as we explore outer space. A COSPAR Workshop on Ethical Considerations for Planetary Protection in Space Exploration was convened at Princeton University on June 8–10, 2010, to examine whether planetary protection measures and practices should be extended to protect planetary environments within an ethical framework that goes beyond “science protection” per se. The workshop had been in development prior to a 2006 NRC report on preventing the forward contamination of Mars, although it responded directly to one of the recommendations of that report and to several peer-reviewed papers as well. The workshop focused on the implications and responsibilities engendered when exploring outer space while avoiding harmful impacts on planetary bodies. Over 3 days, workshop participants developed a set of recommendations addressing the need for a revised policy framework to address “harmful contamination” beyond biological contamination, noting that it is important to maintain the current COSPAR planetary protection policy for scientific exploration and activities. The attendees agreed that there is need for further study of the ethical considerations used on Earth and the examination of management options and governmental mechanisms useful for establishing an environmental stewardship framework that incorporates both scientific input and enforcement. Scientists need to undertake public dialogue to communicate widely about these future policy deliberations and to ensure public involvement in decision making. A number of incremental steps have been taken since the workshop to implement some of these recommendations. Key Words: Planetary protection—Extraterrestrial life—Life in extreme environments—Environment—Habitability. Astrobiology 12, 1017–1023. PMID:23095097

  1. PVOL: The Planetary Virtual Observatory & Laboratory. An online database of the Outer Planets images.

    NASA Astrophysics Data System (ADS)

    Morgado, A.; Sánchez-Lavega, A.; Rojas, J. F.; Hueso, R.

    2005-08-01

    The collaboration between amateurs astronomers and the professional community has been fruitful on many areas of astronomy. The development of the Internet has allowed a better than ever capability of sharing information worldwide and access to other observers data. For many years now the International Jupiter Watch (IJW) Atmospheric discipline has coordinated observational efforts for long-term studies of the atmosphere of Jupiter. The International Outer Planets Watch (IOPW) has extended its labours to the four Outer Planets. Here we present the Planetary Virtual Observatory & Laboratory (PVOL), a website database where we integer IJW and IOPW images. At PVOL observers can submit their data and professionals can search for images under a wide variety of useful criteria such as date and time, filters used, observer, or central meridian longitude. PVOL is aimed to grow as an organized easy to use database of amateur images of the Outer Planets. The PVOL web address is located at http://www.pvol.ehu.es/ and coexists with the traditional IOPW site: http://www.ehu.es/iopw/ Acknowledgements: This work has been funded by Spanish MCYT PNAYA2003-03216, fondos FEDER and Grupos UPV 15946/2004. R. Hueso acknowledges a post-doc fellowship from Gobierno Vasco.

  2. Rotational Splittings of Acoustic Modes in an Experimental Model of a Planetary Core

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Stone, D.; Lathrop, D. P.

    2014-12-01

    Planetary zonal flows can be probed in principle using the tools of helioseismology. We explore this technique using laboratory experiments where the measurement of zonal flows is also of geophysical relevance. The experiments are carried out in a device with a geometry similar to that of Earth's core. It consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter inner sphere. Air between the inner sphere and outer shell is used as the working fluid. A turbulent shear flow is driven in the air by independently rotating the inner sphere and outer shell. Acoustic modes are excited in the vessel with a speaker, and microphones are used to measure the rotational splittings of these modes. The radial profile of azimuthal velocities is inferred from these splittings, in an approach analogous to that used in helioseismology to determine solar velocity profiles. By varying the inner and outer rotation rates, different turbulent states can be investigated. Comparison is made to previous experimental investigations of turbulent spherical Couette flow. These experiments also serve as a test of this diagnostic, which may be used in the future in liquid sodium experiments, providing information on zonal flows in hydromagnetic experiments.

  3. Planetary quarantine

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Those areas of future missions which will be impacted by planetary quarantine (PQ) constraints were identified. The specific objectives for this reporting period were (1) to perform an analysis of the effects of PQ on an outer planet atmospheric probe, and (2) to prepare a quantitative illustration of spacecraft microbial reduction resulting from exposure to space environments. The Jupiter Orbiter Probe mission was used as a model for both of these efforts.

  4. OAST Space Theme Workshop. Volume 2: Theme summary. 4: Solar system exploration (no. 10). A: Statement of theme: B. 26 April 1976 Presentation. C. Summary. D. Initiative actions (form 5)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Major strategies for exploring the solar system focus on the return of information and the return of matter. Both the planetary exploration facility, and an orbiting automated space station, and the sample return and exploration facility have similar requirements. The single most essential need to enable intensive study of the outer solar system is nuclear propulsion and power capability. New initiatives in 1978 related to the reactor, data and sample acquisition and return, navigation, and environmental protection are examined.

  5. Search for water and life's building blocks in the Universe

    NASA Astrophysics Data System (ADS)

    Kwok, Sun; Bergin, Edwin; Ehrenfreund, Pascale

    Water is the common ground between astronomy and planetary science as the presence of water on a planet is universally accepted as essential for its potential habitability. Water assists many biological chemical reactions leading to complexity by acting as an effective solvent. It shapes the geology and climate on rocky planets, and is a major or primary constituent of the solid bodies of the outer solar system. Water ice seems universal in space and is by far the most abundant condensed-phase species in our universe. Water-rich icy layers cover dust particles within the cold regions of the interstellar medium and molecular ices are widespread in the solar system. The poles of terrestrial planets (e.g. Earth, Mars) and most of the outer-solar-system satellites are covered with ice. Smaller solar system bodies, such as comets and Kuiper Belt Objects (KBOs), contain a significant fraction of water ice and trace amounts of organics. Beneath the ice crust of several moons of Jupiter and Saturn liquid water oceans probably exist.

  6. Ethical considerations for planetary protection in space exploration: a workshop.

    PubMed

    Rummel, J D; Race, M S; Horneck, G

    2012-11-01

    With the recognition of an increasing potential for discovery of extraterrestrial life, a diverse set of researchers have noted a need to examine the foundational ethical principles that should frame our collective space activities as we explore outer space. A COSPAR Workshop on Ethical Considerations for Planetary Protection in Space Exploration was convened at Princeton University on June 8-10, 2010, to examine whether planetary protection measures and practices should be extended to protect planetary environments within an ethical framework that goes beyond "science protection" per se. The workshop had been in development prior to a 2006 NRC report on preventing the forward contamination of Mars, although it responded directly to one of the recommendations of that report and to several peer-reviewed papers as well. The workshop focused on the implications and responsibilities engendered when exploring outer space while avoiding harmful impacts on planetary bodies. Over 3 days, workshop participants developed a set of recommendations addressing the need for a revised policy framework to address "harmful contamination" beyond biological contamination, noting that it is important to maintain the current COSPAR planetary protection policy for scientific exploration and activities. The attendees agreed that there is need for further study of the ethical considerations used on Earth and the examination of management options and governmental mechanisms useful for establishing an environmental stewardship framework that incorporates both scientific input and enforcement. Scientists need to undertake public dialogue to communicate widely about these future policy deliberations and to ensure public involvement in decision making. A number of incremental steps have been taken since the workshop to implement some of these recommendations.

  7. The Role of Spectroscopy in Research on the Neutral Atmospheres of the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Orton, Glenn S.

    2013-06-01

    Remote-sensing observations of Jupiter, Saturn, Uranus and Neptune, as well as Titan - Saturn's largest satellite, and the spectroscopic information required to interpret these observations play a pivotal role in the exploration of the atmospheres of the outer solar system. We rely on well-mixed constituents to derive temperatures unambiguously, with only the collision-induced absorption and quadrupole transitions of H_2 and CH_4 in Jupiter and Saturn fulfilling that role. Condensate and chemically disequilibrated molecules (e.g. NH_3 and PH_3) act as indirect tracers that inform us of the strength of vertical winds. Higher-order hydrocarbons are present in all these atmospheres and their abundances and distribution acts as a tracer for stratospheric circulation and chemistry. The platforms on which planetary spectroscopy is done include a variety of ground-based facilities that observe the planets from the visible through radio regions. Airborne facilities, such as NASA's SOFIA, together with Earth-proximal facilities in space, allow both increased sensitivity and wider spectral access. Spectrometers on interplanetary missions have allowed us to examine the spatial and temporal variability of atmospheric properties that are not possible from the Earth. Several needs and challenges remain, and a constant dialog between those in the planetary exploration community and laboratory spectroscopists and theorists has been and will continue to be an important component of progress in atmospheric research. -

  8. United theory of planet formation (i): Tandem regime

    NASA Astrophysics Data System (ADS)

    Ebisuzaki, Toshikazu; Imaeda, Yusuke

    2017-07-01

    The present paper is the first one of a series of papers that present the new united theory of planet formation, which includes magneto-rotational instability and porous aggregation of solid particles in an consistent way. We here describe the ;tandem; planet formation regime, in which a solar system like planetary systems are likely to be produced. We have obtained a steady-state, 1-D model of the accretion disk of a protostar taking into account the magneto-rotational instability (MRI) and and porous aggregation of solid particles. We find that the disk is divided into an outer turbulent region (OTR), a MRI suppressed region (MSR), and an inner turbulent region (ITR). The outer turbulent region is fully turbulent because of MRI. However, in the range, rout(= 8 - 60 AU) from the central star, MRI is suppressed around the midplane of the gas disk and a quiet area without turbulence appears, because the degree of ionization of gas becomes low enough. The disk becomes fully turbulent again in the range rin(= 0.2 - 1 AU), which is called the inner turbulent region, because the midplane temperature become high enough (>1000 K) due to gravitational energy release. Planetesimals are formed through gravitational instability at the outer and inner MRI fronts (the boundaries between the MRI suppressed region (MSR) and the outer and inner turbuent regions) without particle enhancement in the original nebula composition, because of the radial concentration of the solid particles. At the outer MRI front, icy particles grow through low-velocity collisions into porous aggregates with low densities (down to ∼10-5 gcm-3). They eventually undergo gravitational instability to form icy planetesimals. On the other hand, rocky particles accumulate at the inner MRI front, since their drift velocities turn outward due to the local maximum in gas pressure. They undergo gravitational instability in a sub-disk of pebbles to form rocky planetesimals at the inner MRI front. They are likely to be volatile-free because of the high temperature (>1000 K) at this formation site. Such water-free rocky particles may explain the formation of enstatite chondrites, of which the Earth is likely to be primarily composed of. It is also consistent with the model in which the Earth was initially formed as a completely volatile-free planet. The water and other volatile elements came later through the accretion of icy particles by the occasional scatterings in the outer regions. Our new proposed tandem planet formation regime shows that planetesimals are formed at two distinct sites (outer and inner edges of the MRI suppressed region). The former is likely to be the source of outer gas giants and the latter inner rocky planets. The tandem regime also explains the gap in the distribution of solid components (2-4 AU), which is necessary to form a ;solar-system-like; planetary system, which has a relatively small Mars and a very small mass in the main asteroid belt. We found that this tandem regime dose not take place when the vertical magnetic field of the disk five times weaker compared with that we assumed in the present paper, since the outer MRI front shift outward beyond 100 AU. This suggests that yet other regimes exists in our united theory. It may explain the variation observed in exsoplanetary systems by variations in magnetic field and probably angular momentum of the parent molecular cloud.

  9. Automatic control in planetary exploration in the 1980s. [onboard spacecraft

    NASA Technical Reports Server (NTRS)

    Moore, J. W.

    1973-01-01

    Based on an examination of the planetary missions in the 1980s and their related objectives, a broad assessment of the automatic control capabilities required for these missions is presented. The ten outer-planet, terrestrial-planet, and small-body missions considered involve various operations encompassing a complex series of modes including cruise, maneuver, and powered flight control. In addition to routine navigation and attitude control, onboard control is required to point scientific instruments and antennas with respect to the vehicle and to maneuver the spacecraft in time-constrained or hazardous environments. These 1980 missions aimed at exploring new areas of the solar system will be more demanding. New design philosophies and increased performance capabilities will be required to meet the constraints imposed by science requirements and mission-cost effectiveness.

  10. Surface materials on unusual planetary object Chiron

    NASA Technical Reports Server (NTRS)

    Hartmann, W. K.; Cruikshank, D. P.; Degewij, J.; Capps, R. W.

    1981-01-01

    JHK near-infrared colorimetry of the surface of the planetary object 2060 Chiron has yielded colors consistent with those of outer solar system asteroids, which have: (1) albedos of only a few percent, (2) C-, RD-, or DM-type spectra, and (3) no known H2O ice absorption features. The colors are also in keeping with theoretical colors for certain size distributions of dirty ice grains. Along with VJHK colorimetric data, results suggest that the spectrally dominant surface is probably dark, carbonaceous-like silicate dust with a possible, microscale admixture of ice grains. It is concluded that, if Chiron has the low albedo common to such materials on known interplanetary bodies, its diameter may lie in the 310-400 km range and therefore place it among the eight largest asteroids.

  11. It Takes a Village. Collaborative Outer Planet Missions

    NASA Technical Reports Server (NTRS)

    Rymer, A. M.; Turtle, E. P.; Hofstadter, M. D.; Simon, A. A.; Hospodarsky, G. B.

    2017-01-01

    A mission to one or both of our local Ice Giants (Uranus and Neptune) emerged as a high priority in the most recent Planetary Science Decadal Survey and was also specifically mentioned supportively in the Heliophysics Decadal Survey. In 2016, NASA convened a science definition team to study ice giant mission concepts in more detail. Uranus and Neptune represent the last remaining planetary type in our Solar System to have a dedicated orbiting mission. The case for a Uranus mission has been made eloquently in the Decadal Surveys. Here we summarize some of the major drivers that lead to enthusiastic support for an Ice Giant mission in general, and use the example of a Uranus Mission concept to illustrate opportunities such a mission might provide for cross-division collaboration and cost-sharing.

  12. Science goals and mission concept for the future exploration of Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Tobie, G.; Teanby, N. A.; Coustenis, A.; Jaumann, R.; Raulin, F.; Schmidt, J.; Carrasco, N.; Coates, A. J.; Cordier, D.; De Kok, R.; Geppert, W. D.; Lebreton, J.-P.; Lefevre, A.; Livengood, T. A.; Mandt, K. E.; Mitri, G.; Nimmo, F.; Nixon, C. A.; Norman, L.; Pappalardo, R. T.; Postberg, F.; Rodriguez, S.; Schulze-Makuch, D.; Soderblom, J. M.; Solomonidou, A.; Stephan, K.; Stofan, E. R.; Turtle, E. P.; Wagner, R. J.; West, R. A.; Westlake, J. H.

    2014-12-01

    Saturn's moons, Titan and Enceladus, are two of the Solar System's most enigmatic bodies and are prime targets for future space exploration. Titan provides an analogue for many processes relevant to the Earth, more generally to outer Solar System bodies, and a growing host of newly discovered icy exoplanets. Processes represented include atmospheric dynamics, complex organic chemistry, meteorological cycles (with methane as a working fluid), astrobiology, surface liquids and lakes, geology, fluvial and aeolian erosion, and interactions with an external plasma environment. In addition, exploring Enceladus over multiple targeted flybys will give us a unique opportunity to further study the most active icy moon in our Solar System as revealed by Cassini and to analyse in situ its active plume with highly capable instrumentation addressing its complex chemistry and dynamics. Enceladus' plume likely represents the most accessible samples from an extra-terrestrial liquid water environment in the Solar system, which has far reaching implications for many areas of planetary and biological science. Titan with its massive atmosphere and Enceladus with its active plume are prime planetary objects in the Outer Solar System to perform in situ investigations. In the present paper, we describe the science goals and key measurements to be performed by a future exploration mission involving a Saturn-Titan orbiter and a Titan balloon, which was proposed to ESA in response to the call for definition of the science themes of the next Large-class mission in 2013. The mission scenario is built around three complementary science goals: (A) Titan as an Earth-like system; (B) Enceladus as an active cryovolcanic moon; and (C) Chemistry of Titan and Enceladus - clues for the origin of life. The proposed measurements would provide a step change in our understanding of planetary processes and evolution, with many orders of magnitude improvement in temporal, spatial, and chemical resolution over that which is possible with Cassini-Huygens. This mission concept builds upon the successes of Cassini-Huygens and takes advantage of previous mission heritage in both remote sensing and in situ measurement technologies.

  13. Secular Resonances During Main-Sequence and Post-Main-Sequence Planetary System Dynamics

    NASA Astrophysics Data System (ADS)

    Smallwood, Jeremy L.

    We investigate gravitational perturbations of an asteroid belt by secular resonances. We ap- ply analytic and numerical models to main-sequence and post-main-sequence planetary systems. First, we investigate how the asteroid impact rate on the Earth is affected by the architecture of the planetary system. We find that the nu6 resonance plays an important role in the asteroid collision rate with the Earth. Compared to exoplanetary systems, the solar system is somewhat special in its lack of a super-Earth mass planet in the inner solar system. We therefore consider the effects of the presence of a super-Earth in the terrestrial planet region. We find a significant effect for super-Earths with a mass of around 10 M_{Earth} and a separation greater than about 0.7 AU. These results have implications for the habitability of exoplanetary systems. Secondly, we model white dwarf pollution by asteroids from secular resonances. In the past few decades, observations have revealed signatures of metals polluting the atmospheres of white dwarfs that require a continu- ous accretion of asteroids. We show that secular resonances driven by two outer companions can provide a source of pollution if an inner terrestrial planet is engulfed during the red-giant branch phase. Secular resonances may be a viable mechanism for the pollution of white dwarfs in a variety of exoplanetary system architectures including systems with two giant planets and systems with one giant planet and a binary star companion.

  14. Advanced Solar Cell and Array Technology for NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; Benson, Scott; Scheiman, David; Finacannon, Homer; Oleson, Steve; Landis, Geoffrey

    2008-01-01

    A recent study by the NASA Glenn Research Center assessed the feasibility of using photovoltaics (PV) to power spacecraft for outer planetary, deep space missions. While the majority of spacecraft have relied on photovoltaics for primary power, the drastic reduction in solar intensity as the spacecraft moves farther from the sun has either limited the power available (severely curtailing scientific operations) or necessitated the use of nuclear systems. A desire by NASA and the scientific community to explore various bodies in the outer solar system and conduct "long-term" operations using using smaller, "lower-cost" spacecraft has renewed interest in exploring the feasibility of using photovoltaics for to Jupiter, Saturn and beyond. With recent advances in solar cell performance and continuing development in lightweight, high power solar array technology, the study determined that photovoltaics is indeed a viable option for many of these missions.

  15. Asteroids as Propulsion Systems of Space Ships

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander

    2003-01-01

    Currently, rockets are used to change the trajectory of space ships and probes. This method is very expensive and requires a lot of fuel, which limits the feasibility of space stations, interplanetary space ships, and probes. Sometimes space probes use the gravity field of a planet However, there am only nine planets in the Solar System, all separated by great distances. There are tons of millions of asteroids in outer space. This paper offers a revolutionary method for changing the trajectory of space probes. The method uses the kinetic or rotary energy of asteroids, comet nuclei, meteorites or other space bodies (small planets, natural planetary satellites, space debris, etc.) to increase (to decrease) ship (probe) speed up to 1000 m/sec (or more) and to achieve any new direction in outer space. The flight possibilities of space ships and probes are increased by a factor of millions.

  16. Laboratory Spectroscopy of Planetary Ices in the VUV and THz Spectral Regions

    NASA Technical Reports Server (NTRS)

    Gerakines, P.; Hilton, D.; Sangala, B.

    2010-01-01

    I will describe efforts to study the spectroscopy of condenser) films at low temperature (10-150 K) in both the far-infrared/THz (30-3000 microns) and vacuum-ultraviolet (VUV, 100-200 nm.) ranges of the electromagnetic spectrum. In each of these wavelength ranges, there is a general lack of laboratory data for ices relevant to astrophysical environments such as the outer Solar System. These studies are focused on mixtures of candidate species applicable to planets and satellites in the outer solar system, such as those dominated by H2O or N2 with other important species such as CO2, CH4, and NH3. We will discuss our results in relation to analyses of VUV data sets from the UVIS instrument on Cassini, far-infrared data from missions such as Herschel and SOFIA, as well as sub-mm observatories such as ALMA.

  17. The Space Launch System and Missions to the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Klaus, Kurt K.; Post, Kevin

    2015-11-01

    Introduction: America’s heavy lift launch vehicle, the Space Launch System, enables a variety of planetary science missions. The SLS can be used for most, if not all, of the National Research Council’s Planetary Science Decadal Survey missions to the outer planets. The SLS performance enables larger payloads and faster travel times with reduced operational complexity.Europa Clipper: Our analysis shows that a launch on the SLS would shorten the Clipper mission travel time by more than four years over earlier mission concept studies.Jupiter Trojan Tour and Rendezvous: Our mission concept replaces Advanced Stirling Radioisotope Generators (ASRGs) in the original design with solar arrays. The SLS capability offers many more target opportunities.Comet Surface Sample Return: Although in our mission concept, the SLS launches later than the NRC mission study (November 2022 instead of the original launch date of January 2021), it reduces the total mission time, including sample return, by two years.Saturn Apmospheric Entry Probe: Though Saturn arrivial time remains the same in our concept as the arrival date in the NRC study (2034), launching on the SLS shortens the mission travel time by three years with a direct ballistic trajectory.Uranus Orbiter with Probes: The SLS shortens travel time for an Uranus mission by four years with a Jupiter swing-by trajectory. It removes the need for a solar electric propulsion (SEP) stage used in the NRC mission concept study.Other SLS Science Mission Candidates: Two other mission concepts we are investigating that may be of interest to this community are the Advanced Technology Large Aperature Space Telescope (ATLAST) and the Interstellar Explorer also referred to as the Interstellar Probe.Summary: The first launch of the SLS is scheduled for 2018 followed by the first human launch in 2021. The SLS in its evolving configurations will enable a broad range of exploration missions which will serve to recapture the enthusiasm and commitment that permeated the planetary exploration community during the early years of robotic exploration.

  18. Bioburden release of Ariane 5 Fairing Acoustic Protection Panels

    NASA Astrophysics Data System (ADS)

    Stieglmeier, Michaela; Rohr, Thomas; Schmeitzky, Olivier; Rumler, Peter; Kminek, Gerhard

    The ESA-NASA ExoMars mission will be subject to strict Planetary Protection constrictions. The original ExoMars mission concept was based on an Ariane 5 launch system. Like all launch systems, the Ariane 5 fairing is lined with acoustic protection panels. These panels consist of an outer polyester/cotton fabric and an inner open celled foam. During launch the panels will be exposed to vibrations and a decrease in pressure. A release of possible external and/ or embedded microbes would cause a contamination of the satellite. Planetary Protection requirements for ExoMars imply the determination of the bioburden release from the Ariane 5 Fairing Acoustic Protection Panels (FAP-panels). Thus a study at ESTEC was performed comparing the bioburden release of a sterilized and non-sterilized panel by simulating a launch environment. Panels were mounted in test jigs above a sterile ground plate. Sterile stainless steel witness plates for the determination of bioburden release were mounted on the latter. The launch environment was simulated in two different tests. In a vacuum chamber the panels were exposed to a depressurization event. For the simulation of the vibrations the jigs were mounted in the Large European Acoustic Facility (LEAF) at ESTEC. After each test witness plates were demounted under sterile conditions and analyzed for microbial growth by incubating them in agar. Furthermore pieces of the outer fabric as well as the inner foam were taken and examined for embedded microbes. In total the amount of embedded microbes was very low and there was no significant difference between the sterilized and non-sterilized panel concerning the released bioburden. Thus sterilization of the Ariane 5 FAP-panels seems not necessary to comply with Planetary Protection constraints. Although the ExoMars project will use a different launch system in the new mission concept, the data acquired during these tests can be used for future scientific satellites launched with Ariane 5.

  19. Two methods for modeling vibrations of planetary gearboxes including faults: Comparison and validation

    NASA Astrophysics Data System (ADS)

    Parra, J.; Vicuña, Cristián Molina

    2017-08-01

    Planetary gearboxes are important components of many industrial applications. Vibration analysis can increase their lifetime and prevent expensive repair and safety concerns. However, an effective analysis is only possible if the vibration features of planetary gearboxes are properly understood. In this paper, models are used to study the frequency content of planetary gearbox vibrations under non-fault and different fault conditions. Two different models are considered: phenomenological model, which is an analytical-mathematical formulation based on observation, and lumped-parameter model, which is based on the solution of the equations of motion of the system. Results of both models are not directly comparable, because the phenomenological model provides the vibration on a fixed radial direction, such as the measurements of the vibration sensor mounted on the outer part of the ring gear. On the other hand, the lumped-parameter model provides the vibrations on the basis of a rotating reference frame fixed to the carrier. To overcome this situation, a function to decompose the lumped-parameter model solutions to a fixed reference frame is presented. Finally, comparisons of results from both model perspectives and experimental measurements are presented.

  20. Where Do Messy Planetary Nebulae Come From?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    If you examined images of planetary nebulae, you would find that many of them have an appearance that is too messy to be accounted for in the standard model of how planetary nebulae form. So what causes these structures?Examples of planetary nebulae that have a low probability of having beenshaped by a triple stellar system. They are mostly symmetric, with only slight departures (labeled) that can be explained by instabilities, interactions with the interstellar medium, etc. [Bear and Soker 2017]A Range of LooksAt the end of a stars lifetime, in the red-giant phase, strong stellar winds can expel the outer layers of the star. The hot, luminous core then radiates in ultraviolet, ionizing the gas of the ejected stellar layers and causing them to shine as a brightly colored planetary nebula for a few tens of thousands of years.Planetary nebulae come in a wide variety of morphologies. Some are approximately spherical, but others can be elliptical, bipolar, quadrupolar, or even more complex.Its been suggested that non-spherical planetary nebulae might be shaped by the presence of a second star in a binary system with the source of the nebula but even this scenario should still produce a structure with axial or mirror symmetry.A pair of scientists from Technion Israel Institute of Technology, Ealeal Bear and Noam Soker, argue that planetary nebulae with especially messy morphologies those without clear axial or point symmetries may have been shaped by an interacting triple stellar system instead.Examples of planetary nebulae that might have been shaped by a triple stellar system. They have some deviations from symmetry but also show signs of interacting with the interstellar medium. [Bear and Soker 2017]Departures from SymmetryTo examine this possibility more closely, Bear and Soker look at a sample of thousands planetary nebulae and qualitatively classify each of them into one of four categories, based on the degree to which they show signs of having been shaped by a triple stellar progenitor. The primary signs the authors look for are:SymmetriesIf a planetary nebula has a strong axisymmetric or point-symmetric structure (i.e., its bipolar, elliptical, spherical, etc.), it was likely not shaped by a triple progenitor. If clear symmetries are missing, however, or if there is a departure from symmetry in specific regions, the morphology of the planetary nebula may have been shaped by the presence of stars in a close triple system.Interaction with the interstellar mediumSome asymmetries, especially local ones, can be explained by interaction of the planetary nebula with the interstellar medium. The authors look for signs of such an interaction, which decreases the likelihood that a triple stellar system need be involved to produce the morphology we observe.Examples of planetary nebulae that are extremely likely to have been shaped by a triple stellar system. They have strong departures from symmetry and dont show signs of interacting with the interstellar medium. [Bear and Soker 2017]Influential TriosFrom the images in two planetary nebulae catalogs the Planetary Nebula Image Catelog and the HASH catalog Bear and Soker find that 275 and 372 planetary nebulae are categorizable, respectively. By assigning crude probabilities to their categories, the authors estimate that the total fraction of planetary nebulae shaped by three stars in a close system is around 1321%.The authors argue that in some cases, all three stars might survive. This means that we may be able to find direct evidence of these triple stellar systems lying in the hearts of especially messy planetary nebulae.CitationEaleal Bear and Noam Soker 2017 ApJL 837 L10. doi:10.3847/2041-8213/aa611c

  1. Planetary Nomenclature: An Overview and Update for 2017

    NASA Astrophysics Data System (ADS)

    Gaither, Tenielle; Hayward, Rose; IAU Working GroupPlanetary System Nomenclature

    2017-10-01

    The task of naming planetary surface features, rings, and natural satellites is managed by the International Astronomical Union’s (IAU) Working Group for Planetary System Nomenclature (WGPSN). There are currently 15,361 IAU-approved surface feature names on 41 planetary bodies, including moons and asteroids. The members of the WGPSN and its task groups have worked since the early 1970s to provide a clear, unambiguous system of planetary nomenclature that represents cultures and countries from all regions of Earth. WGPSN members include Rita Schulz (Chair) and 9 other members representing countries around the globe. The participation of knowledgeable scientists and experts in this process is vital to its success of the IAU WGPSN . Planetary nomenclature is a tool used to uniquely identify features on the surfaces of planets or satellites so they can be located, described, and discussed in publications, including peer-review journals, maps and conference presentations. Approved names are listed in the Transactions of the IAU and on the Gazetteer of Planetary Nomenclature website. Any names currently in use that are not listed the Gazetteer are not official. Planetary names must adhere to rules and conventions established by the IAU WGPSN (see http://planetarynames.wr.usgs.gov/Page/Rules for the complete list). The gazetteer includes an online Name Request Form (http://planetarynames.wr.usgs.gov/FeatureNameRequest) that can be used by members of the professional science community. Name requests are first reviewed by one of six task groups (Mercury, Venus, Moon, Mars, Outer Solar System, and Small Bodies). After a task group has reviewed a proposal, it is submitted to the WGPSN. Allow four to six weeks for the review and approval process. Upon WGPSN approval, names are considered formally approved and it is then appropriate to use them in publications. Approved names are immediately entered into the database and shown on the website. Questions about the nomenclature database and the naming process can be sent to Rosalyn Hayward, USGS Astrogeology Science Center, 2255 N. Gemini Dr., Flagstaff, AZ 86001, or by email to rhayward@usgs.gov.

  2. A Multifunctional Hot Structure Heatshield Concept for Planetary Entry

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.; Daryabeigi, Kamran; Samareh, Jamshid A.; Wagner, Robert; Waters, Allen

    2015-01-01

    A multifunctional hot structure heatshield concept is being developed to provide technology enhancements with significant benefits compared to the current state-of-the-art heatshield technology. These benefits can potentially enable future planetary missions. The concept is unique in integrating the function of the thermal protection system with the primary load carrying structural component. An advanced carbon-carbon material system has been evaluated for the load carrying structure, which will be utilized on the outer surface of the heatshield, and thus will operate as a hot structure exposed to the severe aerodynamic heating associated with planetary entry. Flexible, highly efficient blanket insulation is sized for use underneath the hot structure to maintain required operational internal temperatures. The approach followed includes developing preliminary designs to demonstrate feasibility of the concept and benefits over a traditional, baseline design. Where prior work focused on a concept for an Earth entry vehicle, the current efforts presented here are focused on developing a generic heatshield model and performing a trade study for a Mars entry application. This trade study includes both structural and thermal evaluation. The results indicate that a hot structure concept is a feasible alternative to traditional heatshields and may offer advantages that can enable future entry missions.

  3. The origin of Halley-type comets: probing the inner Oort cloud

    NASA Astrophysics Data System (ADS)

    Levison, H.; Dones, L.; Duncan, M.

    2000-10-01

    We have integrated the orbits of 27,700 test particles initially entering the planetary system from the Oort cloud in order to study the origin of Halley-type comets (HTCs). We included the gravitational influence of the Sun, giant planets, passing stars, and galactic tides. We find that an isotropically distributed Oort cloud does not reproduce the observed orbital element distribution of the HTCs. In order to match the observations, the initial inclination distribution of the progenitors of the HTCs must be similar to the observed HTC inclination distribution. We can match the observations with an Oort cloud that consists of an isotropic outer cloud and a disk-like massive inner cloud. These idealized two-component models have inner disks with median inclinations that range from 10 to 50o. This analysis represents the first link between observations and the structure of the inner Oort cloud. HFL and LD gratefully acknowledges grants provided by the NASA Origins of Solar Systems and Planetary Geology and Geophysics Programs. MJD is grateful for the continuing financial support of the Natural Science and Engineering Research Council of Canada and for financial support for work done inthe U.S.from NASA Planetary Geology and Geophysics Programs.

  4. Chaotic Excitation and Tidal Damping in the GJ 876 System

    NASA Astrophysics Data System (ADS)

    Puranam, Abhijit; Batygin, Konstantin

    2018-04-01

    The M-dwarf GJ 876 is the closest known star to harbor a multi-planetary system. With three outer planets locked in a chaotic Laplace-type resonance and an appreciably eccentric short-period super-Earth, this system represents a unique exposition of extrasolar planetary dynamics. A key question that concerns the long-term evolution of this system, and the fate of close-in planets in general, is how the significant eccentricity of the inner-most planet is maintained against tidal circularization on timescales comparable to the age of the universe. Here, we employ stochastic secular perturbation theory and N-body simulations to show that the orbit of the inner-most planet is shaped by a delicate balance between extrinsic chaotic forcing and tidal dissipation. As such, the planet’s orbital eccentricity represents an indirect measure of its tidal quality factor. Based on the system’s present-day architecture, we estimate that the extrasolar super-Earth GJ 876 d has a tidal Q ∼ 104–105, a value characteristic of solar system gas giants.

  5. Challenges to Computational Aerothermodynamic Simulation and Validation for Planetary Entry Vehicle Analysis

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, Bil

    2010-01-01

    Challenges to computational aerothermodynamic (CA) simulation and validation of hypersonic flow over planetary entry vehicles are discussed. Entry, descent, and landing (EDL) of high mass to Mars is a significant driver of new simulation requirements. These requirements include simulation of large deployable, flexible structures and interactions with reaction control system (RCS) and retro-thruster jets. Simulation of radiation and ablation coupled to the flow solver continues to be a high priority for planetary entry analyses, especially for return to Earth and outer planet missions. Three research areas addressing these challenges are emphasized. The first addresses the need to obtain accurate heating on unstructured tetrahedral grid systems to take advantage of flexibility in grid generation and grid adaptation. A multi-dimensional inviscid flux reconstruction algorithm is defined that is oriented with local flow topology as opposed to grid. The second addresses coupling of radiation and ablation to the hypersonic flow solver - flight- and ground-based data are used to provide limited validation of these multi-physics simulations. The third addresses the challenges of retro-propulsion simulation and the criticality of grid adaptation in this application. The evolution of CA to become a tool for innovation of EDL systems requires a successful resolution of these challenges.

  6. Essential elements of a framework for future space exploration and use: the role of science

    NASA Astrophysics Data System (ADS)

    Rummel, John; Ehrenfreund, Pascale

    The objective of the COSPAR Panel on Exploration (PEX) is to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. The Outer Space Treaty (OST) of 1967 provides (Article I) for “exploration and use of outer space” as well as an obligation for States to authorize and supervise space activities (Article VI) so “that national activities are carried out in conformity with the provisions set forth in the. . Treaty,” while the provisions of Article IX of the Treaty include pursuing “studies of outer space, including the Moon and other celestial bodies, and conduct[ing] exploration of them so as to avoid their harmful contamination." In short, the Treaty provides for many activities to take place in outer space, but it also leaves to the future the definitions of “harmful contamination,” “adverse changes,” and even “use.” In order to provide for both protection and use in outer space, and therefore to provide for both scientific and economic exploration, an extension of the OST (or its replacement) will be required. Whatever policy choices are made in constructing such a framework, it is clear that scientific understanding of the solar system, and each of its individual planetary bodies, will be required to determine the balance—and it may be a dynamic balance—between protection and use of outer space environments. This paper will consider the role of scientific advice and continuing research and education within such a framework, and as an essential complement to the necessary regulation distinguishing between protection and use of different locations in outer space.

  7. Outer planet atmospheric entry probes - An overview of technology readiness

    NASA Technical Reports Server (NTRS)

    Vojvodich, N. S.; Reynolds, R. T.; Grant, T. L.; Nachtsheim, P. R.

    1975-01-01

    Entry probe systems for characterizing, by in situ measurements, the atmospheric properties, chemical composition, and cloud structure of the planets Saturn, Uranus, and Jupiter are examined from the standpoint of unique mission requirements, associated subsystem performance, and degree of commonality of design. Past earth entry vehicles (PAET) and current planetary spacecraft (Pioneer Venus probes and Viking lander) are assessed to identify the extent of potential subsystem inheritance, as well as to establish the significant differences, in both form and function, relative to outer planet requirements. Recent research results are presented and reviewed for the most critical probe technology areas, including: science accommodation, telecommunication, and entry heating and thermal protection. Finally presented is a brief discussion of the use of decision analysis techniques for quantifying various probe heat-shield test alternatives and performance risk.

  8. Goldstone solar system radar

    NASA Technical Reports Server (NTRS)

    Jurgens, R. F.; Clark, P. E.; Goldstein, R. M.; Ostro, S. J.; Slade, M. A.; Thompson, T. W.; Saunders, R. S.

    1986-01-01

    Information is provided about physical nature planetary surfaces and their topography as well as dynamical properties such as orbits and spin states using ground based radar as a remote sensing tool. Accessible targets are the terrestrial planets: the Earth's Moon, Mercury, Venus and Mars, the outer planets rings and major moons, and many transient objects such as asteroids and comets. Data acquisition utilizes the unique facilities of the Goldstone Deep Space Network, occasionally the Arecibo radar, and proposed use of the VLA (very large array).

  9. High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability.

    PubMed

    Raymond, Sean N; Quinn, Thomas; Lunine, Jonathan I

    2007-02-01

    The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps 100 1,000-km "planetary embryos " and a swarm of billions of 1-10-km "planetesimals. " During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about 10 times more particles than in previous simulations. These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from the past 2.5 astronomical units; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets-such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a " hit or miss " way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects, such as planetary mass and location, and giant planet properties.

  10. Planetary quarantine: Space research and technology

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The impact of satisfying satellite quarantine constraints on current outer planet mission and spacecraft designs is considered. Tools required to perform trajectory and navigation analyses for determining satellite impact probabilities are developed.

  11. Jupiter: Cosmic Jekyll and Hyde.

    PubMed

    Grazier, Kevin R

    2016-01-01

    It has been widely reported that Jupiter has a profound role in shielding the terrestrial planets from comet impacts in the Solar System, and that a jovian planet is a requirement for the evolution of life on Earth. To evaluate whether jovians, in fact, shield habitable planets from impacts (a phenomenon often referred to as the "Jupiter as shield" concept), this study simulated the evolution of 10,000 particles in each of the jovian inter-planet gaps for the cases of full-mass and embryo planets for up to 100 My. The results of these simulations predict a number of phenomena that not only discount the "Jupiter as shield" concept, they also predict that in a Solar System like ours, large gas giants like Saturn and Jupiter had a different, and potentially even more important, role in the evolution of life on our planet by delivering the volatile-laden material required for the formation of life. The simulations illustrate that, although all particles occupied "non-life threatening" orbits at their onset of the simulations, a significant fraction of the 30,000 particles evolved into Earth-crossing orbits. A comparison of multiple runs with different planetary configurations revealed that Jupiter was responsible for the vast majority of the encounters that "kicked" outer planet material into the terrestrial planet region, and that Saturn assisted in the process far more than has previously been acknowledged. Jupiter also tends to "fix" the aphelion of planetesimals at its orbit irrespective of their initial starting zones, which has the effect of slowing their passages through the inner Solar System, and thus potentially improving the odds of accretion of cometary material by terrestrial planets. As expected, the simulations indicate that the full-mass planets perturb many objects into the deep outer Solar System, or eject them entirely; however, planetary embryos also did this with surprising efficiency. Finally, the simulations predict that Jupiter's capacity to shield or intercept Earth-bound comets originating in the outer Solar System is poor, and that the importance of jovian planets on the formation of life is not that they act as shields, but rather that they deliver life-enabling volatiles to the terrestrial planets.

  12. Comets and the origin of the solar system - Reading the Rosetta Stone

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.; Weissman, Paul R.; Stern, S. A.

    1993-01-01

    It is argued that, from the measured volatile abundances, comets formed at temperatures near or below about 60 K and possibly as low as about 25 K. Grains in Comet Halley were found to be of two types: silicates and organics. Isotopic evidence shows that Comet Halley formed from material with the same compositional mix as the rest of the solar system, and is consistent with comets having been a major contributor to the volatile reservoirs on the terrestrial planets. A variety of processes have been shown to modify and reprocess the outer layers of comets both during their long residence time in the Oort cloud and following their entry back into the planetary system. The most likely formation site for comets is in the Uranus-Neptune zone or just beyond, with dynamical ejection by the growing protoplanets to distant orbits to form the Oort cloud. A substantial flux of interstellar comets was likely created by the same process, and may be detectable if cometary formation is common in planetary systems around other stars.

  13. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1985-01-01

    In this photograph, engineers and technicians prepare the Hubble Space Telescope's (HST's) Wide Field and Planetary Camera (WF/PC) for installation at the Lockheed Missile and Space Company. The WF/PC is designed to investigate the age of the universe and to search for new planetary systems around young stars. It takes pictures of large numbers of galaxies and close-ups of planets in our solar system. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Ya-Wen; Dutrey, Anne; Guilloteau, Stéphane

    We aim to unveil the observational imprint of physical mechanisms that govern planetary formation in the young, multiple system GG Tau A. We present ALMA observations of {sup 12}CO and {sup 13}CO 3–2 and 0.9 mm continuum emission with 0.″35 resolution. The {sup 12}CO 3–2 emission, found within the cavity of the circumternary dust ring (at radius <180 au) where no {sup 13}CO emission is detected, confirms the presence of CO gas near the circumstellar disk of GG Tau Aa. The outer disk and the recently detected hot spot lying at the outer edge of the dust ring are mappedmore » both in {sup 12}CO and {sup 13}CO. The gas emission in the outer disk can be radially decomposed as a series of slightly overlapping Gaussian rings, suggesting the presence of unresolved gaps or dips. The dip closest to the disk center lies at a radius very close to the hot spot location at ∼250–260 au. The CO excitation conditions indicate that the outer disk remains in the shadow of the ring. The hot spot probably results from local heating processes. The two latter points reinforce the hypothesis that the hot spot is created by an embedded proto-planet shepherding the outer disk.« less

  15. Planetary quarantine, supporting research and technology

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The impact of satisfying satellite quarantine on current outer planet mission and spacecraft designs was determined and the tools required to perform trajectory and navigation analyses for determining satellite impact probabilities were developed.

  16. PLANETARY SYSTEM FORMATION IN THE PROTOPLANETARY DISK AROUND HL TAURI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akiyama, Eiji; Hasegawa, Yasuhiro; Hayashi, Masahiko

    2016-02-20

    We reprocess the Atacama Large Millimeter/Submillimeter Array (ALMA) long-baseline science verification data taken toward HL Tauri. Assuming the observed gaps are opened up by currently forming, unseen bodies, we estimate the mass of such hypothetical bodies based on the following two approaches: the Hill radius analysis and a more elaborate approach developed from the angular momentum transfer analysis in gas disks. For the former, the measured gap widths are used for estimating the mass of the bodies, while for the latter, the measured gap depths are utilized. We show that their masses are comparable to or less than the mass of Jovian planets.more » By evaluating Toomre’s gravitational instability (GI) condition and cooling effect, we find that the GI might be a mechanism to form the bodies in the outer region of the disk. As the disk might be gravitationally unstable only in the outer region of the disk, inward planetary migration would be needed to construct the current architecture of the observed disk. We estimate the gap-opening mass and show that type II migration might be able to play such a role. Combining GIs with inward migration, we conjecture that all of the observed gaps may be a consequence of bodies that might have originally formed at the outer part of the disk, and have subsequently migrated to the current locations. While ALMA’s unprecedented high spatial resolution observations can revolutionize our picture of planet formation, more dedicated observational and theoretical studies are needed to fully understand the HL Tauri images.« less

  17. Endogeneous sources: atmospheric organic syntheses, tholins and ground trust

    NASA Astrophysics Data System (ADS)

    Raulin, F.; Bernard, J.; Coll, P.; Nna Mvondo, D.; Ramirez, S.; Navarro-Gonzalez, R.

    From the many simulation experiments which have been carried out for the last 50 years on gas phase organic synthesis but also from several theoretical modeling works, it is clear today that in situ production of organic molecules in planetary atmosphere is efficient only if the starting atmosphere is chemically reduced. In that case many simple organics can be produced like formaldehyde, (HCHO), hydrogen cyanide (HCN), cyanoacetylene (HC3N) and other nitriles, but also more complex refractory organics - usually named "tholins" - are obtained. Those tholins are still of very poorly known composition, but are of great exobiological interest since they are the precursors of many compounds of biological interest, in particular amino acids, purines and pyrimidines bases. How realistic are those experimental as well as theoretical simulations? The many planetary data which have been obtained until now on the so diversified planetary atmospheres of the solar system provide a fantastic opportunity to answer such question and validate the laboratory data with "ground trust". Indeed, at the exception of the Earth atmosphere (in which Life is the essential source of organics), any organic compound has been detected in the inner planets. On the contrary, all the outer planets, from Jupiter to Neptune (and even Pluto) involve organic chemical processes, through the chemistry of their atmosphere, and methane photochemistry. They are also present in the dense atmosphere of Titan, the largest satellite of Saturn, (in the gas and aerosol phases), in the much thinner atmosphere of Triton, the largest satellite of Neptune (mainly in the solid phase, on its surface), and on the surface of many of the other satellites of the outer planets. Thus, although we have so far no real direct evidence for this assumption, laboratory data strongly suggest that extraterrestrial organic chemistry systematically involves tholins-like matter. The different aspects of extraterrestrial atmospheric organic chemistry will be presented and discussed, on the basis of recent laboratory data, in particular from simulation experiments related to oxidized and reduced atmospheres and planetary observations.

  18. Application of hybrid propulsion systems to planetary missions

    NASA Technical Reports Server (NTRS)

    Don, J. P.; Phen, R. L.

    1971-01-01

    The feasibility and application of hybrid rocket propulsion to outer-planet orbiter missions is assessed in this study and guidelines regarding future development are provided. A Jupiter Orbiter Mission was selected for evaluation because it is the earliest planetary mission which may require advanced chemical propulsion. Mission and spacecraft characteristics which affect the selection and design of propulsion subsystems are presented. Alternative propulsion subsystems, including space-storable bipropellant liquids, a solid/monopropellant vernier, and a hybrid, are compared on the basis of performance, reliability, and cost. Cost-effectiveness comparisons are made for a range of assumptions including variation in (1) the level of need for spacecraft performance (determined in part by launch vehicle injected mass capability), and (2) achievable reliability at corresponding costs. The results indicated that the hybrid and space-storable bipropellant mechanizations are competitive.

  19. Ring Beholds a Delicate Flower

    NASA Image and Video Library

    2005-02-11

    NASA Spitzer Space Telescope finds a delicate flower in the Ring Nebula, as shown in this image. The outer shell of this planetary nebula looks surprisingly similar to the delicate petals of a camellia blossom.

  20. Plant a Planetary Pennant, and Other Art Projects

    ERIC Educational Resources Information Center

    Wilcox, Claudia; and others

    1970-01-01

    Art projects discussed include the creation of outer space flags, painting with wool, making ceramics and sculptures from inexpensive ingredients, constructing cardboard rockets, costume design, and reed representations of flowers and insects. (DB)

  1. Possible misinterpretation of lunar cratering record in Voyager team analyses of outer planet satellites

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.

    1991-01-01

    While interpreting outer planetary satellites, the Voyager imaging team repeatedly referred to a lunar frontside highland calibration curve. It was assumed that it is unmodified and not in steady state equilibrium, but rather records all impacts that have occurred. It was also assumed that it records the size distribution of an early population of impactors, called Population I, evidence for which was found on various satellites. New evidence is reported that the Voyager team interpretation of this population is wrong, a conclusion that seriously affects the cratering histories reported for outer planet satellites.

  2. Meteoric Material: An Important Component of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Moses, Julianne I.; Pesnell, W. Dean; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Interplanetary dust particles (IDPs) interact with all planetary atmospheres and leave their imprint as perturbations of the background atmospheric chemistry and structure. They lead to layers of metal ions that can become the dominant positively charged species in lower ionospheric regions. Theoretical models and radio occultation measurements provide compelling evidence that such layers exist in all planetary atmospheres. In addition IDP ablation products can affect neutral atmospheric chemistry, particularly at the outer planets where the IDPs supply oxygen compounds like water and carbon dioxide to the upper atmospheres. Aerosol or smoke particles from incomplete ablation or recondensation of ablated IDP vapors may also have a significant impact on atmospheric properties.

  3. Jim Pollack's Contributions to Planetary Science

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Jim Pollack was an extraordinary scientist. Since receiving his Ph.D. from Harvard in 1965, he published hundreds of papers in scientific journals, encyclopedias, popular magazines, and books. The sheer volume of this kind of productivity is impressive enough, but when considering the diversity and detail of his work, these accomplishments seem almost superhuman. Jim studied and wrote about every planet in the solar system. For, this he was perhaps the most distinguished planetary scientist of his generation. He successfully identified the composition of Saturn's rings and Venus's clouds. With his collaborators, he created the first detailed models for the formation of the outer planets, and the general circulation of the Martian atmosphere. His interest in Mars dust storms provided a foundation for the "nuclear winter" theory that ultimately helped shape foreign policy in the cold war era. Jim's creative talents brought him many awards including the Kuiper Award of the Division of Planetary Sciences, the Leo Szilard Award of the American Physical Society, H. Julian Allen award of the Ames Research Center, and several NASA medals for exceptional scientific achievement.

  4. Preliminary Development of a Multifunctional Hot Structure Heat Shield

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.; Daryabeigi, Kamran; Samareh, Jamshid A.; Armand, Sasan C.; Perino, Scott V

    2014-01-01

    Development of a Multifunctional Hot Structure Heat Shield concept has initiated with the goal to provide advanced technology with significant benefits compared to the current state of the art heat shield technology. The concept is unique in integrating the function of the thermal protection system with the primary load carrying structural component. An advanced carbon-carbon material system has been evaluated for the load carrying structure, which will be utilized on the outer surface of the heat shield, and thus will operate as a hot structure exposed to the severe aerodynamic heating associated with planetary entry. Flexible, highly efficient blanket insulation has been sized for use underneath the hot structure to maintain desired internal temperatures. The approach was to develop a preliminary design to demonstrate feasibility of the concept. The preliminary results indicate that the concept has the potential to save both mass and volume with significantly less recession compared to traditional heat shield designs, and thus provide potential to enable new planetary missions.

  5. Aluminum/ammonia heat pipe gas generation and long term system impact for the Space Telescope's Wide Field Planetary Camera

    NASA Technical Reports Server (NTRS)

    Jones, J. A.

    1983-01-01

    In the Space Telescope's Wide Field Planetary Camera (WFPC) project, eight heat pipes (HPs) are used to remove heat from the camera's inner electronic sensors to the spacecraft's outer, cold radiator surface. For proper device functioning and maximization of the signal-to-noise ratios, the Charge Coupled Devices (CCD's) must be maintained at -95 C or lower. Thermoelectric coolers (TEC's) cool the CCD's, and heat pipes deliver each TEC's nominal six to eight watts of heat to the space radiator, which reaches an equilibrium temperature between -15 C to -70 C. An initial problem was related to the difficulty to produce gas-free aluminum/ammonia heat pipes. An investigation was, therefore, conducted to determine the cause of the gas generation and the impact of this gas on CCD cooling. In order to study the effect of gas slugs in the WFPC system, a separate HP was made. Attention is given to fabrication, testing, and heat pipe gas generation chemistry studies.

  6. Planetary exploration through year 2000: An augmented program. Part two of a report by the Solar System Exploration Committee of the NASA Advisory Council

    NASA Technical Reports Server (NTRS)

    1986-01-01

    In 1982, the NASA Solar System Exploration Committee (SSEC) published a report on a Core Program of planetary missions, representing the minimum-level program that could be carried out in a cost effective manner, and would yield a continuing return of basic scientific results. This is the second part of the SSEC report, describing missions of the highest scientific merit that lie outside the scope of the previously recommended Core Program because of their cost and technical challenge. These missions include the autonomous operation of a mobile scientific rover on the surface of Mars, the automated collection and return of samples from that planet, the return to Earth of samples from asteroids and comets, projects needed to lay the groundwork for the eventual utilization of near-Earth resources, outer planet missions, observation programs for extra-solar planets, and technological developments essential to make these missions possible.

  7. The Influence of Heat Flux Boundary Heterogeneity on Heat Transport in Earth's Core

    NASA Astrophysics Data System (ADS)

    Davies, C. J.; Mound, J. E.

    2017-12-01

    Rotating convection in planetary systems can be subjected to large lateral variations in heat flux from above; for example, due to the interaction between the metallic cores of terrestrial planets and their overlying silicate mantles. The boundary anomalies can significantly reorganise the pattern of convection and influence global diagnostics such as the Nusselt number. We have conducted a suite of numerical simulations of rotating convection in a spherical shell geometry comparing convection with homogeneous boundary conditions to that with two patterns of heat flux variation at the outer boundary: one hemispheric pattern, and one derived from seismic tomographic imaging of Earth's lower mantle. We consider Ekman numbers down to 10-6 and flux-based Rayleigh numbers up to 800 times critical. The heterogeneous boundary conditions tend to increase the Nusselt number relative to the equivalent homogeneous case by altering both the flow and temperature fields, particularly near the top of the convecting region. The enhancement in Nusselt number tends to increase as the amplitude and wavelength of the boundary heterogeneity is increased and as the system becomes more supercritical. In our suite of models, the increase in Nusselt number can be as large as 25%. The slope of the Nusselt-Rayleigh scaling also changes when boundary heterogeneity is included, which has implications when extrapolating to planetary conditions. Additionally, regions of effective thermal stratification can develop when strongly heterogeneous heat flux conditions are applied at the outer boundary.

  8. Permanence analysis of a concatenated coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.; Lin, S.; Kasami, T.

    1983-01-01

    A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however, the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for the planetary program, is analyzed.

  9. Little gem

    NASA Image and Video Library

    2015-08-03

    This colourful bubble is a planetary nebula called NGC 6818, also known as the Little Gem Nebula. It is located in the constellation of Sagittarius (The Archer), roughly 6000 light-years away from us. The rich glow of the cloud is just over half a light-year across — humongous compared to its tiny central star — but still a little gem on a cosmic scale. When stars like the Sun enter retirement, they shed their outer layers into space to create glowing clouds of gas called planetary nebulae. This ejection of mass is uneven, and planetary nebulae can have very complex shapes. NGC 6818 shows knotty filament-like structures and distinct layers of material, with a bright and enclosed central bubble surrounded by a larger, more diffuse cloud. Scientists believe that the stellar wind from the central star propels the outflowing material, sculpting the elongated shape of NGC 6818. As this fast wind smashes through the slower-moving cloud it creates particularly bright blowouts at the bubble’s outer layers. Hubble previously imaged this nebula back in 1997 with its Wide Field Planetary Camera 2, using a mix of filters that highlighted emission from ionised oxygen and hydrogen (opo9811h). This image, while from the same camera, uses different filters to reveal a different view of the nebula. A version of the image was submitted to the Hubble’s Hidden Treasures image processing competition by contestant Judy Schmidt.

  10. Planetary protection requirements for orbiter and netlander elements of the CNES/NASA Mars sample return mission

    NASA Astrophysics Data System (ADS)

    Debus, A.

    In the framework of Mars exploration, particularly for missions dedicated to the search for life or for traces of ancient forms of life, NASA and CNES have decided to join their efforts in order to build a Mars sample return mission. Taking into account article IX of the OUTER SPACE TREATY (Treaty on principles governing the activities of states in the exploration and use of outer space, including the Moon and other celestial, referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966, ratified in London / Washington January 27, 1967) and in order to comply with the COSPAR planetary protection recommendations, a common planetary protection program has to be established. Mars in-situ experimentations are limited by the size and the mass of the instruments necessary to perform exobiology investigations and, consequently, it appears that the best way to conduct such experiments is to bring back Mars samples to Earth. A sample return mission enables the use of a very large number of instruments and analysis protocols, giving exobiologists the best chance to find living entities or organic compounds related to life. Such a mission is complicated from a planetary protection point of view, it combines constraints for the protection of both the Mars environment as well as Earth, including the preservation of samples to ensure the validity of exobiological experiments.

