Feng, Shen; Wenhan, Jiang
2002-06-10
Phase-structure and aperture-averaged slope-correlated functions with a finite outer scale are derived based on the Taylor hypothesis and a generalized spectrum, such as the von Kármán modal. The effects of the finite outer scale on measuring and determining the character of atmospheric-turbulence statistics are shown especially for an approximately 4-m class telescope and subaperture. The phase structure function and atmospheric coherent length based on the Kolmogorov model are approximations of the formalism we have derived. The analysis shows that it cannot be determined whether the deviation from the power-law parameter of Kolmogorov turbulence is caused by real variations of the spectrum or by the effect of the finite outer scale.
Review of the outer scale of the atmospheric turbulence
NASA Astrophysics Data System (ADS)
Ziad, Aziz
2016-07-01
Outer scale is a relevant parameter for the experimental performance evaluation of large telescopes. Different techniques have been used for the outer scale estimation. In situ measurements with radiosounding balloons have given very small values of outer scale. This latter has also been estimated directly at the ground level from the wavefront analysis with High Angular Resolution (HAR) techniques using interferometric or Shack-Hartmann or more generally AO systems data. Dedicated instruments have been also developed for the outer scale monitoring such as the Generalized Seeing Monitor (GSM) and the Monitor of Outer Scale Profile (MOSP). The measured values of outer scale from HAR techniques, GSM and MOSP are somewhat coherent and are larger than the in situ results. The main explanation of this difference comes from the definition of the outer scale itself. This paper aims to give a review in a non-exhaustive way of different techniques and instruments for the measurement of the outer scale. Comparisons of outer scale measurements will be discussed in the light of the different definitions of this parameter, the associated observable quantities and the atmospheric turbulence model as well.
Inner-outer interactions in a turbulent boundary layer overlying complex roughness
NASA Astrophysics Data System (ADS)
Pathikonda, Gokul; Christensen, Kenneth T.
2017-04-01
Hot-wire measurements were performed in a zero-pressure-gradient turbulent boundary layer overlying both a smooth and a rough wall for the purpose of investigating the details of inner-outer flow interactions. The roughness considered embodies a broad range of topographical scales arranged in an irregular manner and reflects the topographical complexity often encountered in practical flow systems. Single-probe point-wise measurements with a traversing probe were made at two different regions of the rough-wall flow, which was previously shown to be heterogeneous in the spanwise direction, to investigate the distribution of streamwise turbulent kinetic energy and large scale-small scale interactions. In addition, two-probe simultaneous measurements were conducted enabling investigation of inner-outer interactions, wherein the large scales were independently sampled in the outer layer. Roughness-induced changes to the near-wall behavior were investigated, particularly by contrasting the amplitude and frequency modulation effects of inner-outer interactions in the rough-wall flow with well-established smooth-wall flow phenomena. It was observed that the rough-wall flow exhibits both amplitude and frequency modulation features close to the wall in a manner very similar to smooth-wall flow, though the correlated nature of these effects was found to be more intense in the rough-wall flow. In particular, frequency modulation was found to illuminate these enhanced modulation effects in the rough-wall flow. The two-probe measurements helped in evaluating the suitability of the interaction-schematic recently proposed by Baars et al., Exp. Fluids 56, 1 (2015), 10.1007/s00348-014-1876-4 for rough-wall flows. This model was found to be suitable for the rough-wall flow considered herein, and it was found that frequency modulation is a "cleaner" measure of the inner-outer modulation interactions for this rough-wall flow.
NASA Technical Reports Server (NTRS)
Pyle, K. R.; Simpson, J. A.
1985-01-01
Near solar maximum, a series of large radial solar wind shocks in June and July 1982 provided a unique opportunity to study the solar modulation of galactic cosmic rays with an array of spacecraft widely separated both in heliocentric radius and longitude. By eliminating hysteresis effects it is possible to begin to separate radial and azimuthal effects in the outer heliosphere. On the large scale, changes in modulation (both the increasing and recovery phases) propagate outward at close to the solar wind velocity, except for the near-term effects of solar wind shocks, which may propagate at a significantly higher velocity. In the outer heliosphere, azimuthal effects are small in comparison with radial effects for large-scale modulation at solar maximum.
Differential Response to Heat Stress in Outer and Inner Onion Bulb Scales.
Galsurker, Ortal; Doron-Faigenboim, Adi; Teper-Bamnolker, Paula; Daus, Avinoam; Lers, Amnon; Eshel, Dani
2018-05-18
Brown protective skin formation in onion bulbs can be induced by rapid postharvest heat treatment. Onions that were peeled to different depths and were exposed to heat stress showed that only the outer scale formed dry brown skin, whereas the inner scales maintained high water content and did not change color. Our results reveal that browning of the outer scale during heat treatment is due to an enzymatic process that is associated with high levels of oxidation components, such as peroxidase and quercetin glucoside. De-novo transcriptome analysis revealed differential molecular responses of the outer and inner scales to the heat stress. Genes involved in lipid metabolism, oxidation pathways and cell-wall modification were highly expressed in the outer scale during heating. Defense-response-related genes such as those encoding heat-shock proteins, antioxidative stress defense or production of osmoprotectant metabolites were mostly induced in the inner scale in response to the heat exposure. These transcriptomic data led to a conceptual model that suggests sequential processes for browning development and desiccation of the outer scales versus processes associated with defense response and heat tolerance in the inner scale. Thus, the observed physiological differences between the outer and inner scales is supported by the identified molecular differences.
Outer scale of atmospheric turbulence
NASA Astrophysics Data System (ADS)
Lukin, Vladimir P.
2005-10-01
In the early 70's, the scientists in Italy (A.Consortini, M.Bertolotti, L.Ronchi), USA (R.Buser, Ochs, S.Clifford) and USSR (V.Pokasov, V.Lukin) almost simultaneously discovered the phenomenon of deviation from the power law and the effect of saturation for the structure phase function. During a period of 35 years we have performed successively the investigations of the effect of low-frequency spectral range of atmospheric turbulence on the optical characteristics. The influence of the turbulence models as well as a outer scale of turbulence on the characteristics of telescopes and systems of laser beam formations has been determined too.
Zhu, Yun; Zhang, Yixin; Hu, Zhengda
2016-05-16
The spatial coherence radius in moderate-to-strong maritime turbulence is derived on the basis of the modified Rytov approximation. Models are developed to simulate the spiral spectrum of Airy beams propagating through moderate-to-strong maritime turbulence. In the moderate-to-strong irradiance fluctuation region, we analyze the effects of maritime turbulence on the spread of the spiral spectrum of Airy beams in a horizontal propagation path. Results indicate that the increment in the inner-scale significantly increases the received power. By contrast, the outer-scale elicits a negligible effect on the received power if the ratio of the inner-scale to the outer-scale is less than 0.01. The outer-scale affects the received power only if the ratio is greater than 0.01. The performance of a light source is essential for the received power of Airy beams carrying orbital angular momentum (OAM) through moderate-to-strong maritime turbulence. Airy beams with longer wavelengths, smaller OAM numbers, larger radii of the main ring, and smaller diameters of the circular aperture are less affected by maritime turbulence. Autofocusing of Airy beams is beneficial for the propagation of the spiral spectrum in a certain propagation distance. These results contribute to the design of optical communication systems with OAM encoding for moderate-to-strong maritime turbulence.
NASA Astrophysics Data System (ADS)
Ma, Jing; Fu, Yu-Long; Yu, Si-Yuan; Xie, Xiao-Long; Tan, Li-Ying
2018-03-01
A new expression of the scintillation index (SI) for a Gaussian-beam wave propagating through moderate-to-strong non-Kolmogorov turbulence is derived, using a generalized effective atmospheric spectrum and the extended Rytov approximation theory. Finite inner and outer scale parameters and high wave number “bump” are considered in the spectrum with a generalized spectral power law in the range of 3–4, instead of the fixed classical Kolmogorov power law of 11/3. The obtained SI expression is then used to analyze the effects of the spectral power law and the inner scale and outer scale on SI under various non-Kolmogorov fluctuation conditions. These results will be useful in future investigations of optical wave propagation through atmospheric turbulence.
