Mars’ Growth Stunted by an Early Giant Planet Instability
NASA Astrophysics Data System (ADS)
Clement, Matthew; Kaib, Nathan A.; Raymond, Sean N.; Walsh, Kevin J.
2017-10-01
Many dynamical aspects of the solar system can be explained by the outer planets experiencing a period of orbital instability. Though often correlated with a perceived delayed spike in the lunar cratering record known as the Late Heavy Bombardment (LHB), recent work suggests that this event may have occurred during the epoch of terrestrial planet formation. Though current simulations of terrestrial accretion can reproduce many observed qualities of the solar system, replicating the small mass of Mars requires modification to standard planet formation models. Here we use direct numerical simulations to show that an early instability in the outer solar system regularly yields properly sized Mars analogues. In 80% of simulations, we produce a Mars of the appropriate mass. Our most successful outcomes occur when the terrestrial planets evolve 10 million years (Myr), and accrete several Mars sized embryos in the Mars forming region before the instability takes place. Mars is left behind as a stranded embryo, while the remainder of these bodies are either ejected from the system or scattered towards the inner solar system where they deliver water to Earth. An early giant planet instability can thus replicate both the inner and outer solar system in a single model.
Automated design of gravity-assist trajectories to Mars and the outer planets
NASA Technical Reports Server (NTRS)
Longuski, James M.; Williams, Steve N.
1991-01-01
In this paper, a new approach to planetary mission design is described which automates the search for gravity-assist trajectories. This method finds all conic solutions given a range of launch dates, a range of launch energies and a set of target planets. The new design tool is applied to the problems of finding multiple encounter trajectories to the outer planets and Venus gravity-assist trajectories to Mars. The last four-planet grand tour opportunity (until the year 2153) is identified. It requires an earth launch in 1996 and encounters Jupiter, Uranus, Neptune, and Pluto. Venus gravity-assist trajectories to Mars for the 30 year period 1995-2024 are examined. It is shown that in many cases these trajectories require less launch energy to reach Mars than direct ballistic trajectories.
New Cosmic Horizons: Space Astronomy from the V2 to the Hubble Space Telescope
NASA Astrophysics Data System (ADS)
Leverington, David
2001-02-01
Preface; 1. The sounding rocket era; 2. The start of the space race; 3. Initial exploration of the Solar System; 4. Lunar exploration; 5. Mars and Venus; early results; 6. Mars and Venus; the middle period; 7. Venus, Mars and cometary spacecraft post-1980; 8. Early missions to the outer planets; 9. The Voyager missions to the outer planets; 10. The Sun; 11. Early spacecraft observations of non-solar system sources; 12. A period of rapid growth; 13. The high energy astronomy observatory programme; 14. IUE, IRAS and Exosat - spacecraft for the early 1980s; 15. Hiatus; 16. Business as usual; 17. The Hubble Space Telescope.
Proceedings of the 39th Lunar and Planetary Science Conference
NASA Technical Reports Server (NTRS)
2008-01-01
Sessions with oral presentations include: A SPECIAL SESSION: MESSENGER at Mercury, Mars: Pingos, Polygons, and Other Puzzles, Solar Wind and Genesis: Measurements and Interpretation, Asteroids, Comets, and Small Bodies, Mars: Ice On the Ground and In the Ground, SPECIAL SESSION: Results from Kaguya (SELENE) Mission to the Moon, Outer Planet Satellites: Not Titan, Not Enceladus, SPECIAL SESSION: Lunar Science: Past, Present, and Future, Mars: North Pole, South Pole - Structure and Evolution, Refractory Inclusions, Impact Events: Modeling, Experiments, and Observations, Mars Sedimentary Processes from Victoria Crater to the Columbia Hills, Formation and Alteration of Carbonaceous Chondrites, New Achondrite GRA 06128/GRA 06129 - Origins Unknown, The Science Behind Lunar Missions, Mars Volcanics and Tectonics, From Dust to Planets (Planetary Formation and Planetesimals):When, Where, and Kaboom! Astrobiology: Biosignatures, Impacts, Habitability, Excavating a Comet, Mars Interior Dynamics to Exterior Impacts, Achondrites, Lunar Remote Sensing, Mars Aeolian Processes and Gully Formation Mechanisms, Solar Nebula Shake and Bake: Mixing and Isotopes, Lunar Geophysics, Meteorites from Mars: Shergottite and Nakhlite Invasion, Mars Fluvial Geomorphology, Chondrules and Chondrule Formation, Lunar Samples: Chronology, Geochemistry, and Petrology, Enceladus, Venus: Resurfacing and Topography (with Pancakes!), Overview of the Lunar Reconnaissance Orbiter Mission, Mars Sulfates, Phyllosilicates, and Their Aqueous Sources, Ordinary and Enstatite Chondrites, Impact Calibration and Effects, Comparative Planetology, Analogs: Environments and Materials, Mars: The Orbital View of Sediments and Aqueous Mineralogy, Planetary Differentiation, Titan, Presolar Grains: Still More Isotopes Out of This World, Poster sessions include: Education and Public Outreach Programs, Early Solar System and Planet Formation, Solar Wind and Genesis, Asteroids, Comets, and Small Bodies, Carbonaceous Chondrites, Chondrules and Chondrule Formation, Chondrites, Refractory Inclusions, Organics in Chondrites, Meteorites: Techniques, Experiments, and Physical Properties, MESSENGER and Mercury, Lunar Science Present: Kaguya (SELENE) Results, Lunar Remote Sensing: Basins and Mapping of Geology and Geochemistry, Lunar Science: Dust and Ice, Lunar Science: Missions and Planning, Mars: Layered, Icy, and Polygonal, Mars Stratigraphy and Sedimentology, Mars (Peri)Glacial, Mars Polar (and Vast), Mars, You are Here: Landing Sites and Imagery, Mars Volcanics and Magmas, Mars Atmosphere, Impact Events: Modeling, Experiments, and Observation, Ice is Nice: Mostly Outer Planet Satellites, Galilean Satellites, The Big Giant Planets, Astrobiology, In Situ Instrumentation, Rocket Scientist's Toolbox: Mission Science and Operations, Spacecraft Missions, Presolar Grains, Micrometeorites, Condensation-Evaporation: Stardust Ties, Comet Dust, Comparative Planetology, Planetary Differentiation, Lunar Meteorites, Nonchondritic Meteorites, Martian Meteorites, Apollo Samples and Lunar Interior, Lunar Geophysics, Lunar Science: Geophysics, Surface Science, and Extralunar Components, Mars, Remotely, Mars Orbital Data - Methods and Interpretation, Mars Tectonics and Dynamics, Mars Craters: Tiny to Humongous, Mars Sedimentary Mineralogy, Martian Gullies and Slope Streaks, Mars Fluvial Geomorphology, Mars Aeolian Processes, Mars Data and Mission,s Venus Mapping, Modeling, and Data Analysis, Titan, Icy Dwarf Satellites, Rocket Scientist's Toolbox: In Situ Analysis, Remote Sensing Approaches, Advances, and Applications, Analogs: Sulfates - Earth and Lab to Mars, Analogs: Remote Sensing and Spectroscopy, Analogs: Methods and Instruments, Analogs: Weird Places!. Print Only Early Solar System, Solar Wind, IDPs, Presolar/Solar Grains, Stardust, Comets, Asteroids, and Phobos, Venus, Mercury, Moon, Meteorites, Mars, Astrobiology, Impacts, Outer Planets, Satellites, and Rings, Support for Mission Operations, Analog Education and Public Outreach.
Planetary Atmospheres and the Search for Life.
ERIC Educational Resources Information Center
Owen, Tobias
1982-01-01
Different ways in which the atmospheres of different planets have originated and evolved are discussed. Includes tables on the atmospheric composition of: (1) Earth; (2) Mars; (3) Venus; (4)Titan (Saturn's Satellite); and (5) the outer planets. (SK)
Why You Can't Have a Snowball Fight on Mars
NASA Astrophysics Data System (ADS)
Sandford, Scott A.
1998-01-01
Icy worlds such as Mars and outer-planet satellites might seem like winter wonderlands, ideal sites for ski slopes, skating rinks, and the crude pleasures of snowball fights. Alas, it was not meant to be.
A Low Mass for Mars from Jupiter's Early Gas-Driven Migration
NASA Technical Reports Server (NTRS)
Walsh, Kevin J.; Morbidelli, Alessandro; Raymond, Sean N.; O'Brien, David P.; Mandell, Avi M.
2011-01-01
Jupiter and Saturn formed in a few million years from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only approximately 100,000 years. Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 AU is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 AU, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 AU; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 AU and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.
A low mass for Mars from Jupiter's early gas-driven migration.
Walsh, Kevin J; Morbidelli, Alessandro; Raymond, Sean N; O'Brien, David P; Mandell, Avi M
2011-06-05
Jupiter and Saturn formed in a few million years (ref. 1) from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only ∼100,000 years (ref. 2). Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later, and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 au is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 au, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 au; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 au and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought. ©2011 Macmillan Publishers Limited. All rights reserved
Aerocapture Technology Development Needs for Outer Planet Exploration
NASA Technical Reports Server (NTRS)
Wercinski, Paul; Munk, Michelle; Powell, Richard; Hall, Jeff; Graves, Claude; Partridge, Harry (Technical Monitor)
2002-01-01
The purpose of this white paper is to identify aerocapture technology and system level development needs to enable NASA future mission planning to support Outer Planet Exploration. Aerocapture is a flight maneuver that takes place at very high speeds within a planet's atmosphere that provides a change in velocity using aerodynamic forces (in contrast to propulsive thrust) for orbit insertion. Aerocapture is very much a system level technology where individual disciplines such as system analysis and integrated vehicle design, aerodynamics, aerothermal environments, thermal protection systems (TPS), guidance, navigation and control (GN&C) instrumentation need to be integrated and optimized to meet mission specific requirements. This paper identifies on-going activities, their relevance and potential benefit to outer planet aerocapture that include New Millennium ST7 Aerocapture concept definition study, Mars Exploration Program aeroassist project level support, and FY01 Aeroassist In-Space Guideline tasks. The challenges of performing aerocapture for outer planet missions such as Titan Explorer or Neptune Orbiter require investments to advance the technology readiness of the aerocapture technology disciplines for the unique application of outer planet aerocapture. This white paper will identify critical technology gaps (with emphasis on aeroshell concepts) and strategies for advancement.
Adaptable, Deployable Entry and Placement Technology (ADEPT) for Future Mars Missions
NASA Technical Reports Server (NTRS)
Wercinski, P.; Venkatapathy, E.; Gage, P.; Prabhu, D.; Smith, B.; Cassell, A.; Yount, B.; Allen, G.
2013-01-01
The concept of a mechanically deploy- able hypersonic decelerator, developed initially for high mass (40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets.
The mass of the Mars-sized exoplanet Kepler-138 b from transit timing.
Jontof-Hutter, Daniel; Rowe, Jason F; Lissauer, Jack J; Fabrycky, Daniel C; Ford, Eric B
2015-06-18
Extrasolar planets that pass in front of their host star (transit) cause a temporary decrease in the apparent brightness of the star, providing a direct measure of the planet's size and orbital period. In some systems with multiple transiting planets, the times of the transits are measurably affected by the gravitational interactions between neighbouring planets. In favourable cases, the departures from Keplerian orbits (that is, unaffected by gravitational effects) implied by the observed transit times permit the planetary masses to be measured, which is key to determining their bulk densities. Characterizing rocky planets is particularly difficult, because they are generally smaller and less massive than gaseous planets. Therefore, few exoplanets near the size of Earth have had their masses measured. Here we report the sizes and masses of three planets orbiting Kepler-138, a star much fainter and cooler than the Sun. We determine that the mass of the Mars-sized inner planet, Kepler-138 b, is 0.066(+0.059)(-0.037) Earth masses. Its density is 2.6(+2.4)(-1.5) grams per cubic centimetre. The middle and outer planets are both slightly larger than Earth. The middle planet's density (6.2(+5.8)(-3.4) grams per cubic centimetre) is similar to that of Earth, and the outer planet is less than half as dense at 2.1(+2.2)(-1.2) grams per cubic centimetre, implying that it contains a greater portion of low-density components such as water and hydrogen.
Images From Comet’s Mars Flyby On This Week @NASA - October 24, 2014
2014-10-24
Several Mars-based NASA spacecraft had prime viewing positions for comet Siding Spring’s October 19 close flyby of the Red Planet. Early images included a composite photo from NASA’s Hubble Space Telescope that combined shots of Mars, the comet, and a star background to illustrate Siding Spring’s distance from Mars at closest approach. Also, images from the Mars Reconnaissance Orbiter’s HiRISE camera, which represent the highest-resolution views ever acquired of a comet that came from the Oort Cloud, at the outer fringe of the solar system. The comet flyby – only about 87,000 miles from Mars – was much closer than any other known comet flyby of a planet. Also, Partial solar eclipse, Space station spacewalk, Preparing to release Dragon, Cygnus launch update, Welding begins on SLS, Astronaut class visits Glenn and more!
Mars - A planet with a complex surface evolution
NASA Technical Reports Server (NTRS)
Arvidson, R. E.; Coradini, M.
1975-01-01
The surface of Mars has evolved to its present form through a complex sequence of tectonism and associated volcanism, impact processes, water erosion, mass movements, and wind action. The diversity of geological processes active in past Martian history far exceeded most predictions. By the same token, predictions of processes modifying the satellites of the outer planets may fall far short of the true range of phenomena. A summary of present though with regard to Martian surface evolution is presented to serve as a case in point of the value of imagery and topography data in making interpretations of geological histories.
NASA Technical Reports Server (NTRS)
Banerdt, W. Bruce; Abercrombie, Rachel; Keddie, Susan; Mizutani, Hitoshi; Nagihara, Seiichi; Nakamura, Yosio; Pike, W. Thomas
1996-01-01
This report identifies two main themes to guide planetary science in the next two decades: understanding planetary origins, and understanding the constitution and fundamental processes of the planets themselves. Within the latter theme, four specific goals related to interior measurements addressing the theme. These are: (1) Understanding the internal structure and dynamics of at least one solid body, other than the Earth or Moon, that is actively convecting, (2) Determine the characteristics of the magnetic fields of Mercury and the outer planets to provide insight into the generation of planetary magnetic fields, (3) Specify the nature and sources of stress that are responsible for the global tectonics of Mars, Venus, and several icy satellites of the outer planets, and (4) Advance significantly our understanding of crust-mantle structure for all the solid planets. These goals can be addressed almost exclusively by measurements made on the surfaces of planetary bodies.
Feasibility of infrared Earth tracking for deep-space optical communications.
Chen, Yijiang; Hemmati, Hamid; Ortiz, Gerry G
2012-01-01
Infrared (IR) Earth thermal tracking is a viable option for optical communications to distant planet and outer-planetary missions. However, blurring due to finite receiver aperture size distorts IR Earth images in the presence of Earth's nonuniform thermal emission and limits its applicability. We demonstrate a deconvolution algorithm that can overcome this limitation and reduce the error from blurring to a negligible level. The algorithm is applied successfully to Earth thermal images taken by the Mars Odyssey spacecraft. With the solution to this critical issue, IR Earth tracking is established as a viable means for distant planet and outer-planetary optical communications. © 2012 Optical Society of America
Quarantine constraints as applied to satellites
NASA Technical Reports Server (NTRS)
Hoffman, A. R.; Stavro, W.; Gonzalez, C. C.
1973-01-01
Plans for unmanned missions to planets beyond Mars in the 1970s include satellite encounters. Recently published observations of data for Titan, a satellite of Saturn, indicate that conditions may be hospitable for the growth of microorganisms. Therefore, the problem of satisfying possible quarantine constraints for outer planet satellites was investigated. This involved determining the probability of impacting a satellite of Jupiter or Saturn by a spacecraft for a planned satellite encounter during an outer planet mission. Mathematical procedures were formulated which determine the areas in the aim-plane that would result in trajectories that impact the satellite and provide a technique for numerically integrating the navigation error function over the impact area to obtain impact probabilities. The results indicate which of the planned spacecraft trajectory correction maneuvers are most critical in terms of satellite quarantine violation.
Cooperative observation data center for planets: starting with the Mars 2009-2010 observation
NASA Astrophysics Data System (ADS)
Nakakushi, T.; Okyudo, M.; Tomita, A.
2009-12-01
We propose in this paper a plan to construct a planetary image data center on the internet, which links professional researchers and amateur observers all over the world. Such data archive projects have worked, at least for Mars. Since 2003, one of the authors (T. N.) have started a project to summarize Mars observations using such cooperative network observation data archives and to publish the summary as professional research papers (Nakakushi et al., 2004, 2005, and 2008). Planetary atmosphere varies in various timescales, which requires temporarily continuous observations. Cooperative observation which amateur observers join can keep the observation continuous and sustainable, so that it can be a strong weapon to reveal planetary climate and meteorology. For outer planets, in particular, we don't know synoptic "seasonal" variations because of their long periods of revolution. We need steady and persistent effort to accumulate observations. That is why we need amateur observers' high-level observation techniques. To do so, we also needs systems to provide (and reproduce) data for users in an appropriate manner. We start from Mars with our own new date archive website, because we have much experience in terms of Mars. Next, we will expand the system for all the planets. Roughly said, there will be 3 steps to expand the project to all the planets: (1) to construct our own Mars cooperative observation data center, (2) to link it with professional studies, (3) to construct cooperative observation data center for all planets. And 4 problems to tackle: (1) to develop web interfaces for users to submit data, (2) to develop interfaces for managers, (3) to secure finances, (4) to secure professional researchers. 2009 and 2010 are a good apparition for Mars observation. We manage the Mars image data website, find problems and solutions in detail, and search for ways to expand it to all the planet and to enable sustainable management.
The applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research
NASA Technical Reports Server (NTRS)
Fegley, Bruce, Jr.
1990-01-01
A review of the applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research during the past four decades is presented with an emphasis on chemical equilibrium models and thermochemical kinetics. Several current problems in planetary atmospheres research such as the origin of the atmospheres of the terrestrial planets, atmosphere-surface interactions on Venus and Mars, deep mixing in the atmospheres of the gas giant planets, and the origin of the atmospheres of outer planet satellites all require laboratory data on the kinetics of thermochemical reactions for their solution.
Limit cycles at the outer edge of the habitable zone
NASA Astrophysics Data System (ADS)
Haqq-Misra, J. D.; Kopparapu, R.; Batalha, N. E.; Harman, C.; Kasting, J. F.
2016-12-01
The liquid water habitable zone (HZ) describes the orbital distance at which a terrestrial planet can maintain above-freezing conditions through regulation by the carbonate-silicate cycle. Calculations with one-dimensional climate models predict that the inner edge of the HZ is limited by water loss through a runaway greenhouse, while the outer edge of the HZ is bounded by the maximum greenhouse effect of carbon dioxide. This classic picture of the HZ continues to guide interpretation of exoplanet discoveries; however, recent calculations have shown that terrestrial planets near the outer edge of the HZ may exhibit other behaviors that affect their habitability. Here I discuss results from a hierarchy of climate models to understand the stellar environments most likely to support a habitable planet. I present energy balance climate model calculations showing the conditions under which planets in the outer regions of the habitable zone should oscillate between long, globally glaciated states and shorter periods of climatic warmth, known as `limit cycles.' Such conditions would be inimical to the development of complex land life, including intelligent life. Limit cycles may also provide an explanation for fluvial features on early Mars, although this requires additional greenhouse warming by hydrogen. These calculations show that the net volcanic outgassing rate and the propensity for plant life to sequester carbon dioxide are critical factors that determine the susceptibility of a planet to limit cycling. I argue that planets orbiting mid G- to mid K-type stars offer more opportunity for supporting advanced life than do planets around F-type stars or M-type stars.
NASA Technical Reports Server (NTRS)
1999-01-01
This video gives a brief history of the Jet Propulsion Laboratory, current missions and what the future may hold. Scenes includes various planets in the solar system, robotic exploration of space, discussions on the Hubble Space Telescope, the source of life, and solar winds. This video was narrated by Jodie Foster. Animations include: close-up image of the Moon; close-up images of the surface of Mars; robotic exploration of Mars; the first mapping assignment of Mars; animated views of Jupiter; animated views of Saturn; and views of a Giant Storm on Neptune called the Great Dark Spot.
Exploring our outer solar system - The Giant Planet System Observers
NASA Astrophysics Data System (ADS)
Cooper, J. F.; Sittler, E. C., Jr.; Sturner, S. J.; Pitman, J. T.
As space-faring peoples now work together to plan and implement future missions that robotically prepare for landing humans to explore the Moon, and later Mars, the time is right to develop evolutionary approaches for extending this next generation of exploration beyond Earth's terrestrial planet neighbors to the realm of the giant planets. And while initial fly-by missions have been hugely successful in providing exploratory surveys of what lies beyond Mars, we need to consider now what robotic precursor mission capabilities we need to emplace that prepare us properly, and comprehensively, for long-term robotic exploration, and eventual human habitation, beyond Mars to the outer reaches of our solar system. To develop practical strategies that can establish prioritized capabilities, and then develop a means for achieving those capabilities within realistic budget and technology considerations, and in reasonable timeframes, is our challenge. We suggest one component of such an approach to future outer planets exploration is a series of Giant Planets System Observer (GPSO) missions that provide for long- duration observations, monitoring, and relay functions to help advance our understanding of the outer planets and thereby enable a sound basis for planning their eventual exploration by humans. We envision these missions as being comparable to taking Hubble-class remote-sensing facilities, along with the space physics capabilities of long-lived geospace and heliospheric missions, to the giant planet systems and dedicating long observing lifetimes (HST, 16 yr.; Voyagers, 29 yr.) to the exhaustive study and characterization of those systems. GPSO missions could feature 20-yr+ extended mission lifetimes, direct inject trajectories to maximize useful lifetime on target, placement strategies that take advantage of natural environment shielding (e.g., Ganymede magnetic field) where possible, orbit designs having favorable planetary system viewing geometries, comprehensive broadband remote sensing capabilities, a complementary and redundant science instrument suite, fully autonomous operations, high bandwidth science data downlink, advanced solar power technologies (supplemented where necessary), functional interfaces that are compatible with future small fly-by missions, and fail-safe features for mission operations and planetary protection, 1 among other considerations. We describe in this paper one example of a GPSO-type mission our team has been formulating as a practical approach that addresses many of the most highly-rated future science exploration needs in the Jovian system, including the exploration of Europa, observation of Io and Ganymede, and characterization of the Jovian atmosphere. We call this mission concept the Ganymede Exploration Observer with Probes (GEOP), and describe its architecture, mission design, system features, science capabilities, key trades, and notional development plan for implementation within the next decade. 2
Quarantine constraints as applied to satellites.
NASA Technical Reports Server (NTRS)
Hoffman, A. R.; Stavro, W.; Gonzalez, C.
1973-01-01
Plans for unmanned missions to planets beyond Mars in the 1970s include satellite encounters. Recently published observations of data for Titan, a satellite of Saturn, indicate that conditions may be hospitable for the growth of microorganisms. Therefore, the problem of satisfying possible quarantine constraints for outer planet satellites was investigated. This involved determining the probability of impacting a satellite of Jupiter or Saturn by a spacecraft for a planned satellite encounter during an outer planet mission. Mathematical procedures were formulated which (1) determine the areas in the aim-plane that would result in trajectories that impact the satellite and (2) provide a technique for numerically integrating the navigation error function over the impact area to obtain impact probabilities. The results indicate which of the planned spacecraft trajectory correction maneuvers are most critical in terms of satellite quarantine violation.
Leuko, Stefan; Bohmeier, Maria; Hanke, Franziska; Böettger, Ute; Rabbow, Elke; Parpart, Andre; Rettberg, Petra; de Vera, Jean-Pierre P.
2017-01-01
Outer space, the final frontier, is a hostile and unforgiving place for any form of life as we know it. The unique environment of space allows for a close simulation of Mars surface conditions that cannot be simulated as accurately on the Earth. For this experiment, we tested the resistance of Deinococcus radiodurans to survive exposure to simulated Mars-like conditions in low-Earth orbit for a prolonged period of time as part of the Biology and Mars experiment (BIOMEX) project. Special focus was placed on the integrity of the carotenoid deinoxanthin, which may serve as a potential biomarker to search for remnants of life on other planets. Survival was investigated by evaluating colony forming units, damage inflicted to the 16S rRNA gene by quantitative PCR, and the integrity and detectability of deinoxanthin by Raman spectroscopy. Exposure to space conditions had a strong detrimental effect on the survival of the strains and the 16S rRNA integrity, yet results show that deinoxanthin survives exposure to conditions as they prevail on Mars. Solar radiation is not only strongly detrimental to the survival and 16S rRNA integrity but also to the Raman signal of deinoxanthin. Samples not exposed to solar radiation showed only minuscule signs of deterioration. To test whether deinoxanthin is able to withstand the tested parameters without the protection of the cell, it was extracted from cell homogenate and exposed to high/low temperatures, vacuum, germicidal UV-C radiation, and simulated solar radiation. Results obtained by Raman investigations showed a strong resistance of deinoxanthin against outer space and Mars conditions, with the only exception of the exposure to simulated solar radiation. Therefore, deinoxanthin proved to be a suitable easily detectable biomarker for the search of Earth-like organic pigment-containing life on other planets. PMID:28966605
Leuko, Stefan; Bohmeier, Maria; Hanke, Franziska; Böettger, Ute; Rabbow, Elke; Parpart, Andre; Rettberg, Petra; de Vera, Jean-Pierre P
2017-01-01
Outer space, the final frontier, is a hostile and unforgiving place for any form of life as we know it. The unique environment of space allows for a close simulation of Mars surface conditions that cannot be simulated as accurately on the Earth. For this experiment, we tested the resistance of Deinococcus radiodurans to survive exposure to simulated Mars-like conditions in low-Earth orbit for a prolonged period of time as part of the Biology and Mars experiment (BIOMEX) project. Special focus was placed on the integrity of the carotenoid deinoxanthin, which may serve as a potential biomarker to search for remnants of life on other planets. Survival was investigated by evaluating colony forming units, damage inflicted to the 16S rRNA gene by quantitative PCR, and the integrity and detectability of deinoxanthin by Raman spectroscopy. Exposure to space conditions had a strong detrimental effect on the survival of the strains and the 16S rRNA integrity, yet results show that deinoxanthin survives exposure to conditions as they prevail on Mars. Solar radiation is not only strongly detrimental to the survival and 16S rRNA integrity but also to the Raman signal of deinoxanthin. Samples not exposed to solar radiation showed only minuscule signs of deterioration. To test whether deinoxanthin is able to withstand the tested parameters without the protection of the cell, it was extracted from cell homogenate and exposed to high/low temperatures, vacuum, germicidal UV-C radiation, and simulated solar radiation. Results obtained by Raman investigations showed a strong resistance of deinoxanthin against outer space and Mars conditions, with the only exception of the exposure to simulated solar radiation. Therefore, deinoxanthin proved to be a suitable easily detectable biomarker for the search of Earth-like organic pigment-containing life on other planets.
Reaching the Public through Traveling Exhibitions
NASA Astrophysics Data System (ADS)
Dusenbery, P. B.; Harold, J. B.; Morrow, C. A.
2004-11-01
The Space Science Institute (SSI) of Boulder, Colorado has recently developed two museum exhibits called Alien Earths and MarsQuest. It has just started to develop another exhibit called Giant Planets. These exhibitions provide research scientists the opportunity to engage in a number of activities that are vital to the success of these major outreach programs. Alien Earths was developed in partnership with various research missions. The focus of the presentation will be on MarsQuest and Giant Planets. MarsQuest is a 5000 square-foot, \\$3M, traveling exhibition that is now touring the country. The exhibit's second 3-year tour will enable millions of Americans to share in the excitement of the scientific exploration of Mars and learn more about their own planet in the process. The associated planetarium show and education program will also be described, with particular emphasis on workshops to orient museum staff (e.g. museum educators and docents) and workshops for master educators near host museums and science centers. The workshops make innovative connections between the exhibition's interactive experiences and lesson plans aligned with the National Science Education Standards. These exhibit programs are good models for actively involving scientists and their discoveries to help improve informal science education in the museum community and for forging a stronger connection between formal and informal education. The presentation will also discuss how Giant Planets, a proposed 3500 square-foot traveling exhibition on the mysteries and discoveries of the outer planets, will be able to take advantage of the connections and resources that have been developed by the MarsQuest project.
Estimation and assessment of Mars contamination.
Debus, A
2005-01-01
Since the beginning of the exploration of Mars, more than fourty years ago, thirty-six missions have been launched, including fifty-nine different space systems such as fly-by spacecraft, orbiters, cruise modules, landing or penetrating systems. Taking into account failures at launch, about three missions out of four have been successfully sent toward the Red Planet. The fact today is that Mars orbital environment includes orbiters and perhaps debris, and that its atmosphere and its surface include terrestrial compounds and dormant microorganisms. Coming from the UN Outer Space Treaty [United Nations Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies (the "Outer Space Treaty") referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966] and according to the COSPAR planetary protection policy recommendations [COSPAR Planetary Protection Policy (20 October 2002), accepted by the Council and Bureau, as moved for adoption by SC F and PPP, prepared by the COSPAR/IAU Workshop on Planetary Protection, 4/02 with updates 10/0, 2002], Mars environment has to be preserved so as not to jeopardize the scientific investigations, and the level of terrestrial material brought on and around Mars theoretically has to comply with this policy. It is useful to evaluate what and how many materials, compounds and microorganisms are on Mars, to list what is in orbit and to identify where all these items are. Considering assumptions about materials, spores and gas location and dispersion on Mars, average contamination levels can be estimated. It is clear now that as long as missions are sent to other extraterrestrial bodies, it is not possible to keep them perfectly clean. Mars is one of the most concerned body, and the large number of missions achieved, on-going and planned now raise the question about its possible contamination, not necessarily from a biological point of view, but with respect to all types of contamination. Answering this question, will help to assess the potential effects of such contamination on scientific results and will address concerns relative to any ethical considerations about the contamination of other planets. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Seeding life on the moons of the outer planets via lithopanspermia.
Worth, R J; Sigurdsson, Steinn; House, Christopher H
2013-12-01
Material from the surface of a planet can be ejected into space by a large impact and could carry primitive life-forms with it. We performed n-body simulations of such ejecta to determine where in the Solar System rock from Earth and Mars may end up. We found that, in addition to frequent transfer of material among the terrestrial planets, transfer of material from Earth and Mars to the moons of Jupiter and Saturn is also possible, but rare. We expect that such transfers were most likely to occur during the Late Heavy Bombardment or during the ensuing 1-2 billion years. At this time, the icy moons were warmer and likely had little or no ice shell to prevent meteorites from reaching their liquid interiors. We also note significant rates of re-impact in the first million years after ejection. This could re-seed life on a planet after partial or complete sterilization by a large impact, which would aid the survival of early life during the Late Heavy Bombardment.
The Search for Life in the Solar System*
Gurnett, Donald A.
2009-01-01
In this presentation I give an overview of the long struggle to answer the age old question, does life exist anywhere else? The focus will be specifically on the search for life in the solar system, since this is the only region currently accessible to direct investigation. A hundred years ago many people believed that life, possibly even intelligent life, existed at the nearby planets Venus and Mars, and possibly elsewhere. The space age exploration of the planets has radically altered that view. We now know that Venus is a very hostile place, with no possibility for life, and that Mars is almost completely barren and very cold, with little prospect for life. The only remaining possibility appears to be in the interior of some of the moons of the outer planets where, due to an unlikely combination of factors, the conditions may be suitable for life. PMID:19768185
The search for life in the solar system.
Gurnett, Donald A
2009-01-01
In this presentation I give an overview of the long struggle to answer the age old question, does life exist anywhere else? The focus will be specifically on the search for life in the solar system, since this is the only region currently accessible to direct investigation. A hundred years ago many people believed that life, possibly even intelligent life, existed at the nearby planets Venus and Mars, and possibly elsewhere. The space age exploration of the planets has radically altered that view. We now know that Venus is a very hostile place, with no possibility for life, and that Mars is almost completely barren and very cold, with little prospect for life. The only remaining possibility appears to be in the interior of some of the moons of the outer planets where, due to an unlikely combination of factors, the conditions may be suitable for life.
The Science Goals of NASA's Exploration Initiative
NASA Technical Reports Server (NTRS)
Gardner, Jonathan P.; Grunsfeld, John
2004-01-01
The recently released policy directive, "A Renewed Spirit of Discovery: The President's Vision for U. S. Space Exploration," seeks to advance the U. S. scientific, security and economic interest through a program of space exploration which will robotically explore the solar system and extend human presence to the Moon, Mars and beyond. NASA's implementation of this vision will be guided by compelling questions of scientific and societal importance, including the origin of our Solar System and the search for life beyond Earth. The Exploration Roadmap identifies four key targets: the Moon, Mars, the outer Solar System, and extra-solar planets. First, a lunar investigation will set up exploration test beds, search for resources, and study the geological record of the early Solar System. Human missions to the Moon will serve as precursors for human missions to Mars and other destinations, but will also be driven by their support for furthering science. The second key target is the search for past and present water and life on Mars. Following on from discoveries by Spirit and Opportunity, by the end of the decade there will have been an additional rover, a lander and two orbiters studying Mars. These will set the stage for a sample return mission in 2013, increasingly complex robotic investigations, and an eventual human landing. The third key target is the study of underground oceans, biological chemistry, and their potential for life in the outer Solar System. Beginning with the arrival of Cassini at Saturn in July 2004 and a landing on Titan in 2006, the next decade will see an extended investigation of the Jupiter icy moons by a mission making use of Project Prometheus, a program to develop space nuclear power and nuclear-electric propulsion. Finally, the search for Earth-like planets and life includes a series of telescopic missions designed to find and characterize extra-solar planets and search them for evidence of life. These missions include HST and Spitzer, operating now; Kepler, SIM, JWST, and TPF, currently under development; and the vision missions, Life Finder and Planet Imager, which will possibly be constructed in space by astronauts.
Specification goals for a Mars seismic network
NASA Technical Reports Server (NTRS)
Davis, Paul M.
1990-01-01
A seismic network on Mars should have enough stations (e.g., 24) to characterize the seismicity of the planet for comparison with a diversity of structural features; be comprised of low noise stations, preferably underground, 3 to 4 orders of magnitude more sensitive than those used on Viking; record over a sufficient band-width (DC-30 Hz) to detect micro-earthquakes to normal modes; and record for a sufficient duration (10 years) and data rate (10(exp 8) Mb/day/station) to obtain a data set comparable to that from the Apollo mission to the Moon so that locations of major internal boundaries can be inferred, such as those in the Earth, i.e., crust - lithosphere - asthenosphere - upper - lower phase transitions - outer - inner core. The proposed Mars Global Network Mission provides an opportunity to sense the dynamics and probe the interior of the planet. The seismic objectives, the availability of the instrumentation and trade-offs to meet them are discussed.
NASA Technical Reports Server (NTRS)
Jurgens, R. F.; Clark, P. E.; Goldstein, R. M.; Ostro, S. J.; Slade, M. A.; Thompson, T. W.; Saunders, R. S.
1986-01-01
Information is provided about physical nature planetary surfaces and their topography as well as dynamical properties such as orbits and spin states using ground based radar as a remote sensing tool. Accessible targets are the terrestrial planets: the Earth's Moon, Mercury, Venus and Mars, the outer planets rings and major moons, and many transient objects such as asteroids and comets. Data acquisition utilizes the unique facilities of the Goldstone Deep Space Network, occasionally the Arecibo radar, and proposed use of the VLA (very large array).
Engineering-Level Model Atmospheres for Titan and Neptune
NASA Technical Reports Server (NTRS)
Justus, C. G.; Duvall, Aleta; Johnson, D. L.
2003-01-01
Engineering-level atmospheric models for Titan and Neptune have been developed for use in NASA s systems analysis studies of aerocapture applications in missions to the outer planets. Analogous to highly successful Global Reference Atmospheric Models for Earth (GRAM, Justus et al., 2000) and Mars (Mars-GRAM, Justus and Johnson, 2001, Justus et al., 2002) the new models are called Titan-GRAM and Neptune-GRAM. Like GRAM and Mars-GRAM, an important feature of Titan-GRAM and Neptune-GRAM is their ability to simulate quasi-random perturbations for Monte- Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design.
A new planetary mapping for future space missions
NASA Astrophysics Data System (ADS)
Karachevtseva, Irina; Kokhanov, Alexander; Rodionova, Janna; Zubarev, Anatoliy; Nadezhdina, Irina; Kreslavsky, Mikhail; Oberst, Jürgen
2015-04-01
The wide studies of Solar system, including different planetary bodies, were announced by new Russian space program. Their geodesy and cartography support provides by MIIGAiK Extraterrestrial Laboratory (http://mexlab.miigaik.ru/eng) in frames of the new project "Studies of Fundamental Geodetic Parameters and Topography of Planets and Satellites". The objects of study are satellites of the outer planets (satellites of Jupiter - Europa, Calisto and Ganymede; Saturnine satellite Enceladus), some planets (Mercury and Mars) and the satellites of the terrestrial planets - Phobos (Mars) and the Moon (Earth). The new research project, which started in 2014, will address the following important scientific and practical tasks: - Creating new three-dimensional geodetic control point networks of satellites of the outer planets using innovative photogrammetry techniques; - Determination of fundamental geodetic parameters and study size, shape, and spin parameters and to create the basic framework for research of their surfaces; - Studies of relief of planetary bodies and comparative analysis of general surface characteristics of the Moon, Mars, and Mercury, as well as studies of morphometric parameters of volcanic formations on the Moon and Mars; - Modeling of meteoritic bombardment of celestial bodies and the study of the dynamics of particle emissions caused by a meteorite impacts; - Development of geodatabase for studies of planetary bodies, including creation of object catalogues, (craters and volcanic forms, etc.), and thematic mapping using GIS technology. The significance of the project is defined both by necessity of obtaining fundamental characteristics of the Solar System bodies, and practical tasks in preparation for future Russian and international space missions to the Jupiter system (Laplace-P and JUICE), the Moon (Luna-Glob and Luna-Resource), Mars (Exo-Mars), Mercury (Bepi-Colombo), and possible mission to Phobos (project Boomerang). For cartographic support of future missions, we have created various maps as results of first year research: new base maps of Ganymede, including a hypsometric map and a global surface map; the base and thematic maps of Phobos which were updated using new image data sets from Mars Express; a newest map of topographic roughness of Mercury (for north polar area) [2] and a map of topographic roughness of the Moon using laser altimeter data processing obtained by MESSENGER (MLA) and LRO (LOLA) for their comparative analyses; a new global hypsometric map of the Moon. Published version of the maps will be presented at the conference, and all data products using for mapping will be available via MExLab Geoportal (http://cartsrv.mexlab.ru/geoportal/#body/). Acknowledgments. This work was carried out in MIIGAiK and supported by Russian Science Foundation, project #14-22-00197. References: [1] http://mexlab.miigaik.ru/eng/ [2] Kreslavsky et al., Geophys. Res.Lett., 41, doi:10.1002/2014GL062162 [3] http://cartsrv.mexlab.ru/geoportal/#body/
Proceedings of the 38th Lunar and Planetary Science Conference
NASA Technical Reports Server (NTRS)
2007-01-01
The sessions in the conference include: Titan, Mars Volcanism, Mars Polar Layered Deposits, Early Solar System Isotopes, SPECIAL SESSION: Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Achondrites: Exploring Oxygen Isotopes and Parent-Body Processes, Solar System Formation and Evolution, SPECIAL SESSION: SMART-1, . Impact Cratering: Observations and Experiments, SPECIAL SESSION: Volcanism and Tectonism on Saturnian Satellites, Solar Nebula Composition, Mars Fluvial Geomorphology, Asteroid Observations: Spectra, Mostly, Mars Sediments and Geochemistry: View from the Surface, Mars Tectonics and Crustal Dichotomy, Stardust: Wild-2 Revealed, Impact Cratering from Observations and Interpretations, Mars Sediments and Geochemistry: The Map View, Chondrules and Their Formation, Enceladus, Asteroids and Deep Impact: Structure, Dynamics, and Experiments, Mars Surface Process and Evolution, Martian Meteorites: Nakhlites, Experiments, and the Great Shergottite Age Debate, Stardust: Mainly Mineralogy, Astrobiology, Wind-Surface Interactions on Mars and Earth, Icy Satellite Surfaces, Venus, Lunar Remote Sensing, Space Weathering, and Impact Effects, Interplanetary Dust/Genesis, Mars Cratering: Counts and Catastrophes?, Chondrites: Secondary Processes, Mars Sediments and Geochemistry: Atmosphere, Soils, Brines, and Minerals, Lunar Interior and Differentiation, Mars Magnetics and Atmosphere: Core to Ionosphere, Metal-rich Chondrites, Organics in Chondrites, Lunar Impacts and Meteorites, Presolar/Solar Grains, Topics for Print Only papers are: Outer Planets/Satellites, Early Solar System, Interplanetary Dust, Comets and Kuiper Belt Objects, Asteroids and Meteoroids, Chondrites, Achondrites, Meteorite Related, Mars Reconnaissance Orbiter, Mars, Astrobiology, Planetary Differentiation, Impacts, Mercury, Lunar Samples and Modeling, Venus, Missions and Instruments, Global Warming, Education and Public Outreach, Poster sessions are: Asteroids/Kuiper Belt Objects, Galilean Satellites: Geology and Mapping, Titan, Volcanism and Tectonism on Saturnian Satellites, Early Solar System, Achondrite Hodgepodge, Ordinary Chondrites, Carbonaceous Chondrites, Impact Cratering from Observations and Interpretations, Impact Cratering from Experiments and Modeling, SMART-1, Planetary Differentiation, Mars Geology, Mars Volcanism, Mars Tectonics, Mars: Polar, Glacial, and Near-Surface Ice, Mars Valley Networks, Mars Gullies, Mars Outflow Channels, Mars Sediments and Geochemistry: Spirit and Opportunity, Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Mars Reconnaissance Orbiter: Geology, Layers, and Landforms, Oh, My!, Mars Reconnaissance Orbiter: Viewing Mars Through Multicolored Glasses; Mars Science Laboratory, Phoenix, and ExoMars: Science, Instruments, and Landing Sites; Planetary Analogs: Chemical and Mineral, Planetary Analogs: Physical, Planetary Analogs: Operations, Future Mission Concepts, Planetary Data, Imaging, and Cartography, Outer Solar System, Presolar/Solar Grains, Stardust Mission; Interplanetary Dust, Genesis, Asteroids and Comets: Models, Dynamics, and Experiments, Venus, Mercury, Laboratory Instruments, Methods, and Techniques to Support Planetary Exploration; Instruments, Techniques, and Enabling Techologies for Planetary Exploration; Lunar Missions and Instruments, Living and Working on the Moon, Meteoroid Impacts on the Moon, Lunar Remote Sensing, Lunar Samples and Experiments, Lunar Atmosphere, Moon: Soils, Poles, and Volatiles, Lunar Topography and Geophysics, Lunar Meteorites, Chondrites: Secondary Processes, Chondrites, Martian Meteorites, Mars Cratering, Mars Surface Processes and Evolution, Mars Sediments and Geochemistry: Regolith, Spectroscopy, and Imaging, Mars Sediments and Geochemistry: Analogs and Mineralogy, Mars: Magnetics and Atmosphere, Mars Aeolian Geomorphology, Mars Data Processing and Analyses, Astrobiology, Engaging Student Educators and the Public in Planetary Science,
Seeding Life on the Moons of the Outer Planets via Lithopanspermia
Sigurdsson, Steinn; House, Christopher H.
2013-01-01
Abstract Material from the surface of a planet can be ejected into space by a large impact and could carry primitive life-forms with it. We performed n-body simulations of such ejecta to determine where in the Solar System rock from Earth and Mars may end up. We found that, in addition to frequent transfer of material among the terrestrial planets, transfer of material from Earth and Mars to the moons of Jupiter and Saturn is also possible, but rare. We expect that such transfers were most likely to occur during the Late Heavy Bombardment or during the ensuing 1–2 billion years. At this time, the icy moons were warmer and likely had little or no ice shell to prevent meteorites from reaching their liquid interiors. We also note significant rates of re-impact in the first million years after ejection. This could re-seed life on a planet after partial or complete sterilization by a large impact, which would aid the survival of early life during the Late Heavy Bombardment. Key Words: Panspermia—Impact—Meteorites—Titan—Europa. Astrobiology 13, 1155–1165. PMID:24341459
Jupiter Observation Campaign - Citizen Science At The Outer Planets: A Progress Report
NASA Astrophysics Data System (ADS)
Houston Jones, J.; Dyches, P.
2012-12-01
Amateur astronomers and astrophotographers diligently image Mars, Saturn and Jupiter in amazing detail. They often capture first views of storms on Saturn, impacts on Jupiter and changes in the planet's atmospheres. Many of the worldwide cadre of imagers share their images with each other and with planetary scientists. This new Jupiter focused citizen science program seeks to collect images and sort them into categories useful to scientists. In doing so, it provides a larger population of amateur astronomers with the opportunity to contribute their observations to NASA's JUNO Mission.
Search for water and life's building blocks in the Universe
NASA Astrophysics Data System (ADS)
Kwok, Sun; Bergin, Edwin; Ehrenfreund, Pascale
Water is the common ground between astronomy and planetary science as the presence of water on a planet is universally accepted as essential for its potential habitability. Water assists many biological chemical reactions leading to complexity by acting as an effective solvent. It shapes the geology and climate on rocky planets, and is a major or primary constituent of the solid bodies of the outer solar system. Water ice seems universal in space and is by far the most abundant condensed-phase species in our universe. Water-rich icy layers cover dust particles within the cold regions of the interstellar medium and molecular ices are widespread in the solar system. The poles of terrestrial planets (e.g. Earth, Mars) and most of the outer-solar-system satellites are covered with ice. Smaller solar system bodies, such as comets and Kuiper Belt Objects (KBOs), contain a significant fraction of water ice and trace amounts of organics. Beneath the ice crust of several moons of Jupiter and Saturn liquid water oceans probably exist.
Using Comparative Planetology in Exhibit Development
NASA Astrophysics Data System (ADS)
Dusenbery, P. B.; Harold, J. B.; Morrow, C. A.
2004-12-01
It is critically important for the public to better understand the scientific process. Museum exhibitions are an important part of informal science education that can effectively reach public audiences as well as school groups. They provide an important gateway for the public to learn about compelling scientific endeavors. The Space Science Institute (SSI) is a national leader in producing traveling science exhibitions and their associated educational programming (i.e. interactive websites, educator workshops, public talks, instructional materials). The focus of this presentation will be on three of its exhibit projects: MarsQuest (currently on tour), Alien Earths (in fabrication), and Giant Planets (in development). MarsQuest is enabling millions of Americans to share in the excitement of the scientific exploration of Mars and to learn more about their own planet in the process. Alien Earths will bring origins-related research and discoveries to students and the American public. It has four interrelated exhibit areas: Our Place in Space, Star Birth, PlanetQuest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in "habitable zones" around other stars; and finally they will be able to learn about how scientists are looking for signs of life beyond Earth. Giant Planets: Exploring the Outer Solar System will take advantage of the excitement generated by the Cassini mission and bring planetary and origins research and discoveries to students and the public. It will be organized around four thematic areas: Our Solar System; Colossal Worlds; Moons, Rings, and Fields; and Make Space for Kids. Giant Planets will open in 2007. This talk will focus on the importance of making Earth comparisons in the conceptual design of each exhibit and will show several examples of how these comparisons were manifested in the MarsQuest & Alien Earths exhibitions.
Life Beyond the Planet of Origin and Implications for the Search for Life on Mars
NASA Technical Reports Server (NTRS)
Mancinelli, Rocco L.
2015-01-01
Outer space is vast, cold, devoid of matter, radiation filled with essentially no gravity. These factors present an environmental challenge for any form of life. Earth's biosphere has evolved for more than 3 billion years shielded from the hostile environment of outer space by the protective blanket of the atmosphere and magnetosphere. Space is a nutritional wasteland with no liquid water and readily available organic carbon. Moving beyond a life's planet of origin requires a means for transport, the ability to withstand transport, and the ability to colonize, thrive and ultimately evolve in the new environment. Can life survive beyond its home planet? The key to answering this question is to identify organisms that first have the ability to withstand space radiation, space vacuum desiccation and time in transit, and second the ability to grow in an alien environment. Within the last 60 years space technology allowed us to transport life beyond Earth's protective shield so we may study, in situ, their responses to selected conditions of space. To date a variety of microbes ranging from viruses, to Bacteria, to Archaea, to Eukarya have been tested in the space environment. Most died instantly, but not all. These studies revealed that ultraviolet radiation is the near-term lethal agent, while hard radiation is the long-term lethal agent when the organism is shielded from ultraviolet radiation. In fact, bacterial spores, halophilic cyanobacteria and Archaea as well as some lichens survive very well if protected from ultraviolet radiation [1]. Some microbes, then, may be able to survive the trip in outer space to Mars on a spacecraft or in a meteorite. Once on Mars can a terrestrial microbe survive? Although the conditions on Mars are not as harsh as those in space, they are not hospitable for a terrestrial microbe. Studies, however, have shown that certain microbes that can survive in space for several years may also be able to survive on Mars if protected from ultraviolet radiation [1]. Laboratory simulation experiments using a mock-up of the Phoenix lander have shown that microbes transported to the surface of Mars on a spacecraft come off the spacecraft and mix into the Martian regolith [2]. Additionally, studies simulating Martian dust storms demonstrate that microbes can survive in the Martian wind blown dust and be scattered across the Martian surface away from the spacecraft. Would these microbes that may survive on Mars metabolize and propagate? Growth requires liquid water, a carbon source and an energy source. Survival on Mars also requires protection from ultraviolet radiation. In the cold, dry environment of Mars the probability of microbial metabolism and growth at or just beneath the surface is extremely low. Although the probability is low, Mars may be contaminated with potentially live terrestrial organisms. In light of that statistic we must be extremely diligent and cautious in our search for Martian life. If we are not cautious we may find life on Mars and it may be a contaminant from Earth.
NASA Technical Reports Server (NTRS)
Morrison, D.
1983-01-01
The present investigation takes into account the published literature on outer planet satellites for 1979-1982. It is pointed out that all but three (the moon and the two Martian satellites) of the known planetary satellites are found in the outer solar system. Most of these are associated with the three regular satellite systems of Jupiter, Saturn, and Uranus. The largest satellites are Titan in the Saturn system and Ganymede and Callisto in the Jupiter system. Intermediate in size between Mercury and Mars, each has a diameter of about 5000 km. Presumably each has an internal composition about 60 percent rock and 40 ice, and each is differentiated with a dense core extending out about 75 percent of the distance to the surface, with a mantle of high-pressure ice and a crust of ordinary ice perhaps 100 km thick. Attention is also given to Io, Europa, the icy satellites of Saturn, the satellites of Uranus, the small satellites of Jupiter and Saturn, Triton and the Pluto system, and plans for future studies.
TERRESTRIAL PLANET FORMATION FROM AN ANNULUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Kevin J.; Levison, Harold F., E-mail: kwalsh@boulder.swri.edu
It has been shown that some aspects of the terrestrial planets can be explained, particularly the Earth/Mars mass ratio, when they form from a truncated disk with an outer edge near 1.0 au. This has been previously modeled starting from an intermediate stage of growth utilizing pre-formed planetary embryos. We present simulations that were designed to test this idea by following the growth process from km-sized objects located between 0.7 and 1.0 au up to terrestrial planets. The simulations explore initial conditions where the solids in the disk are planetesimals with radii initially between 3 and 300 km, alternately includingmore » effects from a dissipating gaseous solar nebula and collisional fragmentation. We use a new Lagrangian code known as LIPAD, which is a particle-based code that models the fragmentation, accretion, and dynamical evolution of a large number of planetesimals, and can model the entire growth process from km-sizes up to planets. A suite of large (∼ Mars mass) planetary embryos is complete in only ∼1 Myr, containing most of the system mass. A quiescent period then persists for 10–20 Myr characterized by slow diffusion of the orbits and continued accretion of the remaining planetesimals. This is interrupted by an instability that leads to embryos crossing orbits and embryo–embryo impacts that eventually produce the final set of planets. While this evolution is different than that found in other works exploring an annulus, the final planetary systems are similar, with roughly the correct number of planets and good Mars-analogs.« less
Habitable zones around main sequence stars
NASA Technical Reports Server (NTRS)
Kasting, James F.; Whitmire, Daniel P.; Reynolds, Ray T.
1993-01-01
A mechanism for stabilizing climate on the earth and other earthlike planets is described, and the physical processes that define the inner and outer boundaries of the habitable zone (HZ) around the sun and main sequence stars are discussed. Physical constraints on the HZ obtained from Venus and Mars are taken into account. A 1D climate model is used to estimate the width of the HZ and the continuously habitable zone around the sun, and the analysis is extended to other main sequence stars. Whether other stars have planets and where such planets might be located with respect to the HZ is addressed. The implications of the findings for NASA's SETI project are considered.
Saving the Inner Solar System with an Early Instability
NASA Astrophysics Data System (ADS)
Clement, Matthew; Kaib, Nathan A.; Raymond, Sean N.; Walsh, Kevin J.
2018-04-01
An orbital instability between the solar system’s giant planets (the so-called Nice Model) has been shown to greatly disturb the orbits of the young terrestrial planets. Undesirable outcomes such as over-excitated orbits, ejections and collisions can be avoided if the instability occurs before the inner planets are fully formed. Such a scenario also has the advantage of limiting the mass and formation time of Mars when it occurs within several million years (Myr) of gas disk dissipation. The dynamical effects of the instability cause many small embryos and planetesimals to scatter away from the forming Mars, and lead to heavy mass depletion in the Asteroid Belt. We present new simulations of this scenario that demonstrate its ability to accurately reproduce the eccentricity, inclination and resonant structures of the Asteroid Belt. Furthermore, we perform simulations using an integration scheme which accounts for the fragmentation of colliding bodies. The final terrestrial systems formed in these simulations provide a better match to the actual planets' compact mass distribution and dynamically cold orbits. An early instability scenario is thus very successful at simultaneously replicating the dynamical state of both the inner and outer solar system.
A common mass scaling for satellite systems of gaseous planets.
Canup, Robin M; Ward, William R
2006-06-15
The Solar System's outer planets that contain hydrogen gas all host systems of multiple moons, which notably each contain a similar fraction of their respective planet's mass (approximately 10(-4)). This mass fraction is two to three orders of magnitude smaller than that of the largest satellites of the solid planets (such as the Earth's Moon), and its common value for gas planets has been puzzling. Here we model satellite growth and loss as a forming giant planet accumulates gas and rock-ice solids from solar orbit. We find that the mass fraction of its satellite system is regulated to approximately 10(-4) by a balance of two competing processes: the supply of inflowing material to the satellites, and satellite loss through orbital decay driven by the gas. We show that the overall properties of the satellite systems of Jupiter, Saturn and Uranus arise naturally, and suggest that similar processes could limit the largest moons of extrasolar Jupiter-mass planets to Moon-to-Mars size.
Planetary and Deep Space Requirements for Photovoltaic Solar Arrays
NASA Technical Reports Server (NTRS)
Bankston, C. P.; Bennett, R. B.; Stella, P. M.
1995-01-01
In the past 25 years, the majority of interplanetary spacecraft have been powered by nuclear sources. However, as the emphasis on smaller, low cost missions gains momentum, more deep space missions now being planned have baselined photovoltaic solar arrays due to the low power requirements (usually significantly less than 100 W) needed for engineering and science payloads. This will present challenges to the solar array builders, inasmuch as planetary requirements usually differ from earth orbital requirements. In addition, these requirements often differ greatly, depending on the specific mission; for example, inner planets vs. outer planets, orbiters vs. flybys, spacecraft vs. landers, and so on. Also, the likelihood of electric propulsion missions will influence the requirements placed on solar array developers. This paper will discuss representative requirements for a range of planetary and deep space science missions now in the planning stages. We have divided the requirements into three categories: Inner planets and the sun; outer planets (greater than 3 AU); and Mars, cometary, and asteroid landers and probes. Requirements for Mercury and Ganymede landers will be covered in the Inner and Outer Planets sections with their respective orbiters. We will also discuss special requirements associated with solar electric propulsion (SEP). New technology developments will be needed to meet the demanding environments presented by these future applications as many of the technologies envisioned have not yet been demonstrated. In addition, new technologies that will be needed reside not only in the photovoltaic solar array, but also in other spacecraft systems that are key to operating the spacecraft reliably with the photovoltaics.
Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Wercinski, Paul F.; Beck, Robin A. S.; Hamm, Kenneth R.; Yount, Bryan C.; Makino, A.; Smith, B.; Gage, P.; Prabhu, D.
2012-01-01
The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term; (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term; and (3) Heavy mass and human missions to Mars in the long term.
Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; Wercinski, P.; Prabhu, D.
2012-01-01
The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (approximately 40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low-mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term and (3) Heavy mass and human missions to Mars in the long term.
The Thermal States of Accreting Planets: From Mars-like Embryos to a MAD Earth
NASA Astrophysics Data System (ADS)
Stewart, S. T.; Lock, S. J.
2015-12-01
The thermal states of rocky planets can vary widely during the process of accretion. The thermal structure affects several major processes on the growing planet, including the mechanics of core formation, pressure-temperature conditions for metal-silicate equilibration, mixing, and atmospheric erosion. Because impact energy is distributed heterogeneously, accretional energy is preferentially deposited in the gravitationally re-equilibrated outer layers of the planet for both small and giant impacts. The resulting stably stratified structure inhibits complete mixing within the mantle. Initially, the specific energy of giant impacts between Mars-mass embryos leads to melting of the mantle. However, as planet formation progresses, the specific energies of giant impacts increase and can drive the mantle into a transient supercritical state. In the hottest regions of the planet, metal and silicates are miscible, and metal exsolution occurs as the structure cools. The cooling time of the supercritical structure is typically longer than the timescale for metal segregation to the core. Thus, these high temperature excursions during planet formation are significant for understanding metal-silicate equilibration. Furthermore, when a supercritical planet is also rapidly rotating, the mantle, atmosphere and disk (MAD) form a continuous dynamic and thermodynamic structure. Lunar origin by condensation from a MAD Earth can explain the major characteristics of the Moon (Lock et al., this meeting). One of the greatest uncertainties in understanding the thermal states of planets during accretion is the changing composition and mass of the atmosphere. After the dispersal of the solar nebula, the thermal boundary condition imposed by the atmosphere can vary between silicate vapor and condensed ices. The coupled problem of atmospheric origin and planetary accretion can be used to constrain the many uncertainties in the growth and divergence of the terrestrial planets in our solar system.
NASA Technical Reports Server (NTRS)
Lee, Pascal; Benna, Mehdi; Britt, Daniel; Colaprete, Anthony; Davis, Warren; Delory, Greg; Elphic, Richard; Fulsang, Ejner; Genova, Anthony; Glavin, Daniel;
2015-01-01
After 40 years of solar system exploration by spacecraft, the origin of Mars's satellites, remains vexingly unknown. There are three prevailing hypotheses concerning their origin: H1: They are captured small bodies from the outer main belt or beyond; H2: They are reaccreted Mars impact ejecta; H3: They are remnants of Mars' formation. There are many variants of these hypotheses, but as stated, these three capture the key ideas and constraints on their nature. So far, data and modeling have not allowed any one of these hypotheses to be verified or excluded. Each one of these hypotheses has important implications for the evolution of the solar system, the formation and evolution of planets and satellites, and the delivery of water and organics to Early Mars and Early Earth. Determining the origin of Phobos and Deimos is identified by the NASA and the NRC Decadal Survey as the most important science goal at these bodies.
Performance Testing of Yardney Li-Ion Cells and Batteries in Support of Future NASA Missions
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Puglia, F. J.; Santee, S.; Gitzendanner, R.
2009-01-01
NASA requires lightweight rechargeable batteries for future missions to Mars and the outer planets that are capable of operating over a wide range of temperatures, with high specific energy and energy densities. Due to the attractive performance characteristics, Li-ion batteries have been identified as the battery chemistry of choice for a number of future applications. For example, JPL is planning to launch another unmanned rover mission to the planet Mars. This mission, referred to as the Mars Science Laboratory (MSL), will involve the use of a rover that is much larger than the previously developed Spirit and Opportunity Rovers for the 2003 Mars Exploration Rover (MER) mission, that are currently still in operation on the surface of the planet after more than five years. Part of the reason that the MER rovers have operated so successfully, far exceeding the required mission duration of 90 sols, is that they possess robust Li-ion batteries, manufactured by Yardney Technical Products, which have demonstrated excellent life characteristics. Given the excellent performance characteristics displayed, similar Li-ion batteries have been projected to successfully meet the mission requirements of the up-coming MSL mission. In addition to future missions to Mars, Li-ion technology is attractive for a number of other future NASA applications which require high specific energy, rechargeable batteries. To ascertain the viability of using Li-ion batteries for these applications, a number of performance validation tests have been performed on both Yardney cells and batteries of various sizes. These tests include mission simulation tests, charge and discharge rate characterization testing, cycle life testing under various conditions, and storage testing.