  11. Testing for Dark Matter Trapped in the Solar System

    NASA Technical Reports Server (NTRS)

    Krisher, Timothy P.

    1996-01-01

    We consider the possibility of dark matter trapped in the solar system in bound solar orbits. If there exist mechanisms for dissipating excess kinetic energy by an amount sufficient for generating bound solar orbits, then trapping of galactic dark matter might have taken place during formation of the solar system, or could be an ongoing process. Possible locations for acumulation of trapped dark matter are orbital resonances with the planets or regions in the outer solar system. It is posible to test for the presence of unseen matter by detecting its gravitational effects. Current results for dynamical limits obtained from analyses of planetary ephemeris data and spacecraft tracking data are presented. Possible future improvements are discussed.

  12. Scattering of Planetesimals by a Planet

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2004-05-01

    We investigate the scattering process of planetesimals by a planet by numerical orbital integration, aiming at construction of theory for the comet (Oort) cloud formation. The standard scenario of the formation of the Oort cloud can be divided into three dynamical stages:(1)The eccentricity and the aphelion distance of planetesimals are increased by planetary perturbation. (2)The eccentricity is reduced and the perihelion distance is increased by the external forces such as the galactic tide. (3)The inclination is randomized also by the external forces. We model the first stage of this scenario as the restricted three-body problem and calculate the orbital evolution of planetesimals scattered by a planet. There are 4 kinds of outcomes for scattering of planetesimals by a planet: to collide with the planet, to fall onto the central star, to escape from the planetary system, and to remain in bound orbits. Here we consider the escape efficiency as the efficiency of formation of highly eccentric planetesimals, which are candidates for the members of the comet cloud. We obtain the dependence of the escape/collision probability on orbital parameters of the planetesimals and the planet. Using these results, we calculate the efficiencies of escaping from the planetary system and collision with the planet. For example, for the minimum-mass disk model, the inner and massive planet is more efficient to eject planetesimals and increase their eccentricities. Planetesimals with high eccentricities and low inclinations are easier to be ejected from the planetary system. We preset the empirical fitting formulae of these efficiencies as a function of the orbital parameters of the planetesimals and the planets. We apply the results to the solar system and discuss the efficiency of the outer giant planets.

  13. Star Surface Polluted by Planetary Debris

    NASA Astrophysics Data System (ADS)

    2007-07-01

    Looking at the chemical composition of stars that host planets, astronomers have found that while dwarf stars often show iron enrichment on their surface, giant stars do not. The astronomers think that the planetary debris falling onto the outer layer of the star produces a detectable effect in a dwarf star, but this pollution is diluted by the giant star and mixed into its interior. "It is a little bit like a Tiramisu or a Capuccino," says Luca Pasquini from ESO, lead-author of the paper reporting the results. "There is cocoa powder only on the top!' ESO PR Photo 29/07 ESO PR Photo 29/07 The Structure of Stars Just a few years after the discovery of the first exoplanet it became evident that planets are preferentially found around stars that are enriched in iron. Planet-hosting stars are on average almost twice as rich in metals than their counterparts with no planetary system. The immediate question is whether this richness in metals enhances planet formation, or whether it is caused by the presence of planets. The classic chicken and egg problem. In the first case, the stars would be metal-rich down to their centre. In the second case, debris from the planetary system would have polluted the star and only the external layers would be affected by this pollution. When observing stars and taking spectra, astronomers indeed only see the outer layers and can't make sure the whole star has the same composition. When planetary debris fall onto a star, the material will stay in the outer parts, polluting it and leaving traces in the spectra taken. A team of astronomers has decided to tackle this question by looking at a different kind of stars: red giants. These are stars that, as will the Sun in several billion years, have exhausted the hydrogen in their core. As a result, they have puffed up, becoming much larger and cooler. Looking at the distribution of metals in fourteen planet-hosting giants, the astronomers found that their distribution was rather different from normal planet-hosting stars. "We find that evolved stars are not enriched in metals, even when hosting planets," says Pasquini. "Thus, the anomalies found in planet-hosting stars seem to disappear when they get older and puff up!" Looking at the various options, the astronomers conclude that the most likely explanation lies in the difference in the structure between red giants and solar-like stars: the size of the convective zone, the region where all the gas is completely mixed. In the Sun, this convective zone comprises only 2% of the star's mass. But in red giants, the convective zone is huge, encompassing 35 times more mass. The polluting material would thus be 35 times more diluted in a red giant than in a solar-like star. "Although the interpretation of the data is not straightforward, the simplest explanation is that solar-like stars appear metal-rich because of the pollution of their atmospheres," says co-author Artie Hatzes, Director of the Thüringer Landessternwarte Tautenburg (Germany) where some of the data were obtained. When the star was still surrounded by a proto-planetary disc, material enriched in more heavy elements would fall onto the star, thereby polluting its surface. The metal excess produced by this pollution, while visible in the thin atmospheres of solar-like stars, is completely diluted in the extended, massive atmospheres of the giants.

  14. Planetary Engulfment as a Trigger for White Dwarf Pollution

    NASA Astrophysics Data System (ADS)

    Petrovich, Cristobal; Muñoz, Diego J.

    2017-01-01

    The presence of a planetary system can shield a planetesimal disk from the secular gravitational perturbations due to distant outer massive objects (planets or stellar companions). As the host star evolves off the main sequence to become a white dwarf, these planets can be engulfed during the giant phase, triggering secular instabilities and leading to the tidal disruptions of small rocky bodies. These disrupted bodies can feed the white dwarfs with rocky material and possibly explain the high-metallicity material in their atmospheres. We illustrate how this mechanism can operate when the gravitational perturbations are due to the KL mechanism from a stellar binary companion, a process that is activated only after the planet has been removed/engulfed. We show that this mechanism can explain the observed accretion rates if: (1) the planetary engulfment happens rapidly compared to the secular timescale, which is generally the case for wide binaries (> 100 au) and planetary engulfment during the asymptotic giant branch; (2) the planetesimal disk has a total mass of ˜ {10}-4-{10}-2{M}\\oplus . We show that this new mechanism can provide a steady supply of material throughout the entire life of the white dwarfs for all cooling ages and can account for a large fraction (up to nearly half) of the observed polluted white dwarfs.

  15. Outer satellite atmospheres: Their nature and planetary interactions

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.; Combi, M. R.

    1984-01-01

    Significant insights regarding the nature and interactions of Io and the planetary magnetosphere were gained through modeling studies of the spatial morphology and brightness of the Io sodium cloud. East-west intensity asymmetries in Region A are consistent with an east-west electric field and the offset of the magnetic and planetary-spin axes. East-west orbital asymmetries and the absolute brightness of Region B suggest a low-velocity (3 km/sec) satellite source of 1 to 2 x 10(26) sodium atoms/sec. The time-varying spatial structure of the sodium directional features in near Region C provides direct evidence for a magnetospheric-wind-driven escape mechanism with a high-velocity (20 km/sec) source of 1 x 10(26) atoms/sec and a flux distribution enhanced at the equator relative to the poles. A model for the Io potassium cloud is presented and analysis of data suggests a low velocity source rate of 5 x 10(24) atoms/sec. To understand the role of Titan and non-Titan sources for H atoms in the Saturn system, the lifetime of hydrogen in the planetary magnetosphere was incorporated into the earlier Titan torus model of Smyth (1981) and its expected impact discussed. A particle trajectory model for cometary hydrogen is presented and applied to the Lyman-alpha distribution of Comet Kohoutek (1973XII).

  16. Exploring our outer solar system - The Giant Planet System Observers

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Sittler, E. C., Jr.; Sturner, S. J.; Pitman, J. T.

    As space-faring peoples now work together to plan and implement future missions that robotically prepare for landing humans to explore the Moon, and later Mars, the time is right to develop evolutionary approaches for extending this next generation of exploration beyond Earth's terrestrial planet neighbors to the realm of the giant planets. And while initial fly-by missions have been hugely successful in providing exploratory surveys of what lies beyond Mars, we need to consider now what robotic precursor mission capabilities we need to emplace that prepare us properly, and comprehensively, for long-term robotic exploration, and eventual human habitation, beyond Mars to the outer reaches of our solar system. To develop practical strategies that can establish prioritized capabilities, and then develop a means for achieving those capabilities within realistic budget and technology considerations, and in reasonable timeframes, is our challenge. We suggest one component of such an approach to future outer planets exploration is a series of Giant Planets System Observer (GPSO) missions that provide for long- duration observations, monitoring, and relay functions to help advance our understanding of the outer planets and thereby enable a sound basis for planning their eventual exploration by humans. We envision these missions as being comparable to taking Hubble-class remote-sensing facilities, along with the space physics capabilities of long-lived geospace and heliospheric missions, to the giant planet systems and dedicating long observing lifetimes (HST, 16 yr.; Voyagers, 29 yr.) to the exhaustive study and characterization of those systems. GPSO missions could feature 20-yr+ extended mission lifetimes, direct inject trajectories to maximize useful lifetime on target, placement strategies that take advantage of natural environment shielding (e.g., Ganymede magnetic field) where possible, orbit designs having favorable planetary system viewing geometries, comprehensive broadband remote sensing capabilities, a complementary and redundant science instrument suite, fully autonomous operations, high bandwidth science data downlink, advanced solar power technologies (supplemented where necessary), functional interfaces that are compatible with future small fly-by missions, and fail-safe features for mission operations and planetary protection, 1 among other considerations. We describe in this paper one example of a GPSO-type mission our team has been formulating as a practical approach that addresses many of the most highly-rated future science exploration needs in the Jovian system, including the exploration of Europa, observation of Io and Ganymede, and characterization of the Jovian atmosphere. We call this mission concept the Ganymede Exploration Observer with Probes (GEOP), and describe its architecture, mission design, system features, science capabilities, key trades, and notional development plan for implementation within the next decade. 2

  17. HD 106906 b: A PLANETARY-MASS COMPANION OUTSIDE A MASSIVE DEBRIS DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Vanessa; Reiter, Megan; Morzinski, Katie

    2014-01-01

    We report the discovery of a planetary-mass companion, HD 106906 b, with the new Magellan Adaptive Optics (MagAO) + Clio2 system. The companion is detected with Clio2 in three bands: J, K{sub S} , and L', and lies at a projected separation of 7.''1 (650 AU). It is confirmed to be comoving with its 13 ± 2 Myr F5 host using Hubble Space Telescope Advanced Camera for Surveys astrometry over a time baseline of 8.3 yr. DUSTY and COND evolutionary models predict that the companion's luminosity corresponds to a mass of 11 ± 2 M {sub Jup}, making it one ofmore » the most widely separated planetary-mass companions known. We classify its Magellan/Folded-Port InfraRed Echellette J/H/K spectrum as L2.5 ± 1; the triangular H-band morphology suggests an intermediate surface gravity. HD 106906 A, a pre-main-sequence Lower Centaurus Crux member, was initially targeted because it hosts a massive debris disk detected via infrared excess emission in unresolved Spitzer imaging and spectroscopy. The disk emission is best fit by a single component at 95 K, corresponding to an inner edge of 15-20 AU and an outer edge of up to 120 AU. If the companion is on an eccentric (e > 0.65) orbit, it could be interacting with the outer edge of the disk. Close-in, planet-like formation followed by scattering to the current location would likely disrupt the disk and is disfavored. Furthermore, we find no additional companions, though we could detect similar-mass objects at projected separations >35 AU. In situ formation in a binary-star-like process is more probable, although the companion-to-primary mass ratio, at <1%, is unusually small.« less

  18. HST Observations of the Uranian Ring Plane Crossing: Early Results

    NASA Astrophysics Data System (ADS)

    Showalter, Mark R.; Lissauer, J. J.; French, R. G.; Hamilton, D. P.; Nicholson, P. D.; de Pater, I.

    2007-10-01

    Between early May and mid-August 2007, Earth was on the north side of the Uranian ring plane while the Sun was still shining on the rings’ southern face. This has provided an exceedingly rare opportunity to view the ring system via transmitted light. The ɛ ring, which typically out-shines every other component of the inner ring-moon system, has been rendered essentially invisible. We have been conducting regular imaging of the Uranian system throughout this period with the Wide Field/Planetary Camera on HST to address numerous scientific goals. (1) To search the inner Uranian system for the "shepherding” moons long believed to confine the narrow rings; (2) to study the packing density of the main rings via direct observations of their vertical thickness; (3) to search for the inner dust rings that appeared in a few Voyager images; (4) to determine the vertical thickness of the faint outer rings μ and ν (5) to obtain the most sensitive determinations of the outer rings’ colors and try to understand why ring ν is red but ring μ is blue; (6) to search for additional outer dust rings under optimal viewing geometry; and (7) to continue monitoring the seemingly chaotic orbital variations of the inner Uranian moons, particularly Mab. HST observations span mid-May to mid-September. We will present our initial results from this observing program.

  19. On the Detection of Non-transiting Hot Jupiters in Multiple-planet Systems

    NASA Astrophysics Data System (ADS)

    Millholland, Sarah; Wang, Songhu; Laughlin, Gregory

    2016-05-01

    We outline a photometric method for detecting the presence of a non-transiting short-period giant planet in a planetary system harboring one or more longer-period transiting planets. Within a prospective system of the type that we consider, a hot Jupiter on an interior orbit inclined to the line of sight signals its presence through approximately sinusoidal full-phase photometric variations in the stellar light curve, correlated with astrometrically induced transit timing variations for exterior transiting planets. Systems containing a hot Jupiter along with a low-mass outer planet or planets on inclined orbits are a predicted hallmark of in situ accretion for hot Jupiters, and their presence can thus be used to test planetary formation theories. We outline the prospects for detecting non-transiting hot Jupiters using photometric data from typical Kepler objects of interest (KOIs). As a demonstration of the technique, we perform a brief assessment of Kepler candidates and identify a potential non-transiting hot Jupiter in the KOI-1822 system. Candidate non-transiting hot Jupiters can be readily confirmed with a small number of Doppler velocity observations, even for stars with V ≳ 14.

  20. Magnetospheres of the outer planets

    NASA Technical Reports Server (NTRS)

    Vanallen, James A.

    1987-01-01

    The five qualitatively different types of magnetism that a planet body can exhibit are outlined. Potential sources of energetic particles in a planetary magnetosphere are discussed. The magnetosphere of Uranus and Neptune are then described using Pioneer 10 data.

  1. Planetary Atmospheres and the Search for Life.

    ERIC Educational Resources Information Center

    Owen, Tobias

    1982-01-01

    Different ways in which the atmospheres of different planets have originated and evolved are discussed. Includes tables on the atmospheric composition of: (1) Earth; (2) Mars; (3) Venus; (4)Titan (Saturn's Satellite); and (5) the outer planets. (SK)

  2. Twist planet drive

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1996-01-01

    A planetary gear system includes a sun gear coupled to an annular ring gear through a plurality of twist-planet gears, a speeder gear, and a ground structure having an internal ring gear. Each planet gear includes a solid gear having a first half portion in the form of a spur gear which includes vertical gear teeth and a second half portion in the form of a spur gear which includes helical gear teeth that are offset from the vertical gear teeth and which contact helical gear teeth on the speeder gear and helical gear teeth on the outer ring gear. One half of the twist planet gears are preloaded downward, while the other half are preloaded upwards, each one alternating with the other so that each one twists in a motion opposite to its neighbor when rotated until each planet gear seats against the sun gear, the outer ring gear, the speeder gear, and the inner ring gear. The resulting configuration is an improved stiff anti-backlash gear system.

  3. Mapping photopolarimeter spectrometer instrument feasibility study for future planetary flight missions

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Evaluations are summarized directed towards defining optimal instrumentation for performing planetary polarization measurements from a spacecraft platform. An overview of the science rationale for polarimetric measurements is given to point out the importance of such measurements for future studies and exploration of the outer planets. The key instrument features required to perform the needed measurements are discussed and applied to the requirements for the Cassini mission to Saturn. The resultant conceptual design of a spectro-polarimeter photometer for Cassini is described in detail.

  4. Laboratory experiments in the study of the chemistry of the outer planets

    NASA Technical Reports Server (NTRS)

    Scattergood, Thomas W.

    1987-01-01

    It is shown that much information about planetary chemistry and physics can be gained through laboratory work. The types of experiments relevant to planetary research concern fundamental properties, spectral/optical properties, 'Miller-Urey' syntheses, and detailed syntheses. Specific examples of studies of the chemistry in the atmosphere of Titan are described with attention given to gas phase chemistry in the troposphere and the composition of model Titan aerosols. A list of work that still needs to be done is provided.

  5. New Understanding of Mercury's Magnetosphere from MESSENGER'S First Flyby

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Gloeckler, George; Gold, Robert E.; Ho, George C.; Killen, M.; Korth, Haje; hide

    2008-01-01

    Observations by the MESSENGER spacecraft on 14 January 2008 have revealed new features of the solar system's smallest planetary magnetosphere. The interplanetary magnetic field orientation was unfavorable for large inputs of energy from the solar wind and no evidence of magnetic substorms, internal magnetic reconnection, or energetic particle acceleration was detected. Large-scale rotations of the magnetic field were measured along the dusk flank of the magnetosphere and ultra-tow frequency waves were frequently observed beginning near closest approach. Outbound the spacecraft encountered two current-sheet boundaries across which the magnetic field intensity decreased in a step-like manner. The outer current sheet is the magnetopause boundary. The inner current sheet is similar in structure, but weaker and -1000 km closer to the planet. Between these two current sheets the magnetic field intensity is depressed by the diamagnetic effect of planetary ions created by the photo-ionization of Mercury's exosphere.

  6. Analysis of aerothermodynamic environment of a Titan aerocapture vehicle

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Chow, H.; Moss, J. N.

    1982-01-01

    The feasibility of an aerocapture vehicle mission has been emphasized recently for inner and outer planetary missions. Aerocapture involves a system concept which utilizes aerodynamic drag to acquire the velocity reduction necessary to obtain a closed planetary orbit from a hyperbolic flyby trajectory. It has been proposed to use the atmosphere of Titan for braking into a Saturn orbit. This approach for a Saturn orbital mission is expected to cut the interplanetary cruise travel time to Saturn from 8 to 3.5 years. In connection with the preparation of such a mission, it will be necessary to provide a complete analysis of the aerodynamic environment of the Titan aerocapture vehicle. The main objective of the present investigation is, therefore, to determine the extent of convective and radiative heating for the aerocapture vehicle under different entry conditions. This can be essentially accomplished by assessing the heating rates in the stagnation and windward regions of an equivalent body.

  7. A geological basis for the exploration of the planets: Introduction

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Carr, M. H.

    1976-01-01

    The geological aspects of solar-system exploration were considered by first showing how geologic data are related to space science in general, and, second, by discussing the approach used in planetary geology. The origin, evolution, and distribution of matter condensed in the form of planets, satellites, comets, and asteroids were studied. Terrestrial planets, comets, and asteroids, and the solid satellites of the outer planets are discussed. Jupiter and Saturn, in particular, have satellites of prime importance. Geophysics, geochemistry, geodesy, cartography, and other disciplines concerned with the solid planets were all included.

  8. Organic solids produced by electrical discharges in reducing atmospheres: Molecular analysis

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.; Zumberge, J. E.; Sklarew, D.; Nagy, B.

    1978-01-01

    The complex brown polymer produced on passage of an electrical discharge through a mixture of methane, ammonia, and water, is analyzed by pyrolytic GC/MS. Pyrolyzates include a wide range of alkanes, alkenes, aromatic hydrocarbons, aliphatic and aromatic nitriles, pyrroles, and pyridine. Similar pyrolyzates are obtained from polypeptides and polynucleotides with hydrocarbon moieties. This polymer is remarkably stable up to 950 C; its degradation products are candidate constituents of planetary aerosols in the outer solar system and the grains and gas in the interstellar medium.

  9. Scientists Needed! The Year of the Solar System: Opportunities for Scientist Involvement

    NASA Astrophysics Data System (ADS)

    Shipp, S. S.; Buxner, S.; Cobabe-Ammann, E. A.; Scalice, D.; Bleacher, L.

    2011-12-01

    Spanning a Martian Year - 23 months from October 2010 through August 2012 - the Year of the Solar System (YSS) celebrates the amazing discoveries of numerous new and ongoing NASA missions and research efforts as they explore our near and distant neighbors and probe the outer edges of our solar system. The science revealed by these endeavors is dramatically revising our understanding of the formation and evolution of our solar system. YSS offers opportunities for planetary scientists to become involved in education and public outreach (E/PO) in meaningful ways. By getting involved in YSS E/PO activities, scientists can help to raise awareness of, build excitement in, and make connections with educators, students and the public about current planetary science research and exploration. Each month during YSS a different compelling aspect of the solar system - its formation, volcanism, ice, life - is explored. The monthly topics, tied to the big questions of planetary science, include online resources that can be used by scientists to engage their audiences: hands-on learning activities, demonstrations, connections to solar system and mission events, ideas for partnering with other organizations, and other programming ideas. Resources for past, present, and future YSS monthly topics can be found at: http://solarsystem.nasa.gov/yss. Scientists are encouraged to get involved in YSS through an avenue that best fits their available time and interests. Possible paths include: contacting the YSS organizational team to provide content for or to review the monthly topics; integrating current planetary research discoveries into your introductory college science classes; starting a science club; prompting an interview with the local media, creating a podcast about your science, sharing YSS with educators or program coordinators at your local schools, museums, libraries, astronomical clubs and societies, retirement homes, or rotary club; volunteering to present your science in one of these venues for a YSS event; co-hosting a YSS event for an audience with educators or other local partners; or hosting a YSS event at your own institution. YSS offers rich and diverse ways for scientists to actively engage with the public about planetary science; we invite you to get involved!

  10. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1987-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and Earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorping properties of potential constituents is available. The use of theoretically derived microwave absorption properties for such atmospheric constituents, or laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurement of the microwave properties of atmospheric gases under simulated conditions for the outer planets were conducted. Results of these measurements are discussed.

  11. A nuclear electric propulsion vehicle for planetary exploration

    NASA Technical Reports Server (NTRS)

    Pawlik, E. V.; Phillips, W. M.

    1976-01-01

    A study is currently underway at JPL to design a nuclear electric-propulsion vehicle capable of performing detailed exploration of the outer planets. Evaluation of the design indicates that it is also applicable to orbit raising. Primary emphasis is on the power subsystem. Work on the design of the power system, the mission rationale, and preliminary spacecraft design are summarized. A propulsion system at a 400-kWe power level with a specific weight goal of no more than 25-kg/kW was selected for this study. The results indicate that this goal can be realized along with compatibility with the shuttle launch-vehicle constraints.

  12. Jupiter: friend or foe?

    NASA Astrophysics Data System (ADS)

    Horner, Jonti; Jones, Barrie W.

    2008-02-01

    The idea that Jupiter has shielded the Earth from potentially catastrophic impacts has long permeated the public and scientific mind. But has it shielded us? We are carrying out the first detailed examination of the degree of shielding provided by Jupiter and have obtained some surprising results. Rather than Jupiter acting as a defensive presence, we found that it actually makes little difference - but if Jupiter were significantly smaller, the impact rate experienced by the Earth would be considerably enhanced. Indeed, it seems that a giant planet in the outer reaches of a planetary system can actually pose a threat to the habitability of terrestrial worlds closer to the system's parent star.

  13. Jupiter and the Voyager mission

    USGS Publications Warehouse

    Soderblom, L.; Spall, Henry

    1980-01-01

    In 1977, the United States launched two unmanned Voyager spacecraft that were to take part in an extensive reconnaissance of the outer planets over a 12-year period visiting the environs of Jupiter, Saturn, Uranus, and Neptune. Their first encounter was with the complex Jupiter planetary system 400 million miles away. Sweeping by Jupiter and its five moons in 1979, the two spacecraft have sent back to Earth an enormous amount of data that will prove to be vital in understanding our solar system. Voyager 1 is scheduled to fly past Saturn on November 13 of this year; Voyager 2, in August of the following year. 

  14. PLANETARY MIGRATION AND ECCENTRICITY AND INCLINATION RESONANCES IN EXTRASOLAR PLANETARY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Man Hoi; Thommes, Edward W.

    2009-09-10

    The differential migration of two planets due to planet-disk interaction can result in capture into the 2:1 eccentricity-type mean-motion resonances. Both the sequence of 2:1 eccentricity resonances that the system is driven through by continued migration and the possibility of a subsequent capture into the 4:2 inclination resonances are sensitive to the migration rate within the range expected for type II migration due to planet-disk interaction. If the migration rate is fast, the resonant pair can evolve into a family of 2:1 eccentricity resonances different from those found by Lee. This new family has outer orbital eccentricity e {sub 2}more » {approx}> 0.4-0.5, asymmetric librations of both eccentricity resonance variables, and orbits that intersect if they are exactly coplanar. Although this family exists for an inner-to-outer planet mass ratio m {sub 1}/m {sub 2} {approx}> 0.2, it is possible to evolve into this family by fast migration only for m {sub 1}/m {sub 2} {approx}> 2. Thommes and Lissauer have found that a capture into the 4:2 inclination resonances is possible only for m {sub 1}/m {sub 2} {approx}< 2. We show that this capture is also possible for m {sub 1}/m {sub 2} {approx}> 2 if the migration rate is slightly slower than that adopted by Thommes and Lissauer. There is significant theoretical uncertainty in both the sign and the magnitude of the net effect of planet-disk interaction on the orbital eccentricity of a planet. If the eccentricity is damped on a timescale comparable to or shorter than the migration timescale, e {sub 2} may not be able to reach the values needed to enter either the new 2:1 eccentricity resonances or the 4:2 inclination resonances. Thus, if future observations of extrasolar planetary systems were to reveal certain combinations of mass ratio and resonant configuration, they would place a constraint on the strength of eccentricity damping during migration, as well as on the rate of the migration itself.« less

  15. Long-Term Dynamics of Small Bodies in the Solar System

    NASA Technical Reports Server (NTRS)

    Holman, Matthew J.

    2004-01-01

    As part of the NASA Planetary Geology and Geophysics program Prof. Norm Murray (CITA) and I have been conducting investigations of the long-term dynamics of small bodies in the outer solar system. This grant, and its predecessor NAG5- 7761, supports travel for collaboration by the Investigators and also supports Murray during an annual one month visit to the CfA for further collaboration. In the course of this grant we made a number of advances in solar system dynamics. For example, we developed an analytic model for the origin and consequence of chaos associated with three-body resonances in the asteroid belt. This has been shown to be important for the delivery of near Earth objects. We later extended this model to three- body resonances among planets. We were able to show that the numerically identified chaos among the outer planets results from a three-body resonance involving Jupiter, Saturn, and Uranus. The resulting paper was awarded the 1999 Newcomb Cleveland award from the AAAS. This award singles out one paper published in Science each year for distinction.

  16. Vega's hot dust from icy planetesimals scattered inwards by an outward-migrating planetary system

    NASA Astrophysics Data System (ADS)

    Raymond, Sean N.; Bonsor, Amy

    2014-07-01

    Vega has been shown to host multiple dust populations, including both hot exozodiacal dust at sub-au radii and a cold debris disc extending beyond 100 au. We use dynamical simulations to show how Vega's hot dust can be created by long-range gravitational scattering of planetesimals from its cold outer regions. Planetesimals are scattered progressively inwards by a system of 5-7 planets from 30 to 60 au to very close-in. In successful simulations, the outermost planets are typically Neptune mass. The back-reaction of planetesimal scattering causes these planets to migrate outwards and continually interact with fresh planetesimals, replenishing the source of scattered bodies. The most favourable cases for producing Vega's exozodi have negative radial mass gradients, with sub-Saturn- to Jupiter-mass inner planets at 5-10 au and outer planets of 2.5 - 20 M⊕ . The mechanism fails if a Jupiter-sized planet exists beyond ˜15 au because the planet preferentially ejects planetesimals before they can reach the inner system. Direct-imaging planet searches can therefore directly test this mechanism.

  17. The Jupiter System Observer: Probing the Foundations of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Senske, D.; Prockter, L.; Collins, G.; Cooper, J.; Hendrix, A.; Hibbitts, K.; Kivelson, M.; Orton, G.; Schubert, G.; Showman, A.; Turtle, E.; Williams, D.; Kwok, J.; Spilker, T.; Tan-Wang, G.

    2007-12-01

    Galileo's observations in the 1600's of the dynamic system of Jupiter and its moons launched a revolution in understanding the way planetary systems operate. Now, some 400 years later, the discovery of extra solar planetary systems with Jupiter-sized bodies has led to a similar revolution in thought regarding how these systems form and evolve. From the time of Galileo, the Jovian system has been viewed as a solar system in miniature, providing a laboratory to study, diverse and dynamic processes in a single place. The icy Galilean satellites provide a window into solar system history by preserving in their cratering records a chronology dating back nearly 4.5 By and extending to the present. The continuously erupting volcanoes of Io may provide insight into the era when magma oceans were common. The discovery of an internally generated magnetic field at Ganymede, one of only three terrestrial bodies to possess such a field, is a place to gain insight as to how dynamos work. The confirmation and characterization of icy satellite subsurface oceans impacts the way habitability is considered. Understanding the composition and volatile inventory of Jupiter can shed light into how planets accrete from the solar nebulae. Finally, like our sun, Jupiter influences its system through its extensive magnetic field. In early 2007, NASA's Science Mission Directorate formed four Science Definition Teams (SDTs) to formulate science goals and objectives in anticipation of the initiation of a flagship-class mission to the outer solar system (Europa, Jupiter system, Titan and Enceladus). The Jupiter System Observer (JSO) mission concept emphasizes overall Jupiter system science: 1) Jupiter and its atmosphere, 2) the geology and geophysics of the Galilean satellites (Io, Europa, Ganymede and Callisto), 3) the magnetosphere environment - both Jupiter's and Ganymede's&pand 4) interactions within the system. Focusing on the unique geology, presence of an internal magnetic field and evidence for a subsurface ocean, the final mission destination will be in orbit around Ganymede. As conceived, JSO will return a wealth of data to provide significant advancement in understanding the foundations of planetary systems.

  18. Equations of State: Gateway to Planetary Origin and Evolution (Invited)

    NASA Astrophysics Data System (ADS)

    Melosh, J.

    2013-12-01

    Research over the past decades has shown that collisions between solid bodies govern many crucial phases of planetary origin and evolution. The accretion of the terrestrial planets was punctuated by planetary-scale impacts that generated deep magma oceans, ejected primary atmospheres and probably created the moons of Earth and Pluto. Several extrasolar planetary systems are filled with silicate vapor and condensed 'tektites', probably attesting to recent giant collisions. Even now, long after the solar system settled down from its violent birth, a large asteroid impact wiped out the dinosaurs, while other impacts may have played a role in the origin of life on Earth and perhaps Mars, while maintaining a steady exchange of small meteorites between the terrestrial planets and our moon. Most of these events are beyond the scale at which experiments are possible, so that our main research tool is computer simulation, constrained by the laws of physics and the behavior of materials during high-speed impact. Typical solar system impact velocities range from a few km/s in the outer solar system to 10s of km/s in the inner system. Extrasolar planetary systems expand that range to 100s of km/sec typical of the tightly clustered planetary systems now observed. Although computer codes themselves are currently reaching a high degree of sophistication, we still rely on experimental studies to determine the Equations of State (EoS) of materials critical for the correct simulation of impact processes. The recent expansion of the range of pressures available for study, from a few 100 GPa accessible with light gas guns up to a few TPa from current high energy accelerators now opens experimental access to the full velocity range of interest in our solar system. The results are a surprise: several groups in both the USA and Japan have found that silicates and even iron melt and vaporize much more easily in an impact than previously anticipated. The importance of these findings is illustrated by the impact origin of our Moon. Computer simulations that do not take account of the liquid/vapor phase change are unable to retain any material in orbit around the Earth after a planetary impact. A purely gaseous disk around the Earth is wracked by gravitational instabilities and soon collapses back onto the Earth. Only if the silicate EoS also includes a liquid phase can a disk remain stable long enough to condense into a moon. The implications of this new-found ease of vaporization have yet to be fully explored, but it seems clear that current ideas must undergo extensive revision. More melt and vapor production in impacts implies much larger volume changes of the impacted materials and hence more energetic post-impact expansion. EoSs are thus of vital importance to our understanding of the evolution of planetary systems. Computer simulations can (and must!) substitute for experiments for many aspects of large planetary collisions, but so far experiments are leading theory in accurate determination of equations of state. Yet, the fidelity of the computer simulations to Nature can be only as good as the accuracy of the inputs, making further experimental study of EoS a central task in the exploration and elucidation of our solar system and of planetary systems in general.

  19. Resistance of Bacterial Endospores to Outer Space for Planetary Protection Purposes—Experiment PROTECT of the EXPOSE-E Mission

    PubMed Central

    Moeller, Ralf; Cadet, Jean; Douki, Thierry; Mancinelli, Rocco L.; Nicholson, Wayne L.; Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Spry, Andrew; Stackebrandt, Erko; Vaishampayan, Parag; Venkateswaran, Kasthuri J.

    2012-01-01

    Abstract Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the “trip to Mars” spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the “stay on Mars” spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the “trip to Mars” or “stay on Mars” spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations. Key Words: Planetary protection—Bacterial spores—Space experiment—Simulated Mars mission. Astrobiology 12, 445–456. PMID:22680691

  20. Direct Communication to Earth from Probes

    NASA Technical Reports Server (NTRS)

    Bolton, Scott J.; Folkner, William M.; Abraham, Douglas S.

    2005-01-01

    A viewgraph presentation on outer planetary probe communications to Earth is shown. The topics include: 1) Science Rational for Atmospheric Probes to the Outer Planets; 2) Controlling the Scientific Appetite; 3) Learning more about Jupiter before we send more probes; 4) Sample Microwave Scan From Juno; 5) Jupiter s Deep Interior; 6) The Square Kilometer Array (SKA): A Breakthrough for Radio Astronomy; 7) Deep Space Array-based Network (DSAN); 8) Probe Direct-to-Earth Data Rate Calculations; 9) Summary; and 10) Enabling Ideas.

  1. Laboratory measurements of microwave and millimeter-wave properties of planetary atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1989-01-01

    Accurate data on microwave and millimeter-wave properties of potential planetary atmospheric constituents is critical for the proper interpretation of radio occultation measurements, and of radio astronomical observations of both continuum and spectral line emissions. Such data is also needed to correct for atmospheric effects on radar studies of surface reflectivity. Since the refractive and absorptive properties of atmospheric constituents often vary drastically from theoretically-predicted profiles, especially under the extreme conditions characteristic of the planetary atmosphere, laboratory measurements under simulated planetary conditions are required. This paper reviews the instrumentation and techniques used for laboratory measurement of the refractivity and absorptivity of atmospheric constituents at wavelengths longward of 1 mm, under simulated planetary conditions (temperature, pressure, and broadening gases). Techniques for measuring both gases and condensates are considered. Also reviewed are the relative accuracies of the various techniques. Laboratory measurements are reviewed which have already been made, and additional measurements which are needed for interpretation of data from Venus and the outer planets, are highlighted.

  2. The Constraint of Coplanarity: Compact multi-planet system outer architectures and formation.-UP

    NASA Astrophysics Data System (ADS)

    Jontof-Hutter, Daniel

    The Kepler mission discovered 92 systems with 4 or more transiting exoplanets. Systems like Kepler-11 with six "mini-Neptunes" on orbital periods well inside that of Venus pose a challenge to planet formation theory which is broadly split into two competing paradigms. One theory invokes the formation of Neptunes beyond the "snow line", followed by inward migration and assembly into compact configurations near the star. The alternative is that low density planets form in situ at all distances in the protoplanetary nebula. The two paradigms disagree on the occurrence of Jovian planets at longer orbital periods than the transiting exoplanets since such massive planets would impede the inward migration of multiple volatile-rich planets to within a fraction of 1 AU. The likelihood of all the known planets at systems like Kepler-11 to be transiting is very sensitive to presence of outer Jovian planets for a wide range in orbital distance and relative inclination of the Jovian planet. This can put upper limits on the occurrence of Jovian planets by the condition that the six known planets have to have low mutual inclinations most of the time in order for their current cotransiting state to be plausible. Most of these systems have little or no RV data. Hence, our upper limits may be the best constraints on the occurrence of Jovian planets in compact co-planar systems for years to come, and may help distinguish the two leading paradigms of planet formation theory. Methodology. We propose to use an established n-body code (MERCURY) to perform long-term simulations of systems like Kepler-11 with the addition of a putative Jovian planet considering a range of orbital distances. These simulations will test for which initial conditions a Jovian planet would prevent the known planets from all transiting at the same time. We will 1) determine at what orbital distances and inclinations an outer Jovian planet would make the observed configuration of Kepler-11 very unlikely. 2) Test the effect of an undetected planet in the large dynamical space between Kepler-11 f and Kepler 11 g on our upper limits on a Jovian outer planet. 3) Repeat the analysis for all compact systems of 4 or more transiting planets with published planetary masses (including Kepler-79, Kepler-33, and Kepler-80) 5) Repeat the analysis for all systems of 4 or more transiting planets where the condition of long-term orbital stability provides useful upper limits on planetary masses, using their orbital periods and an appropriate mass-radius relation. 6) Measure an upper limit on the occurrence rate of outer Jovian planets. If we find an occurrence rate significantly lower than the known occurrence rate of Jovian planets from RV surveys, this would be evidence in support of the migration model as Jovian planets are expected impede the assembly of compact coplanar systems of low-density planets close to the host star. Relevance. According to the XRP Solicitation, investigations are expected to directly support the goal of "understanding exoplanetary systems", by doing one or more of the following..."improve understanding of the origins of exoplanetary systems". This proposal will help distinguish between competing paradigms in planet formation with dynamical modeling, and hence will improve our understanding of the origins of exoplanetary systems. This proposal will in no way require analysis of archival Kepler data, and relies only on the published masses, radii and orbital periods of high muliplicity systems discovered by Kepler. Therefore, our proposal is not appropriate for ADAP.

  3. Magnetic field of jupiter and its interaction with the solar wind.

    PubMed

    Smith, E J; Davis, L; Jones, D E; Colburn, D S; Coleman, P J; Dyal, P; Sonett, C P

    1974-01-25

    Jupiter's magnetic field and its interaction with the magnetized solar wind were observed with the Pioneer 10 vector helium magnetometer. The magnetic dipole is directed opposite to that of the earth with a moment of 4.0 gauss R(J)(3) (R(J), Jupiter radius), and an inclination of 15 degrees lying in a system III meridian of 230 degrees . The dipole is offset about 0.1 R(J) north of the equatorial plane and about 0.2 R(J) toward longitude 170 degrees . There is severe stretching of the planetary field parallel to the equator throughout the outer magnetosphere, accompanied by a systematic departure from meridian planes. The field configuration implies substantial plasma effects inside the magnetosphere, such as thermal pressure, centrifugal forces, and differential rotation. As at the earth, the outer boundary is thin, nor diffuse, and there is a detached bow shock.

  4. Properties of planetary ices in the NH3 + CO2 ± H2O ternary system using neutron diffraction and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Howard, C. M.; Wood, I. G.; Fortes, A. D.; Vocadlo, L.

    2016-12-01

    BackgroundInteractions between simple molecules are of fundamental interest across diverse areas of the physical sciences, and the ternary system NH3 + CO2 ± H2O is no exception. In the outer solar system, interaction of CO2 with aqueous ammonia is likely to occur, synthesizing `rock-forming' minerals [1], with CO2 perhaps playing a role in ammonia-water oceans and cryomagmas inside icy planetary bodies - the discovery of ammonium carbonates in a crater of Pluto's moon Charon [2] adds weight to CO2 occuring in these planetary environments. In the same context, ammonium carbonates may have some astrobiological relevance, since removal of water leads to the formation of urea. On Earth, combination of CO2 with aqueous ammonia has relevance to carbon capture schemes [3], and there is interest in using such materials for hydrogen storage in fuel cells [4]. Consequently, from earthly matters of climate change to the study of extraterrestrial ices, understanding the structures and properties of ammonium carbonates are important. Despite this, our knowledge of ammonium carbonates is limited under ambient conditions of pressure and temperature and is entirely absent at the higher pressures, severely limiting our ability to model the behaviour of NH3 + CO2 ± H2O solids and fluids in planetary environments. ResultsWe report the results of several experiments using variable pressure and temperature neutron diffraction work on ammonium carbonate monohydrate, ammonium bicarbonate and ammonium carbamate, with complementary Density Functional Theory (DFT) calculations. The excellent agreement between experiments and DFT calculations obtained so far adds weight to the accuracy of calculated material properties of ammonium sesquicarbonate monohydrate and several polymorphs of urea where little empirical data exists. These experimental and computational studies provide the structural, thermoelastic and vibrational information required for accurate planetary modelling and remote identification of these material on planetary surfaces. [1] Kargel (1991) Icarus 94 , 368-390. [2] De Sanctis et al. (2016) Nature Letters, 1-4. [3] Han et al. (2013) Int. J. Greenhouse Gas Control 14 , 270-281. [4] Lan et al. (2012) Int. J. Hydrogen Energy 37 (2), 1482-1494.

  5. Dynamical Stability of Imaged Planetary Systems in Formation: Application to HL Tau

    NASA Astrophysics Data System (ADS)

    Tamayo, D.; Triaud, A. H. M. J.; Menou, K.; Rein, H.

    2015-06-01

    A recent Atacama Large Millimeter/Submillimeter Array image revealed several concentric gaps in the protoplanetary disk surrounding the young star HL Tau. We consider the hypothesis that these gaps are carved by planets, and present a general framework for understanding the dynamical stability of such systems over typical disk lifetimes, providing estimates for the maximum planetary masses. We collect these easily evaluated constraints into a workflow that can help guide the design and interpretation of new observational campaigns and numerical simulations of gap opening in such systems. We argue that the locations of resonances should be significantly shifted in massive disks like HL Tau, and that theoretical uncertainties in the exact offset, together with observational errors, imply a large uncertainty in the dynamical state and stability in such disks. This presents an important barrier to using systems like HL Tau as a proxy for the initial conditions following planet formation. An important observational avenue to breaking this degeneracy is to search for eccentric gaps, which could implicate resonantly interacting planets. Unfortunately, massive disks like HL Tau should induce swift pericenter precession that would smear out any such eccentric features of planetary origin. This motivates pushing toward more typical, less massive disks. For a nominal non-resonant model of the HL Tau system with five planets, we find a maximum mass for the outer three bodies of approximately 2 Neptune masses. In a resonant configuration, these planets can reach at least the mass of Saturn. The inner two planets’ masses are unconstrained by dynamical stability arguments.

  6. Science Drivers for Polarimetric Exploration of the Solar System and Beyond

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2012-12-01

    Remote sensing and robotic exploration of our solar system and exoplanetary systems can be enhanced with the inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy. Since all objects have unique polarimetric signatures, like fingerprints, much can be learned about the scattering object. I highlight some of the science drivers that will benefit from polarimteric exploration. In our own dynamic solar system, the study of linear polarization of reflected light by solar system objects (planetary atmospheres, satellites, rings systems, comets, asteroids, dust, etc.) provides insight into the scattering characteristics of aerosols and hazes in atmospheres and surficial properties of atmosphereless objects. Well-known examples are the identification of spherical droplets of sulphuric acid in the atmosphere of Venus, and dust storms and ice clouds on Mars. In the case of outer planets, although the phase angles available from earth to observe are limited to a very narrow range, measurements of linear limb polarization characterizes the variation of aerosol properties across the planetary disk. Since methane is present in all giant planets' atmospheres, limb measurements of linear polarization in various methane bands allow a direct measurement of the vertical distribution of aerosol and haze particles, complementary to direct imaging and spectroscopy. Linear polarization of atmosphereless objects (the Moon, planetary satellites and asteroids) are diagnostic of surface texture, and demonstrate that most of them have their surfaces covered with a regolith of fine material, function of particle size and packing density. The recent discovery of multi-planetary systems (or multis) by Kepler mission, illustrate that a variety of planetary systems exist beyond our solar system. Current indirect techniques such as radial velocity, pulsar timing, and transits identify exoplanetary candidates and identification of atmospheric species. Direct detection and characterization of exoplanets can be achieved by measurement of linear polarization of reflected starlight by exoplanets. Our solar system, therefore, provides a dynamic laboratory and template to detect and characterize exoplanetary systems. Search for habitability elsewhere in the solar and exoplanetary systems is another important science driver. Chirality or handedness is a property of molecules that exhibit mirror-image symmetry (similar to right and left hands). Right- or left-chirality is characterized by circularly polarized light. All known biological activity and all life forms on earth are chiral and pre-dominantly left-handed. This property can be investigated by measuring the circular polarization of various species on planetary bodies. The search for the emergence of habitability in the solar system and exoplanetary systems can be aided by the measurement of circular polarization of comets; planetary and satellites' atmospheres and asteroids. Therefore, inclusion of polarimetric remote sensing and development of spectropolarimeters for ground-based facilities and instruments on space missions is needed, with similar maturation of vector radiative transfer models and related laboratory measurements.

  7. Trio of Neptunes and their Belt

    NASA Astrophysics Data System (ADS)

    2006-05-01

    Using the ultra-precise HARPS spectrograph on ESO's 3.6-m telescope at La Silla (Chile), a team of European astronomers have discovered that a nearby star is host to three Neptune-mass planets. The innermost planet is most probably rocky, while the outermost is the first known Neptune-mass planet to reside in the habitable zone. This unique system is likely further enriched by an asteroid belt. ESO PR Photo 18a/06 ESO PR Photo 18a/06 Planetary System Around HD 69830 (Artist's Impression) "For the first time, we have discovered a planetary system composed of several Neptune-mass planets", said Christophe Lovis, from the Geneva Observatory and lead-author of the paper presenting the results [1]. During more than two years, the astronomers carefully studied HD 69830, a rather inconspicuous nearby star slightly less massive than the Sun. Located 41 light-years away towards the constellation of Puppis (the Stern), it is, with a visual magnitude of 5.95, just visible with the unaided eye. The astronomers' precise radial-velocity measurements [2] allowed them to discover the presence of three tiny companions orbiting their parent star in 8.67, 31.6 and 197 days. "Only ESO's HARPS instrument installed at the La Silla Observatory, Chile, made it possible to uncover these planets", said Michel Mayor, also from Geneva Observatory, and HARPS Principal Investigator. "Without any doubt, it is presently the world's most precise planet-hunting machine" [3]. ESO PR Photo 18d/06 ESO PR Photo 18d/06 Phase Folded Measurements of HD 69830 The detected velocity variations are between 2 and 3 metres per second, corresponding to about 9 km/h! That's the speed of a person walking briskly. Such tiny signals could not have been distinguished from 'simple noise' by most of today's available spectrographs. The newly found planets have minimum masses between 10 and 18 times the mass of the Earth. Extensive theoretical simulations favour an essentially rocky composition for the inner planet, and a rocky/gas structure for the middle one. The outer planet has probably accreted some ice during its formation, and is likely to be made of a rocky/icy core surrounded by a quite massive envelope. Further calculations have also shown that the system is in a dynamically stable configuration. ESO PR Photo 18e/06 ESO PR Photo 18e/06 Formation Process of the Planetary System The outer planet also appears to be located near the inner edge of the habitable zone, where liquid water can exist at the surface of rocky/icy bodies. Although this planet is probably not Earth-like due to its heavy mass, its discovery opens the way to exciting perspectives. "This alone makes this system already exceptional", said Willy Benz, from Bern University, and co-author. "But the recent discovery by the Spitzer Space Telescope that the star most likely hosts an asteroid belt is adding the cherry to the cake." With three roughly equal-mass planets, one being in the habitable zone, and an asteroid belt, this planetary system shares many properties with our own solar system. "The planetary system around HD 69830 clearly represents a Rosetta stone in our understanding of how planets form", said Michel Mayor. "No doubt it will help us better understand the huge diversity we have observed since the first extra-solar planet was found 11 years ago." High resolution images and their captions are available on this page. Video footage and animations are also available on this page.

  8. Analogs from LEO: Mapping Earth Observations to Planetary Science & Astrobiology. (Invited)

    NASA Astrophysics Data System (ADS)

    Hand, K. P.; Painter, T. H.

    2010-12-01

    If, as Charles Lyell articulated ‘the present is the key to the past’ for terrestrial geology, then perhaps by extension the Earth, our planet, is the key to understanding other planets. This is the basic premise behind planetary analogs. Many planetary science missions, however, utilize orbiters and are therefore constrained to remote sensing. This is the reverse of how we developed our understanding of Earth’s environments; remote sensing is a relatively new tool for understanding environments and processes on Earth. Here we present several cases and comparisons between Earth’s cryosphere and icy worlds of the outer Solar System (e.g. Europa, Titan, and Enceladus), where much of our knowledge is limited to remote observations (the sole exception being the Huygens probe to Titan). Three regions are considered: glaciers in the Sierra Nevada, the permafrost lakes of Alaska’s North Slope, and spreading centers of the ocean floor. Two key issues are examined: 1) successes and limitations for understanding processes that shape icy worlds, and 2) successes and limitations for assessing the habitability of icy worlds from orbit. Finally, technological considerations for future orbiting mission to icy worlds are presented.

  9. Planetary Geochemistry Techniques: Probing In-Situ with Neutron and Gamma Rays (PING) Instrument

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S.; Lin, L.; McClanahan, T.; Nankung, M.; Nowicki, S.; Schweitzer, J.; hide

    2011-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our technology development program at NASA Goddard Space Flight Center's (NASA/GSFC) Astrochemistry Laboratory is to extend the application of neutron interrogation techniques to landed in situ planetary composition measurements by using a 14 MeV Pulsed Neutron Generator (PNG) combined with neutron and gamma ray detectors, to probe the surface and subsurface of planetary bodies without the need to drill. We are thus working to bring the PING instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets.

  10. Integrated optimization of planetary rover layout and exploration routes

    NASA Astrophysics Data System (ADS)

    Lee, Dongoo; Ahn, Jaemyung

    2018-01-01

    This article introduces an optimization framework for the integrated design of a planetary surface rover and its exploration route that is applicable to the initial phase of a planetary exploration campaign composed of multiple surface missions. The scientific capability and the mobility of a rover are modelled as functions of the science weight fraction, a key parameter characterizing the rover. The proposed problem is formulated as a mixed-integer nonlinear program that maximizes the sum of profits obtained through a planetary surface exploration mission by simultaneously determining the science weight fraction of the rover, the sites to visit and their visiting sequences under resource consumption constraints imposed on each route and collectively on a mission. A solution procedure for the proposed problem composed of two loops (the outer loop and the inner loop) is developed. The results of test cases demonstrating the effectiveness of the proposed framework are presented.

  11. Habitable Planetary Systems (un)like our own: Which of the Known Extra-Solar Systems Could Harbor Earth-like Planets?

    NASA Astrophysics Data System (ADS)

    Raymond, Sean; Mandell, A.; Sigurdsson, S.

    2006-12-01

    Gas giant planets are far easier than terrestrial planets to detect around other stars, and are thought to form much more quickly than terrestrial planets. Thus, in systems with giant planets, the final stages of terrestrial planet formation are strongly affected by the giant planets' dynamical presence. Observations of giant planet orbits may therefore constrain the systems that can harbor potentially habitable, Earth-like planets. We combine two recent studies (1,2) and establish rough inner and outer limits for the giant planet orbits that allow terrestrial planets of at least 0.3 Earth masses to form in the habitable zone (HZ). For a star like the Sun, potentially habitable planets can form in systems with relatively low-eccentricity giant planets inside 0.5 Astronomical Units (AU) or outside 2.5 AU. More than one third of the currently known giant planet systems could have formed and now harbor a habitable planet. We thank NASA Astrobiology Institute for funding, through the Penn State, NASA Goddard, Virtual Planetary Laboratory, and University of Colorado lead teams. (1. Raymond, S.N., 2006, ApJ, 643, L131.; 2. Raymond, S.N., Mandell, A.M., Sigurdsson, S. 2006, Science, 313, 1413).

  12. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.

    1986-01-01

    The recognition of the need to make laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressure which correspond to the altitudes probed by radio occultation experiments, and over a range of frequencies which correspond to both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. Construction was completed of the outer planets simulator and measurements were conducted of the microwave absorption and refraction from nitrogen under simulated Titan conditions. The results of these and previous laboratory measurements were applied to a wide range of microwave opacity measurements, in order to derive constituent densities and distributions in planetary atmospheres such as Venus.

  13. Update on the Fabrication and Performance of 2-D Arrays of Superconducting Magnesium Diboride (MgB2) Thermal Detectors for Outer-Planets Exploration

    NASA Technical Reports Server (NTRS)

    Lakew, Brook; Aslam, S.

    2011-01-01

    Detectors with better performance than the current thermopile detectors that operate at room temperature will be needed at the focal plane of far-infrared instruments on future planetary exploration missions. We will present an update on recent results from the 2-D array of MgB2 thermal detectors being currently developed at NASA Goddard. Noise and sensitivity results will be presented and compared to thermal detectors currently in use on planetary missions.

  14. The deep, hot biosphere.

    PubMed

    Gold, T

    1992-07-01

    There are strong indications that microbial life is widespread at depth in the crust of the Earth, just as such life has been identified in numerous ocean vents. This life is not dependent on solar energy and photosynthesis for its primary energy supply, and it is essentially independent of the surface circumstances. Its energy supply comes from chemical sources, due to fluids that migrate upward from deeper levels in the Earth. In mass and volume it may be comparable with all surface life. Such microbial life may account for the presence of biological molecules in all carbonaceous materials in the outer crust, and the inference that these materials must have derived from biological deposits accumulated at the surface is therefore not necessarily valid. Subsurface life may be widespread among the planetary bodies of our solar system, since many of them have equally suitable conditions below, while having totally inhospitable surfaces. One may even speculate that such life may be widely disseminated in the universe, since planetary type bodies with similar subsurface conditions may be common as solitary objects in space, as well as in other solar-type systems.

  15. The detection and study of pre-planetary disks

    NASA Technical Reports Server (NTRS)

    Sargent, A. I.; Beckwith, S. V. W.

    1994-01-01

    A variety of evidence suggests that at least 50% of low-mass stars are surrounded by disks of the gas and dust similar to the nebula that surrounded the Sun before the formation of the planets. The properties of these disks may bear strongly on the way in which planetary systems form and evolve. As a result of major instrumental developments over the last decade, it is now possible to detect and study the circumstellar environments of the very young, solar-type stars in some detail, and to compare the results with theoretical models of the early solar system. For example, millimeter-wave aperture synthesis imaging provides a direct means of studying in detail the morphology, temperature and density distributions, velocity field and chemical constituents in the outer disks, while high resolution, near infrared spectroscopy probes the inner, warmer parts; the emergence of gaps in the disks, possibly reflecting the formation of planets, may be reflected in the variation of their dust continuum emission with wavelength. We review progress to date and discuss likely directions for future research.