Inner-outer predictive wall model for wall-bounded turbulence in hypersonic flow
NASA Astrophysics Data System (ADS)
Martin, M. Pino; Helm, Clara M.
2017-11-01
The inner-outer predictive wall model of Mathis et al. is modified for hypersonic turbulent boundary layers. The model is based on a modulation of the energized motions in the inner layer by large scale momentum fluctuations in the logarithmic layer. Using direct numerical simulation (DNS) data of turbulent boundary layers with free stream Mach number 3 to 10, it is shown that the variation of the fluid properties in the compressible flows leads to large Reynolds number (Re) effects in the outer layer and facilitate the modulation observed in high Re incompressible flows. The modulation effect by the large scale increases with increasing free-stream Mach number. The model is extended to include spanwise and wall-normal velocity fluctuations and is generalized through Morkovin scaling. Temperature fluctuations are modeled using an appropriate Reynolds Analogy. Density fluctuations are calculated using an equation of state and a scaling with Mach number. DNS data are used to obtain the universal signal and parameters. The model is tested by using the universal signal to reproduce the flow conditions of Mach 3 and Mach 7 turbulent boundary layer DNS data and comparing turbulence statistics between the modeled flow and the DNS data. This work is supported by the Air Force Office of Scientific Research under Grant FA9550-17-1-0104.
Zhou, Xin; Guo, Xuesong; Han, Yunping; Liu, Junxin; Ren, Jincheng; Wang, Yu; Guo, Yantao
2012-09-01
Seven different aeration modes, in which oxygen supply was changed by adjusting the number of aerators, were designed and applied in a full-scale municipal wastewater treatment plant with Orbal oxidation ditch to investigate the influence of dissolved oxygen (DO) on nitrogen removal performance. The full-scale experiment results of 574 days showed that nitrogen removal efficiency depended on the degree of nitrification and denitrification in the outer channel, which was the largest contributor for TN removal in the Orbal oxidation ditch. Appropriate aeration control in the outer channel was essential to balance nitrification and denitrification in the Orbal oxidation ditch. When DO was as low as about 0.2 mg/L in the outer channel, the highest TN removal efficiency of 75% was obtained. Microbial analysis confirmed that aerobic and anaerobic bacteria coexisted in the outer channel. The greater species diversity and more intensive activities of these bacteria in aeration Mode V may be responsible for the higher TN removal efficiency compared with Mode III. These results suggest that different aerated conditions in the Orbal oxidation ditch might have a significant effect on microbial community characteristics and nitrogen removal efficiencies.
NASA Astrophysics Data System (ADS)
Chatterjee, Tanmoy; Peet, Yulia T.
2017-07-01
A large eddy simulation (LES) methodology coupled with near-wall modeling has been implemented in the current study for high Re neutral atmospheric boundary layer flows using an exponentially accurate spectral element method in an open-source research code Nek 5000. The effect of artificial length scales due to subgrid scale (SGS) and near wall modeling (NWM) on the scaling laws and structure of the inner and outer layer eddies is studied using varying SGS and NWM parameters in the spectral element framework. The study provides an understanding of the various length scales and dynamics of the eddies affected by the LES model and also the fundamental physics behind the inner and outer layer eddies which are responsible for the correct behavior of the mean statistics in accordance with the definition of equilibrium layers by Townsend. An economical and accurate LES model based on capturing the near wall coherent eddies has been designed, which is successful in eliminating the artificial length scale effects like the log-layer mismatch or the secondary peak generation in the streamwise variance.
Dausman, Alyssa M.; Doherty, John; Langevin, Christian D.
2010-01-01
Pilot points for parameter estimation were creatively used to address heterogeneity at both the well field and regional scales in a variable-density groundwater flow and solute transport model designed to test multiple hypotheses for upward migration of fresh effluent injected into a highly transmissive saline carbonate aquifer. Two sets of pilot points were used within in multiple model layers, with one set of inner pilot points (totaling 158) having high spatial density to represent hydraulic conductivity at the site, while a second set of outer points (totaling 36) of lower spatial density was used to represent hydraulic conductivity further from the site. Use of a lower spatial density outside the site allowed (1) the total number of pilot points to be reduced while maintaining flexibility to accommodate heterogeneity at different scales, and (2) development of a model with greater areal extent in order to simulate proper boundary conditions that have a limited effect on the area of interest. The parameters associated with the inner pilot points were log transformed hydraulic conductivity multipliers of the conductivity field obtained by interpolation from outer pilot points. The use of this dual inner-outer scale parameterization (with inner parameters constituting multipliers for outer parameters) allowed smooth transition of hydraulic conductivity from the site scale, where greater spatial variability of hydraulic properties exists, to the regional scale where less spatial variability was necessary for model calibration. While the model is highly parameterized to accommodate potential aquifer heterogeneity, the total number of pilot points is kept at a minimum to enable reasonable calibration run times.
27 CFR 9.207 - Outer Coastal Plain.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Outer Coastal Plain. (a) Name. The name of the viticultural area described in this section is “Outer...,000 scale. (c) Boundary. The Outer Coastal Plain viticultural area includes all of Cumberland, Cape... Counties in the State of New Jersey. The boundary of the Outer Coastal Plain viticultural area is as...
The Effects of Earth's Outer Core's Viscosity on Geodynamo Models
NASA Astrophysics Data System (ADS)
Dong, C.; Jiao, L.; Zhang, H.
2017-12-01
Geodynamo process is controlled by mathematic equations and input parameters. To study effects of parameters on geodynamo system, MoSST model has been used to simulate geodynamo outputs under different outer core's viscosity ν. With spanning ν for nearly three orders when other parameters fixed, we studied the variation of each physical field and its typical length scale. We find that variation of ν affects the velocity field intensely. The magnetic field almost decreases monotonically with increasing of ν, while the variation is no larger than 30%. The temperature perturbation increases monotonically with ν, but by a very small magnitude (6%). The averaged velocity field (u) of the liquid core increases with ν as a simple fitted scaling relation: u∝ν0.49. The phenomenon that u increases with ν is essentially that increasing of ν breaks the Taylor-Proudman constraint and drops the critical Rayleigh number, and thus u increases under the same thermal driving force. Forces balance is analyzed and balance mode shifts with variation of ν. When compared with former studies of scaling laws, this study supports the conclusion that in a certain parameter range, the magnetic field strength doesn't vary much with the viscosity, but opposes to the assumption that the velocity field has nothing to do with the outer core viscosity.
Multiwavelength active-optics Shack-Hartmann sensor for monitoring seeing and turbulence outer scale
NASA Astrophysics Data System (ADS)
Martinez, P.
2014-12-01
Context. Real-time seeing and outer-scale estimation at the location of the focus of a telescope is fundamental for predicting the adaptive-optics system's dimensioning and performance, as well as for the operational aspects of instruments. Aims: This study attempts to take advantage of multiwavelength long-exposure images to instantaneously and simultaneously derive the turbulence outer scale and seeing from the full width at half maximum (FWHM) of seeing-limited images taken at the focus of a telescope. These atmospheric parameters are commonly measured in most observatories by different methods located away from the telescope platform, thus differing from the effective estimates at the focus of a telescope, mainly because of differences in pointing orientation, height above the ground, or local seeing bias (dome contribution). Methods: Long-exposure images can either be provided directly by any multiwavelength scientific imager or spectrograph or, alternatively from a modified active-optics Shack-Hartmann sensor (AOSH). From measuring the AOSH sensor spot point spread function FWHMs simultaneously at different wavelengths, one can estimate the instantaneous outer scale in addition to seeing. Results: Multiwavelength long-exposure images provide access to accurate estimates of r0 and L0 by adequate means as long as precise FWHMs can be obtained. Although AOSH sensors are specified to measure not spot sizes but slopes, real-time r0, and L0 measurements from spot FWHMs can be obtained at the critical location where they are needed with major advantages over scientific instrument images: insensitivity to the telescope field stabilization, and continuous availability. Conclusions: Assuming an alternative optical design that allows simultaneous multiwavelength images, the AOSH sensor benefits from all the advantages of real-time seeing and outer scale monitoring. With the substantial interest in the design of extremely large telescopes, such a system could be of considerable importance.