In Space Nuclear Power as an Enabling Technology for Deep Space Exploration
NASA Technical Reports Server (NTRS)
Sackheim, Robert L.; Houts, Michael
2000-01-01
Deep Space Exploration missions, both for scientific and Human Exploration and Development (HEDS), appear to be as weight limited today as they would have been 35 years ago. Right behind the weight constraints is the nearly equally important mission limitation of cost. Launch vehicles, upper stages and in-space propulsion systems also cost about the same today with the same efficiency as they have had for many years (excluding impact of inflation). Both these dual mission constraints combine to force either very expensive, mega systems missions or very light weight, but high risk/low margin planetary spacecraft designs, such as the recent unsuccessful attempts for an extremely low cost mission to Mars during the 1998-99 opportunity (i.e., Mars Climate Orbiter and the Mars Polar Lander). When one considers spacecraft missions to the outer heliopause or even the outer planets, the enormous weight and cost constraints will impose even more daunting concerns for mission cost, risk and the ability to establish adequate mission margins for success. This paper will discuss the benefits of using a safe in-space nuclear reactor as the basis for providing both sufficient electric power and high performance space propulsion that will greatly reduce mission risk and significantly increase weight (IMLEO) and cost margins. Weight and cost margins are increased by enabling much higher payload fractions and redundant design features for a given launch vehicle (higher payload fraction of IMLEO). The paper will also discuss and summarize the recent advances in nuclear reactor technology and safety of modern reactor designs and operating practice and experience, as well as advances in reactor coupled power generation and high performance nuclear thermal and electric propulsion technologies. It will be shown that these nuclear power and propulsion technologies are major enabling capabilities for higher reliability, higher margin and lower cost deep space missions design to reliably reach the outer planets for scientific exploration.
The empty primordial asteroid belt.
Raymond, Sean N; Izidoro, Andre
2017-09-01
The asteroid belt contains less than a thousandth of Earth's mass and is radially segregated, with S-types dominating the inner belt and C-types the outer belt. It is generally assumed that the belt formed with far more mass and was later strongly depleted. We show that the present-day asteroid belt is consistent with having formed empty, without any planetesimals between Mars and Jupiter's present-day orbits. This is consistent with models in which drifting dust is concentrated into an isolated annulus of terrestrial planetesimals. Gravitational scattering during terrestrial planet formation causes radial spreading, transporting planetesimals from inside 1 to 1.5 astronomical units out to the belt. Several times the total current mass in S-types is implanted, with a preference for the inner main belt. C-types are implanted from the outside, as the giant planets' gas accretion destabilizes nearby planetesimals and injects a fraction into the asteroid belt, preferentially in the outer main belt. These implantation mechanisms are simple by-products of terrestrial and giant planet formation. The asteroid belt may thus represent a repository for planetary leftovers that accreted across the solar system but not in the belt itself.
The chemical composition of the cores of the terrestrial planets and the moon
NASA Technical Reports Server (NTRS)
Kuskov, O. L.; Khitarov, N. I.
1977-01-01
Using models of the quasi-chemical theory of solutions, the activity coefficients of silicon are calculated in the melts Fe-Si, Ni-Si, and Fe-Ni-Si. The calculated free energies of solution of liquid nickel and silicon in liquid iron in the interval 0 to 1400 kbar and 1500 to 4000 K, shows that Fe-Ni-Si alloy is stable under the conditions of the outer core of the earth and the cores of the terrestrial planets. The oxidation-reduction conditions are studied, and the fugacity of oxygen in the mantles of the planets and at the core-mantle boundary are calculated. The mechanism of reduction of silicon is analyzed over a broad interval of p and T. The interaction between the matter of the core and mantle is studied, resulting in the extraction of silicon from the mantle and its solution in the material of the core. It is concluded that silicon can enter into the composition of the outer core of the earth and Venus, but probably does not enter into the composition of the cores of Mercury, Mars, and the moon, if in fact the latter possesses one.
NASA Astrophysics Data System (ADS)
Mustill, Alexander J.; Davies, Melvyn B.; Johansen, Anders
2017-07-01
We study how close-in systems such as those detected by Kepler are affected by the dynamics of bodies in the outer system. We consider two scenarios: outer systems of giant planets potentially unstable to planet-planet scattering and wide binaries that may be capable of driving Kozai or other secular variations of outer planets' eccentricities. Dynamical excitation of planets in the outer system reduces the multiplicity of Kepler-detectable planets in the inner system in ˜20-25 per cent of our systems. Accounting for the occurrence rates of wide-orbit planets and binary stars, ≈18 per cent of close-in systems could be destabilized by their outer companions in this way. This provides some contribution to the apparent excess of systems with a single transiting planet compared to multiple; however, it only contributes at most 25 per cent of the excess. The effects of the outer dynamics can generate systems similar to Kepler-56 (two coplanar planets significantly misaligned with the host star) and Kepler-108 (two significantly non-coplanar planets in a binary). We also identify three pathways to the formation of eccentric warm Jupiters resulting from the interaction between outer and inner systems: direct inelastic collision between an eccentric outer and an inner planet; secular eccentricity oscillations that may 'freeze out' when scattering resolves in the outer system; and scattering in the inner system followed by 'uplift', where inner planets are removed by interaction with the outer planets. In these scenarios, the formation of eccentric warm Jupiters is a signature of a past history of violent dynamics among massive planets beyond ˜1 au.
Constraints on planet X/Nemesis from Solar System's inner dynamics
NASA Astrophysics Data System (ADS)
Iorio, L.
2009-11-01
We use the corrections to the standard Newtonian/Einsteinian perihelion precessions of the inner planets of the Solar system, recently estimated by E.V. Pitjeva by fitting a huge planetary data set with the dynamical models of the EPM ephemerides, to put constraints on the position of a putative, yet undiscovered large body X of mass MX, not modelled in the EPM software. The direct action of X on the inner planets can be approximated by a elastic Hooke-type radial acceleration plus a term of comparable magnitude having a fixed direction in space pointing towards X. The perihelion precessions induced by them can be analytically worked out only for some particular positions of X in the sky; in general, numerical calculations are used. We show that the indirect effects of X on the inner planets through its action on the outer ones can be neglected, given the present-day level of accuracy in knowing . As a result, we find that Mars yields the tightest constraints, with the tidal parameter . To constrain rX we consider the case of a rock-ice planet with the mass of Mars and the Earth, a giant planet with the mass of Jupiter, a brown dwarf with MX = 80mJupiter, a red dwarf with M = 0.5Msolar and a Sun-mass body. For each of them we plot rminX as a function of the heliocentric latitude β and longitude λ. We also determine the forbidden spatial region for X by plotting its boundary surface in the three-dimensional space; it shows significant departures from spherical symmetry. A Mars-sized body can be found at not less than 70-85 au: such bounds are 147-175 au, 1006-1200 au, 4334-5170 au, 8113-9524 au and 10222-12000 au for a body with a mass equal to that of the Earth, Jupiter, a brown dwarf, red dwarf and the Sun, respectively.
Bringing the Excitement of Exploring Mars and the Giant Planets to Educators and the Public
NASA Astrophysics Data System (ADS)
Morrow, C. A.; Dusenbery, P. B.; Harold, J.
2003-05-01
We are living in a wonderful era of planetary exploration. In 2004 alone, two rovers will land on Mars and the Cassini-Huygens mission will arrive in the Saturn system for an extended 4-year tour. These events will bring much public attention and provide excellent reasons for substantive educational outreach to educators and the public. The Space Science Institute (SSI) of Boulder, CO and collaborators are responding with a comprehensive array of funded and proposed projects. These include the refurbishment and redeployment of the 5000 sq. ft MarsQuest national traveling exhibition, the launch of a 600 sq. ft. "mini-MarsQuest" called Destination Mars, the launch of an interactive website called "MarsQuest Online" (in partnership with TERC and JPL), a variety of workshops for teachers, museum educators, and planetarians (in partnership with "To Mars with MER", and JPL), and the development of a "Family Guide to Mars" for use by adults and children in informal learning settings. SSI is also proposing to develop another national traveling exhibition called "Giant Planets: Exploring the Outer Solar System". This exhibit (envisioned to be 3500 sq.ft.) and its educational program will take advantage of the excitement generated by the Cassini mission and origins-related research. Its education program will also benefit from SSI having led the development of the "Saturn Educator Guide" - a JPL-sponsored resource for teachers in grades 5 and up. This paper will provide an overview of our resources in planetary science education and communicate the valuable lessons we've learned about their design, development and dissemination. SSI's educational endeavors related to planetary science have been funded by several NASA and NSF grants and contracts.
Core Formation Process and Light Elements in the Planetary Core
NASA Astrophysics Data System (ADS)
Ohtani, E.; Sakairi, T.; Watanabe, K.; Kamada, S.; Sakamaki, T.; Hirao, N.
2015-12-01
Si, O, and S are major candidates for light elements in the planetary core. In the early stage of the planetary formation, the core formation started by percolation of the metallic liquid though silicate matrix because Fe-S-O and Fe-S-Si eutectic temperatures are significantly lower than the solidus of the silicates. Therefore, in the early stage of accretion of the planets, the eutectic liquid with S enrichment was formed and separated into the core by percolation. The major light element in the core at this stage will be sulfur. The internal pressure and temperature increased with the growth of the planets, and the metal component depleted in S was molten. The metallic melt contained both Si and O at high pressure in the deep magma ocean in the later stage. Thus, the core contains S, Si, and O in this stage of core formation. Partitioning experiments between solid and liquid metals indicate that S is partitioned into the liquid metal, whereas O is weakly into the liquid. Partitioning of Si changes with the metallic iron phases, i.e., fcc iron-alloy coexisting with the metallic liquid below 30 GPa is depleted in Si. Whereas hcp-Fe alloy above 30 GPa coexisting with the liquid favors Si. This contrast of Si partitioning provides remarkable difference in compositions of the solid inner core and liquid outer core among different terrestrial planets. Our melting experiments of the Fe-S-Si and Fe-O-S systems at high pressure indicate the core-adiabats in small planets, Mercury and Mars, are greater than the slope of the solidus and liquidus curves of these systems. Thus, in these planets, the core crystallized at the top of the liquid core and 'snowing core' formation occurred during crystallization. The solid inner core is depleted in both Si and S whereas the liquid outer core is relatively enriched in Si and S in these planets. On the other hand, the core adiabats in large planets, Earth and Venus, are smaller than the solidus and liquidus curves of the systems. The inner core of these planets crystallized at the center of the core and it has the relatively Si rich inner core and the S enriched outer core. Based on melting and solid-liquid partitioning, the equation of state, and sound velocity of iron-light element alloys, we examined the plausible distribution of light elements in the liquid outer and solid inner cores of the terrestrial planets.
Mars 96 small station biological decontamination
NASA Astrophysics Data System (ADS)
Debus, A.; Runavot, J.; Rogovski, G.; Bogomolov, V.; Khamidullina, N.; Darbord, J. C.; Plombin, B. J.; Trofimov, V.; Ivanov, M.
In the context of extraterrestrial exploration missions and since the beginning of solar system exploration, it is required, according to the article IX of the Outer Space Treaty (London/Washington January 27, 1967) to preserve planets and the Earth from cross contamination. Consequently, COSPAR (Committee of Space Research) has established some planetary protection recommendations in order to protect the environments of other worlds from biological contamination by terrestrial microorganisms, to protect exobiological science for searching for life on planets, and to protect the Earth's environment from back contamination. For the upcoming Mars exploration missions, and after updating the planetary protection recommendations, a biological decontamination program has been designed for Mars 96 landers. After sterilization or biocleaning of equipment and instruments, these are integrated into a cleanroom and kept in sterile conditions with recontamination control in order to satisfy the surface contamination requirements. The Mars 96 orbiter does not need any implementation of sterilization procedures because the probability of spacecraft crash does not exceed 10^-5 and because it's orbit is in accordance with quarantine requirements (orbit lifetime with 0.9999 confidence for the first 20 years and 0.95 confidence during the next 20 years). For the Mars 96 small stations, different methods have been used and especially for the French and Finnish payload, a complete description of hydrogen peroxide gas plasma sterilization will be given, including bioburden assessments and sterility level determination. Probe integration implementation and procedures are described in the second part of this paper.
Producing Distant Planets by Mutual Scattering of Planetary Embryos
NASA Astrophysics Data System (ADS)
Silsbee, Kedron; Tremaine, Scott
2018-02-01
It is likely that multiple bodies with masses between those of Mars and Earth (“planetary embryos”) formed in the outer planetesimal disk of the solar system. Some of these were likely scattered by the giant planets into orbits with semimajor axes of hundreds of au. Mutual torques between these embryos may lift the perihelia of some of them beyond the orbit of Neptune, where they are no longer perturbed by the giant planets, so their semimajor axes are frozen in place. We conduct N-body simulations of this process and its effect on smaller planetesimals in the region of the giant planets and the Kuiper Belt. We find that (i) there is a significant possibility that one sub-Earth mass embryo, or possibly more, is still present in the outer solar system; (ii) the orbit of the surviving embryo(s) typically has perihelion of 40–70 au, semimajor axis less than 200 au, and inclination less than 30° (iii) it is likely that any surviving embryos could be detected by current or planned optical surveys or have a significant effect on solar system ephemerides; (iv) whether or not an embryo has survived to the present day, its dynamical influence earlier in the history of the solar system can explain the properties of the detached disk (defined in this paper as containing objects with perihelia >38 au and semimajor axes between 80 and 500 au).
NASA Technical Reports Server (NTRS)
Sercel, Joel C.
1991-01-01
The topics presented are covered in viewgraph form. The programmatic objective is to establish the feasibility of propulsion technologies for vastly expanded space activity. The technical objective is a revolutionary performance sought, such as: (1) about 1 kg/kW specific mass; (2) specific impulse tailored to mission requirements; (3) ability to use in-situ resources; (4) round-trips to Mars in months; (5) round-trips to outer planets in 1 to 2 years; and (6) the capability for robotic mission beyond the solar system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitzmann, D., E-mail: daniel.kitzmann@csh.unibe.ch
Carbon dioxide ice clouds are thought to play an important role for cold terrestrial planets with thick CO{sub 2} dominated atmospheres. Various previous studies showed that a scattering greenhouse effect by carbon dioxide ice clouds could result in a massive warming of the planetary surface. However, all of these studies only employed simplified two-stream radiative transfer schemes to describe the anisotropic scattering. Using accurate radiative transfer models with a general discrete ordinate method, this study revisits this important effect and shows that the positive climatic impact of carbon dioxide clouds was strongly overestimated in the past. The revised scattering greenhousemore » effect can have important implications for the early Mars, but also for planets like the early Earth or the position of the outer boundary of the habitable zone.« less
Solar Power System Analyses for Electric Propulsion Missions
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Gefert, Leon P.
1999-01-01
Solar electric propulsion (SEP) mission architectures are applicable to a wide range of NASA missions including human Mars exploration and robotic exploration of the outer planets. In this paper, we discuss the conceptual design and detailed performance analysis of an SEP stage electric power system (EPS). EPS performance, mass and area predictions are compared for several PV array technologies. Based on these studies, an EPS design for a 1-MW class, Human Mars Mission SEP stage was developed with a reasonable mass, 9.4 metric tons, and feasible deployed array area, 5800 sq m. An EPS was also designed for the Europa Mapper spacecraft and had a mass of 151 kg and a deployed array area of 106 sq m.
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2002-01-01
Mars is one of the most fascinating planets in the solar system, featuring an atmosphere, water, and enormous volcanoes and canyons. The Mars Pathfinder, Global Surveyor, and Odyssey missions mark the first wave of the Planet Earth's coming invasion of the red planet, changing our views of the past and future of the planet and the possibilities of life. Scientist and science-fiction writer Geoffrey A. Landis will present experiences on the Pathfinder mission, the challenges of using solar power on the surface of Mars, and present future missions to Mars such as the upcoming Mars Twin Rovers, which will launch two highly-capable vehicles in 2003 to explore the surface of Mars.
Mass Wasting In Planetary Environments: Implications For Seismicity
NASA Technical Reports Server (NTRS)
Weber, R. C.; Nahm, A. L.; Schmerr, N.
2015-01-01
On Earth, mass wasting events such as rock falls and landslides are well known conse-quences of seismic activity. Through a variety of re-mote sensing techniques, tectonic faults have been pos-itively identified on all four of the inner planets, Earth's Moon, several outer planet satellites, and aster-oids. High-resolution imaging has furthermore ena-bled positive identification of mass wasting events on many of these bodies. On Mars, it has been suggested that fallen boulders may be indicative of pale-omarsquakes. On the Moon, meteor impacts and moonquakes have likewise been suggested as potential triggering mechanisms for mass wasting. Indeed, we know from the Apollo era that the Moon experienc-es a wide variety of seismicity. Seismicity estimates play an important role in creat-ing regional geological characterizations, which are useful not only for understanding a planet's formation and evolution, but also of key importance to site selec-tion for landed missions. Here we investigate the re-gional effects of seismicity in planetary environments with the goal of determining whether surface features such as landslides and boulder trails on the Moon, Mars, and Mercury could be triggered by fault motion. We attempt to quantify the amount of near-source ground shaking necessary to mobilize the mate-rial observed in various instances of mass wasting.
NASA Astrophysics Data System (ADS)
Raffaitin, Gérard; Durand, Pierre
2016-03-01
Since the 17th century, the study of the planet Mars interested astronomers. The changes observed on Mars were enigmatic. Several philosophers thought that this planet does have inhabitants. Giovanni Schiaparelli observed canals and their changes. Was it the sign of a life on this planet?
NASA's Hubble Sees Martian Moon Orbiting the Red Planet
2017-07-20
The sharp eye of NASA's Hubble Space Telescope has captured the tiny moon Phobos during its orbital trek around Mars. Because the moon is so small, it appears star-like in the Hubble pictures. Over the course of 22 minutes, Hubble took 13 separate exposures, allowing astronomers to create a time-lapse video showing the diminutive moon's orbital path. The Hubble observations were intended to photograph Mars, and the moon's cameo appearance was a bonus. A football-shaped object just 16.5 miles by 13.5 miles by 11 miles, Phobos is one of the smallest moons in the solar system. It is so tiny that it would fit comfortably inside the Washington, D.C. Beltway. The little moon completes an orbit in just 7 hours and 39 minutes, which is faster than Mars rotates. Rising in the Martian west, it runs three laps around the Red Planet in the course of one Martian day, which is about 24 hours and 40 minutes. It is the only natural satellite in the solar system that circles its planet in a time shorter than the parent planet's day. About two weeks after the Apollo 11 manned lunar landing on July 20, 1969, NASA's Mariner 7 flew by the Red Planet and took the first crude close-up snapshot of Phobos. On July 20, 1976 NASA's Viking 1 lander touched down on the Martian surface. A year later, its parent craft, the Viking 1 orbiter, took the first detailed photograph of Phobos, revealing a gaping crater from an impact that nearly shattered the moon. Phobos was discovered by Asaph Hall on August 17, 1877 at the U.S. Naval Observatory in Washington, D.C., six days after he found the smaller, outer moon, named Deimos. Hall was deliberately searching for Martian moons. Both moons are named after the sons of Ares, the Greek god of war, who was known as Mars in Roman mythology. Phobos (panic or fear) and Deimos (terror or dread) accompanied their father into battle. Close-up photos from Mars-orbiting spacecraft reveal that Phobos is apparently being torn apart by the gravitational pull of Mars. The moon is marred by long, shallow grooves that are probably caused by tidal interactions with its parent planet. Phobos draws nearer to Mars by about 6.5 feet every hundred years. Scientists predict that within 30 to 50 million years, it either will crash into the Red Planet or be torn to pieces and scattered as a ring around Mars. Orbiting 3,700 miles above the Martian surface, Phobos is closer to its parent planet than any other moon in the solar system. Despite its proximity, observers on Mars would see Phobos at just one-third the width of the full moon as seen from Earth. Conversely, someone standing on Phobos would see Mars dominating the horizon, enveloping a quarter of the sky. From the surface of Mars, Phobos can be seen eclipsing the sun. However, it is so tiny that it doesn't completely cover our host star. Transits of Phobos across the sun have been photographed by several Mars-faring spacecraft. The origin of Phobos and Deimos is still being debated. Scientists concluded that the two moons were made of the same material as asteroids. This composition and their irregular shapes led some astrophysicists to theorize that the Martian moons came from the asteroid belt. However, because of their stable, nearly circular orbits, other scientists doubt that the moons were born as asteroids. Such orbits are rare for captured objects, which tend to move erratically. An atmosphere could have slowed down Phobos and Deimos and settled them into their current orbits, but the Martian atmosphere is too thin to have circularized the orbits. Also, the moons are not as dense as members of the asteroid belt. Phobos may be a pile of rubble that is held together by a thin crust. It may have formed as dust and rocks encircling Mars were drawn together by gravity. Or, it may have experienced a more violent birth, where a large body smashing into Mars flung pieces skyward, and those pieces were brought together by gravity. Perhaps an existing moon was destroyed, reduced to the rubble that would become Phobos. Hubble took the images of Phobos orbiting the Red Planet on May 12, 2016, when Mars was 50 million miles from Earth. This was just a few days before the planet passed closer to Earth in its orbit than it had in the past 11 years. A time-lapse video captures a portion of the path that tiny Phobos takes around Mars. Over the course of 22 minutes, Hubble snapped 13 separate exposures of the little Martian moon. The video can be viewed at https://photojournal.jpl.nasa.gov/catalog/PIA21837
Origin scenarios for the Kepler 36 planetary system
NASA Astrophysics Data System (ADS)
Quillen, Alice C.; Bodman, Eva; Moore, Alexander
2013-11-01
We explore scenarios for the origin of two different density planets in the Kepler 36 system in adjacent orbits near the 7:6 mean motion resonance. We find that fine tuning is required in the stochastic forcing amplitude, the migration rate and planet eccentricities to allow two convergently migrating planets to bypass mean motion resonances such as the 4:3, 5:4 and 6:5, and yet allow capture into the 7:6 resonance. Stochastic forcing can eject the system from resonance causing a collision between the planets, unless the disc causing migration and stochastic forcing is depleted soon after resonance capture. We explore a scenario with approximately Mars mass embryos originating exterior to the two planets and migrating inwards towards two planets. We find that gravitational interactions with embryos can nudge the system out of resonances. Numerical integrations with about a half dozen embryos can leave the two planets in the 7:6 resonance. Collisions between planets and embryos have a wide distribution of impact angles and velocities ranging from accretionary to disruptive. We find that impacts can occur at sufficiently high impact angle and velocity that the envelope of a planet could have been stripped, leaving behind a dense core. Some of our integrations show the two planets exchanging locations, allowing the outer planet that had experienced multiple collisions with embryos to become the innermost planet. A scenario involving gravitational interactions and collisions with embryos may account for both the proximity of the Kepler 36 planets and their large density contrast.
Nuclear thermal rockets using indigenous extraterrestrial propellants
NASA Technical Reports Server (NTRS)
Zubrin, Robert M.
1990-01-01
A preliminary examination of a concept for a Mars and outer solar system exploratory vehicle is presented. Propulsion is provided by utilizing a nuclear thermal reactor to heat a propellant volatile indigenous to the destination world to form a high thrust rocket exhaust. Candidate propellants, whose performance, materials compatibility, and ease of acquisition are examined and include carbon dioxide, water, methane, nitrogen, carbon monoxide, and argon. Ballistics and winged supersonic configurations are discussed. It is shown that the use of this method of propulsion potentially offers high payoff to a manned Mars mission. This is accomplished by sharply reducing the initial mission mass required in low earth orbit, and by providing Mars explorers with greatly enhanced mobility in traveling about the planet through the use of a vehicle that can refuel itself each time it lands. Thus, the nuclear landing craft is utilized in combination with a hydrogen-fueled nuclear-thermal interplanetary launch. By utilizing such a system in the outer solar system, a low level aerial reconnaissance of Titan combined with a multiple sample return from nearly every satellite of Saturn can be accomplished in a single launch of a Titan 4 or the Space Transportation System (STS). Similarly a multiple sample return from Callisto, Ganymede, and Europa can also be accomplished in one launch of a Titan 4 or the STS.
Revisiting the Scattering Greenhouse Effect of CO2 Ice Clouds
NASA Astrophysics Data System (ADS)
Kitzmann, D.
2016-02-01
Carbon dioxide ice clouds are thought to play an important role for cold terrestrial planets with thick CO2 dominated atmospheres. Various previous studies showed that a scattering greenhouse effect by carbon dioxide ice clouds could result in a massive warming of the planetary surface. However, all of these studies only employed simplified two-stream radiative transfer schemes to describe the anisotropic scattering. Using accurate radiative transfer models with a general discrete ordinate method, this study revisits this important effect and shows that the positive climatic impact of carbon dioxide clouds was strongly overestimated in the past. The revised scattering greenhouse effect can have important implications for the early Mars, but also for planets like the early Earth or the position of the outer boundary of the habitable zone.
NASA Astrophysics Data System (ADS)
Newcomb, Simon
2011-10-01
Preface; Part I. The System of the World Historically Developed: Introduction; 1. The ancient astronomy, or the apparent motions of the heavenly bodies; 2. The Copernican system, or the true motions of the heavenly bodies; 3. Universal gravitation; Part II. Practical Astronomy: Introductory remarks; 1. The telescope; 2. Application of the telescope to celestial measurements; 3. Measuring distances in the heavens; 4. The motion of light; 5. The spectroscope; Part III. The Solar System: 1. General structure of the solar system; 2. The sun; 3. The inner group of planets; 4. The outer group of planets; 5. Comets and meteors; Part IV. The Stellar Universe: 1. The stars as they are seen; 2. The structure of the universe; 3. The cosmogony; Addendum to Part III chapter 2; Appendix; Index; Addendum II, the satellites of Mars; Explanation of the star maps.
Mercury radar imaging: evidence for polar ice.
Slade, M A; Butler, B J; Muhleman, D O
1992-10-23
The first unambiguous full-disk radar mapping of Mercury at 3.5-centimeter wavelength, with the Goldstone 70-meter antenna transmitting and 26 antennas of the Very Large Array receiving, has provided evidence for the presence of polar ice. The radar experiments, conducted on 8 and 23 August 1991, were designed to image the half of Mercury not photographed by Mariner 10. The orbital geometry allowed viewing beyond the north pole of Mercury; a highly reflective region was clearly visible on the north pole during both experiments. This polar region has areas in which the circular polarization ratio (pt) was 1.0 to 1.4; values < approximately 0.1 are typical for terrestrial planets. Such high values of have hitherto been observed in radar observations only from icy regions of Mars and icy outer planet satellites.
Interannual variability of planet-encircling dust storms on Mars
NASA Technical Reports Server (NTRS)
Zurek, Richard W.; Martin, Leonard J.
1993-01-01
A recent review of earth-based telescopic observations of Mars together with Viking orbiter and lander data are employed to estimate the frequency of occurrence of planet-encircling dust storms over the past century and to test whether the period spanned by the Mariner 9 and Viking missions to Mars is representative of the decades prior to 1950. Both spacecraft and earth-based observations suggest that planet-encircling dust storms on Mars occur during a 'dust storm season' in southern spring and summer. Viking data show that planet-encircling dust storms could have occurred in the past on Mars without being detected from earth during years in which Mars was far from earth during the dust storm season. Planet-encircling storms were absent during the dust storm seasons monitored during several favorable oppositions prior to 1956 and after 1986. The change of a planet-encircling dust storm occurring in any arbitrary Mars year is estimated to be approximately one in three, if this occurrence is random from year to year and yet restricted seasonally to southern spring and summer.
Cutaway of SEIS (Artist's Concept)
2018-04-09
This artist's rendering shows a cutaway of the Seismic Experiment for Interior Structure instrument, or SEIS, which will fly as part of NASA's Mars InSight lander. SEIS is a highly sensitive seismometer that will be used to detect marsquakes from the Red Planet's surface for the first time. There are two layers in this cutaway. The outer layer is the Wind and Thermal Shield -- a covering that protects the seismometer from the Martian environment. The wind on Mars, as well as extreme temperature changes, could affect the highly sensitive instrument. The inside layer is SEIS itself, a brass-colored dome that houses the instrument's three pendulums. These insides are inside a titanium vacuum chamber to further isolate them from temperature changes on the Martian surface. https://photojournal.jpl.nasa.gov/catalog/PIA22320
Marshall Space Flight Center Research and Technology Report 2015
NASA Technical Reports Server (NTRS)
Keys, A. S. (Compiler); Tinker, M. L. (Compiler); Sivak, A. D. (Compiler); Morris, H. C. (Compiler)
2015-01-01
The investments in technology development we made in 2015 not only support the Agency's current missions, but they will also enable new missions. Some of these projects will allow us to develop an in-space architecture for human space exploration; Marshall employees are developing and testing cutting-edge propulsion solutions that will propel humans in-space and land them on Mars. Others are working on technologies that could support a deep space habitat, which will be critical to enable humans to live and work in deep space and on other worlds. Still others are maturing technologies that will help new scientific instruments study the outer edge of the universe-instruments that will provide valuable information as we seek to explore the outer planets and search for life.
The value of Phobos sample return
NASA Astrophysics Data System (ADS)
Murchie, Scott L.; Britt, Daniel T.; Pieters, Carle M.
2014-11-01
Phobos occupies a unique position physically, scientifically, and programmatically on the road to exploration of the solar system. It is a low-gravity object moderately inside the gravity well of Mars. Scientifically, it is both an enigma and an opportunity: an enigma because the origins of both it and Deimos are uncertain, and provide insights into formation of the terrestrial planets; and an opportunity because Phobos may be a waypoint or staging point for future human exploration of the Mars system. Phobos is a low albedo, spectrally bland body with a red-sloped continuum. It appears similar to D-type objects more commonly found in the outer asteroid belt and Jovian space (Rivkin et al., 2002), but occurs in an orbit that is difficult to explain by capture (Burns, 1992). It might have a primitive composition like that inferred for outer solar system objects or it could be related to Mars and, for example, be composed of Martian basin ejecta. Regardless, Phobos has acted as a witness plate to Martian debris over the age of the solar system. The moons may possibly be a source of in situ resources that could support future human exploration in circum-Mars space or on the Martian surface. in situ compositional analyses can address many questions relevant to preparation for future human exploration. Sample return resolves those questions while also enabling detailed analyses in terrestrial laboratories to address higher order questions, many of which have not yet been asked.
United theory of planet formation (i): Tandem regime
NASA Astrophysics Data System (ADS)
Ebisuzaki, Toshikazu; Imaeda, Yusuke
2017-07-01
The present paper is the first one of a series of papers that present the new united theory of planet formation, which includes magneto-rotational instability and porous aggregation of solid particles in an consistent way. We here describe the ;tandem; planet formation regime, in which a solar system like planetary systems are likely to be produced. We have obtained a steady-state, 1-D model of the accretion disk of a protostar taking into account the magneto-rotational instability (MRI) and and porous aggregation of solid particles. We find that the disk is divided into an outer turbulent region (OTR), a MRI suppressed region (MSR), and an inner turbulent region (ITR). The outer turbulent region is fully turbulent because of MRI. However, in the range, rout(= 8 - 60 AU) from the central star, MRI is suppressed around the midplane of the gas disk and a quiet area without turbulence appears, because the degree of ionization of gas becomes low enough. The disk becomes fully turbulent again in the range rin(= 0.2 - 1 AU), which is called the inner turbulent region, because the midplane temperature become high enough (>1000 K) due to gravitational energy release. Planetesimals are formed through gravitational instability at the outer and inner MRI fronts (the boundaries between the MRI suppressed region (MSR) and the outer and inner turbuent regions) without particle enhancement in the original nebula composition, because of the radial concentration of the solid particles. At the outer MRI front, icy particles grow through low-velocity collisions into porous aggregates with low densities (down to ∼10-5 gcm-3). They eventually undergo gravitational instability to form icy planetesimals. On the other hand, rocky particles accumulate at the inner MRI front, since their drift velocities turn outward due to the local maximum in gas pressure. They undergo gravitational instability in a sub-disk of pebbles to form rocky planetesimals at the inner MRI front. They are likely to be volatile-free because of the high temperature (>1000 K) at this formation site. Such water-free rocky particles may explain the formation of enstatite chondrites, of which the Earth is likely to be primarily composed of. It is also consistent with the model in which the Earth was initially formed as a completely volatile-free planet. The water and other volatile elements came later through the accretion of icy particles by the occasional scatterings in the outer regions. Our new proposed tandem planet formation regime shows that planetesimals are formed at two distinct sites (outer and inner edges of the MRI suppressed region). The former is likely to be the source of outer gas giants and the latter inner rocky planets. The tandem regime also explains the gap in the distribution of solid components (2-4 AU), which is necessary to form a ;solar-system-like; planetary system, which has a relatively small Mars and a very small mass in the main asteroid belt. We found that this tandem regime dose not take place when the vertical magnetic field of the disk five times weaker compared with that we assumed in the present paper, since the outer MRI front shift outward beyond 100 AU. This suggests that yet other regimes exists in our united theory. It may explain the variation observed in exsoplanetary systems by variations in magnetic field and probably angular momentum of the parent molecular cloud.
Obliquity histories of Earth and Mars: Influence of inertial and dissipative core-mantle coupling
NASA Technical Reports Server (NTRS)
Bills, Bruce G.
1990-01-01
For both the Earth and Mars, secular variations in the angular separation of the spin axis from the orbit normal are suspected of driving major climatic changes. There is considerable interest in determining the amplitude and timing of these obliquity variations. If the orientation of the orbital plane were inertially fixed, and the planet were to act as a rigid body in it response to precessional torques, the spin axis would simply precess around the orbit at a fixed obliquity and at a uniform angular rate. The precession rate parameter depends on the principal moments of inertia and rotation rate of the perturbed body, and on the gravitational masses and semiminor axes of the perturbing bodies. For Mars, the precession rate is not well known, but probably lies in the interval 8 to 10 arcsec/year. Gravitational interactions between the planets lead to secular motions of the orbit planes. In the rigid body case, the spin axis still attempts to precess about the instantaneous orbit normal, but now the obliquity varies. The hydrostatic figure of a planet represents a compromise between gravitation, which attempts to attain spherical symmetry, and rotation, which prefers cylindrical symmetry. Due to their higher mean densities the cores of the Earth and Mars will be more nearly spherical than the outer layers of these planets. On short time scales it is appropriate to consider the core to be an inviscid fluid constrained to move with the ellipsoidal region bounded by the rigid mantle. The inertial coupling provided by this mechanism is effective whenever the ellipticicy of the container exceeds the ratio of precessional to rotational rates. If the mantle were actually rigid, this would be an extremely effective type of coupling. However, on sufficiently long time scales, the mantle will deform viscously and can accommodate the motions of the core fluid. A fundamentally different type of coupling is provided by electromagnetic or viscous torques. This type of coupling is likely to be most important on longer time scales. In each case, the mantle exerts an equal and opposite torque on the core.
NASA Technical Reports Server (NTRS)
1986-01-01
In 1982, the NASA Solar System Exploration Committee (SSEC) published a report on a Core Program of planetary missions, representing the minimum-level program that could be carried out in a cost effective manner, and would yield a continuing return of basic scientific results. This is the second part of the SSEC report, describing missions of the highest scientific merit that lie outside the scope of the previously recommended Core Program because of their cost and technical challenge. These missions include the autonomous operation of a mobile scientific rover on the surface of Mars, the automated collection and return of samples from that planet, the return to Earth of samples from asteroids and comets, projects needed to lay the groundwork for the eventual utilization of near-Earth resources, outer planet missions, observation programs for extra-solar planets, and technological developments essential to make these missions possible.
The great dichotomy of the Solar System: Small terrestrial embryos and massive giant planet cores
NASA Astrophysics Data System (ADS)
Morbidelli, A.; Lambrechts, M.; Jacobson, S.; Bitsch, B.
2015-09-01
The basic structure of the Solar System is set by the presence of low-mass terrestrial planets in its inner part and giant planets in its outer part. This is the result of the formation of a system of multiple embryos with approximately the mass of Mars in the inner disk and of a few multi-Earth-mass cores in the outer disk, within the lifetime of the gaseous component of the protoplanetary disk. What was the origin of this dichotomy in the mass distribution of embryos/cores? We show in this paper that the classic processes of runaway and oligarchic growth from a disk of planetesimals cannot explain this dichotomy, even if the original surface density of solids increased at the snowline. Instead, the accretion of drifting pebbles by embryos and cores can explain the dichotomy, provided that some assumptions hold true. We propose that the mass-flow of pebbles is two-times lower and the characteristic size of the pebbles is approximately ten times smaller within the snowline than beyond the snowline (respectively at heliocentric distance r
Bringing Planetary Science to the Public through Traveling Exhibitions
NASA Astrophysics Data System (ADS)
Dusenbery, P. B.
2001-11-01
The Space Science Institute (SSI) of Boulder, Colorado has recently developed two museum exhibits called the Space Weather Center and MarsQuest. It is currently planning to develop another exhibit called Gas Giants. These exhibitions provide research scientists the opportunity to engage in a number of activities that are vital to the success of these major outreach programs. The Space Weather Center was developed in partnership with various research missions at NASA's Goddard Space Flight Center. The focus of the presentation will be on MarsQuest and Gas Giants. MarsQuest is a 5000 square-foot, 3M, traveling exhibition that is now touring the country. The exhibit's 3-year tour will enable millions of Americans to share in the excitement of the scientific exploration of Mars and learn more about their own planet in the process. The associated planetarium show and education program will also be described, with particular emphasis on workshops to orient museum staff (e.g. museum educators and docents) and workshops for master educators near host museums and science centers. The workshops make innovative connections between the exhibitions interactive experiences and lesson plans aligned with the National Science Education Standards. These exhibit programs are good models for actively involving scientists and their discoveries to help improve informal science education in the museum community and for forging a stronger connection between formal and informal education. The presentation will also discuss how Gas Giants, a proposed 4000 square-foot traveling exhibition on the mysteries and discoveries of the outer planets, will be able to take advantage of the connections and resources that have been developed by the MarsQuest project.
Laboratory Simulations of Martian and Venusian Aeolian Processes
NASA Technical Reports Server (NTRS)
Greeley, Ronald
1999-01-01
With the flyby of the Neptune system by Voyager, the preliminary exploration of the Solar System was accomplished. Data have been returned for all major planets and satellites except the Pluto system. Results show that the surfaces of terrestrial planets and satellites have been subjected to a wide variety of geological processes. On solid- surface planetary objects having an atmosphere, aeolian processes are important in modifying their surfaces through the redistribution of fine-grained material by the wind. Bedrock may be eroded to produce particles and the particles transported by wind for deposition in other areas. This process operates on Earth today and is evident throughout the geological record. Aeolian processes also occur on Mars, Venus, and possibly Titan and Triton, both of which are outer planet satellites that have atmospheres. Mariner 9 and Viking results show abundant wind-related landforms on Mars, including dune fields and yardangs (wind-eroded hills). On Venus, measurements made by the Soviet Venera and Vega spacecraft and extrapolations from the Pioneer Venus atmospheric probes show that surface winds are capable of transporting particulate materials and suggest that aeolian processes may operate on that planet as well. Magellan radar images of Venus show abundant wind streaks in some areas, as well as dune fields and a zone of possible yardangs. The study of planetary aeolian processes must take into account diverse environments, from the cold, low-density atmosphere of Mars to the extremely hot, high- density Venusian atmosphere. Factors such as threshold wind speeds (minimum wind velocity needed to move particles), rates of erosion and deposition, trajectories of windblown particles, and aeolian flow fields over various landforms are all important aspects of the problem. In addition, study of aeolian terrains on Earth using data analogous to planetary data-collection systems is critical to the interpretation of spacecraft information and places constraints on results from numerical models and laboratory simulations.
Water Delivery and Giant Impacts in the 'Grand Tack' Scenario
NASA Technical Reports Server (NTRS)
O'Brien, David P.; Walsh, Kevin J.; Morbidelli, Alessandro; Raymond, Sean N.; Mandell, Avi M.
2014-01-01
A new model for terrestrial planet formation has explored accretion in a truncated protoplanetary disk, and found that such a configuration is able to reproduce the distribution of mass among the planets in the Solar System, especially the Earth/Mars mass ratio, which earlier simulations have generally not been able to match. Walsh et al. tested a possible mechanism to truncate the disk-a two-stage, inward-then-outward migration of Jupiter and Saturn, as found in numerous hydrodynamical simulations of giant planet formation. In addition to truncating the disk and producing a more realistic Earth/Mars mass ratio, the migration of the giant planets also populates the asteroid belt with two distinct populations of bodies-the inner belt is filled by bodies originating inside of 3 AU, and the outer belt is filled with bodies originating from between and beyond the giant planets (which are hereafter referred to as 'primitive' bodies). One implication of the truncation mechanism proposed in Walsh et al. is the scattering of primitive planetesimals onto planet-crossing orbits during the formation of the planets. We find here that the planets will accrete on order 1-2% of their total mass from these bodies. For an assumed value of 10% for the water mass fraction of the primitive planetesimals, this model delivers a total amount of water comparable to that estimated to be on the Earth today. The radial distribution of the planetary masses and the dynamical excitation of their orbits are a good match to the observed system. However, we find that a truncated disk leads to formation timescales more rapid than suggested by radiometric chronometers. In particular, the last giant impact is typically earlier than 20 Myr, and a substantial amount of mass is accreted after that event. This is at odds with the dating of the Moon-forming impact and the estimated amount of mass accreted by Earth following that event. However, 5 of the 27 planets larger than half an Earth mass formed in all simulations do experience large late impacts and subsequent accretion consistent with those constraints.
ERIC Educational Resources Information Center
Riddle, Bob
2005-01-01
As students continue their monthly plotting of the planets along the ecliptic they should start to notice differences between inner and outer planet orbital motions, and their relative position or separation from the Sun. Both inner and outer planets have direct eastward motion, as well as retrograde motion. Inner planets Mercury and Venus,…
Nuclear Electric Propulsion for Outer Space Missions
NASA Technical Reports Server (NTRS)
Barret, Chris
2003-01-01
Today we know of 66 moons in our very own Solar System, and many of these have atmospheres and oceans. In addition, the Hubble (optical) Space Telescope has helped us to discover a total of 100 extra-solar planets, i.e., planets going around other suns, including several solar systems. The Chandra (X-ray) Space Telescope has helped us to discover 33 Black Holes. There are some extremely fascinating things out there in our Universe to explore. In order to travel greater distances into our Universe, and to reach planetary bodies in our Solar System in much less time, new and innovative space propulsion systems must be developed. To this end NASA has created the Prometheus Program. When one considers space missions to the outer edges of our Solar System and far beyond, our Sun cannot be relied on to produce the required spacecraft (s/c) power. Solar energy diminishes as the square of the distance from the Sun. At Mars it is only 43% of that at Earth. At Jupiter, it falls off to only 3.6% of Earth's. By the time we get out to Pluto, solar energy is only .066% what it is on Earth. Therefore, beyond the orbit of Mars, it is not practical to depend on solar power for a s/c. However, the farther out we go the more power we need to heat the s/c and to transmit data back to Earth over the long distances. On Earth, knowledge is power. In the outer Solar System, power is knowledge. It is important that the public be made aware of the tremendous space benefits offered by Nuclear Electric Propulsion (NEP) and the minimal risk it poses to our environment. This paper presents an overview of the reasons for NEP systems, along with their basic components including the reactor, power conversion units (both static and dynamic), electric thrusters, and the launch safety of the NEP system.
Planetary Protection Constraints For Planetary Exploration and Exobiology
NASA Astrophysics Data System (ADS)
Debus, A.; Bonneville, R.; Viso, M.
According to the article IX of the OUTER SPACE TREATY (London / Washington January 27., 1967) and in the frame of extraterrestrial missions, it is required to preserve planets and Earth from contamination. For ethical, safety and scientific reasons, the space agencies have to comply with the Outer Space Treaty and to take into account the related planetary protection Cospar recommendations. Planetary protection takes also into account the protection of exobiological science, because the results of life detection experimentations could have impacts on planetary protection regulations. The validation of their results depends strongly of how the samples have been collected, stored and analyzed, and particularly of their biological and organic cleanliness. Any risk of contamination by organic materials, chemical coumpounds and by terrestrial microorganisms must be avoided. A large number of missions is presently scheduled, particularly on Mars, in order to search for life or traces of past life. In the frame of such missions, CNES is building a planetary protection organization in order handle and to take in charge all tasks linked to science and engineering concerned by planetary protection. Taking into account CNES past experience in planetary protection related to the Mars 96 mission, its planned participation in exobiological missions with NASA as well as its works and involvement in Cospar activities, this paper will present the main requirements in order to avoid celestial bodies biological contamination, focussing on Mars and including Earth, and to protect exobiological science.
Launch Vehicle Directorate and Centaur Rocket Model
1979-05-21
The National Aeronautics and Space Administration (NASA) Lewis Research Center’s Launch Vehicle Directorate in front of a full-scale model of the Centaur second-stage rocket. The photograph was taken to mark Centaur’s fiftieth launch. NASA Lewis managed the Centaur Program since 1962. At that time, the only prior launch attempt ended in failure. Lewis improved the spacecraft and tested it extensively throughout the early 1960s. In May 1966 an Atlas-Centaur sent the Surveyor spacecraft to the moon. It was the first successful soft landing on another planet. The Launch Vehicles Division was formed in 1969 to handle the increasing number of Centaur launches. The Lewis team became experts at integrating the payload with the Centaur and calculating proper trajectories for the missions. Centaur’s first 50 missions included Orbiting Astronomical Observatories, the Mariner 6 and 7 flybys of Mars, Mariner 9 which was the first spacecraft to orbit around another planet, the Pioneer 10 and 11 missions to the outer solar system, the Mariner 10 flyby of Venus and Mercury, the Viking 1 and 2 Mars landers, Voyagers 1 and 2 missions to Jupiter, Saturn, Uranus, and Neptune, and the Pioneer 12 and 13 flights to Venus.
The empty primordial asteroid belt
Raymond, Sean N.; Izidoro, Andre
2017-01-01
The asteroid belt contains less than a thousandth of Earth’s mass and is radially segregated, with S-types dominating the inner belt and C-types the outer belt. It is generally assumed that the belt formed with far more mass and was later strongly depleted. We show that the present-day asteroid belt is consistent with having formed empty, without any planetesimals between Mars and Jupiter’s present-day orbits. This is consistent with models in which drifting dust is concentrated into an isolated annulus of terrestrial planetesimals. Gravitational scattering during terrestrial planet formation causes radial spreading, transporting planetesimals from inside 1 to 1.5 astronomical units out to the belt. Several times the total current mass in S-types is implanted, with a preference for the inner main belt. C-types are implanted from the outside, as the giant planets’ gas accretion destabilizes nearby planetesimals and injects a fraction into the asteroid belt, preferentially in the outer main belt. These implantation mechanisms are simple by-products of terrestrial and giant planet formation. The asteroid belt may thus represent a repository for planetary leftovers that accreted across the solar system but not in the belt itself. PMID:28924609
Spaceport operations for deep space missions
NASA Technical Reports Server (NTRS)
Holt, Alan C.
1990-01-01
Space Station Freedom is designed with the capability to cost-effectively evolve into a transportation node which can support manned lunar and Mars missions. To extend a permanent human presence to the outer planets (moon outposts) and to nearby star systems, additional orbiting space infrastructure and great advances in propulsion system and other technologies will be required. To identify primary operations and management requirements for these deep space missions, an interstellar design concept was developed and analyzed. The assembly, test, servicing, logistics resupply, and increment management techniques anticipated for lunar and Mars missions appear to provide a pattern which can be extended in an analogous manner to deep space missions. A long range, space infrastructure development plan (encompassing deep space missions) coupled with energetic, breakthrough level propulsion research should be initiated now to assist in making the best budget and schedule decisions.
Similarity of Mars and Mercury for terraforming and settling of people
NASA Astrophysics Data System (ADS)
Steklov, A. F.; Vidmachenko, A. P.
2018-05-01
We compared the main characteristics of the planets Mars and Mercury in the form normalized on the parameters of the planet Earth. Both planets turned out to be similar and close in terms of terraforming techniques, and conditions of comfortable human habitation in long term endo-planetary stations under the surface of a particular planetoid. Mars and Mercury also turned out to be similar on the vital activity of some other representatives of the Earth's biosphere. Our detailed analysis of the temperature distribution both over the entire surface of these planets, and in the conditions of their diurnal and annual variations on different latitudes and on Mars and on Mercury - showed that each of these planets has its advantages for the first terraforming.
"Geometric" planetology and origin of the Moon
NASA Astrophysics Data System (ADS)
Kochemasov, Gennady G.
2010-05-01
The comparative wave planetology [1 & othres] demonstrates graphically its main conceptual point: orbits make structures. The structures are produced by a warping action of stationary waves induced in bodies by non-circular orbits with periodically changing bodies' accelerations. A geometric model of tectonic granulation of planets is a schematic row of even circles adorned with granules radius of which increases in direction from Sun to the outer planets. It was shown that the granule radii are inversely proportional to the orbital frequencies of planets. Thus, there is a following row of these radii: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. It was also shown that these radii well correlate with planetary surface "ruggedness". This observation led to a conception of the "relief-forming potential of planets"[2]. So, this potential is rather weak in Mercury and Venus, rather high in Mars and intermediate in Earth. Certainly, orbital eccentricities were even higher at the earlier period of planet formation, at debris zones of their accretion causing scattering debris material. This scattering was small at Mercury' and Venus' zones, large at the Mars' zone and intermediate at the Earth's zone. Consequently, gravity kept debris in the first zones, allowed them escape in the martian zone, and allowed to have separated debris sub zone in the vicinity of the Earth's zone or around not fully consolidated (accreted) Earth. Rejecting the giant impact hypotheses of Moon formation as contradicting the fact of the ubiquitous wave induced tectonic dichotomy of celestial bodies (Theorem1 [3]) one should concentrate at hypotheses dealing with formation of the satellite from primordial debris in a near-Earth heliocentric orbit or in a circumterrestrial orbit from debris wave separated from the Earth' zone of accretion. Wave scattering of primordial material from an accretion zone or from a not fully accreted (consolidated) body is a normal process traces of which one observes now in presence of satellites around all planets except Venus and Mercury (both have smallest wave induced granula sizes: R/6 and R/16, correspondingly). So, Venus during its formation was not able to throw away enough solids to form a satellite (but degassing was important, nearly complete and the huge atmosphere is there). Earth with the larger amplitude of its granula forming waves produced enough solids to make a satellite (during a pre-planet stage from accretion debris or during earlier stages of debris accretion into a body). Mars with still larger granula forming waves (granula size R/2) threw away a lot of material but its small gravity now keeps only two small satellites. The martian body itself warped by huge waves lost a lot of its mass and is semi-destructed. In the asteroid belt still larger wave (granula size R/1, and in the 1:1 resonance with the fundamental wave !) scattered away almost all primary mass of material and there was no chance to gather any decent planetary body. In the outer Solar system large planets with important gravities keep "exuberant" satellite systems and debris rings. The wave comparative planetology, thus, introducing the conception of warping structurizing waves, is not surprised by the Moon appearance. What is needed, just to recognize a special position of Earth in the planetary sequence determining its orbital frequency and thus a size of its tectonic granulation. References: [1] Kochemasov, G.G. (1992) Concerted wave supergranulation of the solar system bodies // 16th Russian-American microsymposium on planetology, Abstracts, Moscow, Vernadsky Inst. (GEOKHI), p. 36-37. [2] Kochemasov G.G. (2009) New Concepts in Global Tectonics Newsletter, # 51, 58-61. [3] Kochemasov G. (1999) Geophys. Res. Abstr., V.1, #3, 700.
Cosmogonic curve and positions on it of Earth, asteroids, and the outer planets
NASA Astrophysics Data System (ADS)
Kochemasov, G. G.
2013-09-01
The main point of the comparative wave planetology [1 & others] is the statement: "Orbits make structures". All so different celestial bodies (various sizes, masses, densities, chemichal compositions, physical states, positions in the Universe and so on) have two fundamental properties: movement and rotation. Movements in non-circular (keplerian elliptical, parabolic) orbits with changing accelerations induce in bodies wave warpings (standing waves) which in rotating bodies have 4 orthogonal and diagonal directions. An interference of these directions produces uprising, subsiding and neutral tectonic blocks size of which depends on warping wavelengths. The fundamental wave1 long 2πR (R - a body radius) gives ubiquitous tectonic dichotomy (two hemispheres - segments), the first overtone wave2 long πR produces sectoring. Along with these warpings (wave1 with harmonics) exist tectonic granulations. Granule size depends on orbital frequency: higher frequency - smaller granule, lower frequency - larger granule. Terrestrial planets have the following individual granule sizes (a half of a wavelength): Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1 (Fig. 1, bottom). These granule producing warpings tend to bring planetary spheres to polyhedrons which, for simplicity, are represented by the following figures inscribed in the planetary circles: Mercury- 16-gon, Venus- hexagon, Earth- square, Mars- rectangle, asteroids - line (Fig. 2). Obviously, nearer a figure to circle more it is stable, and this is expressed by the ratio of a figure area to the circle area. Mercury has 0.973, Venus 0.830, Earth 0.637, Mars 0.420, asteroids 0. The line for asteroids means the zero ratio, thus zero stability and no planet in the asteroid zone. Earth is unique by its near to the "golden section" value. In Fig. 1 both axes are logarithmic: the abscissa - solar distances of the planets, the ordinate - relative granule sizes (ratio of an individual wave to the fundamental wave). Before the asteroid belt individual waves are shorter than the fundamental wave, after the belt - an opposite relation occurs. Thus the asteroid belt crosses the ordinate 1 what means that there is the very strong 1 : 1 resonance between the fundamental and the individual waves prohibiting a planet (Phaethon) formation. Available material is scattered leading to a known matter deficit. The constructed cosmogonic curve is a curve with a bending point. Earth occurs at this peculiar place what determines Earth uniqueness. The heliocentric distance is then mathematically the abscissa of the bending point (Fig. 1). In the outer planets zone regularly increasing warping wavelengths begin to exceed the fundamental wavelength. The giant planets resist to destructive high amplitude oscillations thanks to their large gravitational compression and elasticity. Nevertheless they also lose a part of their matter ejecting it into near planet space where it gathers up as systems of satellites and rings. Such ejections could explain appearance of non-regular satellites, arcs in rings and other "anomalous" phenomena. Pluto bears vivid marks of destructive oscillations. It has large bulge or is torn in two parts (second core or large satellite) and "chaotically" moves in orbit. The chaos is most probably caused by a distortion of its orbit by its own high amplitude oscillations. Approaching the 100 : 1 resonance (Fig. 1) tells on significant matter deficit in the Pluto's orbit and its increased density. Decimal resonances (1:1,10:1, 100:1) are marked by a matter deficit. Planetary masses relative to the Earth's mass are as follows: Mercury 0.06; Venus 0.82; Earth 1.00; Mars 0.11; Asteroids 0.001(mass deficit); Jupiter 318; Saturn 95.1; (mass deficit) Uranus 14.5; Neptune 17.3; Pluto 0.002 (mass deficit). References: [1]Kochemasov G.G. (1992)16th Russian-American microsymposium on planetology, Abstracts, Moscow, Vernadsky Inst. (GEOKHI), 36-37.
Solar system 'fast mission' trajectories using aerogravity assist
NASA Technical Reports Server (NTRS)
Randolph, James E.; Mcronald, Angus D.
1992-01-01
Initial analyses of the aerogravity assist (AGA) delivery technique to solar system targets (and beyond) has been encouraging. Mission opportunities are introduced that do not exist with typical gravity assist trajectories and current launch capabilities. The technique has the most payoff for high-energy missions such as outer planet orbiters and flybys. The goal of this technique is to reduce the flight duration significantly and to eliminate propulsion for orbit insertion. The paper will discuss detailed analyses and parametric studies that consider launch opportunities for missions to the sun, Saturn, Uranus, Neptune, and Pluto using AGA at Venus and Mars.
Performance of advanced missions using fusion propulsion
NASA Technical Reports Server (NTRS)
Friedlander, Alan; Mcadams, Jim; Schulze, Norm
1989-01-01
A quantitive evaluation of the premise that nuclear fusion propulsion offers benefits as compared to other propulsion technologies for carrying out a program of advanced exploration of the solar system and beyond is presented. Using a simplified analytical model of trajectory performance, numerical results of mass requirements versus trip time are given for robotic missions beyond the solar system that include flyby and rendezvous with the Oort cloud of comets and with the star system Alpha Centauri. Round trip missions within the solar system, including robotic sample returns from the outer planet moons and multiple asteroid targets, and manned Mars exploration are also described.
NASA Technical Reports Server (NTRS)
1971-01-01
Unmanned spacecraft missions to the outer planets are of current interest to planetary scientists, and are being studied for the post 1970 time period. Flyby, entry and orbiter missions are all being considered using both direct and planetary swingby trajectory modes. The navigation and guidance requirements for a variety of missions to the outer planets and comets including both the three and four planet Grand Tours, are summarized.
Effects of Gravity-Assist Timing on Outer-Planet Missions Using Solar-Electric Propulsion
NASA Technical Reports Server (NTRS)
Woo, Byoungsam; Coverstone, Victoria L.; Cupples, Michael
2004-01-01
Missions to the outer planets for spacecraft with a solar-electric propulsion system (SEPS) and that utilize a single Venus gravity assist are investigated. The trajectories maximize the delivered mass to the target planet for a range of flight times. A comparison of the trajectory characteristics (delivered mass, launch energy and onboard propulsive energy) is made for various Venus gravity assist opportunities. Methods to estimate the delivered mass to the outer planets are developed.
On the Impact Origin of Phobos and Deimos. II. True Polar Wander and Disk Evolution
NASA Astrophysics Data System (ADS)
Hyodo, Ryuki; Rosenblatt, Pascal; Genda, Hidenori; Charnoz, Sébastien
2017-12-01
Phobos and Deimos are the two small Martian moons, orbiting almost on the equatorial plane of Mars. Recent works have shown that they can accrete within an impact-generated inner dense and outer light disk, and that the same impact potentially forms the Borealis basin, a large northern hemisphere basin on the current Mars. However, there is no a priori reason for the impact to take place close to the north pole (Borealis present location), nor to generate a debris disk in the equatorial plane of Mars (in which Phobos and Deimos orbit). In this paper, we investigate these remaining issues on the giant impact origin of the Martian moons. First, we show that the mass deficit created by the Borealis impact basin induces a global reorientation of the planet to realign its main moment of inertia with the rotation pole (True Polar Wander). This moves the location of the Borealis basin toward its current location. Next, using analytical arguments, we investigate the detailed dynamical evolution of the eccentric inclined disk from the equatorial plane of Mars that is formed by the Martian-moon-forming impact. We find that, as a result of precession of disk particles due to the Martian dynamical flattening J 2 term of its gravity field and particle–particle inelastic collisions, eccentricity and inclination are damped and an inner dense and outer light equatorial circular disk is eventually formed. Our results strengthen the giant impact origin of Phobos and Deimos that can finally be tested by a future sample return mission such as JAXA’s Martian Moons eXploration mission.
Magnetometer instrument team studies for the definition phase of the outer planets grand tour
NASA Technical Reports Server (NTRS)
Coleman, P. J., Jr.
1972-01-01
The objectives of magnetic field investigations on missions to the outer planets were defined as well as an instrumentation system, a program of studies and instrument development tasks was proposed for the mission definition phase of the Outer Planets Grand Tour project. A report on the status of this program is given. Requirements were also established for the spacecraft and the mission which would insure their compatibility with the magnetic field investigation proposed for the outer planets missions and developed figures of merit for encounter trajectories. The spacecraft-instrumentation interface and the on-board data handling system were defined in various reports by the Project Team and in the reports by the Science Steering Group. The defining program for exploring the outer planets within the more restrictive constraints of the Mariner Jupiter-Saturn project included defining a limited magnetic field investigation.
Thermoelectric Outer Planets Spacecraft (TOPS)
NASA Technical Reports Server (NTRS)
1973-01-01
The research and advanced development work is reported on a ballistic-mode, outer planet spacecraft using radioisotope thermoelectric generator (RTG) power. The Thermoelectric Outer Planet Spacecraft (TOPS) project was established to provide the advanced systems technology that would allow the realistic estimates of performance, cost, reliability, and scheduling that are required for an actual flight mission. A system design of the complete RTG-powered outer planet spacecraft was made; major technical innovations of certain hardware elements were designed, developed, and tested; and reliability and quality assurance concepts were developed for long-life requirements. At the conclusion of its active phase, the TOPS Project reached its principal objectives: a development and experience base was established for project definition, and for estimating cost, performance, and reliability; an understanding of system and subsystem capabilities for successful outer planets missions was achieved. The system design answered long-life requirements with massive redundancy, controlled by on-board analysis of spacecraft performance data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izidoro, A.; Winter, O. C.; Haghighipour, N.