  16. Backward Planetary Protection Issues and Possible Solutions for Icy Plume Sample Return Missions from Astrobiological Targets

    NASA Astrophysics Data System (ADS)

    Yano, Hajime; McKay, Christopher P.; Anbar, Ariel; Tsou, Peter

    The recent report of possible water vapor plumes at Europa and Ceres, together with the well-known Enceladus plume containing water vapor, salt, ammonia, and organic molecules, suggests that sample return missions could evolve into a generic approach for outer Solar System exploration in the near future, especially for the benefit of astrobiology research. Sampling such plumes can be accomplished via fly-through mission designs, modeled after the successful Stardust mission to capture and return material from Comet Wild-2 and multiple, precise trajectory controls of the Cassini mission to fly through Enceladus’ plume. The proposed LIFE (Life Investigation For Enceladus) mission to Enceladus, which would sample organic molecules from the plume of that apparently habitable world, provides one example of the appealing scientific return of such missions. Beyond plumes, the upper atmosphere of Titan could also be sampled in this manner. The SCIM mission to Mars, also inspired by Stardust, would sample and return aerosol dust in the upper atmosphere of Mars and thus extends this concept even to other planetary bodies. Such missions share common design needs. In particular, they require large exposed sampler areas (or sampler arrays) that can be contained to the standards called for by international planetary protection protocols that COSPAR Planetary Protection Policy (PPP) recommends. Containment is also needed because these missions are driven by astrobiologically relevant science - including interest in organic molecules - which argues against heat sterilization that could destroy scientific value of samples. Sample containment is a daunting engineering challenge. Containment systems must be carefully designed to appropriate levels to satisfy the two top requirements: planetary protection policy and the preserving the scientific value of samples. Planning for Mars sample return tends to center on a hermetic seal specification (i.e., gas-tight against helium escape). While this is an ideal specification, it far exceeds the current PPP requirements for Category-V “restricted Earth return”, which typically center on a probability of escape of a biologically active particle (e.g., < 1 in 10 (6) chance of escape of particles > 50 nm diameter). Particles of this size (orders of magnitude larger than a helium atom) are not volatile and generally “sticky” toward surfaces; the mobility of viruses and biomolecules requires aerosolization. Thus, meeting the planetary protection challenge does not require hermetic seal. So far, only a handful of robotic missions accomplished deep space sample returns, i.e., Genesis, Stardust and Hayabusa. This year, Hayabusa-2 will be launched and OSIRIS-REx will follow in a few years. All of these missions are classified as “unrestricted Earth return” by the COSPAR PPP recommendation. Nevertheless, scientific requirements of organic contamination control have been implemented to all WBS regarding sampling mechanism and Earth return capsule of Hayabusa-2. While Genesis, Stardust and OSIRIS-REx capsules “breathe” terrestrial air as they re-enter Earth’s atmosphere, temporal “air-tight” design was already achieved by the Hayabusa-1 sample container using a double O-ring seal, and that for the Hayabusa-2 will retain noble gas and other released gas from returned solid samples using metal seal technology. After return, these gases can be collected through a filtered needle interface without opening the entire container lid. This expertise can be extended to meeting planetary protection requirements from “restricted return” targets. There are still some areas requiring new innovations, especially to assure contingency robustness in every phase of a return mission. These must be achieved by meeting both PPP and scientific requirements during initial design and WBS of the integrated sampling system including the Earth return capsule. It is also important to note that international communities in planetary protection, sample return science, and deep space engineering must meet to enable this game-changing opportunity of Outer Solar System exploration.

  17. APIS : an interactive database of HST-UV observations of the outer planets

    NASA Astrophysics Data System (ADS)

    Lamy, Laurent; Henry, Florence; Prangé, Renée; Le Sidaner, Pierre

    2014-05-01

    Remote UV measurement of the outer planets offer a wealth of informations on rings, moons, planetary atmospheres and magnetospheres. Auroral emissions in particular provide highly valuable constraints on the auroral processes at work and the underlying coupling between the solar wind, the magnetosphere, the ionosphere and the moons. Key observables provided by high resolution spectro-imaging include the spatial topology and the dynamics of active magnetic field lines, the radiated and the precipitated powers or the energy of precipitating particles. The Hubble Space Telescope (HST) acquired thousands of Far-UV spectra and images of the aurorae of Jupiter, Saturn and Uranus since 1993, feeding in numerous magnetospheric studies. But their use remains generally limited, owing to the difficulty to access and use raw and value-added data. APIS, the egyptian god of fertilization, is also the acronym of a new database (Auroral Planetary Imaging and Spectroscopy), aimed at facilitating the use of HST planetary auroral observations. APIS is based at the Virtual Observatory (VO) of Paris and provides a free and interactive access to a variety of high level data through a simple research interface and standard VO tools (as Aladin, Specview). We will present the capabilities of APIS and illustrate them with several examples.

  18. APIS : an interactive database of HST-UV observations of the outer planets

    NASA Astrophysics Data System (ADS)

    Lamy, L.; Henry, F.; Prangé, R.; Le Sidaner, P.

    2013-09-01

    Remote UV measurement of the outer planets are a wealth of informations on rings, moons, planetary atmospheres and magnetospheres. Auroral emissions in particular provide highly valuable constraints on the auroral processes at work and the underlying coupling between the solar wind, the magnetosphere, the ionosphere and the moons. Key observables provided by high resolution spectro-imaging include the spatial topology and the dynamics of active magnetic field lines, the radiated and the precipitated powers or the energy of precipitating particles. The Hubble Space Telescope (HST) acquired thousands of Far-UV spectra and images of the aurorae of Jupiter, Saturn and Uranus since 1993, feeding in numerous magnetospheric studies. But their use remains generally limited, owing to the difficulty to access and use raw and value-added data. APIS, the egyptian god of fertilization, is also the acronym of a new database (Auroral Planetary Imaging and Spectroscopy, Figure 1), aimed at facilitating the use of HST planetary auroral observations. APIS is based at the Virtual Observatory (VO) of Paris and provides a free and interactive access to a variety of high level data through a simple research interface and standard VO tools. We will present the capabilities of APIS and illustrate them with several examples.

  19. Long-Term Dynamics of Small Bodies in the Solar System

    NASA Technical Reports Server (NTRS)

    Saunders, Steve (Technical Monitor); Holman, Matthew J.

    2005-01-01

    As part of the NASA Planetary Geology and Geophysics program Prof. Norm Murray (CITA) and I have been conducting investigations of the long-term dynamics of small bodies in the outer solar system. This grant, and its predecessor NAG5-7761, supported travel for collaboration by the Investigators and also supports Murray during an annual one month visit to the CfA for further collaboration. In the course of this grant we made a number of advances in solar system dynamics. For example, we developed an analytic model for the origin and consequence of chaos associated with three-body resonances in the asteroid belt. This has been shown to be important for the delivery of near Earth objects. We later extended this model to three-body resonances among planets. We were able to show that the numerically identified chaos among the outer planets results from a three-body resonance involving Jupiter, Saturn, and Uranus. The resulting paper was awarded the 1999 Newcomb Cleveland award from the AAAS. This award singles out one paper published in Science each year for distinction. This grant has also supported, in part, my participate in other solar system dynamics projects. The results from those collaborations are also listed.

  20. Assessment of in-flight anomalies of long life outer plant mission

    NASA Technical Reports Server (NTRS)

    Hoffman, Alan R.; Green, Nelson W.; Garrett, Henry B.

    2004-01-01

    Thee unmanned planetary spacecraft to the outer planets have been controlled and operated successfully in space for an accumulated total of 66 years. The Voyager 1 and 2 spacecraft each have been in space for more than 26 years. The Galileo spacecraft was in space for 14 years, including eight years in orbit about Jupiter. During the flight operations for these missions, anomalies for the ground data system and the flight systems have been tracked using the anomaly reporting tool at the Jet Propulsion Laboratory. A total of 3300 incidents, surprises, and anomaly reports have been recorded in the database. This paper describes methods and results for classifying and identifying trends relative to ground system vs. flight system, software vs. hardware, and corrective actions. There are several lessons learned from these assessments that significantly benefit the design and planning for long life missions of the future. These include the necessity for having redundancy for successful operation of the spacecraft, awareness that anomaly reporting is dependent on mission activity not the age of the spacecraft, and the need for having a program to maintain and transfer operation knowledge and tools to replacement flight team members.

  1. Observations and Laboratory Data of Planetary Organics

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.

    2002-01-01

    Many efforts are underway to search for evidence of prebiotic materials in the outer solar system. Current and planned Mars missions obtain remote sensing observations that can be used to address the potential presence of prebiotic materials. Additional missions to, and continuing earth-based observations of, more distant solar system objects will also provide remote sensing observations that can be used to address the potential presence of prebiotic materials. I will present an overview of on-going observations, associated laboratory investigations of candidate materials, and theoretical modeling of observational data. In the past the room temperature reflectance spectra of many residues created from HC-bearing gases and solids have been reported. The results of an investigation of what effect temperatures more representative of outer solar system surfaces (50-140K) have on the reflectance spectra of these residues, and the associated interpretations, will be presented. The relatively organic-rich Tagish Lake Meteorite has been suggested as a spectral analog for Dtype asteroids. Using a new approach that relies upon iterative use of Hapke theory and Kraniers-Kronig analysis the optical constants of TLM were estimated. The approach and results of the analysis will be presented. Use of optical constants in scattering theories, such as the Hapke theory, provide the ability to determine quantitative estimates of the relative abundances and grain sizes of candidate surface components. This approach has been applied to interpret the reflectance spectra of several outer solar system surfaces. A summary will be provided describing the results of such modeling efforts.

  2. Viscous dissipation of energy at the stage of accumulation of the Earth

    NASA Astrophysics Data System (ADS)

    Yurie Khachay, Professor; Olga Hachay, Professor; Antipin, Alexandr

    2017-04-01

    In the papers [1,2] it is published the differentiation model of the proto planet cloud during the accumulation of the Earth's group planets. In [2] it was shown that the energy released during the decay of short-lived radioactive elements in the small size more than 50 km, it is enough that the temperature inside of the protoplanet becomes larger than the temperature of iron melting. It provides a realization of the matter differentiation process and convection development inside the inner envelopes. With increasing of the Earth, the forming region of the outer core remains in a molten state, although the power and viscosity of the layer changed. In [3] it is shown that during the sequence of growth changes of accumulated protoplanets, the main contribution of heat is provided first by radioactive sources, and then heated from above by converting the kinetic energy during the growing impact inside the Earth, and finally heated from below. That provides three types of driving mechanisms of convection: internal heat sources; heated top; heated from bottom and chemical-thermal convection. At all stages of proto Earth's development the convective heat-mass transfer becomes a most significant factor in the dynamics of the planet. However, the heat release due to friction in the viscous liquid of the outer core up to now was not still considered, or it was considered only for the formed planetary envelopes with a constant radius. In this paper we present the first results of thermal evolution numerical modeling of 3D spherical segment for a protoplanet with increasing radius and accounting random falling of bodies and particles. To describe the planetary accumulation Safronov equation is used [4]. For the quantitative account of the released heat by viscous friction a system of hydro dynamic equations for a viscous liquid is used. The obtained results show that the heat input due to viscous friction heat release at the early stage of planetary accumulation was very significant. That influence is defined by a set of factors. It was changed the width of the formed outer core. It was changed the distribution of the temperature and hydrostatic pressure inside the core and reciprocally the viscosity of the matter. It had been changed the orbit parameters of the system Earth-Moon. The received results depend from the parameters, the values of which are known with large degree of uncertainty. They have to be specified during next researchers. This work was supported by grant RFBRI №16-05-00540 References. 1. V.Anfilogov,Y. Khachay ,2005, Possible variant of matter differentiation on the initial stage of Earth's forming //DAN, 2005, V. 403, № 6, p. 803-806. 2.V.Anfilogov,Y.Khachay ,2015, Some Aspects of the Solar System Formation. Springer Briefs of the Earth Sciences. -75p 3.Khachay Yu.V., Hachay O.A. Heat production by the viscous dissipation of energy at the stage of accumulation of the Earth. Geophysical Research AbstractsVol. 18, EGU2016-2825, 2016 4. Khachay Yu. Realization of thermal Convection into the initial Earth's Core on the Stage of planetary Accumulation // Geophysical Research Abstracts, Vol. 17, EGU2015-2211, 2015.

  3. Remote Thermal IR Spectroscopy of our Solar System

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Hewagama, Tilak; Goldstein, Jeffrey; Livengood, Timothy; Fast, Kelly

    1999-01-01

    Indirect methods to detect extrasolar planets have been successful in identifying a number of stars with companion planets. No direct detection of an extrasolar planet has yet been reported. Spectroscopy in the thermal infrared region provides a potentially powerful approach to detection and characterization of planets and planetary systems. We can use knowledge of our own solar system, its planets and their atmospheres to model spectral characteristics of planets around other stars. Spectra derived from modeling our own solar system seen from an extrasolar perspective can be used to constrain detection strategies, identification of planetary class (terrestrial vs. gaseous) and retrieval of chemical, thermal and dynamical information. Emission from planets in our solar system peaks in the thermal infrared region, approximately 10 - 30 microns, substantially displaced from the maximum of the much brighter solar emission in the visible near 0.5 microns. This fact provides a relatively good contrast ratio to discriminate between stellar (solar) and planetary emission and optimize the delectability of planetary spectra. Important molecular constituents in planetary atmospheres have rotational-vibrational spectra in the thermal infrared region. Spectra from these molecules have been well characterized in the laboratory and studied in the atmospheres of solar system planets from ground-based and space platforms. The best example of such measurements are the studies with Fourier transform spectrometers, the Infrared Interferometer Spectrometers (IRIS), from spacecraft: Earth observed from NIMBUS 8, Mars observed from Mariner 9, and the outer planets observed from Voyager spacecraft. An Earth-like planet is characterized by atmospheric spectra of ozone, carbon dioxide, and water. Terrestrial planets have oxidizing atmospheres which are easily distinguished from reducing atmospheres of gaseous giant planets which lack oxygen-bearing species and are characterized by spectra containing hydrocarbons such as methane and ethane. Spectroscopic information on extrasolar planets thus can permit their classification. Spectra and spectral lines contain information on the temperature structure of the atmosphere. Line and band spectra can be used to identify the molecular constituents and retrieve species abundances, thereby classifying and characterizing the planet. At high enough spectral resolution characteristic planetary atmospheric dynamics and unique phenomena such as failure of local thermodynamic equilibrium can be identified. Dynamically induced effects such as planetary rotation and orbital velocity shift and change the shape of spectral features and must be modeled in detailed spectral studies. We will use our knowledge of the compositional, thermal and dynamical characteristics of planetary atmospheres in our own solar system to model spectra observed remotely on similar planets in extrasolar planetary systems. We will use a detailed radiative transfer and beam integration program developed for the modeling and interpretation of thermal infrared spectra measured from nearby planet planets to generate models of an extra-solar "Earth" and "Jupiter". From these models we will show how key spectral features distinguish between terrestrial and gaseous planets, what information can be obtained with different spectral resolution, what spectral features can be used to search for conditions for biogenic activity, and how dynamics and distance modify the observed spectra. We also will look at unique planetary phenomena such as atmospheric lasing and discuss their utility as probes for detection and identification of planets. Results of such studies will provide information to constrain design for instrumentation needed to directly detect extrasolar planets.

  4. Chaos in the Solar System

    NASA Technical Reports Server (NTRS)

    Lecar, Myron; Franklin, Fred A.; Holman, Matthew J.; Murray, Norman J.

    2001-01-01

    The physical basis of chaos in the solar system is now better understood: In all cases investigated so far, chaotic orbits result from overlapping resonances. Perhaps the clearest examples are found in the asteroid belt. Overlapping resonances account for its kirkwood gaps and were used to predict and find evidence for very narrow gaps in the outer belt. Further afield, about one new "short-peroid" comet is discovered each year. They are believed to come from the "Kuiper Belt" (at 40 AU or more) via chaotic orbits produced by mean-motion and secular resonances with Neptune. Finally, the planetary system itself is not immune from chaos. In the inner solar system, overlapping secular resonances have been identified as the possible source of chaos. For example, Mercury in 1012 years, may suffer a close encounter with Venus or plunge into the Sun. In the outer solar system, three-body resonances have been identified as a source of chaos, but on an even longer time scale of 109 times the age of the solar system. On the human time scale, the planets do follow their orbits in a stately procession, and we can predict their trajectories for hundreds of thousands of years. That is because the mavericks, with shorter instability times, have long since been ejected. The solar system is not stable; it is just old!

  5. Organic solids produced by electrical discharge in reducing atmospheres - Tholin molecular analysis

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.; Zumberge, J. E.; Sklarew, D. S.; Nagy, B.

    1981-01-01

    The complex dark brown solid of a class called tholins, produced on passage of an electrical discharge through a roughly equimolar mixture of methane and ammonia with 2.6% water vapor, is analyzed by vacuum pyrolysis followed by gas chromatography and mass spectrometry. Pyrolyzates include a wide range of aliphatic and aromatic nitriles, alkanes, alkenes, aromatic hydrocarbons, pyrrole, and pyridine. This tholin is remarkably stable to 950 C. It and its degradation products are candidate constituents of planetary aerosols in the outer solar system and of the grains in the interstellar medium.

  6. Solid-state greenhouses and their implications for icy satellites

    NASA Technical Reports Server (NTRS)

    Matson, Dennis L.; Brown, Robert H.

    1989-01-01

    The 'solid-state greenhouse effect' model constituted by the subsurface solar heating of translucent, high-albedo materials is presently applied to the study of planetary surfaces, with attention to frost and ice surfaces of the solar system's outer satellites. Temperature is computed as a function of depth for an illustrative range of thermal variables, and it is discovered that the surfaces and interiors of such bodies can be warmer than otherwise suspected. Mechanisms are identified through which the modest alteration of surface properties can substantially change the solid-state greenhouse and force an interior temperature adjustment.

  7. Martians R Us.

    ERIC Educational Resources Information Center

    West, Rose

    1988-01-01

    Describes a science activity done with sixth graders during a unit on outer space. Uses the "Discovery Lab" software program to introduce controlled and experimental variables to the children. Discusses the coordination of library research, computer time, and creative drawing to study planetary environments by designing representative aliens. (CW)

  8. Interpretation of two compact planetary nebulae, IC 4997 and NGC 6572, with aid of theoretical models.

    PubMed Central

    Hyung, S; Aller, L H

    1993-01-01

    Observations of two dense compact planetary nebulae secured with the Hamilton Echelle spectrograph at Lick Observatory combined with previously published UV spectra secured with the International Ultraviolet Explorer enable us to probe the electron densities and temperatures (plasma diagnostics) and ionic concentrations in these objects. The diagnostic diagrams show that no homogenous model will work for these nebulae. NGC 6572 may consist of an inner torordal ring of density 25,000 atoms/cm3 and an outer conical shell of density 10,000 atoms/cm3. The simplest model of IC 4997 suggests a thick inner shell with a density of about 107 atoms/cm3 and an outer envelope of density 10,000 atoms/cm3. The abundances of all elements heavier than He appear to be less than the solar values in NGC 6572, whereas He, C, N, and O may be more abundant in IC 4997 than in the sun. IC 4997 presents puzzling problems. PMID:11607347

  9. The Dynamics and Implications of Gap Clearing via Planets in Planetesimal (Debris) Disks

    NASA Astrophysics Data System (ADS)

    Morrison, Sarah Jane

    Exoplanets and debris disks are examples of solar systems other than our own. As the dusty reservoirs of colliding planetesimals, debris disks provide indicators of planetary system evolution on orbital distance scales beyond those probed by the most prolific exoplanet detection methods, and on timescales 10 r to 10 Gyr. The Solar System possesses both planets and small bodies, and through studying the gravitational interactions between both, we gain insight into the Solar System's past. As we enter the era of resolved observations of debris disks residing around other stars, I add to our theoretical understanding of the dynamical interactions between debris, planets, and combinations thereof. I quantify how single planets clear material in their vicinity and how long this process takes for the entire planetary mass regime. I use these relationships to assess the lowest mass planet that could clear a gap in observed debris disks over the system's lifetime. In the distant outer reaches of gaps in young debris systems, this minimum planet mass can exceed Neptune's. To complement the discoveries of wide-orbit, massive, exoplanets by direct imaging surveys, I assess the dynamical stability of high mass multi-planet systems to estimate how many high mass planets could be packed into young, gapped debris disks. I compare these expectations to the planet detection rates of direct imaging surveys and find that high mass planets are not the primary culprits for forming gaps in young debris disk systems. As an alternative model for forming gaps in planetesimal disks with planets, I assess the efficacy of creating gaps with divergently migrating pairs of planets. I find that migrating planets could produce observed gaps and elude detection. Moreover, the inferred planet masses when neglecting migration for such gaps could be expected to be observable by direct imaging surveys for young, nearby systems. Wide gaps in young systems would likely still require more than two planets even with plantesimal-driven migration. These efforts begin to probe the types of potential planets carving gaps in disks of different evolutionary stages and at wide orbit separations on scales similar to our outer Solar System.

  10. The effects of circumstellar gas on terrestrial planet formation: Theory and observation

    NASA Astrophysics Data System (ADS)

    Mandell, Avram M.

    Our understanding of the evolution of circumstellar material from dust and gas to fully-formed planets has taken dramatic steps forward in the last decade, driven by rapid improvements in our ability to study gas- and dust-rich disks around young stars and the discovery of more than 200 extra-solar planetary systems around other stars. In addition, our ability to model the formation of both terrestrial and giant planets has improved significantly due to new computing techniques and the continued exponential increase in computing power. In this dissertation I expand on existing theories of terrestrial planet formation to include systems similar to those currently being detected around nearby stars, and I develop new observational techniques to probe the chemistry of gas-rich circumstellar disks where such planetary systems may be forming. One of the most significant characteristics of observed extrasolar planetary systems is the presence of giant planets located much closer to their parent star than was thought to be possible. The presence of "Hot Jupiters", Jovian-mass planets with very short orbital periods detected around nearby main sequence stars, has been proposed to be primarily due to the inward migration of planets formed in orbits initially much further from the parent star. Close-in giant planets are thought to have formed in the cold outer regions of planetary systems and migrated inward, passing through the orbital parameter space occupied by the terrestrial planets in our own Solar System; the migration of these planets would have profound effects on the evolution of inner terrestrial planets in these systems. I first explore this scenario with numerical simulations showing that a significant fraction of terrestrial planets could survive the migration process; damping forces could then eventually re-circularize the orbits at distances relatively close to their original positions. Calculations suggest that the final orbits of a significant fraction of the remaining planets would be located in the Habitable Zone, suggesting that planetary systems with close-in giant planets are viable targets for searches for Earth-like habitable planets around other stars. I then present more realistic dynamical simulations of the effects of a migrating giant planet on a disk of protoplanetary material embedded in a gaseous disk, and the subsequent post-scattering evolution of the planetary system. I numerically investigate the dynamics of several types of post-migration planetary systems over 200 million years: a model with a single migrating giant planet, a model with one migrating and one nonmigrating giant planet, and a model excluding the effects of the gas disk. Material that is shepherded in front of the migrating giant planet by moving mean motion resonances accretes into "hot Earths", but survival of these bodies is strongly dependent on dynamical damping. Furthermore, a significant amount of material scattered outward by the giant planet survives in highly excited orbits; the orbits of these scattered bodies are then damped by gas drag and dynamical friction over the remaining accretion time. In all simulations Earth-mass planets accrete on approximately 100 Myr timescales, often with orbits in the Habitable Zone. These planets range in mass and water content, with both quantities increasing with the presence of a gas disk and decreasing with the presence of an outer giant planet. I use scaling arguments and previous results to derive a simple recipe that constrains which giant planet systems are able to form and harbor Earth-like planets in the Habitable Zone, demonstrating that roughly one third of the known planetary systems are potentially habitable. Finally, I present results from a search for new molecular tracers of warm gas in circumstellar disks using the NIRSPEC instrument on the Keck II telescope. I have detected emission from multiple ro-vibrational transitions in the v = 1--0 band of hydroxyl (OH) located in the inner circumstellar regions of two Herbig Ae stars, AB Aurigae and MWC 758. I analyze the temperature of the emitting gas by constructing rotational diagrams, showing that the temperature of the gas in both systems is approximately 700K. I calculate a secure abundance of emitting OH molecules in the upper vibrational state, and discuss the ramifications of various excitation processes on the extrapolation to the total number of OH molecules. I also calculate an inner radius for the emitting gas, showing that the derived Rin is equivalent to that found by near-IR imaging. I compare these results to models of circumstellar disk chemistry as well as observations of other chemical diagnostics, and discuss further improvements to excitation models that are necessary to fully understand the formation and thermal conditions of the detected OH gas.

  11. Resistance of bacterial endospores to outer space for planetary protection purposes--experiment PROTECT of the EXPOSE-E mission.

    PubMed

    Horneck, Gerda; Moeller, Ralf; Cadet, Jean; Douki, Thierry; Mancinelli, Rocco L; Nicholson, Wayne L; Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Spry, Andrew; Stackebrandt, Erko; Vaishampayan, Parag; Venkateswaran, Kasthuri J

    2012-05-01

    Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the "trip to Mars" spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the "stay on Mars" spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the "trip to Mars" or "stay on Mars" spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations.

  12. Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.; Stevenson, D. J.

    1985-01-01

    The thermodynamic stability of clathrate hydrate is calculated to predict the formation conditions corresponding to a range of solar system parameters. The calculations were performed using the statistical mechanical theory developed by van der Waals and Platteeuw (1959) and existing experimental data concerning clathrate hydrate and its components. Dissociation pressures and partition functions (Langmuir constants) are predicted at low pressure for CO clathrate (hydrate) using the properties of chemicals similar to CO. It is argued that nonsolar but well constrained noble gas abundances may be measurable by the Galileo spacecraft in the Jovian atmosphere if the observed carbon enhancement is due to bombardment of the atmosphere by clathrate-bearing planetesimals sometime after planetary formation. The noble gas abundances of the Jovian satellite Titan are predicted, assuming that most of the methane in Titan is accreted as clathrate. It is suggested that under thermodynamically appropriate conditions, complete clathration of water ice could have occurred in high-pressure nebulas around giant planets, but probably not in the outer solar nebula. The stability of clathrate in other pressure ranges is also discussed.

  13. MOMA and other next-generation ion trap mass spectrometers for planetary exploration

    NASA Astrophysics Data System (ADS)

    Arevalo, R. D., Jr.; Brinckerhoff, W. B.; Getty, S.; Mahaffy, P. R.; van Amerom, F. H. W.; Danell, R.; Pinnick, V. T.; Li, X.; Grubisic, A.; Southard, A. E.; Hovmand, L.; Cottin, H.; Makarov, A.

    2016-12-01

    Since the 1970's, quadrupole mass spectrometer (QMS) systems have served as low-risk, cost-efficient means to explore the inner and outer reaches of the solar system. These legacy instruments have interrogated the compositions of the lunar exosphere (LADEE), surface materials on Mars (MSL), and the atmospheres of Venus (Pioneer Venus), Mars (MAVEN) and outer planets (Galileo and Cassini-Huygens). However, the in situ detection of organic compounds on Mars and Titan, coupled with ground-based measurements of amino acids in meteorites and a variety of organics in comets, has underlined the importance of molecular disambiguation in the characterization of high-priority planetary environments. The Mars Organic Molecule Analyzer (MOMA) flight instrument, centered on a linear ion trap, enables the in situ detection of volatile and non-volatile organics, but also the characterization of molecular structures through SWIFT ion isolation/excitation and tandem mass spectrometry (MSn). Like the SAM instrument on MSL, the MOMA investigation also includes a gas chromatograph (GC), thereby enabling the chemical separation of potential isobaric interferences based on retention times. The Linear Ion Trap Mass Spectrometer (LITMS; PI: William Brinckerhoff), developed to TRL 6 via the ROSES MatISSE Program, augments the core MOMA design and adds: expanded mass range (from 20 - 2000 Da); high-temperature evolved gas analysis (up to 1300°C); and, dual polarity detector assemblies (supporting the measurement of negative ions). The LITMS instrument will be tested in the field in 2017 through the Atacama Rover Astrobiology Drilling Studies (ARADS; PI: Brian Glass) ROSES PSTAR award. Following on these advancements, the Advanced Resolution Organic Molecule Analyzer (AROMA; PI: Ricardo Arevalo Jr.), supported through the ROSES PICASSO Program, combines a highly capable MOMA/LITMS-like linear ion trap and the ultrahigh resolution CosmOrbitrap mass analyzer developed by a consortium of five French laboratories. Phase I of this project has seen the development of a dedicated testbed that enables performance characterization of an Orbitrap analyzer as a function of compromised environmental conditions, simulating the reduced resources expected for planetary missions to small bodies and/or cryogenic worlds.

  14. The Moon: Keystone to Understanding Planetary Geological Processes and History

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Extensive and intensive exploration of the Earth's Moon by astronauts and an international array of automated spacecraft has provided an unequaled data set that has provided deep insight into geology, geochemistry, mineralogy, petrology, chronology, geophysics and internal structure. This level of insight is unequaled except for Earth. Analysis of these data sets over the last 35 years has proven fundamental to understanding planetary surface processes and evolution, and is essential to linking surface processes with internal and thermal evolution. Much of the understanding that we presently have of other terrestrial planets and outer planet satellites derives from the foundation of these data. On the basis of these data, the Moon is a laboratory for understanding of planetary processes and a keystone for providing evolutionary perspective. Important comparative planetology issues being addressed by lunar studies include impact cratering, magmatic activity and tectonism. Future planetary exploration plans should keep in mind the importance of further lunar exploration in continuing to build solid underpinnings in this keystone to planetary evolution. Examples of these insights and applications to other planets are cited.

  15. The problem of iron partition between Earth and Moon during simultaneous formation as a double planet system

    NASA Technical Reports Server (NTRS)

    Cassidy, W. A.

    1984-01-01

    A planetary model is described which requires fractional vapor/liquid condensation, planet accumulation during condensation, a late start for accumulation of the Moon, and volatile accretion to the surfaces of each planet only near the end of the accumulation process. In the model, initial accumulation of small objects is helped if the agglomerating particles are somewhat sticky. Assuming that growth proceeds through this range, agglomeration continues. If the reservoir of vapor is being preferentially depleted in iron by fractional condensation, an iron-rich planetary core forms. As the temperature decreases, condensing material becomes progressively richer in silicates and poorer in iron, forming the silicate-rich mantle of an already differentiated Earth. A second center of agglomeration successfully forms near the growing Earth after most of the iron in the reservoir has been used up. The bulk composition of the Moon then is similar to the outer mantle of the accumulating Earth.

  16. Ups and downs in planetary science

    USGS Publications Warehouse

    Shoemaker, Carolyn S.

    1999-01-01

    The field of planetary science as it developed during the lifetimes of Gene and Carolyn Shoemaker has sustained a period of exciting growth. Surveying the skies for planet-crossing asteroids and comets and studying the results of their impact upon the planets, especially the Earth, was for Gene and Carolyn an intense and satisfying quest for knowledge. It all started when Gene envisioned man going to the Moon, especially himself. After that, one thing led to another: the study of nuclear craters and a comparison with Meteor Crater, Arizona; the Apollo project and a succession of unmanned space missions to the inner and outer planets; an awareness of cratering throughout our solar system; the search for near-Earth asteroids and comets; a study of ancient craters in Australia; and the impact of Shoemaker-Levy 9 on Jupiter. The new paradigm of impact cratering as a cause for mass extinction and the opening of space for the development of new life forms have been causes to champion.

  17. Are There Oceans Under the Ice of Small Saturnian and Uranian Moons?

    NASA Astrophysics Data System (ADS)

    England, C.

    2003-05-01

    Thermal analysis of the large outer-planetary moons (Titan, Callisto, Ganymede) argue strongly for substantial subsurface oceans if they are made up mostly of rock and ice, and if the rock exhibits radioactivity not too different from that of meteoric and lunar material [1]. For Titania, Rhea, Oberon and Iapetus (the TROI moons) with radii just over 700 km, the existence of oceans is less clear. In these bodies, a subsurface ocean may be likely if the rock has sunk to the center of the moon (i.e., the moon is differentiated) and (1) the radiogenic heating rate is on the higher end of that of lunar samples, (2) the bodies experience tidal heating, or (3) the oceans contain compounds such as ammonia that reduce the freezing point of the aqueous environment. A combination of these occurrences would weigh for a subsurface ocean, perhaps of substantial size. That outer-planetary moons with radii larger than about 200 km (e.g.; Enceladus at 250 km) are spherical argues for separation of light and heavy materials, especially in the larger bodies. Otherwise, the moon exhibits an irregular shape (e.g.; Hyperion at 133 km). Primordial radioactivity and collision events may have aided separation. If present-day radiogenicity is that of lunar samples, natural heating is available to maintain global aqueous environments on all of the TROI moons. The ammonia-water eutectics suggested for Titan [2] provide additional margin. The maintenance of oceans in smaller bodies depends on a balance of internal heat generation and thermal isolation by ice or other insulating material. The more important parameter may be the insulating ice, without which an outer-planetary ocean is not possible. The reduced thermal conductivity for impure ice [3] provides even more likelihood for oceans. Calculations for tidal heating within Europa due to orbital resonances [4] suggest that tidal heating amounts to over 40 times its internal radiogenic heating. A value equal only to natural radiogenic heating would be sufficient to maintain aqueous systems within TROI moons. Subsurface aqueous oceans are likely on Titania, Rhea, Oberon and Iapetus, but will be buried more than 300 km under insulating icy layers. Their existence, and that of an environment favorable for life, may be detectable from surface features or from remote surveys of their internal electromagnetic properties. [1] England C, DPS MEETING #34 Abstract #41.08, 9/2002 [2] Lorenz RD, Lunine JI, McKay CP, ENANTIOMER 6 (2-3): 83-96 2001 [3] Lorenz RD and Shandera SE, GEOPHYSICAL RESEARCH LETTERS 28 (2) 215-218 2001 [4] Ross MN, Schubert G, LUNAR AND PLANETARY SCIENCE XVII, PP. 724-725, 1986

  18. Origin and evolution of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lewis, John S.

    1992-01-01

    This report concerns several research tasks related to the origin and evolution of planetary atmospheres and the large-scale distribution of volatile elements in the Solar System. These tasks and their present status are as follows: (1) we have conducted an analysis of the volatility and condensation behavior of compounds of iron, aluminum, and phosphorus in the atmosphere of Venus in response to publish interpretations of the Soviet Venera probe XRF experiment data, to investigate the chemistry of volcanic gases, injection of volatiles by cometary and asteroidal impactors, and reactions in the troposphere; (2) we have completed and are now writing up our research on condensation-accretion modeling of the terrestrial planets; (3) we have laid the groundwork for a detailed study of the effects of water transport in the solar nebula on the bulk composition, oxidation state, and volatile content of preplanetary solids; (4) we have completed an extensive laboratory study of cryovolcanic materials in the outer solar system; (5) we have begun to study the impact erosion and shock alteration of the atmosphere of Mars resulting from cometary and asteroidal bombardment; and (6) we have developed a new Monte Carlo model of the cometary and asteroidal bombardment flux on the terrestrial planets, including all relevant chemical and physical processes associated with atmospheric entry and impact, to assess both the hazards posed by this bombardment to life on Earth and the degree of cross-correlation between the various phenomena (NO(x) production, explosive yield, crater production, iridium signature, etc.) that characterize this bombardment. The purpose of these investigations has been to contribute to the developing understanding of both the dynamics of long-term planetary atmosphere evolution and the short-term stability of planetary surface environments.

  19. Our Solar System's Cousin?

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This artist's concept illustrates two planetary systems -- 55 Cancri (top) and our own. Blue lines show the orbits of planets, including the dwarf planet Pluto in our solar system. The 55 Cancri system is currently the closest known analogue to our solar system, yet there are some fundamental differences.

    The similarities begin with the stars themselves, which are about the same mass and age. Both stars also host big families of planets. Our solar system has eight planets, while 55 Cancri has five, making it the record-holder for having the most known exoplanets. In fact, 55 Cancri could have additional planets, possibly even rocky ones that are too small to be seen with current technologies. All of the planets in the two systems have nearly circular orbits.

    In addition, both planetary systems have giant planets in their outer regions. The giant located far away from 55 Cancri is four times the mass of our Jupiter, and completes one orbit every 14 years at a distance of five times that between Earth and the sun (about 868 million kilometers or 539 million miles). Our Jupiter completes one orbit around the sun every 11.9 years, also at about five times the Earth-sun distance (778 million kilometers or 483 million miles). Fifty-five Cancri is still the only known star besides ours with a planet in a distant Jupiter-like orbit. Both systems also contain inner planets that are less massive than their outer planets.

    The differences begin with the planets' masses. The planets orbiting 55 Cancri are all larger than Earth, and represent a 'souped-up' version of our own solar system. In fact, this is the first star that boasts more giant planets than our sun!

    The arrangement of the planetary systems is also different. The inner four planets of 55 Cancri are all closer to the star than Earth is to the sun. The closest, about the mass of Uranus, whips around the star in just under three days at a distance of approximately 5.6 million kilometers (3.5 million miles). The second planet out from the star is a little smaller than Jupiter and completes one orbit every 14.7 days at a distance of approximately 17.9 million kilometers (11.2 million miles). The third planet out from the star is similar in mass to Saturn and completes one orbit every 44 days at a distance of approximately 35.9 million kilometers (22.3 million miles). The fourth planet is about half the mass of Saturn, orbits every 260 days and is approximately 116.7 million kilometers (72.5 million miles) away from the star.

  20. Technologies for Outer Planet Missions: A companion to the OPAG Exploration Strategy

    NASA Astrophysics Data System (ADS)

    Beauchamp, Patricia; McKinnon, William

    The Outer Planets Assessment Group (OPAG) advocates the need for a focused technology program for the next Outer Planet Flagship Mission after the Europa Jupiter System Mission (EJSM) in order to be ready for a launch in the mid-2020s. Current planning assumes that a mission to Titan and Enceladus will be the highest priority. The challenges common to all Outer Planetary (OP) missions—large distances, long ight times, and stringent limitations on mass, power, and data rate—mean that all missions can signicantly benet from technical advances in a number of broad areas. Since technology development timescales are long, it is most productive to base technology requirements on the expected general characteristics of future missions. While the strategic Flagship mission concepts are better understood, an estimate of the needs for the competed small class (Discovery) and medium class (New Frontiers) missions can be included in constructing an effective technology investment plan. Technology investment priorities are guided by the requirements established in mission and system studies that are focused on the highest priority science objectives. The next OP mission (after EJSM) may involve orbiting one or both of the saturnian satellites Titan and Enceladus. Other potential OP missions include atmospheric probes of the giant planets, in situ exploration at Titan, flybys or orbiters to the ice giants Neptune and Uranus, and ultimately, landing on Europa or Enceladus. The breadth of technology needed for OP exploration clearly calls for an aggressive and focused technology development strategy that aligns with the Decadal Survey recommended mission profile, and includes technologies developed by NASA, as well as acquisition of applicable technologies from other government and commercial sectors. This presentation shows how the technologies discussed in the white paper derive from the Outer Planet science goals, with particular attention to those required by a mission to Titan and Enceladus -active solar system satellites. We explain why they are significant relative to current solar system goals/priorities and outline how they should influence the next generation of solar system exploration missions. Government sponsorship acknowledged

  1. The Detection Of Planets In The 1:1 Resonance

    NASA Astrophysics Data System (ADS)

    Dvorak, R.; Schneider, J.; Schwarz, R.; Lhotka, C.; Sandor, Z.

    Orbits in the mean motion resonance are of special interest for asteroids in our Solar System. It is due to the fact that in a region 60° before Jupiter and 60° behind the largest planet a large number of asteroids are there. Many analytical and numerical work has been devoted to the stability of these two `clouds` of asteroids, which are named after the warriors of the Trojan war. The Trojans librate about these two stable equilibrium points in the so-called tadpole orbits having two well distinct periods. The 'exchange orbits' in the general three body problem can be described as follows: Two small but massive bodies are moving on nearly circular orbits with almost the same semimajor axes around a much more massive host. Because of the 3rd Keplerian law the one with the inner orbit is faster and approaches the outer body from behind. Before they meet, the inner body is shifted to the orbit of the outer and vice-versa the former outer body moves to an orbit with a smaller semimajor axis: they have changed their orbits and their semimajor axis! In the satellite system of Saturn the two moons Janus and Epimetheus (the orbits of these two moons differ only by 50 km; the respective semimajor axes are 151472 km and 151422 km and have themselves diameters of more than 100 km) have exactly these kinds of orbits. We postulate that this kind of orbits may also exist in extrasolar planetary systems.

  2. Impacts of raindrop evaporative cooling on tropical cyclone secondary eyewall formation

    NASA Astrophysics Data System (ADS)

    Ge, Xuyang; Guan, Liang; Yan, Ziyu

    2018-06-01

    The impacts of raindrop evaporative cooling on secondary eyewall formation (SEF) of simulated tropical cyclones are investigated using idealized numerical experiments. The results suggest that the raindrop evaporative cooling effect is beneficial to the development of secondary eyewall through the planetary boundary layer (PBL) cold pool process. The evaporative cooling-driven downdrafts bring about the surface cold pool beneath a precipitation cloud. This cold pool dynamics act as a lifting mechanism to trigger the outer convection. The radially outward propagation of spiral rainbands broadens the TC size, by which modifies the surface heat fluxes and thus outer convection. Furthermore, the unbalanced PBL process contributes to the SEF. The radially outward surface outflows forces convection at outer region and thus favors a larger TC size. A larger TC implies an enhanced inertial stability at the outer region, which favors a higher conversion efficiency of diabatic heating to kinetic energy.

  3. Extreme Worlds of the Outer Solar System: Dynamic Processes on Uranus & Io

    NASA Astrophysics Data System (ADS)

    Kleer, Katherine Rebecca de

    A central goal of planetary science is the creation of a framework within which the properties of each solar system body can be understood as the product of initial conditions acted on by fundamental physical processes. The solar system's extreme worlds -- those objects that lie at the far ends of the spectrum in terms of planetary environment -- bring to light our misconceptions and present us with opportunities to expand and generalize this framework. Unraveling the processes at work in diverse planetary environments contextualizes our understanding of Earth, and provides a basis for interpreting specific signatures from planets beyond our own solar system. Uranus and Io, with their unusual planetary environments, present two examples of such worlds in the outer solar system. Uranus, one of the outer solar system's ice giants, produces an anomalously low heat flow and orbits the sun on its side. Its relative lack of bright storm features and its bizarre multi-decadal seasons provide insight into the relative effects of internal heat flow and time- varying solar insolation on atmospheric dynamics, while its narrow rings composed of dark, macroscopic particles encode the history of bombardment and satellite disruption within the system. Jupiter's moon Io hosts the most extreme volcanic activity anywhere in the solar system. Its tidally-powered geological activity provides a window into this satellite's interior, permitting rare and valuable investigations into the exchange of heat and materials between interiors and surfaces. In particular, Io provides a laboratory for studying the process of tidal heating, which shapes planets and satellites in our solar system and beyond. A comparison between Earth and Io contextualizes the volcanism at work on our home planet, revealing the effects of planetary size, atmospheric density, and plate tectonics on the style and mechanisms of geological activity. This dissertation investigates the processes at work on these solar system outliers through studies of Uranus' atmosphere and rings and of Io's thermal activity. I show that Uranus' rings are spectrally flat in the near-infrared, setting them apart from all other ring systems in the solar system. I investigate the vertical profile of species in Uranus' atmosphere, and demonstrate evidence for seasonal trends in the upper atmosphere on decadal timescales. Based on a large high-cadence dataset of Io's volcanism obtained with adaptive optics over 100 nights, I show that the thermal timelines of Io's volcanoes indicate at least two distinct classes of eruption. The asymmetric spatial distribution of Io's volcanic heat flow suggests additional mechanisms at work modulating the effects of tidal heating. I present the detection of one of the most powerful eruptions ever seen on Io, which I use to derive a eruption temperature of >1300 K, consistent with a highly mafic magma composition. Geophysical modeling of the thermal timeline of Loki Patera, a distinctive volcanic feature on Io, indicates low lava thermal conductivities also consistent with a highly-mafic silicate composition. Ultra-high-resolution thermal mapping of this patera reveals a multi-phase volcanic resurfacing process that hints at the plumbing system underlying this massive volcanic feature. The results presented here are founded on near-infrared observations of unprecedented resolution in the spatial, spectral, and temporal domains. The interpretation of the data utilizes rigorous statistical techniques to draw meaningful conclusions. In addition to the scientific impact of the findings, this work therefore also pioneers specific ground-based telescope capabilities and analysis tools, and demonstrates their utility to solar system science. Chapter 2 presents the first high-resolution spectra of Uranus' rings. Chapter 3 introduces Markov Chain Monte Carlo simulations into ice giant atmospheric radiative transfer model- ing, permitting a rigorous analysis of parameter uncertainties and correlations. Chapters 4-7 present results from the first multi-year, high-cadence ground-based observing campaign to study Io's volcanism with sufficient spatial resolution to directly resolve individual volcanoes. The thermal timelines of these volcanoes provide unprecedented insight into the variability and distribution of Io's volcanism over a wide range of timescales. Chapter 7 uses geometric arguments to deduce topography of a volcanic feature on Io based on observations at a range of viewing angles. Finally, Chapter 8 presents the first ground-based observations to map a thermal feature on Io at a spatial resolution of ˜10 km on Io's surface, derived from the first mutual satellite occultation event to be observed with adaptive optics on a dual-telescope interferometric system. These techniques can all be expanded and applied to these and other targets in future near-infrared studies.

  4. Flow and fracture of ices, with application to icy satellites (Invited)

    NASA Astrophysics Data System (ADS)

    Durham, W. B.; Stern, L. A.; Pathare, A.; Golding, N.

    2013-12-01

    Exploration of the outer planets and their satellites by spacecraft over the past 4 decades has revealed that the prevailing low temperatures in the outer solar system have not produced "dead" cryoworlds of generic appearance. Rather, there is an extraordinary diversity in average densities, presence/absence and compositions of atmospheres and planetary rings, average albedos and their seasonal changes, near-surface compositions, and surface records of impact cratering and endogenic tectonic and igneous processes. One reason for this diversity is that the icy minerals present in abundance on many of these worlds are now or once were at significant fractions of their melting temperatures. Hence, a host of thermally activated processes related to endogenic activity (such as crystal defect migration, mass diffusion, surface transport, solid-solid changes of state, and partial melting) may occur that can enable inelastic flow on the surfaces and in the interiors of these bodies. Planetary manifestations include viscous crater relaxation in ice-rich terrain, cryovolcanism, the presence of a stable subsurface ocean, and the effects of solid-ice convection in deep interiors. We make the connection between theoretical mechanisms of deformation and planetary geology through laboratory experiment. Specifically, we develop quantitative constitutive flow laws (strain rate vs. stress) that describe the effects of relevant environmental variables (hydrostatic pressure, temperature, phase composition, chemical impurities). Our findings speak to topics including (1) the behavior of an outer ice I layer, its thickness, the depth to which a stagnant lid might extend, and possibility of wholesale overturn; (2) softening effects of dissolved species such as ammonia and perchlorate; (3) hardening effects of enclathration and of rock dust; and (4) effects of grain size on strength and factors affecting grain size. Other applications of lab data include dynamics of the deep interiors of large icy moons; flow of very low melting temperature, weakly bonded solids such as N2, CH4, and CO2; and the behavior of ice-rich, large exoplanets. We will review recent results on the rheological behavior of water ice I in the regime of combined flow by grain size sensitive and grain size insensitive mechanisms of deformation, and in particular the possibility that grain size is not a free variable when ice I deforms over large strains for long periods of time, but rather is defined by stress and temperature. Existing rheological laws suggest that viscosity of an ice-I-rich outer layer on a large icy moon, including a moon as small as Enceladus, may be strongly grain size dependent. We will also review developments in two-phase flow, with implications for geysers on Enceladus and methane in Titan's atmosphere.

  5. Geared Electromechanical Rotary Joint

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1994-01-01

    Geared rotary joint provides low-noise ac or dc electrical contact between electrical subsystems rotating relative to each other. Designed to overcome some disadvantages of older electromechanical interfaces, especially intermittency of sliding-contact and rolling-contact electromechanical joints. Hollow, springy planetary gears provide continuous, redundant, low-noise electrical contact between inner and outer gears.

  6. ARC-1978-AC78-1071

    NASA Image and Video Library

    1978-11-24

    4' and 24' Shock Tubes - Electric Arc Shock Tube Facililty N-229 (East) The facility is used to investigate the effects of radiation and ionization during outer planetary entries as well as for air-blast simualtion which requires the strongest possible shock generation in air at loadings of 1 atm or greater.

  7. Designing for the Barely Imaginable

    ERIC Educational Resources Information Center

    Fisher, Diane

    2007-01-01

    National Aeronautics and Space Administration (NASA) has already sent many technological instruments into outer space. All these instruments were designed and built especially to operate in harsh and alien environments. How do NASA engineers know what kinds of planetary instruments to develop in the first place? Well, they ask. Once engineers…

  8. Exterior Companions to Hot Jupiters Orbiting Cool Stars Are Coplanar

    NASA Astrophysics Data System (ADS)

    Becker, Juliette C.; Vanderburg, Andrew; Adams, Fred C.; Khain, Tali; Bryan, Marta

    2017-12-01

    The existence of hot Jupiters has challenged theories of planetary formation since the first extrasolar planets were detected. Giant planets are generally believed to form far from their host stars, where volatile materials like water exist in their solid phase, making it easier for giant planet cores to accumulate. Several mechanisms have been proposed to explain how giant planets can migrate inward from their birth sites to short-period orbits. One such mechanism, called Kozai-Lidov migration, requires the presence of distant companions in orbits inclined by more than ˜40° with respect to the plane of the hot Jupiter’s orbit. The high occurrence rate of wide companions in hot-Jupiter systems lends support to this theory for migration. However, the exact orbital inclinations of these detected planetary and stellar companions is not known, so it is not clear whether the mutual inclination of these companions is large enough for the Kozai-Lidov process to operate. This paper shows that in systems orbiting cool stars with convective outer layers, the orbits of most wide planetary companions to hot Jupiters must be well aligned with the orbits of the hot Jupiters and the spins of the host stars. For a variety of possible distributions for the inclination of the companion, the width of the distribution must be less than ˜20° to recreate the observations with good fidelity. As a result, the companion orbits are likely well aligned with those of the hot Jupiters, and the Kozai-Lidov mechanism does not enforce migration in these systems.

  9. The Minimum-Mass Surface Density of the Solar Nebula using the Disk Evolution Equation

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2005-01-01

    The Hayashi minimum-mass power law representation of the pre-solar nebula (Hayashi 1981, Prog. Theo. Phys.70,35) is revisited using analytic solutions of the disk evolution equation. A new cumulative-planetary-mass-model (an integrated form of the surface density) is shown to predict a smoother surface density compared with methods based on direct estimates of surface density from planetary data. First, a best-fit transcendental function is applied directly to the cumulative planetary mass data with the surface density obtained by direct differentiation. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the planetary data. The latter model indicates a decay rate of r -1/2 in the inner disk followed by a rapid decay which results in a sharper outer boundary than predicted by the minimum mass model. The model is shown to be a good approximation to the finite-size early Solar Nebula and by extension to extra solar protoplanetary disks.

  10. Planetary and deep space requirements for photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Bennett, R. B.; Stella, P. M.

    1995-01-01

    In the past 25 years, the majority of interplanetary spacecraft have been powered by nuclear sources. However, as the emphasis on smaller, low cost missions gains momentum, the majority of missions now being planned will use photovoltaic solar arrays. This will present challenges to the solar array builders, inasmuch as planetary requirements usually differ from earth orbital requirements. In addition, these requirements often differ greatly, depending on the specific mission; for example, inner planets vs. outer planets, orbiters vs. flybys, spacecraft vs. landers, and so on. Also, the likelihood of electric propulsion missions will influence the requirements placed on solar array developers. The paper will discuss representative requirements for a range of planetary missions now in the planning stages. Insofar as inner planets are concerned, a Mercury orbiter is being studied with many special requirements. Solar arrays would be exposed to high temperatures and a potentially high radiation environment, and will need to be increasingly pointed off sun as the vehicle approaches Mercury. Identification and development of cell materials and arrays at high incidence angles will be critical to the design. Missions to the outer solar system that have been studied include a Galilean orbiter and a flight to the Kuiper belt. While onboard power requirements would be small (as low as 10 watts), the solar intensity will require relatively large array areas. As a result, such missions will demand extremely compact packaging and low mass structures to conform to launch vehicle constraints. In turn, the large are, low mass designs will impact allowable spacecraft loads. Inflatable array structures, with and without concentration, and multiband gap cells will be considered if available. In general, the highest efficiency cell technologies operable under low intensity, low temperature conditions are needed. Solar arrays will power missions requiring as little as approximately 100 watts, up to several kilowatts (at Earth) in the case of solar electric propulsion missions. Thus, mass and stowage volume minimization will be required over a range of array sizes. Concentrator designs, inflatable structures, and the combination of solar arrays with the telecommunications system have been proposed. Performance, launch vehicle constraints, an cost will be the principal parameters in the design trade space. Other special applications will also be discussed, including requirements relating to planetary landers and probes. In those cases, issues relating to shock loads on landing, operability in (possibly dusty) atmospheres, and extreme temperature cycles must be considered, in addition to performance, stowed volume, and costs.

  11. High-speed knots in the hourglass-shaped planetary nebula Hubble 12

    NASA Astrophysics Data System (ADS)

    Vaytet, N.; Rushton, A. P.; Lloyd, M.; Lopez, J. A.; Meaburn, J.; O'Brien, T. J.; Mitchell, D. L.; Pollacco, D.

    We present a detailed kinematical analysis of the young compact hourglass-shaped planetary nebula Hb 12. We performed optical imaging and longslit spectroscopy of Hb 12 using the Manchester echelle spectrometer with the 2.1-m San Pedro Martir telescope. We reveal, for the first time, the presence of end caps (or knots) aligned with the bipolar lobes of the planetary nebula shell in a deep [N ii] 6584 image of Hb 12. We measured from our spectroscopy radial velocities of about 120 km s-1 for these knots. We have derived the inclination angle of the hourglass shaped nebular shell to be 65° to the line of sight. It has been suggested that Hb 12's central star system is an eclipsing binary which would imply a binary inclination of at least 80°. However, if the central binary has been the major shaping influence on the nebula then both nebula and binary would be expected to share a common inclination angle. Finally, we report the discovery of high-velocity knots with Hubble-type velocities, close to the core of Hb 12, observed in HA and oriented in the same direction as the end caps. Very different velocities and kinematical ages were calculated for the outer and inner knots showing that they may originate from different outburst events.

  12. Heliopause Electrostatic Rapid Transit System (HERTS)

    NASA Technical Reports Server (NTRS)

    Wiegmann, Bruce M.

    2015-01-01

    A recent six month investigation focused on: "Determining the benefits of propelling a scientific spacecraft by an 'Electric Sail' propulsion system to the edge of our solar system (the Heliopause), a distance of 100 to 120 AU, in ten years or less" has recently been completed by the Advance Concepts Office at NASA's MSFC. The concept investigated has been named the Heliopause Electrostatic Rapid Transit System (HERTS) by the MSFC team. The HERTS is a revolutionary propellant-less propulsion concept that is ideal for deep space missions to the Outer Planets, Heliopause, and beyond. It is unique in that it uses momentum exchange from naturally occurring solar wind protons to propel a spacecraft within the heliosphere. The propulsion system consists of an array of electrically positively-biased wires that extend outward 20 km from a rotating (one revolution per hour) spacecraft. It was determined that the HERTS system can accelerate a spacecraft to velocities as much as two to three times that possible by any realistic extrapolation of current state-of-the-art propulsion technologies- including solar electric and solar sail propulsion systems. The data produced show that a scientific spacecraft could reach distances of 100AU in less than 10 years. Moreover, it can be reasonably expected that this system could be developed within a decade and provide meaningful Heliophysics Science and Outer Planetary Science returns in the 2025-2035 timeframe.

  13. Lunar and Planetary Science XXXV: Special Session: Oxygen in the Solar System, I

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Special Session: Oxygen in the Solar System, I, included the following reports:Oxygen in the Solar System: Origins of Isotopic and Redox Complexity; The Origin of Oxygen Isotope Variations in the Early Solar System; Solar and Solar-Wind Oxygen Isotopes and the Genesis Mission; Solar 18O/17O and the Setting for Solar Birth; Oxygen Isotopes in Early Solar System Materials: A Perspective Based on Microbeam Analyses of Chondrules from CV Carbonaceous Chondrites; Insight into Primordial Solar System Oxygen Reservoirs from Returned Cometary Samples; Tracing Meteorites to Their Sources Through Asteroid Spectroscopy; Redox Conditions Among the Terrestrial Planets; Redox Complexity in Martian Meteorites: Implications for Oxygen in the Terrestrial Planets; Implications of Sulfur Isotopes for the Evolution of Atmospheric Oxygen; Oxygen in the Outer Solar System; and On the Oxidation States of the Galilean Satellites: Implications for Internal Structures.