Derivation of Zagarola-Smits scaling in zero-pressure-gradient turbulent boundary layers
NASA Astrophysics Data System (ADS)
Wei, Tie; Maciel, Yvan
2018-01-01
This Rapid Communication derives the Zagarola-Smits scaling directly from the governing equations for zero-pressure-gradient turbulent boundary layers (ZPG TBLs). It has long been observed that the scaling of the mean streamwise velocity in turbulent boundary layer flows differs in the near surface region and in the outer layer. In the inner region of small-velocity-defect boundary layers, it is generally accepted that the proper velocity scale is the friction velocity, uτ, and the proper length scale is the viscous length scale, ν /uτ . In the outer region, the most generally used length scale is the boundary layer thickness, δ . However, there is no consensus on velocity scales in the outer layer. Zagarola and Smits [ASME Paper No. FEDSM98-4950 (1998)] proposed a velocity scale, U ZS=(δ1/δ ) U∞ , where δ1 is the displacement thickness and U∞ is the freestream velocity. However, there are some concerns about Zagarola-Smits scaling due to the lack of a theoretical base. In this paper, the Zagarola-Smits scaling is derived directly from a combination of integral, similarity, and order-of-magnitude analysis of the mean continuity equation. The analysis also reveals that V∞, the mean wall-normal velocity at the edge of the boundary layer, is a proper scale for the mean wall-normal velocity V . Extending the analysis to the streamwise mean momentum equation, we find that the Reynolds shear stress in ZPG TBLs scales as U∞V∞ in the outer region. This paper also provides a detailed analysis of the mass and mean momentum balance in the outer region of ZPG TBLs.
Outer layer effects in wind-farm boundary layers: Coriolis forces and boundary layer height
NASA Astrophysics Data System (ADS)
Allaerts, Dries; Meyers, Johan
2015-11-01
In LES studies of wind-farm boundary layers, scale separation between the inner and outer region of the atmospheric boundary layer (ABL) is frequently assumed, i.e., wind turbines are presumed to fall within the inner layer and are not affected by outer layer effects. However, modern wind turbine and wind farm design tends towards larger rotor diameters and farm sizes, which means that outer layer effects will become more important. In a prior study, it was already shown for fully-developed wind farms that the ABL height influences the power performance. In this study, we use the in-house LES code SP-Wind to investigate the importance of outer layer effects on wind-farm boundary layers. In a suite of LES cases, the ABL height is varied by imposing a capping inversion with varying inversion strengths. Results indicate the growth of an internal boundary layer (IBL), which is limited in cases with low inversion layers. We further find that flow deceleration combined with Coriolis effects causes a change in wind direction throughout the farm. This effect increases with decreasing boundary layer height, and can result in considerable turbine wake deflection near the end of the farm. The authors are supported by the ERC (ActiveWindFarms, grant no: 306471). Computations were performed on VSC infrastructiure (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI.
Outer region scaling using the freestream velocity for nonuniform open channel flow over gravel
NASA Astrophysics Data System (ADS)
Stewart, Robert L.; Fox, James F.
2017-06-01
The theoretical basis for outer region scaling using the freestream velocity for nonuniform open channel flows over gravel is derived and tested for the first time. Owing to the gradual expansion of the flow within the nonuniform case presented, it is hypothesized that the flow can be defined as an equilibrium turbulent boundary layer using the asymptotic invariance principle. The hypothesis is supported using similarity analysis to derive a solution, followed by further testing with experimental datasets. For the latter, 38 newly collected experimental velocity profiles across three nonuniform flows over gravel in a hydraulic flume are tested as are 43 velocity profiles previously published in seven peer-reviewed journal papers that focused on fluid mechanics of nonuniform open channel over gravel. The findings support the nonuniform flows as equilibrium defined by the asymptotic invariance principle, which is reflective of the consistency of the turbulent structure's form and function within the expanding flow. However, roughness impacts the flow structure when comparing across the published experimental datasets. As a secondary objective, we show how previously published mixed scales can be used to assist with freestream velocity scaling of the velocity deficit and thus empirically account for the roughness effects that extend into the outer region of the flow. One broader finding of this study is providing the theoretical context to relax the use of the elusive friction velocity when scaling nonuniform flows in gravel bed rivers; and instead to apply the freestream velocity. A second broader finding highlighted by our results is that scaling of nonuniform flow in gravel bed rivers is still not fully resolved theoretically since mixed scaling relies to some degree on empiricism. As researchers resolve the form and function of macroturbulence in the outer region, we hope to see the closing of this research gap.
Large-Scale Integration of Solid-State Microfluidic Valves With No Moving Parts
2005-01-01
compact and diffuse layer is called outer Helmholtz plane ( OHP ). Potential drop across the diffusion layer is called the zeta potential, ζ. As the...Gouy-Chapman model. This is shown in Fig. 3. The plane at x2 is called the outer Helmholtz plane ( OHP ). Then the total double layer capacitance Cd...Enhanced Electro-Osmotic Pumping With Liquid Bridge and Field Effect Flow Rectification, ” Presented in IEEE MEMS 2004 Conference, Maastricht, The
NASA Astrophysics Data System (ADS)
Vytchikov, Yu. S.; Kostuganov, A. B.; Saparev, M. E.; Belyakov, I. G.
2018-03-01
The presented article considers the influence of infiltrated outdoor air on the heat-shielding characteristics of the exterior walls of modern residential and public buildings. A review of the sources devoted to this problem confirmed its relevance at the present time, especially for high-rise buildings. The authors of the article analyzed the effect of longitudinal and transverse air infiltration on the heat-shielding characteristics of the outer wall of a 25-story building that was built in Samara. The results showed a significant reduction of the reduced resistance to the heat transfer of the outer wall when air is infiltrated through it. There are the results of full-scale examination of external walls to confirm the calculated data. Based on the results of the study carried out by the authors of the article, general recommendations on the internal finishing of the outer walls of high-rise buildings are given.
Magnetic effect on oxide-scale growth of Fe-5Cr alloy
NASA Astrophysics Data System (ADS)
Zhou, C. H.; Li, X. W.; Wang, S. H.; Ma, H. T.
2018-01-01
The oxidation behaviour of Fe-5Cr alloy was investigated at 650°C in the presence of magnetic field. Results indicated that the oxide scales were both consisted of an outer Fe-oxide scale and an inner mixed-oxide scale in the presence or absence of magnetic field. The oxide-scale growth of Fe-5Cr alloy, gained by measuring the oxide-scale thickness, was verified to follow parabolic lawyer. And the oxidation kinetics showed that the applied magnetic field retarded the oxide-scale growth of Fe-5Cr alloy.
NASA Technical Reports Server (NTRS)
Akasofu, S. I.; Hakamada, K.
1983-01-01
Solar wind disturbances caused by successive flares from the same active region are traced to about 20 AU, using the modeling method developed by Hakamada and Akasofu (1982). It is shown that the flare-generated shock waves coalesce with the co-rotating interaction region of the interplanetary magnetic field, resulting in a large-scale magnetic field structure in the outer heliosphere. Such a structure may have considerable effects on the propagation of galactic cosmic rays.
A New View on Origin, Role and Manipulation of Large Scales in Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Corke, T. C.; Nagib, H. M.; Guezennec, Y. G.