Models of terrestrial planet formation for our solar system have been successful in producing planets with masses and orbits similar to those of Venus and Earth. However, these models have generally failed to produce Mars-sized objects around 1.5 AU. The body that is usually formed around Mars' semimajor axis is, in general, much more massive than Mars. Only when Jupiter and Saturn are assumed to have initially very eccentric orbits (e ∼ 0.1), which seems fairly unlikely for the solar system, or alternately, if the protoplanetary disk is truncated at 1.0 AU, simulations have been able to produce Mars-like bodiesmore » in the correct location. In this paper, we examine an alternative scenario for the formation of Mars in which a local depletion in the density of the protosolar nebula results in a non-uniform formation of planetary embryos and ultimately the formation of Mars-sized planets around 1.5 AU. We have carried out extensive numerical simulations of the formation of terrestrial planets in such a disk for different scales of the local density depletion, and for different orbital configurations of the giant planets. Our simulations point to the possibility of the formation of Mars-sized bodies around 1.5 AU, specifically when the scale of the disk local mass-depletion is moderately high (50%-75%) and Jupiter and Saturn are initially in their current orbits. In these systems, Mars-analogs are formed from the protoplanetary materials that originate in the regions of disk interior or exterior to the local mass-depletion. Results also indicate that Earth-sized planets can form around 1 AU with a substantial amount of water accreted via primitive water-rich planetesimals and planetary embryos. We present the results of our study and discuss their implications for the formation of terrestrial planets in our solar system.« less
MW-Class Electric Propulsion System Designs for Mars Cargo Transport
NASA Technical Reports Server (NTRS)
Gilland, James H.; LaPointe, Michael R.; Oleson, Steven; Mercer, Carolyn; Pencil, Eric; Maosn, Lee
2011-01-01
Multi-kilowatt electric propulsion systems are well developed and have been used on commercial and military satellites in Earth orbit for several years. Ion and Hall thrusters have also propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system. High power electric propulsion systems are currently being considered to support piloted missions to near earth asteroids, as cargo transport for sustained lunar or Mars exploration, and for very high-power piloted missions to Mars and the outer planets. Using NASA Mars Design Architecture 5.0 as a reference, a preliminary parametric analysis was performed to determine the suitability of a nuclear powered, MW-class electric propulsion system for Mars cargo transport. For this initial analysis, high power 100-kW Hall thrusters and 250-kW VASIMR engines were separately evaluated to determine optimum vehicle architecture and estimated performance. The DRA 5.0 cargo mission closed for both propulsion options, delivering a 100 t payload to Mars orbit and reducing the number of heavy lift launch vehicles from five in the baseline DRA 5.0 architecture to two using electric propulsion. Under an imposed single engine-out mission success criteria, the VASIMR system took longer to reach Mars than did the Hall system, arising from the need to operate the VASIMR thrusters in pairs during the spiral out from low Earth orbit.
NASA Technical Reports Server (NTRS)
Belton, M. J. S.; Aksnes, K.; Davies, M. E.; Hartmann, W. K.; Millis, R. L.; Owen, T. C.; Reilly, T. H.; Sagan, C.; Suomi, V. E.; Collins, S. A., Jr.
1972-01-01
A recommended imaging system is outlined for use aboard the Outer Planet Grand Tour Explorer. The system features the high angular resolution capacity necessary to accommodate large encounter distances, and to satisfy the demand for a reasonable amount of time coverage. Specifications for all components within the system are provided in detail.
Atmospheric entry probes for outer planet exploration. Outer planet entry probe technical summary
NASA Technical Reports Server (NTRS)
1974-01-01
The use of unmanned space probes for investigating the conditions existing on and around the outer planets of the solar system is discussed. The subjects included in the report are: (1) the design of a common entry probe for outer planet missions, (2) the significant trades related to the development of a common probe design, (3) the impact of bus selection on probe design, (4) the impact of probe requirements on bus modifications, and (5) the key technology elements recommended for advanced development. Drawings and illustrations of typical probes are included to show the components and systems used in the space probes.
Mid-Infrared OPO for High Resolution Measurements of Trace Gases in the Mars Atmosphere
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Numata,Kenji; Riris, haris; Abshire, James B.; Allan, Graham; Sun, Xiaoli; Krainak, Michael A.
2008-01-01
The Martian atmosphere is composed primarily (>95%) of CO2 and N2 gas, with CO, O2, CH4, and inert gases such as argon comprising most of the remainder. It is surprisingly dynamic with various processes driving changes in the distribution of CO2, dust, haze, clouds and water vapor on global scales in the meteorology of Mars atmosphere [I]. The trace gases and isotopic ratios in the atmosphere offer important but subtle clues as to the origins of the planet's atmosphere, hydrology, geology, and potential for biology. In the search for life on Mars, an important process is the ability of bacteria to metabolize inorganic substrates (H2, CO2 and rock) to derive energy and produce methane as a by-product of anaerobic metabolism. Trace gases have been measured in the Mars atmosphere from Earth, Mars orbit, and from the Mars surface. The concentration of water vapor and various carbon-based trace gases are observed in variable concentrations. Within the past decade multiple groups have reported detection of CH4, with concentrations in the 10's of ppb, using spectroscopic observations from Earth [2]. Passive spectrometers in the mid-infrared (MIR) are restricted to the sunlit side of the planet, generally in the mid latitudes, and have limited spectral and spatial resolution. To accurately map the global distribution and to locate areas of possibly higher concentrations of these gases such as plumes or vents requires an instrument with high sensitivity and fine spatial resolution that also has global coverage and can measure during both day and night. Our development goal is a new MIR lidar capable of measuring, on global scales, with sensitivity, resolution and precision needed to characterize the trace gases and isotopic ratios of the Martian atmosphere. An optical parametric oscillator operating in the MIR is well suited for this instrument. The sufficient wavelength tuning range of the OPO can extend the measurements to other organic molecules, CO2, atmospheric water vapor, clouds, temperature, dust, and aerosols, as well as possibly polar-cap properties. Our OPO-approach may allow a new capability for active remote sensing of the outer planets and moons, where the weaker sunlight further limit passive instruments. Here we report on the OPO development effort for this lidar instrument.
Outer-planet scattering can gently tilt an inner planetary system
NASA Astrophysics Data System (ADS)
Gratia, Pierre; Fabrycky, Daniel
2017-01-01
Chaotic dynamics are expected during and after planet formation, and a leading mechanism to explain large eccentricities of gas giant exoplanets is planet-planet gravitational scattering. The same scattering has been invoked to explain misalignments of planetary orbital planes with respect to their host star's spin. However, an observational puzzle is presented by Kepler-56, which has two inner planets (b and c) that are nearly coplanar with each other, yet are more than 45° inclined to their star's equator. Thus, the spin-orbit misalignment might be primordial. Instead, we further develop the hypothesis in the discovery paper, that planets on wider orbits generated misalignment through scattering, and as a result gently torqued the inner planets away from the equator plane of the star. We integrated the equations of motion for Kepler-56 b and c along with an unstable outer system initialized with either two or three Jupiter-mass planets. We address here whether the violent scattering that generates large mutual inclinations can leave the inner system intact, tilting it gently. In almost all of the cases initially with two outer planets, either the inner planets remain nearly coplanar with each other in the star's equator plane, or they are scattered violently to high mutual inclination and high spin-orbit misalignment. On the contrary, of the systems with three unstable outer planets, a spin-orbit misalignment large enough to explain the observations is generated 28 per cent of the time for coplanar inner planets, which is consistent with the observed frequency of this phenomenon reported so far. We conclude that multiple-planet scattering in the outer parts of the system may account for this new population of coplanar planets hosted by oblique stars.
The Next Generation of Space Cells for Diverse Environments
NASA Technical Reports Server (NTRS)
Bailey, Sheila; Landis, Geoffrey; Raffaelle, Ryne
2002-01-01
Future science, military and commercial space missions are incredibly diverse. Military and commercial missions range from large arrays of hundreds of kilowatt to small arrays of ten watts in various Earth orbits. While science missions also have small to very large power needs there are additional unique requirements to provide power for near-sun missions and planetary exploration including orbiters, landers and rovers both to the inner planets and the outer planets with a major emphasis in the near term on Mars. These mission requirements demand cells for low intensity, low temperature applications, high intensity, high temperature applications, dusty environments and often high radiation environments. This paper discusses mission requirements, the current state of the art of space solar cells, and a variety of both evolving thin-film cells as well as new technologies that may impact the future choice of space solar cells for a specific mission application.
Extended atmospheres of comets and outer planet-satellite systems
NASA Technical Reports Server (NTRS)
Smyth, William H.; Marconi, Max L.
1992-01-01
For the hydrogen coma of comet P/Halley, both a Lyman-alpha image and extensive Lyman-alpha scan data obtained by the Pioneer Venus Orbiter Ultraviolet spectrometer as well as H-alpha ground-based spectral observations obtained by the University of Wisconsin Space Physics Group were successfully interpreted and analyzed with our Monte Carlo particle trajectory model. The excellent fit of the model and the Halley data and the water production rate determined near perihelion (9 Feb. 1986) from 13 Dec. 1985 to 13 Jan. 1986 and from 1 Feb. to 7 Mar. 1986 are discussed. Studies for the circumplanetary distribution of atomic hydrogen in the Saturn and Neptune systems were undertaken for escape of H atoms from Titan and Triton, respectively. The discovery of a new mechanism which can dramatically change the normal cylindrically symmetric distribution of hydrogen about the planet is discussed. The implications for the Titan-Saturn and Triton-Neptune are summarized.
NASA Technical Reports Server (NTRS)
2004-01-01
This animation shows the location of the newly discovered planet-like object, dubbed 'Sedna,' in relation to the rest of the solar system. Starting at the inner solar system, which includes the orbits of Mercury, Venus, Earth, and Mars (all in yellow), the view pulls away through the asteroid belt and the orbits of the outer planets beyond (green). Pluto and the distant Kuiper Belt objects are seen next until finally Sedna comes into view. As the field widens the full orbit of Sedna can be seen along with its current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. Moving past Sedna, what was previously thought to be the inner edge of the Oort cloud appears. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed.
Geophysical Limitations on the Habitable Zone: Volcanism and Plate Tectonics
NASA Astrophysics Data System (ADS)
Noack, Lena; Rivoldini, Attilio; Van Hoolst, Tim
2016-04-01
Planets are typically classified as potentially life-bearing planets (i.e. habitable planets) if they are rocky planets and if a liquid (e.g. water) could exist at the surface. The latter depends on several factors, like for example the amount of available solar energy, greenhouse effects in the atmosphere and an efficient CO2-cycle. However, the definition of the habitable zone should be updated to include possible geophysical constraints, that could potentially influence the CO2-cycle. Planets like Mars without plate tectonics and no or only limited volcanic events can only be considered to be habitable at the inner boundary of the habitable zone, since the greenhouse effect needed to ensure liquid surface water farther away from the sun is strongly reduced. We investigate if the planet mass as well as the interior structure can set constraints on the occurrence of plate tectonics and outgassing, and therefore affect the habitable zone, using both parameterized evolution models [1] and mantle convection simulations [1,2]. We find that plate tectonics, if it occurs, always leads to sufficient volcanic outgassing and therefore greenhouse effect needed for the outer boundary of the habitable zone (several tens of bar CO2), see also [3]. One-plate planets, however, may suffer strong volcanic limitations. The existence of a dense-enough CO2 atmosphere allowing for the carbon-silicate cycle and release of carbon at the outer boundary of the habitable zone may be strongly limited for planets: 1) without plate tectonics, 2) with a large planet mass, and/or 3) a high iron content. Acknowledgements This work has been funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office through the Planet Topers alliance, and results within the collaboration of the COST Action TD 1308. References Noack, L., Rivoldini, A., and Van Hoolst, T.: CHIC - Coupling Habitability, Interior and Crust, INFOCOMP 2015, ISSN 2308-3484, ISBN 978-1-61208-416-9, pp. 84-90, IARIA, 2015. Hüttig, C. and Stemmer, K.: Finite volume discretization for dynamic viscosities on Voronoi grids, PEPI, Vol 171, pp. 137-146, 2008. Noack, L. et al.: Constraints for planetary habitability from interior modeling, PSS, Vol. 98, pp. 14-29, 2014.
More about the moment of inertia of Mars
NASA Technical Reports Server (NTRS)
Kaula, William M.; Sleep, Norman H.; Phillips, Roger J.
1989-01-01
Differences between Mars and other terrestrial planets are discussed. Unlike other terrestrial planets, Mars has two nonhydrostatic components of moments of inertia that are nearly equal. The most probable value of I/MR-squared is slightly less than 0.3650.
Internal constitution of Mars.
NASA Technical Reports Server (NTRS)
Anderson, D. L.
1972-01-01
Models of the internal structure of Mars consistent with the mass, radius and moment of inertia of the planet are constructed. The models assume that the radius of the core is between 0.36 and 0.60 of the radius of the planet, that the zero-pressure density of the mantle is between 3.54 and 3.49 g/cu cm, and that the planet contains 25 to 28% iron. Meteorite models of Mars containing 25 wt % iron and 12 wt % core are also proposed. It is maintained that Mars in contrast to the earth is an incompletely differentiated planet with a core substantially richer in sulfur than the core of the earth. The absence of a magnetic field on Mars is possibly linked with lack of lunar precessional torque and the small size and high resistivity of the Martian core.
Kasting, James F; Kopparapu, Ravikumar; Ramirez, Ramses M; Harman, Chester E
2014-09-02
The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet's atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate. In the past, modelers have restricted themselves to water-rich planets with CO2 and H2O as the only important greenhouse gases. More recently, some researchers have suggested broadening the definition to include arid, "Dune" planets on the inner edge and planets with captured H2 atmospheres on the outer edge, thereby greatly increasing the HZ width. Such planets could exist, but we demonstrate that an inner edge limit of 0.59 AU or less is physically unrealistic. We further argue that conservative HZ definitions should be used for designing future space-based telescopes, but that optimistic definitions may be useful in interpreting the data from such missions. In terms of effective solar flux, S(eff), the recently recalculated HZ boundaries are: recent Venus--1.78; runaway greenhouse--1.04; moist greenhouse--1.01; maximum greenhouse--0.35; and early Mars--0.32. Based on a combination of different HZ definitions, the frequency of potentially Earth-like planets around late K and M stars observed by Kepler is in the range of 0.4-0.5.
REVIEWS OF TOPICAL PROBLEMS: Gas lasers with solar excitation
NASA Astrophysics Data System (ADS)
Gordiets, B. F.; Panchenko, Vladislav Ya
1986-07-01
CONTENTS 1. Introduction 703 2. General requirements for laser media using solar excitation 704 3. Lasers with direct excitation by solar light 705 3.1. Basic characteristics of laser media. 3.2. Photodissociation Br2-CO2 lasers. 3.3. Interhalogen molecule lasers. 3.4. Iodine lasers. 3.5. Alkali metal vapor lasers. 4. Lasers with thermal conversion of solar pumping 709 4.1. General considerations. 4.2. CO2 laser with excitation in a black body cavity and with gas flow. 4.3. cw CO2 laser without gas flow. 5. Space laser media with solar excitation 713 5.1. Population inversion of molecular levels in the outer atmosphere of the Earth. 5.2. Laser effect in the atmospheres of Venus and Mars. 5.3. Terrestrial experimental technique for observing infrared emission in the atmospheres of planets. 5.4. Designs for laser systems in the atmospheres of Venus and Mars. 6. Conclusions 717 References 717
ScienceCast 123: What Happened to Mars? A Planetary Mystery
2013-11-08
Mars was once on track to become a thriving Earth-like planet, yet today it is an apparently lifeless wasteland. A NASA spacecraft named MAVEN will soon journey to Mars to find out what went wrong on the Red Planet.
2004-03-15
These four panels show the location of the newly discovered planet-like object, dubbed "Sedna," which lies in the farthest reaches of our solar system. Each panel, moving counterclockwise from the upper left, successively zooms out to place Sedna in context. The first panel shows the orbits of the inner planets, including Earth, and the asteroid belt that lies between Mars and Jupiter. In the second panel, Sedna is shown well outside the orbits of the outer planets and the more distant Kuiper Belt objects. Sedna's full orbit is illustrated in the third panel along with the object's current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. The final panel zooms out much farther, showing that even this large elliptical orbit falls inside what was previously thought to be the inner edge of the Oort cloud. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed. http://photojournal.jpl.nasa.gov/catalog/PIA05569
NASA Technical Reports Server (NTRS)
2004-01-01
These four panels show the location of the newly discovered planet-like object, dubbed 'Sedna,' which lies in the farthest reaches of our solar system. Each panel, moving counterclockwise from the upper left, successively zooms out to place Sedna in context. The first panel shows the orbits of the inner planets, including Earth, and the asteroid belt that lies between Mars and Jupiter. In the second panel, Sedna is shown well outside the orbits of the outer planets and the more distant Kuiper Belt objects. Sedna's full orbit is illustrated in the third panel along with the object's current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. The final panel zooms out much farther, showing that even this large elliptical orbit falls inside what was previously thought to be the inner edge of the Oort cloud. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed.
NASA Astrophysics Data System (ADS)
Michaelis, H.; Behnke, T.; Bredthauer, R.; Holland, A.; Janesick, J.; Jaumann, R.; Keller, H. U.; Magrin, D.; Greggio, D.; Mottola, Stefano; Thomas, N.; Smith, P.
2017-11-01
When we talk about planetary exploration missions most people think spontaneously about fascinating images from other planets or close-up pictures of small planetary bodies such as asteroids and comets. Such images come in most cases from VIS/NIR- imaging- systems, simply called `cameras', which were typically built by institutes in collaboration with industry. Until now, they have nearly all been based on silicon CCD sensors, they have filter wheels and have often high power-consuming electronics. The question is, what are the challenges for future missions and what can be done to improve performance and scientific output. The exploration of Mars is ongoing. NASA and ESA are planning future missions to the outer planets like to the icy Jovian moons. Exploration of asteroids and comets are in focus of several recent and future missions. Furthermore, the detection and characterization of exo-planets will keep us busy for next generations. The paper is discussing the challenges and visions of imaging sensors for future planetary exploration missions. The focus of the talk is monolithic VIS/NIR- detectors.
Activities conducted during the definition phase of the outer planets missions program
NASA Technical Reports Server (NTRS)
1972-01-01
The activities are described of the Meteoroid Science Team for the definition phase of the outer planet missions. Studies reported include: (1) combined zodiacal experiment for the Grand Tour Missions of the outer planets, (2) optical transmission of a honeycomb panel and its effectiveness as a particle impact surface, (3) element identification data from the combined zodiacal OPGT experiment and (4) development of lightweight thermally stable mirrors.
NASA Technical Reports Server (NTRS)
Kieffer, Hugh H. (Editor); Jakosky, Bruce M. (Editor); Snyder, Conway W. (Editor); Matthews, Mildred S. (Editor)
1992-01-01
The present volume on Mars discusses visual, photographic and polarimetric telescopic observations, spacecraft exploration of Mars, the origin and thermal evolution of Mars, and the bulk composition, mineralogy, and internal structure of the planet. Attention is given to Martian gravity and topography, stress and tectonics on Mars, long-term orbital and spin dynamics of Mars, and Martian geodesy and cartography. Topics addressed include the physical volcanology of Mars, the canyon system on planet, Martian channels and valley networks, and ice in the Martian regolith. Also discussed are Martian aeolian processes, sediments, and features, polar deposits of Mars, dynamics of the Martian atmosphere, and the seasonal behavior of water on Mars.
Geologic Exploration of the Planets: A Personal Retrospective of the First 50 years
NASA Astrophysics Data System (ADS)
Carr, M. H.
2013-12-01
The modern era of exploration of planets and satellites beyond the Earth-Moon system began on 14 December 1962 when the Mariner 2 spacecraft flew by Venus. Since that time roughly 80 spacecraft have successfully visited other planets and their satellites. In 1962 we knew nothing of the geology of the non-terrestrial planets and satellites; they were just variously shaded discs and dots. Most of us entering the new field of planetary geology at the time did so in anticipation of the Apollo lunar landings. I was hired by Gene Shoemaker to work on lunar issues and to participate in the lunar geologic mapping program that he had initiated at the USGS. Lunar studies led naturally to planetary studies but none of us could have anticipated the geologic variety that exists within the Solar System as exemplified by the coronae of Venus, the canyons of Mars, the volcanoes of Io, the ice tectonics of Europa and Ganymede, the geysers of Enceladus and the methane-carved valleys of Titan. Although Mars appeared lunar-like in the first close-up images from the Mariner 4 (1965) and Mariners 6 and 7 (1969) fly-bys, the Mariner 9 (1971) orbiter soon revealed Mars' geologic variety. Planning imaging for Mariner 9 was challenging; aids were primitive and we essentially had a blank sheet to fill. By 1971, the Viking Project with its main objective to land on Mars and search for signs of life was well underway. In 1969 I was appointed leader of the Viking Orbiter imaging team. The main function of the cameras was to ensure that the landing sites were safe before landing. In 1976 when we acquired the first close-up images of the pre-chosen landing sites they were greeted with elation and horror, elation because of their quality, horror because of the roughness of the terrain that had seemed so smooth in the Mariner 9 images. There followed an intense period of searching for safer sites and ultimately the two landers did land safely. The search for life then followed with hopes soaring as the initial results seemed to be positive then falling as abiotic explanations of the results seemed more plausible. Meanwhile several Soviet spacecraft successfully landed on and returned images from the surface of Venus (1975, 1981), and a radar imager on Pioneer Venus (1978) gave a preview of a complex geology that was to be subsequently revealed in detail by Magellan in 1990. In 1979 attention shifted to the outer planets as the two Voyager spacecraft flew by Jupiter revealing the volcanic plumes of Io and the distinctive geology of each of the Galilean satellites. In 1978 I joined the Galileo imaging team but the mission suffered a series of mishaps and we spent almost 20 years repeatedly re-planning the Galilean satellite tour and the imaging sequences before we were rewarded in 1995 with unprecedented views of the satellites, particularly of Io's volcanoes and Europa's ice rafts. Meanwhile the Mars program had stalled. Orbiters, landers, sample returns, penetrators, networks, balloons, airplanes were all studied and restudied. After a 20 year gap, Mars exploration was successfully renewed in 1997 with Pathfinder and Global Surveyor. Failure of two Mars missions in 1999 caused another re-structuring of the program but since that time the Mars program has been remarkably successful, although we still await sample return.
Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars
NASA Technical Reports Server (NTRS)
Murray, B.; Malin, M. C.; Greeley, R.
1981-01-01
The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.
From Protoplanets to Protolife: The Emergence and Maintenance of Life
NASA Astrophysics Data System (ADS)
Gaidos, E.; Selsis, F.
Despite great advances in our understanding of the formation of the solar system, the evolution of Earth, and the chemical basis for life, we are not much closer than the ancient Greeks to an answer of whether life has arisen and persisted on any other planet. The origin of life as a planetary phenomenon will probably resist successful explanation as long as we lack an early record of its evolution and additional examples. Plausible but meagerly investigated scenarios for the origin of important prebiotic molecules and their polymers on Earth involving atmospheric chemistry, meteorites, deep-sea hot springs, and tidal flat sediments have been developed. Our view of the diversity of extant life, from which properties of a last universal common ancestor (LUCA) can be inferred, has also improved in scope and resolution. It is widely thought that the geologic record shows that life emerged quickly after the end of prolonged bombardment of Earth. New data and simulations contradict that view and suggest that more than half a billion years of unrecorded Earth history may have elapsed between the origin of life and LUCA. The impact-driven exchange of material between the inner planets may have allowed earliest life to be more cosmopolitan. Indeed, terrestrial life may not have originated on Earth, or even on any planet. Smaller bodies, e.g., the parent bodies of primitive meteorites, in which organic carbon molecules and catalytic transition metals were abundant, and in which hydrothermal circulation persisted for millions of years, offer alternative environments for the origin of life in the solar system. However, only planet-sized bodies offer the stable physiochemical conditions necessary for the persistence of life. The search for past or present life on Mars is an obvious path to greater enlightenment. The absence of intense geologic activity on Mars, which contributes to its inhospitable state today, has also preserved its ancient history. If life did emerge on Mars or was transferred from Earth, the lack of sterilizing impacts (due to a low gravity and no oceans) means that a more diverse biota may have thrived than is represented by extant life on Earth. On the other hand, a habitable but still lifeless early Mars would be strong evidence against efficient transfer of life between planets. The subsurface oceans of some icy satellites of the outer planets represent the best locales to search for an independent origin of life in the solar system because of the high dynamical barriers for transfer, intense radiation at their surfaces, and thick ice crusts. These also present equally formidable barriers to our technology. The "ultimate" answer to the abundance of life in the cosmos will remain the domain of speculation until we develop observatories capable of detecting habitable planets - and signs of life - around the nearest million or so stars.
2012-08-04
NASA welcomed hundreds of children and accompanying adults to its INFINITY visitor center on Aug. 4, offering Mars-related activities that focused attention on the space agency's Curiosity mission to the Red Planet. Among other attractions, 3-D images from Mars provided 'Wow!' glimpses of the Red Planet. In addition to the Mars activities, visitors were able to tour other space-related exhibits at the center.
ERIC Educational Resources Information Center
Riddle, Bob
2010-01-01
On January 29, Mars will reach opposition, a point along its orbit around the Sun where Mars will be directly opposite from the Sun in a two-planet and Sun line-up with the Earth in between. At this opposition, the Earth and Mars will be separated by nearly 100 million km. An opposition is similar to a full Moon in that the planet at opposition…
,
1992-01-01
An important goal of the USGS planetary mapping program is to systematically map the geology of the Moon, Mars, Venus, and Mercury, and the satellites of the outer planets. These geologic maps are published in the USGS Miscellaneous Investigations (I) Series. Planetary maps on sale at the USGS include shaded-relief maps, topographic maps, geologic maps, and controlled photomosaics. Controlled photomosaics are assembled from two or more photographs or images using a network of points of known latitude and longitude. The images used for most of these planetary maps are electronic images, obtained from orbiting television cameras, various optical-mechanical systems. Photographic film was only used to map Earth's Moon.
Investments by NASA to build planetary protection capability
NASA Astrophysics Data System (ADS)
Buxbaum, Karen; Conley, Catharine; Lin, Ying; Hayati, Samad
NASA continues to invest in capabilities that will enable or enhance planetary protection planning and implementation for future missions. These investments are critical to the Mars Exploration Program and will be increasingly important as missions are planned for exploration of the outer planets and their icy moons. Since the last COSPAR Congress, there has been an opportunity to respond to the advice of NRC-PREVCOM and the analysis of the MEPAG Special Regions Science Analysis Group. This stimulated research into such things as expanded bioburden reduction options, modern molecular assays and genetic inventory capability, and approaches to understand or avoid recontamination of spacecraft parts and samples. Within NASA, a portfolio of PP research efforts has been supported through the NASA Office of Planetary Protection, the Mars Technology Program, and the Mars Program Office. The investment strategy focuses on technology investments designed to enable future missions and reduce their costs. In this presentation we will provide an update on research and development supported by NASA to enhance planetary protection capability. Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.
David, L
1996-05-01
The distant shores of Mars were reached by numerous U.S. and Russian spacecraft throughout the 1960s to mid 1970s. Nearly 20 years have passed since those successful missions which orbited and landed on the Martian surface. Two Soviet probes headed for the planet in July, 1988, but later failed. In August 1993, the U.S. Mars Observer suddenly went silent just three days before it was to enter orbit around the planet and was never heard from again. In late 1996, there will be renewed activity on the launch pads with three probes departing for the red planet: 1) The U.S. Mars Global Surveyor will be launched in November on a Delta II rocket and will orbit the planet for global mapping purposes; 2) Russia's Mars '96 mission, scheduled to fly in November on a Proton launcher, consists of an orbiter, two small stations which will land on the Martian surface, and two penetrators that will plow into the terrain; and finally, 3) a U.S. Discovery-class spacecraft, the Mars Pathfinder, has a December launch date atop a Delta II booster. The mission features a lander and a microrover that will travel short distances over Martian territory. These missions usher in a new phase of Mars exploration, setting the stage for an unprecedented volley of spacecraft that will orbit around, land on, drive across, and perhaps fly at low altitudes over the planet.
Mineralogy by X-ray Diffraction on Mars: The Chemin Instrument on Mars Science Laboratory
NASA Technical Reports Server (NTRS)
Vaniman, D. T.; Bristow, T. F.; Bish, D. L.; Ming, D. W.; Blake, D. F.; Morris, R. V.; Rampe, E. B.; Chipera, S. J.; Treiman, A. H.; Morrison, S. M.;
2014-01-01
To obtain detailed mineralogy information, the Mars Science Laboratory rover Curiosity carries CheMin, the first X-ray diffraction (XRD) instrument used on a planet other than Earth. CheMin has provided the first in situ XRD analyses of full phase assemblages on another planet.
ERIC Educational Resources Information Center
Mueller, Michael P.; Valderrama, Paige
2006-01-01
For many years, the planet Mars was nothing more than a little red dot in a sea of stars and a blur in many science classrooms. Recent focus on the planet, however, has led to incredible teaching opportunities, such as the Mars Student Imaging Project (MSIP) facilitated by Arizona State University's Mars Education Program. The MSIP curriculum…
Operational Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure
NASA Astrophysics Data System (ADS)
André, Nicolas; Grande, Manuel
2017-04-01
Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI, http://www.europlanet-2020-ri.eu) includes an entirely new Virtual Access Service, "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. PSWS will provide at the end of 2017 12 services distributed over 4 different service domains - 1) Prediction, 2) Detection, 3) Modelling, 4) Alerts. These services include 1.1) A 1D MHD solar wind prediction tool, 1.2) Extensions of a Propagation Tool, 1.3) A meteor showers prediction tool, 1.4) A cometary tail crossing prediction tool, 2.1) Detection of lunar impacts, 2.2) Detection of giant planet fireballs, 2.3) Detection of cometary tail events, 3.1) A Transplanet model of magnetosphere-ionosphere coupling, 3.2) A model of the Mars radiation environment, 3.3.) A model of giant planet magnetodisc, 3.4) A model of Jupiter's thermosphere, 4) A VO-event based alert system. We will detail in the present paper some of these services with a particular emphasis on those already operational at the time of the presentation (1.1, 1.2, 1.3, 2.2, 3.1, 4). The proposed Planetary Space Weather Services will be accessible to the research community, amateur astronomers as well as to industrial partners planning for space missions dedicated in particular to the following key planetary environments: Mars, in support of ESA's ExoMars missions; comets, building on the success of the ESA Rosetta mission; and outer planets, in preparation for the ESA JUpiter ICy moon Explorer (JUICE). These services will also be augmented by the future Solar Orbiter and BepiColombo observations. This new facility will not only have an impact on planetary space missions but will also allow the hardness of spacecraft and their components to be evaluated under variety of known conditions, particularly radiation conditions, extending their knownflight-worthiness for terrestrial applications. Europlanet 2020 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.
The Delivery of Water During Terrestrial Planet Formation
NASA Astrophysics Data System (ADS)
O'Brien, David P.; Izidoro, Andre; Jacobson, Seth A.; Raymond, Sean N.; Rubie, David C.
2018-02-01
The planetary building blocks that formed in the terrestrial planet region were likely very dry, yet water is comparatively abundant on Earth. Here we review the various mechanisms proposed for the origin of water on the terrestrial planets. Various in-situ mechanisms have been suggested, which allow for the incorporation of water into the local planetesimals in the terrestrial planet region or into the planets themselves from local sources, although all of those mechanisms have difficulties. Comets have also been proposed as a source, although there may be problems fitting isotopic constraints, and the delivery efficiency is very low, such that it may be difficult to deliver even a single Earth ocean of water this way. The most promising route for water delivery is the accretion of material from beyond the snow line, similar to carbonaceous chondrites, that is scattered into the terrestrial planet region as the planets are growing. Two main scenarios are discussed in detail. First is the classical scenario in which the giant planets begin roughly in their final locations and the disk of planetesimals and embryos in the terrestrial planet region extends all the way into the outer asteroid belt region. Second is the Grand Tack scenario, where early inward and outward migration of the giant planets implants material from beyond the snow line into the asteroid belt and terrestrial planet region, where it can be accreted by the growing planets. Sufficient water is delivered to the terrestrial planets in both scenarios. While the Grand Tack scenario provides a better fit to most constraints, namely the small mass of Mars, planets may form too fast in the nominal case discussed here. This discrepancy may be reduced as a wider range of initial conditions is explored. Finally, we discuss several more recent models that may have important implications for water delivery to the terrestrial planets.
Getting Under Mars' Skin: The InSight Mission to the Deep Interior of Mars
NASA Astrophysics Data System (ADS)
Banerdt, W. B.; Asmar, S.; Banfield, D. J.; Christensen, U. R.; Clinton, J. F.; Dehant, V. M. A.; Folkner, W. M.; Garcia, R.; Giardini, D.; Golombek, M. P.; Grott, M.; Hudson, T.; Johnson, C. L.; Kargl, G.; Knapmeyer-Endrun, B.; Kobayashi, N.; Lognonne, P. H.; Maki, J.; Mimoun, D.; Mocquet, A.; Morgan, P.; Panning, M. P.; Pike, W. T.; Spohn, T.; Tromp, J.; Weber, R. C.; Wieczorek, M. A.; Russell, C. T.
2015-12-01
The InSight mission to Mars will launch in March of 2016, landing six months later in Elysium Planitia. In contrast to the 43 previous missions to Mars, which have thoroughly explored its surface features and chemistry, atmosphere, and searched for past or present life, InSight will focus on the deep interior of the planet. InSight will investigate the fundamental processes of terrestrial planet formation and evolution by performing the first comprehensive surface-based geophysical measurements on Mars. It will provide key information on the composition and structure of an Earth-like planet that has gone through most of the evolutionary stages of the Earth up to plate tectonics. The planet Mars can play a key role in understanding early terrestrial planet formation and evolution. Unlike the Earth, its overall structure appears to be relatively unchanged since the first few hundred million years after formation; unlike the Moon, it is large enough that the P-T conditions within the planet span an appreciable fraction of the terrestrial planet range. Thus the large-scale chemical and structural evidence preserved in Mars' interior should tell us a great deal about the processes of planetary differentiation and heat transport. InSight will undertake this investigation using the "traditional" geophysical techniques of seismology, precision tracking (for rotational dynamics), and heat flow measurement. The predominant challenge, in addition to the technical problems of the remote installation and operation of instruments on a distant and harsh planetary surface, comes from the practical limitation of working with data acquired from a single station. We will discuss how we overcome these limitations through the application of single-station seismic analysis techniques, which take advantage of some of the specific attributes of Mars, and global heat flow modeling, which allows the interpretation of a single measurement of a spatially inhomogeneous surface distribution.
NASA Astrophysics Data System (ADS)
Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Yan, D.; Fricke, K. W.; Thrall, L.
2012-12-01
The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and even give us clues to the atmospheric history of these planets. This poster highlights the third in a series of presentations that target school-age audiences with the overall goal of helping the audience visualize planetary magnetic field and understand how they can impact the climatic evolution of a planet. Our first presentation, "Goldilocks and the Three Planets," targeted to elementary school age audiences, focuses on the differences in the atmospheres of Venus, Earth, and Mars and the causes of the differences. The second presentation, "Lost on Mars (and Venus)," geared toward a middle school age audience, highlights the differences in the magnetic fields of these planets and what we can learn from these differences. Finally, in the third presentation, "Wet Mars, Dry Mars," targeted to high school age audiences and the focus of this poster, the emphasis is on the long term climatic affects of the presence or absence of a magnetic field using the contrasts between Earth and Mars. These presentations are given using visually engaging spherical displays in conjunction with hands-on activities and scientifically accurate 3D models of planetary magnetic fields. We will summarize the content of our presentations, discuss our lessons learned from evaluations, and show (pictures of) our hands-on activities and 3D models.
Controlling Factors of the Fate of Ionospheric Outflow at Earth and Mars
NASA Astrophysics Data System (ADS)
Liemohn, M. W.; Welling, D. T.; Ilie, R.; Ganushkina, N. Y.; Johnson, B. C.; Xu, S.; Dong, C.
2015-12-01
Both Earth and Mars experience ionospheric outflow, but the radically different magnetic field configurations at the two planets yield significantly different patterns of outflow and processes governing outflow. This study examines a set of numerical simulations for Earth and Mars to explore the factors controlling ionospheric outflow and the fate of the escaping ions (immediate precipitation, magnetospheric recirculation, or loss to deep space). Specifically, simulation results from the Space Weather Modeling Framework (SWMF), which is capable of handling both planetary space environments, are analyzed to assess the physical processes governing the fate of ionospheric ions. Velocity streamlines from the SWMF results are traced from the high-latitude inner boundary of the BATS-R-US MHD simulation domain and followed through geospace. Some of these streamlines return to the inner boundary of the simulation domain, others extend to the outer boundary of the domain, while most others eventually cross (or at least approach) the magnetospheric equatorial plane. At Earth, this plane is well defined, while at Mars there are multiple mini-magnetospheres in which ionospheric ions can become trapped. These streamlines are categorized according to their eventual destination. Multi-fluid MHD simulations are examined in this study, assessing the influence of species mass on trajectories through near-planet space. Steady-state numerical experiments with different levels of solar driving are examined to quantify the influence of each driver on outflow characteristics and the fate of outflowing ions. Real event intervals are considered to assess flows in a time-varying magnetospheric system. For Earth, as solar wind dynamic pressure increases, the dominant outflow region moves to lower latitudes and significantly more of the outflowing ions escape to deep space. As the interplanetary magnetic field increases in southward magnitude, the region of dominant outflow shifts to lower latitudes and more is injected into the inner magnetosphere. The ionospheric regions dominantly contributing to mass within the magnetosphere are assessed and compared for the different driving conditions. At Mars, the situation is much more complicated.
Finding Mars-Sized Planets in Inner Orbits of Other Stars by Photometry
NASA Technical Reports Server (NTRS)
Borucki, W.; Cullers, K.; Dunham, E.; Koch, D.; Mena-Werth, J.; Cuzzi, Jeffrey N. (Technical Monitor)
1995-01-01
High precision photometry from a spaceborne telescope has the potential of discovering sub-earth sized inner planets. Model calculations by Wetherill indicate that Mars-sized planets can be expected to form throughout the range of orbits from that of Mercury to Mars. While a transit of an Earth-sized planet causes a 0.084% decrease in brightness from a solar-like star, a transit of a planet as small as Mars causes a flux decrease of only 0.023%. Stellar variability will be the limiting factor for transit measurements. Recent analysis of solar variability from the SOLSTICE experiment shows that much of the variability is in the UV at <400 nm. Combining this result with the total flux variability measured by the ACRIM-1 photometer implies that the Sun has relative amplitude variations of about 0.0007% in the 17-69 pHz bandpass and is presumably typical for solar-like stars. Tests were conducted at Lick Observatory to determine the photometric precision of CCD detectors in the 17-69 pHz bandpass. With frame-by-frame corrections of the image centroids it was found that a precision of 0.001% could be readily achieved, corresponding to a signal to noise ratio of 1.4, provided the telescope aperture was sufficient to keep the statistical noise below 0.0006%. With 24 transits a planet as small as Mars should be reliably detectable. If Wetherill's models are correct in postulating that Mars-like planets are present in Mercury-like orbits, then a six year search should be able to find them.
Scientific objectives of human exploration of Mars
Carr, M.H.
1996-01-01
While human exploration of Mars is unlikely to be undertaken for science reasons alone, science will be the main beneficiary. A wide range of science problems can be addressed at Mars. The planet formed in a different part of the solar system from the Earth and retains clues concerning compositional and environmental conditions in that part of the solar system when the planets formed. Mars has had a long and complex history that has involved almost as wide a range of processes as occurred on Earth. Elucidation of this history will require a comprehensive program of field mapping, geophysical sounding, in situ analyses, and return of samples to Earth that are representative of the planet's diversity. The origin and evolution of the Mars' atmosphere are very different from the Earth's, Mars having experienced major secular and cyclical changes in climate. Clues as to precisely how the atmosphere has evolved are embedded in its present chemistry, possibly in surface sinks of former atmosphere-forming volatiles, and in the various products of interaction between the atmosphere and surface. The present atmosphere also provides a means of testing general circulation models applicable to all planets. Although life is unlikely to be still extant on Mars, life may have started early in the planet's history. A major goal of any future exploration will, therefore, be to search for evidence of indigenous life.
2005-02-04
Ames Mars Wind Tunnel Facility N-245: NASA is simulating small martian 'dust devils' and wind in a laboraotry to determine how they may affect the landscape and environment of the red planet. Dust Devils on Mars are often a great deal biggger than those on Earth and can at times cover the whole planet. Martian winds & dust devils, big and little, collectively are a great force that is constantly changing the planet's environment. shown here: is the control room for the Mars W.T. with Eric Eddlemon
2005-02-04
Ames Mars Wind Tunnel Facility N-245: NASA is simulating small martian 'dust devils' and wind in a laboraotry to determine how they may affect the landscape and environment of the red planet. Dust Devils on Mars are often a great deal biggger than those on Earth and can at times cover the whole planet. Martian winds & dust devils, big and little, collectively are a great force that is constantly changing the planet's environment. shown here: Silica Sand (Oklahoma 90) particles used in vortex generatory and Mars Wind Tunnel
2005-02-04
Ames Mars Wind Tunnel Facility N-245: NASA is simulating small martian 'dust devils' and wind in a laboraotry to determine how they may affect the landscape and environment of the red planet. Dust Devils on Mars are often a great deal biggger than those on Earth and can at times cover the whole planet. Martian winds & dust devils, big and little, collectively are a great force that is constantly changing the planet's environment. shown here: Carbondale Red Clay dust used in vortex generatory and Mars Wind Tunnel
Emerging communications technologies for outer-planet exploration
NASA Technical Reports Server (NTRS)
Stelzried, C.; Lesh, J.
2001-01-01
Communication over long free space distances is extremely difficult due to the inverse squared propagation losses associated with link distance. That makes communications particularly difficult from outer planet destinations.
Accretion and primary differentiation of Mars
NASA Technical Reports Server (NTRS)
Drake, Michael J.
1988-01-01
In collecting samples from Mars to address questions such as whether Mars accreted homogeneously or heterogeneously, how Mars segregated into a metallic core and silicate mantle, and whether Mars outgassed catastrophically coincident with accretion or more serenely on a longer timescale, we must be guided by our experience in addressing these questions for the Earth, Moon, and igneous meteorite parent bodies. A key measurement to be made on any sample returned from Mars is its oxygen isotopic composition. A single measurement will suffice to bind the SNC meteorites to Mars or demonstrate that they cannot be samples of that planet. A positive identification of Mars as the SNC parent planet will permit all that has been learned from the SNC meteorites to be applied to Mars with confidence. A negative result will perhaps be more exciting in forcing us to look for another object that has been geologically active in the recent past. If the oxygen isotopic composition of Earth and Mars are established to be distinct, accretion theory must provide for different compositions for two planets now separated by only 0.5 AU.
Accretion and primary differentiation of Mars
NASA Astrophysics Data System (ADS)
Drake, Michael J.
In collecting samples from Mars to address questions such as whether Mars accreted homogeneously or heterogeneously, how Mars segregated into a metallic core and silicate mantle, and whether Mars outgassed catastrophically coincident with accretion or more serenely on a longer timescale, we must be guided by our experience in addressing these questions for the Earth, Moon, and igneous meteorite parent bodies. A key measurement to be made on any sample returned from Mars is its oxygen isotopic composition. A single measurement will suffice to bind the SNC meteorites to Mars or demonstrate that they cannot be samples of that planet. A positive identification of Mars as the SNC parent planet will permit all that has been learned from the SNC meteorites to be applied to Mars with confidence. A negative result will perhaps be more exciting in forcing us to look for another object that has been geologically active in the recent past. If the oxygen isotopic composition of Earth and Mars are established to be distinct, accretion theory must provide for different compositions for two planets now separated by only 0.5 AU.
2018-05-05
NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) was launched May 5 on a United Launch Alliance Atlas V rocket, from Vandenberg Air Force Base in Central California. NASA also flew a technology demonstration called Mars Cube One (MarCO) on the Atlas V to separately go to Mars. NASA has a long and successful track record at Mars. InSight will drill into the Red Planet to study the crust, mantle and core of Mars. It will help scientists understand the formation and early evolution of all rocky planets, including Earth.
InSight Probes the 'Inner Space' of Mars
2018-01-25
An artist's impression of the InSight lander on Mars. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is designed to give the Red Planet its first thorough check up since it formed 4.5 billion years ago. It is scheduled to launch from Vandenberg Air Force Base on the California coast between May 5 through June 8, 2018, and land on Mars six months later. InSight will look for tectonic activity and meteorite impacts, study how much heat is still flowing through the planet, and track Mars' wobble as it orbits the sun. While InSight is a Mars mission, it's more than a Mars mission. InSight will help answer key questions about the formation of the rocky planets of the solar system. https://photojournal.jpl.nasa.gov/catalog/PIA22226
ERIC Educational Resources Information Center
Canizo, Thea L.; And Others
1997-01-01
Presents an activity in which students learn about the characteristics of the planet Mars. Challenges students to design and build a model of a robotic vehicle that can travel on the surface of Mars and accomplish an assigned task that will provide information useful for future manned trips to the planet. Outlines mission task cards and progress…
The 2009 Mars Telecommunications Orbiter
NASA Technical Reports Server (NTRS)
Wilson, G. R.; DePaula, R.; Diehl, R. E.; Edwards, C. D.; Fitzgerald, R. J.; Franklin, S. F.; Kerridge, S. A.; Komarek, T. A.; Noreen, G. K.
2004-01-01
The first spacecraft with a primary function of providing communication links while orbiting a foreign planet has begun development for a launch in 2009. NASA's Mars Telecommunications Orbiter would use three radio bands to magnify the benefits of other future Mars missions and enable some types of missions otherwise impractical. It would serve as the Mars hub for a growing interplanetary Internet. And it would pioneer the use of planet-to-planet laser communications to demonstrate the possibility for even greater networking capabilities in the future. With Mars Telecommunications Orbiter overhead in the martian sky, the Mars Science Laboratory rover scheduled to follow the orbiter to Mars by about a month could send to Earth more than 100 times as much data per day as it could otherwise send. The orbiter will be designed for the capability of relaying up to 15 gigabits per day from the rover, equivalent to more than three full compact discs each day. The same benefits would accrue to other future major Mars missions from any nation.
Life on Mars? II. Physical restrictions
NASA Technical Reports Server (NTRS)
Mancinelli, R. L.; Banin, A.
1995-01-01
The primary physical factors important to life's evolution on a planet include its temperature, pressure and radiation regimes. Temperature and pressure regulate the presence and duration of liquid water on the surface of Mars. The prolonged presence of liquid water is essential for the evolution and sustained presence of life on a planet. It has been postulated that Mars has always been a cold dry planet; it has also been postulated that early mars possessed a dense atmosphere of CO2 (> or = 1 bar) and sufficient water to cut large channels across its surface. The degree to which either of these postulates is true correlates with the suitability of Mars for life's evolution. Although radiation can destroy living systems, the high fluxes of UV radiation on the martian surface do not necessarily stop the origin and early evolution of life. The probability for life to have arisen and evolved to a significant degree on Mars, based on the postulated ranges of early martian physical factors, is almost solely related to the probability of liquid water existing on the planet for at least hundreds of millions to billions of years.
Solar Storm Triggers Whole-Planet Aurora at Mars (Video)
2017-09-29
This frame from an animation shows the sudden appearance of a bright aurora on Mars during a solar storm. The purple-white color scheme shows the intensity of ultraviolet light seen on Mars' night side over the course of the event. The data are from observations on Sept. 12 and 13, 2017, by the Imaging Ultraviolet Spectrograph instrument (IUVS) on NASA's Mars Atmosphere and Volatile Evolution orbiter, or MAVEN. The aurora is occurring because energetic particles from the solar storm are bombarding gases in the planet's atmosphere, causing them to glow. A simulated image of the Mars surface for the same time and orientation is also shown, with the dayside crescent visible on the right. The auroral emission appears brightest at the edges of the planet where the line of sight passes along the length of the glowing atmosphere layer. Note that, unlike auroras on Earth, the Martian aurora is not concentrated at the planet's polar regions. This is because Mars has no strong magnetic field like Earth's to concentrate the aurora near the poles. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21854
Polygonal Craters on Dwarf-Planet Ceres
NASA Astrophysics Data System (ADS)
Otto, K. A.; Jaumann, R.; Krohn, K.; Buczkowski, D. L.; von der Gathen, I.; Kersten, E.; Mest, S. C.; Preusker, F.; Roatsch, T.; Schenk, P. M.; Schröder, S.; Schulzeck, F.; Scully, J. E. C.; Stepahn, K.; Wagner, R.; Williams, D. A.; Raymond, C. A.; Russell, C. T.
2015-10-01
With approximately 950 km diameter and a mass of #1/3 of the total mass of the asteroid belt, (1) Ceres is the largest and most massive object in the Main Asteroid Belt. As an intact proto-planet, Ceres is key to understanding the origin and evolution of the terrestrialplanets [1]. In particular, the role of water during planet formation is of interest, because the differentiated dwarf-planet is thought to possess a water rich mantle overlying a rocky core [2]. The Dawn space craft arrived at Ceres in March this year after completing its mission at (4) Vesta. At Ceres, the on-board Framing Camera (FC) collected image data which revealed a large variety of impact crater morphologies including polygonal craters (Figure 1). Polygonal craters show straight rim sections aligned to form an angular shape. They are commonly associated with fractures in the target material. Simple polygonal craters develop during the excavation stage when the excavation flow propagates faster along preexisting fractures [3, 5]. Complex polygonal craters adopt their shape during the modification stage when slumping along fractures is favoured [3]. Polygonal craters are known from a variety of planetary bodies including Earth [e.g. 4], the Moon [e.g. 5], Mars [e.g. 6], Mercury [e.g. 7], Venus [e.g. 8] and outer Solar System icy satellites [e.g. 9].
NASA Astrophysics Data System (ADS)
Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel
2010-03-01
We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ("planetesimals"). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M ⊕ from 10 to 20 AU. For large planet masses (M >~ M Sat), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a <~ 3 AU) is consistent with isolated planet-planet scattering. We explain the observed mass dependence—which is in the opposite sense from that predicted by the simplest scattering models—as a consequence of strong correlations between planet masses in the same system. At somewhat larger radii, initial planetary mass correlations and disk effects can yield similar modest changes to the eccentricity distribution. Nonetheless, strong damping of eccentricity for low-mass planets at large radii appears to be a secure signature of the dynamical influence of disks. Radial velocity measurements capable of detecting planets with K ≈ 5 m s-1 and periods in excess of 10 years will provide constraints on this regime. Finally, we present an analysis of the predicted separation of planets in two-planet systems, and of the population of planets in mean-motion resonances (MMRs). We show that, if there are systems with ~ Jupiter-mass planets that avoid close encounters, the planetesimal disk acts as a damping mechanism and populates MMRs at a very high rate (50%-80%). In many cases, resonant chains (in particular the 4:2:1 Laplace resonance) are set up among all three planets. We expect such resonant chains to be common among massive planets in outer planetary systems.
NASA Astrophysics Data System (ADS)
Granados Contreras, A. P.; Boley, A. C.
2018-03-01
We explore the effects of an undetected outer giant planet on the dynamics, observability, and stability of Systems with Tightly-packed Inner Planets (STIPs). We use direct numerical simulations along with secular theory and synthetic secular frequency spectra to analyze how analogues of Kepler-11 and Kepler-90 behave in the presence of a nearly co-planar, Jupiter-like outer perturber with semimajor axes between 1 and 5.2 au. Most locations of the outer perturber do not affect the evolution of the inner planetary systems, apart from altering precession frequencies. However, there are locations at which an outer planet causes system instability due to, in part, secular eccentricity resonances. In Kepler-90, there is a range of orbital distances for which the outer perturber drives planets b and c, through secular interactions, onto orbits with inclinations that are ∼16° away from the rest of the planets. Kepler-90 is stable in this configuration. Such secular resonances can thus affect the observed multiplicity of transiting systems. We also compare the synthetic apsidal and nodal precession frequencies with the secular theory and find some misalignment between principal frequencies, indicative of strong interactions between the planets (consistent with the system showing TTVs). First-order libration angles are calculated to identify MMRs in the systems, for which two near-MMRs are shown in Kepler-90, with a 5:4 between b and c, as well as a 3:2 between g and h.
Environmental Test Program for the Mars Exploration Rover Project
NASA Technical Reports Server (NTRS)
Fisher, Terry C.; VanVelzer, Paul L.
2004-01-01
On June 10 and July 7, 2003 the National Aeronautics and Space Administration (NASA) launched two spacecraft from Cape Canaveral, Florida for a six (6) months flight to the Red Planet, Mars. The two Mars Exploration Rover spacecraft landed safely on the planet in January 2004. Prior to the successful launch, both of the spacecraft were involved in a comprehensive test campaign that included development, qualification, and protoflight test programs. Testing was performed to simulate the environments associated with launch, inter-planetary cruise, landing on the planet and Mars surface operations. Unique test requirements included operating the spacecraft while the chamber pressure was controlled to simulate the decent to the planet from deep space, high impact landing loads and rover operations on the surface of the planet at 8 Torr and -130 C. This paper will present an overview of the test program that included vibration, pyro-shock, landing loads, acoustic noise, thermal vacuum and solar simulation testing at the Jet Propulsion Laboratory (JPL) Environmental Test Laboratory facilities in Pasadena, California.
Earth-type planets (Mercury, Venus, and Mars)
NASA Technical Reports Server (NTRS)
Marov, M. Y.; Davydov, V. D.
1975-01-01
Spacecraft- and Earth-based studies on the physical nature of the planets Mercury, Venus, and Mars are reported. Charts and graphs are presented on planetary surface properties, rotational parameters, atmospheric compositions, and astronomical characteristics.
NASA Technical Reports Server (NTRS)
Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin
2015-01-01
We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.
NASA Technical Reports Server (NTRS)
2005-01-01
This artist's animation illustrates a massive asteroid belt in orbit around a star the same age and size as our Sun. Evidence for this possible belt was discovered by NASA's Spitzer Space Telescope when it spotted warm dust around the star, presumably from asteroids smashing together. The view starts from outside the belt, where planets like the one shown here might possibly reside, then moves into to the dusty belt itself. A collision between two asteroids is depicted near the end of the movie. Collisions like this replenish the dust in the asteroid belt, making it detectable to Spitzer. The alien belt circles a faint, nearby star called HD 69830 located 41 light-years away in the constellation Puppis. Compared to our own solar system's asteroid belt, this one is larger and closer to its star - it is 25 times as massive, and lies just inside an orbit equivalent to that of Venus. Our asteroid belt circles between the orbits of Mars and Jupiter. Because Jupiter acts as an outer wall to our asteroid belt, shepherding its debris into a series of bands, it is possible that an unseen planet is likewise marshalling this belt's rubble. Previous observations using the radial velocity technique did not locate any large gas giant planets, indicating that any planets present in this system would have to be the size of Saturn or smaller. Asteroids are chunks of rock from 'failed' planets, which never managed to coalesce into full-sized planets. Asteroid belts can be thought of as construction sites that accompany the building of rocky planets.The Mars Climate Orbiter at Launch Complex 17A, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
At Launch Complex 17A, Cape Canaveral Air Station, workers place aside a piece of the canister surrounding the Mars Climate Orbiter. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.
The Mars Climate Orbiter at Launch Complex 17A, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
At Launch Complex 17A, Cape Canaveral Air Station, workers remove the canister surrounding the Mars Climate Orbiter. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.
NASA's Exploration of the Red Planet: An Overview
NASA Technical Reports Server (NTRS)
Naderi, Firouz M.
2004-01-01
This viewgraph presentation reviews NASA's plans for the exploration of Mars. The reasons for the choice of Mars for exploration are reviewed: launch opportunity every 26 months, the closest planet, and potential extraterrestrial life.
Return to the red planet: The Mars Observer Mission
NASA Technical Reports Server (NTRS)
French, Bevan M.; Young, Carolynn (Editor)
1993-01-01
An overview of the Mars Observer Mission is discussed. Highlights include: (1) the spacecraft; (2) the instrumentation and science experiments; (3) the countries involved; (4) the flight teams; and (5) the planet Mars itself (a brief history). Photographs and flow charts are included, along with diagrams of instrumentation and a brief historical narrative of space observation and exploration.
NASA Facts, Mars as a Member of the Solar System.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.
Presented is one of a series of National Aeronautics and Space Administration (NASA) facts about the exploration of Mars. In this publication, emphasis is placed on the planet Mars as a member of the Solar System and a detailed description is given related to historical accounts of the planet's existence and its travels. The physical…
NASA Technical Reports Server (NTRS)
Ioannou, Petros J.; Lindzen, Richard S.
1993-01-01
Classical tidal theory is applied to the atmospheres of the outer planets. The tidal geopotential due to satellites of the outer planets is discussed, and the solution of Laplace's tidal equation for Hough modes appropriate to tides on the outer planets is examined. The vertical structure of tidal modes is described, noting that only relatively high-order meridional mode numbers can propagate vertically with growing amplitude. Expected magnitudes for tides in the visible atmosphere of Jupiter are discussed. The classical theory is extended to planetary interiors taking the effects of spherically and self-gravity into account. The thermodynamic structure of Jupiter is described and the WKB theory of the vertical structure equation is presented. The regions for which inertial, gravity, and acoustic oscillations are possible are delineated. The case of a planet with a neutral interior is treated, discussing the various atmospheric boundary conditions and showing that the tidal response is small.
Solar Storm Triggers Whole-Planet Aurora at Mars
2017-09-29
These images show the sudden appearance of a bright aurora on Mars during a solar storm in September 2017. The purple-white color scheme shows the intensity of ultraviolet light seen on Mars' night side before (left) and during (right) the event. A simulated image of Mars for the same time and orientation has been added, with the dayside crescent visible on the right. The auroral emission appears brightest at the edges of the planet where the line of sight passes along the length of the glowing atmosphere layer. The data are from observations by the Imaging Ultraviolet Spectrograph instrument (IUVS) on NASA's Mars Atmosphere and Volatile Evolution orbiter, or MAVEN. Note that, unlike auroras on Earth, the Martian aurora is not concentrated at the planet's polar regions. This is because Mars has no strong magnetic field like Earth's to concentrate the aurora near the poles. https://photojournal.jpl.nasa.gov/catalog/PIA21855
Hubble 2020: Outer Planet Atmospheres Legacy (OPAL) Program
NASA Astrophysics Data System (ADS)
Simon, Amy
2017-08-01
Long time base observations of the outer planets are critical in understanding the atmospheric dynamics and evolution of the gas giants. We propose yearly monitoring of each giant planet for the remainder of Hubble's lifetime to provide a lasting legacy of increasingly valuable data for time-domain studies. The Hubble Space Telescope is a unique asset to planetary science, allowing high spatial resolution data with absolute photometric knowledge. For the outer planets, gas/ice giant planets Jupiter, Saturn, Uranus and Neptune, many phenomena happen on timescales of years to decades, and the data we propose are beyond the scope of a typical GO program. Hubble is the only platform that can provide high spatial resolution global studies of cloud coloration, activity, and motion on a consistent time basis to help constrain the underlying mechanics.
NASA Technical Reports Server (NTRS)
2008-01-01
This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time. All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet. Phoenix will land just south of Mars's north polar ice cap.Mars Orbiter Sample Return Power Design
NASA Technical Reports Server (NTRS)
Mardesich, N.; Dawson, S.
2005-01-01
Mars has greatly intrigued scientists and the general public for many years because, of all the planets, its environment is most like Earth's. Many scientists believe that Mars once had running water, although surface water is gone today. The planet is very cold with a very thin atmosphere consisting mainly of CO2. Mariner 4, 6, and 7 explored the planet in flybys in the 1960s and by the orbiting Mariner 9 in 1971. NASA then mounted the ambitious Viking mission, which launched two orbiters and two landers to the planet in 1975. The landers found ambiguous evidence of life. Mars Pathfinder landed on the planet on July 4, 1997, delivering a mobile robot rover that demonstrated exploration of the local surface environment. Mars Global Surveyor is creating a highest-resolution map of the planet's surface. These prior and current missions to Mars have paved the way for a complex Mars Sample Return mission planned for 2003 and 2005. Returning surface samples from Mars will necessitate retrieval of material from Mars orbit. Sample mass and orbit are restricted to the launch capability of the Mars Ascent Vehicle. A small sample canister having a mass less than 4 kg and diameter of less than 16 cm will spend from three to seven years in a 600 km orbit waiting for retrieval by a second spacecraft consisting of an orbiter equipped with a sample canister retrieval system, and a Earth Entry Vehicle. To allow rapid detection of the on-orbit canister, rendezvous, and collection of the samples, the canister will have a tracking beacon powered by a surface mounted solar array. The canister must communicate using RF transmission with the recovery vehicle that will be coming in 2006 or 2009 to retrieve the canister. This paper considers the aspect and conclusion that went into the design of the power system that achieves the maximum power with the minimum risk. The power output for the spherical orbiting canister was modeled and plotted in various views of the orbit by the Satellite Orbit Analysis Program (SOAP).
Space Weather Storm Responses at Mars: Lessons from A Weakly Magnetized Terrestrial Planet
NASA Astrophysics Data System (ADS)
Luhmann, J. G.; Dong, C. F.; Ma, Y. J.; Curry, S. M.; Li, Yan; Lee, C. O.; Hara, T.; Lillis, R.; Halekas, J.; Connerney, J. E.; Espley, J.; Brain, D. A.; Dong, Y.; Jakosky, B. M.; Thiemann, E.; Eparvier, F.; Leblanc, F.; Withers, P.; Russell, C. T.