  14. Outer planet mission guidance and navigation for spinning spacecraft

    NASA Technical Reports Server (NTRS)

    Paul, C. K.; Russell, R. K.; Ellis, J.

    1974-01-01

    The orbit determination accuracies, maneuver results, and navigation system specification for spinning Pioneer planetary probe missions are analyzed to aid in determining the feasibility of deploying probes into the atmospheres of the outer planets. Radio-only navigation suffices for a direct Saturn mission and the Jupiter flyby of a Jupiter/Uranus mission. Saturn ephemeris errors (1000 km) plus rigid entry constraints at Uranus result in very high velocity requirements (140 m/sec) on the final legs of the Saturn/Uranus and Jupiter/Uranus missions if only Earth-based tracking is employed. The capabilities of a conceptual V-slit sensor are assessed to supplement radio tracking by star/satellite observations. By processing the optical measurements with a batch filter, entry conditions at Uranus can be controlled to acceptable mission-defined levels (+ or - 3 deg) and the Saturn-Uranus leg velocity requirements can be reduced by a factor of 6 (from 139 to 23 m/sec) if nominal specified accuracies of the sensor can be realized.

  15. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1988-01-01

    In the first half of this grant year, laboratory measurements were conducted on the millimeter-wave properties of atmospheric gases under simulated conditions for the outer planet. Significant improvements in the current system have made it possible to accurately characterize the opacity from gaseous NH3 at longer millimeter wavelengths (7 to 10 mm) under simulated Jovian conditions. In the second half of the grant year, it is hoped to extend such measurements to even shorter millimeter-wavelengths. Further analysis and application of the laboratory results to microwave and millimeter-wave absorption data for the outer planets, such as results from Voyager Radio Occultation experiments and earth-based radio astronomical observations will be continued. The analysis of available multispectral microwave opacity data from Venus, including data from the most recent radio astronomical ovservations in the 1.3 to 3.6 cm wavelength range and newly obtained Pioneer-Venus Radio Occulatation measurements at 13 cm, using the laboratory measurements as an interpretative tool will be pursued.

  16. The Pan-Pacific Planet Search. II. Confirmation of a Two-planet System around HD 121056

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Wang, Liang; Liu, Fan; Horner, Jonathan; Endl, Michael; Johnson, John Asher; Tinney, C. G.; Carter, B. D.

    2015-02-01

    Precise radial velocities from the Anglo-Australian Telescope (AAT) confirm the presence of a rare short-period planet around the K0 giant HD 121056. An independent two-planet solution using the AAT data shows that the inner planet has P = 89.1 ± 0.1 days, and m sin i = 1.35 ± 0.17 MJup. These data also confirm the planetary nature of the outer companion, with m sin i = 3.9 ± 0.6 MJup and a = 2.96 ± 0.16 AU. HD 121056 is the most-evolved star to host a confirmed multiple-planet system, and is a valuable example of a giant star hosting both a short-period and a long-period planet.

  17. Performance comparison of earth and space storable bipropellant systems in interplanetary missions

    NASA Technical Reports Server (NTRS)

    Meissinger, H. F.

    1978-01-01

    The paper evaluates and compares the performance of earth-storable and space-storable liquid bipropellant propulsion systems in high-energy planetary mission applications, including specifically Saturn and Mercury orbiters, as well as asteroid and comet rendezvous missions. The discussion covers a brief review of the status of space-storable propulsion technology, along with an illustrative propulsion module design for a three-axis stabilized outer planet and cometary mission spacecraft of the Mariner class. The results take revised Shuttle/Upper Stage performance projections into account. It is shown that in some of the missions the performance improvement achievable in the ballistic transfer mode with space-storable spacecraft propulsion can provide a possible alternative to the use of solar-electric propulsion.

  18. Evolution of the Uranus-neptune Planetesimal Swarm: Consequences for the Earth

    NASA Technical Reports Server (NTRS)

    Shoemaker, E. M.; Wolfe, R. F.

    1984-01-01

    The evolution of planetesimals in the outer Solar System were evaluated, both stellar and planetary encounters. About 20% of the Uranus-Neptune planetesimals (UNP's) enter the comet cloud and are stored primarily in the region inside the observational limits of the Oort cloud. Half of the comets have suruived to the present time; the cloud now has a mass of the order of Jupiter's mass. Most UNP's are ejected from the Solar system, and about half of the planetesimal swarm is passed to the control of Jupiter prior to ejection. Jupiter's perturbations drive a large flux of these planetesimals into Earth-crossing orbits, and it now appears highly probable that UNP's account for most of the heavy bombardment of the Moon and Earth.

  19. MECHANISM FOR EXCITING PLANETARY INCLINATION AND ECCENTRICITY THROUGH A RESIDUAL GAS DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yuanyuan; Liu Huigen; Zhao Gang

    2013-05-20

    According to the theory of Kozai resonance, the initial mutual inclination between a small body and a massive planet in an outer circular orbit is as high as {approx}39. Degree-Sign 2 for pumping the eccentricity of the inner small body. Here we show that with the presence of a residual gas disk outside two planetary orbits, the inclination can be reduced to as low as a few degrees. The presence of the disk changes the nodal precession rates and directions of the planet orbits. At the place where the two planets achieve the same nodal processing rate, vertical secular resonancemore » (VSR) occurs so that the mutual inclination of the two planets will be excited, which might further trigger the Kozai resonance between the two planets. However, in order to pump an inner Jupiter-like planet, the conditions required for the disk and the outer planet are relatively strict. We develop a set of evolution equations, which can fit the N-body simulation quite well but can be integrated within a much shorter time. By scanning the parameter spaces using the evolution equations, we find that a massive planet (10 M{sub J} ) at 30 AU with an inclination of 6 Degree-Sign to a massive disk (50 M{sub J} ) can finally enter the Kozai resonance with an inner Jupiter around the snowline. An inclination of 20 Degree-Sign of the outer planet to the disk is required for flipping the inner one to a retrograde orbit. In multiple planet systems, the mechanism can happen between two nonadjacent planets or can inspire a chain reaction among more than two planets. This mechanism could be the source of the observed giant planets in moderate eccentric and inclined orbits, or hot Jupiters in close-in, retrograde orbits after tidal damping.« less

  20. A new planetary mapping for future space missions

    NASA Astrophysics Data System (ADS)

    Karachevtseva, Irina; Kokhanov, Alexander; Rodionova, Janna; Zubarev, Anatoliy; Nadezhdina, Irina; Kreslavsky, Mikhail; Oberst, Jürgen

    2015-04-01

    The wide studies of Solar system, including different planetary bodies, were announced by new Russian space program. Their geodesy and cartography support provides by MIIGAiK Extraterrestrial Laboratory (http://mexlab.miigaik.ru/eng) in frames of the new project "Studies of Fundamental Geodetic Parameters and Topography of Planets and Satellites". The objects of study are satellites of the outer planets (satellites of Jupiter - Europa, Calisto and Ganymede; Saturnine satellite Enceladus), some planets (Mercury and Mars) and the satellites of the terrestrial planets - Phobos (Mars) and the Moon (Earth). The new research project, which started in 2014, will address the following important scientific and practical tasks: - Creating new three-dimensional geodetic control point networks of satellites of the outer planets using innovative photogrammetry techniques; - Determination of fundamental geodetic parameters and study size, shape, and spin parameters and to create the basic framework for research of their surfaces; - Studies of relief of planetary bodies and comparative analysis of general surface characteristics of the Moon, Mars, and Mercury, as well as studies of morphometric parameters of volcanic formations on the Moon and Mars; - Modeling of meteoritic bombardment of celestial bodies and the study of the dynamics of particle emissions caused by a meteorite impacts; - Development of geodatabase for studies of planetary bodies, including creation of object catalogues, (craters and volcanic forms, etc.), and thematic mapping using GIS technology. The significance of the project is defined both by necessity of obtaining fundamental characteristics of the Solar System bodies, and practical tasks in preparation for future Russian and international space missions to the Jupiter system (Laplace-P and JUICE), the Moon (Luna-Glob and Luna-Resource), Mars (Exo-Mars), Mercury (Bepi-Colombo), and possible mission to Phobos (project Boomerang). For cartographic support of future missions, we have created various maps as results of first year research: new base maps of Ganymede, including a hypsometric map and a global surface map; the base and thematic maps of Phobos which were updated using new image data sets from Mars Express; a newest map of topographic roughness of Mercury (for north polar area) [2] and a map of topographic roughness of the Moon using laser altimeter data processing obtained by MESSENGER (MLA) and LRO (LOLA) for their comparative analyses; a new global hypsometric map of the Moon. Published version of the maps will be presented at the conference, and all data products using for mapping will be available via MExLab Geoportal (http://cartsrv.mexlab.ru/geoportal/#body/). Acknowledgments. This work was carried out in MIIGAiK and supported by Russian Science Foundation, project #14-22-00197. References: [1] http://mexlab.miigaik.ru/eng/ [2] Kreslavsky et al., Geophys. Res.Lett., 41, doi:10.1002/2014GL062162 [3] http://cartsrv.mexlab.ru/geoportal/#body/

  1. Planetary Protection for future missions to Europa and other icy moons: the more things change...

    NASA Astrophysics Data System (ADS)

    Conley, C. A.; Race, M.

    2007-12-01

    NASA maintains a planetary protection policy regarding contamination of extraterrestrial bodies by terrestrial microorganisms and organic compounds, and sets limits intended to minimize or prevent contamination resulting from spaceflight missions. Europa continues to be a high priority target for astrobiological investigations, and other icy moons of the outer planets are becoming increasingly interesting as data are returned from current missions. In 2000, a study was released by the NRC that provided recommendations on preventing the forward contamination of Europa. This study addressed a number of issues, including cleaning and sterilization requirements, the applicability of protocols derived from Viking and other missions to Mars, and the need to supplement spore based culture methods in assessing spacecraft bioload. The committee also identified a number of future studies that would improve knowledge of Europa and better define issues related to forward contamination of that body. The standard recommended by the 2000 study and adopted by NASA uses a probabilistic approach, such that spacecraft sent to Europa must demonstrate a probability less than 10-4 per mission of contaminating an europan ocean with one viable terrestrial organism. A number of factors enter into the equation for calculating this probability, including at least bioload at launch, probability of survival during flight, probability of reaching the surface of Europa, and probability of reaching an europan ocean. Recently, the NASA Planetary Protection Subcommittee of the NASA Advisory Council has recommended that the probabilistic approach recommended for Europa be applied to all outer planet icy moons, until another NRC study can be convened to reevaluate the issues in light of recent data. This presentation will discuss the status of current and anticipated planetary protection considerations for missions to Europa and other icy moons.

  2. Deuterium enrichment in the primitive ices of the protosolar nebula

    NASA Technical Reports Server (NTRS)

    Lutz, Barry L.; Owen, Tobias; De Bergh, Catherine

    1990-01-01

    On the basis of CH3D/CH4-ratio observations in the outer planets, the present effort to estimate the D/H ratio of the protosolar nebula's primitive ices arrives at two simple, yet effectively limiting models which constrain the degree of dilution undergone by deuterated volatiles through mixing with the initial hydrogen envelopes. These volatiles would have been contributed to planetary atmospheres by evaporated primordial ices. Ice D/H ratio model results of 0.0001 to 0.001 are compared with values for other potentially primitive material-containing bodies in the solar system, as well as with D/H ratio values from interstellar polyatomic molecules.

  3. Jupiter's outer atmosphere.

    NASA Technical Reports Server (NTRS)

    Brice, N. M.

    1973-01-01

    The current state of the theory of Jupiter's outer atmosphere is briefly reviewed. The similarities and dissimilarities between the terrestrial and Jovian upper atmospheres are discussed, including the interaction of the solar wind with the planetary magnetic fields. Estimates of Jovian parameters are given, including magnetosphere and auroral zone sizes, ionospheric conductivity, energy inputs, and solar wind parameters at Jupiter. The influence of the large centrifugal force on the cold plasma distribution is considered. The Jovian Van Allen belt is attributed to solar wind particles diffused in toward the planet by dynamo electric fields from ionospheric neutral winds, and the consequences of this theory are indicated.

  4. The population of planetary nebulae near the Galactic Centre: chemical abundances

    NASA Astrophysics Data System (ADS)

    Mollá, M.; Cavichia, O.; Costa, R. D. D.; Maciel, W. J.

    2017-10-01

    In this work, we report physical parameters and abundances derived for a sample of 15 high extinction planetary nebulae located in the inner 2° of the Galactic bulge, based on low dispersion spectroscopy secured at the SOAR telescope using the Goodman spectrograph. The new data allow us to extend our database including older, weaker objects that are at the faint end of the planetary nebulae luminosity function. The data provide chemical compositions for PNe located in this region of the bulge to explore the chemical enrichment history of the central region of the Galactic bulge. The results show that the abundances of our sample are skewed to higher metallicities than previous data in the outer regions of the bulge. This can indicate a faster chemical enrichment taking place at the Galactic centre.

  5. Proceedings of the 39th Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Sessions with oral presentations include: A SPECIAL SESSION: MESSENGER at Mercury, Mars: Pingos, Polygons, and Other Puzzles, Solar Wind and Genesis: Measurements and Interpretation, Asteroids, Comets, and Small Bodies, Mars: Ice On the Ground and In the Ground, SPECIAL SESSION: Results from Kaguya (SELENE) Mission to the Moon, Outer Planet Satellites: Not Titan, Not Enceladus, SPECIAL SESSION: Lunar Science: Past, Present, and Future, Mars: North Pole, South Pole - Structure and Evolution, Refractory Inclusions, Impact Events: Modeling, Experiments, and Observations, Mars Sedimentary Processes from Victoria Crater to the Columbia Hills, Formation and Alteration of Carbonaceous Chondrites, New Achondrite GRA 06128/GRA 06129 - Origins Unknown, The Science Behind Lunar Missions, Mars Volcanics and Tectonics, From Dust to Planets (Planetary Formation and Planetesimals):When, Where, and Kaboom! Astrobiology: Biosignatures, Impacts, Habitability, Excavating a Comet, Mars Interior Dynamics to Exterior Impacts, Achondrites, Lunar Remote Sensing, Mars Aeolian Processes and Gully Formation Mechanisms, Solar Nebula Shake and Bake: Mixing and Isotopes, Lunar Geophysics, Meteorites from Mars: Shergottite and Nakhlite Invasion, Mars Fluvial Geomorphology, Chondrules and Chondrule Formation, Lunar Samples: Chronology, Geochemistry, and Petrology, Enceladus, Venus: Resurfacing and Topography (with Pancakes!), Overview of the Lunar Reconnaissance Orbiter Mission, Mars Sulfates, Phyllosilicates, and Their Aqueous Sources, Ordinary and Enstatite Chondrites, Impact Calibration and Effects, Comparative Planetology, Analogs: Environments and Materials, Mars: The Orbital View of Sediments and Aqueous Mineralogy, Planetary Differentiation, Titan, Presolar Grains: Still More Isotopes Out of This World, Poster sessions include: Education and Public Outreach Programs, Early Solar System and Planet Formation, Solar Wind and Genesis, Asteroids, Comets, and Small Bodies, Carbonaceous Chondrites, Chondrules and Chondrule Formation, Chondrites, Refractory Inclusions, Organics in Chondrites, Meteorites: Techniques, Experiments, and Physical Properties, MESSENGER and Mercury, Lunar Science Present: Kaguya (SELENE) Results, Lunar Remote Sensing: Basins and Mapping of Geology and Geochemistry, Lunar Science: Dust and Ice, Lunar Science: Missions and Planning, Mars: Layered, Icy, and Polygonal, Mars Stratigraphy and Sedimentology, Mars (Peri)Glacial, Mars Polar (and Vast), Mars, You are Here: Landing Sites and Imagery, Mars Volcanics and Magmas, Mars Atmosphere, Impact Events: Modeling, Experiments, and Observation, Ice is Nice: Mostly Outer Planet Satellites, Galilean Satellites, The Big Giant Planets, Astrobiology, In Situ Instrumentation, Rocket Scientist's Toolbox: Mission Science and Operations, Spacecraft Missions, Presolar Grains, Micrometeorites, Condensation-Evaporation: Stardust Ties, Comet Dust, Comparative Planetology, Planetary Differentiation, Lunar Meteorites, Nonchondritic Meteorites, Martian Meteorites, Apollo Samples and Lunar Interior, Lunar Geophysics, Lunar Science: Geophysics, Surface Science, and Extralunar Components, Mars, Remotely, Mars Orbital Data - Methods and Interpretation, Mars Tectonics and Dynamics, Mars Craters: Tiny to Humongous, Mars Sedimentary Mineralogy, Martian Gullies and Slope Streaks, Mars Fluvial Geomorphology, Mars Aeolian Processes, Mars Data and Mission,s Venus Mapping, Modeling, and Data Analysis, Titan, Icy Dwarf Satellites, Rocket Scientist's Toolbox: In Situ Analysis, Remote Sensing Approaches, Advances, and Applications, Analogs: Sulfates - Earth and Lab to Mars, Analogs: Remote Sensing and Spectroscopy, Analogs: Methods and Instruments, Analogs: Weird Places!. Print Only Early Solar System, Solar Wind, IDPs, Presolar/Solar Grains, Stardust, Comets, Asteroids, and Phobos, Venus, Mercury, Moon, Meteorites, Mars, Astrobiology, Impacts, Outer Planets, Satellites, and Rings, Support for Mission Operations, Analog Education and Public Outreach.

  6. VLTI/GRAVITY observations of the young star βPictoris

    NASA Astrophysics Data System (ADS)

    Defrère, D.

    2017-12-01

    The nearby young star β Pictoris is surrounded by the archetypal debris disc, which provides a unique window on the formation and early evolution of terrestrial planets. While the outer disc has been extensively studied since its discovery in 1984, very little is currently known about the inner planetary system (<4AU). Recently, accurate squared visibilities obtained with VLTI/PIONIER revealed the presence of resolved circumstellar emission with an integrated brightness amounting to approximately 1.4% of the stellar brightness in H band. However, it is not clear whether this excess emission originates from thermal emission, reflected light from hot dust grains located in the innermost regions of the planetary system, or is simply due to forward scattering by dust grains located further away (but still within the PIONIER field-of-view, i.e., close to the line of sight). In this paper, we present medium-resolution K-band observations of βPic obtained with VLTI/GRAVITY during science verification. The goals of these observations are to better constrain the temperature of the grains (and hence their location and chemical composition) and to showcase the high-precision capabilities of GRAVITY at detecting faint, close-in circumstellar emission.

  7. Formation of Outer Planets: Overview

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack

    2003-01-01

    An overview of current theories of planetary formation, with emphasis on giant planets is presented. The most detailed models are based upon observation of our own Solar System and of young stars and their environments. Terrestrial planets are believe to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. According to the prevailing core instability model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk disspates. The primary questions regarding the core instability model is whether planets with small cores can accrete gaseous enveloples within the lifetimes of gaseous protoplanetary disks. The main alternative giant planet formation model is the disk instability model, in which gaseous planets form directly via gravitational instabilities within protoplanetary disks. Formation of giant planets via gas instability has never been demonstrated for realistic disk conditions. Moreover, this model has difficulty explaining the supersolar abundances of heavy elements in Jupiter and Saturn, and it does not explain the orgin of planets like Uranus and Neptune.

  8. Technologies for Outer Planet Missions: A Companion to the OPAG Exploration Strategy

    NASA Astrophysics Data System (ADS)

    Beauchamp, P. M.; McKinnon, W. B.

    2009-12-01

    The Outer Planets Assessment Group (OPAG) advocates the need for a focused technology program for the next Outer Planet Flagship Mission after the Europa Jupiter System Mission (EJSM) in order to be ready for a launch in the mid-2020s. Current planning assumes that a mission to Titan and Enceladus will be the highest priority. The challenges common to all Outer Planetary (OP) missions — large distances, long flight times, and stringent limitations on mass, power, and data rate — mean that all missions can significantly benefit from technical advances in a number of broad areas. Since technology development timescales are long, it is most productive to base technology requirements on the expected general characteristics of future missions. While the strategic Flagship mission concepts are better understood, an estimate of the needs for the competed small class (Discovery) and medium class (New Frontiers) missions can be included in constructing an effective technology investment plan. Technology investment priorities are guided by the requirements established in mission and system studies that are focused on the highest priority science objectives. The next OP mission (after EJSM) may involve orbiting one or both of the saturnian satellites Titan and Enceladus. Other potential OP missions include atmospheric probes of the giant planets, in situ exploration at Titan, flybys or orbiters to the ice giants Neptune and Uranus, and ultimately, landing on Europa or Enceladus. The breadth of technology needed for OP exploration clearly calls for an aggressive and focused technology development strategy that aligns with the Decadal Survey recommended mission profile, and includes technologies developed by NASA, as well as acquisition of applicable technologies from other government and commercial sectors. This presentation shows how the technologies discussed in the white paper derive from the Outer Planet science goals, with particular attention to those required by a mission to Titan and Enceladus. We explain why they are significant relative to current solar system goals/priorities and outline how they should influence the next generation of solar system exploration missions.

  9. Technologies for Outer Planet Missions: A companion to the OPAG Exploration Strategy

    NASA Astrophysics Data System (ADS)

    Beauchamp, Patricia; McKinnon, William

    2010-05-01

    The Outer Planets Assessment Group (OPAG) advocates the need for a focused technology program for the next Outer Planet Flagship Mission after the Europa Jupiter System Mission (EJSM) in order to be ready for a launch in the mid-2020s. Current planning assumes that a mission to Titan and Enceladus will be the highest priority. The challenges common to all Outer Planetary (OP) missions—large distances, long flight times, and stringent limitations on mass, power, and data rate—mean that all missions can significantly benefit from technical advances in a number of broad areas. Since technology development timescales are long, it is most productive to base technology requirements on the expected general characteristics of future missions. While the strate¬gic Flagship mission concepts are better understood, an estimate of the needs for the competed small class (Discovery) and medium class (New Frontiers) missions can be included in constructing an effective technology investment plan. Technology investment priorities are guided by the requirements established in mission and system studies that are focused on the highest priority science objectives. The next OP mission (after EJSM) may involve orbiting one or both of the saturnian satellites Titan and Enceladus. Other potential OP missions include atmospheric probes of the giant planets, in situ exploration at Titan, flybys or orbiters to the ice giants Neptune and Uranus, and ultimately, landing on Europa or Enceladus. The breadth of technology needed for OP exploration clearly calls for an aggressive and focused technology development strategy that aligns with the Decadal Survey recommended mission profile, and includes technologies developed by NASA, as well as acquisition of applicable technologies from other government and commercial sectors. This presentation shows how the technologies discussed in the white paper derive from the Outer Planet science goals, with particular attention to those required by a mission to Titan and Enceladus. We explain why they are significant relative to current solar system goals/priorities and outline how they should influence the next generation of solar system exploration missions. Government sponsorship acknowledged

  10. Hubble 2020: Outer Planet Atmospheres Legacy (OPAL) Program

    NASA Astrophysics Data System (ADS)

    Simon, Amy

    2017-08-01

    Long time base observations of the outer planets are critical in understanding the atmospheric dynamics and evolution of the gas giants. We propose yearly monitoring of each giant planet for the remainder of Hubble's lifetime to provide a lasting legacy of increasingly valuable data for time-domain studies. The Hubble Space Telescope is a unique asset to planetary science, allowing high spatial resolution data with absolute photometric knowledge. For the outer planets, gas/ice giant planets Jupiter, Saturn, Uranus and Neptune, many phenomena happen on timescales of years to decades, and the data we propose are beyond the scope of a typical GO program. Hubble is the only platform that can provide high spatial resolution global studies of cloud coloration, activity, and motion on a consistent time basis to help constrain the underlying mechanics.

  11. HUBBLE'S PLANETARY NEBULA GALLERY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [Top left] - IC 3568 lies in the constellation Camelopardalis at a distance of about 9,000 light-years, and has a diameter of about 0.4 light-years (or about 800 times the diameter of our solar system). It is an example of a round planetary nebula. Note the bright inner shell and fainter, smooth, circular outer envelope. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Top center] - NGC 6826's eye-like appearance is marred by two sets of blood-red 'fliers' that lie horizontally across the image. The surrounding faint green 'white' of the eye is believed to be gas that made up almost half of the star's mass for most of its life. The hot remnant star (in the center of the green oval) drives a fast wind into older material, forming a hot interior bubble which pushes the older gas ahead of it to form a bright rim. (The star is one of the brightest stars in any planetary.) NGC 6826 is 2,200 light- years away in the constellation Cygnus. The Hubble telescope observation was taken Jan. 27, 1996 with the Wide Field and Planetary Camera 2. Credits: Bruce Balick (University of Washington), Jason Alexander (University of Washington), Arsen Hajian (U.S. Naval Observatory), Yervant Terzian (Cornell University), Mario Perinotto (University of Florence, Italy), Patrizio Patriarchi (Arcetri Observatory, Italy) and NASA [Top right ] - NGC 3918 is in the constellation Centaurus and is about 3,000 light-years from us. Its diameter is about 0.3 light-year. It shows a roughly spherical outer envelope but an elongated inner balloon inflated by a fast wind from the hot central star, which is starting to break out of the spherical envelope at the top and bottom of the image. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Bottom left] - Hubble 5 is a striking example of a 'butterfly' or bipolar (two-lobed) nebula. The heat generated by fast winds causes each of the lobes to expand, much like a pair of balloons with internal heaters. This observation was taken Sept. 9, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. Hubble 5 is 2,200 light-years away in the constellation Sagittarius. Credits: Bruce Balick (University of Washington), Vincent Icke (Leiden University, The Netherlands), Garrelt Mellema (Stockholm University), and NASA [Bottom center ] - Like NGC 6826, NGC 7009 has a bright central star at the center of a dark cavity bounded by a football-shaped rim of dense, blue and red gas. The cavity and its rim are trapped inside smoothly-distributed greenish material in the shape of a barrel and comprised of the star's former outer layers. At larger distances, and lying along the long axis of the nebula, a pair of red 'ansae', or 'handles' appears. Each ansa is joined to the tips of the cavity by a long greenish jet of material. The handles are clouds of low-density gas. NGC 7009 is 1,400 light-years away in the constellation Aquarius. The Hubble telescope observation was taken April 28, 1996 by the Wide Field and Planetary Camera 2. Credits: Bruce Balick (University of Washington), Jason Alexander (University of Washington), Arsen Hajian (U.S. Naval Observatory), Yervant Terzian (Cornell University), Mario Perinotto (University of Florence, Italy), Patrizio Patriarchi (Arcetri Observatory, Italy), NASA [Bottom right ] - NGC 5307 also lies in Centaurus but is about 10,000 light-years away and has a diameter of approximately 0.6 light-year. It is an example of a planetary nebula with a pinwheel or spiral structure; each blob of gas ejected from the central star has a counterpart on the opposite side of the star. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA

  12. Investigating the origins of the Irregular satellites using Cladistics

    NASA Astrophysics Data System (ADS)

    Holt, Timothy; Horner, Jonti; Tylor, Christopher; Nesvorny, David; Brown, Adrian; Carter, Brad

    2017-10-01

    The irregular satellites of Jupiter and Saturn are thought to be objects captured during a period of instability in the early solar system. However, the precise origins of these small bodies remain elusive. We use cladistics, a technique traditionally used by biologists, to help constrain the origins of these bodies. Our research contributes to a growing body of work that uses cladistics in astronomy, collectively called astrocladistics. We present one of the first instances of cladistics being used in a planetary science context. The analysis uses physical and compositional characteristics of three prograde Jovian irregular satellites (Themisto, Leda & Himalia), five retrograde Jovian irregular satellites (Ananke, Carme, Pasiphae, Sinope & Callirrhoe), along with Phoebe, a retrograde irregular satellite of Saturn, and several other regular Jovian and Saturnian satellites. Each of these members are representatives of their respective taxonomic groups. The irregular satellites are compared with other well-studied solar system bodies, including satellites, terrestrial planets, main belt asteroids, comets, and minor planets. We find that the Jovian irregular satellites cluster with asteroids and Ceres. The Saturnian satellites studied here are found to form an association with the comets, adding to the narrative of exchange between the outer solar system and Saturnian orbital space. Both of these results demonstrate the utility of cladistics as an analysis tool for the planetary sciences.

  13. Eccentricity Evolution of Migrating Planets

    NASA Technical Reports Server (NTRS)

    Murray, N.; Paskowitz, M.; Holman, M.

    2002-01-01

    We examine the eccentricity evolution of a system of two planets locked in a mean motion resonance, in which either the outer or both planets lose energy and angular momentum. The sink of energy and angular momentum could be a gas or planetesimal disk. We analytically calculate the eccentricity damping rate in the case of a single planet migrating through a planetesimal disk. When the planetesimal disk is cold (the average eccentricity is much less than 1), the circularization time is comparable to the inward migration time, as previous calculations have found for the case of a gas disk. If the planetesimal disk is hot, the migration time can be an order of magnitude shorter. We show that the eccentricity of both planetary bodies can grow to large values, particularly if the inner body does not directly exchange energy or angular momentum with the disk. We present the results of numerical integrations of two migrating resonant planets showing rapid growth of eccentricity. We also present integrations in which a Jupiter-mass planet is forced to migrate inward through a system of 5-10 roughly Earth-mass planets. The migrating planets can eject or accrete the smaller bodies; roughly 5% of the mass (averaged over all the integrations) accretes onto the central star. The results are discussed in the context of the currently known extrasolar planetary systems.

  14. Planetary nebulae populations as tracers of the stellar kinematics and light in the outer halos of galaxies and the intracluster regions in the nearby clusters

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Magda

    2015-08-01

    Planetary nebulae have been used sucessfully to trace the kinematics of stars and the spatial distribution of the parent stellar populations in regions where the continuum of the integrated light is only 1% of the night sky. The observed wavelength of the PN strong emission in the [OIII] line at 5007 A measures the line-of-sight velocity of that single star and can be used to derive the two-dimensional velocity fields in these extreme outer regions of galaxies and their angular momentum content out to 10 effective radii. The specific frequency or the PN luminosity number and the morphology of the PN luminosity function are probes of the properties of the parent stellar population, like the star formation history and metallicity. I will present the latest results from the survey of PN population in external galaxies and in the Virgo cluster, and the implications on the coexistence of galaxy halos and intracluster light, and the constraints of their stellar motions and physical parameters.

  15. Human Outer Solar System Exploration via Q-Thruster Technology

    NASA Technical Reports Server (NTRS)

    Joosten, B. Kent; White, Harold G.

    2014-01-01

    Propulsion technology development efforts at the NASA Johnson Space Center continue to advance the understanding of the quantum vacuum plasma thruster (QThruster), a form of electric propulsion. Through the use of electric and magnetic fields, a Q-thruster pushes quantum particles (electrons/positrons) in one direction, while the Qthruster recoils to conserve momentum. This principle is similar to how a submarine uses its propeller to push water in one direction, while the submarine recoils to conserve momentum. Based on laboratory results, it appears that continuous specific thrust levels of 0.4 - 4.0 N/kWe are achievable with essentially no onboard propellant consumption. To evaluate the potential of this technology, a mission analysis tool was developed utilizing the Generalized Reduced Gradient non-linear parameter optimization engine contained in the Microsoft Excel® platform. This tool allowed very rapid assessments of "Q-Ship" minimum time transfers from earth to the outer planets and back utilizing parametric variations in thrust acceleration while enforcing constraints on planetary phase angles and minimum heliocentric distances. A conservative Q-Thruster specific thrust assumption (0.4 N/kWe) combined with "moderate" levels of space nuclear power (1 - 2 MWe) and vehicle specific mass (45 - 55 kg/kWe) results in continuous milli-g thrust acceleration, opening up realms of human spaceflight performance completely unattainable by any current systems or near-term proposed technologies. Minimum flight times to Mars are predicted to be as low as 75 days, but perhaps more importantly new "retro-phase" and "gravity-augmented" trajectory shaping techniques were revealed which overcome adverse planetary phasing and allow virtually unrestricted departure and return opportunities. Even more impressively, the Jovian and Saturnian systems would be opened up to human exploration with round-trip times of 21 and 32 months respectively including 6 to 12 months of exploration at the destinations. Finally, interstellar trip times are assessed at milli-g acceleration levels.

  16. The HD 163296 Circumstellar Disk in Scattered Light: Evidence of Time-Variable Self-Shadowing

    NASA Technical Reports Server (NTRS)

    Wisniewski, John P.; Clampin, Mark; Grady, Carol A.; Ardila, David R.; Ford, Holland C.; Golimowski, David A.; Illingworth, Garth D.; Krist, John E.

    2008-01-01

    We present the first multi-color view of the scattered light disk of the Herbig Ae star HD 163296, based on coronagraphic observations from the Hubble Space Telescope Advanced Camera for Surveys (ACS). Radial profile fits of the surface brightness along the disk's semi-major axis indicates that the disk is not continuously flared, and extends to approx.540 AU. The disk's color (V-I)=1.1 at a radial distance of 3.5" is redder than the observed stellar color (V-I)=0.15. This red disk color might be indicative of either an evolution in the grain size distribution (i.e. grain growth) and/or composition, both of which would be consistent with the observed non-flared geometry of the outer disk. We also identify a single ansa morphological structure in our F435W ACS data, which is absent from earlier epoch F606W and F814W ACS data, but corresponds to one of the two ansa observed in archival HST STIS coronagraphic data. Following transformation to similar band-passes, we find that the scattered light disk of HD 163296 is 1 mag arcsec(sup -2) fainter at 3.5" in the STIS data than in the ACS data. Moreover, variations are seen in (i) the visibility of the ansa(e) structures, in (ii) the relative surface brightness of the ansa(e) structures, and in (iii) the (known) intrinsic polarization of the system. These results indicate that the scattered light from the HD 163296 disk is variable. We speculate that the inner disk wall, which Sitko et al. suggests has a variable scale height as diagnosed by near-IR SED variability, induces variable self-shadowing of the outer disk. We further speculate that the observed surface brightness variability of the ansa(e) structures may indicate that the inner disk wall is azimuthally asymmetric. Subject headings: circumstellar matter - stars: individual (HD 163296) - planetary systems: formation - planetary systems: protoplanetary disks

  17. Organic Solid Matter as a Coloring Agent in Outer Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; DalleOre, C. M.; Roush, T. L.; Khare, B. N.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Small bodies in the outer Solar System OSS, exhibit a range of color, or slope of the reflectance in the photovisual spectral region, ranging from neutral to very red, sometimes with and sometimes without distinct absorption bands. These objects range in geometric albedo from 0.03 to 1.0, with the higher albedo objects typically showing clear evidence of water ice. Water ice has also been found in a few objects with albedo 0. 1 or less. We explore here the identification of the material or materials that color these icy and non-icy surfaces through scattering models that incorporate minerals, meteoritic material, and organic solids (tholins) produced ID the laboratory by energy deposition in ices and gases. These models must match not only the color in the photovisual region, but the spectral reflectance properties throughout the near-infrared. Among some classes of objects, such as Kuiper Belt objects, the coloring agent may be a single material that is present in greater or lesser abundance, thus accounting for the range in color from neutral to very red. This may also apply to the Centaur objects, the Jovian Trojans, and the outer-main belt asteroids, each taken as a separate class. If so, each class may be colored to varying degrees by a different material, or they all might be colored by a common material that is widespread throughout the OSS, from 3 to 50 AU, and beyond. In this paper, we model the reflectances of "Kuiper Belt objects, Centaurs, Trojans, outer ARAB asteroids, and planetary satellites. Our models show that the reddest surfaces cannot be colored by minerals or meteoritic materials, but can be matched throughout the photovisual and near-infrared by organic solids, specifically certain tholins.

  18. "New" Vistas for Polarimetric Exploration

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2016-12-01

    The versatility of polarimetric exploration is exploited to address the overarching goals for the remote sensing and robotic exploration of our solar system and exoplanetary systems: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. While linear polarization of reflected light by solar system objects provides insight into the scattering characteristics of aerosols and hazes in atmospheres and surficial properties of atmosphereless objects, circular polarization and related chirality (or handedness, a property of molecules that exhibit mirror-image symmetry, similar to right and left hands) can serve as diagnostic of biological activity. Most solar system polarimetric exploration is dominantly the study of cometary and asteroidal dust/regoliths. However, efforts are starting to emerge as "new" directions in this field: from recent studies of outer planetary atmospheres and satellites; polarization of magnetic field lines; addressing taxonomy of asteroids and including amateur astronomers. Although current solar system missions do not have polarimeters on-board, ground-based polarimetric observations prove to valuable and complementary. For example, NASA/JUNO lacks a polarimeter in its payload, and one of its goals is to understand Jupiter's aurorae. Recent ground-based observations from NASA/IRTF indicate that the auroral H3+ line is polarized (Barthelemy et al., 2011, A&A, 530). Another new direction for polarimetric exploration is the inclusion of amateur astronomers. Imaging and spectroscopy are routinely performed by amateurs, but recently, there is interest in developing polarimetric exploration amongst the amateur community, such as the study of polarization of the moon (Fearnside et al., 2016, Icarus). I will present a review of the field, with advances made in instrumentation, measurements and efforts to develop a "Polarimetry Network" of observers, modelers and instrument experts to expand and fully utilize polarimetery in the remote sensing of planetary systems.

  19. Laboratory Spectra of CO2 Vibrational Modes in Planetary Ice Analogs

    NASA Technical Reports Server (NTRS)

    White, Douglas; Mastrapa, Rachel M.; Sandford, Scott

    2012-01-01

    Laboratory spectra have shown that CO2 is a powerful diagnostic tool for analyzing infrared data from remote observations, as it has been detected on icy moons in the outer Solar System as well as dust grain surfaces in the interstellar medium (ISM). IR absorption band profiles of CO2 within ice mixtures containing H2O and CH3OH change with respect to temperature and mixture ratios. In this particular study, the CO2 asymmetric stretching mode near 4.3 m (2350 cm (exp-1)), overtone mode near 1.97 m (5080 cm (exp-1)), and the combination bands near 2.7 m (3700 cm (exp-1)), 2.8 m (3600 cm (exp-1)), and 2.02 m (4960 cm (exp -1)), are systematically observed in different mixtures with H2O and CH3OH in temperature ranges from 15K to 150 K. Additionally, some high-temperature deposits (T greater than 50 K) of H2O, CH3OH, and CO2 ice mixtures were performed. These data may then be used to interpret infrared observational data obtained from icy surfaces in the outer Solar System and beyond.

  20. Main-belt asteroid exploration - Mission options for the 1990s

    NASA Technical Reports Server (NTRS)

    Yen, C.-W. L.

    1982-01-01

    Mission configurations, propulsion systems, and target bodies for possible NASA asteroid exploration projects are examined. Noting that an announced delay in the development of a solar electric propulsion system has led to a consideration of chemical rocket systems, asteroid missions are grouped in terms of five potential areas for investigation, each successively further from the sun. The Shuttle-launched IUS is suggested as the prime candidate for boosting probes into trajectories for asteroid rendezvous with a number of the 3000 known asteroids. Planetary swingbys are mentioned as the only suitable method for satisfying the large energy requirements of the asteroid missions. Performance analyses are presented of the IUS 2-stage/Star-48 and Centaur vehicles, and sample missions to Fortuna, Anahita, and Urania in 1990 and further missions to the middle, outer, and Trojans asteroids are outlined.

  1. NASA's progress in nuclear electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Doherty, Michael P.; Peecook, Keith M.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed.

  2. Using Schumann Resonance Measurements for Constraining the Water Abundance on the Giant Planets - Implications for the Solar System Formation

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Hamelin, Michel; Klenzing, Jeffrey; Freudenreich, Henry; Beghin, Christian; Berthelier, Jean-Jacques; Bromund, Kenneth; Grard, Rejean; Lebreton, Jean-Pierre; hide

    2012-01-01

    The formation and evolution of the Solar System is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the Solar System is therefore important to understand not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new, remote sensing technique to infer the outer planets water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  3. Gravitational tides in the outer planets. I - Implications of classical tidal theory. II - Interior calculations and estimation of the tidal dissipation factor

    NASA Technical Reports Server (NTRS)

    Ioannou, Petros J.; Lindzen, Richard S.

    1993-01-01

    Classical tidal theory is applied to the atmospheres of the outer planets. The tidal geopotential due to satellites of the outer planets is discussed, and the solution of Laplace's tidal equation for Hough modes appropriate to tides on the outer planets is examined. The vertical structure of tidal modes is described, noting that only relatively high-order meridional mode numbers can propagate vertically with growing amplitude. Expected magnitudes for tides in the visible atmosphere of Jupiter are discussed. The classical theory is extended to planetary interiors taking the effects of spherically and self-gravity into account. The thermodynamic structure of Jupiter is described and the WKB theory of the vertical structure equation is presented. The regions for which inertial, gravity, and acoustic oscillations are possible are delineated. The case of a planet with a neutral interior is treated, discussing the various atmospheric boundary conditions and showing that the tidal response is small.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadoya, S.; Tajika, E., E-mail: kadoya@astrobio.k.u-tokyo.ac.jp, E-mail: tajika@eps.s.u-tokyo.ac.jp

    The climatic evolution of the Earth depends strongly on the evolution of the insolation from the Sun and the amount of the greenhouse gasses, especially CO{sub 2} in the atmosphere. Here, we investigate the evolution of the climate of hypothetical Earths around stars whose masses are different from the solar mass with a luminosity evolution model of the stars, a mantle degassing model coupled with a parameterized convection model of the planetary interiors, and an energy balance climate model of the planetary surface. In the habitable zone (HZ), the climate of the planets is initially warm or hot, depending onmore » the orbital semimajor axes. We found that, in the inner HZ, the climate of the planets becomes hotter with time owing to the increase in the luminosity of the central stars, while, in the outer HZ, it becomes colder and eventually globally ice-covered owing to the decrease in the CO{sub 2} degassing rate of the planets. The orbital condition for maintaining the warm climate similar to the present Earth becomes very limited, and more interestingly, the planet orbiting in the outer HZ becomes globally ice-covered after a certain critical age (∼3 Gyr for the hypothetical Earth with standard parameters), irrespective of the mass of the central star. This is because the critical age depends on the evolution of the planets and planetary factors, rather than on the stellar mass. The habitability of the Earth-like planet is shown to be limited with age even though it is orbiting within the HZ.« less

  5. Studies of Disks Around the Sun and Other Stars

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1997-01-01

    This is a NASA Origins of Solar Systems research program, and this NASA Headquarters grant has now been transferred to a new grant at NASA GSFC (NAG5-4082). Thus the need for this 'Final Report' on a project that is not, in fact, complete. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to "standard" theory, both the Kuiper Belt and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Our program consists of modeling collisions in the Kuiper Belt and the dust disks around other stars. The modeling effort focuses on moving from our simple, first-generation, Kuiper Belt collision rate model, to a time-dependent, second-generation model that incorporates physical collisions, velocity evolution, dynamical erosion, and various dust transport mechanisms. This second generation model is to be used to study the evolution of surface mass density and the object-size spectrum in the disk.

  6. Dynamics of a Probable Earth-mass Planet in the GJ 832 System

    NASA Astrophysics Data System (ADS)

    Satyal, S.; Griffith, J.; Musielak, Z. E.

    2017-08-01

    The stability of planetary orbits around the GJ 832 star system, which contains inner (GJ 832c) and outer (GJ 832b) planets, is investigated numerically and a detailed phase-space analysis is performed. Special attention is given to the existence of stable orbits for a planet less than 15 M ⊕ that is injected between the inner and outer planets. Thus, numerical simulations are performed for three and four bodies in elliptical orbits (or circular for special cases) by using a large number of initial conditions that cover the selected phase-spaces of the planet’s orbital parameters. The results presented in the phase-space maps for GJ 832c indicate the least deviation of eccentricity from its nominal value, which is then used to determine its inclination regime relative to the star-outer planet plane. Also, the injected planet is found to display stable orbital configurations for at least one billion years. Then, the radial velocity curves based on the signature from the Keplerian motion are generated for the injected planets with masses 1 M ⊕ to 15 M ⊕ in order to estimate their semimajor axes and mass limits. The synthetic RV signal suggests that an additional planet of mass ≤15 M ⊕ with a dynamically stable configuration may be residing between 0.25 and 2.0 au from the star. We have provided an estimated number of RV observations for the additional planet that is required for further observational verification.

  7. Long-Term Dynamics of Small Bodies in the Solar System

    NASA Technical Reports Server (NTRS)

    Holman, Matthew J.; Grant, John (Technical Monitor)

    2002-01-01

    As part of the NASA Planetary Geology and Geophysics program, Prof. Norm Murray (CITA (Canadian Institute of Theoretical Astrophysics)) and I have been conducting investigations of the long-term dynamics of small bodies in the outer solar system. This grant, and its successor NAG5-10365, supports travel for collaboration by the Investigators and also supports Murray during an annual one month visit to the CfA (Harvard-Smithsonian Center for Astrophysics) for further collaboration. In the course of this grant we made a number of advances in solar system dynamics. For example, we developed an analytic model for the origin and consequence of chaos associated with three-body resonances in the asteroid belt. This has been shown to be important for the delivery of near Earth objects (NEO). We later extended this model to three-body resonances among planets. We were able to show that the numerically identified chaos among the outer planets results from a three-body resonance involving Jupiter, Saturn, and Uranus. The resulting paper was awarded the 1999 Newcomb Cleveland award from the AAAS (American Association for the Advancement of Science). This award singles out one paper published in Science each year for distinction. A list of grant-related publications is presented, with abstracts included.

  8. Orbital Evolution of Planetesimals by the Galactic Tide

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-05-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region. Here we show the orbital evolution of planetesimals by the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. The effect of the galactic tide on the planetesimals with semimajor axes of ˜ 104AU is about 10-3 of the solar gravity. The timescale of the orbital evolution is ˜ 108 years. We consider only the vertical component of the galactic tide. Under the axisymmetric potential, some planetesimals may show the librations around ω (argument of perihelion)=π /2 and 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. The secular perturbation theory demonstrates the Kozai mechanism and we can understand the motion of the planetesimals analytically. We apply the Kozai mechanism to the galactic tide and discuss the property of the Oort cloud formed by the Kozai mechanizm. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  9. Evolution of the Oort Cloud under Galactic Perturbations

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-08-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region and randomize their inclinations. Here we show the orbital evolution of planetesimals due to the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. We consider only the vertical component of the galactic tide because it is dominant compared to other components. Then, under such an axi-symmetric assumption, some planetesimals may show the librations around ω (argument of perihelion)=π /2 or 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. Using the secular perturbation theory, we can understand the motion of the planetesimals analytically. We applied the Kozai mechanism to the galactic tide and found that the galactic tide raise perihelia and randomize inclinations of planetesimals with semimajor axes larger than ˜ 103 AU in 5Gyr. We take into account time evolution of the local galactic density, which is thought to be denser in the early stage of the sun than the current one. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  10. Planetary X ray experiment: Supporting research for outer planets mission: Experiment definition phase

    NASA Technical Reports Server (NTRS)

    Hurley, K.; Anderson, K. A.

    1972-01-01

    Models of Jupiter's magnetosphere were examined to predict the X-ray flux that would be emitted in auroral or radiation zone processes. Various types of X-ray detection were investigated for energy resolution, efficiency, reliability, and background. From the model fluxes it was determined under what models Jovian X-rays could be detected.

  11. Studies on possible propagation of microbial contamination in planetary clouds

    NASA Technical Reports Server (NTRS)

    Dimmick, R. L.; Chatigny, M. A.; Wolochow, H.

    1973-01-01

    One of the key parameters in estimation of the probability of contamintion of the outer planets (Jupiter, Saturn, Uranus, etc.) is the probability of growth (Pg) of terrestrial microorganisms on or near these planets. For example, Jupiter appears to have an atmosphere in which some microbial species could metabolize and propagate. This study includes investigation of the likelihood of metabolism and propagation of microbes suspended in dynamic atmospheres. It is directed toward providing experimental information needed to aid in rational estimation of Pg for these outer planets. Current work is directed at demonstration of aerial metabolism under near optimal conditions and tests of propagation in simulated Jovian atmospheres.

  12. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1987-01-01

    Laboratory measurements were conducted to evaluate properties of atmospheric gases under simulated conditions for the outer planets. A significant addition to this effort was the capability to make such measurements at millimeter wavelengths. Measurements should soon be completed on the millimeter wave absorption from ammonia under Jovian conditions. Also studied will be the feasibility of measuring the microwave and millimeter wave properties of phosphine (PH3) under simulated Jovian conditions. Further analysis and application of the laboratory results to microwave and millimeter wave absorption data for the outer planet, such as Voyager Radio Occultation experiments, will be pursued.

  13. Dynamics of Populations of Planetary Systems (IAU C197)

    NASA Astrophysics Data System (ADS)

    Knezevic, Zoran; Milani, Andrea

    2005-05-01

    1. Resonances and stability of extra-solar planetary systems C. Beaugé, N. Callegari, S. Ferraz-Mello and T. A. Michtchenko; 2. Formation, migration, and stability of extrasolar planetary systems Fred C. Adams; 3. Dynamical evolution of extrasolar planetary systems Ji-Lin Zhou and Yi-Sui Sun; 4. Dynamics of planetesimals: the role of two-body relaxation Eiichiro Kokubo; 5. Fitting orbits Andrzej J. Maciejewski, Krzysztof Gozdziewski and Szymon Kozlowski; 6. The secular planetary three body problem revisited Jacques Henrard and Anne-Sophie Libert; 7. Dynamics of extrasolar systems at the 5/2 resonance: application to 47 UMa Dionyssia Psychoyos and John D. Hadjidemetriou; 8. Our solar system as model for exosolar planetary systems Rudolf Dvorak, Áron Süli and Florian Freistetter; 9. Planetary motion in double stars: the influence of the secondary Elke Pilat-Lohinger; 10. Planetary orbits in double stars: influence of the binary's orbital eccentricity Daniel Benest and Robert Gonczi; 11. Astrometric observations of 51 Peg and Gliese 623 at Pulkovo observatory with 65 cm refractor N. A. Shakht; 12. Observations of 61 Cyg at Pulkovo Denis L. Gorshanov, N. A. Shakht, A. A. Kisselev and E. V. Poliakow; 13. Formation of the solar system by instability Evgeny Griv and Michael Gedalin; 14. Behaviour of a two-planetary system on a cosmogonic time-scale Konstantin V. Kholshevnikov and Eduard D. Kuznetsov; 15. Boundaries of the habitable zone: unifying dynamics, astrophysics, and astrobiology Milan M. Cirkovic; 16. Asteroid proper elements: recent computational progress Fernando Roig and Cristian Beaugé; 17. Asteroid family classification from very large catalogues Anne Lemaitre; 18. Non-gravitational perturbations and evolution of the asteroid main belt David Vokrouhlicky, M. Broz and W. F. Bottke, D. Nesvorny and A. Morbidelli; 19. Diffusion in the asteroid belt Harry Varvoglis; 20. Accurate model for the Yarkovsky effect David Capek and David Vokrouhlicky; 21. The population of asteroids in the 2:1 mean motion resonance with Jupiter revised Miroslav Broz, D. Vokrouhlicky, F. Roig, D. Nesvorny, W. F. Bottke and A. Morbidelli; 22. On the reliability of computation of maximum Lyapunov Characteristic Exponents for asteroids Zoran Knezevic and Slobodan Ninkovic; 23. Nekhoroshev stability estimates for different models of the Trojan asteroids Christos Efthymiopoulos; 24. The role of the resonant 'stickiness' in the dynamical evolution of Jupiter family comets A. Alvarez-Canda and F. Roig; 25. Regimes of stability and scaling relations for the removal time in the asteroid belt: a simple kinetic model and numerical tests Mihailo Cubrovic; 26. Virtual asteroids and virtual impactors Andrea Milani; 27. Asteroid population models Alessandro Morbidelli; 28. Linking Very Large Telescope asteroid observations M. Granvik, K. Muinonen, J. Virtanen, M. Delbó, L. Saba, G. De Sanctis, R. Morbidelli, A. Cellino and E. Tedesco; 29. Collision orbits and phase transition for 2004 AS1 at discovery Jenni Virtanen, K. Muinonen, M. Granvik and T. Laakso; 30. The size of collision solutions in orbital elements space G. B. Valsecchi, A. Rossi, A. Milani and S. R. Chesley; 31. Very short arc orbit determination: the case of asteroid 2004 FU162 Steven R. Chesley; 32. Nonlinear impact monitoring: 2-dimensional sampling Giacomo Tommei; 33. Searching for gravity assisted trajectories to accessible near-Earth asteroids Stefan Berinde; 34. KLENOT - Near Earth and other unusual objects observations Michal Kocer, Jana Tichá and M. Tichy; 35. Transport of comets to the Inner Solar System Hans Rickman; 36. Nongravitational Accelerations on Comets Steven R. Chesley and Donald K. Yeomans; 37. Interaction of planetesimals with the giant planets and the shaping of the trans-Neptunian belt Harold F. Levison and Alessandro Morbidelli; 38. Transport of comets to the outer p

  14. By Inferno's Light: Characterizing TESS Object of Interest Host Stars for Prioritizing Our Search for Habitable Planets

    NASA Astrophysics Data System (ADS)

    Unterborn, C. T.; Desch, S. J.; Johnson, J. A.; Panero, W. R.; Teske, J. K.; Hinkel, N. R.

    2016-12-01

    The Earth is unique in our Solar System. It is the only planet known to undergo plate tectonics. It has a magnetic field as result of an outer liquid iron core that protects the surface from Solar radiation. What is not known, however, is whether the Earth is unique among all terrestrial planets outside our Solar System. The population of potentially Earth-like planets will only continue to grow. The TESS mission, launching in 2017, is designed to identify rocky planets around bright, nearby stars across the whole sky. Of the 5,000 potential transit-like signals detected, only 100 will be selected for follow-up spectroscopy. From this subsample, only 50 planets are expected to have both mass and radius measurements, thus allowing for detailed modeling of the planetary interior and potential surface processes. As we search for habitable worlds within this sample, then, understanding which TESS objects of interest (TOI) warrant detailed and time-intensive follow-up observations is of paramount importance. Recent surveys of dwarf planetary host and non-host stars find variations in the major terrestrial planet element abundances (Mg, Fe, Si) of between 10% and 400% of Solar. Additionally, the terrestrial exoplanet record shows planets ranging in size from sub-Mercury to super-Earth. How this stellar compositional diversity is translated into resultant exoplanet physical properties including its mineralogy and structure is not known. Here, we present results of models blending equilibrium condensation sequence computations for determining initial planetesimal composition with geophysical interior calculations for multiple stellar abundance catalogues. This benchmarked and generalized approach allows us to predict the mineralogy and structure of an "average" exoplanet in these planetary systems, thus informing their potential to be "Earth-like." This combination of astro- and geophysical models provides us with a self-consistent method with which to compare planetary systems, thus improving our ability to prioritize "Earth-like" targets for follow-up observations within the TOI dataset. Furthermore, the methods described herein afford us an opportunity to explore rocky planet diversity as a whole and truly begin to answer the question, "Is the Earth special?"

  15. Investments by NASA to build planetary protection capability

    NASA Astrophysics Data System (ADS)

    Buxbaum, Karen; Conley, Catharine; Lin, Ying; Hayati, Samad

    NASA continues to invest in capabilities that will enable or enhance planetary protection planning and implementation for future missions. These investments are critical to the Mars Exploration Program and will be increasingly important as missions are planned for exploration of the outer planets and their icy moons. Since the last COSPAR Congress, there has been an opportunity to respond to the advice of NRC-PREVCOM and the analysis of the MEPAG Special Regions Science Analysis Group. This stimulated research into such things as expanded bioburden reduction options, modern molecular assays and genetic inventory capability, and approaches to understand or avoid recontamination of spacecraft parts and samples. Within NASA, a portfolio of PP research efforts has been supported through the NASA Office of Planetary Protection, the Mars Technology Program, and the Mars Program Office. The investment strategy focuses on technology investments designed to enable future missions and reduce their costs. In this presentation we will provide an update on research and development supported by NASA to enhance planetary protection capability. Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.