1982-01-01
The potential of passive 'manipulators' for altering the large scale turbulent structures in boundary layers was investigated. Utilizing smoke wire visualization and multisensor probes, the experiment verified that the outer scales could be suppressed by simple arrangements of parallel plates. As a result of suppressing the outer scales in turbulent layers, a decrease in the streamwise growth of the boundary layer thickness was achieved and was coupled with a 30 percent decrease in the local wall friction coefficient. After accounting for the drag on the manipulator plates, the net drag reduction reached a value of 20 percent within 55 boundary layer thicknesses downstream of the device. No evidence for the reoccurrence of the outer scales was present at this streamwise distance thereby suggesting that further reductions in the net drag are attainable. The frequency of occurrence of the wall events is simultaneously dependent on the two parameters, Re2 delta sub 2 and Re sub x. As a result of being able to independently control the inner and outer boundary layer characteristics with these manipulators, a different view of these layers emerged.
Kagan, Zachary B; RamRakhyani, Anil Kumar; Lazzi, Gianluca; Normann, Richard A; Warren, David J
2016-11-01
Previous reports of magnetic stimulation of the peripheral nervous system (PNS) used various coil geometries, all with outer diameters larger than 35 mm, and stimulation energies in the 50 J range to evoke neural excitation. Recent reports of central nervous system (CNS) activation used sub-mm-scale solenoid coils with mJ energy levels. The goal of this study was to translate the lower energy levels from the CNS to the PNS via using smaller coils placed in closer proximity to the neural tissue. Such a performance improvement would advance the state of the art of magnetic stimulation and provide a path towards new neuroprosthetic devices. Primarily, we investigated the range of coil outer diameters from 25 mm down to 5 mm to better understand the dependence of coil diameter on energy required for PNS activation. Nine cm- and mm-scale copper solenoid coils, with various resistances, inductances, inner and outer diameters, and heights were compared by quantizing neuromuscular responses to magnetic stimulation via capacitive discharge excitation of rat sciatic nerves in vivo. Additionally, the effects of stimulus duration and coil position were investigated. As opposed to prior work, this study compares a subset of stimulation parameters in an intact nerve preparation, and shows that magnetic stimulation with coils that abut the nerve is a reliable, effective method of neuromuscular stimulation. Although we observed different energies required for neuromuscular activation depending on the coil and excitation parameters used, for the experimental configuration, devices, and stimulus waveform shapes presented in this manuscript, no systematic dependence of PNS activation on coil diameter was found, even for the mm-scale coils investigated herein. However, there was a clear relationship between discharge circuit capacitance and energy required to evoke a neuromuscular response. Coils approximately 12 mm in outer diameter and larger consistently evoked responses, whereas coils 5 mm in outer diameter did not. Furthermore, we observed meaningful neuromuscular excitation when stimulating with energies as low as 20 J. Although this is an improvement over prior work, it is still orders of magnitude greater than the energy required for conventional electrical stimulation, suggesting that these devices are presently not suitable for use in an application requiring continued pulsed stimulation. Nevertheless, these devices are suitable for basic research and as clinical tools that infrequently stimulate, such as in diagnostic applications.
[Impedance between modiolus and different walls of scala tympani].
Du, Qiang; Wang, Zhengmin
2008-10-01
To compare the impedance between the modiolus and the inner wall of scala tympani with that between the modiolus and the outer wall of scala tympani. The impedances between the modiolus and the inner wall of scala tympani and the impedance between the modiolus and the outer wall of scala tympani were measured, calculated and compared under different stimulating rates 0.1, 1.0, 10.0 kHz. The impedance between the modiolus and the inner wall of scala tympani is less than that between the modiolus and the outer wall of scala tympani (P < 0.05). To effectively stimulate the residual neurons in the spiral ganglion, the electrodes should be kept close to the inner wall of scale tympani.
NASA Astrophysics Data System (ADS)
Luo, L.; Cheng, Z.
2017-12-01
Secondary inorganic aerosols (SNA), i.e., sulfate, nitrate and ammonium, account for over 50% of fine particulate matter (PM2.5) during heavy haze episodes over Yangtze River Delta (YRD) region of China. Understanding the origin and transport of SNA is crucial for alleviating haze pollution over YRD. The long range transport from outer-YRD regions had significant influence on SNA during haze episodes over YRD, especially in winter. However, previous studies only using single domain for source analysis are limited on quantifying the local and transported sources in province scale altogether. In this study, the Integrated Source Apportionment Method (ISAM) based on the Weather Research and Forecasting and Community Multi-scale Air Quality (WRF-CMAQ) models was performed to two nested domains, one covering east of China and the other embracing YRD, for source apportionment of SNA in YRD during January, 2015. The results indicated that the outer-YRD transport mainly from upwind northwestern provinces, Shandong and Henan, was the dominant contributor accounting for 36.2% of sulfate during pollution episodes. For nitrate, inner-YRD and outer-YRD transport were the two evenly major regional sources, contributing 51.9% of nitrate during hazes. However, local accumulation was the first contributor accounting for 73.9% of ammonium. The long lifetime of formation process for sulfate and nitrate caused the conspicuous transport effect driven by wind when adjacent regions under severe pollution. Although the total effects of long and short distant transport played a major role for the level of sulfate and nitrate, the extent of contribution from local accumulation was similar with them even larger in province scale. Industry followed by power plant were two principal sources of sulfate for all three types of regional contribution. The main sectoral sources of nitrate were industry and transport for local accumulation while power plant besides them for inner-YRD and outer-YRD transport. For ammonium, volatile sources were major origin for local accumulation while agriculture for inner-YRD transport. These results demonstrate the importance for outer-YRD control during haze episodes for sulfate and nitrate while local emission control for ammonium in YRD.
Calculation of Growth Stress in SiO2 Scales Formed by Oxidation of SiC Fibers (PREPRINT)
2012-07-01
Poisson effect. Tensile hoop stresses can be >2 GPa for thick scales formed at °C. Effects of different fiber radii on growth stresses are examined...original fiber radius and Ω is the ratio of SiC/SiO2 molar volume ratio . The outer radius of the SiO2 scale (c) is (Fig. 1): c = b+w...and νSiO2 are Poison’s ratio for the SiC fiber and the SiO2 scale. Stresses in older increments (j = i-2 to j = 0) are updated with the stress values
Bhanot, Abhishek; Shri, Richa
2010-01-01
Introduction: Diabetic Neuropathy (DN) is a major microvascular complication of uncontrolled diabetes. This may result from increased oxidative stress that accompanies diabetes. Hence plants with antioxidant action play an important role in management of diabetes and its complications. Materials and Methods: This study was designed to evaluate preventive as well as curative effect of methanol extracts of outer scales and edible portions of two plants with established antioxidant action - Allium cepa and Allium sativum, in induced DN in albino mice. Mice were divided into control, diabetic and test extracts treated groups. Test extracts were administered daily at a dose of 200 mg/kg p.o. for 21 days, in the preventive group prior to onset of DN, and in the curative group after the onset of DN. Hyperalgesia and oxidative stress markers were assessed. STZ-diabetic mice showed a significant thermal hyperalgesia (as assessed by the tail-flick test), indicating development of DN. Results: Treatment with test extracts prevented loss in body weight, decreased plasma glucose level, and significantly ameliorated the hyperalgesia, TBARS, serum nitrite and GSH levels in diabetic mice. Conclusion: Methanol extract of outer scales of onion has shown most significant improvement; may be due to higher content of phenolic compounds in outer scales of A. cepa. PMID:21713142
Time-evolving of very large-scale motions in a turbulent channel flow
NASA Astrophysics Data System (ADS)
Hwang, Jinyul; Lee, Jin; Sung, Hyung Jin; Zaki, Tamer A.