2017-10-01
Much can be learned from terrestrial planets that appear to have had the potential to be habitable, but failed to realize that potential. Mars shows evidence of a once hospitable surface environment. The reasons for its current state, and in particular its thin atmosphere and dry surface, are of great interest for what they can tell us about habitable zone planet outcomes. A main goal of the MAVEN mission is to observe Mars' atmosphere responses to solar and space weather influences, and in particular atmosphere escape related to space weather `storms' caused by interplanetary coronal mass ejections (ICMEs). Numerical experiments with a data-validated MHD model suggest how the effects of an observed moderately strong ICME compare to what happens during a more extreme event. The results suggest the kinds of solar and space weather conditions that can have evolutionary importance at a planet like Mars.
NASA Technical Reports Server (NTRS)
Whipple, F. L.
1973-01-01
Growing planetesimals and a range of drag laws depending on the Reynolds number and on the ratio of particle size to mean free path are considered. Particles spiral in the direction of positive gradient, thus being concentrated toward toroidal concentrations of gas. The effect increases with decreasing rates of particle growth, i.e., with increasing time scales of planet formation by accretion. In the outer regions, where evidence suggests that comets were formed and Uranus and Neptune were so accumulated, the effect of the pressure gradient is to clear the forming comets from those regions. The large mass of Neptune may have developed because of this effect, perhaps Neptune's solar distance was reduced from Bode's law, and perhaps no comet belt exists beyond Neptune. In the asteroid belt, on a slow time scale, the effect may have spiraled planetesimals toward Mars and Jupiter, thus contributing to the lack of planet formation in this region.
Origin of Martian Moons from Binary Asteroid Dissociation
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Lyons, Valerie J. (Technical Monitor)
2001-01-01
The origin of the Martian moons Deimos and Phobos is controversial. A common hypothesis for their origin is that they are captured asteroids, but the moons show no signs of having been heated by passage through a (hypothetical) thick martian atmosphere, and the mechanism by which an asteroid in solar orbit could shed sufficient orbital energy to be captured into Mars orbit has not been previously elucidated. Since the discovery by the space probe Galileo that the asteroid Ida has a moon 'Dactyl', a significant number of asteroids have been discovered to have smaller asteroids in orbit about them. The existence of asteroid moons provides a mechanism for the capture of the Martian moons (and the small moons of the outer planets). When a binary asteroid makes a close approach to a planet, tidal forces can strip the moon from the asteroid. Depending on the phasing, either or both can then be captured. Clearly, the same process can be used to explain the origin of any of the small moons in the solar system.
The Innisfree meteorite: Dynamical history of the orbit - Possible family of meteor bodies
NASA Astrophysics Data System (ADS)
Galibina, I. V.; Terent'eva, A. K.
1987-09-01
Evolution of the Innisfree meteorite orbit caused by secular perturbations is studied over the time interval of 500000 yrs (from the current epoch backwards). Calculations are made by the Gauss-Halphen-Gorjatschew method taking into account perturbations from the four outer planets - Jupiter, Saturn, Uranus and Neptune. In the above mentioned time interval the meteorite orbit has undergone no essential transformations. The Innisfree orbit intersected in 91 cases the Earth orbit and in 94 - the Mars orbit. A system of small and large meteor bodies (producing ordinary meteors and fireballs) which may be genetically related to the Innisfree meteorite has been found, i.e. there probably exists an Innisfree family of meteor bodies.
The Palomar planet-crossing asteroid survey, 1973-1978
Helin, E.F.; Shoemaker, E.M.
1979-01-01
Photographic coverage of about 80,000 deg2 of sky with the Palomar 46-cm Schmidt camera has yielded 12 new planet-crossing asteroids as well as many objects in the main asteroid belt. The estimated population of planet-crossing asteroids includes ???100 Atens, 700 ?? 300 Apollos, 1000-2000 Amors, 10,000 ?? 5000 Mars crossers, and ???5000 Mars grazers. ?? 1979.
Advanced Communication Architectures and Technologies for Missions to the Outer Planets
NASA Technical Reports Server (NTRS)
Bhasin, K.; Hayden, J. L.
2001-01-01
Missions to the outer planets would be considerably enhanced by the implementation of a future space communication infrastructure that utilizes relay stations placed at strategic locations in the solar system. These relay stations would operate autonomously and handle remote mission command and data traffic on a prioritized demand access basis. Such a system would enhance communications from that of the current direct communications between the planet and Earth. The system would also provide high rate data communications to outer planet missions, clear communications paths during times when the sun occults the mission spacecraft as viewed from Earth, and navigational "lighthouses" for missions utilizing onboard autonomous operations. Additional information is contained in the original extended abstract.
Study of Power Options for Jupiter and Outer Planet Missions
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Fincannon, James
2015-01-01
Power for missions to Jupiter and beyond presents a challenging goal for photovoltaic power systems, but NASA missions including Juno and the upcoming Europa Clipper mission have shown that it is possible to operate solar arrays at Jupiter. This work analyzes photovoltaic technologies for use in Jupiter and outer planet missions, including both conventional arrays, as well as analyzing the advantages of advanced solar cells, concentrator arrays, and thin film technologies. Index Terms - space exploration, spacecraft solar arrays, solar electric propulsion, photovoltaic cells, concentrator, Fresnel lens, Jupiter missions, outer planets.
Journey to Mars: the physics of travelling to the red planet
NASA Astrophysics Data System (ADS)
Stinner, Arthur; Begoray, John
2005-01-01
Mars has fascinated mankind since antiquity. The retrograde motion of the red planet provided the impetus for the Earth-centred solar system of Ptolemy, and 1500 years later, for the Sun-centred solar system of Copernicus. Kepler's laws of planetary motion were the result of his all-out 'war on Mars' that lasted for about 18 years. Fascination for Mars reappeared in the beginning of the last century with the astronomer Percival Lowell's well publicized claim that intelligent life was responsible for the 'canals' that were sighted with a new powerful telescope. We are seeing a resurgence of this interest in the wake of many successful attempts to land on Mars in the last 30 years to study the surface and the atmosphere of the planet. Indeed, the Canadian Space Agency (CSA) is now cooperating with NASA in the quest for a full scale scientific assault on the red planet. In response to this new interest, we wrote an interactive computer program (ICP), illustrating the physics of planetary motion, that we have used successfully in lecture-demonstrations and with students in classrooms. The main part of this article describes two missions to Mars, and a third one that illustrates the capabilities of the ICP.
Self-sterilization of bodies during outer planet entry
NASA Technical Reports Server (NTRS)
Hoffman, A. R.; Jaworski, W.; Taylor, D. M.
1974-01-01
A body encountering the atmosphere of an outer planet is subjected to heat loads which could result in high temperature conditions that render terrestrial organisms on or within the body nonviable. To determine whether an irregularly shaped entering body, consisting of several different materials, would be sterilized during inadvertent entry at high velocity, the thermal response of a typical outer planet spacecraft instrument was studied. The results indicate that the Teflon insulated cable and electronic circuit boards may not experience sterilizing temperatures during a Jupiter, Saturn, or Titan entry. Another conclusion of the study is that small plastic particles entering Saturn from outer space have wider survival corridors than do those at Jupiter.
The Mars Climate Orbiter at Launch Complex 17A, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
At Launch Complex 17A, Cape Canaveral Air Station, the Mars Climate Orbiter is free of the protective canister that surrounded it during the move to the pad. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.
The Mars Climate Orbiter at Launch Complex 17A, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
At Launch Complex 17A, Cape Canaveral Air Station, workers get ready to remove the last piece of the canister surrounding the Mars Climate Orbiter. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.
Outer planet probe engineering model structural tests
NASA Technical Reports Server (NTRS)
Smittkamp, J. A.; Gustin, W. H.; Griffin, M. W.
1977-01-01
A series of proof of concept structural tests was performed on an engineering model of the Outer Planets Atmospheric Entry Probe. The tests consisted of pyrotechnic shock, dynamic and static loadings. The tests partially verified the structural concept.
NASA Technical Reports Server (NTRS)
1974-01-01
The impact of satisfying satellite quarantine constraints on current outer planet mission and spacecraft designs is considered. Tools required to perform trajectory and navigation analyses for determining satellite impact probabilities are developed.
NASA space and Earth science data on CD-ROM
NASA Technical Reports Server (NTRS)
Towheed, Syed S.
1993-01-01
The National Space Science Data Center (NSSDC) is very interested in facilitating the widest possible use of the scientific data acquired through NASA spaceflight missions. Therefore, NSSDC has participated with projects and data management elements throughout the NASA science environment in the creation, archiving, and dissemination of data using Compact Disk-Read Only Memory (CD-ROM). This CD-ROM technology has the potential to enable the dissemination of very large data volumes at very low prices to a great many researchers, students and their teachers, and others. This catalog identifies and describes the scientific CD-ROM's now available from NSSDC including the following data sets: Einstein Observatory CD-ROM, Galileo Cruise Imaging on CD-ROM, International Halley Watch, IRAS Sky Survey Atlas, Infrared Thermal Mapper (IRTM), Magellan (MIDR), Magellan (ARCDR's), Magellan (GxDR's), Mars Digital Image Map (MDIM), Outer Planets Fields & Particles Data, Pre-Magellan, Selected Astronomical Catalogs, TOMS Gridded Ozone Data, TOMS Ozone Image Data, TOMS Update, Viking Orbiter Images of Mars, and Voyager Image.
Advanced Thin Film Solar Arrays for Space: The Terrestrial Legacy
NASA Technical Reports Server (NTRS)
Bailey, Sheila; Hepp, Aloysius; Raffaelle, Ryne; Flood, Dennis
2001-01-01
As in the case for single crystal solar cells, the first serious thin film solar cells were developed for space applications with the promise of better power to weight ratios and lower cost. Future science, military, and commercial space missions are incredibly diverse. Military and commercial missions encompass both hundreds of kilowatt arrays to tens of watt arrays in various earth orbits. While science missions also have small to very large power needs there are additional unique requirements to provide power for near sun missions and planetary exploration including orbiters, landers, and rovers both to the inner planets and the outer planets with a major emphasis in the near term on Mars. High power missions are particularly attractive for thin film utilization. These missions are generally those involving solar electric propulsion, surface power systems to sustain an outpost or a permanent colony on the surface of the Moon or Mars, space based lasers or radar, or large Earth orbiting power stations which can serve as central utilities for other orbiting spacecraft, or potentially beaming power to the Earth itself. This paper will discuss the current state of the art of thin film solar cells and the synergy with terrestrial thin film photovoltaic evolution. It will also address some of the technology development issues required to make thin film photovoltaics a viable choice for future space power systems.
Strategy for outer planets exploration
NASA Technical Reports Server (NTRS)
1975-01-01
NASA's Planetary Programs Office formed a number of scientific working groups to study in depth the potential scientific return from the various candidate missions to the outer solar system. The results of these working group studies were brought together in a series of symposia to evaluate the potential outer planet missions and to discuss strategies for exploration of the outer solar system that were consistent with fiscal constraints and with anticipated spacecraft and launch vehicle capabilities. A logical, scientifically sound, and cost effective approach to exploration of the outer solar system is presented.
NASA Astrophysics Data System (ADS)
Nichols, Robert G.
1992-10-01
The paper discusses the type of data which will be collected by the NASA's Mars Observer spacecraft when it reaches the planet next year. These will include measurements on the Martian magnetic field, the volcanic activity, the dust storms, seasonal weather cycles, and the planet's atmosphere and gravitational field. The Mars Observer's instruments include a magnetometer, an electron reflectometer, an IR radiometer, a laser altimeter, a thermal-emission spectrometer, a gamma-ray spectrometer, a camera, and a radio system. The program is counting on the vehicle's longevity so that it can participate in a Russian mission due to arrive at Mars in September 1995.
Comparison of the distribution of large magmatic centers on Earth, Venus, and Mars
NASA Technical Reports Server (NTRS)
Crumpler, L. S.
1993-01-01
Volcanism is widely distributed over the surfaces of the major terrestrial planets: Venus, Earth, and Mars. Anomalous centers of magmatic activity occur on each planet and are characterized by evidence for unusual concentrations of volcanic centers, long-lived activity, unusual rates of effusion, extreme size of volcanic complexes, compositionally unusual magmatism, and evidence for complex geological development. The purpose of this study is to compare the characteristics and distribution of these magmatic anomalies on Earth, Venus, and Mars in order to assess these characteristics as they may relate to global characteristics and evolution of the terrestrial planets.
The Phobos neutral and ionized torus
NASA Astrophysics Data System (ADS)
Poppe, A. R.; Curry, S. M.; Fatemi, S.
2016-05-01
Charged particle sputtering, micrometeoroid impact vaporization, and photon-stimulated desorption are fundamental processes operating at airless surfaces throughout the solar system. At larger bodies, such as Earth's Moon and several of the outer planet moons, these processes generate tenuous surface-bound exospheres that have been observed by a variety of methods. Phobos and Deimos, in contrast, are too gravitationally weak to keep ejected neutrals bound and, thus, are suspected to generate neutral tori in orbit around Mars. While these tori have not yet been detected, the distribution and density of both the neutral and ionized components are of fundamental interest. We combine a neutral Monte Carlo model and a hybrid plasma model to investigate both the neutral and ionized components of the Phobos torus. We show that the spatial distribution of the neutral torus is highly dependent on each individual species (due to ionization rates that span nearly 4 orders of magnitude) and on the location of Phobos with respect to Mars. Additionally, we present the flux distribution of torus pickup ions throughout the Martian system and estimate typical pickup ion fluxes. We find that the predicted pickup ion fluxes are too low to perturb the ambient plasma, consistent with previous null detections by spacecraft around Mars.
Interior of Mars from spacecraft and complementary data.
NASA Astrophysics Data System (ADS)
Dehant, Veronique
2015-04-01
Mars, as Earth, Venus and Mercury is a terrestrial planet having, in addition to the mantle and lithosphere, a core composed of an iron alloy. This core might be completely liquid, completely solid or may contain a solid part (the inner core) and a liquid part. The existence of a magnetic field around a planet is mainly explained by the presence of motions in the liquid part in the core. The absence of a magnetic field does not help in constraining the state of the core as it might be completely solid or completely liquid but the motion (convection) might not be sufficient to maintain it, or even contain a growing inner core inside a liquid core composed of iron or Nickel and a percentage of light element corresponding to the eutectic composition (no precipitation). The planet Mars is smaller than Earth. It has evolved differently. We know for the Earth that the core is liquid and that the inner core is forming by precipitation of iron. For Mars spacecraft observation of the gravity field and its time variation allow us to obtain the effect of mass repartition, and in particular those induced by the solid tides. These tidal deformation of the planet are larger for a planet with a liquid core than for a completely solid planet. Recent spacecraft orbiting around Mars (MGS, Mars Odyssey, MRO, Mars Express) have allowed to obtain the k2 tidal Love numbers. This measurement is rather at the limit of what the observation can tell us but seems to indicate that Mars has a liquid core. The absence of a present-day global magnetic field places Mars in the situation where the inner core is not yet forming or has reached the eutectic. Physical observation of the planet other than tides also allow us to obtain information about the interior of Mars: its rotation and orientation changes. Planetary rotation can be separated into the rotation speed around an axis and the orientation of this axis (or another axis of the planet) in space. Most of us know that the rotation of a boiled egg noticeably differs from that of a raw egg. This simple observation shows that information on the inside of an object can be obtained from its rotation. The same idea applies to the rotation of celestial bodies. Their rotation changes and orientation changes provide information on the interior. For Mars, as for the Earth, it is mainly the changes in the orientation that are important to characterize their interiors, the length-of-day variations being mostly related to atmospheric angular moment transfer to the solid planet. The orientation changes are called precession, the long-term change, and nutation, the periodic wiggly short-term changes that are the most interesting to obtain information about the core. Nutations have up to now only been unambiguously observed for the Earth, but the InSIGHT (Interior exploration using Seismic Investigations, Geodesy, and Heat Transport) NASA mission to be launched in 2016, will carry out an X-band transponder enabling us to do Doppler measurements on the motion of Mars with respect to Earth, and therewith to determine the nutations and the interior structure of Mars.
NASA Technical Reports Server (NTRS)
Lee, W.
1996-01-01
In November 1996, NASA and the Jet Propulsion Laboratory will begin America's return to Mars after a 20-year absence by launching the Mars Global Surveyor (MGS) spacecraft. This mission will usher in a new and exciting era of scientific missions to study the red planet.
Ground Based Studies of the Outer Planets
NASA Technical Reports Server (NTRS)
Trafton, Laurence M.
2005-01-01
This report covers progress to date under this grant on our continuing program to conduct ground based studies of the outer solar system planets and satellites, with emphasis on spectroscopy and atmospheric phenomena. The research continues under our new PAST grant, NNG04G131G beginning 5/1/2004. The original period of performance of the subject grant was 3/1/2001 to 2/28/2004, but was extended one year at no cost. Although there is some overlap in the scientific projects conducted during the extended year with those of the new grant, this report is confined to the portion of the work funded under NAG5-10435. The primary goals for this grant period were a comparative study of outer planet thermospheres/ionospheres near solar maximum, extended to the mid-IR, and the investigation of molecular dimers in outer solar system atmospheres. This project supports NASA's planned space missions, Jupiter Polar Orbiter, outer Planet Microprobes, and the recent Cassini flyby of Jupiter. It also supports the OSS strategic plan themes, The Exploration of the Solar System and The Sun-Earth Connection/ Understanding comparative planetary space environments.
The Mars Climate Orbiter is lifted up the Pad 17A gantry
NASA Technical Reports Server (NTRS)
1998-01-01
Wrapped in a protective covering, the Mars Climate Orbiter with its upper stage booster is lifted up at Launch Complex 17, Pad A, Cape Canaveral Air Station, in preparation for mating to the second stage of a Boeing Delta II (7425) rocket. Targeted for liftoff on Dec. 10, 1998, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.
The Mars Climate Orbiter is lifted up the Pad 17A gantry
NASA Technical Reports Server (NTRS)
1998-01-01
The Mars Climate Orbiter with its upper stage booster, wrapped in a protective covering, is mated to the second stage of a Boeing Delta II (7425) rocket at Launch Complex 17, Pad A, Cape Canaveral Air Station. Targeted for liftoff on Dec. 10, 1998, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.
The Mars Climate Orbiter is lifted up the Pad 17A gantry
NASA Technical Reports Server (NTRS)
1998-01-01
Wrapped in a protective covering, the Mars Climate Orbiter with its upper stage booster is lowered in preparation for mating to the second stage of a Boeing Delta II (7425) rocket at Launch Complex 17, Pad A, Cape Canaveral Air Station. Targeted for liftoff on Dec. 10, 1998, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.
Self sterilization of bodies during outer planet entry. [atmospheric temperature effects
NASA Technical Reports Server (NTRS)
Hoffman, A. R.; Jaworski, W.; Taylor, D. M.
1975-01-01
As a body encounters the atmosphere of an outer planet, whether accidentally or by plan, it will be subjected to heat loads which could result in high temperature conditions that render terrestrial organisms on or within the body non-viable. To determine whether an irregularly shaped entering body, consisting of several different materials, would be sterilized during inadvertent entry at high velocity, the thermal response of a typical outer planet spacecraft instrument was studied. The results indicate that the Teflon-insulated cable and electronic circuit boards may not experience sterilizing temperatures during a Jupiter, Saturn, or Titan entry. Another conclusion of the study is that small plastic particles entering Saturn from outer space have wider survival corridors than do those at Jupiter.
A Distant Solar System Artist Concept
2004-12-09
This artist concept depicts a distant hypothetical solar system, similar in age to our own. Looking inward from the system outer fringes, a ring of dusty debris can be seen, and within it, planets circling a star the size of our Sun. This debris is all that remains of the planet-forming disk from which the planets evolved. Planets are formed when dusty material in a large disk surrounding a young star clumps together. Leftover material is eventually blown out by solar wind or pushed out by gravitational interactions with planets. Billions of years later, only an outer disk of debris remains. These outer debris disks are too faint to be imaged by visible-light telescopes. They are washed out by the glare of the Sun. However, NASA's Spitzer Space Telescope can detect their heat, or excess thermal emission, in infrared light. This allows astronomers to study the aftermath of planet building in distant solar systems like our own. http://photojournal.jpl.nasa.gov/catalog/PIA07096
Giant planets: Clues on current and past organic chemistry in the outer solar system
NASA Technical Reports Server (NTRS)
Pollack, James B.; Atreya, Sushil K.
1992-01-01
The giant planets of the outer solar system - Jupiter, Saturn, Uranus, and Neptune - were formed in the same flattened disk of gas and dust, the solar nebula, as the terrestrial planets were. Yet, the giant planets differ in some very fundamental ways from the terrestrial planets. Despite enormous differences, the giant planets are relevant to exobiology in general and the origin of life on the Earth in particular. The giant planets are described as they are today. Their basic properties and the chemistry occurring in their atmospheres is discussed. Theories of their origin are explored and aspects of these theories that may have relevance to exobiology and the origin of life on Earth are stressed.
Morphologic studies of the Moon and planets
NASA Technical Reports Server (NTRS)
El-Baz, F.; Maxwell, T. A.
1984-01-01
The impact, volcanic, and tectonic history of the Moon and planets were investigated over an eight year period. Research on the following topics is discussed: lunar craters, lunar basins, lunar volcanoes, correlation of Apollo geochemical data, lunar geology, Mars desert landforms, and Mars impact basins.
Effects of Extreme Obliquity Variations on the Habitability of Exoplanets
NASA Technical Reports Server (NTRS)
Armstrong, J. C.; Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T. R.; Meadows, V. S.
2014-01-01
We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.
The Initial Physical Conditions of Kepler-36 b and c
NASA Astrophysics Data System (ADS)
Owen, James E.; Morton, Timothy. D.
2016-03-01
The Kepler-36 planetary system consists of two exoplanets at similar separations (0.115 and 0.128 au), which have dramatically different densities. The inner planet has a density consistent with an Earth-like composition, while the outer planet is extremely low density, such that it must contain a voluminous H/He envelope. Such a density difference would pose a problem for any formation mechanism if their current densities were representative of their composition at formation. However, both planets are at close enough separations to have undergone significant evaporation in the past. We constrain the core mass, core composition, initial envelope mass, and initial cooling time of each planet using evaporation models conditioned on their present-day masses and radii, as inferred from Kepler photometry and transit timing analysis. The inner planet is consistent with being an evaporatively stripped core, while the outer planet has retained some of its initial envelope due to its higher core mass. Therefore, both planets could have had a similar formation pathway, with the inner planet having an initial envelope-mass fraction of ≲10% and core mass of ˜4.4 M⊕, while the outer had an initial envelope-mass fraction of the order of 15%-30% and core mass ˜7.3 M⊕. Finally, our results indicate that the outer planet had a long (≳30 Myr) initial cooling time, much longer than would naively be predicted from simple timescale arguments. The long initial cooling time could be evidence for a dramatic early cooling episode such as the recently proposed “boil-off” process.
Shaping HR8799's outer dust belt with an unseen planet
NASA Astrophysics Data System (ADS)
Read, M. J.; Wyatt, M. C.; Marino, S.; Kennedy, G. M.
2018-04-01
HR8799 is a benchmark system for direct imaging studies. It hosts two debris belts, which lie internally and externally to four giant planets. This paper considers how the four known planets and a possible fifth planet interact with the external population of debris through N-body simulations. We find that when only the known planets are included, the inner edge of the outer belt predicted by our simulations is much closer to the outermost planet than recent ALMA observations suggest. We subsequently include a fifth planet in our simulations with a range of masses and semimajor axes, which is external to the outermost known planet. We find that a fifth planet with a mass and semimajor axis of 0.1 MJ and 138 au predicts an outer belt that agrees well with ALMA observations, whilst remaining stable for the lifetime of HR8799 and lying below current direct imaging detection thresholds. We also consider whether inward scattering of material from the outer belt can input a significant amount of mass into the inner belt. We find that for the current age of HR8799, only ˜1 per cent of the mass-loss rate of the inner disc can be replenished by inward scattering. However, we find that the higher rate of inward scattering during the first ˜10 Myr of HR8799 would be expected to cause warm dust emission at a level similar to that currently observed, which may provide an explanation for such bright emission in other systems at ˜10 Myr ages.
Effects of extreme obliquity variations on the habitability of exoplanets.
Armstrong, J C; Barnes, R; Domagal-Goldman, S; Breiner, J; Quinn, T R; Meadows, V S
2014-04-01
We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 10(8) years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.
NASA Technical Reports Server (NTRS)
Young, R. S.
1971-01-01
It is pointed out that planetary exploration is not simply a program designed to detect life on another planet. A planet similar to earth, such as Mars, when studied for evidence as to why life did not arise, may turn out to be scientifically more important than a planet which has already produced a living system. Of particular interest after Mars are Venus and Jupiter. Jupiter has a primitive atmosphere which may well be synthesizing organic molecules today. Speculations have been made concerning the possibility of a bio-zone in the upper atmosphere of Venus.
NASA Astrophysics Data System (ADS)
Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.
2012-05-01
We present models for the formation of terrestrial planets, and the collisional evolution of debris disks, in planetary systems that contain multiple marginally unstable gas giants. We previously showed that in such systems, the dynamics of the giant planets introduces a correlation between the presence of terrestrial planets and cold dust, i.e., debris disks, which is particularly pronounced at λ ~ 70 μm. Here we present new simulations that show that this connection is qualitatively robust to a range of parameters: the mass distribution of the giant planets, the width and mass distribution of the outer planetesimal disk, and the presence of gas in the disk when the giant planets become unstable. We discuss how variations in these parameters affect the evolution. We find that systems with equal-mass giant planets undergo the most violent instabilities, and that these destroy both terrestrial planets and the outer planetesimal disks that produce debris disks. In contrast, systems with low-mass giant planets efficiently produce both terrestrial planets and debris disks. A large fraction of systems with low-mass (M ≲ 30 M⊕) outermost giant planets have final planetary separations that, scaled to the planets' masses, are as large or larger than the Saturn-Uranus and Uranus-Neptune separations in the solar system. We find that the gaps between these planets are not only dynamically stable to test particles, but are frequently populated by planetesimals. The possibility of planetesimal belts between outer giant planets should be taken into account when interpreting debris disk SEDs. In addition, the presence of ~ Earth-mass "seeds" in outer planetesimal disks causes the disks to radially spread to colder temperatures, and leads to a slow depletion of the outer planetesimal disk from the inside out. We argue that this may explain the very low frequency of >1 Gyr-old solar-type stars with observed 24 μm excesses. Our simulations do not sample the full range of plausible initial conditions for planetary systems. However, among the configurations explored, the best candidates for hosting terrestrial planets at ~1 AU are stars older than 0.1-1 Gyr with bright debris disks at 70 μm but with no currently-known giant planets. These systems combine evidence for the presence of ample rocky building blocks, with giant planet properties that are least likely to undergo destructive dynamical evolution. Thus, we predict two correlations that should be detected by upcoming surveys: an anti-correlation between debris disks and eccentric giant planets and a positive correlation between debris disks and terrestrial planets. Three movies associated to Figs. 1, 3, and 7 are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Lepage, Andrew J.
1993-10-01
Twenty eight years ago the unmanned Soviet space probe, Zond 2, was sailing through interplanetary space towards the planet Mars several weeks behind its much smaller American counterpart, Mariner 4. Though launched just two days apart in November of 1964, Mariner 4 - the sole survivor of American's first attempt to reach Mars by spacecraft - followed a much faster trajectory which would bring it past Mars on July 14, 1965. The American craft was destined to become the first space vehicle to flyby the Red Planet and return close-up data. Zond 2 was scheduled to reach Mars on August 6, 1965, on a relatively slow approach trajectory. Much to the disappointment of the Soviets, Zond 2 ceased communications en route to the Red Planet on May 5, 1965, just three months before completing its mission.
1998-12-01
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 17A, Cape Canaveral Air Station, workers remove the canister surrounding the Mars Climate Orbiter. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface
1998-12-04
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 17A, Cape Canaveral Air Station, workers place aside a piece of the canister surrounding the Mars Climate Orbiter. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface
NASA Astrophysics Data System (ADS)
Sotin, Christophe
2000-07-01
Every four or five years, the French scientific community is invited by the French space agency (CNES) to define the scientific priorities of the forthcoming years. The last workshop took place in March 98 in Arcachon, France. During this three-day workshop, it was clear that the study of Mars was very attractive for everyone because it is a planet very close to the Earth and its study should allow us to better understand the chemical and physical processes which drive the evolution of a planet by comparing the evolution of the two planets. For example, the study of Mars should help to understand the relationship between mantle convection and plate tectonics, the way magnetic dynamo works, and which conditions allowed life to emerge and evolve on Earth. The Southern Hemisphere of planet Mars is very old and it should have recorded some clues on the planetary evolution during the first billion years, a period for which very little is known for the Earth because both plate tectonics and weathering have erased the geological record. The international scientific community defined the architecture of Mars exploration program more than ten years ago. After the scientific discoveries made (and to come) with orbiters and landers, it appeared obvious that the next steps to be prepared are the delivery of networks on the surface and the study of samples returned from Mars. Scientific objectives related to network science include the determination of the different shells which compose the planet, the search for water in the subsurface, the record of atmospheric parameters both in time and space. Those related to the study of samples include the understanding of the differentiation of the planet and the fate of volatiles (including H2O) thanks to very accurate isotopic measurements which can be performed in laboratories, the search for minerals which can prove that life once existed on Mars, the search for present life on Mars (bacteria). Viking landers successfully landed on the surface of Mars in the mid seventies. Mars Pathfinder showed that rovers could be delivered at the surface of the planet and move around a lander. If it seems feasible that such a lander can grab samples and return them to the lander, a technical challenge is to launch successfully a rocket from the surface of Mars, put in orbit the samples, collect the sample in orbit and bring them back to the surface of the Earth. Such a technical challenge in addition to the amount of scientific information which will be returned, makes the Mars Sample Return mission a very exciting mission at the turn of the millenium. Following the Arcachon meeting, CNES made the decision to support strongly Mars exploration. This program includes three major aspects: (1) strong participation in the ESA Mars Express mission, (2) development of network science in collaboration with European partners, and (3) participation in the NASA-lead Mars Sample Return mission. In addition, participation in micromissions is foreseen to increase the scientific return with low-cost missions.
Solar forcing - implications for the volatile inventory on Mars and Venus. (Invited)
NASA Astrophysics Data System (ADS)
Lundin, Rickard
2015-04-01
Planets in the solar system are exposed to a persistent solar forcing by solar irradiation and the solar wind. The forcing, most pronounced for the inner Earth-like planets, ionizes, heats, modifies chemically, and gradually erodes the upper atmosphere throughout the lifetime of the planets. Of the four inner planets, the Earth is at present the only one habitable. Our kin Venus and Mars have taken different evolutionary paths, the present lack of a hydrosphere being the most significant difference. However, there are ample evidence for that an early Noachian, water rich period existed on Mars. Similarly, arguments have been presented for an early water-rich period on Venus. The question is, what made Mars and Venus evolve in such a different way compared to the Earth? Under the assumption of similar initial conditions, the planets may have experienced different externally driven episodes (e.g. impacts) with time. Conversely, internal factors on Mars and Venus made them less resilient, unable to sustain solar forcing on an evolutionary time-scale. The latter has been quantified from simulations, combining atmospheric and ionospheric modeling and empiric data from solar-like stars (Sun in time). In a similar way, semi-empirical models based on experimental data were used to determine the mass-loss of volatiles back in time from Mars and Venus. This presentation will review further aspects of semi-empirical modeling based on ion and energetic neutral atom (ENA) escape data from Mars and Venus - on short term (days), mid-term (solar cycle proxies), long-term (Heliospheric flux proxies, 10 000 year), and on time scales corresponding to the solar evolution.
The new Mars: The discoveries of Mariner 9
NASA Technical Reports Server (NTRS)
Hartmann, W. K.; Raper, O.
1974-01-01
The Mariner 9 encounter with Mars is extensively documented with photographs taken by the satellite's onboard cameras, and an attempt is made to explain the observed Martian topography in terms of what is known about the geomorphological evolution of the earth. Early conceptions about the Mars surface are compared with more recent data made available by the Mariner 9 cameras. Other features of the planet Mars which are specifically discussed include the volcanic regions, the surface channels, the polar caps and layered terrain, the Martian atmosphere, and the planet's two moons--Phobos and Deimos.
Mars Telecommunications Orbiter, Artist's Concept
NASA Technical Reports Server (NTRS)
2005-01-01
This illustration depicts a concept for NASA's Mars Telecommunications Orbiter in flight around Mars. The orbiter is in development to be the first spacecraft with a primary function of providing communication links while orbiting a foreign planet. The project's plans call for launch in September 2009, arrival at Mars in August 2010 and a mission of six to 10 years while in orbit. Mars Telecommunication Orbiter would serve as the Mars hub for an interplanetery Internet, greatly increasing the information payoff from other future Mars missions. The mission is designed to orbit Mars more than 10 times farther from the planet than orbiters dedicated primarily to science. The high-orbit design minimizes the time that Mars itself blocks the orbiter from communicating with Earth and maximizes the time that the orbiter is above the horizon -- thus capable of communications relay -- for rovers and stationary landers on Mars' surface.NASA Technical Reports Server (NTRS)
Brinckerhoff, William B.
2012-01-01
Exploration of our solar system over several decades has benefitted greatly from the sensitive chemical analyses offered by spaceflight mass spectrometers. When dealing with an unknown environment, the broadband detection capabilities of mass analyzers have proven extremely valuable in determining the composition and thereby the basic nature of space environments, including the outer reaches of Earth s atmosphere, interplanetary space, the Moon, and the planets and their satellites. Numerous mass analyzer types, including quadrupole, monopole, sector, ion trap, and time-of-flight have been incorporated in flight instruments and delivered robotically to a variety of planetary environments. All such instruments went through a rigorous process of application-specific development, often including significant miniaturization, testing, and qualification for the space environment. Upcoming missions to Mars and opportunities for missions to Venus, Europa, Saturn, Titan, asteroids, and comets provide new challenges for flight mass spectrometers that push to state of the art in fundamental analytical technique. The Sample Analysis at Mars (SAM) investigation on the recently-launch Mars Science Laboratory (MSL) rover mission incorporates a quadrupole analyzer to support direct evolved gas as well as gas chromatograph-based analysis of martian rocks and atmosphere, seeking signs of a past or present habitable environment. A next-generation linear ion trap mass spectrometer, using both electron impact and laser ionization, is being incorporated into the Mars Organic Molecule Analyzer (MOMA) instrument, which will be flown to Mars in 2018. These and other mass spectrometers and mission concepts at various stages of development will be described.
NASA Technical Reports Server (NTRS)
1998-01-01
This NASA JPL (Jet Propulsion Laboratory) video presents a collection of the best videos that have been published of the Voyager mission. Computer animation/simulations comprise the largest portion of the video and include outer planetary magnetic fields, outer planetary lunar surfaces, and the Voyager spacecraft trajectory. Voyager visited the four outer planets: Jupiter, Saturn, Uranus, and Neptune. The video contains some live shots of Jupiter (actual), the Earth's moon (from orbit), Saturn (actual), Neptune (actual) and Uranus (actual), but is mainly comprised of computer animations of these planets and their moons. Some of the individual short videos that are compiled are entitled: The Solar System; Voyage to the Outer Planets; A Tour of the Solar System; and the Neptune Encounter. Computerized simulations of Viewing Neptune from Triton, Diving over Neptune to Meet Triton, and Catching Triton in its Retrograde Orbit are included. Several animations of Neptune's atmosphere, rotation and weather features as well as significant discussion of the planet's natural satellites are also presented.
NASA Technical Reports Server (NTRS)
Mosqueira, I.; Estrada, P. R.
2000-01-01
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect a giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet's centrifugal radius (located at r(sub c, sup J) = l5R(sub J) for Jupiter and r(sub c, sup S) = 22R(sub S) for Saturn), and an optically thin, extended outer disk out to a fraction of the planet's Roche lobe, which we choose to be R(sub roche)/5 (located at approximately 150R(sub J) near the inner irregular satellites for Jupiter, and approximately 200R(sub S) near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk results from the solar torque on nebula gas flowing into the protoplanet during the time of giant planet gap opening. For the sake of specificity, we use a cosmic mixture 'minimum mass' model to constrain the gas densities of the inner disks of Jupiter and Saturn (and also Uranus). For the total mass of the outer disk we use the simple scaling M(sub disk) = M(sub P)tau(sub gap)/tau(sub acc), where M(sub P) is the mass of the giant planet, tau(sub gap) is the gap opening timescale, and tau(sub acc) is the giant planet accretion time. This gives a total outer disk mass of approximately 100M(sub Callisto) for Jupiter and possibly approximately 200M(sub Iapetus) for Saturn (which contain enough condensables to form Callisto and Iapetus respectively). Our model has Ganymede at a subnebula temperature of approximately 250 K and Titan at approximately 100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 K and 90 K respectively.
NASA Technical Reports Server (NTRS)
Horsham, Gary A. P.
1988-01-01
The rationale for human exploration of space is examined. Observations of the technocatalytic potential are presented. Transferability to the terrestrial environment of 21st Century Earth is discussed. The many threats to future survival of this planet's sensitive ecosystem are also discussed in relation to the technoecological harmony that might be achievable due to the extreme demands that are naturally imposed on the development of (civilian/human) space technology. The human attempt to inhabit the inner solar system (the Moon, Mars, etc.) is proposed as the ultimate and most appropriate technology driver for the myriad of socioeconomic, ecological, and technological needs that will accompany 21st Century Earth societies.
A satellite-asteroid mystery and a possible early flux of scattered C-class asteroids
NASA Technical Reports Server (NTRS)
Hartmann, William K.
1987-01-01
The C spectral class implied by the neutral spectra and low albedo of probably capture-originated satellites orbiting Saturn, Jupiter, and Mars is noted to contradict evidence that class-C objects are native only to the outer half of the asteroid belt. It is presently suggested that Jupiter resonances may have scattered a high flux of C-type objects out of the belt as well as throughout the primordial solar system, at the close of planet accretion, when extended atmospheres could figure in their capture. The largest scattered object fluxes come from the resonance regions primarily populated by C-class objects, lending support to the Pollack et al. (1979) capture scenario invoking extended protoatmospheres.
Pioneer spacecraft operation at low and high spin rates
NASA Technical Reports Server (NTRS)
1973-01-01
The feasibility of executing major changes upward or downward from the nominal spin rate for which the Pioneer F&G spacecraft was designed was investigated along with the extent of system and subsystem modifications required to implement these mode changes in future spacecraft evolving from the baseline Pioneer F and G. Results of a previous study are re-examined and updated for an extended range of spin rate variations for missions that include outer planet orbiters, outer planet flyby and outer planet probe delivery. However, in the interest of design simplicity and cost economy, major modifications of the baseline Pioneer system and subsystem concept were avoided.
Outer-Planet Mission Analysis Using Solar-Electric Ion Propulsion
NASA Technical Reports Server (NTRS)
Woo, Byoungsam; Coverstone, Victoria L.; Hartmann, John W.; Cupples, Michael
2003-01-01
Outer-planet mission analysis was performed using three next generation solar-electric ion thruster models. Optimal trajectories are presented that maximize the delivered mass to the designated outer planet. Trajectories to Saturn and Neptune with a single Venus gravity assist are investigated. For each thruster model, the delivered mass versus flight time curve was generated to obtain thruster model performance. The effects of power to the thrusters and resonance ratio of Venutian orbital periods to spacecraft period were also studied. Multiple locally optimal trajectories to Saturn and Neptune have been discovered in different regions of the parameter search space. The characteristics of each trajectory are noted.
Pioneering Mars: Turning the Red Planet Green with Earth's Smallest Settlers
ERIC Educational Resources Information Center
Cwikla, Julie; Milroy, Scott; Reider, David; Skelton, Tara
2014-01-01
Pioneering Mars: Turning the Red Planet Green with the Earth's Smallest Settlers (http://pioneeringmars.org) provides a partnership model for STEM (science, technology, engineering, and mathematics) learning that brings university scientists together with high school students to investigate whether cyanobacteria from Antarctica could survive on…
A comparative study of Venus and Mars - Upper atmospheres, ionospheres and solar wind interactions
NASA Technical Reports Server (NTRS)
Mahajan, K. K.; Kar, J.
1990-01-01
The neutral atmospheres of Mars and Venus are discussed. A comparative study is presented of the upper atmospheres, ionospheres, and solar wind interactions of these two planets. The review is mainly concerned with the region about 100 km above the surface of the planets.
Growing the terrestrial planets from the gradual accumulation of submeter-sized objects.
Levison, Harold F; Kretke, Katherine A; Walsh, Kevin J; Bottke, William F
2015-11-17
Building the terrestrial planets has been a challenge for planet formation models. In particular, classical theories have been unable to reproduce the small mass of Mars and instead predict that a planet near 1.5 astronomical units (AU) should roughly be the same mass as Earth. Recently, a new model called Viscously Stirred Pebble Accretion (VSPA) has been developed that can explain the formation of the gas giants. This model envisions that the cores of the giant planets formed from 100- to 1,000-km bodies that directly accreted a population of pebbles-submeter-sized objects that slowly grew in the protoplanetary disk. Here we apply this model to the terrestrial planet region and find that it can reproduce the basic structure of the inner solar system, including a small Mars and a low-mass asteroid belt. Our models show that for an initial population of planetesimals with sizes similar to those of the main belt asteroids, VSPA becomes inefficient beyond ∼ 1.5 AU. As a result, Mars's growth is stunted, and nothing large in the asteroid belt can accumulate.
Advanced space storable propellants for outer planet exploration
NASA Technical Reports Server (NTRS)
Thunnissen, Daniel P.; Guernsey, Carl S.; Baker, Raymond S.; Miyake, Robert N.
2004-01-01
An evaluation of the feasibility and mission performance benefits of using advanced space storable propellants for outer planet exploration was performed. For the purpose of this study, space storable propellants are defined to be propellants which can be passively stored without the need for active cooling.
Mars Global Surveyor Mission: Environmental Assessment
NASA Technical Reports Server (NTRS)
1995-01-01
This environmental assessment addresses the proposed action to complete the integration and launch the Mars Global Surveyor (MGS) spacecraft from Cape Canaveral Air Station (CCAS), Florida, during the launch window in November 1996. Mars Global Surveyor is part of the Solar System Exploration Program to the inner planets designed to maintain a sufficient level of scientific investigation and accomplishment so that the United States retains a leading position in solar system exploration through the end of the century. The Program consists of a specific sequence of missions, based on technological readiness, launch opportunities, rapidity of data return, and a balance of scientific disciplines. The purpose of the MGS mission would be to deliver a spacecraft platform to a low-altitude polar orbit around Mars where it would collect global observations of basic geological, geophysical, and climatological processes of the planet. To satisfy this purpose, the MGS mission would support a scientific set of objectives. Detailed global maps of surface topography, the distribution of minerals, the planet's mass, size, and shape, the characterization of Mars gravitational and magnetic fields, and the monitoring of global weather, collected over the period of one Martian year (about two Earth years), would help answer some of the questions about the evolution of Mars. Such an investigation would help scientists better understand the current state of water on Mars, the evolution of the planet's atmosphere, and the factors that led to major changes in the Martian climate. It would also provide much needed information on the magnetic field of Mars. Data collected from this mission would provide insight into the evolution of both Earth and the solar system, as well as demonstrate technological approaches that could be applicable to future Mars missions.
1998-12-01
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 17A, Cape Canaveral Air Station, workers get ready to remove the last piece of the canister surrounding the Mars Climate Orbiter. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface
1998-12-01
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 17A, Cape Canaveral Air Station, the Mars Climate Orbiter is free of the protective canister that surrounded it during the move to the pad. Targeted for liftoff on Dec. 10, 1998, aboard a Boeing Delta II (7425) rocket, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface
2014 Summer Series - Robert Zubrin - Mars Direct - Humans to the Red Planet within a Decade
2014-07-10
In July 1989, on the 20th anniversary of the Apollo Moon landing, the first President Bush called for America to renew its pioneering push into space with the establishment of a permanent Lunar base and a series of human missions to Mars. While many have said that such an endeavor would be excessively costly and take many decades, a small team at Martin Marietta drew up a daring plan that could sharply cut costs and send a group of American astronauts to the Red Planet within ten years. The plan, known as 'Mars Direct,' has attracted international attention and broad controversy. Now, with the nation debating how to proceed with human space exploration, the 'Mars Direct' plan is more relevant than ever: Can Americans reach the Red Planet in our time?
Effects of Extreme Obliquity Variations on the Habitability of Exoplanets
Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T.R.; Meadows, V.S.
2014-01-01
Abstract We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes. Key Words: Exoplanets—Habitable zone—Energy balance models. Astrobiology 14, 277–291. PMID:24611714
Signatures of Young Planets in the Continuum Emission from Protostellar Disks
NASA Astrophysics Data System (ADS)
Isella, Andrea; Turner, Neal J.
2018-06-01
Many protostellar disks show central cavities, rings, or spiral arms likely caused by low-mass stellar or planetary companions, yet few such features are conclusively tied to bodies embedded in the disks. We note that even small features on the disk surface cast shadows, because the starlight grazes the surface. We therefore focus on accurately computing the disk thickness, which depends on its temperature. We present models with temperatures set by the balance between starlight heating and radiative cooling, which are also in vertical hydrostatic equilibrium. The planet has 20, 100, or 1000 M ⊕, ranging from barely enough to perturb the disk significantly, to clearing a deep tidal gap. The hydrostatic balance strikingly alters the appearance of the model disk. The outer walls of the planet-carved gap puff up under starlight heating, throwing a shadow across the disk beyond. The shadow appears in scattered light as a dark ring that could be mistaken for a gap opened by another more distant planet. The surface brightness contrast between outer wall and shadow for the 1000 M ⊕ planet is an order of magnitude greater than a model neglecting the temperature disturbances. The shadow is so deep that it largely hides the planet-launched outer arm of the spiral wave. Temperature gradients are such that outer low-mass planets undergoing orbital migration will converge within the shadow. Furthermore, the temperature perturbations affect the shape, size, and contrast of features at millimeter and centimeter wavelengths. Thus radiative heating and cooling are key to the appearance of protostellar disks with embedded planets.
Aerospace vehicle design, spacecraft section. Volume 2
NASA Technical Reports Server (NTRS)
1988-01-01
The next major step in the evolution of the space program is the exploration of the planet Mars. In preparation for this, much research is needed on the problem of surveying the planet surface. An aircraft appears to be a viable solution because it can carry men and equipment large distances in a short period of time as compared with ground transportation. The problems and design of an aircraft which would be able to survey the planet Mars are examined.
The Mars Climate Orbiter arrives at KSC to begin final preparations for launch
NASA Technical Reports Server (NTRS)
1998-01-01
The Mars Climate Orbiter spacecraft is moved into the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) in KSC's industrial area. It arrived at the Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When it arrives at the red planet, the Mars Climate Orbiter will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket.
The Mars Climate Orbiter arrives at KSC to begin final preparations for launch
NASA Technical Reports Server (NTRS)
1998-01-01
The Mars Climate Orbiter spacecraft is moved onto a flatbed for transport to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). It arrived at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When it arrives at the red planet, the Mars Climate Orbiter will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket.
Self-Organization of Zonal Jets in Outer Planet Atmospheres: Uranus and Neptune
NASA Technical Reports Server (NTRS)
Friedson, A. James
1997-01-01
The statistical mechnical theory of a two-dimensional Euler fluid is appleid for the first time to explore the spontaneous self-oganization of zonal jets in outer planet atmospheres. Globally conserved integralls of motion are found to play a central role in defining jet structure.
The Mars Climate Orbiter arrives at KSC to begin final preparations for launch
NASA Technical Reports Server (NTRS)
1998-01-01
The Mars Climate Orbiter spacecraft arrives at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When the spacecraft arrives at the red planet, it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket.
1998-09-11
The Mars Climate Orbiter spacecraft is moved into the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) in KSC's industrial area. It arrived at the Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When it arrives at the red planet, the Mars Climate Orbiter will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket
1998-09-11
The Mars Climate Orbiter spacecraft is moved onto a flatbed for transport to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). It arrived at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When it arrives at the red planet, the Mars Climate Orbiter will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket
Lane, K Maria D
2005-12-01
Over two decades spanning the turn of the twentieth century, astronomers' claims about the landscape and climate of Mars spurred widespread scientific and popular interest in the possibility that the red planet might be inhabited. This essay offers a new explanation for the power with which the notion of an inhabited Mars gripped noted scholars and everyday citizens on both sides of the Atlantic. Rather than pointing to a rekindling of age-old philosophical interest in the plurality of worlds, it argues that turn-of-the-century scientific narratives about Mars derived much of their power and popularity from ties with the newly established discipline of geography. From mapmaking to travelogue-style writing, astronomers borrowed powerful representational strategies from the discipline of geography to legitimize their claims about the red planet. In making the link between geographical and astronomical science more explicit, the essay further suggests that turn-of-the-century representations of Mars could be productively recontextualized alongside geographical works produced in the same period.
InSight: Single Station Broadband Seismology for Probing Mars' Interior
NASA Technical Reports Server (NTRS)
Panning, Mark P.; Banerdt, W. Bruce; Beucler, Eric; Boschi, Lapo; Johnson, Catherine; Lognonne, Philippe; Mocquet, Antoine; Weber, Renee C.
2012-01-01
InSight is a proposed Discovery mission which will deliver a lander containing geophysical instrumentation, including a heat flow probe and a seismometer package, to Mars. The aim of this mission is to perform, for the first time, an in-situ investigation of the interior of a truly Earth- like planet other than our own, with the goal of understanding the formation and evolution of terrestrial planets through investigation of the interior structure and processes of Mars.
NASA Technical Reports Server (NTRS)
Spera, R. J.; Prickett, W. Z.; Garate, J. A.; Firth, W. L.
1971-01-01
Mission operations are presented for comet rendezvous and outer planet exploration NEP spacecraft employing in-core thermionic reactors for electric power generation. The selected reference missions are the Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. The characteristics of the baseline multi-mission NEP spacecraft are presented and its performance in other outer planet missions, such as Saturn and Uranus orbiters and a Neptune flyby, are discussed. Candidate mission operations are defined from spacecraft assembly to mission completion. Pre-launch operations are identified. Shuttle launch and subsequent injection to earth escape by the Centaur D-1T are discussed, as well as power plant startup and the heliocentric mission phases. The sequence and type of operations are basically identical for all missions investigated.
Magnetour: Surfing planetary systems on electromagnetic and multi-body gravity fields
NASA Astrophysics Data System (ADS)
Lantoine, Gregory; Russell, Ryan P.; Anderson, Rodney L.; Garrett, Henry B.
2017-09-01
A comprehensive tour of the complex outer planet systems is a central goal in space science. However, orbiting multiple moons of the same planet would be extremely prohibitive using traditional propulsion and power technologies. In this paper, a new mission concept, named Magnetour, is presented to facilitate the exploration of outer planet systems and address both power and propulsion challenges. This approach would enable a single spacecraft to orbit and travel between multiple moons of an outer planet, without significant propellant or onboard power source. To achieve this free-lunch 'Grand Tour', Magnetour exploits the unexplored combination of magnetic and multi-body gravitational fields of planetary systems, with a unique focus on using a bare electrodynamic tether for power and propulsion. Preliminary results indicate that the Magnetour concept is sound and is potentially highly promising at Jupiter.
NASA Technical Reports Server (NTRS)
Sybert, C. B.; Bosh, A. S.; Sauter, L. M.; Elliot, J. L.; Wasserman, L. H.
1992-01-01
Occultation predictions for the planets Mars and Jupiter are presented along with BVRI magnitudes of 45 occultation candidates for Mars, Jupiter, Saturn, Uranus, and Pluto. Observers can use these magnitudes to plan observations of occultation events. The optical depth of the Jovian ring can be probed by a nearly central occultation on 1992 July 8. Mars occults an unusually red star in early 1993, and the occultations for Pluto involving the brightest candidates would possibly occur in the spring of 1992 and the fall of 1993.
Evaluation of optical data for Mars approach navigation.
NASA Technical Reports Server (NTRS)
Jerath, N.
1972-01-01
Investigation of several optical data types which can be obtained from science and engineering instruments normally aboard interplanetary spacecraft. TV cameras are assumed to view planets or satellites and stars for celestial references. Also, spacecraft attitude sensors are assumed to yield celestial references. The investigation of approach phases of typical Mars missions showed that the navigation accuracy was greatly enhanced with the addition of optical data to radio data. Viewing stars and the planet Mars was found most advantageous ten days before Mars encounter, and viewing Deimos or Phobos and stars was most advantageous within ten days of encounter.
NASA Technical Reports Server (NTRS)
2004-01-01
This artist's concept shows NASA's future Mars Reconnaissance Orbiter mission over the red planet. NASA plans to launch this multipurpose spacecraft in August 2005 to advance our understanding of Mars through detailed observation, to examine potential landing sites for future surface missions and to provide a high-data-rate communications relay for those missions. The orbiter's shallow radar experiment, one of six science instruments on board, is designed to probe the internal structure of Mars' polar ice caps, as well as to gather information planet-wide about underground layers of ice, rock and, perhaps, liquid water, which might be accessible from the surface.Solar wind alpha particle capture at Mars and Venus
NASA Astrophysics Data System (ADS)
Stenberg, Gabriella; Barabash, Stas; Nilsson, Hans; Fedorov, A.; Brain, David; André, Mats
Helium is detected in the atmospheres of both Mars and Venus. It is believed that radioactive decay of uranium and thorium in the interior of the planets' is not sufficient to account for the abundance of helium observed. Alpha particles in the solar wind are suggested to be an additional source of helium, especially at Mars. Recent hybrid simulations show that as much as 30We use ion data from the ASPERA-3 and ASPERA-4 instruments on Mars and Venus Express to estimate how efficient solar wind alpha particles are captured in the atmospheres of the two planets.
Immersive Environment Technologies for Mars Exploration
NASA Technical Reports Server (NTRS)
Wright, John R.; Hartman, Frank
2000-01-01
JPL's charter includes the unmanned exploration of the Solar System. One of the tools for exploring other planets is the rover as exemplified by Sojourner on the Mars Pathfinder mission. The light speed turnaround time between Earth and the outer planets precludes the use of teleoperated rovers so autonomous operations are built in to the current and upcoming generation devices. As the level of autonomy increases, the mode of operations shifts from low-level specification of activities to a higher-level specification of goals. To support this higher-level activity, it is necessary to provide the operator with an effective understanding of the in-situ environment and also the tools needed to specify the higher-level goals. Immersive environments provide the needed sense of presence to achieve this goal. Use of immersive environments at JPL has two main thrusts that will be discussed in this talk. One is the generation of 3D models of the in-situ environment, in particular the merging of models from different sensors, different modes (orbital, descent, and lander), and even different missions. The other is the use of various tools to visualize the environment within which the rover will be operating to maximize the understanding by the operator. A suite of tools is under development which provide an integrated view into the environment while providing a variety of modes of visualization. This allows the operator to smoothly switch from one mode to another depending on the information and presentation desired.
Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data
NASA Astrophysics Data System (ADS)
Bibring, Jean-Pierre; Langevin, Yves; Mustard, John F.; Poulet, François; Arvidson, Raymond; Gendrin, Aline; Gondet, Brigitte; Mangold, Nicolas; Pinet, P.; Forget, F.; OMEGA Team; Berthé, Michel; Gomez, Cécile; Jouglet, Denis; Soufflot, Alain; Vincendon, Mathieu; Combes, Michel; Drossart, Pierre; Encrenaz, Thérèse; Fouchet, Thierry; Merchiorri, Riccardo; Belluci, GianCarlo; Altieri, Francesca; Formisano, Vittorio; Capaccioni, Fabricio; Cerroni, Pricilla; Coradini, Angioletta; Fonti, Sergio; Korablev, Oleg; Kottsov, Volodia; Ignatiev, Nikolai; Moroz, Vassilli; Titov, Dimitri; Zasova, Ludmilla; Loiseau, Damien; Pinet, Patrick; Doute, Sylvain; Schmitt, Bernard; Sotin, Christophe; Hauber, Ernst; Hoffmann, Harald; Jaumann, Ralf; Keller, Uwe; Arvidson, Ray; Duxbury, Tom; Neukum, G.
2006-04-01
Global mineralogical mapping of Mars by the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité (OMEGA) instrument on the European Space Agency's Mars Express spacecraft provides new information on Mars' geological and climatic history. Phyllosilicates formed by aqueous alteration very early in the planet's history (the ``phyllocian'' era) are found in the oldest terrains; sulfates were formed in a second era (the ``theiikian'' era) in an acidic environment. Beginning about 3.5 billion years ago, the last era (the ``siderikian'') is dominated by the formation of anhydrous ferric oxides in a slow superficial weathering, without liquid water playing a major role across the planet.
The European Robotic Exploration of the Planet Mars
NASA Astrophysics Data System (ADS)
Chicarro, Agustin
2010-05-01
The ESA Mars Express mission was launched in June 2003 and has been orbiting Mars for over six years providing data with an unprecedented spatial and spectral resolution on the surface, subsurface, atmosphere and ionosphere of the red planet. The main theme of the mission is the search for water in its various states everywhere on the planet by all instruments using different techniques. The mission is still a huge success, helping rewrite new pages in our understanding of Mars. Mars Express will be followed by ESA's new Exploration Programme, starting in 2016 with an Orbiter focusing on atmospheric trace gases and in particular methane. The ExoMars rover will follow in 2018 to perform geochemical and exobiological measurements on the surface and the subsurface. Then in 2020, a Network of 3-6 surface stations will be launched (possibly together with an orbiter), in order to investigate the interior of the planet, its atmospheric dynamics and the geology of each landing site. All these Mars Exploration missions will be carried out jointly with NASA. Such network-orbiter combination represents a unique tool to perform new investigations of Mars, which could not be addressed by other means. In particular, i) the internal geophysical aspects concern the structure and dynamics of the interior of Mars including the state of the core and composition of the mantle; the fine structure of the crust including its paleomagnetic anomalies; the rotational parameters (axis tilt, precession, nutation, etc) that define both the state of the interior and the climate evolution; ii) the atmospheric physics aspects concern the general circulation and its forcing factors; the time variability cycles of the transport of volatiles, water and dust; surface-atmosphere interactions and overall meteorology and climate; iii) the geology of each landing site concerns the full characterization of the surrounding area including petrological rock types, chemical and mineralogical sample analysis, erosion, oxidation and weathering processes to infer the geological history of the region, as well as the astrobiological potential of each site. To complement the science gained from the Martian surface, investigations need to be carried out from orbit in a coordinated manner, such as i) global atmospheric mapping to study weather patterns, opacity and chemical composition; ii) a detailed map of the crustal magnetic anomalies from lower orbit (150 km); iii) study of these magnetic anomalies need to be studied in light of the magnetic field induced by the solar wind interaction with the upper atmosphere of the planet. The Network Mission concept is based on the fact that some important science goals on any given terrestrial planet can only be achieved with simultaneous measurements from a number of landers located on the surface of the planet (primarily internal geophysics, geodesy and meteorology) coupled to an orbiter. The long-term goal of Mars robotic exploration in Europe remains the return of rock and soil samples from the Martian surface before eventually Humans go to Mars one day.
Seeking How Rocky Planets Form
2018-01-25
This is an artist's rendition of the InSight lander. InSight is short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport. InSight is a Mars mission, but it's more than a Mars mission. The lander seeks the fingerprints of the processes that formed the rocky planets of the solar system, more than 4 billion years ago. It measures the planet's "vital signs:" its "pulse" (seismology), "temperature" (heat flow) and "reflexes" (precision tracking). https://photojournal.jpl.nasa.gov/catalog/PIA22229
Horizontal stress in planetary lithospheres from vertical processes
NASA Technical Reports Server (NTRS)
Banerdt, W. B.
1991-01-01
Understanding the stress states in a lithosphere is of fundamental importance for planetary geophysics. It is closely linked to the processes which form and modify tectonic features on the surface and reflects the behavior of the planet's interior, providing a constraint for the difficult problem of determining interior structure and processes. The tectonics on many extraterrestrial bodies (Moon, Mars, and most of the outer planet satellites) appears to be mostly vertical, and the horizontal stresses induced by vertical motions and loads are expected to dominate the deformation of their lithospheres. Herein, only changes are examined in the state of stress induced by processes such as sedimentary and volcanic deposition, erosional denudation, and changes in the thermal gradient that induce uplift or subsidence. This analysis is important both for evaluating stresses for specific regions in which the vertical stress history can be estimated, as well as for applying the proper loading conditions to global stress models. All references to lithosphere herein should be understood to refer to the elastic lithosphere, that layer which deforms elastically or brittlely when subjected to geologically scaled stresses.
Jim Pollack's Contributions to Planetary Science
NASA Technical Reports Server (NTRS)
Haberle, Robert M.; Cuzzi, Jeffrey N. (Technical Monitor)
1994-01-01
Jim Pollack was an extraordinary scientist. Since receiving his Ph.D. from Harvard in 1965, he published hundreds of papers in scientific journals, encyclopedias, popular magazines, and books. The sheer volume of this kind of productivity is impressive enough, but when considering the diversity and detail of his work, these accomplishments seem almost superhuman. Jim studied and wrote about every planet in the solar system. For, this he was perhaps the most distinguished planetary scientist of his generation. He successfully identified the composition of Saturn's rings and Venus's clouds. With his collaborators, he created the first detailed models for the formation of the outer planets, and the general circulation of the Martian atmosphere. His interest in Mars dust storms provided a foundation for the "nuclear winter" theory that ultimately helped shape foreign policy in the cold war era. Jim's creative talents brought him many awards including the Kuiper Award of the Division of Planetary Sciences, the Leo Szilard Award of the American Physical Society, H. Julian Allen award of the Ames Research Center, and several NASA medals for exceptional scientific achievement.