  16. A nitrogen-rich nebula

    NASA Image and Video Library

    2015-06-29

    This NASA/ESA Hubble Space Telescope image shows a planetary nebula named NGC 6153, located about 4000 light-years away in the southern constellation of Scorpius (The Scorpion). The faint blue haze across the frame shows what remains of a star like the Sun after it has depleted most of its fuel. When this happens, the outer layers of the star are ejected, and get excited and ionised by the energetic ultraviolet light emitted by the bright hot core of the star, forming the nebula. NGC 6153 is a planetary nebula that is elliptical in shape, with an extremely rich network of loops and filaments, shown clearly in this Hubble image. However, this is not what makes this planetary nebula so interesting for astronomers. Measurements show that NGC 6153 contains large amounts of neon, argon, oxygen, carbon and chlorine — up to three times more than can be found in the Solar System. The nebula contains a whopping five times more nitrogen than the Sun! Although it may be that the star developed higher levels of these elements as it grew and evolved, it is more likely that the star originally formed from a cloud of material that already contained lots more of these elements. A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Matej Novak. Links Matej Novak’s image on Flickr

  17. TERRESTRIAL PLANET FORMATION FROM AN ANNULUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Kevin J.; Levison, Harold F., E-mail: kwalsh@boulder.swri.edu

    It has been shown that some aspects of the terrestrial planets can be explained, particularly the Earth/Mars mass ratio, when they form from a truncated disk with an outer edge near 1.0 au. This has been previously modeled starting from an intermediate stage of growth utilizing pre-formed planetary embryos. We present simulations that were designed to test this idea by following the growth process from km-sized objects located between 0.7 and 1.0 au up to terrestrial planets. The simulations explore initial conditions where the solids in the disk are planetesimals with radii initially between 3 and 300 km, alternately includingmore » effects from a dissipating gaseous solar nebula and collisional fragmentation. We use a new Lagrangian code known as LIPAD, which is a particle-based code that models the fragmentation, accretion, and dynamical evolution of a large number of planetesimals, and can model the entire growth process from km-sizes up to planets. A suite of large (∼ Mars mass) planetary embryos is complete in only ∼1 Myr, containing most of the system mass. A quiescent period then persists for 10–20 Myr characterized by slow diffusion of the orbits and continued accretion of the remaining planetesimals. This is interrupted by an instability that leads to embryos crossing orbits and embryo–embryo impacts that eventually produce the final set of planets. While this evolution is different than that found in other works exploring an annulus, the final planetary systems are similar, with roughly the correct number of planets and good Mars-analogs.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikuchi, Akihiro; Higuchi, Arika; Ida, Shigeru, E-mail: kikuchi.a@geo.titech.ac.jp, E-mail: higuchia@geo.titech.ac.jp, E-mail: ida@elsi.jp

    Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ∼ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at ≲ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion.more » Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ∼10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.« less

  19. Proactive Integration of Planetary Protection Needs Into Early Design Phases of Human Exploration Missions

    NASA Astrophysics Data System (ADS)

    Race, Margaret; Conley, Catharine

    Planetary protection (PP) policies established by the Committee on Space Research (COSPAR) of the International Council for Science have been in force effectively for five decades, ensuring responsible exploration and the integrity of science activities, for both human and robotic missions in the Solar System beyond low Earth orbit (LEO). At present, operations on most bodies in the solar system are not constrained by planetary protection considerations because they cannot be contaminated by Earth life in ways that impact future space exploration. However, operations on Mars, Europa, and Enceladus, which represent locations with biological potential, are subject to strict planetary protection constraints for missions of all types because they can potentially be contaminated by organisms brought from Earth. Forward contamination control for robotic missions is generally accomplished through a combination of activities that reduce the bioload of microbial hitchhikers on outbound spacecraft prior to launch. Back contamination control for recent robotic missions has chiefly been accomplished by selecting sample-return targets that have little or no potential for extant life (e.g., cometary particles returned by Stardust mission). In the post-Apollo era, no human missions have had to deal with planetary protection constraints because they have never left Earth orbit. Future human missions to Mars, for example, will experience many of the challenges faced by the Apollo lunar missions, with the added possibility that astronauts on Mars may encounter habitable environments in their exploration or activities. Current COSPAR PP Principles indicate that safeguarding the Earth from potential back contamination is the highest planetary protection priority in Mars exploration. While guidelines for planetary protection controls on human missions to Mars have been established by COSPAR, detailed engineering constraints and processes for implementation of these guidelines have not yet been developed. Looking ahead, it is recognized that these planetary protection policies will apply to both governmental and non-governmental entities for the more than 100 countries that are signatories to the Outer SpaceTreaty. Fortunately, planetary protection controls for human missions are supportive of many other important mission needs, such as maximizing closed-loop and recycling capabilities to minimize mass required, minimizing exposure of humans to planetary materials for multiple health reasons, and minimizing contamination of planetary samples and environments during exploration and science activities. Currently, there is progress on a number of fronts in translating the basic COSPAR PP Principles and Implementation Guidelines into information that links with early engineering and process considerations. For example, an IAA Study Group on Planetary Protection and Human Missions is engaging robotic and human mission developers and scientists in exploring detailed technical, engineering and operational approaches by which planetary protection objectives can be accomplished for human missions in synergism with robotic exploration and in view of other constraints. This on-going study aims to highlight important information for the early stages of planning, and identify key research and technology development (R&TD) areas for further consideration and work. Such R&TD challenges provide opportunities for individuals, institutions and agencies of emerging countries to be involved in international exploration efforts. In January 2014, the study group presented an Interim Report to the IAA Heads of Agencies Summit in Washington DC. Subsequently, the group has continued to work on expanding the initial technical recommendations and findings, focusing especially on information useful to mission architects and designers as they integrate PP considerations in their varied plans-- scientific, commercial and otherwise. Already the findings and recommendations discussed by the study participants to date have set the agenda for additional work that will continue for at least another year, culminating in a final report that should be useful to current and new nations and partnerships in planning human missions beyond LEO. In addition, over the past two years, NASA has made progress in integrating planetary protection considerations into mission designs along with other important human, environmental and science needs. Details about planetary protection have also been incorporated into the latest Addendum of the Design Reference Architecture (DRA) for human missions to Mars. Other ongoing studies of Mars human mission architecture, technologies and operations have likewise been integrating PP requirements and guidelines into cross-cutting measures of various types. An important objective of all these studies is to proactively gather and communicate PP information to the broad community of planners, engineers and assorted partners who are facing the challenges of future human exploration missions. By analyzing ways to integrate PP provisions effectively into early mission phases in synergism with other needs, these projects and studies will help ensure that all institutions and organizations avoid releasing harmful contamination on bodies with biological potential, thereby ensuring protection of the Earth and astronauts throughout their missions and safeguarding the integrity of science exploration—all in compliance with the 1967 Outer Space Treaty.

  20. Operational Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    André, Nicolas; Grande, Manuel

    2017-04-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI, http://www.europlanet-2020-ri.eu) includes an entirely new Virtual Access Service, "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. PSWS will provide at the end of 2017 12 services distributed over 4 different service domains - 1) Prediction, 2) Detection, 3) Modelling, 4) Alerts. These services include 1.1) A 1D MHD solar wind prediction tool, 1.2) Extensions of a Propagation Tool, 1.3) A meteor showers prediction tool, 1.4) A cometary tail crossing prediction tool, 2.1) Detection of lunar impacts, 2.2) Detection of giant planet fireballs, 2.3) Detection of cometary tail events, 3.1) A Transplanet model of magnetosphere-ionosphere coupling, 3.2) A model of the Mars radiation environment, 3.3.) A model of giant planet magnetodisc, 3.4) A model of Jupiter's thermosphere, 4) A VO-event based alert system. We will detail in the present paper some of these services with a particular emphasis on those already operational at the time of the presentation (1.1, 1.2, 1.3, 2.2, 3.1, 4). The proposed Planetary Space Weather Services will be accessible to the research community, amateur astronomers as well as to industrial partners planning for space missions dedicated in particular to the following key planetary environments: Mars, in support of ESA's ExoMars missions; comets, building on the success of the ESA Rosetta mission; and outer planets, in preparation for the ESA JUpiter ICy moon Explorer (JUICE). These services will also be augmented by the future Solar Orbiter and BepiColombo observations. This new facility will not only have an impact on planetary space missions but will also allow the hardness of spacecraft and their components to be evaluated under variety of known conditions, particularly radiation conditions, extending their knownflight-worthiness for terrestrial applications. Europlanet 2020 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.

  1. Nuclear Electric Propulsion for Outer Space Missions

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    2003-01-01

    Today we know of 66 moons in our very own Solar System, and many of these have atmospheres and oceans. In addition, the Hubble (optical) Space Telescope has helped us to discover a total of 100 extra-solar planets, i.e., planets going around other suns, including several solar systems. The Chandra (X-ray) Space Telescope has helped us to discover 33 Black Holes. There are some extremely fascinating things out there in our Universe to explore. In order to travel greater distances into our Universe, and to reach planetary bodies in our Solar System in much less time, new and innovative space propulsion systems must be developed. To this end NASA has created the Prometheus Program. When one considers space missions to the outer edges of our Solar System and far beyond, our Sun cannot be relied on to produce the required spacecraft (s/c) power. Solar energy diminishes as the square of the distance from the Sun. At Mars it is only 43% of that at Earth. At Jupiter, it falls off to only 3.6% of Earth's. By the time we get out to Pluto, solar energy is only .066% what it is on Earth. Therefore, beyond the orbit of Mars, it is not practical to depend on solar power for a s/c. However, the farther out we go the more power we need to heat the s/c and to transmit data back to Earth over the long distances. On Earth, knowledge is power. In the outer Solar System, power is knowledge. It is important that the public be made aware of the tremendous space benefits offered by Nuclear Electric Propulsion (NEP) and the minimal risk it poses to our environment. This paper presents an overview of the reasons for NEP systems, along with their basic components including the reactor, power conversion units (both static and dynamic), electric thrusters, and the launch safety of the NEP system.

  2. Radiation pressure dynamics in planetary exospheres - A 'natural' framework

    NASA Technical Reports Server (NTRS)

    Bishop, James; Chamberlain, Joseph W.

    1989-01-01

    Exospheric theory is reformulated to provide for the analysis of dynamical underpinning of exospheric features. The formulation is based on the parabolic-cylindrical separability of the Hamiltonian that describes particle motions in the combined fields of planetary gravity and solar radiation pressure. An approximate solution for trajectory evolution in terms of orbital elements is derived and the role of the exopause in the tail phenomenon is discussed. Also, an expression is obtained for the bound constituent atom densities at outer planetocoronal positions along the planet-sun axis for the case of an evaporative, uniform exobase. This expression is used to estimate midnight density enhancements as a function of radial distance for the terrestrial planets.

  3. Risk to civilization: A planetary science perspective

    NASA Technical Reports Server (NTRS)

    Chapman, Clark R.; Morrison, David

    1988-01-01

    One of the most profound changes in our perspective of the solar system resulting from the first quarter century of planetary exploration by spacecraft is the recognition that planets, including Earth, were bombarded by cosmic projectiles for 4.5 aeons and continue to be bombarded today. Although the planetary cratering rate is much lower now than it was during the first 0.5 aeons, sizeable Earth-approaching asteroids and comets continue to hit the Earth at a rate that poses a finite risk to civilization. The evolution of this planetary perspective on impact cratering is gradual over the last two decades. It took explorations of Mars and Mercury by early Mariner spacecraft and of the outer solar system by the Voyagers to reveal the significance of asteroidal and cometary impacts in shaping the morphologies and even chemical compositions of the planets. An unsettling implication of the new perspective is addressed: the risk to human civilization. Serious scientific attention was given to this issue in July 1981 at a NASA-sponsored Spacewatch Workshop in Snowmass, Colorado. The basic conclusion of the 1981 NASA sponsored workshop still stands: the risk that civilization might be destroyed by impact with an as-yet-undiscovered asteroid or comet exceeds risk levels that are sometimes deemed unacceptable by modern societies in other contexts. Yet these impact risks have gone almost undiscussed and undebated. The tentative quantitative assessment by some members of the 1981 workshop was that each year, civilization is threatened with destruction with a probability of about 1 in 100,000. The enormous spread in risk levels deemed by the public to be at the threshold of acceptability derives from a host of psychological factors that were widely discussed in the risk assessment literature. Slovic shows that public fears of hazards are greatest for hazards that are uncontrollable, involuntary, fatal, dreadful, globally catastrophic, and which have consequences that seem inequitable, especially if they affect future generations.

  4. Planetary formation and water delivery in the habitable zone around solar-type stars in different dynamical environments

    NASA Astrophysics Data System (ADS)

    Zain, P. S.; de Elía, G. C.; Ronco, M. P.; Guilera, O. M.

    2018-01-01

    Context. Observational and theoretical studies suggest that there are many and various planetary systems in the Universe. Aims: We study the formation and water delivery of planets in the habitable zone (HZ) around solar-type stars. In particular, we study different dynamical environments that are defined by the most massive body in the system. Methods: First of all, a semi-analytical model was used to define the mass of the protoplanetary disks that produce each of the five dynamical scenarios of our research. Then, we made use of the same semi-analytical model to describe the evolution of embryos and planetesimals during the gaseous phase. Finally, we carried out N-body simulations of planetary accretion in order to analyze the formation and water delivery of planets in the HZ in the different dynamical environments. Results: Water worlds are efficiently formed in the HZ in different dynamical scenarios. In systems with a giant planet analog to Jupiter or Saturn around the snow line, super-Earths tend to migrate into the HZ from outside the snow line as a result of interactions with other embryos and accrete water only during the gaseous phase. In systems without giant planets, Earths and super-Earths with high water by mass contents can either be formed in situ in the HZ or migrate into it from outer regions, and water can be accreted during the gaseous phase and in collisions with water-rich embryos and planetesimals. Conclusions: The formation of planets in the HZ with very high water by mass contents seems to be a common process around Sun-like stars. Our research suggests that such planets are still very efficiently produced in different dynamical environments. Moreover, our study indicates that the formation of planets in the HZ with masses and water contents similar to those of Earth seems to be a rare process around solar-type stars in the systems under consideration.

  5. The Structure of the Distant Kuiper Belt in a Nice Model Scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, R. E.; Shankman, C. J.; Kavelaars, J. J.

    2017-03-01

    This work explores the orbital distribution of minor bodies in the outer Solar System emplaced as a result of a Nice model migration from the simulations of Brasser and Morbidelli. This planetary migration scatters a planetesimal disk from between 29 and 34 au and emplaces a population of objects into the Kuiper Belt region. From the 2:1 Neptune resonance and outward, the test particles analyzed populate the outer resonances with orbital distributions consistent with trans-Neptunian object (TNO) detections in semimajor axis, inclination, and eccentricity, while capture into the closest resonances is too efficient. The relative populations of the simulated scatteringmore » objects and resonant objects in the 3:1 and 4:1 resonances are also consistent with observed populations based on debiased TNO surveys, but the 5:1 resonance is severely underpopulated compared to population estimates from survey results. Scattering emplacement results in the expected orbital distribution for the majority of the TNO populations; however, the origin of the large observed population in the 5:1 resonance remains unexplained.« less

  6. Tracing Interactions of a Protoplanet with its Circumstellar Disk

    NASA Astrophysics Data System (ADS)

    Stapelfeldt, Karl

    2017-08-01

    A candidate companion to a very young star has been discovered in HST snapshot optical images. The object is projected at the outer radius of an edge-on protoplanetary disk and is aligned with the disk plane. Keck LGS photometry results indicate the object has the same temperature as brown dwarf GQ Lupi b but with 10x less luminosity - consistent with a planetary mass companion. Because the edge-on disk suppresses the light of the central star, the companion is uniquely accessible to follow-up studies with minimal starlight residuals. We propose HST/WFC3 imaging and spectroscopy of the system to 1) fully define the morphology of the disk scattered light, particularly at the disk outer edge near the companion; 2) search for Halpha emission from the companion as evidence that it is actively accreting; and 3) complete spectral characterization of the companion using G141 spectroscopy. Confirmation of a substellar spectrum, accretion, and disk interaction action would establish this object as a leading example of an accreting protoplanet at 100 AU and offer support to models for planet formation by gravitational instability.

  7. KSC-98pc1186

    NASA Image and Video Library

    1998-09-30

    The open doors of the payload bay on Space Shuttle Discovery await the transfer of four of the payloads on mission STS-95: the SPACEHAB single module, Spartan, the Hubble Space Telescope Orbiting Systems Test Platform (HOST), and the International Extreme Ultraviolet Hitchhiker (IEH-3). At the top of bay are the airlock (used for depressurization and repressurization during extravehicular activity and transfer to Mir) and the tunnel adapter (enables the flight crew members to transfer from the pressurized middeck crew compartment to Spacelab's pressurized shirt-sleeve environment). SPACEHAB involves experiments on space flight and the aging process. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. HOST carries four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. IEH-3 comprises several experiments that will study the Jovian planetary system, hot stars, planetary and reflection nebulae, other stellar objects and their environments through remote observation of EUV/FUV emissions; study spacecraft interactions, Shuttle glow, thruster firings, and contamination; and measure the solar constant and identify variations in the value during a solar cycle. Discovery is scheduled to launch on Oct. 29, 1998

  8. Saturn's largest ring.

    PubMed

    Verbiscer, Anne J; Skrutskie, Michael F; Hamilton, Douglas P

    2009-10-22

    Most planetary rings in the Solar System lie within a few radii of their host body, because at these distances gravitational accelerations inhibit satellite formation. The best known exceptions are Jupiter's gossamer rings and Saturn's E ring, broad sheets of dust that extend outward until they fade from view at five to ten planetary radii. Source satellites continuously supply the dust, which is subsequently lost in collisions or by radial transport. Here we report that Saturn has an enormous ring associated with its outer moon Phoebe, extending from at least 128R(S) to 207R(S) (Saturn's radius R(S) is 60,330 km). The ring's vertical thickness of 40R(S) matches the range of vertical motion of Phoebe along its orbit. Dynamical considerations argue that these ring particles span the Saturnian system from the main rings to the edges of interplanetary space. The ring's normal optical depth of approximately 2 x 10(-8) is comparable to that of Jupiter's faintest gossamer ring, although its particle number density is several hundred times smaller. Repeated impacts on Phoebe, from both interplanetary and circumplanetary particle populations, probably keep the ring populated with material. Ring particles smaller than centimetres in size slowly migrate inward and many of them ultimately strike the dark leading face of Iapetus.

  9. Thermal, Radiation and Impact Protective Shields (TRIPS) for Robotic and Human Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Loomis, M. P.; Arnold, J. L.

    2005-01-01

    New concepts for protective shields for NASA s Crew Exploration Vehicles (CEVs) and planetary probes offer improved mission safety and affordability. Hazards include radiation from cosmic rays and solar particle events, hypervelocity impacts from orbital debris/ micrometeorites, and the extreme heating environment experienced during entry into planetary atmospheres. The traditional approach for the design of protection systems for these hazards has been to create single-function shields, i.e. ablative and blanket-based heat shields for thermal protection systems (TPS), polymer or other low-molecular-weight materials for radiation shields, and multilayer, Whipple-type shields for protection from hypervelocity impacts. This paper introduces an approach for the development of a single, multifunctional protective shield, employing nanotechnology- based materials, to serve simultaneously as a TPS, an impact shield and as the first line of defense against radiation. The approach is first to choose low molecular weight ablative TPS materials, (existing and planned for development) and add functionalized carbon nanotubes. Together they provide both thermal and radiation (TR) shielding. Next, impact protection (IP) is furnished through a tough skin, consisting of hard, ceramic outer layers (to fracture the impactor) and sublayers of tough, nanostructured fabrics to contain the debris cloud from the impactor before it can penetrate the spacecraft s interior.

  10. Warm Jupiters Are Less Lonely than Hot Jupiters: Close Neighbors

    NASA Astrophysics Data System (ADS)

    Huang, Chelsea; Wu, Yanqin; Triaud, Amaury H. M. J.

    2016-07-01

    Exploiting the Kepler transit data, we uncover a dramatic distinction in the prevalence of sub-Jovian companions between systems that contain hot Jupiters (HJs) (periods inward of 10 days) and those that host warm Jupiters (WJs) (periods between 10 and 200 days). HJs, with the singular exception of WASP-47b, do not have any detectable inner or outer planetary companions (with periods inward of 50 days and sizes down to 2 R Earth). Restricting ourselves to inner companions, our limits reach down to 1 R Earth. In stark contrast, half of the WJs are closely flanked by small companions. Statistically, the companion fractions for hot and WJs are mutually exclusive, particularly in regard to inner companions. The high companion fraction of WJs also yields clues to their formation. The WJs that have close-by siblings should have low orbital eccentricities and low mutual inclinations. The orbital configurations of these systems are reminiscent of those of the low-mass close-in planetary systems abundantly discovered by the Kepler mission. This, and other arguments, lead us to propose that these WJs are formed in situ. There are indications that there may be a second population of WJs with different characteristics. In this picture, WASP-47b could be regarded as the extending tail of the in situ WJs into the HJ region and does not represent the generic formation route for HJs.

  11. Atmosphere Expansion and Mass Loss of Close-orbit Giant Exoplanets Heated by Stellar XUV. I. Modeling of Hydrodynamic Escape of Upper Atmospheric Material

    NASA Astrophysics Data System (ADS)

    Shaikhislamov, I. F.; Khodachenko, M. L.; Sasunov, Yu. L.; Lammer, H.; Kislyakova, K. G.; Erkaev, N. V.

    2014-11-01

    In the present series of papers we propose a consistent description of the mass loss process. To study in a comprehensive way the effects of the intrinsic magnetic field of a close-orbit giant exoplanet (a so-called hot Jupiter) on atmospheric material escape and the formation of a planetary inner magnetosphere, we start with a hydrodynamic model of an upper atmosphere expansion in this paper. While considering a simple hydrogen atmosphere model, we focus on the self-consistent inclusion of the effects of radiative heating and ionization of the atmospheric gas with its consequent expansion in the outer space. Primary attention is paid to an investigation of the role of the specific conditions at the inner and outer boundaries of the simulation domain, under which different regimes of material escape (free and restricted flow) are formed. A comparative study is performed of different processes, such as X-ray and ultraviolet (XUV) heating, material ionization and recombination, H_3^ + cooling, adiabatic and Lyα cooling, and Lyα reabsorption. We confirm the basic consistency of the outcomes of our modeling with the results of other hydrodynamic models of expanding planetary atmospheres. In particular, we determine that, under the typical conditions of an orbital distance of 0.05 AU around a Sun-type star, a hot Jupiter plasma envelope may reach maximum temperatures up to ~9000 K with a hydrodynamic escape speed of ~9 km s-1, resulting in mass loss rates of ~(4-7) · 1010 g s-1. In the range of the considered stellar-planetary parameters and XUV fluxes, that is close to the mass loss in the energy-limited case. The inclusion of planetary intrinsic magnetic fields in the model is a subject of the follow-up paper (Paper II).

  12. Does warm debris dust stem from asteroid belts?

    NASA Astrophysics Data System (ADS)

    Geiler, Fabian; Krivov, Alexander V.

    2017-06-01

    Many debris discs reveal a two-component structure, with a cold outer and a warm inner component. While the former are likely massive analogues of the Kuiper belt, the origin of the latter is still a matter of debate. In this work, we investigate whether the warm dust may be a signature of asteroid belt analogues. In the scenario tested here, the current two-belt architecture stems from an originally extended protoplanetary disc, in which planets have opened a gap separating it into the outer and inner discs which, after the gas dispersal, experience a steady-state collisional decay. This idea is explored with an analytic collisional evolution model for a sample of 225 debris discs from a Spitzer/IRS catalogue that are likely to possess a two-component structure. We find that the vast majority of systems (220 out of 225, or 98 per cent) are compatible with this scenario. For their progenitors, original protoplanetary discs, we find an average surface density slope of -0.93 ± 0.06 and an average initial mass of (3.3^{+0.4}_{-0.3})× 10^{-3} solar masses, both of which are in agreement with the values inferred from submillimetre surveys. However, dust production by short-period comets and - more rarely - inward transport from the outer belts may be viable, and not mutually excluding, alternatives to the asteroid belt scenario. The remaining five discs (2 per cent of the sample: HIP 11486, HIP 23497, HIP 57971, HIP 85790, HIP 89770) harbour inner components that appear inconsistent with dust production in an 'asteroid belt.' Warm dust in these systems must either be replenished from cometary sources or represent an aftermath of a recent rare event, such as a major collision or planetary system instability.

  13. Efficiency of planetesimal ablation in giant planetary envelopes

    NASA Astrophysics Data System (ADS)

    Pinhas, Arazi; Madhusudhan, Nikku; Clarke, Cathie

    2016-12-01

    Observations of exoplanetary spectra are leading to unprecedented constraints on their atmospheric elemental abundances, particularly O/H, C/H, and C/O ratios. Recent studies suggest that elemental ratios could provide important constraints on formation and migration mechanisms of giant exoplanets. A fundamental assumption in such studies is that the chemical composition of the planetary envelope represents the sum-total of compositions of the accreted gas and solids during the formation history of the planet. We investigate the efficiency with which accreted planetesimals ablate in a giant planetary envelope thereby contributing to its composition rather than sinking to the core. From considerations of aerodynamic drag causing `frictional ablation' and the envelope temperature structure causing `thermal ablation', we compute mass ablations for impacting planetesimals of radii 30 m to 1 km for different compositions (ice to iron) and a wide range of velocities and impact angles, assuming spherical symmetry. Icy impactors are fully ablated in the outer envelope for a wide range of parameters. Even for Fe impactors substantial ablation occurs in the envelope for a wide range of sizes and velocities. For example, iron impactors of sizes below ˜0.5 km and velocities above ˜30 km s-1 are found to ablate by ˜60-80 per cent within the outer envelope at pressures below 103 bar due to frictional ablation alone. For deeper pressures (˜107 bar), substantial ablation happens over a wider range of parameters. Therefore, our exploratory study suggests that atmospheric abundances of volatile elements in giant planets reflect their accretion history during formation.

  14. The Initial Physical Conditions of Kepler-36 b and c

    NASA Astrophysics Data System (ADS)

    Owen, James E.; Morton, Timothy. D.

    2016-03-01

    The Kepler-36 planetary system consists of two exoplanets at similar separations (0.115 and 0.128 au), which have dramatically different densities. The inner planet has a density consistent with an Earth-like composition, while the outer planet is extremely low density, such that it must contain a voluminous H/He envelope. Such a density difference would pose a problem for any formation mechanism if their current densities were representative of their composition at formation. However, both planets are at close enough separations to have undergone significant evaporation in the past. We constrain the core mass, core composition, initial envelope mass, and initial cooling time of each planet using evaporation models conditioned on their present-day masses and radii, as inferred from Kepler photometry and transit timing analysis. The inner planet is consistent with being an evaporatively stripped core, while the outer planet has retained some of its initial envelope due to its higher core mass. Therefore, both planets could have had a similar formation pathway, with the inner planet having an initial envelope-mass fraction of ≲10% and core mass of ˜4.4 M⊕, while the outer had an initial envelope-mass fraction of the order of 15%-30% and core mass ˜7.3 M⊕. Finally, our results indicate that the outer planet had a long (≳30 Myr) initial cooling time, much longer than would naively be predicted from simple timescale arguments. The long initial cooling time could be evidence for a dramatic early cooling episode such as the recently proposed “boil-off” process.

  15. Models of the Earth's Core.

    PubMed

    Stevenson, D J

    1981-11-06

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with the following properties. Core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and laboratory data.

  16. THE PAN-PACIFIC PLANET SEARCH. II. CONFIRMATION OF A TWO-PLANET SYSTEM AROUND HD 121056

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittenmyer, Robert A.; Tinney, C. G.; Wang, Liang

    2015-02-10

    Precise radial velocities from the Anglo-Australian Telescope (AAT) confirm the presence of a rare short-period planet around the K0 giant HD 121056. An independent two-planet solution using the AAT data shows that the inner planet has P = 89.1 ± 0.1 days, and m sin i = 1.35 ± 0.17 M{sub Jup}. These data also confirm the planetary nature of the outer companion, with m sin i = 3.9 ± 0.6 M{sub Jup} and a = 2.96 ± 0.16 AU. HD 121056 is the most-evolved star to host a confirmed multiple-planet system, and is a valuable example of a giant star hosting both a short-period andmore » a long-period planet.« less

  17. Results of studies on long-term exposition of dormant forms of various organisms in outer space environment

    NASA Astrophysics Data System (ADS)

    Novikova, Nataliya; Gusev, Oleg; Sugimoto, Manabu; Deshevaya, Elena; Levinskikh, Margarita; Sychev, Vladimir; Okuda, Takashi; Orlov, Oleg; Alekseev, Victor; Poddubko, Svetlana; Polikarpov, Nikolay

    The planetary quarantine is one of the key problems of deep space exploration. Risks of the possible transfer of biological objects across interplanetary space should be necessarily assessed during space exploration. The risks associated with a possible transfer of biological objects and primarily microorganisms in interplanetary space is a priority for space studies We can assume, that on the exterior side of both unmanned and manned space stations there can be millions of microbial cells, many of which are in spore forms, the stability of which towards the unfavorable factors is extremely high. However, direct evidence to support this assumption, obtained only in recent years. “Biorisk” is an apparatus designed for conduction of space experiments focused on long-term exposition of latent stages of different forms of organism on the outer side of Russian Segment of International Space Station was developed and used in SSC RF - Institute for Biomedical Problems RAS. The purpose of this experiment is to determine the principle capability of preservation of life capacity in test-cultures of microorganisms during long-term exposure (comparable with the term of interplanetary flight) in space. The first experiment was performed using spores of bacteria (Bacillus) and fungi (Penicillium, Aspergillus and Cladosporium) housed in 3 boxes that were exposed to outer space for 7, 12 or 18 months. It was for the first time demonstrated that bacterial and fungal spores could survive an exposure to outer space during the time period comparable with the duration of a return mission to Mars. Moreover, the microbial strains proved viable and highly active. The second experiment was expanded by flying, in addition to the above spores, dormant forms of higher plants, insects, lower crustaceans and vertebrates. The 31-month experiment showed that, in spite of harsher than in the first study temperatures, some specimens remained viable and capable of further multiplication. In summary, our experiments provided evidence that not only bacterial and fungal spores but also dormant forms of organisms that reached higher levels of evolutionary development had the capability to survive a long-term exposure to outer space. This observation suggests that they can be transferred on outer walls of space platforms during interplanetary missions. Our findings are of scientific interest as well as of importance for the development of planetary quarantine concepts related to future space flight.

  18. Origin of Saturn's rings and inner moons by mass removal from a lost Titan-sized satellite.

    PubMed

    Canup, Robin M

    2010-12-16

    The origin of Saturn's rings has not been adequately explained. The current rings are more than 90 to 95 per cent water ice, which implies that initially they were almost pure ice because they are continually polluted by rocky meteoroids. In contrast, a half-rock, half-ice mixture (similar to the composition of many of the satellites in the outer Solar System) would generally be expected. Previous ring origin theories invoke the collisional disruption of a small moon, or the tidal disruption of a comet during a close passage by Saturn. These models are improbable and/or struggle to account for basic properties of the rings, including their icy composition. Saturn has only one large satellite, Titan, whereas Jupiter has four large satellites; additional large satellites probably existed originally but were lost as they spiralled into Saturn. Here I report numerical simulations of the tidal removal of mass from a differentiated, Titan-sized satellite as it migrates inward towards Saturn. Planetary tidal forces preferentially strip material from the satellite's outer icy layers, while its rocky core remains intact and is lost to collision with the planet. The result is a pure ice ring much more massive than Saturn's current rings. As the ring evolves, its mass decreases and icy moons are spawned from its outer edge with estimated masses consistent with Saturn's ice-rich moons interior to and including Tethys.

  19. HUBBLE PROBES THE COMPLEX HISTORY OF A DYING STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image shows one of the most complex planetary nebulae ever seen, NGC 6543, nicknamed the 'Cat's Eye Nebula.' Hubble reveals surprisingly intricate structures including concentric gas shells, jets of high-speed gas and unusual shock-induced knots of gas. Estimated to be 1,000 years old, the nebula is a visual 'fossil record' of the dynamics and late evolution of a dying star. A preliminary interpretation suggests that the star might be a double-star system. The dynamical effects of two stars orbiting one another most easily explains the intricate structures, which are much more complicated than features seen in most planetary nebulae. (The two stars are too close together to be individually resolved by Hubble, and instead, appear as a single point of light at the center of the nebula.) According to this model, a fast 'stellar wind' of gas blown off the central star created the elongated shell of dense, glowing gas. This structure is embedded inside two larger lobes of gas blown off the star at an earlier phase. These lobes are 'pinched' by a ring of denser gas, presumably ejected along the orbital plane of the binary companion. The suspected companion star also might be responsible for a pair of high-speed jets of gas that lie at right angles to this equatorial ring. If the companion were pulling in material from a neighboring star, jets escaping along the companion's rotation axis could be produced. These jets would explain several puzzling features along the periphery of the gas lobes. Like a stream of water hitting a sand pile, the jets compress gas ahead of them, creating the 'curlicue' features and bright arcs near the outer edge of the lobes. The twin jets are now pointing in different directions than these features. This suggests the jets are wobbling, or precessing, and turning on and off episodically. The image was taken with the Wide Field Planetary Camera-2 on September 18, 1994. NGC 6543 is 3,000 light-years away in the northern constellation Draco. The term planetary nebula is a misnomer; dying stars create these cocoons when they lose outer layers of gas. The process has nothing to do with planet formation, which is predicted to happen early in a star's life. This material was presented at the 185th meeting of the American Astronomical Society in Tucson, AZ on January 11, 1995. Credit: J.P. Harrington and K.J. Borkowski (University of Maryland), and NASA

  20. Laboratory Simulations of Martian and Venusian Aeolian Processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1999-01-01

    With the flyby of the Neptune system by Voyager, the preliminary exploration of the Solar System was accomplished. Data have been returned for all major planets and satellites except the Pluto system. Results show that the surfaces of terrestrial planets and satellites have been subjected to a wide variety of geological processes. On solid- surface planetary objects having an atmosphere, aeolian processes are important in modifying their surfaces through the redistribution of fine-grained material by the wind. Bedrock may be eroded to produce particles and the particles transported by wind for deposition in other areas. This process operates on Earth today and is evident throughout the geological record. Aeolian processes also occur on Mars, Venus, and possibly Titan and Triton, both of which are outer planet satellites that have atmospheres. Mariner 9 and Viking results show abundant wind-related landforms on Mars, including dune fields and yardangs (wind-eroded hills). On Venus, measurements made by the Soviet Venera and Vega spacecraft and extrapolations from the Pioneer Venus atmospheric probes show that surface winds are capable of transporting particulate materials and suggest that aeolian processes may operate on that planet as well. Magellan radar images of Venus show abundant wind streaks in some areas, as well as dune fields and a zone of possible yardangs. The study of planetary aeolian processes must take into account diverse environments, from the cold, low-density atmosphere of Mars to the extremely hot, high- density Venusian atmosphere. Factors such as threshold wind speeds (minimum wind velocity needed to move particles), rates of erosion and deposition, trajectories of windblown particles, and aeolian flow fields over various landforms are all important aspects of the problem. In addition, study of aeolian terrains on Earth using data analogous to planetary data-collection systems is critical to the interpretation of spacecraft information and places constraints on results from numerical models and laboratory simulations.

  1. A photoevaporative gap in the closest planet-forming disc

    NASA Astrophysics Data System (ADS)

    Ercolano, Barbara; Rosotti, Giovanni P.; Picogna, Giovanni; Testi, Leonardo

    2017-01-01

    The dispersal of the circum-stellar discs of dust and gas surrounding young low-mass stars has important implications for the formation of planetary systems. Photoevaporation from energetic radiation from the central object is thought to drive the dispersal in the majority of discs, by creating a gap which disconnects the outer from the inner regions of the disc and then disperses the outer disc from the inside-out, while the inner disc keeps draining viscously on to the star. In this Letter, we show that the disc around TW Hya, the closest protoplanetary disc to Earth, may be the first object where a photoevaporative gap has been imaged around the time at which it is being created. Indeed, the detected gap in the Atacama large millimeter/submillimeter array images is consistent with the expectations of X-ray photoevaporation models, thus not requiring the presence of a planet. The photoevaporation model is also consistent with a broad range of properties of the TW Hya system, e.g. accretion rate and the location of the gap at the onset of dispersal. We show that the central, unresolved 870 μm continuum source might be produced by free-free emission from the gas and/or residual dust inside the gap.

  2. The Pioneer Missions

    NASA Technical Reports Server (NTRS)

    Lasher, Larry E.; Hogan, Robert (Technical Monitor)

    1999-01-01

    This article describes the major achievements of the Pioneer Missions and gives information about mission objectives, spacecraft, and launches of the Pioneers. Pioneer was the United States' longest running space program. The Pioneer Missions began forty years ago. Pioneer 1 was launched shortly after Sputnik startled the world in 1957 as Earth's first artificial satellite at the start of the space age. The Pioneer Missions can be broken down into four distinct groups: Pioneer (PN's) 1 through 5, which comprise the first group - the "First Pioneers" - were launched from 1958 through 1960. These Pioneers made the first thrusts into space toward the Moon and into interplanetary orbit. The next group - the "Interplanetary Pioneers" - consists of PN's 6 through 9, with the initial launch being in 1965 (through 1968); this group explored inward and outward from Earth's orbit and travel in a heliocentric orbit around the Sun just as the Earth. The Pioneer group consisting of 10 and 11 - the "Outer Solar System Pioneers" - blazed a trail through the asteroid belt and was the first to explore Jupiter, Saturn and the outer Solar System and is seeking the borders of the heliosphere and will ultimately journey to the distant stars. The final group of Pioneer 12 and 13 the "Planetary Pioneers" - traveled to Earth's mysterious twin, Venus, to study this planet.

  3. Some aspects of the cosmogonic outward migration of Neptune. Co-planar migration

    NASA Astrophysics Data System (ADS)

    Neslušan, L.; Jakubík, M.

    2013-10-01

    Considering a simple model of the cosmogonic outward migration of Neptune, we investigate if the assumption of an extremely low orbital inclination of small bodies in a once-existing proto-planetary disk could influence the structure of reservoirs of the objects in the trans-Neptunian region. We found no significant influence. Our models predict only the existence of the mean-motion resonances (MMRs) with Neptune 2:3, 3:5, 1:2, and an anemic scattered disk (MMRs 3:4, 5:7, and 9:11 are also indicated). To explain the classical Edgeworth-Kuiper belt, relatively abundant 4:7 and 2:5 MMRs, and the more numerous scattered disk, we need to assume that, e.g., the outer boundary of the original proto-planetary disk considerably exceeded the distance of the current Neptune's orbit (Neptune probably ended its migration at the distance, where the disk's density started to be sub-critical), or that some Pluto-sized objects resided inside the MMRs and in the distant parts of the original proto-planetary disk.

  4. The Auroral Planetary Imaging and Spectroscopy (APIS) service

    NASA Astrophysics Data System (ADS)

    Lamy, L.; Prangé, R.; Henry, F.; Le Sidaner, P.

    2015-06-01

    The Auroral Planetary Imaging and Spectroscopy (APIS) service, accessible online, provides an open and interactive access to processed auroral observations of the outer planets and their satellites. Such observations are of interest for a wide community at the interface between planetology, magnetospheric and heliospheric physics. APIS consists of (i) a high level database, built from planetary auroral observations acquired by the Hubble Space Telescope (HST) since 1997 with its mostly used Far-Ultraviolet spectro-imagers, (ii) a dedicated search interface aimed at browsing efficiently this database through relevant conditional search criteria and (iii) the ability to interactively work with the data online through plotting tools developed by the Virtual Observatory (VO) community, such as Aladin and Specview. This service is VO compliant and can therefore also been queried by external search tools of the VO community. The diversity of available data and the capability to sort them out by relevant physical criteria shall in particular facilitate statistical studies, on long-term scales and/or multi-instrumental multi-spectral combined analysis.

  5. Planetary/DOD entry technology flight experiments. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.

    1976-01-01

    The feasibility of using the space shuttle to launch planetary and DoD entry flight experiments was examined. The results of the program are presented in two parts: (1) simulating outer planet environments during an earth entry test, the prediction of Jovian and earth radiative heating dominated environments, mission strategy, booster performance and entry vehicle design, and (2) the DoD entry test needs for the 1980's, the use of the space shuttle to meet these DoD test needs, modifications of test procedures as pertaining to the space shuttle, modifications to the space shuttle to accommodate DoD test missions and the unique capabilities of the space shuttle. The major findings of this program are summarized.

  6. Carbon phenolic heat shields for Jupiter/Saturn/Uranus entry probes

    NASA Technical Reports Server (NTRS)

    Mezines, S.

    1974-01-01

    Carbon phenolic heat shield technology is reviewed. Heat shield results from the outer planetary probe mission studies are summarized along with results of plasma jet testing of carbon phenolic conducted in a ten megawatt facility. Missile flight data is applied to planetary entry conditions. A carbon phenolic heat shield material is utilized and tailored to accommodate each of the probe missions. An integral heat shield approach is selected over in order to eliminate a high temperature interface problem and permit direct bonding of the carbon phenolic to the structural honeycomb sandwich. The sandwich is filled with a very fine powder to minimize degradation of its insulation properties by the high conductive hydrogen/helium gases during the long atmospheric descent phase.

  7. Mass spectrometric measurements of atmospheric composition

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1974-01-01

    The development of a magnetic sector field analyzer for continuous sampling and measurement of outer planetary atmospheres is discussed. Special features of the analyzer include a dynamic range of 10 to the minus 7th power, a mass range from 1 to 48 AMU, two ion sensitivities, a special scan time of 35 sec at 14 BPS, and the use of ion counting techniques for analysis.

  8. Organic Synthesis via Irradiation and Warming of Ice Grains in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Ciesla, Fred J.; Sanford, Scott A.

    2012-01-01

    Complex organic compounds, including many important to life on Earth, are commonly found in meteoritic and cometary samples, though their origins remain a mystery. We examined whether such molecules could be produced within the solar nebula by tracking the dynamical evolution of ice grains in the nebula and recording the environments they were exposed to. We found that icy grains originating in the outer disk, where temperatures were less than 30 K, experienced UV irradiation exposures and thermal warming similar to that which has been shown to produce complex organics in laboratory experiments. These results imply that organic compounds are natural byproducts of protoplanetary disk evolution and should be important ingredients in the formation of all planetary systems, including our own.

  9. Bringing the Excitement of Exploring Mars and the Giant Planets to Educators and the Public

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.; Dusenbery, P. B.; Harold, J.

    2003-05-01

    We are living in a wonderful era of planetary exploration. In 2004 alone, two rovers will land on Mars and the Cassini-Huygens mission will arrive in the Saturn system for an extended 4-year tour. These events will bring much public attention and provide excellent reasons for substantive educational outreach to educators and the public. The Space Science Institute (SSI) of Boulder, CO and collaborators are responding with a comprehensive array of funded and proposed projects. These include the refurbishment and redeployment of the 5000 sq. ft MarsQuest national traveling exhibition, the launch of a 600 sq. ft. "mini-MarsQuest" called Destination Mars, the launch of an interactive website called "MarsQuest Online" (in partnership with TERC and JPL), a variety of workshops for teachers, museum educators, and planetarians (in partnership with "To Mars with MER", and JPL), and the development of a "Family Guide to Mars" for use by adults and children in informal learning settings. SSI is also proposing to develop another national traveling exhibition called "Giant Planets: Exploring the Outer Solar System". This exhibit (envisioned to be 3500 sq.ft.) and its educational program will take advantage of the excitement generated by the Cassini mission and origins-related research. Its education program will also benefit from SSI having led the development of the "Saturn Educator Guide" - a JPL-sponsored resource for teachers in grades 5 and up. This paper will provide an overview of our resources in planetary science education and communicate the valuable lessons we've learned about their design, development and dissemination. SSI's educational endeavors related to planetary science have been funded by several NASA and NSF grants and contracts.

  10. Hubble View of a Nitrogen-Rich Nebula

    NASA Image and Video Library

    2015-06-26

    This NASA/ESA Hubble Space Telescope image shows a planetary nebula named NGC 6153, located about 4,000 light-years away in the southern constellation of Scorpius (The Scorpion). The faint blue haze across the frame shows what remains of a star like the sun after it has depleted most of its fuel. When this happens, the outer layers of the star are ejected, and get excited and ionized by the energetic ultraviolet light emitted by the bright hot core of the star, forming the nebula. NGC 6153 is a planetary nebula that is elliptical in shape, with an extremely rich network of loops and filaments, shown clearly in this Hubble image. However, this is not what makes this planetary nebula so interesting for astronomers. Measurements show that NGC 6153 contains large amounts of neon, argon, oxygen, carbon and chlorine — up to three times more than can be found in the solar system. The nebula contains a whopping five times more nitrogen than our sun! Although it may be that the star developed higher levels of these elements as it grew and evolved, it is more likely that the star originally formed from a cloud of material that already contained a lot more of these elements. Text credit: European Space Agency Image credit: ESA/Hubble & NASA, Acknowledgement: Matej Novak NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Diverse microbial species survive high ammonia concentrations

    NASA Astrophysics Data System (ADS)

    Kelly, Laura C.; Cockell, Charles S.; Summers, Stephen

    2012-04-01

    Planetary protection regulations are in place to control the contamination of planets and moons with terrestrial micro-organisms in order to avoid jeopardizing future scientific investigations relating to the search for life. One environmental chemical factor of relevance in extraterrestrial environments, specifically in the moons of the outer solar system, is ammonia (NH3). Ammonia is known to be highly toxic to micro-organisms and may disrupt proton motive force, interfere with cellular redox reactions or cause an increase of cell pH. To test the survival potential of terrestrial micro-organisms exposed to such cold, ammonia-rich environments, and to judge whether current planetary protection regulations are sufficient, soil samples were exposed to concentrations of NH3 from 5 to 35% (v/v) at -80°C and room temperature for periods up to 11 months. Following exposure to 35% NH3, diverse spore-forming taxa survived, including representatives of the Firmicutes (Bacillus, Sporosarcina, Viridibacillus, Paenibacillus, Staphylococcus and Brevibacillus) and Actinobacteria (Streptomyces). Non-spore forming organisms also survived, including Proteobacteria (Pseudomonas) and Actinobacteria (Arthrobacter) that are known to have environmentally resistant resting states. Clostridium spp. were isolated from the exposed soil under anaerobic culture. High NH3 was shown to cause a reduction in viability of spores over time, but spore morphology was not visibly altered. In addition to its implications for planetary protection, these data show that a large number of bacteria, potentially including spore-forming pathogens, but also environmentally resistant non-spore-formers, can survive high ammonia concentrations.

  12. Theory for planetary exospheres: III. Radiation pressure effect on the Circular Restricted Three Body Problem and its implication on planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Beth, A.; Garnier, P.; Toublanc, D.; Dandouras, I.; Mazelle, C.

    2016-12-01

    The planetary exospheres are poorly known in their outer parts, since the neutral densities are low compared with the instruments detection capabilities. The exospheric models are thus often the main source of information at such high altitudes. We present a new way to take into account analytically the additional effect of the stellar radiation pressure on planetary exospheres. In a series of papers, we present with a Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and escaping thermal flux. Our work is a generalization of the study by Bishop and Chamberlain [1989] Icarus, 81, 145-163. In this third paper, we investigate the effect of the stellar radiation pressure on the Circular Restricted Three Body Problem (CR3BP), called also the photogravitational CR3BP, and its implication on the escape and the stability of planetary exospheres, especially for hot Jupiters. In particular, we describe the transformation of the equipotentials and the location of the Lagrange points, and we provide a modified equation for the Hill sphere radius that includes the influence of the radiation pressure. Finally, an application to the hot Jupiter HD 209458b and hot Neptune GJ 436b reveals the existence of a blow-off escape regime induced by the stellar radiation pressure.

  13. A Dynamical Analysis of the Kepler-80 System of Five Transiting Planets

    NASA Astrophysics Data System (ADS)

    MacDonald, Mariah G.; Ragozzine, Darin; Fabrycky, Daniel C.; Ford, Eric B.; Holman, Matthew J.; Isaacson, Howard T.; Lissauer, Jack J.; Lopez, Eric D.; Mazeh, Tsevi; Rogers, Leslie; Rowe, Jason F.; Steffen, Jason H.; Torres, Guillermo

    2016-10-01

    Kepler has discovered hundreds of systems with multiple transiting exoplanets which hold tremendous potential both individually and collectively for understanding the formation and evolution of planetary systems. Many of these systems consist of multiple small planets with periods less than ∼50 days known as Systems with Tightly spaced Inner Planets, or STIPs. One especially intriguing STIP, Kepler-80 (KOI-500), contains five transiting planets: f, d, e, b, and c with periods of 1.0, 3.1, 4.6, 7.1, and 9.5 days, respectively. We provide measurements of transit times and a transit timing variation (TTV) dynamical analysis. We find that TTVs cannot reliably detect eccentricities for this system, though mass estimates are not affected. Restricting the eccentricity to a reasonable range, we infer masses for the outer four planets (d, e, b, and c) to be {6.75}-0.51+0.69, {4.13}-0.95+0.81, {6.93}-0.70+1.05, and {6.74}-0.86+1.23 Earth masses, respectively. The similar masses but different radii are consistent with terrestrial compositions for d and e and ∼2% H/He envelopes for b and c. We confirm that the outer four planets are in a rare dynamical configuration with four interconnected three-body resonances that are librating with few degree amplitudes. We present a formation model that can reproduce the observed configuration by starting with a multi-resonant chain and introducing dissipation. Overall, the information-rich Kepler-80 planets provide an important perspective into exoplanetary systems.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Yuxin; Suto, Yasushi; Taruya, Atsushi

    The angle between the stellar spin and the planetary orbit axes (the spin-orbit angle) is supposed to carry valuable information concerning the initial condition of planetary formation and subsequent migration history. Indeed, current observations of the Rossiter-McLaughlin effect have revealed a wide range of spin-orbit misalignments for transiting exoplanets. We examine in detail the tidal evolution of a simple system comprising a Sun-like star and a hot Jupiter adopting the equilibrium tide and the inertial wave dissipation effects simultaneously. We find that the combined tidal model works as a very efficient realignment mechanism; it predicts three distinct states of themore » spin-orbit angle (i.e., parallel, polar, and antiparallel orbits) for a while, but the latter two states eventually approach the parallel spin-orbit configuration. The intermediate spin-orbit angles as measured in recent observations are difficult to obtain. Therefore the current model cannot reproduce the observed broad distribution of the spin-orbit angles, at least in its simple form. This indicates that the observed diversity of the spin-orbit angles may emerge from more complicated interactions with outer planets and/or may be the consequence of the primordial misalignment between the protoplanetary disk and the stellar spin, which requires future detailed studies.« less

  15. Applications of an Energy Transfer Model to Three Problems in Planetary Regoliths: The Solid-State Greenhouse, Thermal Beaming, and Emittance Spectra

    NASA Technical Reports Server (NTRS)

    Hapke, Bruce

    1996-01-01

    Several problems of interest in planetary infrared remote sensing are investigated using a new radiative-conductive model of energy transfer in regoliths: the solid-state greenhouse effect, thermal beaming, and reststrahlen spectra. The results of the analysis are as follows: (1) The solid-state greenhouse effect is self-limiting to a rise of a few tens of degrees in bodies of the outer solar system. (2) Non-Lambertian directional emissivity can account for only about 20% of the observed thermal beaming factor. The remainder must have another cause, presumably surface roughness effects. (3) The maximum in a reststrahlen emissivity spectrum does not occur exactly at the Christiansen wavelength where, by definition, the real part of the refractive index equals one, but rather at the first transition minimum in reflectance associated with the transition from particle scattering being dominated by volume scattering to that dominated by strong surface scattering. The transparency feature is at the second transition minimum and does not require the presence of a second band at longer wavelength for its occurance. Subsurface temperature gradients have only a small effect on emissivity bands.

  16. A Cosmic Holiday Ornament, Hubble-Style

    NASA Image and Video Library

    2017-12-08

    'Tis the season for holiday decorating and tree-trimming. Not to be left out, astronomers using NASA's Hubble Space Telescope have photographed a festive-looking nearby planetary nebula called NGC 5189. The intricate structure of this bright gaseous nebula resembles a glass-blown holiday ornament with a glowing ribbon entwined. Planetary nebulae represent the final brief stage in the life of a medium-sized star like our sun. While consuming the last of the fuel in its core, the dying star expels a large portion of its outer envelope. This material then becomes heated by the radiation from the stellar remnant and radiates, producing glowing clouds of gas that can show complex structures, as the ejection of mass from the star is uneven in both time and direction. To read more go to: www.nasa.gov/mission_pages/hubble/science/ngc5189.html Credit: NASA, ESA, and G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Tools and methods for automated assembly of miniaturized gear systems

    NASA Astrophysics Data System (ADS)

    Nienhaus, Matthias; Ehrfeld, Wolfgang; Berg, Udo; Schmitz, Felix; Soultan, H.

    2000-10-01

    The assembly of gear systems with the size of a pin head is almost beyond the bound of human tactile skills. The magic formula for series fabrication of this hybrid micro systems is the automation of the assembly process. As a contribution, this paper presents and discusses three different assembly methods comprising specifically developed tools for different types of planetary gears with outer diameters of 1.9 mm. Because of the huge importance for the complete micro assembly process, particular attention will be dedicated to the feeding and magazining of the micro gear components. Starting with metallic gear wheels as bulk good, an extremely miniaturized gear system of the Wolfram type has been automatically assembled by employing the strategy of tolerance compensation movement. As a key component, a modular tong gripper with specifically adapted gripping jaws produced by LIGA technology has been used. Further detailed investigations were spend on handling and assembly of micro injection moulded gear wheels made of POM for a three state planetary gear system. One strategy, following the idea of in situ observation, focuses on the intensive use of electronic pattern recognition. Alternatively, an unusual method based on a novel plastic wafer magazine will be discussed in detail. Hereby the exact position and orientation of injection moulded micro components will be presented from the manufacturing process up to the final micro assembly procedure. By simplifying the moulding of the micro gears as well as their handling, storing and assembly, this method has the potential to revolutionize the series fabrication of products with dimensions in the microscopic range in general.

  18. Protection of celestial environments and the law of outer space

    NASA Astrophysics Data System (ADS)

    Tennen, Leslie; Race, Margaret

    The law of outer space expressly addresses the matter of preservation and protection of natural celestial environments from harmful contamination and disruption by mankind in the explo-ration and use of outer space, including the moon and other celestial bodies. The Outer Space Treaty, however, does not prohibit all human impact to an extraterrestrial environment, but rather permits a wide range of activities that could have significant environmental ramifications. This legal regime may be in conflict with the interests of preserving celestial environments for scientific research, especially when considered in relation to activities conducted for commercial purposes. Nevertheless, the Moon Agreement provides a mechanism by which special protective measures can be implemented to protect particular areas of the moon and other celestial bodies for scientific investigation. This paper examines the current status of the law of outer space vis-a-vis the protection and preservation of natural celestial environments. Particular emphasis is placed on the policies on which the legal obligations are based, together with consideration of the non-appropriation principle, and the commercial use of lunar and other celestial resources and areas. In addition, the concepts of international scientific preserves, special regions, keep out zones, and planetary parks are compared and evaluated as potential means to limit the disturbance to celestial environments caused by the activities of mankind.

  19. Advanced Stirling Technology Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Wong, Wayne A.

    2007-01-01

    The NASA Glenn Research Center has been developing advanced energy-conversion technologies for use with both radioisotope power systems and fission surface power systems for many decades. Under NASA's Science Mission Directorate, Planetary Science Theme, Technology Program, Glenn is developing the next generation of advanced Stirling convertors (ASCs) for use in the Department of Energy/Lockheed Martin Advanced Stirling Radioisotope Generator (ASRG). The next-generation power-conversion technologies require high efficiency and high specific power (watts electric per kilogram) to meet future mission requirements to use less of the Department of Energy's plutonium-fueled general-purpose heat source modules and reduce system mass. Important goals include long-life (greater than 14-yr) reliability and scalability so that these systems can be considered for a variety of future applications and missions including outer-planet missions and continual operation on the surface of Mars. This paper provides an update of the history and status of the ASC being developed for Glenn by Sunpower Inc. of Athens, Ohio.