2014-11-01
Direct numerical simulation (DNS) data of a turbulent channel flow at Reτ = 930 was scrutinized to investigate the formation of very large-scale motions (VLSMs) by merging of two large-scale motions (LSMs), aligned in the streamwise direction. We mainly focused on the supportive motions by the near-wall streaks during the merging of the outer LSMs. From visualization of the instantaneous flow fields, several low-speed streaks in the near-wall region were collected in the spanwise direction, when LSMs were concatenated in the outer region. The magnitude of the streamwise velocity fluctuations in the streaks was intensified during the spanwise merging of the near-wall streaks. Conditionally-averaged velocity fields around the merging of the outer LSMs showed that the intensified near-wall motions were induced by the outer LSMs and extended over the near-wall regions. The intense near-wall motions influence the formation of the outer low-speed regions as well as the reduction of the convection velocity of the downstream LSMs. The interaction between the near-wall and the outer motions is the essential origin of the different convection velocities of the upstream and downstream LSMs for the formation process of VLSMs by merging. This work was supported by the Creative Research Initiatives (No. 2014-001493) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.
NASA Astrophysics Data System (ADS)
Humble, R. A.; Peltier, S. J.; Bowersox, R. D. W.
2012-10-01
The effects of convex curvature on the outer structure of a Mach 4.9 turbulent boundary layer (Reθ = 4.7 × 104) are investigated using condensate Rayleigh scattering and analyzed using spatial correlations, intermittency, and fractal theory. It is found that the post-expansion boundary layer structure morphology appears subtle, but certain features exhibit a more obvious response. The large-scale flow structures survive the initial expansion, appearing to maintain the same physical size. However, due to the nature of the expansion fan, a differential acceleration effect takes place across the flow structures, causing them to be reoriented, leaning farther away from the wall. The onset of intermittency moves closer towards the boundary layer edge and the region of intermittent flow decreases. It is likely that this reflects the less frequent penetration of outer irrotational fluid into the boundary layer, consistent with a boundary layer that is losing its ability to entrain freestream fluid. The fractal dimension of the turbulent/nonturbulent interface decreases with increasing favorable pressure gradient, indicating that the interface's irregularity decreases. Because fractal scale similarity does not encompass the largest scales, this suggests that the change in fractal dimension is due to the action of the smaller-scales, consistent with the idea that the small-scale flow structures are quenched during the expansion in response to bulk dilatation.
Cosmic Ray Anisotropies and Magnetic Turbulence Beyond the Heliopause
NASA Astrophysics Data System (ADS)
Florinski, V. A.
2016-12-01
The very local interstellar medium (VLISM), including the outer heliosheath, represents a quiet, almost laminar environment for cosmic-ray propagation. The dominant scale of magnetic-field fluctuations in the VLISM is about a million astronomical units - three orders of magnitude larger than the size of the heliosphere. Under these conditions the transport of cosmic rays is governed mainly by three effects: (a) draping of the magnetic field around the heliopause, (b) bending of magnetic field lines representing VLISM turbulence at large scales, and (c) local deformation of magnetic field lines by disturbances injected into VLISM as a result of solar-wind merged interaction regions impinging on the heliopause. Using analytic and computer-based models of the outer heliosheath magnetic field and phase space trajectory integration techniques to simulate charged particle transport, the relationship between the magnetic field properties and hundred MeV galactic cosmic ray ion anisotropies is investigated. It is demonstrated that anisotropy measurements can be used to deduce the amplitude and spatial scale of interstellar magnetic turbulence.
USDA-ARS?s Scientific Manuscript database
This paper explores the scales and characteristics of form roughness along the outer banks of two bends on a large meandering river through investigation of irregularities in bank contours and local topographic variability on the bank face. The analysis also examines how roughness varies over the ve...
Investigation of Outer Length Scale In Optical Turbulence
2003-12-01
experimental situations. This thesis investigated three outer scales of turbulence using experimental data from two instruments: microthermal probes...represents the size of the velocity fluctuations and the boundary thermal convective cell size. The microthermal balloon data had excessive scatter...optical structure parameter C than the microthermal balloon data. The separation of daytime convective thermal plumes was found from the acoustic
NASA Astrophysics Data System (ADS)
Matsui, H.; Buffett, B. A.
2017-12-01
The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.
Spaide, Richard F; Curcio, Christine A
2011-09-01
To evaluate the validity of commonly used anatomical designations for the four hyperreflective outer retinal bands seen in current-generation optical coherence tomography, a scale model of outer retinal morphology was created using published information for direct comparison with optical coherence tomography scans. Articles and books concerning histology of the outer retina from 1900 until 2009 were evaluated, and data were used to create a scale model drawing. Boundaries between outer retinal tissue compartments described by the model were compared with intensity variations of representative spectral-domain optical coherence tomography scans using longitudinal reflectance profiles to determine the region of origin of the hyperreflective outer retinal bands. This analysis showed a high likelihood that the spectral-domain optical coherence tomography bands attributed to the external limiting membrane (the first, innermost band) and to the retinal pigment epithelium (the fourth, outermost band) are correctly attributed. Comparative analysis showed that the second band, often attributed to the boundary between inner and outer segments of the photoreceptors, actually aligns with the ellipsoid portion of the inner segments. The third band corresponded to an ensheathment of the cone outer segments by apical processes of the retinal pigment epithelium in a structure known as the contact cylinder. Anatomical attributions and subsequent pathophysiologic assessments pertaining to the second and third outer retinal hyperreflective bands may not be correct. This analysis has identified testable hypotheses for the actual correlates of the second and third bands. Nonretinal pigment epithelium contributions to the fourth band (e.g., Bruch membrane) remain to be determined.
A rotating superconducting solenoid for 100 kWh energy storage. [in space
NASA Technical Reports Server (NTRS)
Waynert, J.; Eyssa, Y. M.; Mcintosh, G. E.; Feng, Z.
1985-01-01
Two concentric superconducting solenoids, one rotating, the other stationary are analyzed for energy storage in space. Energy is transferred from the rotating mass through a shaft coupled to a motor-generator. The inner windings interact with the magnetic field of the outer solenoid to cancel the centrifugal and self-field forces of the flywheel rim. Current is induced in the inner solenoid thus requiring no separate power supply, while the current in the outer solenoid must vary with the angular velocity of the flywheel. The effect of the gap and scaling laws are developed. The efficiency in energy per unit mass is marginally attractive.
Gravity Scaling of a Power Reactor Water Shield
NASA Technical Reports Server (NTRS)
Reid, Robert S.; Pearson, J. Boise
2007-01-01
A similarity analysis on a water-based reactor shield examined the effect of gravity on free convection between a reactor shield inner and outer vessel boundaries. Two approaches established similarity between operation on the Earth and the Moon: 1) direct scaling of Rayleigh number equating gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant. Nusselt number for natural convection (laminar and turbulent) is assumed of form Nu = CRa(sup n).
Kinetic roughening and porosity scaling in film growth with subsurface lateral aggregation.
Reis, F D A Aarão
2015-06-01
We study surface and bulk properties of porous films produced by a model in which particles incide perpendicularly to a substrate, interact with deposited neighbors in its trajectory, and aggregate laterally with probability of order a at each position. The model generalizes ballisticlike models by allowing attachment to particles below the outer surface. For small values of a, a crossover from uncorrelated deposition (UD) to correlated growth is observed. Simulations are performed in 1+1 and 2+1 dimensions. Extrapolation of effective exponents and comparison of roughness distributions confirm Kardar-Parisi-Zhang roughening of the outer surface for a>0. A scaling approach for small a predicts crossover times as a(-2/3) and local height fluctuations as a(-1/3) at the crossover, independent of substrate dimension. These relations are different from all previously studied models with crossovers from UD to correlated growth due to subsurface aggregation, which reduces scaling exponents. The same approach predicts the porosity and average pore height scaling as a(1/3) and a(-1/3), respectively, in good agreement with simulation results in 1+1 and 2+1 dimensions. These results may be useful for modeling samples with desired porosity and long pores.
Depletion of the Outer Asteroid Belt
Liou; Malhotra
1997-01-17
During the early history of the solar system, it is likely that the outer planets changed their distance from the sun, and hence, their influence on the asteroid belt evolved with time. The gravitational influence of Jupiter and Saturn on the orbital evolution of asteroids in the outer asteroid belt was calculated. The results show that the sweeping of mean motion resonances associated with planetary migration efficiently destabilizes orbits in the outer asteroid belt on a time scale of 10 million years. This mechanism provides an explanation for the observed depletion of asteroids in that region.