The distribution of compositional classes in the asteroid belt: A cosmochemical fingerprint?
NASA Technical Reports Server (NTRS)
Gradie, J.
1985-01-01
Studies of the physical properties of the asteroids show a nonrandom distribution of types across the belt for asteroid classes E, S, M, F, C, P, and D. The general trend is for asteroids in the inner belt to have higher albedos and stronger mafic silicate absorption features than those asteroids located further out in the belt. One interpretation of this trend is that the asteroids, which occupy the region between the silicate rich terrestrial planets and the volatile rich outer planets, have preserved in their heliocentric compositional distribution a cosmochemical fingerprint of the thermodynamic conditions present in the solar nebula at the time of their formation. This hypothesis predicts that the differences in the spectral properties among the low albedo classes (C, P, F, P, and D) are due to temperature controlled processes which formed carbonaceous opaques. If this is true then the exact composition of the opaque components could, in principle, be used to determine the thermodynamic conditions between the orbits of Mars and Jupiter during the formation of the asteroids.
Spacecraft microbial burden reduction due to atmospheric entry heating: Jupiter
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.; Jaworski, W.; Mcronald, A. S.; Hoffman, A. R.
1973-01-01
Planetary quarantine analyses performed for recent unmanned Mars and Venus missions assumed that the probability of contamination by a spacecraft given accidental impact was equivalent to one. However, in the case of the gaseous outer planets, the heat generated during the inadvertent entry of a spacecraft into the planetary atmosphere might be sufficient to cause significant microbial burden reduction. This could affect navigation strategy by reducing the necessity for biasing the aim point away from the planets. An effort has been underway to develop the tools necessary to predict temperature histories for a typical spacecraft during inadvertent entry. In order that the results have general applicability, parametric analyses were performed. The thermal response of the spacecraft components and debris resulting from disintegration was determined. The temperature histories of small particles and composite materials, such as thermal blankets and an antenna, were given special attention. Guidelines are given to indicate the types of components and debris most likely to contain viable organisms, which could contaminate the lower layers of the Jovian atmosphere (approximately one atmosphere of pressure).
Educational Opportunities for the 2014 Opposition of Mars
NASA Astrophysics Data System (ADS)
Albin, Edward F.
2013-10-01
Mars reaches opposition and is well placed for public viewing on April 8, 2014 at 20:57 UT. The opposition timeline and educational opportunities are considered, with emphasis on programs presented at the Fernbank Science Center in Atlanta, Georgia. Educational programs include a planetarium presentation, observations of Mars through telescopes, and activities associated with the ongoing Curiosity Rover (MSL) / anticipated Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft. When at opposition in 2014, Mars will have an apparent diameter of 15.1 arcseconds and will be visible in the evening sky for a little over a year until it is lost in the glare of the Sun in late April 2015. At closest approach, the planet will be a bit more than 57 million miles (92 million kilometers) from the Earth. Mars is especially well placed in the evening sky for viewing between the months of March and May of 2014. During this period, the planet can be found in retrograde motion within the constellation pattern of Virgo. Fernbank Science Center will offer public viewing of Mars through the observatory’s 36-inch (0.9 meter) reflecting telescope on Thursday and Friday evenings. The observatory is open immediately after the evening planetarium program. We anticipate showing a fulldome planetarium presentation about Mars entitled, "Mars Quest," which includes a live update about the Red Planet and how to find it among the stars in the current evening sky.
NASA Technical Reports Server (NTRS)
1969-01-01
The impulsive, high thrust missions portion of a study on guidance and navigation requirements for unmanned flyby and swingby missions to the outer planet is presented. The proper balance between groundbased navigational capability, using the deep space network (DSN) alone, and an onboard navigational capability with and without supplemental use of DSN tracking, for unmanned missions to the outer planets of the solar system is defined. A general guidance and navigation requirements program is used to survey parametrically the characteristics associated with three types of navigation systems: (1) totally onboard, (2) totally Earth-based, and (3) a combination of these two.
NEWLY DISCOVERED PLANETS ORBITING HD 5319, HD 11506, HD 75784 AND HD 10442 FROM THE N2K CONSORTIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giguere, Matthew J.; Fischer, Debra A.; Brewer, John M.
2015-01-20
Initially designed to discover short-period planets, the N2K campaign has since evolved to discover new worlds at large separations from their host stars. Detecting such worlds will help determine the giant planet occurrence at semi-major axes beyond the ice line, where gas giants are thought to mostly form. Here we report four newly discovered gas giant planets (with minimum masses ranging from 0.4 to 2.1 M {sub Jup}) orbiting stars monitored as part of the Next 2000 target stars (N2K) Doppler Survey program. Two of these planets orbit stars already known to host planets: HD 5319 and HD 11506. Themore » remaining discoveries reside in previously unknown planetary systems: HD 10442 and HD 75784. The refined orbital period of the inner planet orbiting HD 5319 is 641 days. The newly discovered outer planet orbits in 886 days. The large masses combined with the proximity to a 4:3 mean motion resonance make this system a challenge to explain with current formation and migration theories. HD 11506 has one confirmed planet, and here we confirm a second. The outer planet has an orbital period of 1627.5 days, and the newly discovered inner planet orbits in 223.6 days. A planet has also been discovered orbiting HD 75784 with an orbital period of 341.7 days. There is evidence for a longer period signal; however, several more years of observations are needed to put tight constraints on the Keplerian parameters for the outer planet. Lastly, an additional planet has been detected orbiting HD 10442 with a period of 1043 days.« less
1998-09-11
The Mars Climate Orbiter spacecraft arrives at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When the spacecraft arrives at the red planet, it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket
de Oliveira Maraldi, Everton; Alvarado, Carlos S
2018-03-01
Among the many attempts to explain mediumship psychologically at the turn of the century were the efforts of Swiss psychologist Théodore Flournoy (1854-1920). In his well-known book Des Indes à la Planète Mars (1900), translated as From India to the Planet Mars (1900), Flournoy analysed the mediumistic productions of medium Hélène Smith (1861-1929), consisting of accounts of previous lives in France and in India, and material about planet Mars. Flournoy explained the phenomena as a function of cryptomnesia, suggestive influences, and subconscious creativity, analyses that influenced both psychology and psychical research. The purpose of this Classic Text is to reprint the conclusion of Flournoy's study, whose ideas were developed in the context of psychological attention to mediumship and secondary personalities.
The D/H ratio and the evolution of water in the terrestrial planets.
de Bergh, C
1993-02-01
The presence of liquid water at the surface of the Earth has played a major role in the biological evolution of the Earth. None of the other terrestrial planets--Mercury, Venus and Mars--has liquid water at its surface. However, it has been suggested, since the early seventies, from both geological and atmospheric arguments that, although Venus and Mars are presently devoid of liquid water, their surfaces could have been partially or completely covered by water at some time of their evolution. There are many possible diagnostics of the long-term evolution of the planets, either from the present characteristics of their surfaces or from their present atmospheric compositions. Among them, the present value of the D/H ratio is of particular interest, although its significance in terms of long term evolution has been challenged by some authors. Recent progress has been made in this field. We now have evidence for higher D/H ratios on Mars and Venus than on Earth, with an enrichment factor of the order of 5 on Mars, and about 100 on Venus. Any scenario for the evolution of these planets must take this into The most recent models on the evolution of Mars and Venus are reviewed in light of these new measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiens, Roger
Better understanding Mars means better understanding its geology. That’s why, sitting atop NASA’s Curiosity rover, is ChemCam, an instrument built by Los Alamos National Laboratory that shoots lasers at Martian rocks and analyzes the data. After nearly 1,500 rock zaps, ChemCam has uncovered some surprising facts about the Red Planet, including the discovery of igneous rocks. Soon, a new Los Alamos-built instrument—the SuperCam—will ride aboard the Mars 2020 rover and bring with it enhanced capabilities to unlock new secrets about the planet.
NASA Technical Reports Server (NTRS)
Parks, R. J.
1979-01-01
Initial, current and planned United States projects for the spacecraft exploration of the outer planets of the solar system are presented. Initial plans were developed in the mid-1960's for the exploration of the outer planets by utilizing the gravity-assist technique during a fortuitous alignment of the outer planets in the Grand Tour Project, however although state-of-the-art space technology could have supported the project, it was considered too expensive, therefore politically infeasible. Subsequently, the Pioneer Project was undertaken to explore the asteroid belt and the environment around Jupiter and the Voyager Project was undertaken to send two spacecraft to fly by Jupiter and utilize its gravity assist to reach Saturn. The successful Pioneer 10 and 11 missions have provided important information on the effects of the asteroid belt and the severe radiation environment around Jupiter, and Voyager 1 has collected information about Jupiter, its magnetic fields and radiation zones, and its satellites. Project Galileo is intended to be launched in January 1982 to conduct an intensive investigation of Jupiter, its satellites and immediate environment and a Saturn Orbiter dual probe mission and a Uranus orbiter are also under consideration.
Nuclear propulsion - A vital technology for the exploration of Mars and the planets beyond
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.
1989-01-01
The physics and technology issues and performance potential of various direct thrust fission and fusion propulsion concepts are examined. Next to chemical propulsion the solid core fission thermal rocket (SCR) is the only other concept to be experimentally tested at the power (approx 1.5 to 5.0 GW) and thrust levels (approx 0.33 to 1.11 MN) required for manned Mars missions. With a specific impulse of approx 850 s, the SCR can perform various near-earth, cislunar and interplanetary missions with lower mass and cost requirements than its chemical counterpart. The gas core fission thermal rocket, with a specific power and impulse of approx 50 kW/kg and 5000 s offers the potential for quick courier trips to Mars (of about 80 days) or longer duration exploration cargo missions (lasting about 280 days) with starting masses of about 1000 m tons. Convenient transportation to the outer Solar System will require the development of magnetic and inertial fusion rockets (IFRs). Possessing specific powers and impulses of approx 100 kW/kg and 200-300 kilosecs, IFRs will usher in the era of the true Solar System class spaceship. Even Pluto will be accessible with roundtrip times of less than 2 years and starting masses of about 1500 m tons.
Nuclear propulsion: a vital technology for the exploration of Mars and the planets beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowski, S.K.
1988-01-01
The physics and technology issues and performance potential of various direct thrust fission and fusion propulsion concepts are examined. Next to chemical propulsion the solid core fission thermal rocket (SCR) is the olny other concept to be experimentally tested at the power (approx 1.5 to 5.0 GW) and thrust levels (approx 0.33 to 1.11 MN) required for manned Mars missions. With a specific impulse of approx 850 s, the SCR can perform various near-Earth, cislunar and interplanetary missions with lower mass and cost requirements than its chemical counterpart. The gas core fission thermal rocket, with a specific power and impulsemore » of approx 50 kW/kg and 5000 s offers the potential for quick courier trips to Mars (of about 80 days) or longer duration exploration cargo missions (lasting about 280 days) with starting masses of about 1000 m tons. Convenient transportation to the outer Solar System will require the development of magnetic and inertial fusion rockets (IFRs). Possessing specific powers and impulses of approx 100 kW/kg and 200-300 kilosecs, IFRs will usher in the era of the true Solar System class speceship. Even Pluto will be accessible with roundtrip times of less than 2 years and starting masses of about 1500 m tons.« less
Nuclear propulsion: A vital technology for the exploration of Mars and the planets beyond
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.
1988-01-01
The physics and technology issues and performance potential of various direct thrust fission and fusion propulsion concepts are examined. Next to chemical propulsion the solid core fission thermal rocket (SCR) is the olny other concept to be experimentally tested at the power (approx 1.5 to 5.0 GW) and thrust levels (approx 0.33 to 1.11 MN) required for manned Mars missions. With a specific impulse of approx 850 s, the SCR can perform various near-Earth, cislunar and interplanetary missions with lower mass and cost requirements than its chemical counterpart. The gas core fission thermal rocket, with a specific power and impulse of approx 50 kW/kg and 5000 s offers the potential for quick courier trips to Mars (of about 80 days) or longer duration exploration cargo missions (lasting about 280 days) with starting masses of about 1000 m tons. Convenient transportation to the outer Solar System will require the development of magnetic and inertial fusion rockets (IFRs). Possessing specific powers and impulses of approx 100 kW/kg and 200-300 kilosecs, IFRs will usher in the era of the true Solar System class speceship. Even Pluto will be accessible with roundtrip times of less than 2 years and starting masses of about 1500 m tons.
NASA Technical Reports Server (NTRS)
Grant, J. A.; Schultz, P. H.
1993-01-01
In spite of the highly successful nature of recent planetary missions to the terrestrial planets and outer satellites a number of questions concerning the evolution of their surfaces remain unresolved. For example, knowledge of many characteristics of the stratigraphy and soils comprising the near-surface on Mars remains largely unknown, but is crucial in order to accurately define the history of surface processes and near-surface sedimentary record. Similar statements can be made regarding our understanding of near-surface stratigraphy and processes on other extraterrestrial planetary bodies. Ground penetrating radar (GPR) is a proven and standard instrument capable of imaging the subsurface at high resolution to 10's of meters depth in a variety of terrestrial environments. Moreover, GPR is portable and easily modified for rover deployment. Data collected with a rover mounted GPR could resolve a number of issues related to planetary surface evolution by defining shallow stratigraphic records and would provide context for interpreting results of other surface analyses (e.g. elemental or mineralogical). A discussion of existing GPR capabilities is followed first by examples of how GPR might be used to better define surface evolution on Mars and then by a brief description of possible GPR applications to the Moon and other planetary surfaces.
The Constraint of Coplanarity: Compact multi-planet system outer architectures and formation.-UP
NASA Astrophysics Data System (ADS)
Jontof-Hutter, Daniel
The Kepler mission discovered 92 systems with 4 or more transiting exoplanets. Systems like Kepler-11 with six "mini-Neptunes" on orbital periods well inside that of Venus pose a challenge to planet formation theory which is broadly split into two competing paradigms. One theory invokes the formation of Neptunes beyond the "snow line", followed by inward migration and assembly into compact configurations near the star. The alternative is that low density planets form in situ at all distances in the protoplanetary nebula. The two paradigms disagree on the occurrence of Jovian planets at longer orbital periods than the transiting exoplanets since such massive planets would impede the inward migration of multiple volatile-rich planets to within a fraction of 1 AU. The likelihood of all the known planets at systems like Kepler-11 to be transiting is very sensitive to presence of outer Jovian planets for a wide range in orbital distance and relative inclination of the Jovian planet. This can put upper limits on the occurrence of Jovian planets by the condition that the six known planets have to have low mutual inclinations most of the time in order for their current cotransiting state to be plausible. Most of these systems have little or no RV data. Hence, our upper limits may be the best constraints on the occurrence of Jovian planets in compact co-planar systems for years to come, and may help distinguish the two leading paradigms of planet formation theory. Methodology. We propose to use an established n-body code (MERCURY) to perform long-term simulations of systems like Kepler-11 with the addition of a putative Jovian planet considering a range of orbital distances. These simulations will test for which initial conditions a Jovian planet would prevent the known planets from all transiting at the same time. We will 1) determine at what orbital distances and inclinations an outer Jovian planet would make the observed configuration of Kepler-11 very unlikely. 2) Test the effect of an undetected planet in the large dynamical space between Kepler-11 f and Kepler 11 g on our upper limits on a Jovian outer planet. 3) Repeat the analysis for all compact systems of 4 or more transiting planets with published planetary masses (including Kepler-79, Kepler-33, and Kepler-80) 5) Repeat the analysis for all systems of 4 or more transiting planets where the condition of long-term orbital stability provides useful upper limits on planetary masses, using their orbital periods and an appropriate mass-radius relation. 6) Measure an upper limit on the occurrence rate of outer Jovian planets. If we find an occurrence rate significantly lower than the known occurrence rate of Jovian planets from RV surveys, this would be evidence in support of the migration model as Jovian planets are expected impede the assembly of compact coplanar systems of low-density planets close to the host star. Relevance. According to the XRP Solicitation, investigations are expected to directly support the goal of "understanding exoplanetary systems", by doing one or more of the following..."improve understanding of the origins of exoplanetary systems". This proposal will help distinguish between competing paradigms in planet formation with dynamical modeling, and hence will improve our understanding of the origins of exoplanetary systems. This proposal will in no way require analysis of archival Kepler data, and relies only on the published masses, radii and orbital periods of high muliplicity systems discovered by Kepler. Therefore, our proposal is not appropriate for ADAP.
Extension of the quantum-kinetic model to lunar and Mars return physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liechty, D. S.; Lewis, M. J.
The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high-mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. A recently introduced molecular-level chemistry model, the quantum-kinetic, or Q-K, model that predicts reaction rates for gases in thermal equilibrium and non-equilibrium using only kinetic theory and fundamental molecular properties, is extended in the current work to include electronic energy level transitions and reactions involving charged particles. Like the Q-K procedures for neutral species chemical reactions, these new models are phenomenological procedures that aimmore » to reproduce the reaction/transition rates but do not necessarily capture the exact physics. These engineering models are necessarily efficient due to the requirement to compute billions of simulated collisions in direct simulation Monte Carlo (DSMC) simulations. The new models are shown to generally agree within the spread of reported transition and reaction rates from the literature for near equilibrium conditions.« less
High Power MPD Thruster Performance Measurements
NASA Technical Reports Server (NTRS)
LaPointe, Michael R.; Strzempkowski, Eugene; Pencil, Eric
2004-01-01
High power magnetoplasmadynamic (MPD) thrusters are being developed as cost effective propulsion systems for cargo transport to lunar and Mars bases, crewed missions to Mars and the outer planets, and robotic deep space exploration missions. Electromagnetic MPD thrusters have demonstrated, at the laboratory level, the ability to process megawatts of electrical power while providing significantly higher thrust densities than electrostatic electric propulsion systems. The ability to generate higher thrust densities permits a reduction in the number of thrusters required to perform a given mission, and alleviates the system complexity associated with multiple thruster arrays. The specific impulse of an MPD thruster can be optimized to meet given mission requirements, from a few thousand seconds with heavier gas propellants up to 10,000 seconds with hydrogen propellant. In support of programs envisioned by the NASA Office of Exploration Systems, Glenn Research Center is developing and testing quasi-steady MW-class MPD thrusters as a prelude to steady state high power thruster tests. This paper provides an overview of the GRC high power pulsed thruster test facility, and presents preliminary performance data for a quasi-steady baseline MPD thruster geometry.
Dynamical Constraints on Nontransiting Planets Orbiting TRAPPIST-1
NASA Astrophysics Data System (ADS)
Jontof-Hutter, Daniel; Truong, Vinh H.; Ford, Eric B.; Robertson, Paul; Terrien, Ryan C.
2018-06-01
We derive lower bounds on the orbital distance and inclination of a putative planet beyond the transiting seven planets of TRAPPIST-1, for a range of masses ranging from 0.08 M Jup to 3.5 M Jup. While the outer architecture of this system will ultimately be constrained by radial velocity measurements over time, we present dynamical constraints from the remarkably coplanar configuration of the seven transiting planets, which is sensitive to modestly inclined perturbers. We find that the observed configuration is unlikely if a Jovian-mass planet inclined by ≥3° to the transiting planet exists within 0.53 au, exceeding any constraints from transit timing variations (TTV) induced in the known planets from an undetected perturber. Our results will inform RV programs targeting TRAPPIST-1, and for near coplanar outer planets, tighter constraints are anticipated for radial velocity (RV) precisions of ≲140 m s‑1. At higher inclinations, putative planets are ruled out to greater orbital distances with orbital periods up to a few years.
A likely planet-induced gap in the disc around T Cha
NASA Astrophysics Data System (ADS)
Hendler, Nathanial P.; Pinilla, Paola; Pascucci, Ilaria; Pohl, Adriana; Mulders, Gijs; Henning, Thomas; Dong, Ruobing; Clarke, Cathie; Owen, James; Hollenbach, David
2018-03-01
We present high-resolution (0.11 × 0.06 arcsec2) 3 mm ALMA observations of the highly inclined transition disc around the star T Cha. Our continuum image reveals multiple dust structures: an inner disc, a spatially resolved dust gap, and an outer ring. When fitting sky-brightness models to the real component of the 3 mm visibilities, we infer that the inner emission is compact (≤1 au in radius), the gap width is between 18 and 28 au, and the emission from the outer ring peaks at ˜36 au. We compare our ALMA image with previously published 1.6 μm VLT/SPHERE imagery. This comparison reveals that the location of the outer ring is wavelength dependent. More specifically, the peak emission of the 3 mm ring is at a larger radial distance than that of the 1.6 μm ring, suggesting that millimeter-sized grains in the outer disc are located farther away from the central star than micron-sized grains. We discuss different scenarios to explain our findings, including dead zones, star-driven photoevaporation, and planet-disc interactions. We find that the most likely origin of the dust gap is from an embedded planet, and estimate - for a single planet scenario - that T Cha's gap is carved by a 1.2MJup planet.
Formation of Ocean Sedimentary Rocks as Active Planets and Life-Like Systems
NASA Astrophysics Data System (ADS)
Miura, Y.
2017-10-01
Wet shocked rocks are discarded globally and enriched elements in ocean-sedimentary rocks, which is strong indicator of ocean water of other planets. Ocean-sedimentary rocks are strong indicator of water planets and possible exo-life on planet Mars.
Had the Planet Mars Not Existed: Kepler's Equant Model and Its Physical Consequences
ERIC Educational Resources Information Center
Bracco, C.; Provost, J.P.
2009-01-01
We examine the equant model for the motion of planets, which was the starting point of Kepler's investigations before he modified it because of Mars observations. We show that, up to first order in eccentricity, this model implies for each orbit a velocity, which satisfies Kepler's second law and Hamilton's hodograph, and a centripetal…
Hybrid Propulsion In-Situ Resource Utilization Test Facility Results
NASA Technical Reports Server (NTRS)
Karp, Ashley Chandler; Nakazono, Barry; Vaughan, David; Warner, William N.
2015-01-01
Hybrid rockets present a promising alternative to conventional chemical propulsion systems for In-Situ Resource Utilization (ISRU) and in-space applications. While they have many benefits for these applications, there are still many small details that require research before they can be adopted into flight systems. A flexible test facility was developed at JPL to test operation of hybrid motors at small scale (5 cm outer diameter fuel grains) over a range of conditions. Specifically, this paper studies two of the major advantages: low temperature performance and throttling. Paraffin-based hybrid rockets are predicted to have good performance at low temperatures. This could significantly decrease the overall system mass by minimizing the thermal conditioning required for Mars or outer planet applications. Therefore, the coefficient of thermal expansion and glass transition of paraffin are discussed. Additionally, deep throttling has been considered for several applications. This was a natural starting point for hotfire testing using the hybrid propulsion ISRU test facility. Additionally, short length to diameter ratio (L/D) fuel grains are tested to determine if these systems can be packaged into geometrically constrained spaces.
Chairmanship of the Neptune/Pluto Outer Planets Science Working Group
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1992-01-01
The Outer Planets Science Working Group (OPSWG) is the NASA Solar System Exploration Division (SSED) scientific steering committee for the Outer Solar Systems missions. The FY92 activities of OPSWG are summarized. A set of objectives for OPSWG over FY93 are described. OPSWG's activities for subsequent years are outlined. A paper which examines scientific questions motivating renewed exploration of the Neptune/Triton system and which reviews the technical results of the mission studies completed to date is included in the appendix.
HAT-P-44b, HAT-P-45b, AND HAT-P-46b: Three transiting hot Jupiters in possible multi-planet systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, J. D.; Bakos, G. Á.; Bhatti, W.
2014-06-01
We report the discovery by the HATNet survey of three new transiting extrasolar planets orbiting moderately bright (V = 13.2, 12.8, and 11.9) stars. The planets have orbital periods of 4.3012, 3.1290, and 4.4631 days, masses of 0.35, 0.89, and 0.49 M {sub J}, and radii of 1.24, 1.43, and 1.28 R {sub J}. The stellar hosts have masses of 0.94, 1.26, and 1.28 M {sub ☉}. Each system shows significant systematic variations in its residual radial velocities, indicating the possible presence of additional components. Based on its Bayesian evidence, the preferred model for HAT-P-44 consists of two planets, includingmore » the transiting component, with the outer planet having a period of 872 days, eccentricity of 0.494 ± 0.081, and a minimum mass of 4.0 M {sub J}. Due to aliasing we cannot rule out alternative solutions for the outer planet having a period of 220 days or 438 days. For HAT-P-45, at present there is not enough data to justify the additional free parameters included in a multi-planet model; in this case a single-planet solution is preferred, but the required jitter of 22.5 ± 6.3 m s{sup –1} is relatively high for a star of this type. For HAT-P-46 the preferred solution includes a second planet having a period of 78 days and a minimum mass of 2.0 M {sub J}, however the preference for this model over a single-planet model is not very strong. While substantial uncertainties remain as to the presence and/or properties of the outer planetary companions in these systems, the inner transiting planets are well characterized with measured properties that are fairly robust against changes in the assumed models for the outer planets. Continued radial velocity monitoring is necessary to fully characterize these three planetary systems, the properties of which may have important implications for understanding the formation of hot Jupiters.« less
Comparison of large crater and multiringed basin populations on Mars, Mercury, and the moon
NASA Technical Reports Server (NTRS)
Malin, M. C.
1976-01-01
The maximum regional areal densities of large impact craters on Mars, Mercury, and the moon appear to be inversely proportional to the surface areas of the planets. This would not be expected if the objects impacting the planetary surfaces came from common sources and were moving with high velocities relative to the planets; rather, a uniform areal density would be anticipated. Another way of stating the observation is that each planet was bombarded by the same number of objects. Two speculative explanations for the observation are that: (1) all planets underwent a uniform bombardment but were resurfaced by processes proportional to planetary surface area, or (2) equally populated families of objects, moving about the sun in orbits similar to those of the planets, were independently depopulated by the respective planets.
An extrasolar planetary system with three Neptune-mass planets.
Lovis, Christophe; Mayor, Michel; Pepe, Francesco; Alibert, Yann; Benz, Willy; Bouchy, François; Correia, Alexandre C M; Laskar, Jacques; Mordasini, Christoph; Queloz, Didier; Santos, Nuno C; Udry, Stéphane; Bertaux, Jean-Loup; Sivan, Jean-Pierre
2006-05-18
Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 au (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star.
Stability Analysis of the Planetary System Orbiting Upsilon Andromedae
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Rivera, Eugenio J.; DeVincenzi, Donald (Technical Monitor)
2000-01-01
We present results of long-term numerical orbital integrations designed to test the stability of the three-planet system orbiting Upsilon Andromedae and short-term integrations to test whether mutual perturbations among the planets can be used to determine planetary masses. Our initial conditions are based on the latest fits to the radial velocity data obtained by the planet-search group at Lick Observatory. The new fits result in significantly more stable systems than did the initially announced planetary parameters. An analytic analysis of the star and the two outer planets shows that this subsystem is Hill stable up to five. Our integrations involving all three planets show that the system is stable for at least 100 Myr for up to four. In our simulations, we still see a secular resonance between the outer two planets and in some cases large oscillations in the eccentricity of the inner planet.
THERESA FRANCO INSPECTS THE SOLAR PANELS OF THE MARS GLOBAL SURVEYOR
NASA Technical Reports Server (NTRS)
1996-01-01
Theresa Franco of SPECTROLAB Inc. carefully inspects the solar panels of the Mars Global Surveyor spacecraft, undergoing preflight assembly and checkout in the Payload Hazardous Servicing Facility in KSC's Industrial Area. The four solar array panels will play a crucial role in the Mars Global Surveyor mission by providing the electrical power required to operate the spacecraft and its complement of scientific instruments. The Surveyor is slated for launch November 6 aboard a Delta II expendable launch vehicle. After arriving at the Red Planet in September 1997, the Surveyor will carry out an extensive study of Mars, gathering data about the planet's topography, magnetism, mineral composition and atmosphere.
2017-06-05
The scientifically-themed Mars rover concept vehicle operates on an electric motor, powered by solar panels and a 700-volt battery. The back section opens and serves as a laboratory which can disconnect for autonomous research. While this exact rover is not expected to operate on Mars, one or more of its elements could make its way into a rover astronauts will drive on the Red Planet. The "Summer of Mars" promotion is designed to provide guests with a better understanding of NASA's studies of the Red Planet. The builders of the rover, Parker Brothers Concepts of Port Canaveral, Florida, incorporated input into its design from NASA subject matter experts.
The physics, biology, and environmental ethics of making mars habitable.
McKay, C P; Marinova, M M
2001-01-01
The considerable evidence that Mars once had a wetter, more clement, environment motivates the search for past or present life on that planet. This evidence also suggests the possibility of restoring habitable conditions on Mars. While the total amounts of the key molecules--carbon dioxide, water, and nitrogen--needed for creating a biosphere on Mars are unknown, estimates suggest that there may be enough in the subsurface. Super greenhouse gases, in particular, perfluorocarbons, are currently the most effective and practical way to warm Mars and thicken its atmosphere so that liquid water is stable on the surface. This process could take approximately 100 years. If enough carbon dioxide is frozen in the South Polar Cap and absorbed in the regolith, the resulting thick and warm carbon dioxide atmosphere could support many types of microorganisms, plants, and invertebrates. If a planet-wide martian biosphere converted carbon dioxide into oxygen with an average efficiency equal to that for Earth's biosphere, it would take > 100,000 years to create Earth-like oxygen levels. Ethical issues associated with bringing life to Mars center on the possibility of indigenous martian life and the relative value of a planet with or without a global biosphere.
The physics, biology, and environmental ethics of making mars habitable
NASA Technical Reports Server (NTRS)
McKay, C. P.; Marinova, M. M.
2001-01-01
The considerable evidence that Mars once had a wetter, more clement, environment motivates the search for past or present life on that planet. This evidence also suggests the possibility of restoring habitable conditions on Mars. While the total amounts of the key molecules--carbon dioxide, water, and nitrogen--needed for creating a biosphere on Mars are unknown, estimates suggest that there may be enough in the subsurface. Super greenhouse gases, in particular, perfluorocarbons, are currently the most effective and practical way to warm Mars and thicken its atmosphere so that liquid water is stable on the surface. This process could take approximately 100 years. If enough carbon dioxide is frozen in the South Polar Cap and absorbed in the regolith, the resulting thick and warm carbon dioxide atmosphere could support many types of microorganisms, plants, and invertebrates. If a planet-wide martian biosphere converted carbon dioxide into oxygen with an average efficiency equal to that for Earth's biosphere, it would take > 100,000 years to create Earth-like oxygen levels. Ethical issues associated with bringing life to Mars center on the possibility of indigenous martian life and the relative value of a planet with or without a global biosphere.
Sulfate Formation From Acid-Weathered Phylosilicates: Implications for the Aqueous History of Mars
NASA Technical Reports Server (NTRS)
Craig, P. I.; Ming, D. W.; Rampe, E. B.
2014-01-01
Most phyllosilicates on Mars are thought to have formed during the planet's earliest Noachian era, then Mars underwent a global change making the planet's surface more acidic [e.g. 1]. Prevailing acidic conditions may have affected the already existing phyllosilicates, resulting in the formation of sulfates. Both sulfates and phyllosilicates have been identified on Mars in a variety of geologic settings [2] but only in a handful of sites are these minerals found in close spatial proximity to each other, including Mawrth Vallis [3,4] and Gale Crater [5]. While sulfate formation from the acidic weathering of basalts is well documented in the literature [6,7], few experimental studies investigate sulfate formation from acid-weathered phyllosilicates [8-10]. The purpose of this study is to characterize the al-teration products of acid-weathered phyllosilicates in laboratory experiments. We focus on three commonly identified phyllosilicates on Mars: nontronite (Fe-smectite), saponite (Mg-smectite), and montmorillonite (Al-smectite) [1, and references therein]. This information will help constrain the formation processes of sulfates observed in close association with phyllosilicates on Mars and provide a better understanding of the aqueous history of such regions as well as the planet as a whole.
Mapping Mars with a Laser Altimeter
NASA Technical Reports Server (NTRS)
Smith, David E.
2001-01-01
In November 1996 the Mars Global Surveyor (MGS) spacecraft was launched to Mars. One of the instruments on the spacecraft was a laser altimeter, MOLA, for measuring the shape and topography of the planet. The altimeter has a diode pumped Q-switched ND:YAG laser at 1064nm, operating at 10Hz with an 8 nsec pulse width. The pulse energy is 48mJ, and the instrument has a 37cm ranging precision. The laser illuminates a spot on the surface of Mars approximately 160 meters in diameter and the instrument has accumulated over 600 million range measurements of the surface since arrival at Mars in September 1997. MOLA has operated continuously for over 2 years and has mapped the planet at a horizontal resolution of about 1 km and a radial accuracy of about a meter. MOLA has measured the shape of the planet, the heights of the volcanoes, the depths of the canyons, and the volumes of the polar icecaps. It has detected carbon dioxide clouds and measured the accumulation of seasonal CO2 on the polar icecaps. This new remote sensing tool has helped transform our understanding of Mars and its geological history, and opened a new door to planetary exploration.
An Undergraduate Endeavor: Assembling a Live Planetarium Show About Mars
NASA Astrophysics Data System (ADS)
McGraw, Allison M.
2016-10-01
Viewing the mysterious red planet Mars goes back thousands of years with just the human eye but in more recent years the growth of telescopes, satellites and lander missions unveil unrivaled detail of the Martian surface that tells a story worth listening to. This planetarium show will go through the observations starting with the ancients to current understandings of the Martian surface, atmosphere and inner-workings through past and current Mars missions. Visual animations of its planetary motions, display of high resolution images from the Hi-RISE (High Resolution Imaging Science Experiment) and CTX (Context Camera) data imagery aboard the MRO (Mars Reconnaissance Orbiter) as well as other datasets will be used to display the terrain detail and imagery of the planet Mars with a digital projection system. Local planetary scientists and Mars specialists from the Lunar and Planetary Lab at the University of Arizona (Tucson, AZ) will be interviewed and used in the show to highlight current technology and understandings of the red planet. This is an undergraduate project that is looking for collaborations and insight in order gain structure in script writing that will teach about this planetary body to all ages in the format of a live planetarium show.
MGS Thermal Emission Spectrometer Image
1997-09-24
This image shows the temperature of the martian surface measured by the Mars Global Surveyor Thermal Emission Spectrometer (TES) instrument. On September 15, 3 hours and 48 minutes after the spacecrafts third close approach to the planet, the TES instrument was commanded to point at Mars and measure the temperature of the surface during a four minute scan. At this time MGS was approximately 15,000 miles (~24,000 km) from the planet, with a view looking up from beneath the planet at the south polar region. The circular blue region (- 198 F) is the south polar cap of Mars that is composed of CO2 ice. The night side of the planet, shown with crosses, is generally cool (green). The sunlit side of the planet reaches temperatures near 15 F (yellow). Each square represents an individual observation acquired in 2 seconds with a ground resolution of ~125 miles (~200 km). The TES instrument will remain on and collect similar images every 100 minutes to monitor the temperature of the surface and atmosphere throughout the aerobraking phase of the MGS mission. http://photojournal.jpl.nasa.gov/catalog/PIA00937
Viking: The exploration of Mars
NASA Technical Reports Server (NTRS)
1984-01-01
Photographs of the planet Mars generated by the Viking Mars program are presented and discussed. The Martian surface and its volcanoes receive particular attention. In addition, the atmosphere, temperature, surface craters, polar regions, and composition of Mars are briefly reviewed. Planetary evolution is considered. The highlights of the Mariner program for Mars are given.
Four Fallacies and an Oversight: Searching for Martian Life
NASA Astrophysics Data System (ADS)
Rummel, J. D.; Conley, C. A.
2017-10-01
While it is anticipated that future human missions to Mars will increase the amount of biological and organic contamination that might be distributed on that planet, robotic missions continue to grow in capability and complexity, requiring precautions to be taken now to protect Mars, and particularly areas of Mars that might be Special Regions. Such precautionary cleanliness requirements for spacecraft have evolved over the course of the space age, as we have learned more about planetary environments, and are the subject of regular deliberations and decisions sponsored by the Committee on Space Research (COSPAR). COSPAR's planetary protection policy is maintained as an international consensus standard for spacecraft cleanliness that is recognized by the United Nations Committee on the Peaceful Uses of Outer Space. In response to the paper presented in this issue by Fairén et al. (2017), we examine both their concept of evidence for possible life on Mars and their logic in recommending that spacecraft cleanliness requirements be relaxed to access Special Regions "before it is too late." We find that there are shortcomings in their plans to look for evidence of life on Mars, that they do not support their contention that appropriate levels of spacecraft cleanliness are unaffordable, that there are major risks in assuming martian life could be identified by nucleic acid sequence comparison (especially if those sequences are obtained from a Special Region contaminated with Earth life), and that the authors do not justify their contention that exploration with dirty robots, now, is preferable to the possibility that later contamination will be spread by human exploration. We also note that the potential effects of contaminating resources and environments essential to future human occupants of Mars are both significant and not addressed by Fairén et al. (2017).
The Mars Climate Orbiter is prepared for launch
NASA Technical Reports Server (NTRS)
1998-01-01
Technicians carefully maneuver the Mars Climate Orbiter toward its workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket.
The Mars Climate Orbiter is prepared for launch
NASA Technical Reports Server (NTRS)
1998-01-01
Technicians lower the Mars Climate Orbiter onto its workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket.
The Mars Climate Orbiter is prepared for launch
NASA Technical Reports Server (NTRS)
1998-01-01
Technicians in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) prepare a lifting device they will use to remove the Mars Climate Orbiter from its container (behind the workers). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket.
The Mars Climate Orbiter is prepared for launch
NASA Technical Reports Server (NTRS)
1998-01-01
In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Climate Orbiter (background) is moved toward the workstand being readied by technicians (foreground). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket.
The Mars Climate Orbiter is prepared for launch
NASA Technical Reports Server (NTRS)
1998-01-01
The Mars Climate Orbiter is lifted clear of the top of its container in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket.
The Mars Climate Orbiter is prepared for launch
NASA Technical Reports Server (NTRS)
1998-01-01
Technicians in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) oversee the removal of the Mars Climate Orbiter from its container. The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket.
The Mars Climate Orbiter is prepared for launch
NASA Technical Reports Server (NTRS)
1998-01-01
Technicians check the connections on the workstand holding the Mars Climate Orbiter in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket.
Planet Formation by Coagulation: A Focus on Uranus and Neptune
NASA Astrophysics Data System (ADS)
Goldreich, Peter; Lithwick, Yoram; Sari, Re'em
2004-09-01
Planets form in the circumstellar disks of young stars. We review the basic physical processes by which solid bodies accrete each other and alter each others' random velocities, and we provide order-of-magnitude derivations for the rates of these processes. We discuss and exercise the two-groups approximation, a simple yet powerful technique for solving the evolution equations for protoplanet growth. We describe orderly, runaway, neutral, and oligarchic growth. We also delineate the conditions under which each occurs. We refute a popular misconception by showing that the outer planets formed quickly by accreting small bodies. Then we address the final stages of planet formation. Oligarchy ends when the surface density of the oligarchs becomes comparable to that of the small bodies. Dynamical friction is no longer able to balance viscous stirring and the oligarchs' random velocities increase. In the inner-planet system, oligarchs collide and coalesce. In the outer-planet system, some of the oligarchs are ejected. In both the inner- and outer-planet systems, this stage ends once the number of big bodies has been reduced to the point that their mutual interactions no longer produce large-scale chaos. Subsequently, dynamical friction by the residual small bodies circularizes and flattens their orbits. The final stage of planet formation involves the clean up of the residual small bodies. Clean up has been poorly explored.
NASA Technical Reports Server (NTRS)
Wetherill, George W.
1993-01-01
Observation of circumstellar disks, regular satellite systems of outer planets, and planet-size objects orbiting pulsars support the supposition that formation of planetary systems is a robust, rather than a fragile, byproduct of the formation and evolution of stars. The extent to which these systems may be expected to resemble one another and our Solar System, either in overall structure or in detail remains uncertain. When the full range of possible stellar masses, disk masses, and initial specific angular momenta are considered, the possible variety of planetary configurations is very large. Numerical modeling indicates a difference between the formation of small, inner, terrestrial planets and the outer planets.
NASA Astrophysics Data System (ADS)
Sizemore, H. G.; Prettyman, T. H.; De Sanctis, M. C.; Schmidt, B. E.; Hughson, K.; Chilton, H.; Castillo, J. C.; Platz, T.; Schorghofer, N.; Bland, M. T.; Sori, M.; Buczkowski, D.; Byrne, S.; Landis, M. E.; Fu, R.; Ermakov, A.; Raymond, C. A.; Schwartz, S. J.
2017-12-01
Prior to the arrival of the Dawn spacecraft at Ceres, the dwarf planet was anticipated to have a deep global cryosphere protected by a thin silicate lag. Gravity science along with data collected by Dawn's Framing Camera (FC), Gamma Ray and Neutron Detector (GRaND), and Visible and Infrared Mapping Spectrometer (VIR-MS) during the primary mission at Ceres have confirmed the existence of a global, silicate-rich cryosphere, and suggest the existence of deeper ice, brine, or mud layers. As such, Ceres' surface morphology has characteristics in common with both Mars and the small icy bodies of the outer solar system. We will summarize the evidence for the existence and global extent of the Cerean cryosphere. We will also discuss the range of morphological features that have been linked to subsurface ice, and highlight outstanding science questions.
NASA Technical Reports Server (NTRS)
Tyler, G. L.
1972-01-01
Scientific instrumentation for satellite communication and radio tracking systems in the outer planet exploration mission is discussed. Mission planning considers observations of planetary and satellite-masses, -atmospheres, -magnetic fields, -surfaces, -gravitational fields, solar wind composition, planetary radio emissions, and tests of general relativity in time delay and ray bending experiments.
LO2/LH2 propulsion for outer planet orbiter spacecraft
NASA Technical Reports Server (NTRS)
Garrison, P. W.; Sigurdson, K. B.
1983-01-01
Galileo class orbiter missions (750-1500 kg) to the outer planets require a large postinjection delta-V for improved propulsion performance. The present investigation shows that a pump-fed low thrust LO2/LH2 propulsion system can provide a significantly larger net on-orbit mass for a given delta-V than a state-of-the-art earth storable, N2O4/monomethylhydrazine pressure-fed propulsion system. A description is given of a conceptual design for a LO2/LH2 pump-fed propulsion system developed for a Galileo class mission to the outer planets. Attention is given to spacecraft configuration, details regarding the propulsion system, the thermal control of the cryogenic propellants, and aspects of mission performance.
Accretion of the terrestrial planets. II
NASA Technical Reports Server (NTRS)
Weidenschilling, S. J.
1976-01-01
The theory of gravitational accretion of the terrestrial planets is examined. The concept of a 'closed feeding zone' is somewhat unrealistic, but provides a lower bound on the accretion time. A velocity relation for planetesimals which includes an initial velocity component is suggested. The orbital parameters of the planetesimals and the dimensions of the feeding zone are related to their relative velocities. The assumption of an initial velocity does not seriously change the accretion time. Mercury, Venus, and the earth have accretion times on the order of 100 million years. Mars requires well over one billion years to accrete by the same assumptions. The lunar cratering history makes a late formation of Mars unlikely. If Mars is as old as the earth, nongravitational forces or a violation of the feeding zone concept is required. One such possibility is the removal of matter from the zone of Mars by Jupiter's influence. The final sweeping up by Mars would result in the scattering of a considerable mass among the other terrestrial planets. The late postaccretional bombardments inferred for the moon and Mercury may have had this source.
Dynamics of a Probable Earth-mass Planet in the GJ 832 System
NASA Astrophysics Data System (ADS)
Satyal, S.; Griffith, J.; Musielak, Z. E.
2017-08-01
The stability of planetary orbits around the GJ 832 star system, which contains inner (GJ 832c) and outer (GJ 832b) planets, is investigated numerically and a detailed phase-space analysis is performed. Special attention is given to the existence of stable orbits for a planet less than 15 M ⊕ that is injected between the inner and outer planets. Thus, numerical simulations are performed for three and four bodies in elliptical orbits (or circular for special cases) by using a large number of initial conditions that cover the selected phase-spaces of the planet’s orbital parameters. The results presented in the phase-space maps for GJ 832c indicate the least deviation of eccentricity from its nominal value, which is then used to determine its inclination regime relative to the star-outer planet plane. Also, the injected planet is found to display stable orbital configurations for at least one billion years. Then, the radial velocity curves based on the signature from the Keplerian motion are generated for the injected planets with masses 1 M ⊕ to 15 M ⊕ in order to estimate their semimajor axes and mass limits. The synthetic RV signal suggests that an additional planet of mass ≤15 M ⊕ with a dynamically stable configuration may be residing between 0.25 and 2.0 au from the star. We have provided an estimated number of RV observations for the additional planet that is required for further observational verification.
JPL Tech Works Mars 2020 Descent Stage
2018-03-13
A technician works on the descent stage for NASA's Mars 2020 mission inside JPL's Spacecraft Assembly Facility. Mars 2020 is slated to carry NASA's next Mars rover to the Red Planet in July of 2020. https://photojournal.jpl.nasa.gov/catalog/PIA22342
Rhythmic Layering in Danielson Crater on Mars
2011-11-21
Rhythmic patterns of sedimentary layering in Danielson Crater on Mars result from periodic changes in climate related to changes in tilt of the planet in this image was taken by NASA Mars Reconnaissance Orbiter.
Estimated Radiation Dosage on Mars
2002-03-01
This global map of Mars, based on data from NASA Mars Odyssey, shows the estimated radiation dosages from cosmic rays reaching the surface, a serious health concern for any future human exploration of the planet.
Mars penetrator: Subsurface science mission
NASA Technical Reports Server (NTRS)
Lumpkin, C. K.
1974-01-01
A penetrator system to emplace subsurface science on the planet Mars is described. The need for subsurface science is discussed, and the technologies for achieving successful atmospheric entry, Mars penetration, and data retrieval are presented.
Search for the Mars 2 Debris Field
2014-10-29
NASA Mars Reconnaissance Orbiter acquired this image to aid in the search for the missing lander, Mars 2. If the debris field is found, it could serve as a future landing location to study the effects of crash landing on the Martian surface. Despite the recent successes of missions landing on Mars, like the Mars Science Laboratory (Curiosity) or the arrival of new satellites, such as India's MOM orbiter, the Red Planet is also a graveyard of failed missions. The Soviet Mars 2 lander was the first man-made object to touch the surface of the Red Planet when it crashed landed on 27 November 1971. It is believed that the descent stage malfunctioned after the lander entered the atmosphere at too steep an angle. Attempts to contact the probe after the crash were unsuccessful. http://photojournal.jpl.nasa.gov/catalog/PIA18888
1998-09-14
Technicians carefully maneuver the Mars Climate Orbiter toward its workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket
1998-09-14
Technicians lower the Mars Climate Orbiter onto its workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket
1998-10-16
In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Climate Orbiter is on display for the media. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, aboard a Boeing Delta II 7425 rocket. The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface
A technician works on the Mars Climate Orbiter in SAEF-2
NASA Technical Reports Server (NTRS)
1998-01-01
In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician works on the Mars Climate Orbiter which is scheduled to launch on Dec. 10, 1998, aboard a Boeing Delta II rocket. The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.
THE LAST STAGES OF TERRESTRIAL PLANET FORMATION: DYNAMICAL FRICTION AND THE LATE VENEER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlichting, Hilke E.; Warren, Paul H.; Yin Qingzhu, E-mail: hilke@ucla.edu
2012-06-10
The final stage of terrestrial planet formation consists of the clean-up of residual planetesimals after the giant impact phase. Dynamically, a residual planetesimal population is needed to damp the high eccentricities and inclinations of the terrestrial planets to circular and coplanar orbits after the giant impact stage. Geochemically, highly siderophile element (HSE) abundance patterns inferred for the terrestrial planets and the Moon suggest that a total of about 0.01 M{sub Circled-Plus} of chondritic material was delivered as 'late veneer' by planetesimals to the terrestrial planets after the end of giant impacts. Here, we combine these two independent lines of evidencemore » for a leftover population of planetesimals and show that: (1) a residual population of small planetesimals containing 0.01 M{sub Circled-Plus} is able to damp the high eccentricities and inclinations of the terrestrial planets after giant impacts to their observed values. (2) At the same time, this planetesimal population can account for the observed relative amounts of late veneer added to the Earth, Moon, and Mars provided that the majority of the accreted late veneer was delivered by small planetesimals with radii {approx}< 10 m. These small planetesimal sizes are required to ensure efficient damping of the planetesimal's velocity dispersion by mutual collisions, which in turn ensures sufficiently low relative velocities between the terrestrial planets and the planetesimals such that the planets' accretion cross sections are significantly enhanced by gravitational focusing above their geometric values. Specifically, we find that, in the limit that the relative velocity between the terrestrial planets and the planetesimals is significantly less than the terrestrial planets' escape velocities, gravitational focusing yields a mass accretion ratio of Earth/Mars {approx}({rho}{sub Circled-Plus }/{rho}{sub mars})(R{sub Circled-Plus }/R{sub mars}){sup 4} {approx} 17, which agrees well with the mass accretion ratio inferred from HSEs of 12-23. For the Earth-Moon system, we find a mass accretion ratio of {approx}200, which, as we show, is consistent with estimates of 150-700 derived from HSE abundances that include the lunar crust as well as the mantle component. We conclude that small residual planetesimals containing about {approx}1% of the mass of the Earth could provide the dynamical friction needed to relax the terrestrial planet's eccentricities and inclinations after giant impacts, and also may have been the dominant source for the late veneer added to Earth, Moon, and Mars.« less
Might astronauts one day be treated like return samples?
NASA Astrophysics Data System (ADS)
Arnould, Jacques; Debus, André
2008-09-01
The next time humans set foot on the Moon or another planet, will we treat the crew like we would a sample return mission when they come back to Earth? This may seem a surprising or even provocative question, but it is one we need to address. The hurdles and hazards of sending humans to Mars for example, the technology constraints and physiological and psychological challenges are many; but let us not forget the need to protect populations and environments from the risk of contamination [United Nations, treaty on principles governing the activities of states in the exploration and use of outer space, including the Moon and other celestial bodies (the “Outer Space Treaty”) referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966]. The first hurdle is the size of crew modules. It is hard to envisage being able to decontaminate a crew module as thoroughly as we can interplanetary probes at launch. And once a crew arrives on Mars, it will not be easy either to break the chain of contact between their habitat and the Martian environment. How will astronauts avoid coming into direct contact with Mars dust when they remove their spacesuits in the airlock? How will they avoid bringing it into the crew module, and then back to Earth? At this stage, it would seem vital to do preliminary research on unmanned exobiology missions to identify zones that do not, a priori, pose a contamination hazard for astronauts. However, this precaution will not dispense with the need to perfect methods to chemically sterilize Mars dust inside airlocks, and quarantine procedures for the return to Earth. While the technology challenges of protecting astronauts and their habitat are considerable, the ethical issues are not to be underestimated either. They must be addressed alongside all the other issues bound up with human spaceflight, chief among them astronauts’ acceptance of the risk of a launch failure and other accidents, exposure to cosmic radiation and so on. For missions to another planet, it is not unreasonable to wonder whether the slightest sign of fatigue or faintness exhibited by returning astronauts might be interpreted as a possible symptom of extraterrestrial contamination. How should we handle such an eventuality? What precautions should we take? What checks should we perform? If a crew was infected, what would we do? Might they have to stay in space ad vitam aeternam if no treatment could be found? In other words, what would be the status of astronauts as both contaminated victims and vectors of contamination? How would we avoid turning such “envoys of mankind” into human guinea pigs? We do not claim to have all the answers, but we think the questions should at least be clearly aired.
Activities in planetary geology for the physical and earth sciences
NASA Technical Reports Server (NTRS)
Dalli, R.; Greeley, R.
1982-01-01
A users guide for teaching activities in planetary geology, and for physical and earth sciences is presented. The following topics are discussed: cratering; aeolian processes; planetary atmospheres, in particular the Coriolis Effect and storm systems; photogeologic mapping of other planets, Moon provinces and stratigraphy, planets in stereo, land form mapping of Moon, Mercury and Mars, and geologic features of Mars.
Mars survival handbook: where to find water
NASA Astrophysics Data System (ADS)
Marra, Wouter A.
2015-04-01
Most famous observations of Mars are those of Giovianni Schiaparelli in the late 19th century. His maps contain many linear features across the surface of Mars, which he called `canali'. The mis-translation from the Italian `canali', meaning channel, to the English `canal', man-made infrastructure, led to wild speculations of an advanced species struggling to survive on a planet with diminishing natural resources. Later research has proven this is not the case, at least not for Mars. Nevertheless, the possible existence of life and habitability of Mars has inspired further investigations, interplanetary missions and inevitably at some point human exploration. While no canals exist on Mars, there is widespread evidence for occurrence of liquid water a long time ago on this planet far, far away. The ancient landscapes of Mars may provide most valuable clues for answering the ultimate question about life, the universe and everything, but Mars today is a terrible place to be as it is extremely cold and dry; there may be life, but not as we know it. Nevertheless, many humans have volunteered to go there. Some call them mad, some call them heroes, but perhaps they just want to flee from our planet facing floods, droughts and climate change? But unless we find a good source of water for these explorers, the climate on Mars will certainly cause a swift EXTERMINATION! I have written my PhD thesis on groundwater outflow landscapes on Mars. I will review some of the most spectacular landscapes on Mars, experiments I have done in the past years to explain these landscapes and their hydrological and climate implications. Although the outlook is not so hopeful for early colonist, I will share my views on the possible sources of water on Mars today.
Venus, Earth, Mars: Comparative ion escape caused by the interaction with the solar wind
NASA Astrophysics Data System (ADS)
Barabash, Stas
For the solar system planets the non-thermal atmospheric escape exceeds by far the Jean escape for particles heavier than helium. In this talk we consider only ion escape and compare the total ion escape rates for Venus, Earth, and Mars caused by the interaction with the solar wind. We review the most recent data on the escape rates based on measurements from Mars Express, Venus Express, and Cluster. The comparison of the available numbers show that despite large differences in the atmospheric masses between these three planets (a factor of 100 -200), different types of the interactions with the solar wind (magnetized and non-magnetized obstacles), the escape rates for Mars, Venus, and the Earth are within the range 1024 - 1025 s-1 . Surprisingly, the expected shielding of the Earth atmosphere by the intrinsic magnetic field is not as efficient as one may think. The reason for this is the non-thermal escape caused by the solar wind interaction is a energy -limited process. Indeed, normalizing the escape rates to the planet-dependent escape energy and power available in the solar wind results in the normalized escape rates deferring only on a factor between three planets. The larger Earth's magnetosphere intercepts and tunnels down to the ionosphere more energy from the solar wind than more compact interaction regions of non-magnetized planets.
Logical steps to moon, Mars and beyond
NASA Astrophysics Data System (ADS)
Kuriki, Kyoichi
1993-10-01
A scenario of the space activities aimed at exploration of moon, Mars, and other planets is proposed. The scenario uses motivations based on the fundamental human instinct, i.e. intellectual curiosity and survival of the humankind. It is shown how these key drivers are threading through the known programs including Space Shuttle and Space Station, Space Energy Exploitation and Space Factory, Lunar Base, and Mars Base. It is concluded that an eventual goal of the mission from planet earth is to set Noah's Arc off into space in the next millenium.
Orbital geocentric oddness. (French Title: Bizarreries orbitales géocentriques)
NASA Astrophysics Data System (ADS)
Bassinot, E.
2013-09-01
The purpose of this essay is to determine the geocentric path of our superior neighbour, the planet Mars called like the God of the war.In other words,the question is : seen from our blue planet, what is the orbit of the red one? Based upon three simplifying and justified assumptions,it is proved hereunder with a purely geometrical approach,that Mars describes a curve very close to the well known Pascal's snail. The loop shown by this curve explains easily the apparently erratic behaviour of Mars.
NASA Astrophysics Data System (ADS)
Colona, P.
2017-12-01
We show that the myth of Ares defeated by the giants Aloads is a description of how the planet Mars appears in the sky during its synodic revolution. This criptoscientific myth reported by Homer holds enough astronomical information to make sound this archaeoastronomical interpretation.The tale accounts for the length of the semiperiod of the Martian revolution and presents the notion that Mercury is the only planet which is always visible when Mars recovers after the solar conjunction.
NASA Technical Reports Server (NTRS)
Wright, I. P.; Grady, M. M.; Pillinger, C. T.
1993-01-01
The debate concerning the evolution of CO2 on Mars continues. It would appear that in order to explain the valley networks and other relict fluvial landforms it is necessary to accept that liquid water was once present at the surface of Mars. This in turn requires, at some point in the planet's history, a higher surface temperature than exists today, proposition explained traditionally by an early dense CO2, atmosphere. However, there are a number of problems with this notion: for instance, CO2 alone is not an efficient greenhouse gas because of its tendency to form clouds. Moreover, if there was an early dense CO2 atmosphere, it is necessary to explain where the elemental constituents now reside. There are two possibilities for the latter, namely loss to outer space of atmospheric CO2 or the formation of vast carbonate deposits. While some models of atmospheric loss predict that up to 0.4 bar of CO2 could be removed from the Martian surface, this is still not enough to account for the original atmospheric inventory, usually considered to have been in the range of 1-5 bar. Thus, most models of the evolution of the Martian surface require removal of CO2 from the atmosphere and into carbonate deposits. However, as yet, the evidence for the existence of carbonates on Mars is fairly scant. This is an issue that would have been resolved by results obtained from Mars Observer.
NASA Astrophysics Data System (ADS)
McSween, H. Y., Jr.
2003-12-01
More than any other planet, Mars has captured our attention and fueled our speculations. Much of this interest relates to the possibility of martian life, as championed by Percival Lowell in the last century and subsequently in scientific papers and science fiction. Lowell's argument for life on Mars was based partly on geochemistry, in that his assessmentof the planet's hospitable climate was dependent on the identification of H2O ice rather than frozen CO2 in the polar caps. Although this reasoning was refuted by Alfred Wallace in 1907, widespread belief in extant martian life persisted within the scientific community until the mid-twentieth century (Zahnle, 2001). In 1965 the Mariner 4 spacecraft flyby suddenly chilled this climate, by demonstrating that the martian atmosphere was thin and the surface was a cratered moonscape devoid of canals. This view of Mars was overturned again in 1971, when the Mariner 9 spacecraft discovered towering volcanoes and dry riverbeds, implying a complex geologic history. The first geochemical measurements on Mars, made by two Viking landers in 1976, revealed soils enriched in salts suggesting exposure to water, but lacking organic compounds which virtually ended discussion of martian life.The suggestion that a small group of achondritic meteorites were martian samples (McSween and Stolper, 1979; Walker et al., 1979; Wasson and Wetherill, 1979) found widespread acceptance when trapped gases in them were demonstrated to be compositionally similar to the Mars atmosphere ( Bogard and Johnson, 1983; Becker and Pepin, 1984). The ability to perform laboratory measurements of elements and isotopes present in trace quantities in meteorites has invigorated the subject of martian geochemistry. Indeed, because of these samples, we now know more about the geochemistry of Mars than of any other planet beyond the Earth-Moon system. Some studies of martian meteorites have prompted a renewed search for extraterrestrial life using chemical biomarkers.Recent Mars spacecraft, including the Mars Pathfinder lander/rover in 1997 and Mars Global Surveyor and Mars Odyssey now orbiting the planet, have provided significant new geochemical findings. These missions have also generated geophysical data with which to constrain geochemical models of the martian interior.
Disk-averaged synthetic spectra of Mars
NASA Technical Reports Server (NTRS)
Tinetti, Giovanna; Meadows, Victoria S.; Crisp, David; Fong, William; Velusamy, Thangasamy; Snively, Heather
2005-01-01
The principal goal of the NASA Terrestrial Planet Finder (TPF) and European Space Agency's Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earthsized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of a Mars-like planet to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra. We explore the detectability as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPFC) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model. This model uses observational data as input to generate a database of spatially resolved synthetic spectra for a range of illumination conditions and viewing geometries. The model was validated against spectra recorded by the Mars Global Surveyor-Thermal Emission Spectrometer and the Mariner 9-Infrared Interferometer Spectrometer. Results presented here include disk-averaged synthetic spectra, light curves, and the spectral variability at visible and mid-infrared wavelengths for Mars as a function of viewing angle, illumination, and season. We also considered the differences in the spectral appearance of an increasingly ice-covered Mars, as a function of spectral resolution, signal-to-noise and integration time for both TPF-C and TPFI/ Darwin.
Disk-averaged synthetic spectra of Mars.