  20. Models of the earth's core

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  1. Characterization of the planetary system Kepler-101 with HARPS-N. A hot super-Neptune with an Earth-sized low-mass companion

    NASA Astrophysics Data System (ADS)

    Bonomo, A. S.; Sozzetti, A.; Lovis, C.; Malavolta, L.; Rice, K.; Buchhave, L. A.; Sasselov, D.; Cameron, A. C.; Latham, D. W.; Molinari, E.; Pepe, F.; Udry, S.; Affer, L.; Charbonneau, D.; Cosentino, R.; Dressing, C. D.; Dumusque, X.; Figueira, P.; Fiorenzano, A. F. M.; Gettel, S.; Harutyunyan, A.; Haywood, R. D.; Horne, K.; Lopez-Morales, M.; Mayor, M.; Micela, G.; Motalebi, F.; Nascimbeni, V.; Phillips, D. F.; Piotto, G.; Pollacco, D.; Queloz, D.; Ségransan, D.; Szentgyorgyi, A.; Watson, C.

    2014-12-01

    We characterize the planetary system Kepler-101 by performing a combined differential evolution Markov chain Monte Carlo analysis of Kepler data and forty radial velocities obtained with the HARPS-N spectrograph. This system was previously validated and is composed of a hot super-Neptune, Kepler-101b, and an Earth-sized planet, Kepler-101c. These two planets orbit the slightly evolved and metal-rich G-type star in 3.49 and 6.03 days, respectively. With mass Mp = 51.1-4.7+ 5.1 M⊕, radius Rp = 5.77-0.79+ 0.85 R⊕, and density ρp = 1.45-0.48+ 0.83 g cm-3, Kepler-101b is the first fully characterized super-Neptune, and its density suggests that heavy elements make up a significant fraction of its interior; more than 60% of its total mass. Kepler-101c has a radius of 1.25-0.17+ 0.19 R⊕, which implies the absence of any H/He envelope, but its mass could not be determined because of the relative faintness of the parent star for highly precise radial-velocity measurements (Kp = 13.8) and the limited number of radial velocities. The 1σ upper limit, Mp< 3.8 M⊕, excludes a pure iron composition with a probability of 68.3%. The architecture of the planetary system Kepler-101 - containing a close-in giant planet and an outer Earth-sized planet with a period ratio slightly larger than the 3:2 resonance - is certainly of interest for scenarios of planet formation and evolution. This system does not follow thepreviously reported trend that the larger planet has the longer period in the majority of Kepler systems of planet pairs with at least one Neptune-sized or larger planet. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.Table 2 is available in electronic form at http://www.aanda.org

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beauge, C.; Nesvorny, D.

    Doppler and transit observations of exoplanets show a pile-up of Jupiter-size planets in orbits with a 3 day period. A fraction of these hot Jupiters have retrograde orbits with respect to the parent star's rotation, as evidenced by the measurements of the Rossiter-McLaughlin effect. To explain these observations we performed a series of numerical integrations of planet scattering followed by the tidal circularization and migration of planets that evolved into highly eccentric orbits. We considered planetary systems having three and four planets initially placed in successive mean-motion resonances, although the angles were taken randomly to ensure orbital instability in shortmore » timescales. The simulations included the tidal and relativistic effects, and precession due to stellar oblateness. Our results show the formation of two distinct populations of hot Jupiters. The inner population (Population I) is characterized by semimajor axis a < 0.03 AU and mainly formed in the systems where no planetary ejections occurred. Our follow-up integrations showed that this population was transient, with most planets falling inside the Roche radius of the star in <1 Gyr. The outer population of hot Jupiters (Population II) formed in systems where at least one planet was ejected into interstellar space. This population survives the effects of tides over >1 Gyr and fits nicely the observed 3 day pile-up. A comparison between our three-planet and four-planet runs shows that the formation of hot Jupiters is more likely in systems with more initial planets. Due to the large-scale chaoticity that dominates the evolution, high eccentricities and/or high inclinations are generated mainly by close encounters between the planets and not by secular perturbations (Kozai or otherwise). The relative proportion of retrograde planets seems of be dependent on the stellar age. Both the distribution of almost aligned systems and the simulated 3 day pile-up also fit observations better in our four-planet simulations. This may suggest that the planetary systems with observed hot Jupiters were originally rich in the number of planets, some of which were ejected. In a broad perspective, our work therefore hints on an unexpected link between the hot Jupiters and recently discovered free floating planets.« less

  3. Polarimetry Of Planetary Atmospheres: From The Solar System Gas Giants To Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Buenzli, Esther; Bazzon, A.; Schmid, H. M.

    2011-09-01

    The polarization of light reflected from a planet provides unique information on the atmosphere structure and scattering properties of particles in the upper atmosphere. The solar system planets show a large variety of atmospheric polarization properties, from the thick, highly polarizing haze on Titan and the poles of Jupiter, Rayleigh scattering by molecules on Uranus and Neptune, to clouds in the equatorial region of Jupiter or on Venus. Polarimetry is also a promising differential technique to search for and characterize extra-solar planets, e.g. with the future VLT planet finder instrument SPHERE. For the preparation of the SPHERE planet search program we have made a suite of polarimetric observations and models for the solar system gas giants. The phase angles for the outer planets are small for Earth bound observations and the integrated polarization is essentially zero due to the symmetric backscattering situation. However, a second order scattering effect produces a measurable limb polarization for resolved planetary disks. We have made a detailed model for the spectropolarimetric signal of the limb polarization of Uranus between 520 and 935 nm to derive scattering properties of haze and cloud particles and to predict the polarization signal from an extra-solar point of view. We are also investigating imaging polarimetry of the thick haze layers on Titan and the poles of Jupiter. Additionally, we have calculated a large grid of intensity and polarization phase curves for simpler atmosphere models of extrasolar planets.

  4. Linear and nonlinear dynamics of liquid planetary cores

    NASA Astrophysics Data System (ADS)

    Lathrop, D. P.

    2013-12-01

    This is the 50th anniversary of Ed Lorenz brilliant paper "Deterministic Nonperiodic Flow.'' Lorenz's work, along with many other founders' efforts, gave rise to the study of nonlinear dynamics. That field has allowed us to move beyond simple linear characterizations of nature, and to open up a deeper understanding of the Earth, other planets, and stars. Of the many things that make the Earth a habitable home, one is the existence of a planetary magnetic field generated in our liquid iron outer core. The generation process is known to be strongly nonlinear, and thereby almost certainly turbulent. Yet it is not a simple homogeneous isotropic turbulent flow, but is instead heavily modified by rotation and magnetic forces. We attempt to better understand the Earth's core using a three-meter liquid sodium laboratory model of the core. Our work in sodium in this system has just begun. The system exhibits a variety of behaviors with at least twelve different states, drawing different amounts of power, and causing varying levels of magnetic field amplification. In some states, rotation and magnetic fields cause the dynamics to simplify relative to more general turbulent flows in comparable conditions. Acknowledgements: I gratefully acknowledge my collaborators Daniel Zimmerman, Santiago Triana, Donald Martin, Nolan Balew, Henri-Claude Nataf, and Barbara Brawn-Cinani, and funding from the National Science Foundation Earth Sciences Instrumentation and Geophysics programs.

  5. A planetary dust ring generated by impact-ejection from the Galilean satellites

    NASA Astrophysics Data System (ADS)

    Sachse, Manuel

    2018-03-01

    All outer planets in the Solar System are surrounded by a ring system. Many of these rings are dust rings or they contain at least a high proportion of dust. They are often formed by impacts of micro-meteoroids onto embedded bodies. The ejected material typically consists of micron-sized charged particles, which are susceptible to gravitational and non-gravitational forces. Generally, detailed information on the dynamics and distribution of the dust requires expensive numerical simulations of a large number of particles. Here we develop a relatively simple and fast, semi-analytical model for an impact-generated planetary dust ring governed by the planet's gravity and the relevant perturbation forces for the dynamics of small charged particles. The most important parameter of the model is the dust production rate, which is a linear factor in the calculation of the dust densities. We apply our model to dust ejected from the Galilean satellites using production rates obtained from flybys of the dust sources. The dust densities predicted by our model are in good agreement with numerical simulations and with in situ measurements by the Galileo spacecraft. The lifetimes of large particles are about two orders of magnitude greater than those of small ones, which implies a flattening of the size distribution in circumplanetary space. Information about the distribution of circumplanetary dust is also important for the risk assessment of spacecraft orbits in the respective regions.

  6. Neptune Orbiters Utilizing Solar and Radioisotope Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas I.; Oleson, Steven R.

    2004-01-01

    In certain cases, Radioisotope Electric Propulsion (REP), used in conjunction with other propulsion systems, could be used to reduce the trip times for outer planetary orbiter spacecraft. It also has the potential to improve the maneuverability and power capabilities of the spacecraft when the target body is reached as compared with non-electric propulsion spacecraft. Current missions under study baseline aerocapture systems to capture into a science orbit after a Solar Electric Propulsion (SEP) stage is jettisoned. Other options under study would use all REP transfers with small payloads. Compared to the SEP stage/Aerocapture scenario, adding REP to the science spacecraft as well as a chemical capture system can replace the aerocapture system but with a trip time penalty. Eliminating both the SEP stage and the aerocapture system and utilizing a slightly larger launch vehicle, Star 48 upper stage, and a combined REP/Chemical capture system, the trip time can nearly be matched while providing over a kilowatt of science power reused from the REP maneuver. A Neptune Orbiter mission is examined utilizing single propulsion systems and combinations of SEP, REP, and chemical systems to compare concepts.

  7. Rings Research in the Next Decade

    NASA Astrophysics Data System (ADS)

    Burns, J. A.; Tiscareno, M. S.

    2009-12-01

    The study of planetary ring systems forms a key component of planetary science for several reasons: 1) The evolution and current states of planets and their satellites are affected in many ways by rings, while 2) conversely, properties of planets and moons and other solar system populations are revealed by their effects on rings; 3) highly structured and apparently delicate ring systems may be bellwethers, constraining various theories of the origin and evolution of their entire planetary system; and finally, 4) planetary rings provide an easily observable analogue to other astrophysical disk systems, enabling real “ground truth” results applicable to disks much more remote in space and/or time, including proto-planetary disks, circum-stellar disks, and even galaxies. Significant advances have been made in rings science in the past decade. The highest-priority rings research recommendations of the last Planetary Science Decadal Survey were to operate and extend the Cassini orbiter mission at Saturn; this has been done with tremendous success, accounting for much of the progress made on key science questions, as we will describe. Important progress in understanding the rings of Saturn and other planets has also come from Earth-based observational and theoretical work, again as prioritized by the last Decadal Survey. However, much important work remains to be done. At Saturn, the Cassini Solstice Mission must be brought to a successful completion. Priority should also be placed on sending spacecraft to Neptune and/or Uranus, now unvisited for more than 20 years. At Jupiter and Pluto, opportunities afforded by visiting spacecraft capable of studying rings should be exploited. On Earth, the need for continued research and analysis remains strong, including in-depth analysis of rings data already obtained, numerical and theoretical modeling work, laboratory analysis of materials and processes analogous to those found in the outer solar system, and continued Earth-based observations. Members of the Rings White Paper Team include: Matthew S. Tiscareno (Cornell U), Nicole Albers (U of Colorado), Todd Bradley (U of Central Florida), André Brahic (U of Paris, France), Shawn Brooks (JPL), Joseph Burns (Cornell U), Carlos Chavez (UNAM, Mexico), Joshua Colwell (U of Central Florida), Jeff Cuzzi (NASA Ames), Imke de Pater (U of California), Luke Dones (SwRI), Richard Durisen (Indiana U), Michael Evans (Cornell U), Cecile Ferrari (CEA Saclay, France), Gianrico Filacchione (INAF-IASF, Italy), Silvia Giuliatti Winter (UNESP, Brazil), Mitch Gordon (SETI), Amara Graps (SwRI), Eberhard Gruen (MPI, Germany), Douglas Hamilton (U of Maryland), Matthew Hedman (Cornell U), Mihaly Horanyi (U of Colorado), Sascha Kempf (MPI, Germany), Harald Krueger (MPI, Germany), Steve Larson (U of Arizona), Mark Lewis (Trinity U), Jack Lissauer (NASA Ames), Colin Mitchell (CICLOPS/SSI), Carl Murray (QMUL, England), Philip Nicholson (Cornell U), Cathy Olkin (SwRI), Robert Pappalardo (JPL), Frank Postberg (MPI, Germany), Heikki Salo (U of Oulu, Finland), Juergen Schmidt (U of Potsdam, Germany), David Seal (JPL), Mark Showalter (SETI), Frank Spahn (U of Potsdam, Germany), Linda Spilker (JPL), Joseph Spitale (CICLOPS/SSI), Ralf Srama (MPI, Germany), Miodrag Sremcevic (U of Colorado), Glen Stewart (U of Colorado), John Weiss (Carleton College), Padma Yanamandra-Fisher (JPL)

  8. Giant Galaxy Messier 87 finally sized up

    NASA Astrophysics Data System (ADS)

    2009-05-01

    Using ESO's Very Large Telescope, astronomers have succeeded in measuring the size of giant galaxy Messier 87 and were surprised to find that its outer parts have been stripped away by still unknown effects. The galaxy also appears to be on a collision course with another giant galaxy in this very dynamic cluster. ESO PR Photo 19a/09 The Intercluster Light ESO PR Photo 19b/09 Intergalactic Planetary Nebulae ESO PR Photo 19c/09 The Virgo Cluster The new observations reveal that Messier 87's halo of stars has been cut short, with a diameter of about a million light-years, significantly smaller than expected, despite being about three times the extent of the halo surrounding our Milky Way [1]. Beyond this zone only few intergalactic stars are seen. "This is an unexpected result," says co-author Ortwin Gerhard. "Numerical models predict that the halo around Messier 87 should be several times larger than our observations have revealed. Clearly, something must have cut the halo off early on." The team used FLAMES, the super-efficient spectrograph at ESO's Very Large Telescope at the Paranal Observatory in Chile, to make ultra-precise measurements of a host of planetary nebulae in the outskirts of Messier 87 and in the intergalactic space within the Virgo Cluster of galaxies, to which Messier 87 belongs. FLAMES can simultaneously take spectra many sources, spread over an area of the sky about the size of the Moon. The new result is quite an achievement. The observed light from a planetary nebula in the Virgo Cluster is as faint as that from a 30-Watt light bulb at a distance of about 6 million kilometres (about 15 times the Earth-Moon distance). Furthermore, planetary nebulae are thinly spread through the cluster, so even FLAMES's wide field of view could only capture a few tens of nebulae at a time. "It is a little bit like looking for a needle in a haystack, but in the dark", says team member Magda Arnaboldi. "The FLAMES spectrograph on the VLT was the best instrument for the job". At a distance of approximately 50 million light-years, the Virgo Cluster is the nearest galaxy cluster. It is located in the constellation of Virgo (the Virgin) and is a relatively young and sparse cluster. The cluster contains many hundreds of galaxies, including giant and massive elliptical galaxies, as well as more homely spirals like our own Milky Way. The astronomers have proposed several explanations for the discovered "cut-off" of Messier 87's, such as collapse of dark matter nearby in the galaxy cluster. It might also be that another galaxy in the cluster, Messier 84, came much closer to Messier 87 in the past and dramatically perturbed it about a billion years ago. "At this stage, we can't confirm any of these scenarios," says Arnaboldi. "We will need observations of many more planetary nebulae around Messier 87". One thing the astronomers are sure about, however, is that Messier 87 and its neighbour Messier 86 are falling towards each other. "We may be observing them in the phase just before the first close pass", says Gerhard. "The Virgo Cluster is still a very dynamic place and many things will continue to shape its galaxies over the next billion years." More Information Planetary nebulae (PNe) are the spectacular final phase in the life of Sun-like stars, when the star ejects its outer layers into the surrounding space. Their name is a relic of an earlier era: early observers, using only small telescopes, thought that some of these nearby objects, such as the "Helix Nebula" resembled the discs of the giant planets in the Solar System. Planetary nebulae have strong emission lines, which make them relatively easy to detect at great distances, and also allow their radial velocities to be measured precisely. So planetary nebulae can be used to investigate the motions of stars in the faint outer regions of distant galaxies where velocity measurements are otherwise not possible. Moreover, planetary nebulae are representative of the stellar population in general. As they are relatively short-lived (a few tens of thousands of years -- a mere blip on astronomical timescales), astronomers can estimate that one star in about 8000 million of Sun-like stars is visible as a planetary nebula at any given moment. Thus planetary nebulae can provide a unique handle on the number, types of stars and their motions in faint outer galaxy regions that may harbour a substantial amount of mass. These motions contain the fossil record of the history of galaxy interaction and the formation of the galaxy cluster. This research is presented in a paper to appear in Astronomy and Astrophysics: "The Edge of the M87 Halo and the Kinematics of the Diffuse Light in the Virgo Cluster Core," by Michelle Doherty et al. The team is composed of Michelle Doherty and Magda Arnaboldi (ESO), Payel Das and Ortwin Gerhard (Max-Planck-Institute for Extraterrestrial Physics, Garching, Germany), J. Alfonso L. Aguerri (IAC, Tenerife, Spain), Robin Ciardullo (Pennsylvania State University, USA), John J. Feldmeier (Youngstown State University, USA), Kenneth C. Freeman (Mount Stromlo Observatory, Australia), George H. Jacoby (WIYN Observatory, Tucson, AZ, USA), and Giuseppe Murante (INAF, Osservatorio Astronomico di Pino Torinese, Italy). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in the Atacama Desert region of Chile: La Silla, Paranal and Chajnantor.

  9. A Massively Parallel Particle Code for Rarefied Ionized and Neutral Gas Flows in Earth and Planetary Atmospheres, Ionospheres and Magnetospheres

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    2004-01-01

    In order to understand the global structure, dynamics, and physical and chemical processes occurring in the upper atmospheres, exospheres, and ionospheres of the Earth, the other planets, comets and planetary satellites and their interactions with their outer particles and fields environs, it is often necessary to address the fundamentally non-equilibrium aspects of the physical environment. These are regions where complex chemistry, energetics, and electromagnetic field influences are important. Traditional approaches are based largely on hydrodynamic or magnetohydrodynamic MHD) formulations and are very important and highly useful. However, these methods often have limitations in rarefied physical regimes where the molecular collision rates and ion gyrofrequencies are small and where interactions with ionospheres and upper neutral atmospheres are important.

  10. Masers in Disks due to Gravitational Instabilities

    NASA Astrophysics Data System (ADS)

    Mejia, A. C.; Durisen, R. H.; Pickett, B. K.; Hartquist, T. W.

    2001-12-01

    Evidence suggests that some masers associated with massive protostars may originate in the outer regions of large circumstellar disks, at radii of 100's to 1000's of AU from the central mass. This is particularly true for methanol (CH3OH), where linear distributions of masers are found with disk-like kinematics. In 3D hydrodynamics simulations we have made to study the effects of gravitational instabilities in the outer parts of disks around young low-mass stars, the nonlinear development of the instabilities leads to a complex of intersecting spiral shocks, clumps, and arclets within the disk and to significant time-dependent, nonaxisymmetric distortions of the disk surface. A rescaling of our disk simulations to the case of a massive protostar shows that conditions in the disturbed outer disk seem conducive to the appearance of masers if it is viewed edge-on. This work was supported by NASA Origins Program Grant NAGW5-4342, by the Alexander von Humboldt Foundation, and by NASA Planetary Geology and Geophysics Program Grant NAG5-10262.

  11. The empty primordial asteroid belt.

    PubMed

    Raymond, Sean N; Izidoro, Andre

    2017-09-01

    The asteroid belt contains less than a thousandth of Earth's mass and is radially segregated, with S-types dominating the inner belt and C-types the outer belt. It is generally assumed that the belt formed with far more mass and was later strongly depleted. We show that the present-day asteroid belt is consistent with having formed empty, without any planetesimals between Mars and Jupiter's present-day orbits. This is consistent with models in which drifting dust is concentrated into an isolated annulus of terrestrial planetesimals. Gravitational scattering during terrestrial planet formation causes radial spreading, transporting planetesimals from inside 1 to 1.5 astronomical units out to the belt. Several times the total current mass in S-types is implanted, with a preference for the inner main belt. C-types are implanted from the outside, as the giant planets' gas accretion destabilizes nearby planetesimals and injects a fraction into the asteroid belt, preferentially in the outer main belt. These implantation mechanisms are simple by-products of terrestrial and giant planet formation. The asteroid belt may thus represent a repository for planetary leftovers that accreted across the solar system but not in the belt itself.

  12. The empty primordial asteroid belt

    PubMed Central

    Raymond, Sean N.; Izidoro, Andre

    2017-01-01

    The asteroid belt contains less than a thousandth of Earth’s mass and is radially segregated, with S-types dominating the inner belt and C-types the outer belt. It is generally assumed that the belt formed with far more mass and was later strongly depleted. We show that the present-day asteroid belt is consistent with having formed empty, without any planetesimals between Mars and Jupiter’s present-day orbits. This is consistent with models in which drifting dust is concentrated into an isolated annulus of terrestrial planetesimals. Gravitational scattering during terrestrial planet formation causes radial spreading, transporting planetesimals from inside 1 to 1.5 astronomical units out to the belt. Several times the total current mass in S-types is implanted, with a preference for the inner main belt. C-types are implanted from the outside, as the giant planets’ gas accretion destabilizes nearby planetesimals and injects a fraction into the asteroid belt, preferentially in the outer main belt. These implantation mechanisms are simple by-products of terrestrial and giant planet formation. The asteroid belt may thus represent a repository for planetary leftovers that accreted across the solar system but not in the belt itself. PMID:28924609

  13. NEWLY DISCOVERED PLANETS ORBITING HD 5319, HD 11506, HD 75784 AND HD 10442 FROM THE N2K CONSORTIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giguere, Matthew J.; Fischer, Debra A.; Brewer, John M.

    2015-01-20

    Initially designed to discover short-period planets, the N2K campaign has since evolved to discover new worlds at large separations from their host stars. Detecting such worlds will help determine the giant planet occurrence at semi-major axes beyond the ice line, where gas giants are thought to mostly form. Here we report four newly discovered gas giant planets (with minimum masses ranging from 0.4 to 2.1 M {sub Jup}) orbiting stars monitored as part of the Next 2000 target stars (N2K) Doppler Survey program. Two of these planets orbit stars already known to host planets: HD 5319 and HD 11506. Themore » remaining discoveries reside in previously unknown planetary systems: HD 10442 and HD 75784. The refined orbital period of the inner planet orbiting HD 5319 is 641 days. The newly discovered outer planet orbits in 886 days. The large masses combined with the proximity to a 4:3 mean motion resonance make this system a challenge to explain with current formation and migration theories. HD 11506 has one confirmed planet, and here we confirm a second. The outer planet has an orbital period of 1627.5 days, and the newly discovered inner planet orbits in 223.6 days. A planet has also been discovered orbiting HD 75784 with an orbital period of 341.7 days. There is evidence for a longer period signal; however, several more years of observations are needed to put tight constraints on the Keplerian parameters for the outer planet. Lastly, an additional planet has been detected orbiting HD 10442 with a period of 1043 days.« less

  14. Planetary Nebulae and their parent stellar populations. Tracing the mass assembly of M87 and Intracluster light in the Virgo cluster core

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Magda; Longobardi, Alessia; Gerhard, Ortwin

    2016-08-01

    The diffuse extended outer regions of galaxies are hard to study because they are faint, with typical surface brightness of 1% of the dark night sky. We can tackle this problem by using resolved star tracers which remain visible at large distances from the galaxy centers. This article describes the use of Planetary Nebulae as tracers and the calibration of their properties as indicators of the star formation history, mean age and metallicity of the parent stars in the Milky Way and Local Group galaxies. We then report on the results from a deep, extended, planetary nebulae survey in a 0.5 deg2 region centered on the brightest cluster galaxy NGC 4486 (M87) in the Virgo cluster core, carried out with SuprimeCam@Subaru and FLAMES-GIRAFFE@VLT. Two planetary nebulae populations are identified out to 150 kpc distance from the center of M87. One population is associated with the M87 halo and the second one with the intracluster light in the Virgo cluster core. They have different line-of-sight velocity and spatial distributions, as well as different planetary nebulae specific frequencies and luminosity functions. The intracluster planetary nebulae in the surveyed region correspond to a luminosity of four times the luminosity of the Large Magellanic Cloud. The M87 halo planetary nebulae trace an older, more metal-rich, parent stellar population. A substructure detected in the projected phase-space of the line-of-sight velocity vs. major axis distance for the M87 halo planetary nebulae provides evidence for the recent accretion event of a satellite galaxy with luminosity twice that of M33. The satellite stars were tidally stripped about 1 Gyr ago, and reached apocenter at a major axis distance of 60-90 kpc from the center of M87. The M87 halo is still growing significantly at the distances where the substructure is detected.

  15. A kinematic determination of the structure of the double ring planetary nebula NGC 2392, the Eskimo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'dell, C.R.; Weiner, L.D.; Chu, Yoyhua

    Slit spectra and existing velocity cube data have been used to determine the structure of the double ring PN NGC 2392. The inner shell is a stellar wind-sculpted prolate spheroid with a ratio of axes of 2:1 and the approaching end of the long axis pointed 20 deg from the line of sight in P.A. = 200 deg. The outer ring is caused by an outer disk with density dropping off with distance from the central star and with distance from its plane, which is the same as the equatorial band of high density in the inner shell. The outermore » disk contains a ring of higher density knots at a distance of 16 arcsec and is losing material through free expansion, forming an outer envelope of increasing velocity. Forbidden S II spectra are used to determine the densities in all of the major regions of the nebula. It is argued that the filamentary cores at the centers of the knots seen in the outer ring originate in the sublimation of bodies formed at the same time as the parent star. 26 refs.« less

  16. Rover mounted ground penetrating radar as a tool for investigating the near-surface of Mars and beyong

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schultz, P. H.

    1993-01-01

    In spite of the highly successful nature of recent planetary missions to the terrestrial planets and outer satellites a number of questions concerning the evolution of their surfaces remain unresolved. For example, knowledge of many characteristics of the stratigraphy and soils comprising the near-surface on Mars remains largely unknown, but is crucial in order to accurately define the history of surface processes and near-surface sedimentary record. Similar statements can be made regarding our understanding of near-surface stratigraphy and processes on other extraterrestrial planetary bodies. Ground penetrating radar (GPR) is a proven and standard instrument capable of imaging the subsurface at high resolution to 10's of meters depth in a variety of terrestrial environments. Moreover, GPR is portable and easily modified for rover deployment. Data collected with a rover mounted GPR could resolve a number of issues related to planetary surface evolution by defining shallow stratigraphic records and would provide context for interpreting results of other surface analyses (e.g. elemental or mineralogical). A discussion of existing GPR capabilities is followed first by examples of how GPR might be used to better define surface evolution on Mars and then by a brief description of possible GPR applications to the Moon and other planetary surfaces.

  17. Organic synthesis via irradiation and warming of ice grains in the solar nebula.

    PubMed

    Ciesla, Fred J; Sandford, Scott A

    2012-04-27

    Complex organic compounds, including many important to life on Earth, are commonly found in meteoritic and cometary samples, though their origins remain a mystery. We examined whether such molecules could be produced within the solar nebula by tracking the dynamical evolution of ice grains in the nebula and recording the environments to which they were exposed. We found that icy grains originating in the outer disk, where temperatures were less than 30 kelvin, experienced ultraviolet irradiation exposures and thermal warming similar to that which has been shown to produce complex organics in laboratory experiments. These results imply that organic compounds are natural by-products of protoplanetary disk evolution and should be important ingredients in the formation of all planetary systems, including our own.

  18. Pluto/Kuiper Missions with Advanced Electric Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Oleson, S. R.; Patterson, M. J.; Schrieber, J.; Gefert, L. P.

    2001-01-01

    In response to a request by NASA Code SD Deep Space Exploration Technology Program, NASA Glenn Research center performed a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power system was shown to allow the same or smaller launch vehicle class (EELV) as the chemical 2004 baseline and allow launch in any year and arrival in the 2014 to 2020 timeframe. With the nearly constant power available from the radioisotope power source such small ion propelled spacecraft could explore many of the outer planetary targets. Such studies are already underway. Additional information is contained in the original extended abstract.

  19. Comparative Science and Space Weather Around the Heliosphere

    NASA Astrophysics Data System (ADS)

    Grande, Manuel; Andre, Nicolas; COSPAR/ILWS Roadmap Team

    2016-10-01

    Space weather refers to the variable state of the coupled space environment related to changing conditions on the Sun and in the terrestrial atmosphere. The presentation will focus on the critical missing knowledge or observables needed to significantly advance our modelling and forecasting capabilities throughout the solar system putting these in perspective to the recommendations in the recent COSPAR/ILWS roadmap. The COSPAR/ILWS RoadMap focuses on high-priority challenges in key areas of research leading to a better understanding of the space environment and a demonstrable improvement in the provision of timely, reliable information pertinent to effects on civilian space- and ground-based systems, for all stakeholders around the world. The RoadMap prioritizes those advances that can be made on short, intermediate and decadal time scales, identifying gaps and opportunities from a predominantly, but not exclusively, geocentric perspective. While discussion of space weather effects has so far largely been concerned to the near-Earth environment, there are significant present and future applications to the locations beyond, and to other planets. Most obviously, perhaps, are the radiation hazards experienced by astronauts on the way to, and on the surface of, the Moon and Mars. Indeed, the environment experienced by planetary spacecraft in transit and at their destinations is of course critical to their design and successful operation. The case of forthcoming missions to Jupiter and Europa is an extreme example. Moreover, such craft can provide information which in turn increases our understanding of geospace. One initiative is that under Horizon 2020, Europlanet RI will set up a Europlanet Planetary Space Weather Service (PSWS). PSWS will make five entirely new `toolkits' accessible to the research community and to industrial partners planning for space missions: - a General planetary space weather toolkit; Mars (in support of the ESA ExoMars missions to be launched in 2016 and 2018); comets (building on the success of the ESA Rosetta mission); outer planets (in preparation for the ESA JUICE mission to be launched in 2022), as well as a novel "event-diary" toolkit aiming at predicting and detecting planetary events like meteor impacts

  20. Comparative science and space weather around the heliosphere

    NASA Astrophysics Data System (ADS)

    Grande, Manuel

    2016-07-01

    Space weather refers to the variable state of the coupled space environment related to changing conditions on the Sun and in the terrestrial atmosphere. The presentation will focus on the critical missing knowledge or observables needed to significantly advance our modelling and forecasting capabilities throughout the solar system putting these in perspective to the recommendations in the recent COSPAR/ILWS roadmap. The COSPAR/ILWS RoadMap focuses on high-priority challenges in key areas of research leading to a better understanding of the space environment and a demonstrable improvement in the provision of timely, reliable information pertinent to effects on civilian space- and ground-based systems, for all stakeholders around the world. The RoadMap prioritizes those advances that can be made on short, intermediate and decadal time scales, identifying gaps and opportunities from a predominantly, but not exclusively, geocentric perspective. While discussion of space weather effects has so far largely been confined to the near-Earth environment, there are significant present and future applications to the locations beyond, and to other planets. Most obviously, perhaps, are the radiation hazards experienced by astronauts on the way to, and on the surface of, the Moon and Mars. Indeed, the environment experienced by planetary spacecraft in transit and at their destinations is of course critical to their design and successful operation. The case of forthcoming missions to Jupiter and Europa is an extreme example. Moreover, such craft can provide information which in turn increases our understanding of geospace. One initiative is that under Horizon 2020, Europlanet RI will set up a Europlanet Planetary Space Weather Service (PSWS). PSWS will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: - a General planetary space weather toolkit; Mars (in support of the ESA ExoMars missions to be launched in 2016 and 2018); comets (building on the success of the ESA Rosetta mission); outer planets (in preparation for the ESA JUICE mission to be launched in 2022), as well as a novel "event-diary" toolkit aiming at predicting and detecting planetary events like meteor impacts

  1. Ordinary planetary systems - Architecture and formation

    NASA Technical Reports Server (NTRS)

    Levy, E. H.

    1993-01-01

    Today we believe ordinary planetary systems to be an unremarkable consequence of star formation. The solar system, so far the only confidently known example in the universe of a planetary system, displays a set of striking structural regularities. These structural regularities provide fossil clues about the conditions and mechanisms that gave rise to the planets. The formation of our planetary system, as well as its general characteristics, resulted from the physical environment in the disk-shaped nebula that accompanied the birth of the sun. Observations of contemporary star formation indicate that the very conditions and mechanisms thought to have produced our own planetary system are widely associated with the birth of stars elsewhere. Consequently, it is reasonable to believe that planetary systems occur commonly, at least in association with single, sunlike stars. Moreover, it is reasonable to believe that many planetary systems have gross characteristics resembling those of our own solar system.

  2. Stochasticity and predictability in terrestrial planet formation

    NASA Astrophysics Data System (ADS)

    Hoffmann, Volker; Grimm, Simon L.; Moore, Ben; Stadel, Joachim

    2017-02-01

    Terrestrial planets are thought to be the result of a vast number of gravitational interactions and collisions between smaller bodies. We use numerical simulations to show that practically identical initial conditions result in a wide array of final planetary configurations. This is a result of the chaotic evolution of trajectories which are highly sensitive to minuscule displacements. We determine that differences between systems evolved from virtually identical initial conditions can be larger than the differences between systems evolved from very different initial conditions. This implies that individual simulations lack predictive power. For example, there is not a reproducible mapping between the initial and final surface density profiles. However, some key global properties can still be extracted if the statistical spread across many simulations is considered. Based on these spreads, we explore the collisional growth and orbital properties of terrestrial planets, which assemble from different initial conditions (we vary the initial planetesimal distribution, planetesimal masses, and giant planet orbits.). Confirming past work, we find that the resulting planetary systems are sculpted by sweeping secular resonances. Configurations with giant planets on eccentric orbits produce fewer and more massive terrestrial planets on tighter orbits than those with giants on circular orbits. This is further enhanced if the initial mass distribution is biased to the inner regions. In all cases, the outer edge of the system is set by the final location of the ν6 resonance and we find that the mass distribution peaks at the ν5 resonance. Using existing observations, we find that extrasolar systems follow similar trends. Although differences between our numerical modelling and exoplanetary systems remain, we suggest that CoRoT-7, HD 20003 and HD 20781 may host undetected giant planets.

  3. Research in space physics at the University of Iowa

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.

    1976-01-01

    Energetic particles in outer space and their relationship to electric, magnetic, and electromagnetic fields associated with the earth, sun, moon, and planets, and the interplanetary medium are investigated. Special attention was given to observations of earth and moon satellites and interplanetary spacecraft; phenomenological analysis and interpretation were emphasized. Data also cover ground based on radio astronomical and optical techniques and theoretical problems in plasma physics as revelant to solar planetary and interplanetary phenomena.

  4. Organics and Ices in the Outer Solar System: Connections to the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Cruikshank, D. P.

    2017-01-01

    The solar nebula, that aggregate of gas and dust that formed the birthplace of the Sun, planets and plethora of small bodies comprising the Solar System, originated in a molecular cloud that is thought to have spawned numerous additional stars, some with their own planets and attendant small bodies. The question of the chemical and physical reprocessing of the original interstellar materials in the solar nebula has challenged both theory and observations. The acquisition and analysis of samples of comet and asteroid solids, and a growing suite of in-situ and close-up analyses of relatively unaltered small Solar System bodies now adds critical new dimensions to the study of the origin and evolution of the early solar nebula. Better understanding the original composition of the material from which our solar nebula formed, and the processing that material experienced, will aid in formulations of chemistry that might occur in other solar systems. While we seek to understand the compositional history of planetary bodies in our own Solar System, we will inevitably learn more about the materials that comprise exoplanets and their surrounding systems.

  5. Albedos of Centaurs, Jovian Trojans and Hildas

    NASA Astrophysics Data System (ADS)

    Romanishin, William

    2017-01-01

    I present optical V band albedo distributions for samples of outer solar system minor bodies including Centaurs, Jovian Trojans and Hildas. Diameters come almost entirely from the NEOWISE catalog (Mainzer etal 2016- Planetary Data System). Optical photometry (H values) for about 2/3 of the approximately 2700 objects studied are from PanStarrrs (Veres et al 2015 Icarus 261, 34). The PanStarrs optical photometry is supplemented by H values from JPL Horizons (corrected to be on the same photometric system as the PanStarrs data) for the objects in the NEOWISE catalog that are not in the PanStarrs catalog. I compare the albedo distributions of various pairs of subsamples using the nonparametric Wilcoxon rank sum test. Examples of potentially interesting comparisons include: (1) the median L5 Trojan cloud albedo is about 10% darker than that of the L4 cloud at a high level of statistical significance and (2) the median albedo of the gray Centaurs lies between that of the L4 and L5 Trojan groups.

  6. Deep Space Transportation System Using the Sun-Earth L2 Point

    NASA Technical Reports Server (NTRS)

    Matsumoto, Michihiro

    2007-01-01

    Recently, various kinds of planetary explorations have become more feasible, taking the advantage of low thrust propulsion means such as ion engines that have come into practical use. The field of space activity has now been expanded even to the rim of the outer solar system. In this context, the Japan Aerospace Exploration Agency (JAXA) has started investigating a Deep Space Port built at the L2 Lagrange point in the Sun-Earth system. For the purpose of making the deep space port practically useful, there is a need to establish a method to making spaceship depart and return from/to the port. This paper first discusses the escape maneuvers originating from the L2 point under the restricted three-body problem. Impulsive maneuvers from the L2 point are extensively studied here, and using the results, optimal low-thrust escape strategies are synthesized. Furthermore, this paper proposes the optimal escape and acceleration maneuvers schemes using Electric Delta-V Earth Gravity Assist (EDVEGA) technique.

  7. Spatially Resolved Far-Infrared Spectroscopic Analysis of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Rattray, Rebecca; Ueta, Toshiya

    2015-01-01

    Planetary Nebulae (PNs) are late-life intermediate-mass (1-8 solar mass) stars that have shed their outer layers. A wide variety of morphologies and physical conditions is seen in PNs, but a complete understanding of what causes these various conditions is still needed. Spatially resolved far-infrared spectroscopic analysis has been performed on 11 targets using both PACS and SPIRE instruments on the Herschel Space Observatory as part of the Herschel Planetary Nebula Survey (HerPlaNS). Far-IR lines probe the ionized parts of the nebulae and suffer less extinction than optical lines, so observations in the far-IR are critical to our complete understanding of PNs. Because PNs are extended objects, the spectral mapping capabilities of both PACS and SPIRE allow us to better understand the spatial variations of the objects by tracking line strengths as a function of location within the nebula. The far-IR lines detected in this study can be used as tracers of electron density and electron temperature which are critical parameters in radiative transfer modeling of PNs. Information on atomic, ionic, and molecular lines identified in these 11 targets will be presented.

  8. Direct imaging of an asymmetric debris disk in the HD 106906 planetary system

    DOE PAGES

    Kalas, Paul G.; Rajan, Abhijith; Wang, Jason J.; ...

    2015-11-13

    Here, we present the first scattered light detections of the HD 106906 debris disk using the Gemini/Gemini Planet Imager in the infrared and Hubble Space Telescope (HST)/Advanced Camera for Surveys in the optical. HD 106906 is a 13 Myr old F5V star in the Sco–Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius ~50 AU, and an outer extent >500 AU. The HST data show that the outer regions are highly asymmetric, resembling the "needle" morphologymore » seen for the HD 15115 debris disk. The planet candidate is oriented ~21° away from the position angle of the primary's debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primary's disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. In conclusion, we show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.« less

  9. Spiral Arms in the Asymmetrically Illuminated Disk of MWC 758 and Constraints on Giant Planets

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Muto, T.; Hashimoto, J.; Fukagawa, M.; Currie, T.; Biller, B.; Thalmann, C.; Sitko, M. L.; Russell, R.; Wisniewski, J.; hide

    2013-01-01

    We present the first near-IR scattered light detection of the transitional disk associated with the Herbig Ae star MWC 758 using data obtained as part of the Strategic Exploration of Exoplanets and Disks with Subaru, and 1.1 micrometer Hubble Space Telescope/NICMOS data. While submillimeter studies suggested there is a dust-depleted cavity with r = 0".35, we find scattered light as close as 0".1 (20-28 AU) from the star, with no visible cavity at H, K', or Ks . We find two small-scaled spiral structures that asymmetrically shadow the outer disk. We model one of the spirals using spiral density wave theory, and derive a disk aspect ratio of h approximately 0.18, indicating a dynamically warm disk. If the spiral pattern is excited by a perturber, we estimate its mass to be 5(exp +3)(sub -4) M(sub J), in the range where planet filtration models predict accretion continuing onto the star. Using a combination of non-redundant aperture masking data at L' and angular differential imaging with Locally Optimized Combination of Images at K' and Ks , we exclude stellar or massive brown dwarf companions within 300 mas of the Herbig Ae star, and all but planetary mass companions exterior to 0".5. We reach 5 sigma contrasts limiting companions to planetary masses, 3-4 M(sub J) at 1".0 and 2 M(sub J) at 1".55, using the COND models. Collectively, these data strengthen the case for MWC 758 already being a young planetary system.

  10. The Potassium-Argon Laser Experiment (karle): In Situ Geochronology for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.

    2016-01-01

    Isotopic dating is an essential tool to establish an absolute chronology for geological events. It enables a planet's crystallization history, magmatic evolution, and alteration to be placed into the framework of solar system history. The capability for in situ geochronology will open up the ability for this crucial measurement to be accomplished as part of lander or rover complement. An in situ geochronology package can also complement sample return missions by identifying the most interesting rocks to cache or return to Earth. Appropriate application of in situ dating will enable geochronology on more terrains than can be reached with sample-return missions to the Moon, Mars, asteroids, outer planetary satellites, and other bodies that contain rocky components. The capability of flight instruments to conduct in situ geochronology is called out in the NASA Planetary Science Decadal Survey and the NASA Technology Roadmap as needing development to serve the community's needs. Beagle 2 is the only mission launched to date with the explicit aim to perform in situ K-Ar isotopic dating [1], but it failed to communicate and was lost. The first in situ K-Ar date on Mars, using SAM and APXS measurements on the Cumberland mudstone [2], yielded an age of 4.21 +/- 0.35 Ga and validated the idea of K-Ar dating on other planets, though the Curiosity method is not purpose-built for dating and requires many assumptions that degrade its precision. To get more precise and meaningful ages, multiple groups are developing dedicated in situ dating instruments.

  11. Paleomagnetic evidence for dynamo activity driven by inward crystallisation of a metallic asteroid

    NASA Astrophysics Data System (ADS)

    Bryson, James F. J.; Weiss, Benjamin P.; Harrison, Richard J.; Herrero-Albillos, Julia; Kronast, Florian

    2017-08-01

    The direction in which a planetary core solidifies has fundamental implications for the feasibility and nature of dynamo generation. Although Earth's core is outwardly solidifying, the cores of certain smaller planetary bodies have been proposed to inwardly solidify due to their lower central pressures. However, there have been no unambiguous observations of inwardly solidified cores or the relationship between this solidification regime and planetary magnetic activity. To address this gap, we present the results of complimentary paleomagnetic techniques applied to the matrix metal and silicate inclusions within the IVA iron meteorites. This family of meteorites has been suggested to originate from a planetary core that had its overlaying silicate mantle removed by collisions during the early solar system. This process is thought to have produced a molten ball of metal that cooled rapidly and has been proposed to have inwardly solidified. Recent thermal evolution models of such a body predict that it should have generated an intense, multipolar and time-varying dynamo field. This field could have been recorded as a remanent magnetisation in the outer, cool layers of a solid crust on the IVA parent core. We find that the different components in the IVA iron meteorites display a range of paleomagnetic fidelities, depending crucially on the cooling rate of the meteorite. In particular, silicate inclusions in the quickly cooled São João Nepomuceno meteorite are poor paleomagnetic recorders. On the other hand, the matrix metal and some silicate subsamples from the relatively slowly cooled Steinbach meteorite are far better paleomagnetic recorders and provide evidence of an intense (≳100 μT) and directionally varying (exhibiting significant changes on a timescale ≲200 kyr) magnetic field. This is the first demonstration that some iron meteorites record ancient planetary magnetic fields. Furthermore, the observed field intensity, temporal variability and dynamo lifetime are consistent with thermal evolution models of the IVA parent core. Because the acquisition of remanent magnetisation by some IVA iron meteorites require that they cooled below their Curie temperature during the period of dynamo activity, the magnetisation carried by Steinbach also provides strong evidence favouring the inward solidification of its parent core.

  12. Automated design of gravity-assist trajectories to Mars and the outer planets

    NASA Technical Reports Server (NTRS)

    Longuski, James M.; Williams, Steve N.

    1991-01-01

    In this paper, a new approach to planetary mission design is described which automates the search for gravity-assist trajectories. This method finds all conic solutions given a range of launch dates, a range of launch energies and a set of target planets. The new design tool is applied to the problems of finding multiple encounter trajectories to the outer planets and Venus gravity-assist trajectories to Mars. The last four-planet grand tour opportunity (until the year 2153) is identified. It requires an earth launch in 1996 and encounters Jupiter, Uranus, Neptune, and Pluto. Venus gravity-assist trajectories to Mars for the 30 year period 1995-2024 are examined. It is shown that in many cases these trajectories require less launch energy to reach Mars than direct ballistic trajectories.

  13. The International Outer Planets Watch atmospheres node database of giant-planet images

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Legarreta, J.; Sánchez-Lavega, A.; Rojas, J. F.; Gómez-Forrellad, J. M.

    2011-10-01

    The Atmospheres Node of the International Outer Planets Watch (IOPW) is aimed to encourage the observations and study of the atmospheres of the Giant Planets. One of its main activities is to provide an interaction between the professional and amateur astronomical communities maintaining an online and fully searchable database of images of the giant planets obtained from amateur astronomers and available to both professional and amateurs [1]. The IOPW database contains about 13,000 image observations of Jupiter and Saturn obtained in the visible range with a few contributions of Uranus and Neptune. We describe the organization and structure of the database as posted in the Internet and in particular the PVOL software (Planetary Virtual Observatory & Laboratory) designed to manage the site and based in concepts from Virtual Observatory projects.

  14. HUBBLE FINDS AN HOURGLASS NEBULA AROUND A DYING STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an image of MyCn18, a young planetary nebula located about 8,000 light-years away, taken with the Wide Field and Planetary Camera 2 (WFPC2) aboard NASA's Hubble Space Telescope (HST). This Hubble image reveals the true shape of MyCn18 to be an hourglass with an intricate pattern of 'etchings' in its walls. This picture has been composed from three separate images taken in the light of ionized nitrogen (represented by red), hydrogen (green), and doubly-ionized oxygen (blue). The results are of great interest because they shed new light on the poorly understood ejection of stellar matter which accompanies the slow death of Sun-like stars. In previous ground-based images, MyCn18 appears to be a pair of large outer rings with a smaller central one, but the fine details cannot be seen. According to one theory for the formation of planetary nebulae, the hourglass shape is produced by the expansion of a fast stellar wind within a slowly expanding cloud which is more dense near its equator than near its poles. What appears as a bright elliptical ring in the center, and at first sight might be mistaken for an equatorially dense region, is seen on closer inspection to be a potato shaped structure with a symmetry axis dramatically different from that of the larger hourglass. The hot star which has been thought to eject and illuminate the nebula, and therefore expected to lie at its center of symmetry, is clearly off center. Hence MyCn18, as revealed by Hubble, does not fulfill some crucial theoretical expectations. Hubble has also revealed other features in MyCn18 which are completely new and unexpected. For example, there is a pair of intersecting elliptical rings in the central region which appear to be the rims of a smaller hourglass. There are the intricate patterns of the etchings on the hourglass walls. The arc-like etchings could be the remnants of discrete shells ejected from the star when it was younger (e.g. as seen in the Egg Nebula), flow instabilities, or could result from the action of a narrow beam of matter impinging on the hourglass walls. An unseen companion star and accompanying gravitational effects may well be necessary in order to explain the structure of MyCn18. BACKGROUND: PLANETARY NEBULAE When Sun-like stars get old, they become cooler and redder, increasing their sizes and energy output tremendously: they are called red giants. Most of the carbon (the basis of life) and particulate matter (crucial building blocks of solar systems like ours) in the universe is manufactured and dispersed by red giant stars. When the red giant star has ejected all of its outer layers, the ultraviolet radiation from the exposed hot stellar core makes the surrounding cloud of matter created during the red giant phase glow: the object becomes a planetary nebula. A long-standing puzzle is how planetary nebulae acquire their complex shapes and symmetries, since red giants and the gas/dust clouds surrounding them are mostly round. Hubble's ability to see very fine structural details (usually blurred beyond recognition in ground-based images) enables us to look for clues to this puzzle. CREDITS: Raghvendra Sahai and John Trauger (JPL), the WFPC2 science team, and NASA Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.

  15. The Influence of Planetary Mass on the Dynamical Lifetime of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Duncan, M. J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    Recent numerical and analytic studies of planetary orbits have demonstrated the importance of resonances and chaos in destabilizing planetary systems. Newton's "clockwork" description of regular, predictable planetary orbits has been replaced by a view in which many systems can have long but finite lifetimes. This new knowledge has altered our perceptions of the later stages of planetary growth and of the stability of planetary systems. Stability criteria are inexact and time dependent. Most previous studies have focused on the effects in initial planetary orbits on the stability of the system. We are conducting an investigation which focuses on the dependence of stability criteria on planetary mass. Synthetic systems are created by increasing the masses of the planets in our Solar System or of the moons of a particular planet; these systems are then integrated until orbit crossing occurs. We have found that over some ranges, the time until orbit crossing varies to a good approximation as a power clothe factor by which the masses of the secondaries arc increased; some scatter occurs as a consequence of vie chaotic nature of orbital evolution. The slope of this power law varies substantially from system to system, and for moons it is mildly dependent on the inclusion of the planet's quadrupole moment in the gravitational potential.

  16. Stability and self-organization of planetary systems.

    PubMed

    Pakter, Renato; Levin, Yan

    2018-04-01

    We show that stability of planetary systems is intimately connected with their internal order. An arbitrary initial distribution of planets is susceptible to catastrophic events in which planets either collide or are ejected from the planetary system. These instabilities are a fundamental consequence of chaotic dynamics and of Arnold diffusion characteristic of many body gravitational interactions. To ensure stability over astronomical time scale of a realistic planetary system-in which planets have masses comparable to those of planets in the solar system-the motion must be quasiperiodic. A dynamical mechanism is proposed which naturally evolves a planetary system to a quasiperiodic state from an arbitrary initial condition. A planetary self-organization predicted by the theory is similar to the one found in our solar system.

  17. Overview of the 2008 COSPAR Planetary Protection Policy Workshop

    NASA Astrophysics Data System (ADS)

    Rummel, John

    In January 2008 the COSPAR Panel on Planetary Protection held a Policy Workshop in Montŕal, Canada to consider a number of recommendations that had been suggested at prior e Panel business meetings for updating and clarifying the COSPAR Planetary Protection Policy that had been adopted at the World Space Congress in 2002. One particular element of the Policy that was due for clarification was the definition of "Special Regions" on Mars, which was discussed by the Panel at a Special Regions Colloquium in Rome in September 2008, and which was recommended for updating by both the US National Research Council's Committee on Preventing the Forward Contamination of Mars and by a Special Regions Science Analysis Group organized by NASA under its Mars Exploration Program Analysis Group in 2006. In other business, the Workshop also discussed and adopted wording to reflect the planetary protection considerations associated with future human missions to Mars (subsequent to several NASA and ESA workshops defining those), and addressed the planetary protection categorizations of both Venus and the Earth's Moon. The Workshop also defined a plan to move forward on the categorization of Outer Planet Satellites (to be done in conjunction with SC's B and F), and revised certain portions of the wording of the 1983 version of the COSPAR policy statement, emphasized full participation by all national members in planetary protection decisions and the need to study the ethical considerations of space exploration, and provided for a traceable version of the policy to be assembled and maintained by the Panel. This talk will review the Montŕal Workshop, and use its themes to introduce the remaining speakers in the session. e

  18. Expanding the Planetary Analog Test Sites in Hawaii - Planetary Basalt Manipulation

    NASA Astrophysics Data System (ADS)

    Kelso, R.

    2013-12-01

    The Pacific International Space Center for Exploration Systems (PISCES) is one of the very few planetary surface research test sites in the country that is totally funded by the state legislature. In recent expansions, PISCES is broadening its work in planetary test sites to include much more R&D work in the planetary surface systems, and the manipulation of basalt materials. This is to include laser 3D printing of basalt, 'lunar-concrete' construction in state projects for Hawaii, renewable energy, and adding lava tubes/skylights to their mix of high-quality planetary analog test sites. PISCES Executive Director, Rob Kelso, will be providing program updates on the interest of the Hawaii State Legislature in planetary surface systems, new applied research initiatives in planetary basalts and interests in planetary construction.

  19. Space Science for the 21st Century. Strategic Plan for 1995-2000

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This publication is one of three volumes in 'Space Science for the 21st Century', the Office of Space Science Strategic plan for 1995-2000. The other two volumes are the recently released Integrated Technology Strategy and the Education Plan, which is in preparation at this publication date. The Science Plan was developed by the Office of Space Science (OSS) in partnership with the Space Science Advisory Committee. The mission of the OSS is to seek answers to fundamental questions about: the galaxy and the universe; the connection between the Sun, Earth, and Heliosphere; the origin and evolution of planetary systems; and the origin and distribution of life in the universe. The strategy to answer these questions includes completing the means to survey the universe across the entire electromagnetic spectrum; completing the survey of cosmic rays through their highest energies, and of interstellar gas; carrying out a basic new test of the Theory of General Relativity; completing development of the means to understand the mechanisms of solar variability and its effects on Earth; completing the first exploration of the inner and outer frontiers of the heliosphere; determining the plasma environments of the solar system planets and how those environments are affected by solar activity; completing development of the means to finish the reconnaissance of the entire solar system from the Sun to Pluto; beginning the comprehensive search for other planets around other stars; resuming surface exploration of solar system bodies to understand the origin and evolution of the Sun's planetary system; continuing the study of biogenic compounds and their evolution in the universe; and searching for indicators of past and present conditions conducive to life.

  20. Exploring Ocean-World Habitability within the Planned Europa Clipper Mission

    NASA Astrophysics Data System (ADS)

    Pappalardo, R. T.; Senske, D.; Korth, H.; Blaney, D. L.; Blankenship, D. D.; Collins, G. C.; Christensen, P. R.; Gudipati, M. S.; Kempf, S.; Lunine, J. I.; Paty, C. S.; Raymond, C. A.; Rathbun, J.; Retherford, K. D.; Roberts, J. H.; Schmidt, B. E.; Soderblom, J. M.; Turtle, E. P.; Waite, J. H., Jr.; Westlake, J. H.

    2017-12-01

    A key driver of planetary exploration is to understand the processes that lead to potential habitability across the solar system, including within oceans hosted by some icy satellites of the outer planets. In this context, it is the overarching science goal of the planned Europa Clipper mission is: Explore Europa to investigate its habitability. Following from this goal are three mission objectives: (1) Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; (2) Understand the habitability of Europa's ocean through composition and chemistry; and (3) Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. Folded into these objectives is the desire to search for and characterize any current activity, notably plumes and thermal anomalies. A suite of nine remote-sensing and in-situ observing instruments is being developed that synergistically addresses these objectives. The remote-sensing instruments are the Europa UltraViolet Spectrograph (Europa-UVS), the Europa Imaging System (EIS), the Mapping Imaging Spectrometer for Europa (MISE), the Europa THErMal Imaging System (E-THEMIS), and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). The instruments providing in-situ observations are the Interior Characterization of Europa using Magnetometry (ICEMAG), the Plasma Instrument for Magnetic Sounding (PIMS), the MAss Spectrometer for Planetary EXploration (MASPEX), and the SUrface Dust Analyzer (SUDA). In addition, gravity science can be achieved via the spacecraft's telecommunication system, and the planned radiation monitoring system could provide information on Europa's energetic particle environment. Working together, the mission's robust investigation suite can be used to test hypotheses and enable discoveries relevant to the interior, composition, and geology of Europa, thereby addressing the potential habitability of this intriguing ocean world.