Depletion of the Outer Asteroid Belt
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi; Malhotra, Renu
1997-01-01
During the early history of the solar system, it is likely that the outer planets changed their distance from the sun, and hence, their influence on the asteroid belt evolved with time. The gravitational influence of Jupiter and Saturn on the orbital evolution of asteroids in the outer asteroid belt was calculated. The results show that the sweeping of mean motion resonances associated with planetary migration efficiently destabilizes orbits in the outer asteroid belt on a time scale of 10 million years. This mechanism provides an explanation for the observed depletion of asteroids in that region.
Characterization of the Alumina Scale formed on Coated and Uncoated Doped Superalloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unocic, Kinga A; Parish, Chad M; Pint, Bruce A
2011-01-01
To investigate the mechanisms by which Y and La dopants affect the oxidation behavior of Ni base single crystal superalloys, the oxide scales formed on two variants of a commercial X4 alloy, each with and without a MCrAlYHfSi coating were characterized. The alloy systems were oxidized for 100h at 1100 C and then examined using analytical transmission electron microscopy. Without a coating, a duplex scale was formed on the superalloy surface comprised of an outer Ni rich spinel type layer and an inner columnar Al2O3 layer. In this case, Hf and Ti were found segregated to the alumina grain boundariesmore » in the outer part of the scale on both alloys but only Hf was detected near the metal alumina interface. There was no evidence of Ta, Y or La segregation to the scale grain boundaries after this exposure. The scale formed on the alloys with the thermally sprayed coating was primarily alumina, and Y and Hf segregated to the alumina grain boundaries for both alloys. There was evidence of Ti rich oxides in the outer part of the scale indicating that Ti had diffused through the coating into the thermally grown oxide but La was not found.« less
Theory of nanotube faraday cage
NASA Astrophysics Data System (ADS)
Roxana Margine, Elena; Nisoli, Cristiano; Kolmogorov, Aleksey; Crespi, Vincent H.
2003-03-01
Charge transfer between dopants and double-wall carbon nanotubes is examined theoretically. We model the system as a triple cylindrical capacitor with the dopants forming a shell around the outer wall of the nanotube. The total energy of the system contains three terms: the band structure energies of the inner and outer tube, calculated in a tight-binding model with rigid bands, and the electrostatic energy of the tri-layer distribution. Even for metallic inner and outer tube walls, wherein the diameter dependence of the bandgap does not favor the outer wall, nearly all of the dopant charge resides on the outer layer, a nanometer-scale Faraday cage. The calculated charge distribution is in agreement with recent experimental measurements.
Turbulent Suspension Mechanics in Sediment-Laden Boundary Layers
NASA Astrophysics Data System (ADS)
Kiger, K.
2013-05-01
Accurate prediction of benthic sediment transport is a challenging problem due the two-phase nature of the flow near the mobile bed, as well as the large difference in scales between the meso-scale flow and smaller-scale structures interacting with the sediment bed. Of particular importance is the parameterization of the physics at the bottom boundary. This requires estimation of key quantities such as effective bed stress and sediment flux based on the on the outer regional-scale velocity field. An appropriate turbulence/sediment parameterization is needed to specify the correct bottom momentum and sediment flux. Prior work has shown the shortcoming of standard models to properly predict such behavior, which is speculated to result from the dominant role played by large-scale coherent structures in the generation of the bed morphology, suspension of particulates, and important particle-fluid coupling effects. The goal of the current work is to elucidate such relationships through a combination of direct simulation and laboratory-scale experiment, the latter of which will be the primary focus of this paper. Specifically, two-phase PIV is used to provide a novel quantitative description of both phases, allowing for a detailed examination of the flow behavior and particle-turbulence coupling. Experiments were conducted in both a steady, fully-developed turbulent channel flow and an oscillatory boundary layer in order to examine the fundamental behaviour of the suspension and particle coupling mechanisms. The turbulent channel flow measurements indicated an increase in the effective wall stress due to the presence of the sediment on the order of 7%. The sediment suspension was directly correlated with the ejection dynamics of prototypical hairpin structures, but were found to settle back towards the bed in a manner uncorrelated with the fluid structure. In contrast, the measurements of the oscillatory flow reveal it to be dominated by alternating streaming motions and the ejection of a large-scale vortex at flow reversal. The vortex formation is initiated by the separation from the lee side of the dune during the relaxation of the favourable pressure gradient approaching the peak velocity. Through the deceleration phase, the recirculation region strengthens and grows, detaching into a free vortex as flow reversal is approached. Examining the fluctuating component of Reynolds stress show the vortex to be the dominant source of turbulent transport into the outer flow, which gradually decays as it is transported over the dunes. This vortex is also seen to be the major source of sediment transport into the outer flow region, with the time-averaged sediment flux streaming in a recirculating pattern emanating from the dune crests. The recirculation region is continually populated by particles scoured from the high-shear region on the upstream stoss slope, and upon flow reversal are ejected into the outer flow. Comparison of particle a fluid velocity shows significant slip in the vortex/particle cloud, with the particles settling relative to the fluid at close to 2 cm/s. In other regions of the flow, the mean slip magnitude is generally small, but negative, as one might expect owing to the net settling influence exerted by gravity.
Metallurgical Analysis of Cracks Formed on Coal Fired Boiler Tube
NASA Astrophysics Data System (ADS)
Kishor, Rajat; Kyada, Tushal; Goyal, Rajesh K.; Kathayat, T. S.
2015-02-01
Metallurgical failure analysis was carried out for cracks observed on the outer surface of a boiler tube made of ASME SA 210 GR A1 grade steel. The cracks on the surface of the tube were observed after 6 months from the installation in service. A careful visual inspection, chemical analysis, hardness measurement, detailed microstructural analysis using optical and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy were carried out to ascertain the cause for failure. Visual inspection of the failed tube revealed the presence of oxide scales and ash deposits on the surface of the tube exposed to fire. Many cracks extending longitudinally were observed on the surface of the tube. Bulging of the tube was also observed. The results of chemical analysis, hardness values and optical micrographs did not exhibit any abnormality at the region of failure. However, detailed SEM with EDS analysis confirmed the presence of various oxide scales. These scales initiated corrosion at both the inner and outer surfaces of the tube. In addition, excessive hoop stress also developed at the region of failure. It is concluded that the failure of the boiler tube took place owing to the combined effect of the corrosion caused by the oxide scales as well as the excessive hoop stress.
Ionospheric scintillation by a random phase screen Spectral approach
NASA Technical Reports Server (NTRS)
Rufenach, C. L.
1975-01-01
The theory developed by Briggs and Parkin, given in terms of an anisotropic gaussian correlation function, is extended to a spectral description specified as a continuous function of spatial wavenumber with an intrinsic outer scale as would be expected from a turbulent medium. Two spectral forms were selected for comparison: (1) a power-law variation in wavenumber with a constant three-dimensional index equal to 4, and (2) Gaussian spectral variation. The results are applied to the F-region ionosphere with an outer-scale wavenumber of 2 per km (approximately equal to the Fresnel wavenumber) for the power-law variation, and 0.2 per km for the Gaussian spectral variation. The power-law form with a small outer-scale wavenumber is consistent with recent F-region in-situ measurements, whereas the gaussian form is mathematically convenient and, hence, mostly used in the previous developments before the recent in-situ measurements. Some comparison with microwave scintillation in equatorial areas is made.
Inner-outer interactions in the convective atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Salesky, S.