Tinetti, Giovanna; Meadows, Victoria S; Crisp, David; Fong, William; Velusamy, Thangasamy; Snively, Heather
2005-08-01
The principal goal of the NASA Terrestrial Planet Finder (TPF) and European Space Agency's Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earthsized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of a Mars-like planet to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra. We explore the detectability as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPFC) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model. This model uses observational data as input to generate a database of spatially resolved synthetic spectra for a range of illumination conditions and viewing geometries. The model was validated against spectra recorded by the Mars Global Surveyor-Thermal Emission Spectrometer and the Mariner 9-Infrared Interferometer Spectrometer. Results presented here include disk-averaged synthetic spectra, light curves, and the spectral variability at visible and mid-infrared wavelengths for Mars as a function of viewing angle, illumination, and season. We also considered the differences in the spectral appearance of an increasingly ice-covered Mars, as a function of spectral resolution, signal-to-noise and integration time for both TPF-C and TPFI/ Darwin.
Terrestrial Planets: Volatiles Loss & Speed of Rotation
NASA Astrophysics Data System (ADS)
Kochemasov, G. G.
There is a close relation between orbiting frequencies of terrestrial planets and intensities of their outgassing [1]. ``Sweeping'' out volatiles of their bodies is provoked and facilitated by body shaking (wave oscillations) caused by movement of celestial bodies in elliptical orbits. Non-round orbits cause inertia-gravity warpings in all spheres of the bodies producing their tectonic granulation. The higher orbiting frequency -- the smaller tectonic granula -- more thorough interior degassing. Sizes of tectonic granulas inversely proportional to orbiting frequencies are: Mars π R/2, Earth π R/4, Venus π R/6, Mercury π R/16. The atmospheric masses increase from Mars through Earth to Venus as ˜ 0. 01 : 1 : 90 (radiogenic/primordial Ar is 3000 : 300 : 1, marking degassing intensity). Mercury in this sequence should have been even more outgassed (˜ 500 times comparative to Venus, having in mind different planetary masses [2]). But now it possesses only very weak atmosphere of noble gases, Na, K -- remnants of past significant outgassing now witnessed by a great amount of small deep structurally controlled pits (craters), lobate scarps caused by strong contraction and slow rotation. The slow rotation is due to loss of angular momentum to the atmosphere now wiped out by the solar wind. The same partitioning of angular momentum occurs at Venus: slowly rotating solid body is wrapped in rapidly rotating massive atmosphere (the solid surface exposes many features of contraction due to subsidence -- vast areas of wrinkle ridges). On the contrary to slow Mercury and Venus, Earth and Mars keep their moderate rotation corresponding to their moderate and mild degassing [3]. Still further from Sun weakly outgassed gas giants rotate very rapidly. Sun itself with slowly rotating photosphere and corresponding supergranula size π R/60 is a strongly outgassed object (some think that Sun lost upto 10% of its original mass). In line with the established regularity between orbiting frequency and granula size, small solar granulas (1000-2000 km) could keep memory of the rapider rotation in the past before a strong degassing (mesogranulas indicate at some stage of mass loss) [3]. Thus, according to volatile loss in the Solar system there are bodies rotating rapidly -the outer planets, moderately -- Mars, Earth, slowly - Venus, Mercury, Sun. References: [1] Kochemasov G.G. (2003) Surprisingly rich in H2 O soils of Mars: a consequence of mild degassing // Geophys. Res. Abstr., v. 5, 02167, (CD-ROM); [2] Kochemasov G.G. (2003) // 38th Vernadsky-Brown microsymp. ``Topics in Comparative Planetology'', Abstr., Moscow, Oct.27-28, (CD-ROM); [3] Ibid.,Structures of the wave planetology and their projection onto the solar photosphere: why solar supergranules are 30000 km across. _
Construction of Martian Interior Model
NASA Astrophysics Data System (ADS)
Zharkov, V. N.; Gudkova, T. V.
2005-09-01
We present the results of extensive numerical modeling of the Martian interior. Yoder et al. in 2003 reported a mean moment of inertia of Mars that was somewhat smaller than the previously used value and the Love number k 2 obtained from observations of solar tides on Mars. These values of k 2 and the mean moment of inertia impose a strong new constraint on the model of the planet. The models of the Martian interior are elastic, while k 2 contains both elastic and inelastic components. We thoroughly examined the problem of partitioning the Love number k 2 into elastic and inelastic components. The information necessary to construct models of the planet (observation data, choice of a chemical model, and the cosmogonic aspect of the problem) are discussed in the introduction. The model of the planet comprises four submodels—a model of the outer porous layer, a model of the consolidated crust, a model of the silicate mantle, and a core model. We estimated the possible content of hydrogen in the core of Mars. The following parameters were varied while constructing the models: the ferric number of the mantle (Fe#) and the sulfur and hydrogen content in the core. We used experimental data concerning the pressure and temperature dependence of elastic properties of minerals and the information about the behavior of Fe(γ-Fe ), FeS, FeH, and their mixtures at high P and T. The model density, pressure, temperature, and compressional and shear velocities are given as functions of the planetary radius. The trial model M13 has the following parameters: Fe#=0.20; 14 wt % of sulfur in the core; 50 mol % of hydrogen in the core; the core mass is 20.9 wt %; the core radius is 1699 km; the pressure at the mantle-core boundary is 20.4 GPa; the crust thickness is 50 km; Fe is 25.6 wt %; the Fe/Si weight ratio is 1.58, and there is no perovskite layer. The model gives a radius of the Martian core within 1600 1820 km while ≥30 mol % of hydrogen is incorporated into the core. When the inelasticity of the Martian interior is taken into account, the Love number k 2 increases by several thousandths; therefore, the model radius of the planetary core increases as well. The prognostic value of the Chandler period of Mars is 199.5 days, including one day due to inelasticity. Finally, we calculated parameters of the equilibrium figure of Mars for the M13 model: J
Determining Possible Building Blocks of the Earth and Mars
NASA Technical Reports Server (NTRS)
Burbine, T. H.; OBrien, K. M.
2004-01-01
One of the fundamental questions concerning planetary formation is exactly what material did the planets form from? All the planets in our solar system are believed to have formed out of material from the solar nebula. Chondritic meteorites appear to sample this primitive material. Chondritic meteorites are generally classified into 13 major groups, which have a variety of compositions. Detailed studies of possible building blocks of the terrestrial planets require samples that can be used to estimate the bulk chemistry of these bodies. This study will focus on trying to determine possible building blocks of Earth and Mars since samples of these two planets can be studied in detail in the laboratory.
Influence of Suprathermal Atoms on the Escape and Evolution of Mars' CO2 Atmosphere
NASA Astrophysics Data System (ADS)
Lichtenegger, H.; Amerstorfer, U. V.; Gröller, H.; Tian, F.; Lammer, H.; Noack, L.; Johnstone, C.; Tu, L.
2017-09-01
Suprathermal oxygen and carbon atoms are produced by photochemical processes in the upper atmosphere of Mars. Due to their relatively high energies, these particle form an extended corona around Mars and can be picked up by the solar wind and emoved from the planet. The influence of an increased EUV flux, as it prevailed in the past, on the formation of the corona is studied and the corresponding loss rates are estimated. It is shown that the atmospheric loss due to the various processes varies with time and that most of the initial CO2 atmosphere is removed within the first few hundred million years after the formation of the planet. These results are important in order to better understand the atmosphere evolution of terrestrial planets.
NASA Technical Reports Server (NTRS)
Solomon, Sean C.; Zuber, Maria T.; Phillips, Roger J.; Smith, David E.; Tyler, G. Leonard; Aharonson, Oded; Balmino, Georges; Banerdt, W. B.; Head, James W.; Johnson, Catherine L.
2000-01-01
Regional variations in the thickness of the elastic lithosphere on Mars derived from a combined analysis of topography and gravity anomalies determined by Mars Global Surveyor provide new insight into the planet's thermal history.
Humans to Mars: The Greatest Adventure in Human History
NASA Technical Reports Server (NTRS)
Levine, Joel S.; Schild,Rudy
2011-01-01
The reasons for a human mission to Mars are many and include (1) World technological leadership, (2) Enhanced national security, (3) Enhanced economic vitality, (4) The human urge to explore new and distant frontiers, (5) Scientific discovery (how did Mars evolve from an early Earth-like, hospitable planet to its present inhospitable state? Is there life on Mars?) (6) Inspiring the American public and the next generation of scientists and engineers (following the launch of Sputnik I by the USSR on October 4, 1957, the U. S. and the rest of the world witnessed a significant increase in the number of students going into science and engineering), (7) Develop new technologies for potential non-space spin-off applications, and, (8) Enhanced national prestige, etc. Other reasons for colonizing the Red Planet are more catastrophic in nature, including Mars as a safe haven for the survival of the human species in the event of an impact with a large asteroid (remember the demise of the dinosaurs 65-million years as a result of an asteroid impact!). Some have also suggested that the colonization of Mars may be a solution to the global exponential population explosion on our planet! A human mission to and the colonization of the Red Planet requires multi-disciplined expertise in many areas including engineering, technology, science, human health and medicine and the human psychological and behavior. To capture the relevant areas of needed expertise, we have invited a group of more than 70 U. S. and foreign experts in these areas, including astronauts, scientists, engineers, technologists, medical doctors, psychologists and economists to share their views and thoughts on a human mission to Mars.
Boron Discovered in Ancient Habitable Mars Groundwater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasda, Patrick
Boron was recently discovered in calcium-sulfate veins on Mars using the ChemCam instrument on NASA’s Curiosity Mars Rover. This is the first Mars mission to detect boron on the Red Planet. Los Alamos Post-Doctoral Student Patrick Gasda explains how this discovery helps us better understand the timescale of habitability on Mars.
NASA Technical Reports Server (NTRS)
2007-01-01
These two images taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show Mars' two small moons, Phobos and Deimos, as seen from the Mars Reconnaissance Orbiter's low orbit around Mars. Both images were taken while the spacecraft was over Mars' night side, with the spacecraft turned off its normal nadir-viewing geometry to glimpse the moons. The image of Phobos, shown at the top, was taken at 0119 UTC on October 23 (9:19 p.m. EDT on Oct. 22), and shows features as small as 400 meters (1,320 feet) across. The image of Deimos, shown at the bottom, was taken at 2016 UTC (12:16 p.m. EDT) on June 7, 2007, and shows features as small as 1.3 kilometers (0.8 miles) across. Both CRISM images were taken in 544 colors covering 0.36-3.92 micrometers, and are displayed at twice the size in the original data for viewing purposes. Phobos and Deimos are about 21 and 12 kilometers (13.0 and 7.5 miles) in diameter and orbit Mars with periods of 7 hours, 39.2 minutes and 1 day, 6 hours, 17.9 minutes respectively. Because Phobos orbits Mars in a shorter time than Mars' 24 hour, 37.4-minute rotational period, to an observer on Mars' surface it would appear to rise in the west and set in the east. From Mars' surface, Phobos appears about one-third the diameter of the Moon from Earth, whereas Deimos appears as a bright star. The moons were discovered in 1877 by the astronomer Asaph Hall, and as satellites of a planet named for the Roman god of war, they were named for Greek mythological figures that personify fear and terror. The first spacecraft measurements of Phobos and Deimos, from the Mariner 9 and Viking Orbiter spacecraft, showed that both moons have dark surfaces reflecting only 5 to 7% of the sunlight that falls on them. The first reconstruction of the moons' spectrum of reflected sunlight was a difficult compilation from three different instruments, and appeared to show a flat, grayish spectrum resembling carbonaceous chondrite meteorites. Carbonaceous chondrites are primitive carbon-containing materials thought to originate in the outer part of the asteroid belt. This led to a commonly held view among planetary scientists that Mars' moons are primitive asteroids captured into Martian orbit early in the planet's history. More recent measurements have shown that the moons are in fact relatively red in their color, and resemble even more primitive D-type asteroids in the outer solar system. Those ultra-primitive bodies are also thought to contain carbon as well as water ice, but to have experienced even less geochemical processing than many carbonaceous chondrites. The version of the CRISM images shown here were constructed by displaying 0.90, 0.70, and 0.50 micrometer wavelengths in the red, green, and blue image planes. This is a broader range of colors than is visible to the human eye, but it accentuates color differences. Both moons are shown with colors scaled in the same way. Deimos is red-colored like most of Phobos. However, Phobos' surface contains a second material, grayer-colored ejecta from a 9-kilometer (5.6-mile) diameter crater. This crater, called Stickney, is located at the upper left limb of Phobos and the grayer-colored ejecta extends toward the lower right. These CRISM measurements are the first spectral measurements to resolve the disk of Deimos, and the first of this part of Phobos to cover the full wavelength range needed to assess the presence of iron-, water-, and carbon-containing minerals. CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and the Mars Science Laboratory for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.New Indivisible Planetary Science Paradigm: Consequence of Questioning Popular Paradigms
NASA Astrophysics Data System (ADS)
Marvin Herndon, J.
2014-05-01
Progress in science involves replacing less precise understanding with more precise understanding. In science and in science education one should always question popular ideas; ask "What's wrong with this picture?" Finding limitations, conflicts or circumstances that require special ad hoc consideration sometimes is the key to making important discoveries. For example, from thermodynamic considerations, I found that the 'standard model of solar system formation' leads to insufficiently massive planetary cores. That understanding led me to discover a new indivisible planetary science paradigm. Massive-core planets formed by condensing and raining-out from within giant gaseous protoplanets at high pressures and high temperatures, accumulating heterogeneously on the basis of volatility with liquid core-formation preceding mantle-formation; the interior states of oxidation resemble that of the Abee enstatite chondrite. Core-composition was established during condensation based upon the relative solubilities of elements, including uranium, in liquid iron in equilibrium with an atmosphere of solar composition at high pressures and high temperatures. Uranium settled to the central region and formed planetary nuclear fission reactors, producing heat and planetary magnetic fields. Earth's complete condensation included a ~300 Earth-mass gigantic gas/ice shell that compressed the rocky kernel to about 66% of Earth's present diameter. T-Tauri eruptions, associated with the thermonuclear ignition of the Sun, stripped the gases away from the Earth and the inner planets. The T-Tauri outbursts stripped a portion of Mercury's incompletely condensed protoplanet and transported it to the region between Mars and Jupiter where it fused with in-falling oxidized condensate from the outer regions of the Solar System, forming the parent matter of ordinary chondrite meteorites, the main-Belt asteroids, and veneer for the inner planets, especially Mars. With its massive gas/ice shell removed, pressure began to build in the compressed rocky kernel of Earth and eventually the rigid crust began to crack. The major energy source for planetary decompression and for heat emplacement at the base of the crust is the stored energy of protoplanetary compression. In response to decompression-driven volume increases, cracks form to increase surface area and fold-mountain ranges form to accommodate changes in curvature. One of the most profound mysteries of modern planetary science is this: As the terrestrial planets are more-or-less of common chondritic composition, how does one account for the marked differences in their surface dynamics? Differences among the inner planets are principally due to the degree of compression experienced. Planetocentric georeactor nuclear fission, responsible for magnetic field generation and concomitant heat production, is applicable to compressed and non-compressed planets and large moons. The internal composition of Mercury is calculated based upon an analogy with the deep-Earth mass ratio relationships. The origin and implication of Mercurian hydrogen geysers is described. Besides Earth, only Venus appears to have sustained protoplanetary compression; the degree of which might eventually be estimated from understanding Venetian surface geology. A basis is provided for understanding that Mars essentially lacks a 'geothermal gradient' which implies potentially greater subsurface water reservoir capacity than previously expected. Resources at NuclearPlanet.com .
Can a Crescent Mars Ever Be Seen from Earth?
ERIC Educational Resources Information Center
Lamb, John F., Jr.
1990-01-01
Described is an activity that incorporates a computer, geometry, algebra, trigonometry, and calculus to answer questions about the planet Mars. A possible crescent of Mars is compared to those of Venus and Mercury. (KR)
NASA Astrophysics Data System (ADS)
de La Torre Noetzel, Rosa
The Lithopanspermia hypothesis assumes that impact-expelled rocks serve as interplanetary transfer vehicles for microorganisms colonizing those rocks. It requires that the microorganisms survive (1) the impact ejection process from the planet of origin; (2) travelling through space; (3) capture and landing on another planet. In the experiment "Lithopanspermia" on board of the FOTON-M3 satellite (14.09.07) steps 2 and 3 of this scenario have been experimentally tested. Assay systems for step 2 were the bipolar epilithic lichen species Rhizocarpon geographicum and Xanthoria elegans on their natural rock substrate as well as their reproduction structures, microbial communities from atacamás halites Chroococcidiopsiss, endolithic communities of Anabaena and Nostoc, and the vagrant lichen species Aspicilia fruticulosa. The samples were exposed to outer space conditions within the BIOPAN-6 facility of ESA. Preparatory space simulation studies (UV solar spectrum radiation and vacuum at 10-2 Pa) performed at the Spasolab-Laboratory of INTA (March-April 2007), have demonstrated the suitability of those lichen species. After flight (10 days exposure to harsh space conditions in low Earth orbit at about 300 km altitude) and recovery, the survival capacity of the microbial communities has been assayed. First analyses have confirmed a fast recovery of the biological activity (chlorophyll a- fluorescence) of the lichens, similar to the high survival rates observed in the experiment LICHENS onboard of the Foton-M2 mission (de la Torre et al., 2007; Sancho et al., 2007). There were no significant changes in relation with the pre-flight values of the epilithic-, endolithicand vagrant lichen samples. First results of Confocal Scanning Laser Microscopy have demonstrated a high vitality of epilithic samples. Ultrastructural changes are being analyzed by Transmission Electron Microscopy and Cryoscanning. Furthermore, concerning the germination capacity of ascospores of Xanthoria elegans up to now no differences were detected between the controls (90 References: De la Torre et al. (2007) BIOPAN experiment LICHENS on the Foton-M2 mission: pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem, Adv. Space Res. 40, 1665-1671, doi:10.1016/jasr.2007.02.022. Sancho L. et al. (2007) Lichens survive in space. Astrobiology, 7, 443-454. St¨ffler D, et al. (2007) Experimental evidence for the o potential impact ejection of viable microorganisms from Mars and Mars-like planets Icarus, 186, 585-588. Horneck et al. (2007) Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: First phase of Lithopanspermia experimentally tested, Astrobiology, in press.
The problem of scale in planetary geomorphology
NASA Technical Reports Server (NTRS)
Rossbacher, L. A.
1985-01-01
Recent planetary exploration has shown that specific landforms exhibit a significant range in size between planets. Similar features on Earth and Mars offer some of the best examples of this scale difference. The difference in heights of volcanic features between the two planets has been cited often; the Martian volcano Olympus Mons stands approximately 26 km high, but Mauna Loa rises only 11 km above the Pacific Ocean floor. Polygonally fractured ground in the northern plains of Mars has diameters up to 20 km across; the largest terrestrial polygons are only 500 m in diameter. Mars also has landslides, aeolian features, and apparent rift valleys larger than any known on Earth. No single factor can explain the variations in landform size between planets. Controls on variation on Earth, related to climate, lithology, or elevation, have seldom been considered in detail. The size differences between features on Earth and other planets seem to be caused by a complex group of interacting relationships. The major planetary parameters that may affect landform size are discussed.
Swapping Rocks: Ejection and Exchange of Surface Material Among the Terrestrial Planets
NASA Astrophysics Data System (ADS)
Melosh, H. J.; Tonks, W. B.
1993-07-01
The discovery of meteorites originating from both the Moon and Mars has led to the realization that major impacts can eject material from planetary-sized objects. Although there is not yet any direct proof, there appears to be no reason why such impacts cannot eject material from the surfaces of Earth and Venus as well. Because of this possibility, and in view of the implications of such exchange for biological evolution, we examined the orbital evolution and ultimate fate of ejecta from each of the terrestrial planets. This work employed an Opik-type orbital evolution model in which both planets and ejected particles follow elliptical orbits about the Sun, with uniformly precessing arguments of perihelion and ascending nodes. An encounter takes place when the particle passes within the sphere of influence of the planet. When this occurs, the encounter is treated as a two-body scattering event, with a randomly chosen impact parameter within the sphere of influence. If the impact parameter is less than the planet's radius, an impact is scored. Otherwise, the scattered particle either takes up a new Keplerian orbit or is ejected from the solar system. We incorporated several different space erosion models and examined the full matrix of possible outcomes of ejection from each planet in random directions with velocities at great distance from the planet of 0.5, 2.5, and 5.0 km/s. Each run analyzed the evolution of 5000 particles to achieve sufficient statistical resolution. Both the ultimate fate and median transit times of particles was recorded. The results show very little dependence on velocity of ejection. Mercury ejecta is nearly all reaccreted by Mercury or eroded in space--very little ever evolves to cross the orbits of the other planets (a few percent impact Venus). The median time between ejection and reimpact is about 30 m.y. for all erosion models. Venus ejecta is mostly reaccreted by Venus, but a significant fraction (about 30%) falls on the Earth with a median transit time of 12 m.y. Of the remainder, a few percent strike Mars and a larger fraction (about 20%) are ejected from the solar system by Jupiter. Earth ejecta is also mainly reaccreted by the Earth, but about 30% strike Venus within 15 m.y. and 5% strike Mars within 150 m.y. Again, about 20% of Earth ejecta is thrown out of the solar system by Jupiter. Mars ejecta is more equitably distributed: Nearly equal fractions fall on Earth and Venus, slightly more are accreted to Mars, and a few percent strike Mercury. About 20% of Mars ejecta is thrown out of the solar system by Jupiter. The larger terrestrial planets, Venus and Earth, thus readily exchange ejecta. Mars ejecta largely falls on Venus and Earth, but Mars only receives a small fraction of their ejecta. A substantial fraction of ejecta from all the terrestrial planets (except Mercury) is thrown out of the solar system by Jupiter, a fact that may have some implications for the panspermia mechanism of spreading life through the galaxy. From the standpoint of collecting meteorites on Earth, in addition to martian and lunar meteorites, we should expect someday to find meteorites from Earth itself (Earth rocks that have spent a median time of 5 m.y. in space before falling again on the Earth) and from Venus.
NASA Astrophysics Data System (ADS)
Morgado, A.; Sánchez-Lavega, A.; Rojas, J. F.; Hueso, R.
2005-08-01
The collaboration between amateurs astronomers and the professional community has been fruitful on many areas of astronomy. The development of the Internet has allowed a better than ever capability of sharing information worldwide and access to other observers data. For many years now the International Jupiter Watch (IJW) Atmospheric discipline has coordinated observational efforts for long-term studies of the atmosphere of Jupiter. The International Outer Planets Watch (IOPW) has extended its labours to the four Outer Planets. Here we present the Planetary Virtual Observatory & Laboratory (PVOL), a website database where we integer IJW and IOPW images. At PVOL observers can submit their data and professionals can search for images under a wide variety of useful criteria such as date and time, filters used, observer, or central meridian longitude. PVOL is aimed to grow as an organized easy to use database of amateur images of the Outer Planets. The PVOL web address is located at http://www.pvol.ehu.es/ and coexists with the traditional IOPW site: http://www.ehu.es/iopw/ Acknowledgements: This work has been funded by Spanish MCYT PNAYA2003-03216, fondos FEDER and Grupos UPV 15946/2004. R. Hueso acknowledges a post-doc fellowship from Gobierno Vasco.
The International Outer Planets Watch atmospheres node database of giant-planet images
NASA Astrophysics Data System (ADS)
Hueso, R.; Legarreta, J.; Sánchez-Lavega, A.; Rojas, J. F.; Gómez-Forrellad, J. M.
2011-10-01
The Atmospheres Node of the International Outer Planets Watch (IOPW) is aimed to encourage the observations and study of the atmospheres of the Giant Planets. One of its main activities is to provide an interaction between the professional and amateur astronomical communities maintaining an online and fully searchable database of images of the giant planets obtained from amateur astronomers and available to both professional and amateurs [1]. The IOPW database contains about 13,000 image observations of Jupiter and Saturn obtained in the visible range with a few contributions of Uranus and Neptune. We describe the organization and structure of the database as posted in the Internet and in particular the PVOL software (Planetary Virtual Observatory & Laboratory) designed to manage the site and based in concepts from Virtual Observatory projects.
Science in Exploration: From the Moon to Mars and Back Home to Earth
NASA Technical Reports Server (NTRS)
Garvin, James B.
2007-01-01
NASA is embarking on a grand journey of exploration that naturally integrates the past successes of the Apollo missions to the Moon, as well as robotic science missions to Mars, to Planet Earth, and to the broader Universe. The US Vision for Space Exporation (VSE) boldly lays out a plan for human and robotic reconnaissance of the accessible Universe, starting with the surface of the Moon, and later embracing the surface of Mars. Sustained human and robotic access to the Moon and Mars will enable a new era of scientific investigation of our planetary neighbors, tied to driving scientific questions that pertain to the evolution and destiny of our home planet, but which also can be related to the search habitable worlds across the nearby Universe. The Apollo missions provide a vital legacy for what can be learned from the Moon, and NASA is now poised to recapture the lunar frontier starting with the flight of the Lunar Reconnaissance Orbiter (LRO) in late 2008. LRO will provide a new scientific context from which joint human and robotic exploration will ensue, guided by objectives some of which are focused on the grandest scientific challenges imaginable : Where did we come from? Are we alone? and Where are we going? The Moon will serve as an essential stepping stone for sustained human access and exploration of deep space and as a training ground while robotic missions with ever increasing complexity probe the wonders of Mars. As we speak, an armada of spacecraft are actively investigating the red planet both from orbit (NASA's Mars Reconnaissance Orbiter and Mars Odyssey Orbiter, plus ESA's Mars Express) and from the surface (NASA's twin Mars Exploration Rovers, and in 2008 NASA's Phoenix polar lander). The dramatically changing views of Mars as a potentially habitable world, with its own flavor of global climate change and unique climate records, provides a new vantage point from which to observe and question the workings of our own planet Earth. By 2010 NASA will have its first mobile analytical laboratory operating on the surface of Mars (Mars Science Laboratory) in search of potentially subtle expressions of past life or at least of life-hospitable environments. Meanwhile back here on Planet Earth, NASA will be continuing to implement an increasingly comprehensive program of robotic missions that address major issues associated with global climate variability, and the "state variables" that affect the quality of human life on our home planet. Ultimately, the fmits of NASA's emergent program of Exploration (VSE) will provide never-beforepossible opportunities for scientific leadership and advancement, culminating in a new state of awareness from which to better plan for the sustainability of life on Earth and for extending Earth life to the Moon and eventually to Mars. As NASA nears its 50th anniversary, the unimaginable and unexpected wealth of strategic knowledge its missions have generated about Earth, the Universe, and our local Solar System boggles the mind and serves as a legacy of knowledge for Educators to inspire future generations.
NASA Technical Reports Server (NTRS)
Kaplan, David I. (Compiler)
1988-01-01
A compilation of scientific knowledge about the planet Mars is provided. Information is divided into three categories: atmospheric data, surface data, and astrodynamic data. The discussion of atmospheric data includes the presentation of nine different models of the Mars atmosphere. Also discussed are Martian atmospheric constituents, winds, clouds, and solar irradiance. The great dust storms of Mars are presented. The section on Mars surface data provides an in-depth examination of the physical and chemical properties observed at the two Viking landing sites. Bulk densities, dielectric constants, and thermal inertias across the planet are then described and related back to those specific features found at the Viking landing sites. The astrodynamic materials provide the astronomical constants, time scales, and reference coordinate frames necessary to perform flightpath analysis, navigation design, and science observation design.
NASA Technical Reports Server (NTRS)
Doran, P. T.; Bar-Cohen, Y.; Fritsen, C.; Kenig, F.; McKay, C. P.; Murray, A.; Sherrit, S.
2003-01-01
Evidence for the presence of ice and fluids near the surface of Mars in both the distant and recent past is growing with each new mission to the Planet. One explanation for fluids forming springlike features on Mars is the discharge of subsurface brines. Brines offer potential refugia for extant Martian life, and near surface ice could preserve a record of past life on the planet. Proven techniques to get underground to sample these environments, and get below the disruptive influence of the surface oxidant and radiation regime, will be critical for future astrobiology missions to Mars. Our Astrobiology for Science and Technology for Exploring Planets (ASTEP) project has the goal to develop and test a novel ultrasonic corer in a Mars analog environment, the McMurdo Dry valleys, Antarctica, and to detect and describe life in a previously unstudied extreme ecosystem; Lake Vida (Fig. 1), an ice-sealed lake.
The Meteoroid Fluence at Mars Due to Comet Siding Spring
NASA Technical Reports Server (NTRS)
Moorhead, Althea V.
2014-01-01
Long-period comet C/2013 A1 (Siding Spring) is headed for a close encounter with Mars on 2014 Oct 19. A collision between the comet and the planet has been ruled out, but the comets coma may envelop Mars and its man-made satellites. We present an analytic model of the dust component of cometary comae that describes the spatial distribution of cometary dust and meteoroids and their size distribution. If the coma reaches Mars, we estimate a total incident particle fluence on the planet and its satellites of 0.01 particles per square meter. We compare our model with numerical simulations, data from past comet missions, and recent Siding Spring observations.
Mars Observer trajectory and orbit design
NASA Technical Reports Server (NTRS)
Beerer, Joseph G.; Roncoli, Ralph B.
1991-01-01
The Mars Observer launch, interplanetary, Mars orbit insertion, and mapping orbit designs are described. The design objective is to enable a near-maximum spacecraft mass to be placed in orbit about Mars. This is accomplished by keeping spacecraft propellant requirements to a minimum, selecting a minimum acceptable launch period, equalizing the spacecraft velocity change requirement at the beginning and end of the launch period, and constraining the orbit insertion maneuvers to be coplanar. The mapping orbit design objective is to provide the opportunity for global observation of the planet by the science instruments while facilitating the spacecraft design. This is realized with a sun-synchronous near-polar orbit whose ground-track pattern covers the planet at progressively finer resolution.
Glacial geomorphic evidence for a late climatic change on Mars
NASA Technical Reports Server (NTRS)
Kargel, J. S.; Strom, R. G.
1992-01-01
In a series of preliminary reports, we documented evidence of former glacial epochs on Mars. Apparent glacial landforms seemed to be concentrated primarily at middle to high southern latitudes. We now have additional evidence supporting the view that Martian glaciation appears to have been more extensive than previously recognized. The growth and collapse of ice sheets on Mars seems closely analogous to the growth and decline of Earth's great Pleistocene ice sheets. This implies that climate change was probably somewhat comparable on the two planets, although in the case of Mars the entire planet seems to have changed rapidly to a cold, dry present-day environment after the collapse of the ice sheets.
Planet-wide sand motion on mars
Bridges, N.T.; Bourke, M.C.; Geissler, P.E.; Banks, M.E.; Colon, C.; Diniega, S.; Golombek, M.P.; Hansen, C.J.; Mattson, S.; McEwen, A.S.; Mellon, M.T.; Stantzos, N.; Thomson, B.J.
2012-01-01
Prior to Mars Reconnaissance Orbiter data, images of Mars showed no direct evidence for dune and ripple motion. This was consistent with climate models and lander measurements indicating that winds of sufficient intensity to mobilize sand were rare in the low-density atmosphere. We show that many sand ripples and dunes across Mars exhibit movement of as much as a few meters per year, demonstrating that Martian sand migrates under current conditions in diverse areas of the planet. Most motion is probably driven by wind gusts that are not resolved in global circulation models. A past climate with a thicker atmosphere is only required to move large ripples that contain coarse grains. ?? 2012 Geological Society of America.
Mars penetrator umbilical. [to study geophysical properties of Mars
NASA Technical Reports Server (NTRS)
Barns, C. E.
1979-01-01
The device proposed to gather subsurface data on the planet Mars is a ballistic probe which penetrates the soil after a free fall through the Martian atmosphere. Highlights of the design, development, and testing of several features of the Mars Surface Penetration Probe are outlined.
Biology on the outer planets. [life possibility in atmospheres and moons
NASA Technical Reports Server (NTRS)
Young, R. S.; Macelroy, R. D.
1976-01-01
A brief review is given of information on the structure and composition of the outer planets and the organic reactions that may be occurring on them. The possibility of life arising or surviving in the atmospheres of these planets is considered, and the problem of contamination during future unmanned missions is assessed. Atmospheric models or available atmospheric data are reviewed for Jupiter, Saturn, Uranus, Neptune, Pluto, the Galilean satellites, and Titan. The presence of biologically interesting gases on Jupiter and Saturn is discussed, requirements for life on Jupiter are summarized, and possible sources of biological energy are examined. Proposals are made for protecting these planets and satellites from biological contamination by spacecraftborne terrestrial organisms.
NASA Technical Reports Server (NTRS)
1970-01-01
The guidance and navigation requirements for unmanned missions to the outer planets, assuming constant, low thrust, ion propulsion are discussed. The navigational capability of the ground based Deep Space Network is compared to the improvements in navigational capability brought about by the addition of guidance and navigation related onboard sensors. Relevant onboard sensors include: (1) the optical onboard navigation sensor, (2) the attitude reference sensors, and (3) highly sensitive accelerometers. The totally ground based, and the combination ground based and onboard sensor systems are compared by means of the estimated errors in target planet ephemeris, and the spacecraft position with respect to the planet.
Carl Sagan and the Exploration of Mars and Venus
NASA Technical Reports Server (NTRS)
Toon, Owen B.; Condon, Estelle P. (Technical Monitor)
1997-01-01
Inspired by childhood readings of books by Edgar Rice Burroughs, Carl Sagan's first interest in planetary science focused on Mars and Venus. Typical of much of his career he was skeptical of early views about these planets. Early in this century it was thought that the Martian wave of darkening, a seasonal albedo change on the planet, was biological in origin. He suggested instead that it was due to massive dust storms, as was later shown to be the case. He was the first to recognize that Mars has huge topography gradients across its surface. During the spacecraft era, as ancient river valleys were found on the planet, he directed studies of Mars' ancient climate. He suggested that changes in the planets orbit were involved in climate shifts on Mars, just as they are on Earth. Carl had an early interest in Venus. Contradictory observations led to a controversy about the surface temperature, and Carl was one of the first to recognize that Venus has a massive greenhouse effect at work warming its surface. His work on radiative transfer led to an algorithm that was extensively used by modelers of the Earth's climate and whose derivatives still dominate the calculation of radiative transfer in planetary atmospheres today. Carl inspired a vast number of young scientists through his enthusiasm for new ideas and discoveries, his skeptical approach, and his boundless energy. I had the privilege to work in Carl's laboratory during the peak of the era of Mars' initial exploration. It was an exciting time, and place. Carl made it a wonderful experience.
Estimated Radiation on Mars, Hits per Cell Nucleus
2002-03-01
This global map of Mars, based on data from NASA Mars Odyssey, shows estimates for amounts of high-energy-particle cosmic radiation reaching the surface, a serious health concern for any future human exploration of the planet.
2011-04-12
This is an enhanced contrast version of the first Mars photograph released on July 15, 1965. This is man first close-up photograph of another planet, a photographic representation of digital data radioed from Mars by the Mariner 4 spacecraft.
1998-10-16
In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Climate Orbiter (foreground) and the Mars Polar Lander are on display for the media. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, aboard a Boeing Delta II rocket. It is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface
1998-09-14
In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Climate Orbiter (background) is moved toward the workstand being readied by technicians (foreground). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket
1998-09-14
Technicians check the connections on the workstand holding the Mars Climate Orbiter in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket
1998-09-14
Technicians check the connections on the workstand holding the Mars Climate Orbiter in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket
1998-09-14
Technicians in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) prepare a lifting device they will use to remove the Mars Climate Orbiter from its container (behind the workers). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket
1998-09-14
The Mars Climate Orbiter is lifted clear of the top of its container in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket
Research on lunar and planet development and utilization
NASA Astrophysics Data System (ADS)
Iwata, Tsutomu; Etou, Takao; Imai, Ryouichi; Oota, Kazuo; Kaneko, Yutaka; Maeda, Toshihide; Takano, Yutaka
1992-08-01
Status of the study on unmanned and manned lunar missions, unmanned Mars missions, lunar resource development and utilization missions, remote sensing exploration missions, survey and review to elucidate the problems of research and development for lunar resource development and utilization, and the techniques and equipment for lunar and planet exploration are presented. Following items were studied respectively: (1) spacecraft systems for unmanned lunar missions, such as lunar observation satellites, lunar landing vehicles, lunar surface rovers, lunar surface hoppers, and lunar sample retrieval; (2) spacecraft systems for manned lunar missions, such as manned lunar bases, lunar surface operation robots, lunar surface experiment systems, manned lunar take-off and landing vehicles, and lunar freight transportation ships; (3) spacecraft systems for Mars missions, such as Mars satellites, Phobos and Deimos sample retrieval vehicles, Mars landing explorers, Mars rovers, Mars sample retrieval; (4) lunar resource development and utilization; and (5) remote sensing exploration technologies.
1998-09-14
Technicians in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) oversee the removal of the Mars Climate Orbiter from its container. The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket
Comparative ionospheres: Terrestrial and giant planets
NASA Astrophysics Data System (ADS)
Mendillo, Michael; Trovato, Jeffrey; Moore, Luke; Müller-Wodarg, Ingo
2018-03-01
The study of planetary ionospheres within our solar system offers a variety of settings to probe mechanisms of photo-ionization, chemical loss, and plasma transport. Ionospheres are a minor component of upper atmospheres, and thus their mix of ions observed depends on the neutral gas composition of their parent atmospheres. The same solar irradiance (x-rays and extreme-ultra-violet vs. wavelength) impinges upon each of these atmospheres, with solar flux magnitudes changed only by the inverse square of distance from the Sun. If all planets had the same neutral atmosphere-with ionospheres governed by photochemical equilibrium (production = loss)-their peak electron densities would decrease as the inverse of distance from the Sun, and any changes in solar output would exhibit coherent effects throughout the solar system. Here we examine the outer planet with the most observations of its ionosphere (Saturn) and compare its patterns of electron density with those at Earth under the same-day solar conditions. We show that, while the average magnitudes of the major layers of molecular ions at Earth and Saturn are approximately in accord with distance effects, only minor correlations exist between solar effects and day-to-day electron densities. This is in marked contrast to the strong correlations found between the ionospheres of Earth and Mars. Moreover, the variability observed for Saturn's ionosphere (maximum electron density and total electron content) is much larger than found at Earth and Mars. With solar irradiance changes far too small to cause such effects, we use model results to explore the roles of other agents. We find that water sources from Enceladus at low latitudes, and 'ring rain' at middle latitudes, contribute substantially to variability via water ion chemistry. Thermospheric winds and electrodynamics generated at auroral latitudes are suggested causes of high latitude ionospheric variability, but remain inconclusive due to the lack of relevant observations.
Testing giant planet formation in the transitional disk of SAO 206462 using deep VLT/SPHERE imaging
NASA Astrophysics Data System (ADS)
Maire, A.-L.; Stolker, T.; Messina, S.; Müller, A.; Biller, B. A.; Currie, T.; Dominik, C.; Grady, C. A.; Boccaletti, A.; Bonnefoy, M.; Chauvin, G.; Galicher, R.; Millward, M.; Pohl, A.; Brandner, W.; Henning, T.; Lagrange, A.-M.; Langlois, M.; Meyer, M. R.; Quanz, S. P.; Vigan, A.; Zurlo, A.; van Boekel, R.; Buenzli, E.; Buey, T.; Desidera, S.; Feldt, M.; Fusco, T.; Ginski, C.; Giro, E.; Gratton, R.; Hubin, N.; Lannier, J.; Le Mignant, D.; Mesa, D.; Peretti, S.; Perrot, C.; Ramos, J. R.; Salter, G.; Samland, M.; Sissa, E.; Stadler, E.; Thalmann, C.; Udry, S.; Weber, L.
2017-05-01
Context. The SAO 206462 (HD 135344B) disk is one of the few known transitional disks showing asymmetric features in scattered light and thermal emission. Near-infrared scattered-light images revealed two bright outer spiral arms and an inner cavity depleted in dust. Giant protoplanets have been proposed to account for the disk morphology. Aims: We aim to search for giant planets responsible for the disk features and, in the case of non-detection, to constrain recent planet predictions using the data detection limits. Methods: We obtained new high-contrast and high-resolution total intensity images of the target spanning the Y to the K bands (0.95-2.3 μm) using the VLT/SPHERE near-infrared camera and integral field spectrometer. Results: The spiral arms and the outer cavity edge are revealed at high resolutions and sensitivities without the need for aggressive image post-processing techniques, which introduce photometric biases. We do not detect any close-in companions. For the derivation of the detection limits on putative giant planets embedded in the disk, we show that the knowledge of the disk aspect ratio and viscosity is critical for the estimation of the attenuation of a planet signal by the protoplanetary dust because of the gaps that these putative planets may open. Given assumptions on these parameters, the mass limits can vary from 2-5 to 4-7 Jupiter masses at separations beyond the disk spiral arms. The SPHERE detection limits are more stringent than those derived from archival NaCo/L' data and provide new constraints on a few recent predictions of massive planets (4-15 MJ) based on the spiral density wave theory. The SPHERE and ALMA data do not favor the hypotheses on massive giant planets in the outer disk (beyond 0.6''). There could still be low-mass planets in the outer disk and/or planets inside the cavity. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 095.C-0298 and 090.C-0443.
NASA Astrophysics Data System (ADS)
Aggarwal, Y. P.
2016-12-01
We present a highly correlated and significant relationship between a planet's rock mass of solids/heavy elements and its orbital radius found by non-linear regression analysis using existing data for all 8 planets except Mars. On its basis, we define the area A(r) of a planet's accretionary zone (AZ) and the surface density of solids σ(r) in Sun's disk that differs markedly from the commonly used minimum-mass solar nebula (MMSN) profile, and unlike MMSN is well constrained and does not produce contradictory results. A(r) ≈ π (1.59 r2 ̶ 0.16); and σ(r) = (5.95±0.1) (r - 6.4)- α where r is the heliocentric distance in astronomical units (AU), A(r) in AU², σ(r) in gm/cm², and α=0 for r ≤7.4AU, and α=1.39±0.04 for r ˃7.4AU. Using these relationships we determine the isolation masses of planetary embryos, define each planet's AZ, and analyze the size and spatial distribution of protoplanets within the AZ of terrestrial planets assuming typical protoplanet separations of 7-10 mutual Hill radii. The results: 1) show that Mars mass matches (±1%) with the isolation mass of its embryo and that its orbit at 1.52AU lies within its predicted AZ (1.47-1.54AU), establishing that Mars is a planetary embryo that formed in situ; 2) reveal that Mars failed to grow fully because there were not enough solids interior to Mars orbit to fully form all four terrestrial planets and because Jupiter accreted planetary embryos and planetesimals from the Mars-asteroid region, essentially depleting it; 3) imply that asteroids are remnant planetesimals that escaped accretion by Jupiter; 4) indicate that despite its small mass, Mercury is not a planetary embryo and that it probably completed its formation much earlier than Earth; and 5) suggest that Theia, the protoplanet thought to have impacted proto-Earth forming the Moon, originated near 1.45 AU with a mass and possibly composition similar to that of Mars. Notably, the results do not support the Grand Tack model or the Viscously Stirred Pebble-Accretion model for the structure of the Mars-asteroid region; nor do they support the hypothesis that the high iron content of Mercury's core is the result of an impact with a large planetesimal that stripped away much of Mercury's crust and mantle.
The Potassium-Argon Laser Experiment (karle): In Situ Geochronology for Planetary Missions
NASA Technical Reports Server (NTRS)
Cohen, B. A.
2016-01-01
Isotopic dating is an essential tool to establish an absolute chronology for geological events. It enables a planet's crystallization history, magmatic evolution, and alteration to be placed into the framework of solar system history. The capability for in situ geochronology will open up the ability for this crucial measurement to be accomplished as part of lander or rover complement. An in situ geochronology package can also complement sample return missions by identifying the most interesting rocks to cache or return to Earth. Appropriate application of in situ dating will enable geochronology on more terrains than can be reached with sample-return missions to the Moon, Mars, asteroids, outer planetary satellites, and other bodies that contain rocky components. The capability of flight instruments to conduct in situ geochronology is called out in the NASA Planetary Science Decadal Survey and the NASA Technology Roadmap as needing development to serve the community's needs. Beagle 2 is the only mission launched to date with the explicit aim to perform in situ K-Ar isotopic dating [1], but it failed to communicate and was lost. The first in situ K-Ar date on Mars, using SAM and APXS measurements on the Cumberland mudstone [2], yielded an age of 4.21 +/- 0.35 Ga and validated the idea of K-Ar dating on other planets, though the Curiosity method is not purpose-built for dating and requires many assumptions that degrade its precision. To get more precise and meaningful ages, multiple groups are developing dedicated in situ dating instruments.
Mars Public Engagement Overview
NASA Technical Reports Server (NTRS)
Johnson, Christine
2009-01-01
This viewgraph presentation reviews the Mars public engagement goal to understand and protect our home planet, explore the Universe and search for life, and to inspire the next generation of explorers. Teacher workshops, robotics education, Mars student imaging and analysis programs, MARS Student Imaging Project (MSIP), Russian student participation, MARS museum visualization alliance, and commercialization concepts are all addressed in this project.
ERIC Educational Resources Information Center
Treiman, Allan; And Others
This learning guide provides detailed information about exploring the planet Mars. The guide covers a variety of topics related to space exploration including: (1) the reasons for exploring Mars; (2) a history of the exploration of and thinking about Mars beginning with the Babylonians and continuing through the Viking missions; (3) the status of…
Send Your Students to Mars for Their next Research Project
ERIC Educational Resources Information Center
Lindgren, Charles
2006-01-01
The NASA's Mars Student Imaging Project (MSIP) is led by the Arizona State University (ASU) Mars Education Program, a major partner of NASA's Mars Exploration Program. MSIP is based on the National Science Education Standards and includes curriculum on terrestrial planet characteristics, experimental design, and proposal writing. Three spacecraft…
Radioisotope Electric Propulsion for Fast Outer Planetary Orbiters
NASA Technical Reports Server (NTRS)
Oleson, Steven; Benson, Scott; Gefert, Leon; Patterson, Michael; Schreiber, Jeffrey
2002-01-01
Recent interest in outer planetary targets by the Office of Space Science has spurred the search for technology options to enable relatively quick missions to outer planetary targets. Several options are being explored including solar electric propelled stages combined with aerocapture at the target and nuclear electric propulsion. Another option uses radioisotope powered electric thrusters to reach the outer planets. Past work looked at using this technology to provide faster flybys. A better use for this technology is for outer planet orbiters. Combined with medium class launch vehicles and a new direct trajectory these small, sub-kilowatt ion thrusters and Stirling radioisotope generators were found to allow missions as fast as 5 to 12 years for objects from Saturn to Pluto, respectively. Key to the development is light spacecraft and science payload technologies.
Indexing of exoplanets in search for potential habitability: application to Mars-like worlds
NASA Astrophysics Data System (ADS)
Kashyap Jagadeesh, Madhu; Gudennavar, Shivappa B.; Doshi, Urmi; Safonova, Margarita
2017-08-01
Study of exoplanets is one of the main goals of present research in planetary sciences and astrobiology. Analysis of huge planetary data from space missions such as CoRoT and Kepler is directed ultimately at finding a planet similar to Earth—the Earth's twin, and answering the question of potential exo-habitability. The Earth Similarity Index (ESI) is a first step in this quest, ranging from 1 (Earth) to 0 (totally dissimilar to Earth). It was defined for the four physical parameters of a planet: radius, density, escape velocity and surface temperature. The ESI is further sub-divided into interior ESI (geometrical mean of radius and density) and surface ESI (geometrical mean of escape velocity and surface temperature). The challenge here is to determine which exoplanet parameter(s) is important in finding this similarity; how exactly the individual parameters entering the interior ESI and surface ESI are contributing to the global ESI. Since the surface temperature entering surface ESI is a non-observable quantity, it is difficult to determine its value. Using the known data for the Solar System objects, we established the calibration relation between surface and equilibrium temperatures to devise an effective way to estimate the value of the surface temperature of exoplanets. ESI is a first step in determining potential exo-habitability that may not be very similar to a terrestrial life. A new approach, called Mars Similarity Index (MSI), is introduced to identify planets that may be habitable to the extreme forms of life. MSI is defined in the range between 1 (present Mars) and 0 (dissimilar to present Mars) and uses the same physical parameters as ESI. We are interested in Mars-like planets to search for planets that may host the extreme life forms, such as the ones living in extreme environments on Earth; for example, methane on Mars may be a product of the methane-specific extremophile life form metabolism.
A near-earth optical communications terminal with a corevolving planetary sun shield
NASA Technical Reports Server (NTRS)
Kerr, E. L.
1989-01-01
The umbra of a planet may serve as a sun shield for a space-based optical communications terminal or for a space-based astronomical observatory. An orbit that keeps the terminal or observatory within the umbra is desirable. There is a corevolution point behind every planet. A small body stabilized at the planet corevolution point will revolve about the sun at the same angular velocity as the planet, always keeping the planet between itself and the sun. This corevolution point is within the umbra of Mars but beyond the end of the umbra for Mercury, Venus, and earth. The Mars corevolution point is an ideal location for an astronomical observatory. There, Mars obstruct less than 0.00024 percent of the sky at any time, and it shades the observatory completely from the sun. At the earth corevolution point, between 51 and 84 percent of the solar disk area is blocked, as is up to 92 percent of the sunlight. This provides a reduction from 3 dB to 11 dB in sunlight that could interfere with optical communications if scattered directly into the detectors. The variations is caused by revolution of the earth about the earth-moon barycenter.
A near-earth optical communications terminal with a corevolving planetary sun shield
NASA Technical Reports Server (NTRS)
Kerr, E. L.
1987-01-01
The umbra of a planet may serve as a sun shield for a space based optical communications terminal or for a space based astronomical observatory. An orbit that keeps the terminal or observatory within the umbra is desirable. There is a corevolution point behind every planet. A small body stabilized at the planet corevolution point will revolve about the sun at the same angular velocity as the planet, always keeping the planet between itself and the sun. This corevolution point is within the umbra of Mars but beyond the end of the umbra for Mercury, Venus, and earth. The Mars corevolution point is an ideal location for an astronomical observatory. There Mars obstruct less than 0.00024 percent of the sky at any time, and it shades the observatory completely from the sun. At the earth corevolution point, between 51 and 84 percent of the solar disk area is blocked, as is up to 92 percent of the sunlight. This provides a reduction from 3 dB to 11 dB in sunlight that could interfere with optical communications if scattered directly into the detectors. The variations is caused by revolution of the earth about the earth-moon barycenter.
Climate evolution on the terrestrial planets
NASA Technical Reports Server (NTRS)
Kasting, J. F.; Toon, O. B.
1989-01-01
The present comparative evaluation of the long-term evolution of the Venus, earth, and Mars climates suggests that the earth's climate has remained temperate over most of its history despite a secular solar luminosity increase in virtue of a negative-feedback cycle based on atmospheric CO2 levels and climate. The examination of planetary climate histories suggests that an earth-sized planet should be able to maintain liquid water on its surface at orbital distances in the 0.9-1.5 AU range, comparable to the orbit of Mars; this, in turn, implies that there may be many other habitable planets within the Galaxy.
The Status of Mars Climate Change Modeling
NASA Technical Reports Server (NTRS)
Haberle, Robert M.
1997-01-01
Researchers have reviewed the evidence that the climate of Mars has changed throughout its history. In this paper, the discussion focuses on where we stand in terms of modeling these climate changes. For convenience, three distinct types of climate regimes are considered: very early in the planet's history (more than 3.5 Ga), when warm wet conditions are thought to have prevailed; the bulk of the planet's history (3.5-1 Ga), during which episodic ocean formation has been suggested; and relatively recently in the planet's history (less than 1 Ga), when orbitally induced climate change is thought to have occurred.
MECHANISM FOR EXCITING PLANETARY INCLINATION AND ECCENTRICITY THROUGH A RESIDUAL GAS DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Yuanyuan; Liu Huigen; Zhao Gang
2013-05-20
According to the theory of Kozai resonance, the initial mutual inclination between a small body and a massive planet in an outer circular orbit is as high as {approx}39. Degree-Sign 2 for pumping the eccentricity of the inner small body. Here we show that with the presence of a residual gas disk outside two planetary orbits, the inclination can be reduced to as low as a few degrees. The presence of the disk changes the nodal precession rates and directions of the planet orbits. At the place where the two planets achieve the same nodal processing rate, vertical secular resonancemore » (VSR) occurs so that the mutual inclination of the two planets will be excited, which might further trigger the Kozai resonance between the two planets. However, in order to pump an inner Jupiter-like planet, the conditions required for the disk and the outer planet are relatively strict. We develop a set of evolution equations, which can fit the N-body simulation quite well but can be integrated within a much shorter time. By scanning the parameter spaces using the evolution equations, we find that a massive planet (10 M{sub J} ) at 30 AU with an inclination of 6 Degree-Sign to a massive disk (50 M{sub J} ) can finally enter the Kozai resonance with an inner Jupiter around the snowline. An inclination of 20 Degree-Sign of the outer planet to the disk is required for flipping the inner one to a retrograde orbit. In multiple planet systems, the mechanism can happen between two nonadjacent planets or can inspire a chain reaction among more than two planets. This mechanism could be the source of the observed giant planets in moderate eccentric and inclined orbits, or hot Jupiters in close-in, retrograde orbits after tidal damping.« less
Outer planet probe navigation. [considering Pioneer space missions
NASA Technical Reports Server (NTRS)
Friedman, L.
1974-01-01
A series of navigation studies in conjunction with outer planet Pioneer missions are reformed to determine navigation requirements and measurement systems in order to target probes. Some particular cases are established where optical navigation is important and some cases where radio alone navigation is suffucient. Considered are a direct Saturn mission, a Saturn Uranus mission, a Jupiter Uranus mission, and a Titan probe mission.
Fluxgate magnetometers for outer planets exploration
NASA Technical Reports Server (NTRS)
Acuna, M. H.
1974-01-01
The exploration of the interplanetary medium and the magnetospheres of the outer planets requires the implementation of magnetic field measuring instrumentation with wide dynamic range, high stability, and reliability. The fluxgate magnetometers developed for the Pioneer 11 and Mariner-Jupiter-Saturn missions are presented. These instruments cover the range of .01 nT to 2 million nT with optimum performance characteristics and low power consumption.
Ten bar probe technical summary. [feasibility of outer planet common atmospheric probe
NASA Technical Reports Server (NTRS)
Ellis, T. R.
1974-01-01
The feasibility of an outer planet common atmospheric probe is studied with emphasis on entry heating rates and improved ephemeris. It is concluded that a common probe design is possible except for Jupiter; the basic technology exists except for Jupiter heat shielding. A Mariner class bus provides for better bus science and probe bus communications than a Pioneer class bus.
NASA Technical Reports Server (NTRS)
Dawe, R. H.; Arnett, J. C.
1974-01-01
Electronic packaging and cabling activities performed in support of the Thermoelectric Outer Planets Spacecraft (TOPS) Advanced Systems Technology (AST) project are detailed. It describes new electronic compartment, electronic assembly, and module concepts, and a new high-density, planar interconnection technique called discrete multilayer (DML). Development and qualification of high density cabling techniques, using small gage wire and microminiature connectors, are also reported.
Scratching the Surface of Martian Habitability
NASA Technical Reports Server (NTRS)
Conrad, Pamela G.
2014-01-01
Earth and Mars, though formed at the same time from the same materials, look very different today. Early in their histories they evolved through some of the same processes, but at some point their evolutionary paths diverged, sending them in perhaps irrevocably different directions. Knowledge of the factors that contributed to such different outcomes will help to determine how planets become habitable and how common habitable planets may be. The Mars surface environment is harsh today, but in situ measurements of ancient sedimentary rock by Mars Science Laboratory reveal chemical and mineralogical evidence of past conditions that might have been more favorable for life to exist. But chemistry is only part of what is required to make an environment habitable. Physical conditions constrain the chemical reactions that underlie life processes; the chemical and physical characteristics that make planets habitable are thus entangled.
Comprehensive amateur coverage of the Mars 2015-2017 apparition from the Southern Hemisphere
NASA Astrophysics Data System (ADS)
Foster, C.
2017-09-01
Although there are current, active scientific assets orbiting and on the surface of Mars, comprehensive amateur monitoring of the planet can still add value. With latest technology and improved high resolution imaging techniques, amateurs are still in a position to observe and report in real time on any significant atmospheric activity on the planet. The author was able to follow the 2015-2017 Mars apparition comprehensively from December 2015 through until February 2017. The planet was imaged on 198 nights by the author during this period, and although no major(non-regional) dust storms occurred during the apparition, a number of atmospheric phenomena were noted and imaged. Orographic cloud formations, Northern and southern polar hood development, high latitude weather systems and the changing weather systems and conditions in and around the Hellas basin were observed and recorded.
MOMA and other next-generation ion trap mass spectrometers for planetary exploration
NASA Astrophysics Data System (ADS)
Arevalo, R. D., Jr.; Brinckerhoff, W. B.; Getty, S.; Mahaffy, P. R.; van Amerom, F. H. W.; Danell, R.; Pinnick, V. T.; Li, X.; Grubisic, A.; Southard, A. E.; Hovmand, L.; Cottin, H.; Makarov, A.
2016-12-01
Since the 1970's, quadrupole mass spectrometer (QMS) systems have served as low-risk, cost-efficient means to explore the inner and outer reaches of the solar system. These legacy instruments have interrogated the compositions of the lunar exosphere (LADEE), surface materials on Mars (MSL), and the atmospheres of Venus (Pioneer Venus), Mars (MAVEN) and outer planets (Galileo and Cassini-Huygens). However, the in situ detection of organic compounds on Mars and Titan, coupled with ground-based measurements of amino acids in meteorites and a variety of organics in comets, has underlined the importance of molecular disambiguation in the characterization of high-priority planetary environments. The Mars Organic Molecule Analyzer (MOMA) flight instrument, centered on a linear ion trap, enables the in situ detection of volatile and non-volatile organics, but also the characterization of molecular structures through SWIFT ion isolation/excitation and tandem mass spectrometry (MSn). Like the SAM instrument on MSL, the MOMA investigation also includes a gas chromatograph (GC), thereby enabling the chemical separation of potential isobaric interferences based on retention times. The Linear Ion Trap Mass Spectrometer (LITMS; PI: William Brinckerhoff), developed to TRL 6 via the ROSES MatISSE Program, augments the core MOMA design and adds: expanded mass range (from 20 - 2000 Da); high-temperature evolved gas analysis (up to 1300°C); and, dual polarity detector assemblies (supporting the measurement of negative ions). The LITMS instrument will be tested in the field in 2017 through the Atacama Rover Astrobiology Drilling Studies (ARADS; PI: Brian Glass) ROSES PSTAR award. Following on these advancements, the Advanced Resolution Organic Molecule Analyzer (AROMA; PI: Ricardo Arevalo Jr.), supported through the ROSES PICASSO Program, combines a highly capable MOMA/LITMS-like linear ion trap and the ultrahigh resolution CosmOrbitrap mass analyzer developed by a consortium of five French laboratories. Phase I of this project has seen the development of a dedicated testbed that enables performance characterization of an Orbitrap analyzer as a function of compromised environmental conditions, simulating the reduced resources expected for planetary missions to small bodies and/or cryogenic worlds.
A generalized geologic map of Mars
NASA Technical Reports Server (NTRS)
Carr, M. H.; Masursky, H.; Saunders, R. S.
1973-01-01
A generalized geologic map of Mars has been constructed largely on the basis of differences in the topography of the surface. A number of topographic features on Mars whose form is highly diagnostic of their origin are shown. Of particular note are the shield volcanoes and lava plains. In some areas, the original features have been considerably modified by subsequent erosional and tectonic processes. These have not, however, resulted in homogenization of the planet's surface, but rather have emphasized its variegated character by leaving a characteristic imprint in specific areas. The topography of the planet, therefore, lends itself well to remote geologic interpretation.
Wiens, Roger
2018-01-16
Better understanding Mars means better understanding its geology. Thatâs why, sitting atop NASAâs Curiosity rover, is ChemCam, an instrument built by Los Alamos National Laboratory that shoots lasers at Martian rocks and analyzes the data. After nearly 1,500 rock zaps, ChemCam has uncovered some surprising facts about the Red Planet, including the discovery of igneous rocks. Soon, a new Los Alamos-built instrumentâthe SuperCamâwill ride aboard the Mars 2020 rover and bring with it enhanced capabilities to unlock new secrets about the planet.
A Future Mars Environment for Science and Exploration
NASA Technical Reports Server (NTRS)
Green, J. L.; Hollingsworth, J. L.; Kahre, M. A.; Brain, D.; Airapetian, V.; Glocer, A.; Pulkkinen, A.; Dong, C.; Bamford, R.
2017-01-01
Today, Mars is arid and cold with a very thin atmosphere that has significant frozen and underground water resources. The thin atmosphere prevents liquid water from residing permanently on its surface and makes it difficult to land missions since it is not thick enough to completely facilitate a soft landing. In its past, under the influence of a significant greenhouse effect, Mars must have had a significant water ocean covering perhaps 30% of the northern hemisphere. Mars lost its protective magnetosphere and therefore much of its atmosphere around 3 Ga ago, due to the solar wind. The atmospheric loss into the solar wind is somewhat balanced by the outgassing of the Mars interior and crust that contributes to the existing atmosphere leading to a global-mean surface atmosphere of 6 mbar pressure currently. By using our extensive simulation tools and physics capabilities in Space Weather and Mars global climate modeling, we have started to explore the effects on Mars of placing an artificial magnetic dipole field at the Mars L1 Lagrange point putting Mars in a magnetotail. This situation then eliminates many of the solar-wind erosion processes that occur with the planet's ionosphere and upper atmosphere allowing the Martian atmosphere to grow in pressure and bulk temperature over time. Under thicker atmospheres, the global circulation patterns and seasonal changes are much different than at present. An enhanced atmosphere would: allow larger landed mass of equipment to the surface, shield against some cosmic and solar particle radiation, extend the ability for extraction, and provide "open air" greenhouses to exist for plant production, just to name a few. These new conditions on Mars would allow human explorers and researchers to study the planet in much greater detail and enable a truly profound new understanding of the habitability of this planet.