  1. Scientific rationale for Uranus and Neptune in situ explorations

    NASA Astrophysics Data System (ADS)

    Mousis, O.; Atkinson, D. H.; Cavalié, T.; Fletcher, L. N.; Amato, M. J.; Aslam, S.; Ferri, F.; Renard, J.-B.; Spilker, T.; Venkatapathy, E.; Wurz, P.; Aplin, K.; Coustenis, A.; Deleuil, M.; Dobrijevic, M.; Fouchet, T.; Guillot, T.; Hartogh, P.; Hewagama, T.; Hofstadter, M. D.; Hue, V.; Hueso, R.; Lebreton, J.-P.; Lellouch, E.; Moses, J.; Orton, G. S.; Pearl, J. C.; Sánchez-Lavega, A.; Simon, A.; Venot, O.; Waite, J. H.; Achterberg, R. K.; Atreya, S.; Billebaud, F.; Blanc, M.; Borget, F.; Brugger, B.; Charnoz, S.; Chiavassa, T.; Cottini, V.; d'Hendecourt, L.; Danger, G.; Encrenaz, T.; Gorius, N. J. P.; Jorda, L.; Marty, B.; Moreno, R.; Morse, A.; Nixon, C.; Reh, K.; Ronnet, T.; Schmider, F.-X.; Sheridan, S.; Sotin, C.; Vernazza, P.; Villanueva, G. L.

    2018-06-01

    The ice giants Uranus and Neptune are the least understood class of planets in our solar system but the most frequently observed type of exoplanets. Presumed to have a small rocky core, a deep interior comprising ∼70% heavy elements surrounded by a more dilute outer envelope of H2 and He, Uranus and Neptune are fundamentally different from the better-explored gas giants Jupiter and Saturn. Because of the lack of dedicated exploration missions, our knowledge of the composition and atmospheric processes of these distant worlds is primarily derived from remote sensing from Earth-based observatories and space telescopes. As a result, Uranus's and Neptune's physical and atmospheric properties remain poorly constrained and their roles in the evolution of the Solar System not well understood. Exploration of an ice giant system is therefore a high-priority science objective as these systems (including the magnetosphere, satellites, rings, atmosphere, and interior) challenge our understanding of planetary formation and evolution. Here we describe the main scientific goals to be addressed by a future in situ exploration of an ice giant. An atmospheric entry probe targeting the 10-bar level, about 5 scale heights beneath the tropopause, would yield insight into two broad themes: i) the formation history of the ice giants and, in a broader extent, that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. In addition, possible mission concepts and partnerships are presented, and a strawman ice-giant probe payload is described. An ice-giant atmospheric probe could represent a significant ESA contribution to a future NASA ice-giant flagship mission.

  2. Overview of the Mars Sample Return Earth Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dillman, Robert; Corliss, James

    2008-01-01

    NASA's Mars Sample Return (MSR) project will bring Mars surface and atmosphere samples back to Earth for detailed examination. Langley Research Center's MSR Earth Entry Vehicle (EEV) is a core part of the mission, protecting the sample container during atmospheric entry, descent, and landing. Planetary protection requirements demand a higher reliability from the EEV than for any previous planetary entry vehicle. An overview of the EEV design and preliminary analysis is presented, with a follow-on discussion of recommended future design trade studies to be performed over the next several years in support of an MSR launch in 2018 or 2020. Planned topics include vehicle size for impact protection of a range of sample container sizes, outer mold line changes to achieve surface sterilization during re-entry, micrometeoroid protection, aerodynamic stability, thermal protection, and structural materials selection.

  3. Status of NASA's Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Anderson, David J.; Tuttle, Karen L.; Tew, Roy C.

    2006-01-01

    NASA s Advanced Radioisotope Power Systems (RPS) development program is funding the advancement of next generation power conversion technologies that will enable future missions that have requirements that can not be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power Systems (RPS). Requirements of advanced radioisotope power systems include high efficiency and high specific power (watts/kilogram) in order to meet mission requirements with less radioisotope fuel and lower mass. Other Advanced RPS development goals include long-life, reliability, and scalability so that these systems can meet requirements for a variety of future space applications including continual operation surface missions, outer-planetary missions, and solar probe. This paper provides an update on the Radioisotope Power Conversion Technology Project which awarded ten Phase I contracts for research and development of a variety of power conversion technologies consisting of Brayton, Stirling, thermoelectrics, and thermophotovoltaics. Three of the contracts continue during the current Phase II in the areas of thermoelectric and Stirling power conversion. The accomplishments to date of the contractors, project plans, and status will be summarized.

  4. Tracing the Mass of Early-type Galaxies using Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Sluis, A. P. N.; William, T. B.

    2002-12-01

    We report on observations of two ellipticals (NGC 3379 and NGC 1549) and two S0s (NGC 3384 and NGC 4636) performed with the Rutgers Fabry-Perot (RFP). The observations are part of a larger project to study the distribution of mass in the outer regions of early-type galaxies. Efforts to determine this distribution are generally hampered by the scarcity of useful tracers of the potential at large radii. Ellipticals and S0s have steep surface brightness profiles that make absorption line spectroscopy of the stellar population practically impossible beyond a few kpc from the center. Also, their gas content is low and does not extend far beyond the nucleus. Planetary Nebulae (PNe) offer a way around these problems: as remants of intermediate mass stars we expect them to follow the stellar light distribution and be numerous enough to be an effective tracer. PNe radiate hundreds of solar luminosities in a few emission lines (mostly [OIII] 5007 Å), making it possible to detect them over extragalactic distances and at the same time measure their line of sight velocities using the RFP. We present the photometry and the kinematics of the PN systems as well as some simple dynamical mass models for the four galaxies mentioned above.

  5. Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and the subsequent widening of the habitable zone.

    PubMed

    Joshi, Manoj M; Haberle, Robert M

    2012-01-01

    M stars comprise 80% of main sequence stars, so their planetary systems provide the best chance for finding habitable planets, that is, those with surface liquid water. We have modeled the broadband albedo or reflectivity of water ice and snow for simulated planetary surfaces orbiting two observed red dwarf stars (or M stars), using spectrally resolved data of Earth's cryosphere. The gradual reduction of the albedos of snow and ice at wavelengths greater than 1 μm, combined with M stars emitting a significant fraction of their radiation at these same longer wavelengths, means that the albedos of ice and snow on planets orbiting M stars are much lower than their values on Earth. Our results imply that the ice/snow albedo climate feedback is significantly weaker for planets orbiting M stars than for planets orbiting G-type stars such as the Sun. In addition, planets with significant ice and snow cover will have significantly higher surface temperatures for a given stellar flux if the spectral variation of cryospheric albedo is considered, which in turn implies that the outer edge of the habitable zone around M stars may be 10-30% farther away from the parent star than previously thought.

  6. Dual-Band Optical Bench for Terahertz Radiometer for Outer Planet Atmospheres (TROPA)

    NASA Technical Reports Server (NTRS)

    Schlecht, Erich; Jamnejad, Vahraz

    2012-01-01

    We have developed a wide-band dual frequency spectrometer for use in deep space planetary atmospheric spectroscopy. The instrument uses a dual-band architecture, both to be able to observe spectral lines from a wide range of atmospheric species, and to allow a higher precision retrieval of temperature/pressure/partial pressure and wind profiles. This dual-band approach requires a new design for the optical bench to couple both frequencies into their respective receivers.

  7. Sample Return Missions Where Contamination Issues are Critical: Genesis Mission Approach

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Stansbery E. K.

    2011-01-01

    The Genesis Mission, sought the challenging analytical goals of accurately and precisely measuring the elemental and isotopic composition of the Sun to levels useful for planetary science, requiring sensitivities of ppm to ppt in the outer 100 nm of collector materials. Analytical capabilities were further challenged when the hard landing in 2004 broke open the canister containing the super-clean collectors. Genesis illustrates that returned samples allow flexibility and creativity to recover from setbacks.

  8. The WIRED Survey. I. A Bright IR Excess Due to Dust Around the Heavily Polluted White Dwarf Galex J193156.8+011745

    NASA Technical Reports Server (NTRS)

    Debes, John H.; Hoard, D. W.; Kilic, Mukremin; Wachter, Stefanie; Leisawitz, David T.; Cohen, Martin; Kirkpatrick, J. Davy; Griffith, Roger L.

    2011-01-01

    With the launch of the Wide-Field Infrared Survey Explorer (WISE), a new era of detecting planetary debris around white dwarfs (WDs) has begun with the WISE InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED survey will be sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs and covering a large fraction of known WDs detected with the SDSS DR4 WD catalog. In this paper, we report an initial result of the WIRED survey, the detection of the heavily polluted hydrogen WD (spectral type DAZ) GALEX Jl93156.S-KlI1745 at 3.35 and 4.6/Lm. We find that the excess is consistent with either a narrow dusty ring with an inner radius of 29 RWD. outer radius of 40 RWD, and a face-on inclination, or a disk with an inclination of 70 , an inner radius of 23 RWD. and an outer radius of 80 RWD. We also report initial optical spectroscopic monitoring of several metal lines present in the photosphere and find no variability in the line strengths or radial velocities of the lines. We rule out all but planetary mass companions to GALEXl931 out to 0.5 AU.

  9. Voyager First Science Meeting

    NASA Image and Video Library

    2016-10-27

    This archival image was released as part of a gallery comparing JPL's past and present, commemorating the 80th anniversary of NASA's Jet Propulsion Laboratory on Oct. 31, 2016. In December 1972, the science steering group for a mission then-known as Mariner Jupiter Saturn 1977 -- later renamed Voyager -- met for the first time at NASA's Jet Propulsion Laboratory in Pasadena, Calif. They are gathered on the steps in front of the administration building (180). The mission was so named because it was planning to send Mariner-class spacecraft to Jupiter and Saturn. It was renamed Voyager a few months before the launch of the twin spacecraft in August and September 1977. This photo shows principal investigators and team leaders for the science experiments and several others from the project and NASA who attended the first meeting. In the first row: Radio Science Subsystem Team Leader Von Eshleman, Project Scientist Edward Stone, Project Manager Harris (Bud) Schurmeier, Mission Analysis and Engineering Manager Ralph Miles, Magnetometer Principal Investigator Norman Ness, NASA Planetary Program Office Deputy Director Ichtiaque Rasool, Robert Soberman (who was proposed to be the principal investigator of the Particulate Matter Investigation, which was not confirmed) and an unidentified member of the NASA Office of Space Science. In the second row: Infrared Interferometer Spectrometer Principal Investigator Rudolf Hanel, Planetary Radio Astronomy Principal Investigator James Warwick, Ultraviolet and Spectrometer Principal Investigator A. Lyle Broadfoot. In the third row: Low-Energy Charged Particles Principal Investigator Stamatios (Tom) Krimigis, Cosmic Ray Subsystem Principal Investigator Rochus (Robbie) Vogt, NASA Outer Planets Missions Program Manager Warren Keller, Imaging Science Subsystem Team Leader Bradford Smith and Photopolarimeter Principal Investigator Charles Lillie. In the fourth row: Plasma Investigation Principal Investigator Herbert Bridge, Spacecraft Systems Manager Raymond Heacock, NASA Outer Planets Missions Program Scientist Milton (Mike) Mitz and Science Manager James Long. http://photojournal.jpl.nasa.gov/catalog/PIA21122

  10. Haze and cloud distribution in Uranus' atmosphere based on high-contrast spatially resolved polarization measurements

    NASA Astrophysics Data System (ADS)

    Kostogryz, Nadiia; Berdyugina, Svetlana; Gisler, Daniel; Berkefeld, Thomas

    2017-04-01

    In planetary atmospheres, main sources of opacity are molecular absorption and scattering on molecules, hazes and aerosols. Hence, light reflected from a planetary atmosphere can be linearly polarized. Polarization study of inner solar system planets and exoplanets is a powerful method to characterize their atmospheres, because of a wide range of observable phase angles. For outer solar system planets, observable phase angles are very limited. For instance, Uranus can only be observed up to 3.2 degrees away from conjunctions, and its disk-integrated polarization is close to zero due to the back-scattering geometry. However, resolving the disk of Uranus and measuring the center-to-limb polarization can help constraining the vertical atmospheric structure and the nature of scattering aerosols and particles. In October 2016, we carried out polarization measurements of Uranus in narrow-band filters centered at methane bands and the adjacent continuum using the GREGOR Planet Polarimeter (GPP). The GPP is a high-precision polarimeter and is mounted at the 1.5-m GREGOR solar telescope, which is suitable for observing at night. In order to reach a high spatial resolution, the instrument uses an adaptive-optics system of the telescope. To interpret our measurements, we solve the polarized radiative transfer problem taking into account different scattering and absorption opacities. We calculate the center-to-limb variation of polarization of Uranus' disk in the continuum spectrum and in methane bands. By varying the vertical distribution of haze and cloud layers, we derive the vertical structure of the best-fit Uranus atmosphere.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, Amy; Hughes, A. Meredith; Carpenter, John

    The presence of debris disks around young main-sequence stars hints at the existence and structure of planetary systems. Millimeter-wavelength observations probe large grains that trace the location of planetesimal belts. The Formation and Evolution of Planetary Systems Spitzer Legacy survey of nearby young solar analogues yielded a sample of five debris disk-hosting stars with millimeter flux suitable for interferometric follow-up. We present observations with the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter-wave Astronomy at ∼2″ resolution that spatially resolve the debris disks around these nearby (d ∼ 50 pc) stars. Two of the five disks (HDmore » 377, HD 8907) are spatially resolved for the first time and one (HD 104860) is resolved at millimeter wavelengths for the first time. We combine our new observations with archival SMA and Atacama Large Millimeter/Submillimeter Array data to enable a uniform analysis of the full five-object sample. We simultaneously model the broadband photometric data and resolved millimeter visibilities to constrain the dust temperatures and disk morphologies, and perform a Markov Chain Monte Carlo analysis to fit for basic structural parameters. We find that the radii and widths of the cold outer belts exhibit properties consistent with scaled-up versions of the Solar System's Kuiper Belt. All the disks exhibit characteristic grain sizes comparable to the blowout size, and all the resolved observations of emission from large dust grains are consistent with an axisymmetric dust distribution to within the uncertainties. These results are consistent with comparable studies carried out at infrared wavelengths.« less

  12. The Dynamics of Tide and Resonances in Exoplanetary Systems

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.

    2015-05-01

    In recent years, the planet formation theory and planetary system dynamics have become an important area of astronomy. With more details of exoplanets being found, many characteristics quite different from the solar system have been found in the exoplanetary systems. A large number of planets are found to be very close to their host star, and their periods are only a few days, which brings strong tidal dissipation with the star. Many period ratios of adjacent planets in multi-planetary systems are close to the simple integer ratios, which indicates that the planets are likely in the mean motion resonances (MMRs). The range of the angles between the orbital plane of the planets and the equatorial plane of their hosts expands from ≤sssim 7(°) for the planets in the solar system to 0(°) ˜ 180(°) , and some retrograde hot Jupiters exist. These new phenomena are testing out the traditional planetary formation theory and planetary system dynamics, but also provide an unprecedented opportunity for their further improvement and development. Based on these latest observational data and statistical features, the thesis investigates some special configurations combining the resonances and tidal dissipation by the way of planetary system dynamics. The thesis first reviews the primary applications and the latest progress in the tide as well as various resonances of exoplanets. Then it gives some tidal model derivations, including the classic one and most popular one, in order to understand the assumptions of the equilibrium tide. Meanwhile, the average rates of change of orbital elements under tidal dissipation are exhibited. By both numerical simulation and theoretical analysis, the following three questions are investigated: the evolution of the eccentricity of planets in the non-synchronous spin-orbit resonances, the characteristics of nearly 2:1 MMR and Laplace resonance under tidal dissipation, and the promoting role of the gravity of outer gas disk for exciting the planets in its inner cavity. Chapter 3 takes into account the tidal dissipation and the gravity from planet deformation, and concludes that, the tidal dissipation rates in all the non-synchronous spin-orbit resonances are greater than that in the quasi-stationary state of the spin of the planet, so the eccentricity is also damped within a shorter duration. In order to explain the formation of two period ratios nearly 2:1 in the three planet HD40307 system, Chapter 4 simulates the evolution paths of planets in two different situations. If the planets are always stable during and after the dissipation of gas disk, their eccentricities directly from the interaction among planets are very small (˜ 10(-4) ). So the changing timescale of period ratios is much larger than the age of the system. On the contrary, if the planets have experienced unstable phases, their eccentricities would be excited, which can accelerate the evolution of the period ratios effectively. In this situation, three paths exist to achieve the current configuration, whose initial semi-major axes respectively correspond to three different regions on the plane of two period ratios. It can be inferred that the instability stage after the dissipation of the gas disk is a necessary condition for the system to achieve the evolution from 2:1 MMRs to the current configuration under tidal dissipation with the star. Chapter 5 proposes a mechanism to reduce the critical inclination of orbital pumping, in order to explain the retrograde hot Jupiters in latest observations. Considering the gravity of the outer gas disk, a secular resonance would occur between the planets in the inner cavity if they are in appropriate positions, which pumps the mutual inclination of the planets and induces the Kozai resonance between them in some situations. Then the eccentricity and inclination of the inner planet will be excited eventually. We develop the equation of the rates of change of orbital elements under the secular perturbation in hierarchical three-body system (with respect to an arbitrary plane rather than the invariant plane of the two orbits), as well as give the rates of change of orbital elements under a 2-D disk gravity equations. Combining the two parts, the results by integrating the evolution equations are good approximation of the N-body simulations. By scanning the parameter spaces using the evolution equations, we get the preliminary critical condition for the retrograde hot Jupiters formed, and give a complete discussion of the impact of relevant parameters.

  13. Beyond Electric Propulsion: Non-Propulsive Benefits of Nuclear Power for the Exploration of the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Zubrin, Robert M.

    1994-07-01

    In the past, most studies dealing with the benefits of space nuclear electric power systems for solar system exploration have focused on the potential of nuclear electric propulsion (NEP) to enhance missions by increasing delivered payload, decreasing LEO mass, or reducing trip time. While important, such mission enhancements have failed to go to the heart of the concerns of the scientific community supporting interplanetary exploration. To put the matter succinctly, scientists don't buy delivered payload - they buy data returned. With nuclear power we can increase both the quantity of data returned, by enormously increasing data communication rates, and the quality of data by enabling a host of active sensing techniques otherwise impossible. These non-propulsive mission enhancement capabilities of space nuclear power have been known in principle for many years, but they have not been adequately documented. As a result, support for the development of space nuclear power by the interplanetary exploration community has been much less forceful than it might otherwise be. In this paper we shall present mission designs that take full advantage of the potential mission enhancements offered by space nuclear power systems in the 10 to 100 kWe range, not just for propulsion, but to radically improve, enrich, and expand the science return itself. Missions considered include orbiter missions to each of the outer planets. It will be shown that be using hybrid trajectories combining chemical propulsion with NEP and (in certain cases) gravity assists, that it is possible, using a Titan IV-Centaur launch vehicle, for high-powered spacecraft to be placed in orbit around each of the outer planets with electric propulsion burn times of less than 4 years. Such hybrid trajectories therefore make the outer solar-system available to near-term nuclear electric power systems. Once in orbit, the spacecraft will utilize multi-kilowatt communication systems, similar to those now employed by the U.S. military, to increase data return far beyond that possible utilizing the 40 W rf traveling wave tube antennas that are the current NASA standard. This higher data rate will make possible very high resolution multi-spectral imaging (with high resolutions both spatially and spectrally), a form of science hitherto impossible in the outer solar system. Large numbers of such images could be returned, allowing the creation of motion pictures of atmospheric phenomenon on a small scale and greatly increasing the probability of capturing transient phenomena such as lighting or volcanic activity. The multi-kilowatt power sources on the spacecraft also enables active sensing, including radar, which could be used to do topographic and subsurface studies of clouded bodies such as Titan, ground penetrating sounding of Pluto, the major planet's moons, and planetoids, and topside sounding of the electrically conductive atmospheres of Jupiter, Saturn, Uranus and Neptune to produce profiles of fluid density, conductivity, and horizontal and vertical velocity as a function of depth and global location. Radio science investigations of planetary atmospheres and ring systems would be greatly enhanced by increased transmitter power. The scientific benefits of utilizing such techniques are discussed, and a comparison is made with the quantity and quality of science that a low-powered spacecraft employing RTGs could return. It is concluded that the non-propulsive benefits of nuclear power for spacecraft exploring the outer solar system are enormous, and taken together with the well documented mission enhancements enabled by electric propulsion fully justify the expenditures needed to bring a space qualified nuclear electric power source into being.

  14. Common Envelope Shaping of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    García-Segura, Guillermo; Ricker, Paul M.; Taam, Ronald E.

    2018-06-01

    The morphology of planetary nebulae emerging from the common envelope phase of binary star evolution is investigated. Using initial conditions based on the numerical results of hydrodynamical simulations of the common envelope phase, it was found that the shapes and sizes of the resulting nebula are very sensitive to the effective temperature of the remnant core, the mass-loss rate at the onset of the common envelope phase, and the mass ratio of the binary system. These parameters are related to the efficiency of the mass ejection after the spiral-in phase, the stellar evolutionary phase (i.e., RG, AGB, or TP-AGB), and the degree of departure from spherical symmetry in the stellar wind mass-loss process itself, respectively. It was also found that the shapes are mostly bipolar in the early phase of evolution, but that they can quickly transition to elliptical and barrel-type shapes. Solutions for nested lobes are found where the outer lobes are usually bipolar and the inner lobes are elliptical, bipolar, or barrel-type, a result due to the flow of the photo-evaporated gas from the equatorial region. Also, the lobes can be produced without the need for two distinct mass ejection events. In all the computations, the bulk of the mass is concentrated in the orbital or equatorial plane, in the form of a large toroid, which can be either neutral (early phases) or photoionized (late phases), depending of the evolutionary state of the system.

  15. Where can a Trappist-1 planetary system be produced?

    NASA Astrophysics Data System (ADS)

    Haworth, Thomas J.; Facchini, Stefano; Clarke, Cathie J.; Mohanty, Subhanjoy

    2018-04-01

    We study the evolution of protoplanetary discs that would have been precursors of a Trappist-1-like system under the action of accretion and external photoevaporation in different radiation environments. Dust grains swiftly grow above the critical size below which they are entrained in the photoevaporative wind, so although gas is continually depleted, dust is resilient to photoevaporation after only a short time. This means that the ratio of the mass in solids (dust plus planetary) to the mass in gas rises steadily over time. Dust is still stripped early on, and the initial disc mass required to produce the observed 4 M⊕ of Trappist-1 planets is high. For example, assuming a Fatuzzo & Adams distribution of UV fields, typical initial disc masses have to be >30 per cent the stellar (which are still Toomre Q stable) for the majority of similar mass M dwarfs to be viable hosts of the Trappist-1 planets. Even in the case of the lowest UV environments observed, there is a strong loss of dust due to photoevaporation at early times from the weakly bound outer regions of the disc. This minimum level of dust loss is a factor of 2 higher than that which would be lost by accretion on to the star during 10 Myr of evolution. Consequently, even in these least irradiated environments, discs that are viable Trappist-1 precursors need to be initially massive (>10 per cent of the stellar mass).

  16. Stability and self-organization of planetary systems

    NASA Astrophysics Data System (ADS)

    Pakter, Renato; Levin, Yan

    2018-04-01

    We show that stability of planetary systems is intimately connected with their internal order. An arbitrary initial distribution of planets is susceptible to catastrophic events in which planets either collide or are ejected from the planetary system. These instabilities are a fundamental consequence of chaotic dynamics and of Arnold diffusion characteristic of many body gravitational interactions. To ensure stability over astronomical time scale of a realistic planetary system—in which planets have masses comparable to those of planets in the solar system—the motion must be quasiperiodic. A dynamical mechanism is proposed which naturally evolves a planetary system to a quasiperiodic state from an arbitrary initial condition. A planetary self-organization predicted by the theory is similar to the one found in our solar system.

  17. Theoretical and observational planetary physics

    NASA Technical Reports Server (NTRS)

    Caldwell, J.

    1986-01-01

    This program supports NASA's deep space exploration missions, particularly those to the outer Solar System, and also NASA's Earth-orbital astronomy missions, using ground-based observations, primarily with the NASA IRTF at Mauna Kea, Hawaii, and also with such instruments as the Kitt Peak 4 meter Mayall telescope and the NRAO VLA facility in Socorro, New Mexico. An important component of the program is the physical interpretation of the observations. There were two major scientific discoveries resulting from 8 micrometer observations of Jupiter. The first is that at that wavelength there are two spots, one near each magnetic pole, which are typically the brightest and therefore warmest places on the planet. The effect is clearly due to precipitating high energy magnetospheric particles. A second ground-based discovery is that in 1985, Jupiter exhibited low latitude (+ or - 18 deg.) stratospheric wave structure.

  18. Habitable Zone Evolution

    NASA Astrophysics Data System (ADS)

    Waltham, D.; Lota, J.

    2012-12-01

    The location of the habitable zone around a star depends upon stellar luminosity and upon the properties of a potentially habitable planet such as its mass and near-surface volatile inventory. Stellar luminosity generally increases as a star ages whilst planetary properties change through time as a consequence of biological and geological evolution. Hence, the location of the habitable zone changes through time as a result of both stellar evolution and planetary evolution. Using the Earth's Phanerozoic temperature history as a constraint, it is shown that changes in our own habitable zone over the last 540 My have been dominated by planetary evolution rather than solar evolution. Furthermore, sparse data from earlier times suggests that planetary evolution may have dominated habitable zone development throughout our biosphere's history. Hence, the existence of a continuously habitable zone depends upon accidents of complex bio-geochemical evolution more than it does upon relatively simple stellar-evolution. Evolution of the inner margin of the habitable zone through time using three different estimates for climate sensitivity. The dashed line shows a typical predicted evolution assuming this was driven simply by a steady increase in solar luminosity. Solar evolution does not account for the observations. Evolution of the outer margin of the habitable zone through time using three different estimates for climate sensitivity. The dashed line shows a typical predicted evolution assuming this was driven simply by a steady increase in solar luminosity. Solar evolution does not account for the observations.

  19. The diversity of planetary system architectures: contrasting theory with observations

    NASA Astrophysics Data System (ADS)

    Miguel, Y.; Guilera, O. M.; Brunini, A.

    2011-10-01

    In order to explain the observed diversity of planetary system architectures and relate this primordial diversity to the initial properties of the discs where they were born, we develop a semi-analytical model for computing planetary system formation. The model is based on the core instability model for the gas accretion of the embryos and the oligarchic growth regime for the accretion of the solid cores. Two regimes of planetary migration are also included. With this model, we consider different initial conditions based on recent results of protoplanetary disc observations to generate a variety of planetary systems. These systems are analysed statistically, exploring the importance of several factors that define the planetary system birth environment. We explore the relevance of the mass and size of the disc, metallicity, mass of the central star and time-scale of gaseous disc dissipation in defining the architecture of the planetary system. We also test different values of some key parameters of our model to find out which factors best reproduce the diverse sample of observed planetary systems. We assume different migration rates and initial disc profiles, in the context of a surface density profile motivated by similarity solutions. According to this, and based on recent protoplanetary disc observational data, we predict which systems are the most common in the solar neighbourhood. We intend to unveil whether our Solar system is a rarity or whether more planetary systems like our own are expected to be found in the near future. We also analyse which is the more favourable environment for the formation of habitable planets. Our results show that planetary systems with only terrestrial planets are the most common, being the only planetary systems formed when considering low-metallicity discs, which also represent the best environment for the development of rocky, potentially habitable planets. We also found that planetary systems like our own are not rare in the solar neighbourhood, its formation being favoured in massive discs where there is not a large accumulation of solids in the inner region of the disc. Regarding the planetary systems that harbour hot and warm Jupiter planets, we found that these systems are born in very massive, metal-rich discs. Also a fast migration rate is required in order to form these systems. According to our results, most of the hot and warm Jupiter systems are composed of only one giant planet, which is also shown by the current observational data.

  20. RADIOISOTOPE-DRIVEN DUAL-MODE PROPULSION SYSTEM FOR CUBESAT-SCALE PAYLOADS TO THE OUTER PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. D. Jerred; T. M. Howe; S. D. Howe

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within themore » solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (approximately 1,000 kgs to LEO) can be targeted. Thus, in effect, allows for beneficial exploration to be conducted within limited budgets. Researchers at the Center for Space Nuclear Research (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO.« less

  1. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets.

    PubMed

    Gomes, R; Levison, H F; Tsiganis, K; Morbidelli, A

    2005-05-26

    The petrology record on the Moon suggests that a cataclysmic spike in the cratering rate occurred approximately 700 million years after the planets formed; this event is known as the Late Heavy Bombardment (LHB). Planetary formation theories cannot naturally account for an intense period of planetesimal bombardment so late in Solar System history. Several models have been proposed to explain a late impact spike, but none of them has been set within a self-consistent framework of Solar System evolution. Here we propose that the LHB was triggered by the rapid migration of the giant planets, which occurred after a long quiescent period. During this burst of migration, the planetesimal disk outside the orbits of the planets was destabilized, causing a sudden massive delivery of planetesimals to the inner Solar System. The asteroid belt was also strongly perturbed, with these objects supplying a significant fraction of the LHB impactors in accordance with recent geochemical evidence. Our model not only naturally explains the LHB, but also reproduces the observational constraints of the outer Solar System.

  2. Tholins as Coloring Agents on Pluto and Other Icy Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale

    2016-01-01

    Tholins are refractory organic solids of complex structure and high molecular weight, with a wide range of color ranging from yellow and orange to dark red, and through tan to black. They are made in the laboratory by energy deposition (photons or charged particles) in gases and ices containing the simple molecules (e.g., N2, CH4, CO) found in planetary atmospheres or condensed on planetary surfaces. They are widely implicated in providing the colors and albedos, particularly in the region 0.3-1.0 microns, of several outer Solar System bodies, including Pluto, as well as aerosols in planetary atmospheres such as Titan. Recent color images of Pluto with the New Horizons spacecraft show concentrations of coloring agent(s) in some regions of the surface, and apparent near-absence in other regions. Tholins that may to some degree represent surface chemistry on Pluto have been synthesized in the laboratory by energetic processing of mixtures of the ices (N2, CH4, CO) known on Pluto's surface, or the same molecules in the gas phase. Details of the composition and yield vary with experimental conditions. Chemical analysis of Pluto ice tholins shows evidence of amides, carboxylic acids, urea, carbodiimides, and nitriles. Aromatic/olefinic, amide, and other functional groups are identified in XANES analysis. The ice tholins produced by e- irradiation have a higher concentration of N than UV ice tholins, with N/C approx. 0.9 (versus approx. 0.5 for UV tholins) and O/C approx.0.2. Raman spectra of the electron tholin show a high degree of structural disorder, while strong UV fluorescence indicates a large aromatic content. EUV photolysis of a Pluto gaseous atmosphere analog yields pale yellow solids relatively transparent in the visual, and with aliphatic CH bonds prominent in IR spectra. This or similar material may be responsible for Pluto's hazes.

  3. Cooperative observation data center for planets: starting with the Mars 2009-2010 observation

    NASA Astrophysics Data System (ADS)

    Nakakushi, T.; Okyudo, M.; Tomita, A.

    2009-12-01

    We propose in this paper a plan to construct a planetary image data center on the internet, which links professional researchers and amateur observers all over the world. Such data archive projects have worked, at least for Mars. Since 2003, one of the authors (T. N.) have started a project to summarize Mars observations using such cooperative network observation data archives and to publish the summary as professional research papers (Nakakushi et al., 2004, 2005, and 2008). Planetary atmosphere varies in various timescales, which requires temporarily continuous observations. Cooperative observation which amateur observers join can keep the observation continuous and sustainable, so that it can be a strong weapon to reveal planetary climate and meteorology. For outer planets, in particular, we don't know synoptic "seasonal" variations because of their long periods of revolution. We need steady and persistent effort to accumulate observations. That is why we need amateur observers' high-level observation techniques. To do so, we also needs systems to provide (and reproduce) data for users in an appropriate manner. We start from Mars with our own new date archive website, because we have much experience in terms of Mars. Next, we will expand the system for all the planets. Roughly said, there will be 3 steps to expand the project to all the planets: (1) to construct our own Mars cooperative observation data center, (2) to link it with professional studies, (3) to construct cooperative observation data center for all planets. And 4 problems to tackle: (1) to develop web interfaces for users to submit data, (2) to develop interfaces for managers, (3) to secure finances, (4) to secure professional researchers. 2009 and 2010 are a good apparition for Mars observation. We manage the Mars image data website, find problems and solutions in detail, and search for ways to expand it to all the planet and to enable sustainable management.

  4. Guidance and navigation requirements for unmanned flyby and swingby missions to the outer planets. Volume 4: High thrust mission, part 2, phase C

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The guidance and navigation requirements for a set of impulsive thrust missions involving one or more outer planets or comets. Specific missions considered include two Jupiter entry missions of 800 and 1200 day duration, two multiple swingby missions with the sequences Jupiter-Uranus-Neptune and Jupiter-Saturn-Pluto, and two comets rendezvous missions involving the short period comets P/Tempel 2 and P/Tuttle-Giacobini-Kresak. Results show the relative utility of onboard and Earth-based DSN navigation. The effects of parametric variations in navigation accuracy, measurement rate, and miscellaneous constraints are determined. The utility of a TV type onboard navigation sensor - sighting on planetary satellites and comets - is examined. Velocity corrections required for the nominal and parametrically varied cases are tabulated.

  5. An experimental investigation of the angular scattering and backscattering behaviors of the simulated clouds of the outer planets

    NASA Technical Reports Server (NTRS)

    Sassen, K.

    1984-01-01

    A cryogenic, 50 liter volume Planetary Cloud Simulation Chamber has been constructed to permit the laboratory study of the cloud compositions which are likely to be found in the atmospheres of the outer planets. On the basis of available data, clouds composed of water ice, carbon dioxide, and liquid and solid ammonia and methane, both pure and in various mixtures, have been generated. Cloud microphysical observations have been permitted through the use of a cloud particle slide injector and photomicrography. Viewports in the lower chamber have enabled the collection of cloud backscattering data using 633 and 838 nm laser light, including linear depolarization ratios and complete Stokes parameterization. The considerable technological difficulties associated with the collection of angular scattering patterns within the chamber, however, could not be completely overcome.

  6. Advanced instrumentation for Solar System gravitational physics

    NASA Astrophysics Data System (ADS)

    Peron, Roberto; Bellettini, G.; Berardi, S.; Boni, A.; Cantone, C.; Coradini, A.; Currie, D. G.; Dell'Agnello, S.; Delle Monache, G. O.; Fiorenza, E.; Garattini, M.; Iafolla, V.; Intaglietta, N.; Lefevre, C.; Lops, C.; March, R.; Martini, M.; Nozzoli, S.; Patrizi, G.; Porcelli, L.; Reale, A.; Santoli, F.; Tauraso, R.; Vittori, R.

    2010-05-01

    The Solar System is a complex laboratory for testing gravitational physics. Indeed, its scale and hierarchical structure make possible a wide range of tests for gravitational theories, studying the motion of both natural and artificial objects. The usual methodology makes use of tracking information related to the bodies, fitted by a suitable dynamical model. Different equations of motion are provided by different theories, which can be therefore tested and compared. Future exploration scenarios show the possibility of placing deep-space probes near the Sun or in outer Solar System, thereby extending the available experimental data sets. In particular, the Earth-Moon is the most accurately known gravitational three-body laboratory, which is undergoing a new, strong wave of research and exploration (both robotic and manned). In addition, the benefits of a synergetic study of planetary science and gravitational physics are of the greatest importance (as shown by the success of the Apollo program), especially in the Earth-Moon, Mars-Phobos, Jovian and Saturnian sub-suystems. This scenarios open critical issues regarding the quality of the available dynamical models, i.e. their capability of fitting data without an excessive number of empirical hypotheses. A typical case is represented by the non-gravitational phenomena, which in general are difficult to model. More generally, gravitation tests with Lunar Laser Ranging, inner or outer Solar System probes and the appearance of the so-called 'anomalies'(like the one indicated by the Pioneers), whatever their real origin (either instrumental effects or due to new physics), show the necessity of a coordinated improvement of tracking and modelization techniques. A common research path will be discussed, employing the development and use of advanced instrumentation to cope with current limitations of Solar System gravitational tests. In particular, the use of high-sensitivity accelerometers, combined with microwave and laser tracking, will be discussed.

  7. Planetary migration in protoplanetary discs and outer Solar System architecture.

    NASA Astrophysics Data System (ADS)

    Crida, A.; Morbidelli, A.; Tsiganis, K.

    2007-08-01

    Planets form around stars in gaseous protoplanetary discs. Due to tidal effects, they perturb the gas distribution, which in turn affects their motion. If the planet is massive enough (see for instance Crida et al. 2006 for a criterion), it repels the gas efficiently and opens a gap around its orbit ; then, locked into its gap, the planet follows the disc viscous evolution, which generally consists in accretion onto the central star. This process is called type II migration and leads to the orbital decay of the planet on a timescale shorter than the disc lifetime. After a review of these processes, we will focus on the Solar System giant planets. Strong constraints suggest that they did not migrate significantly. Masset and Snellgrove (2001) have shown that the evolution of 2 giants planets in mean motion resonance in a common gap differs from the evolution of a single planet. For what concerns Jupiter and Saturn, we found that in some conditions on the disc parameter, they can avoid significant migration (Morbidelli and Crida 2007). Adding Uranus and Neptune to the system, six stable fully resonant configurations for the four giants in the gas disc appear. Of course, none of them correspond to the present configuration. However, after the gas disc phase, the system was surrounded by a planetesimal disk. Interactions with this debris disk make the planets slowly evolve, until an instability in reached. This destabilises the planetesimal disc and triggers the Late Heavy Bombardment, while the planets reach their actual position, like in the model by Tsiganis et al (2005) and Gomes et al (2005). Our simulations show a very satisfying case, opening the possibility for a dynamically consistent scenario of the outer Solar System evolution, starting from the gas phase.

  8. Col-OSSOS: Colors of the Interstellar Planetesimal 1I/‘Oumuamua

    NASA Astrophysics Data System (ADS)

    Bannister, Michele T.; Schwamb, Megan E.; Fraser, Wesley C.; Marsset, Michael; Fitzsimmons, Alan; Benecchi, Susan D.; Lacerda, Pedro; Pike, Rosemary E.; Kavelaars, J. J.; Smith, Adam B.; Stewart, Sunny O.; Wang, Shiang-Yu; Lehner, Matthew J.

    2017-12-01

    The recent discovery by Pan-STARRS1 of 1I/2017 U1 (‘Oumuamua), on an unbound and hyperbolic orbit, offers a rare opportunity to explore the planetary formation processes of other stars and the effect of the interstellar environment on a planetesimal surface. 1I/‘Oumuamua’s close encounter with the inner solar system in 2017 October was a unique chance to make observations matching those used to characterize the small-body populations of our own solar system. We present near-simultaneous g‧, r‧, and J photometry and colors of 1I/‘Oumuamua from the 8.1 m Frederick C. Gillett Gemini-North Telescope and gri photometry from the 4.2 m William Herschel Telescope. Our g‧r‧J observations are directly comparable to those from the high-precision Colours of the Outer Solar System Origins Survey (Col-OSSOS), which offer unique diagnostic information for distinguishing between outer solar system surfaces. The J-band data also provide the highest signal-to-noise measurements made of 1I/‘Oumuamua in the near-infrared. Substantial, correlated near-infrared and optical variability is present, with the same trend in both near-infrared and optical. Our observations are consistent with 1I/‘Oumuamua rotating with a double-peaked period of 8.10 ± 0.42 hr and being a highly elongated body with an axial ratio of at least 5.3:1, implying that it has significant internal cohesion. The color of the first interstellar planetesimal is at the neutral end of the range of solar system g ‑ r and r ‑ J solar-reflectance colors: it is like that of some dynamically excited objects in the Kuiper Belt and the less-red Jupiter Trojans.

  9. OT2_dardila_2: PACS Photometry of Transiting-Planet Systems with Warm Debris Disks

    NASA Astrophysics Data System (ADS)

    Ardila, D.

    2011-09-01

    Dust in debris disks is produced by colliding or evaporating planetesimals, the remnant of the planet formation process. Warm dust disks, known by their emission at =<24 mic, are rare (4% of FGK main-sequence stars), and specially interesting because they trace material in the region likely to host terrestrial planets, where the dust has very short dynamical lifetimes. Dust in this region comes from very recent asteroidal collisions, migrating Kuiper Belt planetesimals, or migrating dust. NASA's Kepler mission has just released a list of 1235 candidate transiting planets, and in parallel, the Wide-Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky mapping in the 3.4, 4.6, 12, and 22 micron bands. By cross-identifying the WISE sources with Kepler candidates as well as with other transiting planetary systems we have identified 21 transiting planet hosts with previously unknown warm debris disks. We propose Herschel/PACS 100 and 160 micron photometry of this sample, to determine whether the warm dust in these systems represents stochastic outbursts of local dust production, or simply the Wien side of emission from a cold outer dust belt. These data will allow us to put constraints in the dust temperature and infrared luminosity of these systems, allowing them to be understood in the context of other debris disks and disk evolution theory. This program represents a unique opportunity to exploit the synergy between three great space facilities: Herschel, Kepler, and WISE. The transiting planet sample hosts will remain among the most studied group of stars for the years to come, and our knowledge of their planetary architecture will remain incomplete if we do not understand the characteristics of their debris disks.

  10. Dynamical models to explain observations with SPHERE in planetary systems with double debris belts

    NASA Astrophysics Data System (ADS)

    Lazzoni, C.; Desidera, S.; Marzari, F.; Boccaletti, A.; Langlois, M.; Mesa, D.; Gratton, R.; Kral, Q.; Pawellek, N.; Olofsson, J.; Bonnefoy, M.; Chauvin, G.; Lagrange, A. M.; Vigan, A.; Sissa, E.; Antichi, J.; Avenhaus, H.; Baruffolo, A.; Baudino, J. L.; Bazzon, A.; Beuzit, J. L.; Biller, B.; Bonavita, M.; Brandner, W.; Bruno, P.; Buenzli, E.; Cantalloube, F.; Cascone, E.; Cheetham, A.; Claudi, R. U.; Cudel, M.; Daemgen, S.; De Caprio, V.; Delorme, P.; Fantinel, D.; Farisato, G.; Feldt, M.; Galicher, R.; Ginski, C.; Girard, J.; Giro, E.; Janson, M.; Hagelberg, J.; Henning, T.; Incorvaia, S.; Kasper, M.; Kopytova, T.; LeCoroller, H.; Lessio, L.; Ligi, R.; Maire, A. L.; Ménard, F.; Meyer, M.; Milli, J.; Mouillet, D.; Peretti, S.; Perrot, C.; Rouan, D.; Samland, M.; Salasnich, B.; Salter, G.; Schmidt, T.; Scuderi, S.; Sezestre, E.; Turatto, M.; Udry, S.; Wildi, F.; Zurlo, A.

    2018-03-01

    Context. A large number of systems harboring a debris disk show evidence for a double belt architecture. One hypothesis for explaining the gap between the debris belts in these disks is the presence of one or more planets dynamically carving it. For this reason these disks represent prime targets for searching planets using direct imaging instruments, like the Spectro-Polarimetric High-constrast Exoplanet Research (SPHERE) at the Very Large Telescope. Aim. The goal of this work is to investigate this scenario in systems harboring debris disks divided into two components, placed, respectively, in the inner and outer parts of the system. All the targets in the sample were observed with the SPHERE instrument, which performs high-contrast direct imaging, during the SHINE guaranteed time observations. Positions of the inner and outer belts were estimated by spectral energy distribution fitting of the infrared excesses or, when available, from resolved images of the disk. Very few planets have been observed so far in debris disks gaps and we intended to test if such non-detections depend on the observational limits of the present instruments. This aim is achieved by deriving theoretical predictions of masses, eccentricities, and semi-major axes of planets able to open the observed gaps and comparing such parameters with detection limits obtained with SPHERE. Methods: The relation between the gap and the planet is due to the chaotic zone neighboring the orbit of the planet. The radial extent of this zone depends on the mass ratio between the planet and the star, on the semi-major axis, and on the eccentricity of the planet, and it can be estimated analytically. We first tested the different analytical predictions using a numerical tool for the detection of chaotic behavior and then selected the best formula for estimating a planet's physical and dynamical properties required to open the observed gap. We then apply the formalism to the case of one single planet on a circular or eccentric orbit. We then consider multi-planetary systems: two and three equal-mass planets on circular orbits and two equal-mass planets on eccentric orbits in a packed configuration. As a final step, we compare each couple of values (Mp, ap), derived from the dynamical analysis of single and multiple planetary models, with the detection limits obtained with SPHERE. Results: For one single planet on a circular orbit we obtain conclusive results that allow us to exclude such a hypothesis since in most cases this configuration requires massive planets which should have been detected by our observations. Unsatisfactory is also the case of one single planet on an eccentric orbit for which we obtained high masses and/or eccentricities which are still at odds with observations. Introducing multi planetary architectures is encouraging because for the case of three packed equal-mass planets on circular orbits we obtain quite low masses for the perturbing planets which would remain undetected by our SPHERE observations. The case of two equal-mass planets on eccentric orbits is also of interest since it suggests the possible presence of planets with masses lower than the detection limits and with moderate eccentricity. Our results show that the apparent lack of planets in gaps between double belts could be explained by the presence of a system of two or more planets possibly of low mass and on eccentric orbits whose sizes are below the present detection limits. Based on observations collected at Paranal Observatory, ESO (Chile) Program ID: 095.C-0298, 096.C-0241, 097.C-0865, and 198.C-0209.

  11. EURO-CARES: European Roadmap for a Sample Return Curation Facility and Planetary Protection Implications.

    NASA Astrophysics Data System (ADS)

    Brucato, John Robert

    2016-07-01

    A mature European planetary exploration program and evolving sample return mission plans gathers the interest of a wider scientific community. The interest is generated from studying extraterrestrial samples in the laborato-ry providing new opportunities to address fundamental issues on the origin and evolution of the Solar System, on the primordial cosmochemistry, and on the nature of the building blocks of terrestrial planets and on the origin of life. Major space agencies are currently planning for missions that will collect samples from a variety of Solar Sys-tem environments, from primitive (carbonaceous) small bodies, from the Moon, Mars and its moons and, final-ly, from icy moons of the outer planets. A dedicated sample return curation facility is seen as an essential re-quirement for the receiving, assessment, characterization and secure preservation of the collected extraterrestrial samples and potentially their safe distribution to the scientific community. EURO-CARES is a European Commission study funded under the Horizon-2020 program. The strategic objec-tive of EURO-CARES is to create a roadmap for the implementation of a European Extraterrestrial Sample Cu-ration Facility. The facility has to provide safe storage and handling of extraterrestrial samples and has to enable the preliminary characterization in order to achieve the required effectiveness and collaborative outcomes for the whole international scientific community. For example, samples returned from Mars could pose a threat on the Earth's biosphere if any living extraterrestrial organism are present in the samples. Thus planetary protection is an essential aspect of all Mars sample return missions that will affect the retrival and transport from the point of return, sample handling, infrastructure methodology and management of a future curation facility. Analysis of the state of the art of Planetary Protection technology shows there are considerable possibilities to define and develop technical and scientific features in a sample return mission and the infrastructural, procedur-al and legal issues that consequently rely on a curation facility. This specialist facility will be designed with con-sideration drawn from highcontainment laboratories and cleanroom facilities to protect the Earth from contami-nation with potential Martian organisms and the samples from Earth contaminations. This kind of integrated facility does not currently exist and this emphasises the need for an innovative design approach with an integrat-ed and multidisciplinary design to enable the ultimate science goals of such exploration. The issues of how the Planetary Protection considerations impact on the system technologies and scientific meaurements, with a final aim to prioritize outstanding technology needs is presented in the framework of sam-ple return study missions and the Horizon-2020 EURO-CARES project.

  12. Orbits and Interiors of Planets

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2012-05-01

    The focus of this thesis is a collection of problems of timely interest in orbital dynamics and interior structure of planetary bodies. The first three chapters are dedicated to understanding the interior structure of close-in, gaseous extrasolar planets (hot Jupiters). In order to resolve a long-standing problem of anomalously large hot Jupiter radii, we proposed a novel magnetohydrodynamic mechanism responsible for inflation. The mechanism relies on the electro-magnetic interactions between fast atmospheric flows and the planetary magnetic field in a thermally ionized atmosphere, to induce electrical currents that flow throughout the planet. The resulting Ohmic dissipation acts to maintain the interior entropies, and by extension the radii of hot Jupiters at an enhanced level. Using self-consistent calculations of thermal evolution of hot Jupiters under Ohmic dissipation, we demonstrated a clear tendency towards inflated radii for effective temperatures that give rise to significant ionization of K and Na in the atmosphere, a trend fully consistent with the observational data. Furthermore, we found that in absence of massive cores, low-mass hot Jupiters can over-flow their Roche-lobes and evaporate on Gyr time-scales, possibly leaving behind small rocky cores. Chapters four through six focus on the improvement and implications of a model for orbital evolution of the solar system, driven by dynamical instability (termed the "Nice" model). Hydrodynamical studies of the orbital evolution of planets embedded in protoplanetary disks suggest that giant planets have a tendency to assemble into multi-resonant configurations. Following this argument, we used analytical methods as well as self-consistent numerical N-body simulations to identify fully-resonant primordial states of the outer solar system, whose dynamical evolutions give rise to orbital architectures that resemble the current solar system. We found a total of only eight such initial conditions, providing independent constraints for the solar system's birth environment. Next, we addressed a significant drawback of the original Nice model, namely its inability to create the physically unique, cold classical population of the Kuiper Belt. Specifically, we showed that a locally-formed cold belt can survive the transient instability, and its relatively calm dynamical structure can be reproduced. The last four chapters of this thesis address various aspects and consequences of dynamical relaxation of planetary orbits through dissipative effects as well as the formation of planets in binary stellar systems. Using octopole-order secular perturbation theory, we demonstrated that in multi-planet systems, tidal dissipation often drives orbits onto dynamical "fixed points," characterized by apsidal alignment and lack of periodic variations in eccentricities. We applied this formalism towards investigating the possibility that the large orbital eccentricity of the transiting Neptune-mass planet Gliese 436b is maintained in the face of tidal dissipation by a second planet in the system and computed a locus of possible orbits for the putative perturber. Following up along similar lines, we used various permutations of secular theory to show that when applied specifically to close-in low-mass planetary systems, various terms in the perturbation equations become separable, and the true masses of the planets can be solved for algebraically. In practice, this means that precise knowledge of the system's orbital state can resolve the sin( i) degeneracy inherent to non-transiting planets. Subsequently, we investigated the onset of chaotic motion in dissipative planetary systems. We worked in the context of classical secular perturbation theory, and showed that planetary systems approach chaos via the so-called period-doubling route. Furthermore, we demonstrated that chaotic strange attractors can exist in mildly damped systems, such as photo-evaporating nebulae that host multiple planets. Finally, we considered planetary formation in highly inclined binary systems, where orbital excitation due to the Kozai resonance apparently implies destructive collisions among planetesimals. Through a proper account of gravitational interactions within the protoplanetary disk, we showed that fast apsidal recession induced by disk self-gravity tends to erase the Kozai effect, and ensure that the disk's unwarped, rigid structure is maintained, resolving the difficulty in planet-formation. (Abstract shortened by UMI.)

  13. Trends in Planetary Data Analysis. Executive summary of the Planetary Data Workshop

    NASA Technical Reports Server (NTRS)

    Evans, N.

    1984-01-01

    Planetary data include non-imaging remote sensing data, which includes spectrometric, radiometric, and polarimetric remote sensing observations. Also included are in-situ, radio/radar data, and Earth based observation. Also discussed is development of a planetary data system. A catalog to identify observations will be the initial entry point for all levels of users into the data system. There are seven distinct data support services: encyclopedia, data index, data inventory, browse, search, sample, and acquire. Data systems for planetary science users must provide access to data, process, store, and display data. Two standards will be incorporated into the planetary data system: Standard communications protocol and Standard format data unit. The data system configuration must combine a distributed system with those of a centralized system. Fiscal constraints have made prioritization important. Activities include saving previous mission data, planning/cost analysis, and publishing of proceedings.

  14. A review of the scientific rationale and methods used in the search for other planetary systems

    NASA Technical Reports Server (NTRS)

    Black, D. C.

    1985-01-01

    Planetary systems appear to be one of the crucial links in the chain leading from simple molecules to living systems, particularly complex (intelligent?) living systems. Although there is currently no observational proof of the existence of any planetary system other than our own, techniques are now being developed which will permit a comprehensive search for other planetary systems. The scientific rationale for and methods used in such a search effort are reviewed here.

  15. Astrobiological and Geological Implications of Convective Transport in Icy Outer Planet Satellites

    NASA Technical Reports Server (NTRS)

    Pappalardo, Robert T.; Zhong, Shi-Jie; Barr, Amy

    2005-01-01

    The oceans of large icy outer planet satellites are prime targets in the search for extraterrestrial life in our solar system. The goal of our project has been to develop models of ice convection in order to understand convection as an astrobiologically relevant transport mechanism within icy satellites, especially Europa. These models provide valuable constraints on modes of surface deformation and thus the implications of satellite surface geology for astrobiology, and for planetary protection. Over the term of this project, significant progress has been made in three areas: (1) the initiation of convection in large icy satellites, which we find probably requires tidal heating; (2) the relationship of surface features on Europa to internal ice convection, including the likely role of low-melting-temperature impurities; and (3) the effectiveness of convection as an agent of icy satellite surface-ocean material exchange, which seems most plausible if tidal heating, compositional buoyancy, and solid-state convection work in combination. Descriptions of associated publications include: 3 published papers (including contributions to 1 review chapter), 1 manuscript in revision, 1 manuscript in preparation (currently being completed under separate funding), and 1 published popular article. A myriad of conference abstracts have also been published, and only those from the past year are listed.

  16. Pioneer 10/11 data analysis of the trapped radiation experiment

    NASA Technical Reports Server (NTRS)

    Fillius, W.

    1982-01-01

    The data handling operations and the database produced by the Trapped Radiation Experiment on the NASA Pioneer 10 and 11 spacecraft are outlined. In situ measurements of trapped radiation at both Jupiter and Saturn, the extension of cosmic ray observations to the outer heliosphere, the presence of Jovian electrons in interplanetary space, analyses of the interaction between planetary satellites and the trapped radiation that engulfs them, and further investigations of the radiation enviroments of both planets are reported.

  17. Formation of terrestrial planets in eccentric and inclined giant planet systems

    NASA Astrophysics Data System (ADS)

    Sotiriadis, Sotiris; Libert, Anne-Sophie; Raymond, Sean N.

    2018-06-01

    Aims: Evidence of mutually inclined planetary orbits has been reported for giant planets in recent years. Here we aim to study the impact of eccentric and inclined massive giant planets on the terrestrial planet formation process, and investigate whether it can possibly lead to the formation of inclined terrestrial planets. Methods: We performed 126 simulations of the late-stage planetary accretion in eccentric and inclined giant planet systems. The physical and orbital parameters of the giant planet systems result from n-body simulations of three giant planets in the late stage of the gas disc, under the combined action of Type II migration and planet-planet scattering. Fourteen two- and three-planet configurations were selected, with diversified masses, semi-major axes (resonant configurations or not), eccentricities, and inclinations (including coplanar systems) at the dispersal of the gas disc. We then followed the gravitational interactions of these systems with an inner disc of planetesimals and embryos (nine runs per system), studying in detail the final configurations of the formed terrestrial planets. Results: In addition to the well-known secular and resonant interactions between the giant planets and the outer part of the disc, giant planets on inclined orbits also strongly excite the planetesimals and embryos in the inner part of the disc through the combined action of nodal resonance and the Lidov-Kozai mechanism. This has deep consequences on the formation of terrestrial planets. While coplanar giant systems harbour several terrestrial planets, generally as massive as the Earth and mainly on low-eccentric and low-inclined orbits, terrestrial planets formed in systems with mutually inclined giant planets are usually fewer, less massive (<0.5 M⊕), and with higher eccentricities and inclinations. This work shows that terrestrial planets can form on stable inclined orbits through the classical accretion theory, even in coplanar giant planet systems emerging from the disc phase.