2017-12-01
Recently, observational and numerical studies have revealed the existence of so-called large scale motions (LSMs) that populate the logarithmic layer of wall-bounded turbulent shear flows and modulate the amplitude and frequency of turbulence dynamics near the ground. Properties of LSMs are well understood in neutrally stratified flows over smooth and rough walls. However, the implications of previous studies for the convective atmospheric boundary layer (CBL) are not entirely clear, since the morphology of both small-scale and large-scale turbulent structures is known to be strongly affected by buoyancy [e.g. Salesky et al., Bound.-Layer Meteorol. 163:41-68 (2017)]. In the present study, inner-outer interactions in the CBL are investigated using a suite of large eddy simulations spanning neutral to highly convective conditions. Simulation results reveal that, as the atmosphere becomes increasingly unstable, the inclination angle of structures near the ground increases from 12-15° to nearly 90°. Furthermore, the scale separation between the inner and outer peaks in the premultiplied velocity spectra decreases until only a single peak remains (comparable in magnitude to the boundary layer depth). The extent to which the amplitude modulation of surface layer turbulence by outer layer structures changes with increasing instability will be considered, following the decoupling procedure proposed by Mathis et al. [J. Fluid Mech., vol 628, 311-337 (2009)]. Frequency modulation of surface layer turbulence also will be examined, following the wavelet analysis approach of Baars et al. [Exp. Fluids, 56:188, (2015)].
NASA Astrophysics Data System (ADS)
Tan, Zhenkun; Ke, Xizheng
2017-10-01
The variance of angle-of-arrival fluctuation of the partially coherent Gaussian-Schell Model (GSM) beam propagations in the slant path, based on the extended Huygens-Fresnel principle and the model of atmospheric refraction index structural constant proposed by the international telecommunication union-radio (ITU-R), has been investigated under the modified Hill turbulence model. The expression of that has been obtained. Firstly, the effects of optical wavelength, the inner-and-outer scale of the turbulence and turbulence intensity on the variance of angle-of-arrival fluctuation have been analyzed by comparing with the partially coherent GSM beam and the completely coherent Gaussian beam. Secondly, the variance of angle-of-arrival fluctuation has been compared with the von Karman spectrum and the modified Hill spectrum under the partially coherent GSM beam. Finally, the effects of beam waist radius and partial coherence length on the variance of angle-of-arrival of the collimated (focused) beam have been analyzed under the modified Hill turbulence model. The results show that the influence of the variance of angle-of-arrival fluctuation for the inner scale effect is larger than that of the outer scale effect. The variance of angle-of-arrival fluctuation under the modified Hill spectrum is larger than that of the von Karman spectrum. The influence of the waist radius on the variance of angle-of-arrival for the collimated beam is less than focused the beam. This study will provide a necessary theoretical basis for the experiments of partially coherent GSM beam propagation through atmosphere turbulence.
Streak instability as an initiating mechanism of the large-scale motions in a turbulent channel flow
NASA Astrophysics Data System (ADS)
de Giovanetti, Matteo; Sung, Hyung Jin; Hwang, Yongyun
2016-11-01
The large-scale motions (or bulges) have often been believed to be formed via merge and/or growth of the near-wall hairpin vortical structures. Here, we report our observation that they can be directly generated by an instability of the amplified streaky motions in the outer region (i.e. very-large-scale motions) through the self-sustaining process. We design a LES-based numerical experiment in turbulent channel flow for Reτ = 2000 where a body forcing is implemented to artificially drive an infinitely long streaky motion in the outer layer. As the forcing amplitude is increased, it is found that a new energetic structure emerges at λx 3 4 h of the streamwise length (h is the half height of channel) particularly in the wall-normal and spanwise velocities. A careful statistical examination reveals that this structure is likely to be linked with the sinuous-mode streak instability of the amplified streak, consistent with previous theoretical studies. Application of dynamic mode decomposition to this instability further shows that the phase speed of this structure scales with the outer velocity and it is initiated around the critical layer of the streaky flow.
Global properties of the plasma in the outer heliosphere. I - Large-scale structure and evolution
NASA Technical Reports Server (NTRS)
Barnes, A.; Mihalov, J. D.; Gazis, P. R.; Lazarus, A. J.; Belcher, J. W.; Gordon, G. S., Jr.; Mcnutt, R. L., Jr.
1992-01-01
Pioneers 10 and 11, and Voyager 2, have active plasma analyzers as they proceed through heliocentric distances of the order of 30-50 AU, facilitating comparative studies of the global character of the outer solar wind and its variation over the solar cycle. Careful study of these data show that wind ion temperature remains constant beyond 15 AU, and that there may be large-scale variations of temperature with celestial longitude and heliographic latitude. There has thus far been no indication of a heliospheric terminal shock.
The Li And Be Dips Revisited: The Role Of Gyroscopic Pumping.
NASA Astrophysics Data System (ADS)
Garaud, Pascale; Bodenheimer, P.
2011-01-01
The existence of a dip in the observed abundances of Li and Be in young stars in the mass range 1.3 to 1.5 solar masses strongly suggests the presence of an additional mixing mechanism to transport these elements from the outer convection zone down to the region where they are destroyed. However, no simple model to date has been able to reproduce simultaneously the respective amplitudes of the Li and the Be dips, as well as their shapes. We study here the effect of an important new mechanism for rotational mixing called "gyroscopic pumping", first noted for its importance in the dynamics of the solar interior, and find that it does indeed provide an elegant answer to this long-standing problem. Gyroscopic pumping is a simple and very generic consequence of angular momentum conservation in differentially rotating convective regions. The perpetual azimuthal force driving the differential rotation also drives a large-scale meridional circulation through angular momentum conservation. We show here how, specifically for the mass range of the Li-dip stars, the flows thus pumped form a slow, large-scale "conveyor belt" between the inner convective core and the outer convection zone. Li- and Be-rich material flowing down from the outer regions is slowly replaced by Li- and Be-poor material flowing up from the inner regions. Meanwhile, turbulent mixing in the thin overshoot layer also replenishes the outer convection zone with Li- and Be-rich material. Overall, the balance between advection by gyroscopic pumping and turbulent mixing by overshooting motions is found to provide a rather good agreement with observations of Li and Be, within a single and very simple framework. This work was funded by an NSF CAREER award of the presenting author.
Equivalent refractive-index structure constant of non-Kolmogorov turbulence.
Li, Yujie; Zhu, Wenyue; Wu, Xiaoqing; Rao, Ruizhong
2015-09-07
The relationship between the non-Kolmogorov refractive-index structure constant and the Kolmogorov refractive-index structure constant is derived by using the refractive-index structure function and the variance of refractive-index fluctuations. It shows that the non-Kolmogorov structure constant is proportional to the Kolmogorov structure constant and the scaling factor depends on the outer scale and the spectral power law. For a fixed Kolmogorov structure constant, the non-Kolmogorov structure constant increases with a increasing outer scale for the power law less than 11/3, the trend is opposite for the power law greater than 11/3. This equivalent relation provides a way of obtaining the non-Kolmogorov structure constant by using the Kolmogorov structure constant.
NASA Astrophysics Data System (ADS)
Feldmann, Daniel; Bauer, Christian; Wagner, Claus
2018-03-01
We present results from direct numerical simulations (DNS) of turbulent pipe flow at shear Reynolds numbers up to Reτ = 1500 using different computational domains with lengths up to ?. The objectives are to analyse the effect of the finite size of the periodic pipe domain on large flow structures in dependency of Reτ and to assess a minimum ? required for relevant turbulent scales to be captured and a minimum Reτ for very large-scale motions (VLSM) to be analysed. Analysing one-point statistics revealed that the mean velocity profile is invariant for ?. The wall-normal location at which deviations occur in shorter domains changes strongly with increasing Reτ from the near-wall region to the outer layer, where VLSM are believed to live. The root mean square velocity profiles exhibit domain length dependencies for pipes shorter than 14R and 7R depending on Reτ. For all Reτ, the higher-order statistical moments show only weak dependencies and only for the shortest domain considered here. However, the analysis of one- and two-dimensional pre-multiplied energy spectra revealed that even for larger ?, not all physically relevant scales are fully captured, even though the aforementioned statistics are in good agreement with the literature. We found ? to be sufficiently large to capture VLSM-relevant turbulent scales in the considered range of Reτ based on our definition of an integral energy threshold of 10%. The requirement to capture at least 1/10 of the global maximum energy level is justified by a 14% increase of the streamwise turbulence intensity in the outer region between Reτ = 720 and 1500, which can be related to VLSM-relevant length scales. Based on this scaling anomaly, we found Reτ⪆1500 to be a necessary minimum requirement to investigate VLSM-related effects in pipe flow, even though the streamwise energy spectra does not yet indicate sufficient scale separation between the most energetic and the very long motions.