Theories of the origin and evolution of the giant planets
NASA Technical Reports Server (NTRS)
Pollack, J. B.; Bodenheimer, P.
1989-01-01
Following the accretion of solids and gases in the solar nebula, the giant planets contracted to their present sizes over the age of the solar system. It is presently hypothesized that this contraction was rapid, but not hydrodynamic; at a later stage, a nebular disk out of which the regular satellites formed may have been spun out of the outer envelope of the contracting giant planets due to a combination of total angular momentum conservation and the outward transfer of specific angular momentum in the envelope. If these hypotheses are true, the composition of the irregular satellites directly reflects the composition of planetesimals from which the giant planets formed, while the composition of the regular satellites is indicative of the composition of the less volatile components of the outer envelopes of the giant planets.
1998-10-16
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician works on the Mars Climate Orbiter which is scheduled to launch on Dec. 10, 1998, aboard a Boeing Delta II rocket. The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface
I. Climate change on ancient Mars. II. Exoplanet geodynamics and climate
NASA Astrophysics Data System (ADS)
Kite, Edwin Stephen
This thesis describes work related to long-term climate stability, on Mars and exoplanets. Mars is the only planet known to record a major transition in planetary habitability. The evidence for surface temperatures near the melting point of water on Early Mars is difficult to explain, because theory predicts a faint young Sun. Seasonal snowmelt need not require high annual mean temperatures, but surface water ice tends to migrate away from the warmer regions of the planet where melting is energetically possible. In the first part of this thesis I use geological analysis, mesoscale models, and idealized surface energy balance models to examine two possible solutions to this problem. Impacts into icy targets, groundwater outbursts, and phreatic explosions are all expected to inject water vapor into the Mars atmosphere. I use mesoscale models to track the atmospheric response to these transient, localized vapor sources. Using idealized boundary conditions, I show that storms with updraft speeds >50 m/s and localized precipitation are expected near transient lakes >103 km2 in size. Snow deposited in this way is out of equilibrium with orbital forcing, and correspondingly more likely to melt. Canyon paleolakes in the Valles Marineris are frequently associated with streams preserved on the plateaux just downwind of the canyons. Using geologically realistic boundary conditions, I study the atmospheric response to two short-lived paleolakes. In each case, the plateau streams are in the locations expected for localized precipitation. Liquid water availability favors lithification, so the Martian sedimentary rock record is a wet-pass filter. Orbital variability strongly affects liquid water availability, so considering only averaged orbital conditions is neither sufficient not appropriate. To find the likelihood of snow melting, I consider all possible orbital forcings using an idealized but self-consistent model of snowpack energy balance and the CO2 greenhouse effect. Seasonal snowmelt on Early Mars is possible under unusual orbital conditions provided that the snow is dust-contaminated. The predicted distribution of snowmelt can explain the distribution of sedimentary rocks on Mars, but only if Mars had a thin atmosphere when the sedimentary rocks formed. This framework is the first to link upcoming observations by the Mars Science Laboratory Curiosity rover at the lower Gale Crater mound to past global climate on Mars. The model makes predictions about the lower Gale Crater mound that can be tested using Curiosity rover data. Earth is the only example of long term climate stability that is available for study, so long term climate stability is difficult to understand. Extrasolar planets may ameliorate this problem of uniqueness. It is clear that rates of volcanic activity and of surface weathering are important in regulating long term climate. In the second part of this thesis, I model the rate of volcanism on massive Earth-like planets, and the surface weathering rate on planets in 1:1 spin:orbit resonance. "Super-Earths" in the range 1-10 Earth masses have been detected by radial velocity and transit methods. Using an idealized mantle thermal evolution model to drive mantle-melting models, I show that the rate of volcanism on massive Earth like planets is a weak function of planet mass. Planet mass can, however, affect tectonics by changing the mode of mantle convection. Earth's climate stability depends on a negative feedback involving the temperature-dependent rate of weathering and mean surface temperature. I use an idealized model to show that for intermediate surface pressures and for low-opacity atmospheres, nonlinearities in the surface energy balance can reverse the sign of this dependence on tidally-locked planets. This leads to climate instability. I conclude by discussing future observations and research aimed at understanding long-term climate stability.
The Elephant in the Room: Effects of Distant, Massive Companions on Planetary System Architectures
NASA Astrophysics Data System (ADS)
Knutson, Heather
2016-06-01
Over the past two decades ongoing radial velocity and transit surveys have been astoundingly successful in detecting thousands of new planetary systems around nearby stars. These systems include apparently single gas giant planets on short period orbits, closely packed systems of up to 5-6 “super-Earths”, and relatively empty systems with either one or no small planets interior to 0.5 AU. Despite our success in cataloguing the diverse properties of these systems, we are still struggling to develop narratives that can explain their apparently divergent formation and migration histories. This is in large part due to our lack of knowledge about the potential presence of massive outer companions in these systems, which can play a pivotal role in the shaping the final properties of the inner planets. In my talk I will discuss current efforts to complete the census for known planetary systems by searching for outer gas giant planets with long term radial velocity monitoring and wide separation stellar companions with high contrast imaging and spectroscopy. I will then demonstrate how statistical constraints on this population of outer companions can be used to test current theories for planet formation and migration.
Nonrelativistic Contribution to Mercury's Perihelion Precession.
ERIC Educational Resources Information Center
Price, Michael P.; Rush, William F.
1979-01-01
Presents a calculation of the precession of the perihelion of Mercury due to the perturbations from the outer planets. The time-average effect of each planet is calculated by replacing that planet with a ring of linear mass density equal to the mass of the planet divided by the circumference of its orbit. (Author/GA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu
Correlations in the orbits of several minor planets in the outer solar system suggest the presence of a remote, massive Planet Nine. With at least 10 times the mass of the Earth and a perihelion well beyond 100 au, Planet Nine poses a challenge to planet formation theory. Here we expand on a scenario in which the planet formed closer to the Sun and was gravitationally scattered by Jupiter or Saturn onto a very eccentric orbit in an extended gaseous disk. Dynamical friction with the gas then allowed the planet to settle in the outer solar system. We explore thismore » possibility with a set of numerical simulations. Depending on how the gas disk evolves, scattered super-Earths or small gas giants settle on a range of orbits, with perihelion distances as large as 300 au. Massive disks that clear from the inside out on million-year timescales yield orbits that allow a super-Earth or gas giant to shepherd the minor planets as observed. A massive planet can achieve a similar orbit in a persistent, low-mass disk over the lifetime of the solar system.« less
Vega's hot dust from icy planetesimals scattered inwards by an outward-migrating planetary system
NASA Astrophysics Data System (ADS)
Raymond, Sean N.; Bonsor, Amy
2014-07-01
Vega has been shown to host multiple dust populations, including both hot exozodiacal dust at sub-au radii and a cold debris disc extending beyond 100 au. We use dynamical simulations to show how Vega's hot dust can be created by long-range gravitational scattering of planetesimals from its cold outer regions. Planetesimals are scattered progressively inwards by a system of 5-7 planets from 30 to 60 au to very close-in. In successful simulations, the outermost planets are typically Neptune mass. The back-reaction of planetesimal scattering causes these planets to migrate outwards and continually interact with fresh planetesimals, replenishing the source of scattered bodies. The most favourable cases for producing Vega's exozodi have negative radial mass gradients, with sub-Saturn- to Jupiter-mass inner planets at 5-10 au and outer planets of 2.5 - 20 M⊕ . The mechanism fails if a Jupiter-sized planet exists beyond ˜15 au because the planet preferentially ejects planetesimals before they can reach the inner system. Direct-imaging planet searches can therefore directly test this mechanism.
Chairmanship of the Neptune/Pluto outer planets science working group
NASA Astrophysics Data System (ADS)
Stern, S. Alan
1993-11-01
The Outer Planets Science Working Group (OPSWG) is the NASA Solar System Exploration Division (SSED) scientific steering committee for the Outer Solar System missions. OPSWG consists of 19 members and is chaired by Dr. S. Alan Stern. This proposal summarizes the FY93 activities of OPSWG, describes a set of objectives for OPSWG in FY94, and outlines the SWG's activities for FY95. As chair of OPSWG, Dr. Stern will be responsible for: organizing priorities, setting agendas, conducting meetings of the Outer Planets SWG; reporting the results of OPSWG's work to SSED; supporting those activities relating to OPSWG work, such as briefings to the SSES, COMPLEX, and OSS; supporting the JPL/SAIC Pluto study team; and other tasks requested by SSED. As the Scientific Working Group (SWG) for Jupiter and the planets beyond, OPSWG is the SSED SWG chartered to study and develop mission plans for all missions to the giant planets, Pluto, and other distant objects in the remote outer solar system. In that role, OPSWG is responsible for: defining and prioritizing scientific objectives for missions to these bodies; defining and documenting the scientific goals and rationale behind such missions; defining and prioritizing the datasets to be obtained in these missions; defining and prioritizing measurement objectives for these missions; defining and documenting the scientific rationale for strawman instrument payloads; defining and prioritizing the scientific requirements for orbital tour and flyby encounter trajectories; defining cruise science opportunities plan; providing technical feedback to JPL and SSED on the scientific capabilities of engineering studies for these missions; providing documentation to SSED concerning the scientific goals, objectives, and rationale for the mission; interfacing with other SSED and OSS committees at the request of SSED's Director or those committee chairs; providing input to SSED concerning the structure and content of the Announcement of Opportunity for payload and scientific team selection for such missions; and providing other technical or programmatic inputs concerning outer solar system missions at the request of the Director of SSED.
Chairmanship of the Neptune/Pluto outer planets science working group
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1993-01-01
The Outer Planets Science Working Group (OPSWG) is the NASA Solar System Exploration Division (SSED) scientific steering committee for the Outer Solar System missions. OPSWG consists of 19 members and is chaired by Dr. S. Alan Stern. This proposal summarizes the FY93 activities of OPSWG, describes a set of objectives for OPSWG in FY94, and outlines the SWG's activities for FY95. As chair of OPSWG, Dr. Stern will be responsible for: organizing priorities, setting agendas, conducting meetings of the Outer Planets SWG; reporting the results of OPSWG's work to SSED; supporting those activities relating to OPSWG work, such as briefings to the SSES, COMPLEX, and OSS; supporting the JPL/SAIC Pluto study team; and other tasks requested by SSED. As the Scientific Working Group (SWG) for Jupiter and the planets beyond, OPSWG is the SSED SWG chartered to study and develop mission plans for all missions to the giant planets, Pluto, and other distant objects in the remote outer solar system. In that role, OPSWG is responsible for: defining and prioritizing scientific objectives for missions to these bodies; defining and documenting the scientific goals and rationale behind such missions; defining and prioritizing the datasets to be obtained in these missions; defining and prioritizing measurement objectives for these missions; defining and documenting the scientific rationale for strawman instrument payloads; defining and prioritizing the scientific requirements for orbital tour and flyby encounter trajectories; defining cruise science opportunities plan; providing technical feedback to JPL and SSED on the scientific capabilities of engineering studies for these missions; providing documentation to SSED concerning the scientific goals, objectives, and rationale for the mission; interfacing with other SSED and OSS committees at the request of SSED's Director or those committee chairs; providing input to SSED concerning the structure and content of the Announcement of Opportunity for payload and scientific team selection for such missions; and providing other technical or programmatic inputs concerning outer solar system missions at the request of the Director of SSED.
NASA's progress in nuclear electric propulsion technology
NASA Technical Reports Server (NTRS)
Stone, James R.; Doherty, Michael P.; Peecook, Keith M.
1993-01-01
The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed.
Mars Dust: Characterization of Particle Size and Electrostatic Charge Distribution
NASA Technical Reports Server (NTRS)
Mazumder, M. K.; Saini, D.; Biris, A. S.; Sriama, P. K.; Calle, C.; Buhler, C.
2004-01-01
Some of the latest pictures of Mars surface sent by NASA's Spirit rover in early January, 2004, show very cohesive, "mud-like" dust layers. Significant amounts of dust clouds are present in the atmosphere of Mars [1-4]. NASA spacecraft missions to Mars confirmed hypotheses from telescopic work that changes observed in the planet's surface markings are caused by wind-driven redistribution of dust. In these dust storms, particles with a wide range of diameters (less than 1 micrometer to 50 micrometers) are a serious problem to solar cells, spacecraft, and spacesuits. Dust storms may cover the entire planet for an extended period of time [5]. It is highly probable that the particles are charged electrostatically by triboelectrification and by UV irradiation.
Mars-NEXT - A future step in the European exploration of Mars
NASA Astrophysics Data System (ADS)
Chicarro, Agustin
The Mars-NEXT concept represents a new mission to Mars within the Aurora Exploration Programme of the European Space Agency (ESA). Mars-NEXT is planned after ExoMars and before the Mars Sample Return (MSR) and includes a number of landers to establish a network on the surface of Mars, to investigate the interior of the planet, its atmospheric dynamics and the geology of each landing site. The mission would be launched in 2016 onboard a Russian Soyuz rocket from Kourou. The Mars-NEXT mission includes a spacecraft carrying three (or four) lander probes to be released from an hyperbolic arrival trajectory to establish a Network of stations on the surface of Mars. The carrier spacecraft would be placed into orbit and carry a few instruments to complement the Network. Such network-orbiter combination represents a unique tool to perform new investigations of Mars which could not be addressed by other means. In particular, i) the internal geophysical aspects concern the structure and dynamics of the interior of Mars including the state of the core and composition of the mantle; the fine structure of the crust including its paleomagnetic anomalies; the rotational parameters (axis tilt, precession, nutation, etc) that define both the state of the interior and the climate evolution; ii) the atmospheric physics aspects concern the general circulation and its forcing factors; the time variability cycles of the transport of volatiles, water and dust; surface-atmosphere interactions and overall meteorology and climate; iii) the geology of each landing site concerns the full characterization of the surrounding area including petrological rock types, chemical and mineralogical sample analysis, erosion, oxidation and weathering processes to infer the geological history of the region. Characterization of the landing site area from a geosciences point of view requires a degree of mobility (instrument deployment device or robotic sampling arm). To complement the science gained from the Martian surface, investigations need to be carried out from orbit in a coordinated manner, such as i) global atmospheric mapping to study weather patterns and opacity; ii) accurate mapping of the planet's gravity field with a sub-satellite; iii) following Mars Global Surveyor's initial mapping of the crustal magnetic anomalies, a complete and detailed map from lower orbit (150 km) needs to be gathered; iv) also, these magnetic anomalies need to be studied in light of the magnetic field induced by the solar wind interaction with the upper atmosphere of the planet. The Network Mission concept is based on the fact that some important science goals on any given terrestrial planet can only be achieved with simultaneous measurements from a number of landers located on the surface of the planet (primarily internal geophysics and meteorology). The concept of a Network Mission on Mars is not new, and indeed previous studies support the great maturity of such a mission. A purely meteorological network would include as many stations as possible. For seismology, however, the number of stations (one to four) has a direct bearing on the scientific return achieved, four being the ultimate goal of the mission. The Geophysical Package (GEP) onboard ExoMars will allow to determine the level and frequency band of martian seismicity in order to calibrate the Mars-NEXT seismometers. Given the multiplicity of elements in the mission (landers, orbiter, science payload), numerous opportunities exist to share the efforts in an equitable way between ESA and other partners. The Mars-NEXT Mission is not only complementary to previous missions to Mars, including ExoMars, but is to be seen within the context of future astrobiological investigations of Mars, as we do not know which parameters did inhibit or favour the development of life on Earth. For instance, is plate tectonics a necessity, as well as an intrinsic magnetic field, a large orbiting moon, a thick atmosphere and a permanent ocean (to name a few) to preserve lifeforms on a terrestrial planet. Therefore, Mars-NEXT represents the logical step for Europe to undertake in the exploration of Mars, between ExoMars (2013 launch) and MSR (2020+ launch), providing unique science unavailable by other means.
Mars-Next - a Future Step in the European Exploration of Mars
NASA Astrophysics Data System (ADS)
Chicarro, A. F.
2008-09-01
The Mars-NEXT concept represents a new mission to Mars within the Aurora Exploration Programme of the European Space Agency (ESA). Mars-NEXT is planned after ExoMars and before the Mars Sample Return (MSR) and includes a number of landers to establish a network on the surface of Mars, to investigate the interior of the planet, its atmospheric dynamics and the geology of each landing site. The mission would be launched in 2016 onboard a Russian Soyuz rocket from Kourou. The Mars-NEXT mission includes a spacecraft carrying three (or four) lander probes to be released from an hyperbolic arrival trajectory to establish a Network of stations on the surface of Mars. The carrier spacecraft would be placed into orbit and carry a few instruments to complement the Network. Such network-orbiter combination represents a unique tool to perform new investigations of Mars which could not be addressed by other means. In particular, i) the internal geophysical aspects concern the structure and dynamics of the interior of Mars including the state of the core and composition of the mantle; the fine structure of the crust including its paleomagnetic anomalies; the rotational parameters (axis tilt, precession, nutation, etc) that define both the state of the interior and the climate evolution; ii) the atmospheric physics aspects concern the general circulation and its forcing factors; the time variability cycles of the transport of volatiles, water and dust; surface-atmosphere interactions and overall meteorology and climate; iii) the geology of each landing site concerns the full characterization of the surrounding area including petrological rock types, chemical and mineralogical sample analysis, erosion, oxidation and weathering processes to infer the geological history of the region, as well as the astrobiological potential of each site. Characterization of the landing site area from a geosciences point of view requires a degree of mobility (instrument deployment device or robotic sampling arm). To complement the science gained from the Martian surface, investigations need to be carried out from orbit in a coordinated manner, such as i) global atmospheric mapping to study weather patterns and opacity; ii) accurate mapping of the planet's gravity field with a sub-satellite; iii) following Mars Global Surveyor's initial mapping of the crustal magnetic anomalies, a complete and detailed map from lower orbit (150 km) needs to be gathered; iv) also, these magnetic anomalies need to be studied in light of the magnetic field induced by the solar wind interaction with the upper atmosphere of the planet. The Network Mission concept is based on the fact that some important science goals on any given terrestrial planet can only be achieved with simultaneous measurements from a number of landers located on the surface of the planet (primarily internal geophysics and meteorology). The concept of a Network Mission on Mars is not new, and indeed previous studies support the great maturity of such a mission. A purely meteorological network would include as many stations as possible. For seismology, however, the number of stations (one to four) has a direct bearing on the scientific return achieved, four being the ultimate goal of the mission. The Geophysical Package (GEP) onboard ExoMars will allow to determine the level and frequency band of martian seismicity in order to calibrate the Mars- NEXT seismometers. Given the multiplicity of elements in the mission (landers, orbiter, science payload), numerous opportunities exist to share the efforts in an equitable way between ESA and other partners. The Mars-NEXT Mission is not only complementary to previous missions to Mars, including ExoMars, but is to be seen within the context of future astrobiological investigations of Mars, as we do not know which parameters did inhibit or favour the development of life on Earth. For instance, is plate tectonics a necessity, as well as an intrinsic magnetic field, a large orbiting moon, a thick atmosphere and a permanent ocean (to name a few) to preserve lifeforms on a terrestrial planet. Therefore, Mars-NEXT represents the logical step for Europe to undertake in the exploration of Mars, between ExoMars (2013 launch) and MSR (2020+ launch), providing unique science unavailable by other means.
Mars-NEXT - A future major step in the European exploration of Mars
NASA Astrophysics Data System (ADS)
Chicarro, A.
2009-04-01
The Mars-NEXT concept represents a new mission to Mars within the Exploration Programme of the European Space Agency (ESA). Mars-NEXT is planned after ExoMars and before the Mars Sample Return (MSR) and includes a number of landers to establish a network on the surface of Mars, to investigate the interior of the planet, its atmospheric dynamics and the geology of each landing site. The mission would be launched in 2018 onboard a Russian Soyuz rocket from Kourou. The Mars-NEXT mission includes a spacecraft carrying three (or four) lander probes to be released from an hyperbolic arrival trajectory to establish a Network of stations on the surface of Mars. The carrier spacecraft would be placed into orbit and carry a few instruments to complement the Network. Such network-orbiter combination represents a unique tool to perform new investigations of Mars which could not be addressed by other means. In particular, i) the internal geophysical aspects concern the structure and dynamics of the interior of Mars including the state of the core and composition of the mantle; the fine structure of the crust including its paleomagnetic anomalies; the rotational parameters (axis tilt, precession, nutation, etc) that define both the state of the interior and the climate evolution; ii) the atmospheric physics aspects concern the general circulation and its forcing factors; the time variability cycles of the transport of volatiles, water and dust; surface-atmosphere interactions and overall meteorology and climate; iii) the geology of each landing site concerns the full characterization of the surrounding area including petrological rock types, chemical and mineralogical sample analysis, erosion, oxidation and weathering processes to infer the geological history of the region, as well as the astrobiological potential of each site. Characterization of the landing site area from a geosciences point of view requires a degree of mobility (instrument deployment device or robotic sampling arm). To complement the science gained from the Martian surface, investigations need to be carried out from orbit in a coordinated manner, such as i) global atmospheric mapping to study weather patterns and opacity; ii) accurate mapping of the planet's gravity field with a sub-satellite; iii) following Mars Global Surveyor's initial mapping of the crustal magnetic anomalies, a complete and detailed map from lower orbit (150 km) needs to be gathered; iv) also, these magnetic anomalies need to be studied in light of the magnetic field induced by the solar wind interaction with the upper atmosphere of the planet. The Network Mission concept is based on the fact that some important science goals on any given terrestrial planet can only be achieved with simultaneous measurements from a number of landers located on the surface of the planet (primarily internal geophysics and meteorology). The concept of a Network Mission on Mars is not new, and indeed previous studies support the great maturity of such a mission. A purely meteorological network would include as many stations as possible. For seismology, however, the number of stations (one to four) has a direct bearing on the scientific return achieved, four being the ultimate goal of the mission. The Geophysical Package (GEP) onboard ExoMars will allow to determine the level and frequency band of martian seismicity in order to calibrate the Mars-NEXT seismometers. Given the multiplicity of elements in the mission (landers, orbiter, science payload), numerous opportunities exist to share the efforts in an equitable way between ESA and other partners. The Mars-NEXT Mission is not only complementary to previous missions to Mars, including ExoMars, but is to be seen within the context of future astrobiological investigations of Mars, as we do not know which parameters did inhibit or favour the development of life on Earth. For instance, is plate tectonics a necessity, as well as an intrinsic magnetic field, a large orbiting moon, a thick atmosphere and a permanent ocean (to name a few) to preserve lifeforms on a terrestrial planet. Therefore, Mars-NEXT represents the logical step for Europe to undertake in the exploration of Mars, between ExoMars (2016 launch) and MSR (2020+ launch), providing unique science unavailable by other means.
Lunar and terrestrial planet formation in the Grand Tack scenario
Jacobson, S. A.; Morbidelli, A.
2014-01-01
We present conclusions from a large number of N-body simulations of the giant impact phase of terrestrial planet formation. We focus on new results obtained from the recently proposed Grand Tack model, which couples the gas-driven migration of giant planets to the accretion of the terrestrial planets. The giant impact phase follows the oligarchic growth phase, which builds a bi-modal mass distribution within the disc of embryos and planetesimals. By varying the ratio of the total mass in the embryo population to the total mass in the planetesimal population and the mass of the individual embryos, we explore how different disc conditions control the final planets. The total mass ratio of embryos to planetesimals controls the timing of the last giant (Moon-forming) impact and its violence. The initial embryo mass sets the size of the lunar impactor and the growth rate of Mars. After comparing our simulated outcomes with the actual orbits of the terrestrial planets (angular momentum deficit, mass concentration) and taking into account independent geochemical constraints on the mass accreted by the Earth after the Moon-forming event and on the time scale for the growth of Mars, we conclude that the protoplanetary disc at the beginning of the giant impact phase must have had most of its mass in Mars-sized embryos and only a small fraction of the total disc mass in the planetesimal population. From this, we infer that the Moon-forming event occurred between approximately 60 and approximately 130 Myr after the formation of the first solids and was caused most likely by an object with a mass similar to that of Mars. PMID:25114304
Lunar and terrestrial planet formation in the Grand Tack scenario.
Jacobson, S A; Morbidelli, A
2014-09-13
We present conclusions from a large number of N-body simulations of the giant impact phase of terrestrial planet formation. We focus on new results obtained from the recently proposed Grand Tack model, which couples the gas-driven migration of giant planets to the accretion of the terrestrial planets. The giant impact phase follows the oligarchic growth phase, which builds a bi-modal mass distribution within the disc of embryos and planetesimals. By varying the ratio of the total mass in the embryo population to the total mass in the planetesimal population and the mass of the individual embryos, we explore how different disc conditions control the final planets. The total mass ratio of embryos to planetesimals controls the timing of the last giant (Moon-forming) impact and its violence. The initial embryo mass sets the size of the lunar impactor and the growth rate of Mars. After comparing our simulated outcomes with the actual orbits of the terrestrial planets (angular momentum deficit, mass concentration) and taking into account independent geochemical constraints on the mass accreted by the Earth after the Moon-forming event and on the time scale for the growth of Mars, we conclude that the protoplanetary disc at the beginning of the giant impact phase must have had most of its mass in Mars-sized embryos and only a small fraction of the total disc mass in the planetesimal population. From this, we infer that the Moon-forming event occurred between approximately 60 and approximately 130 Myr after the formation of the first solids and was caused most likely by an object with a mass similar to that of Mars. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Kenkmann, Thomas; Wulf, Gerwin; Sturm, Sebastian; Pietrek, Alexa
2015-04-01
The ejecta blankets of impact craters in volatile-rich environments often show characteristic layered ejecta morphologies. The so-called double-layer ejecta (DLE) craters are probably the most confusing crater types showing two ejecta layers with distinct morphologies. A phenomenological ejecta excavation and emplacement model for DLE craters is proposed based on a detailed case study of the Martian crater Steinheim - a textbook like, pristine DLE crater - and studies of other DLE craters [1]. The observations show that DLE craters on Mars are the result of an impact event into a rock/ice mixture that produces large amounts of shock-induced vaporization and melting of ground ice. The deposits of the ejecta curtain are wet in the distal part and dryer in composition in the proximal part. As a result, the outer ejecta layer is emplaced as medial and distal ejecta that propagate outwards in a fluid saturated debris flow mode after landing overrunning previously formed secondary craters. In contrast, the inner ejecta layer is formed by a translational slide of the proximal ejecta deposits. This slide overruns and superimposes parts of the outer ejecta layer. Basal melting of the ice components of the ejecta volumes at the transient crater rim is induced by frictional heating and the enhanced pressure at depth. The results indicate similar processes also for other planetary bodies with volatile-rich environments, such as Ganymede, Europa or the Earth. The Ries crater on Earth has a similar ejecta thickness distribution as DLE craters on Mars [2]. Here basal sliding and fluidization of the ejecta increases outward by the entrainment of locally derived Tertiary sands and clays, that are saturated with groundwater. References: [1] Wulf, G. & Kenkmann, T. (2015) Met. Planet. Sci. (in press); [2] Sturm, S., Wulf. G., Jung, D. & Kenkmann, T. (2013) Geology 41, 531-534.
Role of Clay Minerals in Long-Distance Transport of Landslides in Valles Marineris, Mars
NASA Astrophysics Data System (ADS)
Watkins, J.; Ehlmann, B. L.; Yin, A.
2014-12-01
Long-runout (> 50 km) subaerial landslides are rare on Earth, but are common features episodically shaping Mars' Valles Marineris (VM) trough system over the past 3.5 billion years. They display two end-member morphologies: a thick-skinned inner zone, characterized by fault-bounded, rotated blocks near their source region, and a thin-skinned, exceptionally long-runout outer zone, characterized by thin sheets spreading over 10s of km across the trough floor. Four decades of studies on the latter have resulted in two main competing hypotheses to explain their long-distance transport: (1) movement of landslides over layers of trapped air or soft materials containing ice or snow, enabling basal lubrication, and (2) fluidization of landslide materials with or without the presence of water and volatiles. To address this issue, we examine the mineralogic composition of landslides across VM using Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) near-infrared spectral data analysis coupled with detailed geologic mapping and morphometric analysis of satellite images. Our survey reveals a general correlation between transport distance, significant lateral spreading, and the presence of hydrated silicates among VM landslides. Given that smectite clay absorbs water into its layered crystal structure and can reduce the friction coefficient by a factor of three v. that of dry rocks, these results suggest that hydrated silicates played a decisive role in facilitating long-runout landslide transport in VM. We propose that, concurrent with downslope failure and sliding of broken trough-wall rock, frontal landslide masses overrode and entrained hydrated-silicate-bearing trough-floor deposits, lubricating the basal sliding zones and permitting the landslide outer zones to spread laterally while moving forward over the low-friction surface. The key participation of hydrated silicates in episodic, sustained landslide activity throughout the canyon implies that clay minerals, generated by water-rock interactions in the Noachian and Hesperian (4.1- 3.3 Ga), exert a long-lasting influence on geomorphic processes that shape the surface of the planet.
Ionospheric control of the dawn-dusk asymmetry of the Mars magnetotail current sheet
NASA Astrophysics Data System (ADS)
Liemohn, Michael W.; Xu, Shaosui; Dong, Chuanfei; Bougher, Stephen W.; Johnson, Blake C.; Ilie, Raluca; De Zeeuw, Darren L.
2017-06-01
This study investigates the role of solar EUV intensity at controlling the location of the Mars magnetotail current sheet and the structure of the lobes. Four simulation results are examined from a multifluid magnetohydrodynamic model. The solar wind and interplanetary magnetic field (IMF) conditions are held constant, and the Mars crustal field sources are omitted from the simulation configuration. This isolates the influence of solar EUV. It is found that solar maximum conditions, regardless of season, result in a Venus-like tail configuration with the current sheet shifted to the -Y (dawnside) direction. Solar minimum conditions result in a flipped tail configuration with the current sheet shifted to the +Y (duskside) direction. The lobes follow this pattern, with the current sheet shifting away from the larger lobe with the higher magnetic field magnitude. The physical process responsible for this solar EUV control of the magnetotail is the magnetization of the dayside ionosphere. During solar maximum, the ionosphere is relatively strong and the draped IMF field lines quickly slip past Mars. At solar minimum, the weaker ionosphere allows the draped IMF to move closer to the planet. These lower altitudes of the closest approach of the field line to Mars greatly hinder the day-to-night flow of magnetic flux. This results in a buildup of magnetic flux in the dawnside lobe as the S-shaped topology on that side of the magnetosheath extends farther downtail. The study demonstrates that the Mars dayside ionosphere exerts significant control over the nightside induced magnetosphere of that planet.
The solar system/interstellar medium connection - Gas phase abundances
NASA Technical Reports Server (NTRS)
Lutz, Barry L.
1987-01-01
Gas-phase abundances in the outer solar system are presented as diagnostics of the interstellar medium at the time of the solar system formation, some 4.55 billion years ago. Possible influences of the thermal and chemical histories of the primitive solar nebula and of the processes which led to the formation and evolution of the outer planets and comets on the elemental and molecular composition of the primordial matter are outlined. The major components of the atmospheres of the outer planets and of the comae of comets are identified, and the cosmogonical and cosmological implications are discussed.
NASA Technical Reports Server (NTRS)
Hartmann, William K.
1991-01-01
While interpreting outer planetary satellites, the Voyager imaging team repeatedly referred to a lunar frontside highland calibration curve. It was assumed that it is unmodified and not in steady state equilibrium, but rather records all impacts that have occurred. It was also assumed that it records the size distribution of an early population of impactors, called Population I, evidence for which was found on various satellites. New evidence is reported that the Voyager team interpretation of this population is wrong, a conclusion that seriously affects the cratering histories reported for outer planet satellites.
Outer planet probe cost estimates: First impressions
NASA Technical Reports Server (NTRS)
Niehoff, J.
1974-01-01
An examination was made of early estimates of outer planetary atmospheric probe cost by comparing the estimates with past planetary projects. Of particular interest is identification of project elements which are likely cost drivers for future probe missions. Data are divided into two parts: first, the description of a cost model developed by SAI for the Planetary Programs Office of NASA, and second, use of this model and its data base to evaluate estimates of probe costs. Several observations are offered in conclusion regarding the credibility of current estimates and specific areas of the outer planet probe concept most vulnerable to cost escalation.
NASA Astrophysics Data System (ADS)
Winterhalter, D.; Levine, J. S.; Kerschmann, R.; Beaty, D. W.; Carrier, B. L.; Ashley, J. W.
2018-04-01
To aid early engineering and mission design efforts, the NESC held a workshop on the atmospheric dust and its impact on the human exploration of Mars. Of great interest is the possible Mars Sample Return contribution that will help to answer pertinent questions.
NASA Astrophysics Data System (ADS)
Launius, Roger D.
2014-03-01
The United States has pioneered the use of nuclear power systems for outer planetary space probes since the 1970s. These systems have enabled the Viking landings to reach the surface of Mars and both Pioneers 10 and 11 and Voyagers 1 and 2 to travel to the limits of the solar system. Although the American public has long been concerned about safety of these systems, in the 1980s a reaction to nuclear accidents - especially the Soviet Cosmos 954 spacecraft destruction and the Three Mile Island nuclear power plant accidents - heightened awareness about the hazards of nuclear power and every spacecraft launch since that time has been contested by opponents of nuclear energy. This has led to a debate over the appropriateness of the use of nuclear power systems for spacecraft. It has also refocused attention on the need for strict systems of control and rigorous checks and balances to assure safety. This essay describes the history of space radioisotope power systems, the struggles to ensure safe operations, and the political confrontation over whether or not to allow the launch the Galileo and Cassini space probes to the outer planets. Effectively, these efforts have led to the successful flights of 12 deep space planetary probes, two-thirds of them operated since the accidents of Cosmos 954, Three Mile Island, and Chernobyl.
The Search for Habitable Environments in the Solar System
NASA Astrophysics Data System (ADS)
McCleese, Daniel
2005-07-01
All space faring nations devote a portion of their resources to exploring thesolar system. NASA has a forty-year history of robotic missions reaching into deep spacefor a better understanding of our origins, the evolution of our planet, and our destiny.For the past decade, NASA has placed considerable emphasis on the search for life beyondEarth. Missions to the rocky terrestrial planets and the moons of the gas giants seekanswers to the question: Are other worlds in the solar system habitable by simpleorganisms? By framing its search objective in this way, NASA motivates investigations ofthe fundamentals of what makes a planet an abode for life, and what ingredients arerequired for the origin and evolution of life. In this lecture, we focus on thestrategies and results of the search thus far. We will discuss recent scientific missionsto Mars, Europa, and Titan.Dr. Dan McCleese is the Chief Scientist for NASA's Mars ExplorationProgram at JPL. In this role he has worked with NASA and the international sciencecommunity to establish the current science strategy for exploring Mars. Dan's personalscience interests are focused on acquiring and interpreting climatological data sets forthe terrestrial planets. Specific research topics include development of the firstclimatology of cloud height for Earth, upper atmospheric cloud and thermal structure ofVenus, and, at present, the modern climate of Mars. He is the Principal Investigator forthe Mars Climate Sounder on the Mars Reconnaissance Orbiter to be launched in 2005. Inthis investigation, measurements of atmospheric water vapor, temperature and condensates,and the energy balance of the polar caps are emphasized. Dr. McCleese was a FulbrightScholar at Oxford University receiving a D.Phil. degree in Atmospheric Physics.
Proceedings: Outer Planet Probe Technology Workshop, summary volume
NASA Technical Reports Server (NTRS)
1974-01-01
A summary report and overview of the Outer Planet Probe Technology Conference are given. Summary data cover: (1) state of the art concerning mission definitions, probe requirements, systems, subsystems, and mission peculiar hardware, (2) mission and equipment trade-offs associated with Saturn/Uranus baseline configuration and the influence of Titan and Jupiter options on mission performance and costs, and (3) identification of critically required future R and D activities.
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Ellerby, D.; Gage, P.; Gasch, M.; Hwang, H.; Prabhu, D.; Stackpoole, M.; Wercinski, Paul
2018-01-01
This invited talk will provide an assessment of the TPS needs for Outer Planet In-situ missions to destinations with atmosphere. The talk will outline the drivers for TPS from destination, science, mission architecture and entry environment. An assessment of the readiness of the TPS, both currently available and under development, for Saturn, Titan, Uranus and Neptune are provided. The challenges related to sustainability of the TPS for future missions are discussed.
Science Driven Human Exploration of Mars
NASA Technical Reports Server (NTRS)
McKay, Christopher P.
2004-01-01
Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Fossils are not enough. We will want to determine if life on Mars was a separate genesis from life on Earth. For this determination we need to access intact martian life; possibly frozen in the deep old permafrost. Human exploration of Mars will probably begin with a small base manned by a temporary crew, a necessary first start. But exploration of the entire planet will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research base can be compared to the permanent research bases which several nations maintain in Antarctica at the South Pole, the geomagnetic pole, and elsewhere. In the long run, a continued human presence on Mars will be the most economical way to study that planet in detail. It is possible that at some time in the future we might recreate a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history. Our studies of Mars are still in a preliminary state but everything we have learned suggests that it may be possible to restore Mars to a habitable climate. Additional information is contained in the original extended abstract.
Earth and Moon as Seen from Mars
2008-03-03
The High Resolution Imaging Science Experiment HiRISE camera would make a great backyard telescope for viewing Mars, and we can also use it at Mars to view other planets. This is an image of Earth and the moon, acquired on October 3, 2007.
Tectonic History of the Terrestrial Planets
NASA Technical Reports Server (NTRS)
Solomon, Sean C.
1993-01-01
The topics covered include the following: patterns of deformation and volcanic flows associated with lithospheric loading by large volcanoes on Venus; aspects of modeling the tectonics of large volcanoes on the terrestrial planets; state of stress, faulting, and eruption characteristics of large volcanoes on Mars; origin and thermal evolution of Mars; geoid-to-topography ratios on Venus; a tectonic resurfacing model for Venus; the resurfacing controversy for Venus; and the deformation belts of Lavinia Planitia.
An inside look at NASA planetology
NASA Technical Reports Server (NTRS)
Dwornik, S. E.
1976-01-01
Staffing, financing and budget controls, and research grant allocations of NASA are reviewed with emphasis on NASA-supported research in planetary geological sciences: studies of the composition, structure, and history of solar system planets. Programs, techniques, and research grants for studies of Mars photographs acquired through Mariner 6-10 flights are discussed at length, and particularly the handling of computer-enhanced photographic data. Scheduled future NASA-sponsored planet exploration missions (to Mars, Jupiter, Saturn, Uranus) are mentioned.
Ares V: Application to Solar System Scientific Exploration
NASA Technical Reports Server (NTRS)
Elliott, John; Spilker, Thomas; Reh, Kim; Smith, David; Woodcock, Gordon
2008-01-01
The development of the Ares V launch vehicle will provide levels of performance unseen since the days of Apollo. This capability, like the Saturn V before it, is being developed primarily for crewed lunar missions. However, the tremendous jump in performance offered by the Ares V launch system has tremendous potential for the furtherance of robotic solar system exploration missions as well. Preliminary performance assessments indicate that Ares V could deliver 5 times the payload to Mars as compared to the most capable US expendable launch vehicle available today. Beyond Mars, the outer planets offer a number of high-priority investigations with compelling science. Presently, missions to these destinations are only achievable using indirect flights with gravity assist trajectories and, in many cases, suffer from long flight times. An Ares V with an upper stage could capture these missions using direct flights with shorter interplanetary transfer times that would enable extensive in situ investigations and possibly the return of samples to Earth. This paper lays out an estimate of Ares V performance for moderate and high C3 missions, and goes on to discuss a range of revolutionary mission concepts that could be enabled by this significant in-crease in launch capability.
Low Temperature Life-Cycle Testing of a Lithium-Ion Battery for Low-Earth-Orbiting Spacecraft
NASA Technical Reports Server (NTRS)
Reid, Concha
2006-01-01
A flight-qualified, lithium-ion (Li-ion) battery developed for the Mars Surveyor Program 2001 Landeris undergoing life-testing at low temperature under a low-Earth-orbit (LEO) profile to assess its capability to provide long term energy storage for aerospace missions. NASA has embarked upon an ambitious course to return humans to the moon by 2015-2020 in preparation for robotic and human exploration of Mars and robotic exploration of the moons of outer planets. Li-ion batteries are excellent candidates to provide power and energy storage for multiple aspects of these missions due to their high specific energy, high energy density, and excellent low temperature performance. Laboratory testing of Li-ion technology is necessary in order to assess lifetime, characterize multi-cell battery-level performance under aerospace conditions, and to gauge safety aspects of the technology. Life-cycle testing provides an opportunity to examine battery-level performance and the dynamics of individual cells in the stack over the entire life of the battery. Data generated through this testing will be critical to establish confidence in the technology for its widespread use in manned and unmanned missions.
Finding a planet's heartbeat: surprising results from patient Mars
NASA Astrophysics Data System (ADS)
Stamenkovic, Vlada; Ward, Lewis; Fischer, Woodward; Russell, Michael J.
2016-10-01
We explore, from a 3D time-dependent perspective, the evolution of oxidizing and reducing planetary niches and how they form a planetary-scale redox network - from a planet's deep interior to its atmosphere. Such redox networks are similar to the circulatory system of animals, but instead of pressure gradients redox gradients drive the flow of electrons and create hotspots for nutrients and metabolic activity.Using time-dependent geodynamic and atmospheric models, we compute for Mars the time-dependent 3D distribution of 1) hydrogen- and methane-rich reducing subsurface environments, driven by serpentinization and radiolysis of water, and 2) oxygen-rich oases as a product of atmosphere-brine interactions governed by climate and surface chemistry.This is only a first step towards our greater goal to globally model the evolution of local redox environments through time for rocky planets. However, already now our preliminary results show where on Mars oxidizing and reducing oases might have existed and might still exist today. This opens the window to search for extinct and extant life on Mars from a probabilistic global 3D perspective.
NASA and the search for life in the universe.
Dick, Steven J
2006-06-01
Almost from its beginnings in 1958, the National Aeronautics and Space Administration (NASA) set up a life-science program. Because one of the priorities of the organization is to search for life beyond Earth, NASA began designing spacecraft to unravel the mysteries of Mars. The effort to search for life on Mars culminated in the landing of two Viking spacecraft on the surface of the planet in 1976. Although the biology experiments conducted as part of these missions provided some evidence for the possibility of life, the scientific consensus was that they drew a blank. In 1996, however, the 'Mars rock' rekindled interest in life in our solar system. The discovery of an ocean on the Jovian moon Europa, of organic molecules on the Saturnian moon Titan and persuasive evidence that water once flowed on Mars suggests that the solar system is still of considerable exobiological interest. In addition, since 1995 approximately 175 planets have been found beyond our solar system. Although these discoveries are gas giants, NASA spacecraft might soon detect Earth-sized planets. The search for life in the universe continues.
Space Science in Action: Planets and the Solar System [Videotape].
ERIC Educational Resources Information Center
1999
This videotape recording teaches students about the key characteristics of each planet, the differences between inner and outer planets, and which planets have their own moons. Students look at how remote-control rovers are designed to explore other surfaces in the solar system. A hands-on activity demonstrates how gravity keeps all the members of…
Searching for Life: Early Earth, Mars and Beyond
NASA Technical Reports Server (NTRS)
DesMarais, David J.; Chang, Sherwood (Technical Monitor)
1996-01-01
We might be entering a golden age for exploring life throughout time and space. Rapid gene sequencing will better define our most distant ancestors. The earliest geologic evidence of life is now 3.8 billion years old. Organic matter and submicron-sized morphologies have been preserved in the martian crust for billions of years. Several new missions to Mars are planned, with a high priority on the search for life, past or present. The recent discovery of large extrasolar planets has heightened interest in spacecraft to detect small, earth-like planets. A recent workshop discussed strategies for life detection on such planets. There is much to anticipate in the near future.
Imaginative geographies of Mars: The science and significance of the red planet, 1877--1910
NASA Astrophysics Data System (ADS)
Lane, Kristina Maria Doyle
2006-12-01
Over several decades spanning the turn of the twentieth century, Western astronomers' claims about the landscape and climate of Mars spurred widespread scientific and popular interest in the possibility that the red planet might be inhabited by intelligent beings far more advanced than humans. This dissertation challenges traditional interpretations of this episode---as an amusing example of science gone awry---with a critical re-investigation of the production of geographical knowledge about Mars in historical context. Based on extensive archival and documentary research, I offer a new explanation for the power with which the notion of an inhabited Mars gripped scholars and citizens alike, showing that turn-of the century scientific narratives about Mars derived much of their power and popularity from ties with the newly established discipline of geography. At the same time, the dissertation reveals the Mars mania to be integrally connected with the history of geography, suggesting that scientific and popular representations of Martian geography also helped circulate knowledge claims regarding the geography of Earth. Specifically, the dissertation examines astronomers' use of geographical rhetoric, imagery, method, and themes, analyzing the extent to which these elements contributed to their scientific credibility and popular reputations. I first focus on the development of Mars knowledge through cartography, examining the evolution of cartographic conventions and styles used to portray Mars and revealing how an early geometric map established the authority to influence the cartography of Mars over the next several decades. I show, furthermore, that much of the power and longevity of the inhabited-Mars hypothesis derived from this map's visual authority as a geographical representation, thus explaining why Mars maps were ubiquitous during the canal craze, with astronomers seemingly competing with one another to add cartographic detail. In addition to their deft manipulation of cartographic conventions, astronomers also often employed representational techniques from the popular travel narratives, explorer accounts, and geographical expeditions of the day to imagine a landscape they could never visit. Aligning themselves with the emerging observational geosciences, astronomers prioritized direct observation and rhetorically invoked a geographical gaze to establish legitimacy for their work, producing in the process a familiar, Earthlike picture of Martian geography that contributed to widespread interest in the planet's possible habitability. These strong links between Mars astronomy and geographical science suggest that scientific claims about the red planet should be re-examined and re- contextualized in relation to terrestrial geographical knowledge production. Illustrating the value of this approach, the dissertation compares several Mars-related tropes with contemporaneous geographical descriptions of terrestrial landscapes and cultures. This analysis shows that Mars was constructed as an arid, irrigated, dying planet in many of the same ways that Earth's own desert regions were portrayed in imperial narratives. As astronomers and science writers drew on various audiences' understandings of arid landscapes, they also used Mars as a site of projection for geographical concerns regarding climate and landscape change. Similarly, dominant representations of Martian culture were influenced by Social Darwinist philosophy and the environmentally deterministic traditions of geographical writing about the non-Western Other. At the same time, however, the construction of a superior Martian in both scientific and popular texts and images indicates that the narratives surrounding Mars departed in significant ways from typical writing about the terrestrial world. The production of geographical knowledge regarding Mars is thus shown as a potential site for re- producing terrestrial geographies during a formative phase in geography's disciplinary history.
Righter, K; O'Brien, D P
2011-11-29
Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.
2018-01-25
An artist's rendition of how a rocky planet forms. As a rocky planet forms, the planet-forming material gathers in a process known as "accretion." It grows larger in size, and increases in temperature, along with the pressure at its core. The energy from this initial planet forming process causes the planet's elements to heat up and melt. Upon melting, layers form and separate. The heavier elements sink to the bottom, the lighter ones float to the top. This material then separates into layers as it cools, which is known as "differentiation." A fully formed planet slowly emerges, with an upper layer known as the crust, the mantle in the middle, and a solid iron core. InSight is short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport. The InSight mission will help answer key questions about how the rocky planets of the solar system, as well as how rocky exoplanets, formed. So while InSight is a Mars mission, it's also more than a Mars mission. The lander seeks the fingerprints of the processes that formed the rocky planets of the solar system, more than 4 billion years ago. It measures the planet's "vital signs:" its "pulse" (seismology), "temperature" (heat flow) and "reflexes" (precision tracking). https://photojournal.jpl.nasa.gov/catalog/PIA22233
Righter, K.; O’Brien, D. P.
2011-01-01
Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (∼106 y), followed by planetesimals to embryos (lunar to Mars-sized objects; few × 106 y), and finally embryos to planets (107–108 y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256
Two planets: Earth and Mars - One salt model: The Hydrothermal SCRIW-Model
NASA Astrophysics Data System (ADS)
Hovland, M. T.; Rueslaatten, H.; Johnsen, H. K.; Indreiten, T.
2011-12-01
One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth's surface-environment can be regarded as 'water-friendly' and 'salt hostile', the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, 'salt-friendly'. The riddle as to how the salt accumulated in various locations on those two planets is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed 'evaporites', meaning that they formed by the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, with a similar model, as surface water, representing a large ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (i.e., a pressure, P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will form a supercritical water 'vapor' (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (above 400 C and 300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the Red Sea indicates that a shallow magma-chamber causes a sufficiently high heat-flow to drive a convection cell of seawater. The model shows that salt precipitates along the flow lines within the SCRIW-region (Hovland et al., 2006). During the various stages of planet Mars' development, it must be inferred that zones with very high heat-flow also existed there. This meant that water (brine) confined in the crust of Mars was mobilized in a convective manner and would pass into the SCRIW-zone during the down-going leg (the recharge leg) of the convective cell. The zones with SCRIW out-salting would require accommodation space for large masses of solid salt, as modeled in the Red Sea analogy. However, as the accommodation space for the solid salt fills up, it will pile up and force its way upwards to form large, perhaps layered anticlines, as seen in the Hebes Mensa area of Mars and at numerous locations on Earth, including the Red Sea. Thus, we offer a universal 'hydrothermal salt model', which would be viable on all planets with free water in their interiors or on their surfaces, including Mars and Earth.
MOLA Science Team A Mars' Year of Topographic Mapping with the Mars Orbiter Laser Altimeter
NASA Technical Reports Server (NTRS)
Smith, David E.; Zuber, Maria T.
2001-01-01
Mars Orbiter Laser Altimeter (MOLA) has operated at Mars for a full Mars year and provided a new geodetic and geophysical view of the planet. As the spacecraft enters into the Extended Mission, MOLA will concentrate its observations on the seasonal variability of the icecaps and martian clouds. Additional information is contained in the original extended abstract.
Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F
NASA Technical Reports Server (NTRS)
1993-01-01
The topics covered include the following: petrology, petrography, meteoritic composition, planetary geology, atmospheric composition, astronomical spectroscopy, lunar geology, Mars (planet), Mars composition, Mars surface, volcanology, Mars volcanoes, Mars craters, lunar craters, mineralogy, mineral deposits, lithology, asteroids, impact melts, planetary composition, planetary atmospheres, planetary mapping, cosmic dust, photogeology, stratigraphy, lunar craters, lunar exploration, space exploration, geochronology, tectonics, atmospheric chemistry, astronomical models, and geochemistry.
2014-08-05
Marc Kaufman, space news writer, National Geographic and The Washington Post, and author of the new National Geographic book “Mars Up Close”, kicks off a panel discussion of Mars experts involved in current Mars exploration, Tuesday, August 5, 2014, at the National Geographic Society headquarters in Washington. The panelist shared what we’ve learned from Curiosity and the other Mars rovers surveying the red planet. Photo Credit: (NASA/Bill Ingalls)
Mars and Earth: origin and abundance of volatiles.
Anders, E; Owen, T
1977-11-04
Mars, like Earth, may have received its volatiles in the final stages of accretion, as a veneer of volatile-rich material similar to C3V carbonaceous chondrites. The high (40)Ar/(36)Ar ratio and low (36)Ar abundance on Mars, compared to data for other differentiated planets, suggest that Mars is depleted in volatiles relative to Earth-by a factor of 1.7 for K and 14 other moderately volatile elements and by a factor of 35 for (36)Ar and 15 other highly volatile elements. Using these two scaling factors, we have predicted martian abundances of 31 elements from terrestrial abundances. Comparison with the observed (36)Ar abundance suggests that outgassing on Mars has been about four times less complete than on Earth. Various predictions of the model can be checked against observation. The initial abundance of N, prior to escape, was about ten times the present value of 0.62 ppb, in good agreement with an independent estimate based on the observed enhancement in the martian (15)N/(14)N ratio (78,79). The initial water content corresponds to a 9-m layer, close to the value of >/=13 m inferred from the lack of an (18)O/(16)O fractionation (75). The predicted crustal Cl/S ratio of 0.23 agrees exactly with the value measured for martian dust (67); we estimate the thickness of this dust layer to be about 70 m. The predicted surface abundance of carbon, 290 g/cm(2), is 70 times greater than the atmospheric CO(2) value, but the CaCO(3) content inferred for martian dust (67) could account for at least one-quarter of the predicted value. The past atmospheric pressure, prior to formation of carbonates, could have been as high as 140 mbar, and possibly even 500 mbar. Finally, the predicted (129)Xe/(132)Xe ratio of 2.96 agrees fairly well with the observed value of 2.5(+2)(-1) (85). From the limited data available thus far, a curious dichotomy seems to be emerging among differentiated planets in the inner solar system. Two large planets (Earth and Venus) are fairly rich in volatiles, whereas three small planets (Mars, the moon, and the eucrite parent body-presumably the asteroid 4 Vesta) are poorer in volatiles by at least an order of magnitude. None of the obvious mechanisms seems capable of explaining this trend, and so we can only speculate that the same mechanism that stunted the growth of the smaller bodies prevented them from collecting their share of volatiles. But why then did the parent bodies of the chondrites and shergottites fare so much better? One of the driving forces behind the exploration of the solar system has always been the realization that these studies can provide essential clues to the intricate network of puzzles associated with the origin of life and its prevalence in the universe. In our own immediate neighborhood, Mars has always seemed to be the planet most likely to harbor extraterrestrial life, so the environment we have found in the vicinity of the two Viking landers is rather disappointing in this context. But the perspective we have gained through the present investigation suggests that this is not a necessary condition for planets at the distance of Mars from a solar-type central star. In other words, if it turns out that Mars is completely devoid of life, this does not mean that the zones around stars in which habitable planets can exist are much narrower than has been thought (114). Suppose Mars had been a larger planet-the size of Earth or Venus-and therefore had accumulated a thicker veneer and had also developed global tectonic activity on the scale exhibited by Earth. A much larger volatile reservoir would now be available, there would be repeated opportunities for tapping that reservoir, and the increased gravitational field would limit escape from the upper atmosphere. Such a planet could have produced and maintained a much thicker atmosphere, which should have permitted at least an intermittently clement climate to exist. How different would such a planet be from the present Mars? Could a stable, warm climate be maintained? It seems conceivable that an increase in the size of Mars might have compensated for its greater distance from the sun and that the life zone around our star would have been enlarged accordingly.
What forms of life could have arisen in the ancient conditions of Mars?
NASA Astrophysics Data System (ADS)
Vidmachenko, A. P.
2017-05-01
The first geological era of Mars - Phyllocyanic - began about 4.5 billion years ago and continued 500-700 million years. Then Mars was similar to the ancient Earth with dense atmosphere and water on the surface. That is he planet was once much more suitable for the existence of life. Then appeared simple forms of life on Earth, and we believe, that the same could happen on Mars. But it is likely that if once life appeared on Mars, it did not disappear without a trace. It could move from the surface of the planet to its interior, to be conserved there in relict fossils, and possibly, survived there in some very simple forms, that then covered by powerful soil emissions. Therefore, its traces should search under the ground in those layers of sedimentary rocks that are refers to the first Phyllocyanic geological epoch.
MEVTV Workshop on Early Tectonic and Volcanic Evolution of Mars
NASA Technical Reports Server (NTRS)
Frey, H. (Editor)
1988-01-01
Although not ignored, the problems of the early tectonic and volcanic evolution of Mars have generally received less attention than those later in the evolution of the planet. Specifically, much attention was devoted to the evolution of the Tharsis region of Mars and to the planet itself at the time following the establishment of this major tectonic and volcanic province. By contrast, little attention was directed at fundamental questions, such as the conditions that led to the development of Tharsis and the cause of the basic fundamental dichotomy of the Martian crust. It was to address these and related questions of the earliest evolution of Mars that a workshop was organized under the auspices of the Mars: Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Four sessions were held: crustal dichotomy; crustal differentiation/volcanism; Tharsis, Elysium, and Valles Marineris; and ridges and fault tectonics.
Fundamental studies concerning planetary quarantine in space
NASA Astrophysics Data System (ADS)
Koike, J.; Hori, T.; Katahira, Y.; Koike, K. A.; Tanaka, K.; Kobayashi, K.; Kawasaki, Y.
If there is a possibility that the organisms carried from Earth to space can live for a significant period on planets, the contamination of planets should be prevented for the purpose of future life-detection experiments. In connection with quarantine for interplanetary missions, we have examined the survivabilities of terrestrial microorganisms under simulated space conditions /1-8/. In this study, examined the survivabilities of terrestrial organisms under simulated Mars conditions. The Mars conditions were simulated by ultraviolet (UV) and proton irradiation under low temperature, high vacuum, and simulated gaseous conditions. After exposure to the simulated Mars condition, the survivabilities of the organisms were examined. The spores of Bacillus subtilis andAspergillus niger , some anaerobic bacterias and algaes, showed considerably high survivabilities even after UV and proton irradiation corresponding to 200 years on Mars. This subject is not restricted to academic curiosity but concerns problems involving the contamination of Mars with terrestrial organisms carried by space-probes.
Asymmetry of the Martian Current Sheet in a Multi-fluid MHD Model
NASA Astrophysics Data System (ADS)
Panoncillo, S. G.; Egan, H. L.; Dong, C.; Connerney, J. E. P.; Brain, D. A.; Jakosky, B. M.
2017-12-01
The solar wind carries interplanetary magnetic field (IMF) lines toward Mars, where they drape around the planet's conducting ionosphere, creating a current sheet behind the planet where the magnetic field has opposite polarity on either side. In its simplest form, the current sheet is often thought of as symmetric, extending behind the planet along the Mars-Sun line. Observations and model simulations, however, demonstrate that this idealized representation is only an approximation, and the actual scenario is much more complex. The current sheet can have 3D structure, move back and forth, and be situated dawnward or duskward of the Mars-Sun line. In this project, we utilized a library of global plasma model results for Mars consisting of a collection of multi-fluid MHD simulations where solar max/min, sub-solar longitude, and the orbital position of Mars are varied individually. The model includes Martian crustal fields, and was run for identical steady solar wind conditions. This library was created for the purpose of comparing model results to MAVEN data; we looked at the results of this model library to investigate current sheet asymmetries. By altering one variable at a time we were able to measure how these variables influence the location of the current sheet. We found that the current sheet is typically shifted toward the dusk side of the planet, and that modeled asymmetries are especially prevalent during solar min. Previous model studies that lack crustal fields have found that, for a Parker spiral IMF, the current sheet will shift dawnward, while our results typically show the opposite. This could expose certain limitations in the models used, or it could reveal an interaction between the solar wind and the plasma environment of Mars that has not yet been explored. MAVEN data may be compared to the model results to confirm the sense of the modeled asymmetry. These results help us to probe the physics controlling the Martian magnetotail and atmospheric escape from Mars.
Soil mineralogy and chemistry on Mars - Possible clues from salts and clays in SNC meteorites
NASA Technical Reports Server (NTRS)
Gooding, James L.
1992-01-01
If the shergottite, nakhlite, and chassignite (SNC) meteorites' parent planet is Mars, then the aqueous precipitates found in them imply that oxidizing, water-based solutions may have been chemically active on that planet over the past 200-1300 million yrs. It is suggested that the mixture of aqueous precipitates found in the SNCs furnish a self-consistent model for the bulk elemental composition of surface sediments at the Viking Lander sites. Further mineralogical and stable-isotope studies of the secondary minerals may establish the limits for biological activity over the last 1300 million years of Mars' water-based chemistry.
Planet population synthesis driven by pebble accretion in cluster environments
NASA Astrophysics Data System (ADS)
Ndugu, N.; Bitsch, B.; Jurua, E.
2018-02-01
The evolution of protoplanetary discs embedded in stellar clusters depends on the age and the stellar density in which they are embedded. Stellar clusters of young age and high stellar surface density destroy protoplanetary discs by external photoevaporation and stellar encounters. Here, we consider the effect of background heating from newly formed stellar clusters on the structure of protoplanetary discs and how it affects the formation of planets in these discs. Our planet formation model is built on the core accretion scenario, where we take the reduction of the core growth time-scale due to pebble accretion into account. We synthesize planet populations that we compare to observations obtained by radial velocity measurements. The giant planets in our simulations migrate over large distances due to the fast type-II migration regime induced by a high disc viscosity (α = 5.4 × 10-3). Cold Jupiters (rp > 1 au) originate preferably from the outer disc, due to the large-scale planetary migration, while hot Jupiters (rp < 0.1 au) preferably form in the inner disc. We find that the formation of gas giants via pebble accretion is in agreement with the metallicity correlation, meaning that more gas giants are formed at larger metallicity. However, our synthetic population of isolated stars host a significant amount of giant planets even at low metallicity, in contradiction to observations where giant planets are preferably found around high metallicity stars, indicating that pebble accretion is very efficient in the standard pebble accretion framework. On the other hand, discs around stars embedded in cluster environments hardly form any giant planets at low metallicity in agreement with observations, where these changes originate from the increased temperature in the outer parts of the disc, which prolongs the core accretion time-scale of the planet. We therefore conclude that the outer disc structure and the planet's formation location determines the giant planet occurrence rate and the formation efficiency of cold and hot Jupiters.