  18. Entry Probe Missions to the Giant Planets

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Atkinson, D. H.; Atreya, S. K.; Colaprete, A.; Cuzzi, J. N.; Spilker, L. J.; Coustenis, A.; Venkatapathy, E.; Reh, K.; Frampton, R.

    2009-12-01

    The primary motivation for in situ probe missions to the outer planets derives from the need to constrain models of solar system formation and the origin and evolution of atmospheres, to provide a basis for comparative studies of the gas and ice giants, and to provide a valuable link to extrasolar planetary systems. As time capsules of the solar system, the gas and ice giants offer a laboratory to better understand the atmospheric chemistries, dynamics, and interiors of all the planets, including Earth; and it is within the atmospheres and interiors of the giant planets that material diagnostic of the epoch of formation can be found, providing clues to the local chemical and physical conditions existing at the time and location at which each planet formed. Measurements of current conditions and processes in those atmospheres inform us about their evolution since formation and into the future, providing information about our solar system’s evolution, and potentially establishing a framework for recognizing extrasolar giant planets in different stages of their evolution. Detailed explorations and comparative studies of the gas and ice giant planets will provide a foundation for understanding the integrated dynamic, physical, and chemical origins, formation, and evolution of the solar system. To allow reliable conclusions from comparative studies of gas giants Jupiter and Saturn, an entry probe mission to Saturn is needed to complement the Galileo Probe measurements at Jupiter. These measurements provide the basis for a significantly better understanding of gas giant formation in the context of solar system formation. A probe mission to either Uranus or Neptune will be needed for comparative studies of the gas giants and the ice giants, adding knowledge of ice giant origins and thus making further inroads in our understanding of solar system formation. Recognizing Jupiter’s spatial variability and the need to understand its implications for global composition, returning to Jupiter with a follow-on probe mission, possibly with technological advances allowing a multiple-probe mission, would make use of data from the Juno mission to guide entry location and measurement suite selection. This poster summarizes a white paper prepared for the Space Studies Board’s 2013-2022 Planetary Science Decadal Survey. It discusses specific measurements to be made by planetary probes at the giant planets, rationales and priorities for those measurements, and locations within the destination atmospheres where the measurements are best made.

  19. Mariner 10 magnetic field observations of the Venus wake

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Behannon, K. W.

    1977-01-01

    Magnetic field measurements made over a 21-hour interval during the Mariner 10 encounter with Venus were used to study the down-stream region of the solar wind-Venus interaction over a distance of approximately 100 R sub v. For most of the day before closest approach the spacecraft was located in a sheath-like region which was apparently bounded by planetary bow shock on the outer side and either a planetary wake boundary or transient boundary-like feature on the inner side. The spacecraft made multiple encounters with the wake-like boundary during the 21-hour interval with an increasing frequency as it approached the planet. Each pass into the wake boundary from the sheath region was consistently characterized by a slight decrease in magnetic field magnitude, a marked increase in the frequency and amplitude of field fluctuations, and a systematic clockwise rotation of the field direction when viewed from above the plane of the planet orbit.

  20. An operational large-scale marine planetary boundary layer model

    NASA Technical Reports Server (NTRS)

    Brown, R. A.; Liu, W. T.

    1982-01-01

    A marine planetary boundary layer (PBL) model is presented and compared with data from sea-based experiments. The PBL model comprises two layers, the outer an Ekman-Taylor layer with stratification-dependent secondary flow, and the logarithmic surface layer corrected for stratification and humidity effects and variable surface roughness. Corrections are noted for air much warmer than water in stable conditions and for low wind speeds. The layers are analytically defined along with similarity relations and a resistance law for inclusion in a program. An additional interfacial layer correction is developed and shown to be significant for heat flux calculations. Experimental data from GOASEX were used to predict the windfield in the Gulf of Alaska, and JASIN data was used for windfields SE of Iceland. The JASIN-derived wind field predictions were accurate to within 1 m/sec and 10 deg in a 200 km triangle.

  1. Infrared spectroscopy of organics of planetological interest at low temperatures

    NASA Technical Reports Server (NTRS)

    Khanna, R. K.

    1994-01-01

    In the context of prebiotic chemistry in space, some of the outer planetary objects display H, C, N and O rich chemistry similar to the one in the biosphere of Earth. Of particular interest are Saturn's moon, Titan; Neptune's moon, Triton; and Pluto where extreme cold conditions prevail. Identifications of chemical species on these objects (surfaces and atmospheres) is essential to a better understanding of the radiation induced chemical reactions occuring thereon. There have been several ground based observations of these planetary objects in the infrared windows from 1 to 2.5 micrometers. Voyager also provided spectra in the thermal infrared (6 to 50 micrometers) region. Interpretation of these data require laboratory infrared spectra of relevant species under the temperature conditions appropriate to these objects. The results of some of these studies carried out in our laboratory and elsewhere and their impact on the analyses of the observed data will be summarized.

  2. Laboratory Investigations of the Physical and Optical Properties of the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2005-01-01

    Microdsub-micron size cosmic dust grains play an important role in the physical and dynamical process in the galaxy, the interstellar medium, and the interplanetary and planetary environments. The dust grains in various astrophysical environments are generally charged by a variety of mechanisms that include collisional process with electrons and ions, and photoelectric emissions with UV radiation. The photoelectric emission process is believed to be the dominant process in many astrophysical environments with nearby UV sources, such as the interstellar medium, diffuse clouds, the outer regions of the dense molecular clouds, interplanetary medium, dust in planetary environments and rings, cometary tails, etc. Also, the processes and mechanisms involved in the rotation and alignment of interstellar dust grains are of great interest in view of the polarization of observed starlight as a probe for evaluation of the galactic magnetic field.

  3. Hubble Sees an Aging Star Wave Goodbye

    NASA Image and Video Library

    2017-12-08

    This planetary nebula is called PK 329-02.2 and is located in the constellation of Norma in the southern sky. It is also sometimes referred to as Menzel 2, or Mz 2, named after the astronomer Donald Menzel who discovered the nebula in 1922. When stars that are around the mass of the sun reach their final stages of life, they shed their outer layers into space, which appear as glowing clouds of gas called planetary nebulae. The ejection of mass in stellar burnout is irregular and not symmetrical, so that planetary nebulae can have very complex shapes. In the case of Menzel 2 the nebula forms a winding blue cloud that perfectly aligns with two stars at its center. In 1999 astronomers discovered that the star at the upper right is in fact the central star of the nebula, and the star to the lower left is probably a true physical companion of the central star. For tens of thousands of years the stellar core will be cocooned in spectacular clouds of gas and then, over a period of a few thousand years, the gas will fade away into the depths of the universe. The curving structure of Menzel 2 resembles a last goodbye before the star reaches its final stage of retirement as a white dwarf. Image credit: ESA/Hubble & NASA, Acknowledgement: Serge Meunier NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. PAH Formation in O-rich Evolved Stars

    NASA Astrophysics Data System (ADS)

    Guzman-Ramirez, L.; Lagadec, E.; Jones, D.; Zijlstra, A. A.; Gesicki, K.

    2015-08-01

    Polycyclic aromatic hydrocarbons (PAHs) have been observed in O-rich planetary nebulae. This combination of oxygen-rich and carbon-rich material, known as dual-dust or mixed chemistry, is not expected to be seen around these objects. We recently proposed that PAHs could be formed from the photodissociation of CO in dense tori. Using VISIR/VLT, we spatially resolved the emission of the PAH bands and ionised emission from the [S IV] line, confirming the presence of dense central tori in all the observed O-rich objects. Furthermore, we show that for most of the objects, PAHs are located at the outer edge of these dense/compact tori, while the ionised material is mostly present in the inner parts, consistent with our hypothesis for the formation of PAHs in these systems. The presence of a dense torus has been strongly associated with the action of a central binary star and, as such, the rich chemistry seen in these regions may also be related to the formation of exoplanets in post-common-envelope binary systems.

  5. Three Small Planets Transiting the Bright Young Field Star K2-233

    NASA Astrophysics Data System (ADS)

    David, Trevor J.; Crossfield, Ian J. M.; Benneke, Björn; Petigura, Erik A.; Gonzales, Erica J.; Schlieder, Joshua E.; Yu, Liang; Isaacson, Howard T.; Howard, Andrew W.; Ciardi, David R.; Mamajek, Eric E.; Hillenbrand, Lynne A.; Cody, Ann Marie; Riedel, Adric; Schwengeler, Hans Martin; Tanner, Christopher; Ende, Martin

    2018-05-01

    We report the detection of three small transiting planets around the young K3 dwarf K2-233 (2MASS J15215519‑2013539) from observations during Campaign 15 of the K2 mission. The star is relatively nearby (d = 69 pc) and bright (V = 10.7 mag, K s = 8.4 mag), making the planetary system an attractive target for radial velocity follow-up and atmospheric characterization with the James Webb Space Telescope. The inner two planets are hot super-Earths (R b = 1.40 ± 0.06 {R}\\oplus , R c = 1.34 ± 0.08 {R}\\oplus ), while the outer planet is a warm sub-Neptune (R d = 2.6 ± 0.1 {R}\\oplus ). We estimate the stellar age to be {360}-140+490 Myr based on rotation, activity, and kinematic indicators. The K2-233 system is particularly interesting given recent evidence for inflated radii in planets around similarly aged stars, a trend potentially related to photo-evaporation, core cooling, or both mechanisms.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittenmyer, Robert A.; Horner, Jonathan; Tinney, C. G.

    We report the detection of GJ 832c, a super-Earth orbiting near the inner edge of the habitable zone of GJ 832, an M dwarf previously known to host a Jupiter analog in a nearly circular 9.4 yr orbit. The combination of precise radial-velocity measurements from three telescopes reveals the presence of a planet with a period of 35.68 ± 0.03 days and minimum mass (m sin i) of 5.4 ± 1.0 Earth masses. GJ 832c moves on a low-eccentricity orbit (e = 0.18 ± 0.13) toward the inner edge of the habitable zone. However, given the large mass of themore » planet, it seems likely that it would possess a massive atmosphere, which may well render the planet inhospitable. Indeed, it is perhaps more likely that GJ 832c is a 'super-Venus', featuring significant greenhouse forcing. With an outer giant planet and an interior, potentially rocky planet, the GJ 832 planetary system can be thought of as a miniature version of our own solar system.« less

  7. Jovian Small Orbiter for Magnetospheric and Auroral Studies

    NASA Astrophysics Data System (ADS)

    Takashima, T.; Kasaba, Y.; Misawa, H.; Kawaguchi, J.

    2005-12-01

    Solar-Sail Project to have been examined by ISAS/JAXA as an engineering mission has a possibility of a small probe into the Jovian orbit. This paper summarizes the basic design of Jovian magnetospheric and auroral studies by this small chance. The large-scale Jovian mission has been a hope since the 1970s when the examinations of planetary exploration were started in Japan. In the one of plans, the largest planet in the solar system would be solved by two main objectives: (1) Structure of a gas planet: the internal & atmospheric structures of a gas planet which could not become a star (following the objectives of Planet-C and BepiColombo). (2) Jovian-type magnetosphere: the process of a pulsar-like magnetosphere with the strongest magnetospheric activities in the solar system (following the objectives of BepiColombo and SCOPE). The small polar-orbit orbiter in Solar-Sail Project aims to establish the feasibility of such future outer planet missions by ISAS/JAXA. It aims the former target in its limited resources.

  8. Low-temperature crystallization of silicate dust in circumstellar disks.

    PubMed

    Molster, F J; Yamamura, I; Waters, L B; Tielens, A G; de Graauw, T; de Jong, T; de Koter, A; Malfait, K; van den Ancker, M E; van Winckel, H; Voors, R H; Waelkens, C

    1999-10-07

    Silicate dust in the interstellar medium is observed to be amorphous, yet silicate dust in comets and interplanetary dust particles is sometimes partially crystalline. The dust in disks that are thought to be forming planets around some young stars also appears to be partially crystalline. These observations suggest that as the dust goes from the precursor clouds to a planetary system, it must undergo some processing, but the nature and extent of this processing remain unknown. Here we report observations of highly crystalline silicate dust in the disks surrounding binary red-giant stars. The dust was created in amorphous form in the outer atmospheres of the red giants, and therefore must be processed in the disks to become crystalline. The temperatures in these disks are too low for the grains to anneal; therefore, some low-temperature process must be responsible. As the physical properties of the disks around young stars and red giants are similar, our results suggest that low-temperature crystallization of silicate grains also can occur in protoplanetary systems.

  9. Passage of a ''Nemesis''-like object through the planetary system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hills, J.G.

    1985-09-01

    The probability that passing stars could have perturbed the hypothetical stellar companion, Nemesis, into an orbit that penetrates the planetary system is about 15%. The planetary orbits crossed by Nemesis would become highly eccentric, and some would even become hyperbolic. If Nemesis ejects Jupiter from the solar system, the semimajor axis of the orbit of Nemesis would shrink down to a few hundred AU. The probability of any object in the inner edge of the Oort cloud at a semimajor axis of 2 x 10/sup 4/ AU having passed inside the orbit of Saturn is about 80%. The apparent lackmore » of damage to the planetary orbits implies a low probability of there being any objects more massive than 0.02 M/sub sun/ in the inner edge of the Oort comet cloud. However, several objects less massive than 0.01 M/sub sun/ or 10 Jupiter masses could pass through the planetary system from the Oort cloud without causing any significant damage to the planetary orbits. The lack of damage to the planetary system also requires that no black dwarf more massive than 0.05 M/sub sun/ has entered the planetary system from interstellar space.« less

  10. Rings and arcs around evolved stars - I. Fingerprints of the last gasps in the formation process of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Ramos-Larios, G.; Santamaría, E.; Guerrero, M. A.; Marquez-Lugo, R. A.; Sabin, L.; Toalá, J. A.

    2016-10-01

    Evolved stars such as asymptotic giant branch stars (AGB), post-AGB stars, proto-planetary nebulae (proto-PNe), and planetary nebulae (PNe) show rings and arcs around them and their nebular shells. We have searched for these morphological features in optical Hubble Space Telescope and mid-infrared Spitzer Space Telescope images of ˜650 proto-PNe and PNe and discovered them in 29 new sources. Adding those to previous detections, we derive a frequency of occurrence ≃8 per cent. All images have been processed to remove the underlying envelope emission and enhance outer faint structures to investigate the spacing between rings and arcs and their number. The averaged time lapse between consecutive rings and arcs is estimated to be in the range 500-1200 yr. The spacing between them is found to be basically constant for each source, suggesting that the mechanism responsible for the formation of these structures in the final stages of evolved stars is stable during time periods of the order of the total duration of the ejection. In our sample, this period of time spans ≤4500 yr.

  11. Planetary astronomy: Rings, satellites, and asteroids

    NASA Technical Reports Server (NTRS)

    Greenberg, Richard

    1988-01-01

    Studies of planetary rings focus on the dynamical processes that govern astronomically observable ring properties and structure. These investigations thus help reveal properties of the rings as well as probe the gravity fields of the planets. Satellite studies involve interpretation of orbital motion to extract information regarding the gravity fields of the outer planets and the physical properties of the satellites themselves. Asteroid lightcurve work is designed to investigate the large-scale shapes of the asteroids, as well as to reveal anomalous features such as major topography, possible satellites, or albedo variations. Work on the nature of viscous transport in planetary rings, emphasizing the role of individual particles' physical properties, has yielded a method for estimating both angular momentum and mass transport given an optical-thickness gradient. This result offers the prospect of ringlet instability, which may explain the square-profile ringlets in Saturn's C Ring. Thermal and reflected lightcurves of 532 Herculina have been interpreted to show that albedo variations cannot be the primary cause of variations. A lightcurve simulation has been developed to model complex asteroidal figures. Bamberga was observed during the December occultation as part of the joint LPL-Lowell program.

  12. Information and Communication Technologies (ICT) as keys to the enhancement of public awareness about potential earth impacts

    NASA Astrophysics Data System (ADS)

    Usikov, Denis A.

    2013-09-01

    The 2007 Planetary Defense Conference recommends "to provide or enhance Internet sites to show how threats evolve and to illustrate possible action scenarios". Thereby, establishment of informational and communicational AsteroidAware web-site with the exact, authentic data about the past and the present of Earth's impact events will assist in achievement of positive results and progress in different directions on political, international, social and scientific levels. Expanded ICT's capabilities for popularization of planetary defense can help in resolving the problem of low public interest. The project's primary intent lies in popularizing the concept of planetary defenses and attracting attention to the potential dangers that threaten the Earth from outer space. The result of the efforts falling into the boundaries of this project would be an increased amount of social participation in the process of developing solutions for and increasing awareness of potential collisions between various astral bodies and the Earth. The project is also aimed at creating a foundation for the interaction between scientists and executives from around the world to facilitate international efforts of searching for fitting measures towards lowering threat levels and developing strategies revolving around united actions against potential threats.

  13. The APIS service : a tool for accessing value-added HST planetary auroral observations over 1997-2015

    NASA Astrophysics Data System (ADS)

    Lamy, L.; Henry, F.; Prangé, R.; Le Sidaner, P.

    2015-10-01

    The Auroral Planetary Imaging and Spectroscopy (APIS) service http://obspm.fr/apis/ provides an open and interactive access to processed auroral observations of the outer planets and their satellites. Such observations are of interest for a wide community at the interface between planetology, magnetospheric and heliospheric physics. APIS consists of (i) a high level database, built from planetary auroral observations acquired by the Hubble Space Telescope (HST) since 1997 with its mostly used Far-Ultraviolet spectro- imagers, (ii) a dedicated search interface aimed at browsing efficiently this database through relevant conditional search criteria (Figure 1) and (iii) the ability to interactively work with the data online through plotting tools developed by the Virtual Observatory (VO) community, such as Aladin and Specview. This service is VO compliant and can therefore also been queried by external search tools of the VO community. The diversity of available data and the capability to sort them out by relevant physical criteria shall in particular facilitate statistical studies, on long-term scales and/or multi-instrumental multispectral combined analysis [1,2]. We will present the updated capabilities of APIS with several examples. Several tutorials are available online.

  14. Honey I Shrunk the Planetary System Artist Concept

    NASA Image and Video Library

    2012-01-11

    This artist conception compares the KOI-961 planetary system to Jupiter and the largest four of its many moons. The KOI-961 planetary system hosts the three smallest planets known to orbit a star beyond our sun.

  15. The protoplanetary system HD 100546 in Hα polarized light from SPHERE/ZIMPOL. A bar-like structure across the disk gap?

    NASA Astrophysics Data System (ADS)

    Mendigutía, I.; Oudmaijer, R. D.; Garufi, A.; Lumsden, S. L.; Huélamo, N.; Cheetham, A.; de Wit, W. J.; Norris, B.; Olguin, F. A.; Tuthill, P.

    2017-12-01

    Context. HD 100546 is one of the few known pre-main-sequence stars that may host a planetary system in its disk. Aims: This work aims to contribute to our understanding of HD 100546 by analyzing new polarimetric images with high spatial resolution. Methods: Using VLT/SPHERE/ZIMPOL with two filters in Hα and the adjacent continuum, we have probed the disk gap and the surface layers of the outer disk, covering a region <500 mas (<55 au at 109 pc) from the central star, at an angular resolution of 20 mas. Results: Our data show an asymmetry: the SE and NW regions of the outer disk are more polarized than the SW and NE regions. This asymmetry can be explained from a preferential scattering angle close to 90° and is consistent with previous polarization images. The outer disk in our observations extends from 13 ± 2 to 45 ± 9 au, with a position angle and inclination of 137 ± 5° and 44 ± 8°, respectively. The comparison with previous estimates suggests that the disk inclination could increase with the stellocentric distance, although the different measurements are still consistent within the error bars. In addition, no direct signature of the innermost candidate companion is detected from the polarimetric data, confirming recent results that were based on intensity imagery. We set an upper limit to its mass accretion rate <10-8 M⊙ yr-1 for a substellar mass of 15 MJup. Finally, we report the first detection (>3σ) of a 20 au bar-like structure that crosses the gap through the central region of HD 100546. Conclusions: In the absence of additional data, it is tentatively suggested that the bar could be dust dragged by infalling gas that radially flows from the outer disk to the inner region. This could represent an exceptional case in which a small-scale radial inflow is observed in a single system. If this scenario is confirmed, it could explain the presence of atomic gas in the inner disk that would otherwise accrete on to the central star on a timescale of a few months/years, as previously indicated from spectro-interferometric data, and could be related with additional (undetected) planets.

  16. (abstract) A Low-Cost Mission to 2060 Chiron Based on the Pluto Fast Flyby

    NASA Technical Reports Server (NTRS)

    Stern, S. A.; Salvo, C. G.; Wallace, R. A.; Weinstein, S. S.; Weissman, P. R.

    1994-01-01

    The Pluto Fast Flyby-based mission to Chiron described in this paper is a low cost, scientifically rewarding, focused mission in the outer solar system. The proposed mission will make a flyby of 2060 Chiron, an active 'comet' with over 10(sup 4) times the mass of Halley, and an eccentric, Saturn-crossing orbit which ranges from 8.5 to 19 AU. This mission concept achieves the flyby 4.2 years after launch on a direct trajectory from Earth, is independent of Jupiter launch windows, and fits within Discovery cost guidelines. This mission offers the scientific opportunity to examine a class of object left unsampled by the trail-blazing Mariners, Pioneers, Voyagers, and missions to Halley. Spacecraft reconnaissance of Chiron addresses unique objectives relating to cometary science, other small bodies, the structure of quasi-bound atmospheres on modest-sized bodies, and the origin of primitive bodies and the giant planets. Owing to Chiron's large size (180

  17. Dying star creates sculpture of gas and dust

    NASA Astrophysics Data System (ADS)

    2004-09-01

    Sculpture of gas and dust hi-res Size hi-res: 125 Kb Credits: ESA, NASA, HEIC and The Hubble Heritage Team (STScI/AURA) Dying star creates sculpture of gas and dust The so-called Cat's Eye Nebula, formally catalogued NGC 6543 and seen here in this detailed view from the NASA/ESA Hubble Space Telescope, is one of the most complex planetary nebulae ever seen in space. A planetary nebula forms when Sun-like stars gently eject their outer gaseous layers to form bright nebulae with amazing twisted shapes. Hubble first revealed NGC 6543's surprisingly intricate structures including concentric gas shells, jets of high-speed gas and unusual shock-induced knots of gas in 1994. This new image, taken with Hubble's Advanced Camera for Surveys (ACS), reveals the full beauty of a bull's-eye pattern of eleven or more concentric rings, or shells, around the Cat’s Eye. Each ‘ring’ is actually the edge of a spherical bubble seen projected onto the sky - which is why it appears bright along its outer edge. High resolution version (JPG format) 125 Kb High resolution version (TIFF format) 2569 Kb Acknowledgment: R. Corradi (Isaac Newton Group of Telescopes, Spain) and Z. Tsvetanov (NASA). Sculpture of gas and dust hi-res Size hi-res: 287 Kb Credits: Nordic Optical Telescope and Romano Corradi (Isaac Newton Group of Telescopes, Spain) Dying star creates sculpture of gas and dust An enormous but extremely faint halo of gaseous material surrounds the Cat’s Eye Nebula and is over three light-years across. Some planetary nebulae been found to have halos like this one, likely formed of material ejected during earlier active episodes in the star's evolution - most likely some 50 000 to 90 000 years ago. This image was taken by Romano Corradi with the Nordic Optical Telescope on La Palma in the Canary Islands. The image is constructed from two narrow-band exposures showing oxygen atoms (1800 seconds, in blue) and nitrogen atoms (1800 seconds, in red). High resolution version (JPG format) 287 Kb High resolution version (TIFF format) 4674 Kb Although the rings may be the key to explaining the final ‘gasp’ of the dying central star, the mystery behind the Cat’s Eye Nebula’s nested ‘Russian doll’ structure remains largely unsolved. The so-called Cat's Eye Nebula, formally catalogued NGC 6543 and seen here in this detailed view from the NASA/ESA Hubble Space Telescope, is one of the most complex planetary nebulae ever seen in space. A planetary nebula forms when Sun-like stars gently eject their outer gaseous layers to form bright nebulae with amazing twisted shapes. Hubble first revealed NGC 6543's surprisingly intricate structures including concentric gas shells, jets of high-speed gas and unusual shock-induced knots of gas in 1994. This new image, taken with Hubble's Advanced Camera for Surveys (ACS), reveals the full beauty of a bull's-eye pattern of eleven or more concentric rings, or shells, around the Cat’s Eye. Each ‘ring’ is actually the edge of a spherical bubble seen projected onto the sky - which is why it appears bright along its outer edge. Observations suggest that the star ejected its mass in a series of pulses at 1500-year intervals. These convulsions created dust shells that each contains as much mass as all of the planets in our Solar System combined (but still only one-percent of the Sun's mass). These concentric shells make a layered onion-skin structure around the dying star. The view from Hubble is like seeing an onion cut in half, where each layer of skin is discernible. Until recently, it was thought that shells around planetary nebulae were a rare phenomenon. However, Romano Corradi (Isaac Newton Group of Telescopes, Spain) and collaborators, in a paper published in the European journal Astronomy & Astrophysics in April 2004, have instead shown that the formation of these rings is likely to be the rule rather than the exception. The bull's-eye patterns seen around planetary nebulae come as a surprise to astronomers because they had no expectation of episodes of mass loss at the end of stellar lives that repeat every 1500 years or so. Several explanations have been proposed, including cycles of magnetic activity somewhat similar to our own Sun's sunspot cycle, the action of companion stars orbiting around the dying star, and stellar pulsations. Another school of thought is that the material is ejected smoothly from the star, and the rings are created later on due to formation of waves in the outflowing material. It will take further observations and more theoretical studies to decide between these and other possible explanations. Approximately 1000 years ago the pattern of mass loss suddenly changed, and the Cat's Eye Nebula itself started forming inside the dusty shells. It has been expanding ever since, as can be seen by comparing Hubble images taken in 1994, 1997, 2000 and 2002. But what has caused this dramatic change? Many aspects of the process that leads a star to lose its gaseous envelope are poorly known, and the study of planetary nebulae is one of the few ways to recover information about the last few thousand years in the life of a Sun-like star. Notes for editors: The group of astronomers involved in the April 2004, Astronomy & Astrophysics paper are: R.L.M. Corradi (Isaac Newton Group of Telescopes, Spain), P. Sanchez-Blazquez (Universidad Complutense, Spain), G. Mellema (Foundation for Research in Astronomy, The Netherlands), C. Giammanco (Instituto de Astrofisica de Canarias, Spain) and H.E. Schwarz (Cerro Tololo Inter-American Observatory, Chile). The Hubble Space Telescope is a project of international co-operation between ESA and NASA.

  18. Creep of water ices at planetary conditions: A compilation

    USGS Publications Warehouse

    Durham, W.B.; Kirby, S.H.; Stern, L.A.

    1997-01-01

    Many constitutive laws for the flow of ice have been published since the advent of the Voyager explorations of the outer solar system. Conflicting data have occasionally come from different laboratories, and refinement of experimental techniques has led to the publication of laws that supersede earlier ones. In addition, there are unpublished data from ongoing research that also amend the constitutive laws. Here we compile the most current laboratory-derived flow laws for water ice phases I, II, III, V, and VI, and ice I mixtures with hard particulates. The rheology of interest is mainly that of steady state, and the conditions reviewed are the pressures and temperatures applicable to the surfaces and interiors of icy moons of the outer solar system. Advances in grain-size-dependent creep in ices I and II as well as in phase transformations and metastability under differential stress are also included in this compilation. At laboratory strain rates the several ice polymorphs are rheologically distinct in terms of their stress, temperature, and pressure dependencies but, with the exception of ice III, have fairly similar strengths. Hard particulates strengthen ice I significantly only at high particulate volume fractions. Ice III has the potential for significantly affecting mantle dynamics because it is much weaker than the other polymorphs and its region of stability, which may extend metastably well into what is nominally the ice II field, is located near likely geotherms of large icy moons. Copyright 1997 by the American Geophysical Union.

  19. Planetesimals Born Big by Clustering Instability?

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Hartlep, Thomas; Simon, Justin I.; Estrada, Paul R.

    2017-01-01

    Roughly 100km diameter primitive bodies (today's asteroids and TNOs; [1]) are thought to be the end product of so-called "primary accretion". They dominated the initial mass function of planetesimals, and precipitated the onset of a subsequent stage, characterized by runaway gravitational effects, which proceeded onwards to planetary mass objects, some of which accreted massive gas envelopes. Asteroids are the parents of primitive meteorites; meteorite data suggest that asteroids initially formed directly from freelyfloating nebula particles in the mm-size range. Unfortunately, the process by which these primary 100km diameter planetesimals formed remains problematic. We review the most diagnostic primitive parent body observations, highlight critical aspects of the nebula context, and describe the issues facing various primary accretion models. We suggest a path forward that combines current scenarios of "turbulent concentration" (TC) and "streaming instabilities" (SI) into a triggered formation process we call clustering instability (CI). Under expected conditions of nebula turbulence, the success of these processes at forming terrestrial region (mostly silicate) planetesimals requires growth by sticking into aggregates in the several cm size range, at least, which is orders of magnitude more massive than allowed by current growth-by-sticking models using current experimental sticking parameters [2-4]. The situation is not as dire in the ice-rich outer solar system; however, growth outside of the snowline has important effects on growth inside of it [4] and at least one aspect of outer solar system planetesimals (high binary fraction) supports some kind of clustering instability.

  20. Planetesimals Born Big by Clustering Instability?

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Hartlep, Thomas; Simon, Justin I.; Estrada, Paul R.

    2017-01-01

    Roughly 100km diameter primitive bodies (today's asteroids and TNOs; [1]) are thought to be the end product of so-called "primary accretion". They dominated the initial mass function of planetesimals, and precipitated the onset of a subsequent stage, characterized by runaway gravitational effects, which proceeded onwards to planetary mass objects, some of which accreted massive gas envelopes. Asteroids are the parents of primitive meteorites; meteorite data suggest that asteroids initially formed directly from freelyfloating nebula particles in the mm-size range. Unfortunately, the process by which these primary 100km diameter planetesimals formed remains problematic. We review the most diagnostic primitive parent body observations, highlight critical aspects of the nebula context, and describe the issues facing various primary accretion models. We suggest a path forward that combines current scenarios of "turbulent concentration" (TC) and "streaming instabilities" (SI) into a triggered formation process we call clustering instability (CI). Under expected conditions of nebula turbulence, the success of these processes at forming terrestrial region (mostly silicate) planetesimals requires growth by sticking into aggregates in the several cm size range, at least, which is orders of magnitude more massive than allowed by current growth-by-sticking models using current experimental sticking parameters [2-4]. The situation is not as dire in the ice-rich outer solar system; however, growth outside of the snowline has important effects on growth inside of it [4] and at least one aspect of outer solar system planetesimals (high binary fraction) supports some kind of clustering instability

  1. Nature, theory and modelling of geophysical convective planetary boundary layers

    NASA Astrophysics Data System (ADS)

    Zilitinkevich, Sergej

    2015-04-01

    Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in horizontal branches of organised structures. This mechanism (Zilitinkevich et al., 2006), was overlooked in conventional local theories, such as the Monin-Obukhov similarity theory, and convective heat/mass transfer law: Nu~Ra1/3, where Nu and Ra are the Nusselt number and Raleigh numbers. References Hellsten A., Zilitinkevich S., 2013: Role of convective structures and background turbulence in the dry convective boundary layer. Boundary-Layer Meteorol. 149, 323-353. Zilitinkevich, S.S., 1973: Shear convection. Boundary-Layer Meteorol. 3, 416-423. Zilitinkevich, S.S., 1991: Turbulent Penetrative Convection, Avebury Technical, Aldershot, 180 pp. Zilitinkevich S.S., 2012: The Height of the Atmospheric Planetary Boundary layer: State of the Art and New Development - Chapter 13 in 'National Security and Human Health Implications of Climate Change', edited by H.J.S. Fernando, Z. Klaić, J.L. McKulley, NATO Science for Peace and Security Series - C: Environmental Security (ISBN 978-94-007-2429-7), Springer, 147-161. Zilitinkevich S.S., 2013: Atmospheric Turbulence and Planetary Boundary Layers. Fizmatlit, Moscow, 248 pp. Zilitinkevich, S.S., Hunt, J.C.R., Grachev, A.A., Esau, I.N., Lalas, D.P., Akylas, E., Tombrou, M., Fairall, C.W., Fernando, H.J.S., Baklanov, and A., Joffre, S.M., 2006: The influence of large convective eddies on the surface layer turbulence. Quart. J. Roy. Met. Soc. 132, 1423-1456. Zilitinkevich S.S., Tyuryakov S.A., Troitskaya Yu. I., Mareev E., 2012: Theoretical models of the height of the atmospheric planetary boundary layer and turbulent entrainment at its upper boundary. Izvestija RAN, FAO, 48, No.1, 150-160 Zilitinkevich, S.S., Elperin, T., Kleeorin, N., Rogachevskii, I., Esau, I.N., 2013: A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably stratified geophysical flows. Boundary-Layer Meteorol. 146, 341-373.

  2. Colours of the Outer Solar System Origins Survey (Col-OSSOS): New Insights into Kuiper belt Surfaces

    NASA Astrophysics Data System (ADS)

    Schwamb, M. E.; Fraser, W. C.; Bannister, M. T.; Pike, R. E.; Marsset, M.; Kavelaars, J. J.; Benecchi, S.; Delsanti, A.; Lehner, M. J.; Thirouin, A.; Guilbert-Lepoutre, A.; Peixinho, N.; Vernazza, P.

    2016-12-01

    The icy planetesimals of the Kuiper belt inform our knowledge about the growth of planetary embryos and our Solar System's dynamical history. The majority of the known Pluto-sized Kuiper belt objects (KBOs) are bright enough for their surfaces to be studied through optical and infrared spectroscopy. But for the typical smaller r mag > 22 mag KBOs, we must rely on what colors reveal by proxy, and this picture of Kuiper belt surfaces remains incomplete. Previous studies in this size range examined the hodgepodge set of KBOs discovered by surveys with varying and sometimes unknown detection biases that make it challenging to explore the true frequency of surface colors within the Kuiper belt. The Colours of the Outer Solar System Origins Survey (Col-OSSOS) aims to explore and explain the compositional variety within the Kuiper belt through near simultaneous u, g,r and J colors with the Gemini North Telescope and the Canada-France-Hawaii Telescope. The survey targets KBOs brighter than 23.6 r' mag ( 50-300 km) found by the Outer Solar System Origins Survey (OSSOS). With Col-OSSOS, we have a set of colors measured for a KBO sample discovered in a brightness limited survey, with a well-measured detection efficiency. Col-OSSOS will provide a compositional-dynamical map of the Kuiper belt in which to study the end of stages of Neptune migration and the conditions of the early planetesimal disk where these small icy bodies formed. We will give an overview of Col-OSSOS and an update on the program's current status. We will present the photometry from the first 30 KBOs studied from the first complete OSSOS block and examine the implications for Kuiper belt surfaces. We derive the observed and debiased ratio of neutral to red KBOs, measure the masses of the three color populations within the Kuiper belt (the red and neutral dynamically excited population and the red cold classical belt), and explore the radial color distribution in the primordial planetesimal disk before Neptune migration.

  3. Space Weathering Impact on Solar System Surfaces and Planetary Mission Science

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2011-01-01

    We often look "through a glass, darkly" at solar system bodies with tenuous atmospheres and direct surface exposure to the local space environment. Space weathering exposure acts via universal space-surface interaction processes to produce a thin patina of outer material covering, potentially obscuring endogenic surface materials of greatest interest for understanding origins and interior evolution. Examples of obscuring exogenic layers are radiation crusts on cometary nuclei and iogenic components of sulfate hydrate deposits on the trailing hemisphere of Europa. Weathering processes include plasma ion implantation into surfaces, sputtering by charged particles and solar ultraviolet photons, photolytic chemistry driven by UV irradiation, and radiolytic chemistry evolving from products of charged particle irradiation. Regolith structure from impacts, and underlying deeper structures from internal evolution, affects efficacy of certain surface interactions, e.g. sputtering as affected by porosity and surface irradiation dosage as partly attenuated by local topographic shielding. These processes should be regarded for mission science planning as potentially enabling, e.g. since direct surface sputtering, and resultant surface-bound exospheres, can provide in-situ samples of surface composition to ion and neutral mass spectrometers on orbital spacecraft. Sample return for highest sensitivity compOSitional and structural analyses at Earth will usually be precluded by limited range of surface sampling, long times for return, and high cost. Targeted advancements in instrument technology would be more cost efficient for local remote and in-situ sample analysis. More realistic laboratory simulations, e.g. for bulk samples, are needed to interpret mission science observations of weathered surfaces. Space environment effects on mission spacecraft and science operations must also be specified and mitigated from the hourly to monthly changes in space weather and from longer term (e.g., solar cycle) evolution of space climate. Capable instrumentation on planetary missions can and should be planned to contribute to knowledge of interplanetary space environments. Evolving data system technologies such as virtual observatories should be explored for more interdisciplinary application to the science of planetary surface, atmospheric, magnetospheric, and interplanetary interactions.

  4. Prioritized System Science Targets for Heliophysics

    NASA Astrophysics Data System (ADS)

    Spann, J. F.; Christensen, A. B.; St Cyr, O. C.; Posner, A.; Giles, B. L.

    2009-12-01

    Heliophysics is a discipline that investigates the science at work from the interface of Earth and space, to the core of the Sun, and to the outer edge of our solar system. This solar-interplanetary-planetary system is vast and inherently coupled on many spatial, temporal and energy scales. The Sun’s explosive energy output creates complicated field and plasma structures that when coupled with our terrestrial magnetized space, generates an extraordinary complex environment that has practical implications for humanity as we are becoming increasingly dependent on space-based assets. This immense volume of our cosmic neighborhood is the domain of heliophysics. Understanding this domain and the dominant mechanisms that control the transfer of mass and energy requires a system approach that addresses all aspects and regions of the system. The 2009 NASA Heliophysics Roadmap presents a science-focused strategic approach to advance the goal of heliophysics: why does the Sun vary; how do the Earth and heliosphere respond; and what are the impacts on humanity? This talk will present the top 6 prioritized science targets to understand the coupled heliophysics system as presented in the 2009 NASA Heliophysics Roadmap. An exposition of each science target and how it addresses outstanding questions in heliophysics will be discussed.

  5. Future System Science Mission Targets for Heliophysics

    NASA Technical Reports Server (NTRS)

    Spann, James; Christensen, Andrew B.; SaintCyr, O. C.; Giles, Barbara I.; Posner, Arik

    2009-01-01

    Heliophysics is a discipline that investigates the science at work from the interface of Earth and space, to the core of the Sun, and to the outer edge of our solar system. This solar-interplanetary-planetary system is vast and inherently coupled on many spatial, temporal and energy scales. The Sun's explosive energy output creates complicated field and plasma structures that when coupled without terrestrial magnetized space, generates an extraordinary complex environment that has practical implications for humanity as we are becoming increasingly dependent on space-based assets. The immense volume of our cosmic neighborhood is the domain of heliophysics. Understanding this domain and the dominant mechanisms that control the transfer of mass and energy requires a system approach that addresses all aspects and regions of the system. The 2009 NASA Heliophysics Roadmap presents a science-focused strategic approach to advance the goal of heliophysics: why does the Sun vary; how do the Earth and heliosphere respond; and what are the impacts on humanity? This talk will present the top 6 prioritized science targets to understand the coupled heliophysics system as presented in the 2009 NASA Heliophysics Roadmap. An exposition of each science target and how it addresses outstanding questions in heliophysics will be discussed.

  6. Prioritized System Science Targets for Heliophysics

    NASA Technical Reports Server (NTRS)

    Spann, James Frederick; Christensen, Andrew B.; SaintCyr, Orville Chris; Posner, Arik; Giles, Barbara L.

    2009-01-01

    Heliophysics is a discipline that investigates the science at work from the interface of Earth and space, to the core of the Sun, and to the outer edge of our solar system. This solar-interplanetary-planetary system is vast and inherently coupled on many spatial, temporal and energy scales. The Sun's explosive energy output creates complicated field and plasma structures that when coupled with our terrestrial magnetized space, generates an extraordinary complex environment that has practical implications for humanity as we are becoming increasingly dependent on space-based assets. This immense volume of our cosmic neighborhood is the domain of heliophysics. Understanding this domain and the dominant mechanisms that control the transfer of mass and energy requires a system approach that addresses all aspects and regions of the system. The 2009 NASA Heliophysics Roadmap presents a science-focused strategic approach to advance the goal of heliophysics: why does the Sun vary; how do the Earth and heliosphere respond; and what are the impacts on humanity? This talk will present the top 6 prioritized science targets to understand the coupled heliophysics system as presented in the 2009 NASA Heliophysics Roadmap. An exposition of each science target and how it addresses outstanding questions in heliophysics will be discussed.

  7. Robo-AO Kepler Survey. IV. The Effect of Nearby Stars on 3857 Planetary Candidate Systems

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Riddle, Reed; Duev, Dmitry A.; Howard, Ward; Jensen-Clem, Rebecca; Kulkarni, S. R.; Morton, Tim; Salama, Maïssa

    2018-04-01

    We present the overall statistical results from the Robo-AO Kepler planetary candidate survey, comprising of 3857 high-angular resolution observations of planetary candidate systems with Robo-AO, an automated laser adaptive optics system. These observations reveal previously unknown nearby stars blended with the planetary candidate host stars that alter the derived planetary radii or may be the source of an astrophysical false positive transit signal. In the first three papers in the survey, we detected 440 nearby stars around 3313 planetary candidate host stars. In this paper, we present observations of 532 planetary candidate host stars, detecting 94 companions around 88 stars; 84 of these companions have not previously been observed in high resolution. We also report 50 more-widely separated companions near 715 targets previously observed by Robo-AO. We derive corrected planetary radius estimates for the 814 planetary candidates in systems with a detected nearby star. If planetary candidates are equally likely to orbit the primary or secondary star, the radius estimates for planetary candidates in systems with likely bound nearby stars increase by a factor of 1.54, on average. We find that 35 previously believed rocky planet candidates are likely not rocky due to the presence of nearby stars. From the combined data sets from the complete Robo-AO KOI survey, we find that 14.5 ± 0.5% of planetary candidate hosts have a nearby star with 4″, while 1.2% have two nearby stars, and 0.08% have three. We find that 16% of Earth-sized, 13% of Neptune-sized, 14% of Saturn-sized, and 19% of Jupiter-sized planet candidates have detected nearby stars.

  8. A Resolved Debris Disk Around the Candidate Planet-hosting Star HD 95086

    NASA Technical Reports Server (NTRS)

    Moor, A.; Abraham, P.; Kospal, A.; Szabo, Gy. M.; Apai, D.; Balog, Z.; Csengeri, T.; Grady, C.; Henning, Th.; Juhasz, J.; hide

    2013-01-01

    Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD 95086. The strong infrared excess of the system indicates that, similar to HR8799, Beta Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD 95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared, and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of approx. 6.0 × 5.4 (540 × 490 AU) and disk inclination of approx 25 deg. Assuming the same inclination for the planet candidate's orbit, its reprojected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD 95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modeling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks coexist.

  9. Scattering of exocomets by a planet chain: exozodi levels and the delivery of cometary material to inner planets

    NASA Astrophysics Data System (ADS)

    Marino, Sebastian; Bonsor, Amy; Wyatt, Mark C.; Kral, Quentin

    2018-06-01

    Exocomets scattered by planets have been invoked to explain observations in multiple contexts, including the frequently found near- and mid-infrared excess around nearby stars arising from exozodiacal dust. Here we investigate how the process of inward scattering of comets originating in an outer belt, is affected by the architecture of a planetary system, to determine whether this could lead to observable exozodi levels or deliver volatiles to inner planets. Using N-body simulations, we model systems with different planet mass and orbital spacing distributions in the 1-50 AU region. We find that tightly packed (Δap < 20RH, m) low mass planets are the most efficient at delivering material to exozodi regions (5-7% of scattered exocomets end up within 0.5 AU at some point), although the exozodi levels do not vary by more than a factor of ˜7 for the architectures studied here. We suggest that emission from scattered dusty material in between the planets could provide a potential test for this delivery mechanism. We show that the surface density of scattered material can vary by two orders of magnitude (being highest for systems of low mass planets with medium spacing), whilst the exozodi delivery rate stays roughly constant, and that future instruments such as JWST could detect it. In fact for η Corvi, the current Herschel upper limit rules our the scattering scenario by a chain of ≲30 M⊕ planets. Finally, we show that exocomets could be efficient at delivering cometary material to inner planets (0.1-1% of scattered comets are accreted per inner planet). Overall, the best systems at delivering comets to inner planets are the ones that have low mass outer planets and medium spacing (˜20RH, m).

  10. A 'FIREWORK' OF H{sub 2} KNOTS IN THE PLANETARY NEBULA NGC 7293 (THE HELIX NEBULA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuura, M.; Speck, A. K.; McHunu, B. M.

    2009-08-01

    We present a deep and wide field-of-view (4' x 7') image of the planetary nebula (PN) NGC 7293 (the Helix Nebula) in the 2.12 {mu}m H{sub 2} v = 1 {yields} 0 S(1) line. The excellent seeing (0.''4) at the Subaru Telescope, allows the details of cometary knots to be examined. The knots are found at distances of 2.'2-6.'4 from the central star (CS). At the inner edge and in the inner ring (up to 4.'5 from the CS), the knot often show a 'tadpole' shape, an elliptical head with a bright crescent inside and a long tail opposite tomore » the CS. In detail, there are variations in the tadpole shapes, such as narrowing tails, widening tails, meandering tails, or multipeaks within a tail. In the outer ring (4.'5-6.'4 from the CS), the shapes are more fractured, and the tails do not collimate into a single direction. The transition in knot morphology from the inner edge to the outer ring is clearly seen. The number density of knots governs the H{sub 2} surface brightness in the inner ring: H{sub 2} exists only within the knots. Possible mechanisms which contribute to the shaping of the knots are discussed, including photoionization and streaming motions. A plausible interpretation of our images is that inner knots are being overrun by a faster wind, but that this has not (yet) reached the outer knots. Based on H{sub 2} formation and destruction rates, H{sub 2} gas can survive in knots from formation during the late asymptotic giant branch phase throughout the PN phase. These observations provide new constraints on the formation and evolution of knots, and on the physics of molecular gas embedded within ionized gas.« less

  11. A "Firework" of H2 Knots in the Planetary Nebula NGC 7293 (The Helix Nebula)

    NASA Astrophysics Data System (ADS)

    Matsuura, M.; Speck, A. K.; McHunu, B. M.; Tanaka, I.; Wright, N. J.; Smith, M. D.; Zijlstra, A. A.; Viti, S.; Wesson, R.

    2009-08-01

    We present a deep and wide field-of-view (4' × 7') image of the planetary nebula (PN) NGC 7293 (the Helix Nebula) in the 2.12 μm H2 v = 1 → 0 S(1) line. The excellent seeing (0farcs4) at the Subaru Telescope, allows the details of cometary knots to be examined. The knots are found at distances of 2farcm2-6farcm4 from the central star (CS). At the inner edge and in the inner ring (up to 4farcm5 from the CS), the knot often show a "tadpole" shape, an elliptical head with a bright crescent inside and a long tail opposite to the CS. In detail, there are variations in the tadpole shapes, such as narrowing tails, widening tails, meandering tails, or multipeaks within a tail. In the outer ring (4farcm5-6farcm4 from the CS), the shapes are more fractured, and the tails do not collimate into a single direction. The transition in knot morphology from the inner edge to the outer ring is clearly seen. The number density of knots governs the H2 surface brightness in the inner ring: H2 exists only within the knots. Possible mechanisms which contribute to the shaping of the knots are discussed, including photoionization and streaming motions. A plausible interpretation of our images is that inner knots are being overrun by a faster wind, but that this has not (yet) reached the outer knots. Based on H2 formation and destruction rates, H2 gas can survive in knots from formation during the late asymptotic giant branch phase throughout the PN phase. These observations provide new constraints on the formation and evolution of knots, and on the physics of molecular gas embedded within ionized gas. Based on data taken with the Subaru Telescope, National Astronomical Observatory of Japan (proposal ID S07B-054).

  12. Space and Planetary Resources

    NASA Astrophysics Data System (ADS)

    Abbud-Madrid, Angel

    2018-02-01

    The space and multitude of celestial bodies surrounding Earth hold a vast wealth of resources for a variety of space and terrestrial applications. The unlimited solar energy, vacuum, and low gravity in space, as well as the minerals, metals, water, atmospheric gases, and volatile elements on the Moon, asteroids, comets, and the inner and outer planets of the Solar System and their moons, constitute potential valuable resources for robotic and human space missions and for future use in our own planet. In the short term, these resources could be transformed into useful materials at the site where they are found to extend mission duration and to reduce the costly dependence from materials sent from Earth. Making propellants and human consumables from local resources can significantly reduce mission mass and cost, enabling longer stays and fueling transportation systems for use within and beyond the planetary surface. Use of finely grained soils and rocks can serve for habitat construction, radiation protection, solar cell fabrication, and food growth. The same material could also be used to develop repair and replacement capabilities using advanced manufacturing technologies. Following similar mining practices utilized for centuries on Earth, identifying, extracting, and utilizing extraterrestrial resources will enable further space exploration, while increasing commercial activities beyond our planet. In the long term, planetary resources and solar energy could also be brought to Earth if obtaining these resources locally prove to be no longer economically or environmentally acceptable. Throughout human history, resources have been the driving force for the exploration and settling of our planet. Similarly, extraterrestrial resources will make space the next destination in the quest for further exploration and expansion of our species. However, just like on Earth, not all challenges are scientific and technological. As private companies start working toward exploiting the resources from asteroids, the Moon, and Mars, an international legal framework is also needed to regulate commercial exploration and the use of space and planetary resources for the benefit of all humanity. These resources hold the secret to unleash an unprecedented wave of exploration and of economic prosperity by utilizing the full potential and value of space. It is up to us humans here on planet Earth to find the best way to use these extraterrestrial resources effectively and responsibly to make this promise a reality.

  13. Planetary data analysis and display system: A version of PC-McIDAS

    NASA Technical Reports Server (NTRS)

    Limaye, Sanjay S.; Sromovsky, L. A.; Saunders, R. S.; Martin, Michael

    1993-01-01

    We propose to develop a system for access and analysis of planetary data from past and future space missions based on an existing system, the PC-McIDAS workstation. This system is now in use in the atmospheric science community for access to meteorological satellite and conventional weather data. The proposed system would be usable not only by planetary atmospheric researchers but also by the planetary geologic community. By providing the critical tools of an efficient system architecture, newer applications and customized user interfaces can be added by the end user within such a system.

  14. Composition and Cosmogonic Parameters of the Chemically Distinct Comet C/2007 N3 (Lulin)

    NASA Astrophysics Data System (ADS)

    Gibb, Erika L.; Villanueva, G. L.; Bonev, B. P.; DiSanti, M. A.; Mumma, M. J.; Radeva, Y. L.

    2012-10-01

    Comets are remnants from the early solar system that retain the volatiles (ices) from the cold outer proto-planetary disk (beyond 5 AU) where they formed. Comet nuclei were among the first objects to accrete in the early solar nebula and many of them were subsequently incorporated into the growing giant planets. Gravitational scattering redistributed the remaining comet population by either sending them to the inner solar system, where they may have enriched the early biosphere, or scattering them into their present-day dynamical reservoirs. Since this early time, comets have been orbiting the Sun relatively untouched by processing mechanisms, until their orbits are perturbed towards the inner solar system. As such, they are believed to be among the most primitive objects in the solar system and may be representative of the material from which the solar system formed. Of particular interest is their icy volatile composition since other solar system objects have either lost or have had significant modifications to their volatile compositions since their formation. Many of the volatiles observed in comets are also important prebiotic species. For example, H2CO is a chemical precursor to sugars and HCN and NH3 are precursors of amino acids. Studying comets is therefore a vital link to understanding the origin and evolution of our planetary system and life on Earth. We obtained high-resolution, near-infrared spectroscopic observations of Comet C/2007 N3 (Lulin) on 30 January - 1 February 2009 with NIRSPEC on Keck II. Lulin is an Oort Cloud comet with a very large aphelion distance, suggesting that it may have been dynamically new. We report production rates of H2O, C2H6, HCN, C2H2, CH4, NH3, H2CO, CH3OH, and CO. We also report two cosmogonic parameters: D/H ratio in H2O and CH4, and isomeric spin temperatures. The implications for comet formations scenarios are discussed.

  15. The Planetary Data System Web Catalog Interface--Another Use of the Planetary Data System Data Model

    NASA Technical Reports Server (NTRS)

    Hughes, S.; Bernath, A.

    1995-01-01

    The Planetary Data System Data Model consists of a set of standardized descriptions of entities within the Planetary Science Community. These can be real entities in the space exploration domain such as spacecraft, instruments, and targets; conceptual entities such as data sets, archive volumes, and data dictionaries; or the archive data products such as individual images, spectrum, series, and qubes.

  16. The NASA Planetary Data System's Cartography and Imaging Sciences Node and the Planetary Spatial Data Infrastructure (PSDI) Initiative

    NASA Astrophysics Data System (ADS)

    Gaddis, L. R.; Laura, J.; Hare, T.; Hagerty, J.

    2017-06-01

    Here we address the role of the PSDI initiative in the context of work to archive and deliver planetary data by NASA’s Planetary Data System, and in particular by the PDS Cartography and Imaging Sciences Discipline Node (aka “Imaging” or IMG).

  17. On the Diversity of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    Models of planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  18. The Birth of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    1997-01-01

    Models of planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large- enough to gravitationally trap substantial quantities of gas. Another potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  19. EXPANSION OF HYDROGEN-POOR KNOTS IN THE BORN-AGAIN PLANETARY NEBULAE A30 AND A78

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, X.; Guerrero, M. A.; Marquez-Lugo, R. A.

    2014-12-20

    We analyze the expansion of hydrogen-poor knots and filaments in the born-again planetary nebulae A30 and A78 based on Hubble Space Telescope (HST) images obtained almost 20 yr apart. The proper motion of these features generally increases with distance to the central star, but the fractional expansion decreases, i.e., the expansion is not homologous. As a result, there is not a unique expansion age, which is estimated to be 610-950 yr for A30 and 600-1140 yr for A78. The knots and filaments have experienced complex dynamical processes: the current fast stellar wind is mass loaded by the material ablated from the inner knots;more » the ablated material is then swept up until it shocks the inner edges of the outer, hydrogen-rich nebula. The angular expansion of the outer filaments shows a clear dependence on position angle, indicating that the interaction of the stellar wind with the innermost knots channels the wind along preferred directions. The apparent angular expansion of the innermost knots seems to be dominated by the rocket effect of evaporating gas and by the propagation of the ionization front inside them. Radiation-hydrodynamical simulations show that a single ejection of material followed by a rapid onset of the stellar wind and ionizing flux can reproduce the variety of clumps and filaments at different distances from the central star found in A30 and A78.« less

  20. Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass

    NASA Technical Reports Server (NTRS)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kotte, James Schottel; Kasting, James F.; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-01-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1M and 5M. Assuming H2O-(inner HZ) and CO2-(outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (approx.10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing long-wave radiation. Hence the inner edge moves inward (approx.7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

Top