NASA Technical Reports Server (NTRS)
Hollingsworth, J. L.; Kahre, Melinda A.
2012-01-01
Between late autumn and early spring, middle and high latitudes on Mars exhibit strong equatortopole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic periodwaves) [1,2]. For a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, these large-scale, extratropical weather disturbances are critical components of the global circulation. The wavelike disturbances act as agents in the transport of heat and momentum between low and high latitudes of the planet. Through cyclonic/anticyclonic winds, intense shear deformations, contractions-dilatations in temperature and density, and sharp perturbations amongst atmospheric tracers (i.e., dust, volatiles (e.g., water vapor) and condensates (e.g., water-ice cloud particles)), Mars extratropical weather systems have significant subsynoptic scale ramifications by supporting atmospheric frontal waves (Fig. 1).
Planetary science questions for the manned exploration of Mars
NASA Technical Reports Server (NTRS)
Blanchard, Douglas P.
1986-01-01
A major goal of a manned Mars mission is to explore the planet and to investigate scientific questions for which the intensive study of Mars is essential. The systematic exploration of planets was outlined by the National Academy of Science. The nearest analogy to the manned Mars mission is the Apollo program and manned missions to the Moon, but the analogy is limited. The case is argued here that Mars may have to be explored far more systematically than was the pre-Apollo Moon to provide the detailed information necessary if plans are made to use any of the resources available on Mars. Viking missions provided a wealth of information, yet there are great gaps in the fundamental knowledge of essential facts such as the properties of the Martian surface materials and their interaction with the atmosphere. Building on a strong data base of precursor missions, human exploration will allow great leaps in understanding the Martian environment and geologic history and its evolutionary role in the solar system.
Jet Propulsion Laboratory: Annual Report 2004
NASA Technical Reports Server (NTRS)
2005-01-01
Once or twice in an age, a year comes along that the historians proclaim as an Annus Mirabilis - a year of wonders. For the Jet Propulsion Laboratory, 2004 was just that sort of time. From beginning to end, it was a nonstop experience of wondrous events in space. Imagine that two robot rovers embark on cross-country rambles across Mars, scrutinizing rocks for signs of past water on the now-arid world. A flagship spacecraft brakes into orbit at Saturn to begin longterm surveillance of the ringed world, preparing to drop a sophisticated probe to the surface of its haze-shrouded largest moon. Another craft makes the closest-ever pass by the nucleus of a comet, collecting sample particles as it goes. Two new space telescopes peer into the depths of the universe far beyond our solar system, viewing stars, nebulas and galaxies in invisible light beyond the spectrum our eyes can see. A pair of instruments is lofted on a NASA Earth-orbiting satellite to monitor air quality and the protective layer of ozone blanketing our home planet. A small probe brings samples of the solar wind to Earth for in-depth study. While JPL was absorbed with all of these ventures on other worlds, NASA and the White House unveiled an ambitious new plan of space exploration. The Vision for Space Exploration announced in January foresees a program of robotic and astronaut missions leading to a human return to the Moon by 2020, and eventual crewed expeditions to Mars. The vision also calls for more robotic missions to the moons of the outer planets; spaceborne observatories that will search for Earth-like planets around other stars and explore the formation and evolution of the universe; and continued study of our home planet. In order to accomplish all of this, NASA must perfect many as-yet-uninvented technologies and space transportation capabilities. JPL has a great deal to bring to this vision. Robotic exploration of Mars will lead the way for missions that will carry women and men to the red planet. Our engineers and scientists are formulating spacecraft that could use nuclear power to enable exploration missions of the future. And even now we are designing formations of space telescopes that will capture family portraits of the planets around neighboring stars. Those are only some of the ways that the Laboratory is contributing to NASA's broader goals. During 2004, JPL made a distinctive contribution to agencywide initiatives in areas such as safety, NASA transformation, the agency's Internet portal and NASA's Explorer Schools programs. Years like 2004 pose a special challenge for us. It would be easy to say that this was a once-in-a-decade high point of mission activities, but I believe that this would miss an opportunity. We are fortunate to have many space projects in the works that have the promise of being just as exhilarating as the great mission successes that we celebrated this year. The challenge and opportunity for us now is to make every year like this one.
The Giant Planet Satellite Exospheres
NASA Technical Reports Server (NTRS)
McGrath, Melissa A.
2014-01-01
Exospheres are relatively common in the outer solar system among the moons of the gas giant planets. They span the range from very tenuous, surface-bounded exospheres (e.g., Rhea, Dione) to quite robust exospheres with exobase above the surface (e.g., lo, Triton), and include many intermediate cases (e.g., Europa, Ganymede, Enceladus). The exospheres of these moons exhibit an interesting variety of sources, from surface sputtering, to frost sublimation, to active plumes, and also well illustrate another common characteristic of the outer planet satellite exospheres, namely, that the primary species often exists both as a gas in atmosphere, and a condensate (frost or ice) on the surface. As described by Yelle et al. (1995) for Triton, "The interchange of matter between gas and solid phases on these bodies has profound effects on the physical state of the surface and the structure of the atmosphere." A brief overview of the exospheres of the outer planet satellites will be presented, including an inter-comparison of these satellites exospheres with each other, and with the exospheres of the Moon and Mercury.
NASA Technical Reports Server (NTRS)
Dolginov, S. S.; Yeroshenko, Y. G.; Zhuzgov, L. N.
1972-01-01
The magnetic field in the close proximity of planet Mars according to data from Mars 2 and Mars 3 spacecraft is discussed. The magnetometers on the spacecraft detected a field whose intensity near the orbital periapses was 7 to 10 times higher than the interplanetary field at the distance of the Martian orbit. The nature of the observed field is described.
Planet-B: A Japanese Mars aeronomy observer
NASA Technical Reports Server (NTRS)
Tsuruda, K.
1992-01-01
An introduction is given to a Japanese Mars mission (Planet-B) which is being planned at the Institute of Space and Aeronautical Science (ISAS), Japan. Planet-B aims to study the upper atmosphere of Mars and its interaction with the solar wind. The launch of Planet-B is planned for 1996 on a new launcher, M-L, which is being developed at ISAS. In addition to the interaction with the solar wind, the structure of the Martian upper atmosphere is thought to be controlled by the meteorological condition in the lower atmosphere. The orbit of Planet-B was chosen so that it will pass two important regions, the region where the solar wind interacts with the Martian upper atmosphere and the tail region where ion acceleration is taking place. Considering the drag due to the Martian atmosphere, the periapsis altitude of 150 km and apoapsis of 10 Martian radii are planned. The orbit plane will be nearly parallel to the ecliptic plane. The altitude of the spacecraft will be spin stabilized and its spin axis will be controlled to the point of the earth. The dry weight of the spacecraft will be about 250 kg, including the scientific payload which consists of a magnetometer, plasma instruments, HF sounder, UV imaging spectrometer, and lower atmosphere monitor.
TWO SMALL PLANETS TRANSITING HD 3167
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderburg, Andrew; Bieryla, Allyson; Latham, David W.
2016-09-20
We report the discovery of two super-Earth-sized planets transiting the bright (V = 8.94, K = 7.07) nearby late G-dwarf HD 3167, using data collected by the K2 mission. The inner planet, HD 3167 b, has a radius of 1.6 R {sub ⊕} and an ultra-short orbital period of only 0.96 days. The outer planet, HD 3167 c, has a radius of 2.9 R {sub ⊕} and orbits its host star every 29.85 days. At a distance of just 45.8 ± 2.2 pc, HD 3167 is one of the closest and brightest stars hosting multiple transiting planets, making HD 3167more » b and c well suited for follow-up observations. The star is chromospherically inactive with low rotational line-broadening, ideal for radial velocity observations to measure the planets’ masses. The outer planet is large enough that it likely has a thick gaseous envelope that could be studied via transmission spectroscopy. Planets transiting bright, nearby stars like HD 3167 are valuable objects to study leading up to the launch of the James Webb Space Telescope .« less
Strategy for exploration of the outer planets: 1986-1996
NASA Technical Reports Server (NTRS)
1986-01-01
Over the past decade COMPLEX has published three strategy reports which, taken together, encompass the entire planetary system and recommend a coherent program of planetary exploration. The highest priority for outer planet exploration during the next decade is intensive study of Saturn (the planet, satellites, rings, and magnetosphere) as a system. The Committee additionally recommends that NASA engage in the following supporting activities: increased support of laboratory and theoretical studies; pursuit of earth-based and earth-orbital observations; commitment to continued operation of productive spacecraft; implementation of the instrument development plan as appropriate for the outer solar system; studies of deep atmospheric probes; development of penetrators or other hard landers; development of radiation-hardened spacecraft; and development of low-thrust propulsion systems. Longer-term objectives include exploration and intensive study of: the Uranus and Neptune systems; planetology of the Galilean satellites and Titan; and the inner Jovian system.
Potential advantages of solar electric propulsion for outer planet orbiters.
NASA Technical Reports Server (NTRS)
Sauer, C. G.; Atkins, K. L.
1972-01-01
Past studies of solar electric propulsion for outer planet orbiters have generally emphasized the advantages of flight time reduction and payload increases. However, several subtle advantages exist, which may become important in an environment of increasingly difficult requirements as ways to extend current technology are sought. These advantages accrue primarily because of the inherent capability, unique to electric propulsion, to efficiently shape a trajectory while enroute. Stressed in this paper are: the ability to meet orbital constraints due to assumed radiation belts, science flexibility in a dual launch program, increased numbers of observational passes, and the lengthening of launch periods. These are examined for years representative of relatively easy and difficult ballistic missions. The results indicate that an early investment in solar electric technology will provide a strong performance foundation for a long range outer planet exploration program which evolves from current spacecraft technology.
WASP-47 and the Origin of Hot Jupiters
NASA Astrophysics Data System (ADS)
Vanderburg, Andrew; Becker, Juliette; Latham, David W.; Adams, Fred; Bryan, Marta; Buchhave, Lars; Haywood, Raphaelle; Khain, Tali; Lopez, Eric; Malavolta, Luca; Mortier, Annelies; HARPS-N Consortium
2018-01-01
WASP-47 b is a transiting hot Jupiter in a system with two additional short-period transiting planets and a long-period outer Jovian companion. WASP-47 b is the only known hot Jupiter with such close-in companions and therefore may hold clues to the origins of hot Jupiter systems. We report on precise radial velocity observations of WASP-47 to measure planet masses and determine their orbits to high precision. Using these improved masses and orbital elements, we perform a dynamical analysis to constrain the inclination of the outer planet, which we find likely orbits near the same plane as the inner transiting system. A similar dynamical analysis for five other hot Jupiter systems with long-period companions around cool host stars (Teff < 6200 K) shows that these outer companions likely also orbit close to the plane of the hot Jupiters. These constraints disfavor hot Jupiter models involving strong dynamical interactions like Kozai-Lidov migration.
Connection Between the ICRF and the Dynamical Reference Frame for the Outer Planets
NASA Astrophysics Data System (ADS)
da Silva Neto, D. N.; Assafin, M.; Andrei, A. H.; Vieira Martins, R.
2005-01-01
This work brings an approach intending to improve the connection between the Dynamical Reference Frame and the Extragalactic Reference Frame. For that, close encounters of outer Solar System objects and quasars are used. With this goal, Uranus, Neptune and two quasars were observed at Laborat´orio Nacional de Astrof´ısica (LNA), Brazil. The optical reference frame is the HCRF, as given by the UCAC2 catalogue. The first results show an accuracy of 45 mas - 50 mas in the optical positions. The optical minus radio offsets give the local orientation between the catalogue and radio frame. From this, it is possible to place the optical planet coordinates on the extragalactic frame. A comparison between the new corrected optical coordinates and the respective DE ephemeris to these planets can give the instant orientations of the Dynamical Reference Frame with regard to the ICRS, for this zone of outer Solar System.
A preliminary analysis of the orbit of the Mars Trojan asteroid (5261) Eureka
NASA Technical Reports Server (NTRS)
Mikkola, Seppo; Innanen, Kimmo; Muinonen, Karri; Bowell, Edward
1994-01-01
Observations and results of orbit determination of the first known Mars Trojan asteroid (5261) Eureka are presented. We have numerically calculated the evolution of the orbital elements, and have analyzed the behavior of the motion during the next 2 Myr. Strong perturbations by planets other than Mars seem to stabilize the eccentricity of the asteroid by stirring the high order resonances present in the elliptic restricted problem. As a result, the orbit appears stable at least on megayear timescales. The difference of the mean longitudes of Mars and Eureka and the semimajor axis of the asteroid form a pair of variables that essentially behave in an adiabatic manner, while the evolution of the other orbital elements is largely determined by the pertubations due to other planets.
NASA Astrophysics Data System (ADS)
Weiss, Lauren M.; Marcy, Geoffrey W.; Petigura, Erik A.; Fulton, Benjamin J.; Howard, Andrew W.; Winn, Joshua N.; Isaacson, Howard T.; Morton, Timothy D.; Hirsch, Lea A.; Sinukoff, Evan J.; Cumming, Andrew; Hebb, Leslie; Cargile, Phillip A.
2018-01-01
We have established precise planet radii, semimajor axes, incident stellar fluxes, and stellar masses for 909 planets in 355 multi-planet systems discovered by Kepler. In this sample, we find that planets within a single multi-planet system have correlated sizes: each planet is more likely to be the size of its neighbor than a size drawn at random from the distribution of observed planet sizes. In systems with three or more planets, the planets tend to have a regular spacing: the orbital period ratios of adjacent pairs of planets are correlated. Furthermore, the orbital period ratios are smaller in systems with smaller planets, suggesting that the patterns in planet sizes and spacing are linked through formation and/or subsequent orbital dynamics. Yet, we find that essentially no planets have orbital period ratios smaller than 1.2, regardless of planet size. Using empirical mass–radius relationships, we estimate the mutual Hill separations of planet pairs. We find that 93% of the planet pairs are at least 10 mutual Hill radii apart, and that a spacing of ∼20 mutual Hill radii is most common. We also find that when comparing planet sizes, the outer planet is larger in 65% ± 0.4% of cases, and the typical ratio of the outer to inner planet size is positively correlated with the temperature difference between the planets. This could be the result of photo-evaporation. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time has been granted by the University of California, and California Institute of Technology, and the University of Hawaii.
Studies on possible propagation of microbial contamination in planetary clouds
NASA Technical Reports Server (NTRS)
Dimmick, R. L.; Chatigny, M. A.; Wolochow, H.
1973-01-01
One of the key parameters in estimation of the probability of contamintion of the outer planets (Jupiter, Saturn, Uranus, etc.) is the probability of growth (Pg) of terrestrial microorganisms on or near these planets. For example, Jupiter appears to have an atmosphere in which some microbial species could metabolize and propagate. This study includes investigation of the likelihood of metabolism and propagation of microbes suspended in dynamic atmospheres. It is directed toward providing experimental information needed to aid in rational estimation of Pg for these outer planets. Current work is directed at demonstration of aerial metabolism under near optimal conditions and tests of propagation in simulated Jovian atmospheres.
Studies on possible propagation of microbial contamination in planetary clouds
NASA Technical Reports Server (NTRS)
Dimmick, R. L.; Chatigny, M. A.
1973-01-01
Current U.S. planetary quarantine standards based on international agreements require consideration of the probability of contamination (Pc) of the outer planets, Venus, Jupiter, Saturn, etc. One of the key parameters in estimation of the Pc of these planets is the probability of growth (Pg) of terrestrial microorganisms on or near these planets. For example, Jupiter and Saturn appear to have an atmosphere in which some microbial species could metabolize and propagate. This study includes investigation of the likelihood of metabolism and propagation of microbes suspended in dynamic atmospheres. It is directed toward providing experimental information needed to aid in rational estimation of Pg for these outer plants.
Voyager: The grandest tour. The mission to the outer planets
NASA Astrophysics Data System (ADS)
1991-04-01
A history and general accomplishments of the Voyager 1 and 2 missions to the outer planets are presented. Over the course of 12 years, these spacecraft drew back the curtain on nearly half the solar system. They brought into sharp focus the faces of the four giant outer planets - Jupiter, Saturn, Uranus, and Neptune - and their families of disparate moons. The Voyagers showed us unimagined worlds: frozen beauty in the rings of Saturn, and molten violence in the explosive sulfur volcanoes on Jupiter's moon Io. They brought us close-ups of the florid and intricate storms of Jupiter itself. Voyager 2 went on to reveal the peculiarities of cockeyed Uranus and its equally skewed rings and moons. Then finally, Neptune, nearly invisible from earth, was unveiled in all its big, blue splendor, circled by shadowy rings and a bright pastel moon called Triton. Both Voyagers are headed toward the outer boundary of the solar system in search of the heliopause, the region where the sun's influence wanes and the beginning of interstellar space can be sensed.
Voyager: The grandest tour. The mission to the outer planets
NASA Technical Reports Server (NTRS)
1991-01-01
A history and general accomplishments of the Voyager 1 and 2 missions to the outer planets are presented. Over the course of 12 years, these spacecraft drew back the curtain on nearly half the solar system. They brought into sharp focus the faces of the four giant outer planets - Jupiter, Saturn, Uranus, and Neptune - and their families of disparate moons. The Voyagers showed us unimagined worlds: frozen beauty in the rings of Saturn, and molten violence in the explosive sulfur volcanoes on Jupiter's moon Io. They brought us close-ups of the florid and intricate storms of Jupiter itself. Voyager 2 went on to reveal the peculiarities of cockeyed Uranus and its equally skewed rings and moons. Then finally, Neptune, nearly invisible from earth, was unveiled in all its big, blue splendor, circled by shadowy rings and a bright pastel moon called Triton. Both Voyagers are headed toward the outer boundary of the solar system in search of the heliopause, the region where the sun's influence wanes and the beginning of interstellar space can be sensed.
ERIC Educational Resources Information Center
Yair, Yoav; Schur, Yaron; Mintz, Rachel
2003-01-01
Presents a novel approach to teaching astronomy and planetary sciences centered on visual images and simulations of planetary objects. Focuses on the study of the moon and the planet Mars by means of observations, interpretation, and comparison to planet Earth. (Contains 22 references.) (Author/YDS)
Terrestrial Planet Formation from an Annulus -- Revisited
NASA Astrophysics Data System (ADS)
Deienno, Rogerio; Walsh, Kevin J.; Kretke, Katherine A.; Levison, Harold F.
2018-04-01
Numerous recent theories of terrestrial planet formation suggest that, in order to reproduce the observed large Earth to Mars mass ratio, planets formed from an annulus of material within 1 au. The success of these models typically rely on a Mars sized embryo being scattered outside 1 au (to ~1.5 au) and starving, while those remaining inside 1 au continue growing, forming Earth and Venus. In some models the scattering is instigated by the migration of giant planets, while in others an embryo-instability naturally occurs due to the dissipation of the gaseous solar nebula. While these models can typically succeed in reproducing the overall mass ratio among the planets, the final angular momentum deficit (AMD) of the present terrestrial planets in our Solar System, and their radial mass concentration (RMC), namely the position where Mars end up in the simulations, are not always well reproduced. Assuming that the gas nebula may not be entirely dissipated when such an embryo-instability happens, here, we study the effects that the time of such an instability can have on the final AMD and RMC. In addition, we also included energy dissipation within embryo-embryo collisions by assuming a given coefficient of restitution for collisions. Our results show that: i) dissipation within embryo-embryo collisions do not play any important role in the final terrestrial planetary system; ii) the final AMD decreases only when the number of final planets formed increases; iii) the RMC tends to always be lower than the present value no matter the number of final planets; and iv) depending on the time that the embryo-instability happen, if too early, with too much gas still present, a second instability will generally happen after the dissipation of the gas nebula.
Extending Whole-earth Tectonics To The Terrestrial Planets
NASA Astrophysics Data System (ADS)
Baker, V. R.; Maruyama, S.; Dohm, J. M.
Based on the need to explain a great many geological and geophysical anomalies on Mars, and stimulated by the new results from the Mars Global Surveyor Mission, we propose a conceptual model of whole-EARTH (Episodic Annular Revolving Thermal Hydrologic) tectonics for the long-term evolution of terrestrial planets. The theory emphasizes (1) the importance of water in planetary evolution, and (2) the physi- cal transitions in modes of mantle convection in relation to planetary heat produc- tion. Depending on their first-order geophysical parameters and following accretion and differentiation from volatile-rich planetessimals, terrestrial planets should evolve through various stages of mantle convection, including magma ocean, plate tectonic, and stagnant lid processes. If a water ocean is able to condense from the planet's early steam atmosphere, an early regime of plate tectonics will follow the initial magma ocean. This definitely happened on earth, probably on Mars, and possibly on Venus. The Mars history led to transfer of large amounts of water to the mantle during the pe- riod of heavy bombardment. Termination of plate tectonics on Mars during the heavy bombardment period led to initiation of superplumes at Tharsis and Elysium, where long-persistent volcanism and water outbursts dominated much of later Martian his- tory. For Venus, warming of the early sun made the surface ocean unstable, eliminating its early plate-tectonic regime. Although Venus now experiences stagnant-lid convec- tion with episodic mantle overturns, the water subducted to its lower mantle during the ancient plate-tectonic regime manifests itself in the initation of volatile-rich plumes that dominate its current tectonic regime.
Water resources and hydrology of Mars
NASA Technical Reports Server (NTRS)
Baker, V. R.; Gulick, V. C.; Kargel, J. S.; Strom, R. G.
1991-01-01
The surface of Mars has been extensively modified by a large variety of water erosional and depositional processes. Although liquid water is presently unstable on the planet's surface, in its cold, hyperarid climate, there is abundant geomorphological evidence of past fluvial valley development multiple episodes of catastrophic flooding, periglacial landforms, ice-related permafrost, lake deposits, eroded impact craters and possible glacial landforms throughout much of Mars' geological history. The amount of water required to form such features is estimated to be equivalent to a planet-wide layer approximately 50 meters deep. Some of this water undoubtedly was removed from the planet by atmospheric escape processes, but much probably remains in the subsurface of Mars. Jakosky summarized the present partitioning of water on Mars, expressed as an average global depth, as follows: in the polar caps, 30 meters; in the megaregolith, 500 to 1000 meters; structurally bound in clays, 10 meters; and in high latitude regolith, a few meters. However, most of this water is probably in the form of ice, except in anomalous areas of possible near surface liquid water, and in regions where hydrothermal systems are still active. The best locations for prospecting are those areas where water or ice is sufficiently concentrated at shallow enough depths to make it feasible to pump out or mine.
2017-07-11
This intriguing surface texture is the result of rock interacting with water, as observed by NASA's Mars Reconnaissance Orbiter. The rock was then eroded and later exposed to the surface. The pinkish, almost dragon-like scaled texture represents Martian bedrock that has specifically altered into a clay-bearing rock. The nature of the water responsible for the alteration, and how it interacted with the rock to form the clay remains poorly understood. Not surprisingly, the study of such altered rocks on Mars is an area of active investigation by the Mars science community. Understanding such interactions, and how they happened, help scientists to understand the past climate on Mars, and if the red planet ever harbored life. Recent studies indicate that the early Martian climate may not have been as warm, wet, and Earth-like, as previously suggested. This is not a problem for finding life on Mars as one might think. Ongoing studies of dry and cold environments on Earth shows that life finds ways to adapt to such extremes. Such work provides hope for finding evidence for life on other planets, like Mars, someday. https://photojournal.jpl.nasa.gov/catalog/PIA21781
Radio Wave Propagation Handbook for Communication on and Around Mars
NASA Technical Reports Server (NTRS)
Ho, Christian; Golshan, Nasser; Kliore, Arvydas
2002-01-01
This handbook examines the effects of the Martian environment on radio wave propagation on Mars and in the space near the planet. The environmental effects include these from the Martian atmosphere, ionosphere, global dust storms, aerosols, clouds, and geomorphologic features. Relevant Martian environmental parameters were extracted from the measurements of Mars missions during the past 30 years, especially from Mars Pathfinder and Mars Global Surveyor. The results derived from measurements and analyses have been reviewed through an extensive literature search. The updated parameters have been theoretically analyzed to study their effects on radio propagation. This handbook also provides basic information about the entire telecommunications environment on and around Mars for propagation researchers, system engineers, and link analysts. Based on these original analyses, some important recommendations have been made, including the use of the Martian ionosphere as a reflector for Mars global or trans-horizon communication between future Martian colonies, reducing dust storm scattering effects, etc. These results have extended our wave propagation knowledge to a planet other than Earth; and the tables, models, and graphics included in this handbook will benefit telecommunication system engineers and scientific researchers.
Hubble Takes Mars Portrait Near Close Approach
2017-12-08
Mars is looking mighty fine in this portrait nabbed by the Hubble Space Telescope on a near close approach! Read more: go.nasa.gov/1rWYiBT The Hubble Space Telescope is more well known for its picturesque views of nebulae and galaxies, but it's also useful for studying our own planets, including Mars. Hubble imaged Mars on May 12, 2016 - ten days before Mars would be on the exact opposite side of the Earth from the Sun. Bright, frosty polar caps, and clouds above a vivid, rust-colored landscape reveal Mars as a dynamic seasonal planet in this NASA Hubble Space Telescope view taken on May 12, 2016, when Mars was 50 million miles from Earth. The Hubble image reveals details as small as 20 to 30 miles across. The large, dark region at far right is Syrtis Major Planitia, one of the first features identified on the surface of the planet by seventeenth-century observers. Christiaan Huygens used this feature to measure the rotation rate of Mars. (A Martian day is about 24 hours and 37 minutes.) Today we know that Syrtis Major is an ancient, inactive shield volcano. Late-afternoon clouds surround its summit in this view. A large oval feature to the south of Syrtis Major is the bright Hellas Planitia basin. About 1,100 miles across and nearly five miles deep, it was formed about 3.5 billion years ago by an asteroid impact. The orange area in the center of the image is Arabia Terra, a vast upland region in northern Mars that covers about 2,800 miles. The landscape is densely cratered and heavily eroded, indicating that it could be among the oldest terrains on the planet. Dried river canyons (too small to be seen here) wind through the region and empty into the large northern lowlands. Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), J. Bell (ASU), and M. Wolff (Space Science Institute) #nasagoddard #mars #hubble #space NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Winds and the occultation experiment. [for Venus and Mars atmospheric parameters
NASA Technical Reports Server (NTRS)
Gross, S. H.
1974-01-01
A spacecraft orbiting about another planet, such as Mars or Venus, may be used to obtain data about the pressure, density, and temperature fields over the planet from multiple occultations if the orbit precesses or retrogresses. Under certain conditions successive occultations will provide mean dynamic information such as wind speeds over the time and spacing intervals. It is shown that data concerning winds may be found by comparing refractivity information rather than pressure or temperature.
Fugitives from the Hungaria region: Close encounters and impacts with terrestrial planets
NASA Astrophysics Data System (ADS)
Galiazzo, M. A.; Bazsó, Á.; Dvorak, R.
2013-08-01
Hungaria asteroids, whose orbits occupy the region in element space between 1.78
On Mars: Exploration of the Red Planet, 1958 - 1978
NASA Technical Reports Server (NTRS)
Ezell, E. C. (Editor); Ezell, L. N. (Editor)
1984-01-01
The exploration of Mars is covered by the following topics: Mariner spacecraft and launch vehicles, search for Martian life; Voyager spacecraft; creation of Viking; Viking Orbiter and its Mariner inheritance; Viking lander; building a complex spacecraft; selecting landing sites; site certification, and data from Mars.
Administrator Bridenstine: InSight Will Map the Inside of Mars
2018-05-05
NASA Administrator Jim Bridenstine shares thoughts on the Mars InSight mission, the search for evidence of life beyond Earth, returning humans to the Moon and why Earth is his favorite planet. To learn more about InSight, visit https://mars.nasa.gov/insight/.
Mars Helicopter (Artist's Concept)
2018-05-25
This artist concept shows the Mars Helicopter, a small, autonomous rotorcraft, which will travel with NASA's Mars 2020 rover mission, currently scheduled to launch in July 2020, to demonstrate the viability and potential of heavier-than-air vehicles on the Red Planet. https://photojournal.jpl.nasa.gov/catalog/PIA22460
Evolution of space food in Nostoc sp. HK-01
NASA Astrophysics Data System (ADS)
Tomita-Yokotani, Kaori; Yamashita, Masamichi; Hashimoto, Hirofumi; Sato, Seigo; Kimura, Yasuko; Katoh, Hiroshi; Arai, Mayumi
2012-07-01
Habitation in outer space is one of our challenges. We have been studying future space agriculture to provide food and oxygen for the habitation area in the space environment, on Mars. A cyanobacteria, Nostoc sp. HK-01, has high several outer space environmental tolerance. We have already confirmed that Nostoc sp.HK-01 had an ability to grow for over several years on the Martian regolith simulant in a laboratory experiment. Nostoc sp HK-01 would have high contribution to change the atmosphere in Mars as a photosynthetic creature. In outer environment, all of materials have to circulate for all of creature living in artificial eco-systems on Mars. This material has several functions as the utilization in space agriculture. Here, we are proposing using them as a food after its growing on Mars. We are trying to determine the best conditions and evolution for space food using Nostoc sp.HK-01 and studying the proposal of utilization of cyanobacteria, Nostoc sp HK-01, for the variation of meal as space agriculture.
Equilibrium Conditions of Sediment Suspending Flows on Earth, Mars and Titan
NASA Astrophysics Data System (ADS)
Amy, L. A.; Dorrell, R. M.
2016-12-01
Sediment entrainment, erosion and deposition by liquid water on Earth is one of the key processes controlling planetary surface evolution. Similar modification of planetary surfaces by liquids associated with a volatile cycle are also inferred to have occurred on other planets (e.g., water on Mars and methane-ethane on Titan). Here we explore conditions for equilibrium flow - the threshold between net sediment erosion and deposition - on different planets. We use a new theoretical model for particle erosion-suspension-deposition: this model shows a better fit to empirical data than comparative suspension criterions (e.g., Rouse Number) since it takes into account both flow competence and capacity, and particle size distribution effects. Shear stresses required to initially entrain sediment and maintain equilibrium flow vary significantly, being several times lower on Mars and more than ten times lower on Titan resulting principally from lower gravities. On all planets it is harder to maintain equilibrium flow as sediment mixtures become poorer sorted (higher shear stresses are needed as standard deviation increases). In comparison to large differences in critical shear stresses, critical slopes for equilibrium flow are similar for planets. Compared to Earth, equilibrium slopes on Mars should be slightly lower whilst those on Titan will be higher or lower for organic and ice particle systems, respectively. Particle size distribution has a similar, order of magnitude effect, on equilibrium slope on each planet. The results highlight that whilst reduced gravity on Titan and Mars significantly decreases the bed shear stress required for particle transport, it also proportionally effects the bed shear stress of moving fluid, such that similar slope gradients are required for equilibrium flow; minor variations in equilibrium slopes are related to differences in the particle-fluid density contrasts as well as fluid viscosities. These results help explain why planetary surfaces share striking similarities in their present or past landscapes and shows that particle size distribution is critical to sediment transport dynamics. Interestingly, particle distribution may vary between planets depending on the particle compositions and weathering regimes, imposing differences in equilibrium conditions.
NASA Astrophysics Data System (ADS)
Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.; Fassett, C. I.; Fischer, W. W.; Fraeman, A. A.; Golombek, M. P.; Hamilton, V. E.; Hayes, A. G.; Herd, C. D. K.; Horgan, B.; Hu, R.; Jakosky, B. M.; Johnson, J. R.; Kasting, J. F.; Kerber, L.; Kinch, K. M.; Kite, E. S.; Knutson, H. A.; Lunine, J. I.; Mahaffy, P. R.; Mangold, N.; McCubbin, F. M.; Mustard, J. F.; Niles, P. B.; Quantin-Nataf, C.; Rice, M. S.; Stack, K. M.; Stevenson, D. J.; Stewart, S. T.; Toplis, M. J.; Usui, T.; Weiss, B. P.; Werner, S. C.; Wordsworth, R. D.; Wray, J. J.; Yingst, R. A.; Yung, Y. L.; Zahnle, K. J.
2016-10-01
What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar system's longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to understanding the factors driving the divergent evolutionary paths of the Earth, Venus, and thousands of small rocky extrasolar planets yet to be discovered.
NASA Technical Reports Server (NTRS)
Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.;
2016-01-01
What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar systems longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to understanding the factors driving the divergent evolutionary paths of the Earth, Venus, and thousands of small rocky extra solar planets yet to be discovered.
33 CFR 147.809 - Mars Tension Leg Platform safety zone.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...
33 CFR 147.809 - Mars Tension Leg Platform safety zone.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...
33 CFR 147.809 - Mars Tension Leg Platform safety zone.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...
33 CFR 147.809 - Mars Tension Leg Platform safety zone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...
33 CFR 147.809 - Mars Tension Leg Platform safety zone.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Mars Tension Leg Platform safety... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.809 Mars Tension Leg Platform safety zone. (a) Description. The Mars Tension Leg Platform (Mars TLP) is located at position 28°10′10.29...
Searching for Chips of Kuiper Belt Objects in Meteorites
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Ohsumi, K.; Briani, G.; Gounelle, M.; Mikouchi, T.; Satake, W.; Kurihara, T.; Weisberg, M. K.; Le, L.
2009-01-01
The Nice model [1&2] describes a scenario whereby the Jovian planets experienced a violent reshuffling event approx.3:9 Ga the giant planets moved, existing small body reservoirs were depleted or eliminated, and new reservoirs were created in particular locations. The Nice model quantitatively explains the orbits of the Jovian planets and Neptune [1], the orbits of bodies in several different small body reservoirs in the outer solar system (e.g., Trojans of Jupiter [2], the Kuiper belt and scattered disk [3], the irregular satellites of the giant planets [4], and the late heavy bombardment on the terrestrial planets approx.3:9 Ga [5]. This model is unique in plausibly explaining all of these phenomena. One issue with the Nice model is that it predicts that transported Kuiper Belt Objects (KBOs) (things looking like D class asteroids) should predominate in the outer asteroid belt, but we know only about 10% of the objects in the outer main asteroid belt appear to be D-class objects [6]. However based upon collisional modeling, Bottke et al. [6] argue that more than 90% of the objects captured in the outer main belt could have been eliminated by impacts if they had been weakly-indurated objects. These disrupted objects should have left behind pieces in the ancient regoliths of other, presumably stronger asteroids. Thus, a derived prediction of the Nice model is that ancient regolith samples (regolith-bearing meteorites) should contain fragments of collisionally-destroyed Kuiper belt objects. In fact KBO pieces might be expected to be present in most ancient regolith- bearing meteorites [7&8].
NASA Astrophysics Data System (ADS)
Reiber, Duke B.
Papers about Mars and Mars exploration are presented, covering topics such as Martian history, geology, volcanism, channels, moons, atmosphere, meteorology, water on the planet, and the possibility of life. The unmanned exploration of Mars is discussed, including the Phobos Mission, the Mars Observer, the Mars Aeronomy Observer, the seismic network, Mars sample return missions, and the Mars Ball, an inflatable-sectored-tire rover concept. Issues dealing with manned exploration of Mars are examined, such as the reasons for exploring Mars, mission scenarios, a transportation system for routine visits, technologies for Mars expeditions, the human factors for Mars missions, life support systems, living and working on Mars, and the report of the National Commission on Space.
Unified theory of motion of inner planets
NASA Astrophysics Data System (ADS)
Kotelnikov, V.; Kislik, M.
1983-01-01
A highly accurate, unified theory of motion for the Solar System's inner planets Mercury, Venus, the Earth, Mars was developed. It has practical importance and is used to solve various problems of interplanetary cosmonautics.
NASA Technical Reports Server (NTRS)
Greeley, Ronald; Haberle, Robert M.
1991-01-01
Mars is a planet of high scientific interest. Various studies are currently being made that involve vehicles that have landed on Mars. Because Mars is known to experience frequent wind storms, mission planners and engineers require knowledge of the physical and chemical properties of Martian windblown sand and dust, and the processes involved in the origin and evolution of sand and dust storms.
Dynamical sequestration of the Moon-forming impactor in co-orbital resonance with Earth
NASA Astrophysics Data System (ADS)
Kortenkamp, Stephen J.; Hartmann, William K.
2016-09-01
Recent concerns about the giant impact hypothesis for the origin of the Moon, and an associated "isotope crisis" may be assuaged if the impactor was a local object that formed near Earth. We investigated a scenario that may meet this criterion, with protoplanets assumed to originate in 1:1 co-orbital resonance with Earth. Using N-body numerical simulations we explored the dynamical consequences of placing Mars-mass companions in various co-orbital configurations with a proto-Earth of 0.9 Earth-masses (M⊕). We modeled 162 different configurations, some with just the four terrestrial planets and others that included the four giant planets. In both the 4- and 8-planet models we found that a single Mars-mass companion typically remained a stable co-orbital of Earth for the entire 250 million year (Myr) duration of our simulations (59 of 68 unique simulations). In an effort to destabilize such a system we carried out an additional 94 simulations that included a second Mars-mass co-orbital companion. Even with two Mars-mass companions sharing Earth's orbit about two-thirds of these models (66) also remained stable for the entire 250 Myr duration of the simulations. Of the 28 2-companion models that eventually became unstable 24 impacts were observed between Earth and an escaping co-orbital companion. The average delay we observed for an impact of a Mars-mass companion with Earth was 102 Myr, and the longest delay was 221 Myr. In 40% of the 8-planet models that became unstable (10 out of 25) Earth collided with the nearly equal mass Venus to form a super-Earth (loosely defined here as mass ≥1.7 M⊕). These impacts were typically the final giant impact in the system and often occurred after Earth and/or Venus has accreted one or more of the other large objects. Several of the stable configurations involved unusual 3-planet hierarchical co-orbital systems.
Protecting the Planets from Biological Contamination: The Strange Case of Mars Exploration
NASA Astrophysics Data System (ADS)
Rummel, J. D.; Conley, C. A.
2015-12-01
Beyond the Earth's Moon, Mars is the most studied and to some the most compelling target in the solar system. Mars has the potential to have its own native life, and it has environments that appear quite capable of supporting Earth life. As such, Mars is subject to policies intended to keep Earth organisms from growing on Mars, and missions to Mars are controlled to ensure that we know that no Mars life gets to Earth onboard a returning spacecraft. It seems odd, then, that Mars is also the planet on which we have crashed the most (the Moon still owns the overall title), and is still the only body that has had positive results from a life-detection experiment soft-landed on its surface. Mars has very little water, yet it snows on Mars and we have seen regular night-time frosts and near-surface ice on more than half of the planet. Despite strong UV insolation, Mars also has regular dust storms and winds that can cover spacecraft surfaces with dust that itself may be poisonous, but also can protect microbial life from death by UV light. In spite of surface features and minerals that provide ample evidence of surface water in the past, on today's Mars only relatively short, thin lines that lengthen and retract with the seasons provide a hint that there may be water near the surface of Mars today, but the subsurface is almost totally unexplored by instruments needed to detect water, itself. In the face of these contradictions, the implementation of planetary protection requirements to prevent cross contamination has to proceed with the best available knowledge, and in spite of sometimes substantial costs to spacecraft development and operations. In this paper we will review the status of Mars as a potential (hopefully not inadvertent) abode for life, and describe the measures taken in the past and the present to safeguard the astrobiological study of Mars, and project the requirements for Mars planetary protection in a possible future that involves both sample return and human exploration. Such measures are needed to comply with what is a scientific, legal, and even moral requirement as we move forward to understand the place of Mars in our solar system, and our relationship to both.
Trajectory and System Analysis For Outer-Planet Solar-Electric Propulsion Missions
NASA Technical Reports Server (NTRS)
Cupples, Michael; Woo, Byoungsam; Coverstone, Victoria L.; Hartmann, John W.
2004-01-01
Outer-planet mission and systems analyses are performed using three next generation solar-electric ion thruster models. The impact of variations in thruster model, flight time, launch vehicle, propulsion and power systems characteristics is investigated. All presented trajectories have a single Venus gravity assist and maximize the delivered mass to Saturn or Neptune. The effect of revolution ratio - the ratio of Venusian orbital period to the flight time between launch and flyby dates - is also discussed.
A Future Mars Environment for Science and Exploration
NASA Astrophysics Data System (ADS)
Green, J. L.; Hollingsworth, J.; Brain, D.; Airapetian, V.; Pulkkinen, A.; Dong, C.; Bamford, R.
2017-02-01
Investigation of a greatly enhanced atmosphere of higher pressure and temperature of Mars can be accomplished using existing simulation tools. Simulation results will be reviewed and a projection of how long it may take for Mars to become an exciting new planet to study and to live on.
Habitable zone limits for dry planets.
Abe, Yutaka; Abe-Ouchi, Ayako; Sleep, Norman H; Zahnle, Kevin J
2011-06-01
Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO(2), rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m(2) (170% that of modern Earth), compared to 330 W/m(2) (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago.
Mars Blueberry fields for ever
NASA Astrophysics Data System (ADS)
Moore, Jeffrey M.
2004-04-01
The Mars saga continues. The latest finds -- wide areas covered in balls of haematite, or 'blueberries', and large sulphate deposits in rocks -- enable us to draw in more details of the planet's past climate.
Second International Colloquium on Mars: Abstracts for a colloquium. [bibliography
NASA Technical Reports Server (NTRS)
1979-01-01
Abstracts of 110 papers relating to investigations of the planet Mars and intended for consideration at the colloquium are presented. Entries are arranged alphabetically according to the author's name.
Four Fallacies and an Oversight: Searching for Martian Life
Conley, C.A.
2017-01-01
Abstract While it is anticipated that future human missions to Mars will increase the amount of biological and organic contamination that might be distributed on that planet, robotic missions continue to grow in capability and complexity, requiring precautions to be taken now to protect Mars, and particularly areas of Mars that might be Special Regions. Such precautionary cleanliness requirements for spacecraft have evolved over the course of the space age, as we have learned more about planetary environments, and are the subject of regular deliberations and decisions sponsored by the Committee on Space Research (COSPAR). COSPAR's planetary protection policy is maintained as an international consensus standard for spacecraft cleanliness that is recognized by the United Nations Committee on the Peaceful Uses of Outer Space. In response to the paper presented in this issue by Fairén et al. (2017), we examine both their concept of evidence for possible life on Mars and their logic in recommending that spacecraft cleanliness requirements be relaxed to access Special Regions “before it is too late.” We find that there are shortcomings in their plans to look for evidence of life on Mars, that they do not support their contention that appropriate levels of spacecraft cleanliness are unaffordable, that there are major risks in assuming martian life could be identified by nucleic acid sequence comparison (especially if those sequences are obtained from a Special Region contaminated with Earth life), and that the authors do not justify their contention that exploration with dirty robots, now, is preferable to the possibility that later contamination will be spread by human exploration. We also note that the potential effects of contaminating resources and environments essential to future human occupants of Mars are both significant and not addressed by Fairén et al. (2017). Key Words: Mars—Special Region—Mission—Life detection—Planetary protection. Astrobiology 17, 971–974. PMID:28920443
NASA Astrophysics Data System (ADS)
Schneider, N. M.; Jain, S.; Deighan, J.; Stewart, I. F.; Stiepen, A.; Larson, D. E.; Halekas, J. S.; Mitchell, D. L.; Mazelle, C. X.; Lee, C. O.; Lillis, R. J.; Evans, J. S.; Gerard, J. C. M. C.; Brain, D.; Clarke, J. T.; Mayyasi, M.; Chaffin, M.; Fang, X.; Stevens, M. H.; Crismani, M. M. J.; Lo, D.; Lefèvre, F.; McClintock, B.; Holsclaw, G.; Montmessin, F.; Jakosky, B. M.
2017-12-01
Observations by the Imaging UltraViolet Spectrograph (IUVS) on the MAVEN spacecraft have identified three types of aurora on Mars, each profoundly different from comparable types on Earth and other planets. The primary reason for these differences is Mars' lack of a global magnetic field and presence of localized crustral magnetic fields primarily in the southern hemisphere. IUVS is MAVEN's remote sensing instrument for study of the Mars atmosphere. The instrument records spatially-resolved spectra in the far-UV (110-190 nm) and Mid-UV (180-340 nm). By virtue of an internal scan mirror and a gimbaled instrument platform, IUVS obtains useful spectra on Mars with >50% duty cycle, including Mars' nightside. IUVS performs limb scans during the spacecraft periapse, and obtains UV images of the planet from reconstructed apoapse disk scans. Two types of aurora have been detected on Mars' nightside by virtue of emissions requiring excitation by precipitating charged particles. The first type, discrete aurora, are localized near the boundary between open and closed crustal magnetic field lines. They generally appear at 140 km altitude and the spectra correspond to moderate mean electron energy precipitation. These detections confirm the discovery of discrete discovered by Mars Express/SPICAM. IUVS has discovered a second type, diffuse aurora, which are widespread and potentially global. They occur as low as 70 km altitude; the spectra, depth of penetration and timing are consistent with the precipitation of relativistic electrons from the Sun. IUVS has discovered a third type, proton aurora, on Mars' dayside as excess hydrogen Lyman alpha emission confined to Mars' thermosphere. The intermittent excesses appear correlated with enhanced solar wind conditions. This type is the most common form of aurora detected by IUVS. IUVS results dispel a common misconception that aurora only occur near the edges of closed planetary magnetic field lines. While this is true for terrestrial aurora and discrete aurora on Mars, it is false for Mars' diffuse and proton auroras. In this sense, Mars serves as the best archetype for auroral processes on unmagnetized planets in our solar system and beyond.
2018-05-05
A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 3 at Vandenberg Air Force Base, California, carrying NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander. Liftoff was at 4:05 a.m. PDT (7:05 a.m. EDT). The spacecraft will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created.
Planetary Protection for future missions to Europa and other icy moons: the more things change...
NASA Astrophysics Data System (ADS)
Conley, C. A.; Race, M.
2007-12-01
NASA maintains a planetary protection policy regarding contamination of extraterrestrial bodies by terrestrial microorganisms and organic compounds, and sets limits intended to minimize or prevent contamination resulting from spaceflight missions. Europa continues to be a high priority target for astrobiological investigations, and other icy moons of the outer planets are becoming increasingly interesting as data are returned from current missions. In 2000, a study was released by the NRC that provided recommendations on preventing the forward contamination of Europa. This study addressed a number of issues, including cleaning and sterilization requirements, the applicability of protocols derived from Viking and other missions to Mars, and the need to supplement spore based culture methods in assessing spacecraft bioload. The committee also identified a number of future studies that would improve knowledge of Europa and better define issues related to forward contamination of that body. The standard recommended by the 2000 study and adopted by NASA uses a probabilistic approach, such that spacecraft sent to Europa must demonstrate a probability less than 10-4 per mission of contaminating an europan ocean with one viable terrestrial organism. A number of factors enter into the equation for calculating this probability, including at least bioload at launch, probability of survival during flight, probability of reaching the surface of Europa, and probability of reaching an europan ocean. Recently, the NASA Planetary Protection Subcommittee of the NASA Advisory Council has recommended that the probabilistic approach recommended for Europa be applied to all outer planet icy moons, until another NRC study can be convened to reevaluate the issues in light of recent data. This presentation will discuss the status of current and anticipated planetary protection considerations for missions to Europa and other icy moons.
Planetary Geochemistry Techniques: Probing In-Situ with Neutron and Gamma Rays (PING) Instrument
NASA Technical Reports Server (NTRS)
Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S.; Lin, L.; McClanahan, T.; Nankung, M.; Nowicki, S.; Schweitzer, J.;
2011-01-01
The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our technology development program at NASA Goddard Space Flight Center's (NASA/GSFC) Astrochemistry Laboratory is to extend the application of neutron interrogation techniques to landed in situ planetary composition measurements by using a 14 MeV Pulsed Neutron Generator (PNG) combined with neutron and gamma ray detectors, to probe the surface and subsurface of planetary bodies without the need to drill. We are thus working to bring the PING instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets.
Achievable space elevators for space transportation and starship acceleration
NASA Technical Reports Server (NTRS)
Pearson, Jerome
1990-01-01
Space elevator concepts for low-cost space launches are reviewed. Previous concepts suffered from requirements for ultra-high-strength materials, dynamically unstable systems, or from danger of collision with space debris. The use of magnetic grain streams solves these problems. Magnetic grain streams can support short space elevators for lifting payloads cheaply into Earth orbit, overcoming the material strength problem in building space elevators. Alternatively, the stream could support an international spaceport circling the Earth daily tens of miles above the equator, accessible to advanced aircraft. Mars could be equipped with a similar grain stream, using material from its moons Phobos and Deimos. Grain-stream arcs about the sun could be used for fast launches to the outer planets and for accelerating starships to near lightspeed for interstellar reconnaisance. Grain streams are essentially impervious to collisions, and could reduce the cost of space transportation by an order of magnitude.
Future Directions for Fusion Propulsion Research at NASA
NASA Technical Reports Server (NTRS)
Adams, Robert B.; Cassibry, Jason T.
2005-01-01
Fusion propulsion is inevitable if the human race remains dedicated to exploration of the solar system. There are fundamental reasons why fusion surpasses more traditional approaches to routine crewed missions to Mars, crewed missions to the outer planets, and deep space high speed robotic missions, assuming that reduced trip times, increased payloads, and higher available power are desired. A recent series of informal discussions were held among members from government, academia, and industry concerning fusion propulsion. We compiled a sufficient set of arguments for utilizing fusion in space. .If the U.S. is to lead the effort and produce a working system in a reasonable amount of time, NASA must take the initiative, relying on, but not waiting for, DOE guidance. Arguments for fusion propulsion are presented, along with fusion enabled mission examples, fusion technology trade space, and a proposed outline for future efforts.
DOE R&D Accomplishments Database
1994-01-01
In the early years of the United States space program, lightweight batteries, fuel cells, and solar modules provided electric power for space missions. As missions became more ambitious and complex, power needs increased and scientists investigated various options to meet these challenging power requirements. One of the options was nuclear energy. By the mid-1950s, research had begun in earnest on ways to use nuclear power in space. These efforts resulted in the first radioisotope thermoelectric generators (RTGs), which are nuclear power generators build specifically for space and special terrestrial uses. These RTGs convert the heat generated from the natural decay of their radioactive fuel into electricity. RTGs have powered many spacecraft used for exploring the outer planets of the solar system and orbiting the sun and Earth. They have also landed on Mars and the moon. They provide the power that enables us to see and learn about even the farthermost objects in our solar system.
Growing the terrestrial planets from the gradual accumulation of submeter-sized objects
Levison, Harold F.; Kretke, Katherine A.; Walsh, Kevin J.; Bottke, William F.
2015-01-01
Building the terrestrial planets has been a challenge for planet formation models. In particular, classical theories have been unable to reproduce the small mass of Mars and instead predict that a planet near 1.5 astronomical units (AU) should roughly be the same mass as Earth. Recently, a new model called Viscously Stirred Pebble Accretion (VSPA) has been developed that can explain the formation of the gas giants. This model envisions that the cores of the giant planets formed from 100- to 1,000-km bodies that directly accreted a population of pebbles—submeter-sized objects that slowly grew in the protoplanetary disk. Here we apply this model to the terrestrial planet region and find that it can reproduce the basic structure of the inner solar system, including a small Mars and a low-mass asteroid belt. Our models show that for an initial population of planetesimals with sizes similar to those of the main belt asteroids, VSPA becomes inefficient beyond ∼ 1.5 AU. As a result, Mars’s growth is stunted, and nothing large in the asteroid belt can accumulate. PMID:26512109
2002-02-16
This global map of Mars, based on data from NASA Mars Odyssey, shows estimates for amounts of high-energy-particle cosmic radiation reaching the surface, a serious health concern for any future human exploration of the planet.
Mars Daily Global Image from April 1999
2000-09-08
Twelve orbits a day provide NASA Mars Global Surveyor MOC wide angle cameras a global napshot of weather patterns across the planet. Here, bluish-white water ice clouds hang above the Tharsis volcanoes.
Concept for Mars Volcanic Emission Life Scout
2004-12-21
This artist rendition depicts a concept for NASA Mars orbiter that would scrutinize the martian atmosphere for chemical traces of life or environments supportive of life that might be present anywhere on the planet.
2015-12-22
This concept animation shows just one of many potential concepts for how the first human landing site on Mars might evolve throughout the course of multiple human expeditions to the Red Planet over a decade or more.
Balloon concepts for scientific investigation of Mars and Jupiter
NASA Technical Reports Server (NTRS)
Ash, R. L.
1979-01-01
Opportunities for scientific investigation of the atmospheric planets using buoyant balloons have been explored. Mars and Jupiter were considered in this study because design requirements at those planets bracket nominally the requirements at Venus, and plans are already underway for a joint Russian-French balloon system at Venus. Viking data has provided quantitative information for definition of specific balloon systems at Mars. Free flying balloons appear capable of providing valuable scientific support for more sophisticated Martian surface probes, but tethered and powered aerostats are not attractive. The Jovian environment is so extreme, hot atmosphere balloons may be the only scientific platforms capable of extended operations there. However, the estimated system mass and thermal energy required are very large.
2004-01-06
KENNEDY SPACE CENTER, FLA. --Shown upside down to read the names, this plaque commemorating the STS-107 Space Shuttle Columbia crew now looks over the Mars landscape after the successful landing and deployment of the Mars Exploration Rover “Spirit” Jan. 4 onto the red planet. The plaque, mounted on the high-gain antenna, is shown while the rover underwent final checkout March 28, 2003, in the Payload Hazardous Servicing Facility at KSC.
The Mars Climate Orbiter is prepared for a spin test in the SAEF- 2
NASA Technical Reports Server (NTRS)
1998-01-01
In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), the Mars Climate Orbiter is in place for its spin test. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.
The Mars Climate Orbiter is prepared for a spin test in the SAEF- 2
NASA Technical Reports Server (NTRS)
1998-01-01
In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), workers lower the Mars Climate Orbiter into place on the spin test equipment. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.
Mars primordial crust: unique sites for investigating proto-biologic properties.
Perry, Randall S; Hartmann, William K
2006-12-01
The Martian meteorite collection suggests that intact outcrops or boulder-scale fragments of the 4.5 Ga Martian crust exist within tens of meters of the present day surface of Mars. Mars may be the only planet where such primordial crust samples, representing the first 100 Ma of a planet's environment, are available. The primordial crust has been destroyed on Earth by plate tectonics and other geological phenomena and is buried on the Moon under hundreds or thousands of meters of megaregoltih. Early Mars appears to have been remarkably similar to early Earth, and samples of rock from the first few Ma or first 100 Ma may reveal "missing link" proto-biological forms that could shed light on the transition from abiotic organic chemistry to living cells. Such organic snapshots of nascent life are unlikely to be found on Earth.
Heat of Mars is Love of LIFE?! Two Ways to Look at Mars
NASA Astrophysics Data System (ADS)
Alavipanah, S. K.; Van Gasselt, S.; Mulder, N. J.; Nezammahalleh, M. A.
2013-09-01
Earth and Mars travel in neighboring orbits around the sun. Both are rocky planets, but only the earth has the conditions to support life on. Is such a great difference due to their surface temperatures? It is obvious that the surface temperatures of these planets are governed by two factors of: (a) the amount of energy they receive from the sun and, (b) the composition of their atmospheres. If it is true, we must focus more on the Thermal Remote Sensing on Mars. Since heat is an important factor in any physical, chemical and biological study, it can be said that the heat in the form of love and psychological processes is effective for these studies. In study about life on another planet, not only the thermal characteristics are essential but love or passion in Scientists' efforts that are related to inner heat should also be considered. Therefore, in this paper we review the studies on Mars with the emphasis on the temperature. We consider science, art, literature, and technology as well as any things related to the heat including ice melting, volcanology, soil, morphology, and geothermal. As we believe that it must be bridged between mental and science gaps, shouldn't we make both the art and the science convergent? Therefore, we have used different scientific and art resources to make the role of heat in the Mars clear. We are seeking to answer the question whether the heat can be as a common factor in the researches.
Jupiter: Cosmic Jekyll and Hyde.
Grazier, Kevin R
2016-01-01
It has been widely reported that Jupiter has a profound role in shielding the terrestrial planets from comet impacts in the Solar System, and that a jovian planet is a requirement for the evolution of life on Earth. To evaluate whether jovians, in fact, shield habitable planets from impacts (a phenomenon often referred to as the "Jupiter as shield" concept), this study simulated the evolution of 10,000 particles in each of the jovian inter-planet gaps for the cases of full-mass and embryo planets for up to 100 My. The results of these simulations predict a number of phenomena that not only discount the "Jupiter as shield" concept, they also predict that in a Solar System like ours, large gas giants like Saturn and Jupiter had a different, and potentially even more important, role in the evolution of life on our planet by delivering the volatile-laden material required for the formation of life. The simulations illustrate that, although all particles occupied "non-life threatening" orbits at their onset of the simulations, a significant fraction of the 30,000 particles evolved into Earth-crossing orbits. A comparison of multiple runs with different planetary configurations revealed that Jupiter was responsible for the vast majority of the encounters that "kicked" outer planet material into the terrestrial planet region, and that Saturn assisted in the process far more than has previously been acknowledged. Jupiter also tends to "fix" the aphelion of planetesimals at its orbit irrespective of their initial starting zones, which has the effect of slowing their passages through the inner Solar System, and thus potentially improving the odds of accretion of cometary material by terrestrial planets. As expected, the simulations indicate that the full-mass planets perturb many objects into the deep outer Solar System, or eject them entirely; however, planetary embryos also did this with surprising efficiency. Finally, the simulations predict that Jupiter's capacity to shield or intercept Earth-bound comets originating in the outer Solar System is poor, and that the importance of jovian planets on the formation of life is not that they act as shields, but rather that they deliver life-enabling volatiles to the terrestrial planets.
The evolution of the moon and the terrestrial planets
NASA Technical Reports Server (NTRS)
Toksoez, M. N.; Johnston, D. H.
1974-01-01
The thermal evolutions of the Moon, Mars, Venus and Mercury are calculated theoretically starting from cosmochemical condensation models. An assortment of geological, geochemical and geophysical data are used to constrain both the present day temperatures and the thermal histories of the planets' interiors. Such data imply that the planets were heated during or shortly after formation and that all the terrestrial planets started their differentiations early in their history. The moon, smallest in size, is characterized as a differentiated body with a crust, a thick solid mantle and an interior region which may be partially molten. Mars, intermediate in size, is assumed to have differentiated an Fe-FeS core. Venus is characterized as a planet not unlike the earth in many respects. Core formation has occurred probably during the first billion years after the formation. Mercury, which probably has a large core, may have a 500 km thick solid lithosphere and a partially molten core if it is assumed that some heat sources exist in the core.
The Long, Bumpy Road to a Mars Aeronomy Mission (Invited)
NASA Astrophysics Data System (ADS)
Grebowsky, J. M.; Luhmann, J. G.; Bougher, S. W.; Jakosky, B. M.
2013-12-01
With the advent of the space age, early focus was put into characterizing the Earth's upper atmosphere with aeronomy missions. These missions were designed to study the upper atmosphere region of a planet where the ionosphere is produced with particular attention given to the composition, properties and motion of atmosphere constituents. In particular a very successful US series of Atmosphere Explorer aeronomy spacecraft (1963-1977) was implemented. This upper atmosphere region is the envelope that all energy from the sun must penetrate and is recognized as an inseparable part of a planet's entire atmosphere. Venus was the next planet to have its upper atmosphere/ionosphere deeply probed via the Pioneer Venus Orbiter (1978-1986) that carried a complement of instruments similar to some flown on the Atmosphere Explorers. The planet which humans have long set their imagination on, Mars, has yet to be subjected to the same detailed upper atmosphere perusal until now, with MAVEN. Not that attempts have been wanting. More than 30 spacecraft launches to Mars were attempted, but half were not successful and those that attained orbit came far short of attaining the same level of knowledge of the Martian upper atmosphere. Other countries had planned Mars aeronomy missions that didn't bear fruit - e.g. Mars-96 and Nozomi and the US did studies for two missions, Mars Aeronomy Orbiter and MUADEE, that never were implemented. This is about to change. NASA's Scout Program singled out two aeronomy missions in its final competition and the selected mission, MAVEN, will fly with the needed sophistication of instruments to finally probe and understand the top of Mars' atmosphere. Was this late selection of a NASA aeronomy mission to Mars a philosophy change in US priorities or was it an accident of planning and budget constraints? Was it driven by the developing knowledge that Mars really had an early atmosphere environment conducive to life and that an aeronomy mission is indeed needed to determine where and how fast the life-capable atmosphere disappeared. Or was it thought that other orbiting missions like MEx or MGS that sampled the ionosphere were inadequate to the task? In a way the delay in executing a Mars aeronomy mission has a positive side; i.e. instruments are better developed than in earlier proposals and we have the benefit of MEx and MGS better defining the science objectives for an aeronomy mission. The bumps and potholes that planners of missions to Mars encountered makes an interesting story