Effects of large-scale wind driven turbulence on sound propagation
NASA Technical Reports Server (NTRS)
Noble, John M.; Bass, Henry E.; Raspet, Richard
1990-01-01
Acoustic measurements made in the atmosphere have shown significant fluctuations in amplitude and phase resulting from the interaction with time varying meteorological conditions. The observed variations appear to have short term and long term (1 to 5 minutes) variations at least in the phase of the acoustic signal. One possible way to account for this long term variation is the use of a large scale wind driven turbulence model. From a Fourier analysis of the phase variations, the outer scales for the large scale turbulence is 200 meters and greater, which corresponds to turbulence in the energy-containing subrange. The large scale turbulence is assumed to be elongated longitudinal vortex pairs roughly aligned with the mean wind. Due to the size of the vortex pair compared to the scale of the present experiment, the effect of the vortex pair on the acoustic field can be modeled as the sound speed of the atmosphere varying with time. The model provides results with the same trends and variations in phase observed experimentally.
Propagation of Interplanetary Disturbances in the Outer Heliosphere
NASA Technical Reports Server (NTRS)
Wang, Chi
2005-01-01
Contents include the following: 1. We have developed a one-dimensional, spherically symmetric, multi-fluid MHD model that includes solar wind protons and electrons, pickup ions, and interstellar neutral hydrogen. This model advances the existing solar wind models for the outer heliosphere in two important ways: one is that it distinguishes solar wind protons from pickup ions, and the other is that it allows for energy transfer from pickup ions to the solar wind protons. Model results compare favorably with the Voyager 2 observations. 2. 2. Solar wind slowdown and interstellar neutral density. The solar wind in the outer heliosphere is fundamentally different from that in the inner heliosphere since the effects of interstellar neutrals become significant. 3. ICME propagation from the inner to outer heliosphere. Large coronal mass ejections (CMEs) have major effects on the structure of the solar wind and the heliosphere. The plasma and magnetic field can be compressed ahead of interplanetary CMEs. 4. During the current solar cycle (Cycle 23), several major CMEs associated with solar flares produced large transient shocks which were observed by widely-separated spacecraft such as Wind at Earth and Voyager 2 beyond 60 AU. Using data from these spacecraft, we use the multi-fluid model to investigate shock propagation and interaction in the heliosphere. Specifically, we studied the Bastille Day 2000, April 2001 and Halloween 2003 events. 5. Statistical properties of the solar wind in the outer heliosphere. In a collaboration with L.F. Burlaga of GSFC, it is shown that the basic statistical properties of the solar wind in the outer heliosphere can be well produced by our model. We studied the large-scale heliospheric magnetic field strength fluctuations as a function of distance from the Sun during the declining phase of a solar cycle, using our numerical model with observations made at 1 AU during 1995 as input. 6. Radial heliospheric magnetic field events. The heliospheric magnetic field (HMF) direction, on average, conforms well to the Parker spiral.
NASA Technical Reports Server (NTRS)
Herron, Andrew J.; Reed, Darren K.; Nance, Donald K.
2015-01-01
Characterization of flight vehicle unsteady aerodynamics is often studied via large scale wind tunnel testing. Boundary layer noise is measured by miniature pressure transducers installed in a model. Noise levels (2-5 dB ref. 20 µPa) can be induced when transducer is mounted out of flush with model outer surface. This effect must be minimized to accurately determine aerodynamically induced acoustic environments.
Dark Energy Domination In The Virgocentric Flow
NASA Astrophysics Data System (ADS)
Byrd, Gene; Chernin, A. D.; Karachentsev, I. D.; Teerikorpi, P.; Valtonen, M.; Dolgachev, V. P.; Domozhilova, L. M.
2011-04-01
Dark energy (DE) was first observationally detected at large Gpc distances. If it is a vacuum energy formulated as Einstein's cosmological constant, Λ, DE should also have dynamical effects at much smaller scales. Previously, we found its effects on much smaller Mpc scales in our Local Group (LG) as well as in other nearby groups. We used new HST observations of member 3D distances from the group centers and Doppler shifts. We find each group's gravity dominates a bound central system of galaxies but DE antigravity results in a radial recession increasing with distance from the group center of the outer members. Here we focus on the much larger (but still cosmologically local) Virgo Cluster and systems around it using new observations of velocities and distances. We propose an analytic model whose key parameter is the zero-gravity radius (ZGR) from the cluster center where gravity and DE antigravity balance. DE brings regularity to the Virgocentric flow. Beyond Virgo's 10 Mpc ZGR, the flow curves to approach a linear global Hubble law at larger distances. The Virgo cluster and its outer flow are similar to the Local Group and its local outflow with a scaling factor of about 10; the ZGR for Virgo is 10 times larger than that of the LG. The similarity of the two systems on the scales of 1 to 30 Mpc suggests that a quasi-stationary bound central component and an expanding outflow applies to a wide range of groups and clusters due to small scale action of DE as well as gravity. Chernin, et al 2009 Astronomy and Astrophysics 507, 1271 http://arxiv.org/abs/1006.0066 http://arxiv.org/abs/1006.0555
Negotiating Sustainability across Scales: Community Organizing in the Outer Hebrides
ERIC Educational Resources Information Center
Singh, Jaspal Naveel; Bartlett, Tom
2017-01-01
This paper represents voices of community organizers on Barra, a small island in the Outer Hebrides, Scotland. Although, arguably Barra is geographically and socio-politically located in the peripheries of Scotland, Britain and Europe, the island has been a center of North Atlantic maritime trade networks for centuries. In the current phase of…
Adaptive imaging through far-field turbulence
NASA Astrophysics Data System (ADS)
Troxel, Steven E.; Welsh, Byron M.; Roggemann, Michael C.
1993-11-01
This paper presents a new method for calculating the field angle dependent average OTF of an adaptive optic system and compares this method to calculations based on geometric optics. Geometric optics calculations are shown to be inaccurate due to the diffraction effects created by far-field turbulence and the approximations made in the atmospheric parameters. Our analysis includes diffraction effects and properly accounts for the effect of the atmospheric turbulence scale sizes. We show that for any atmospheric C(superscript 2)(subscript n) profile, the actual OTF is always better than the OTF calculated using geometric optics. The magnitude of the difference between the calculation methods is shown to be dependent on the amount of far- field turbulence and the values of the outer scale dimension.
Online estimation of the wavefront outer scale profile from adaptive optics telemetry
NASA Astrophysics Data System (ADS)
Guesalaga, A.; Neichel, B.; Correia, C. M.; Butterley, T.; Osborn, J.; Masciadri, E.; Fusco, T.; Sauvage, J.-F.
2017-02-01
We describe an online method to estimate the wavefront outer scale profile, L0(h), for very large and future extremely large telescopes. The stratified information on this parameter impacts the estimation of the main turbulence parameters [turbulence strength, Cn2(h); Fried's parameter, r0; isoplanatic angle, θ0; and coherence time, τ0) and determines the performance of wide-field adaptive optics (AO) systems. This technique estimates L0(h) using data from the AO loop available at the facility instruments by constructing the cross-correlation functions of the slopes between two or more wavefront sensors, which are later fitted to a linear combination of the simulated theoretical layers having different altitudes and outer scale values. We analyse some limitations found in the estimation process: (I) its insensitivity to large values of L0(h) as the telescope becomes blind to outer scales larger than its diameter; (II) the maximum number of observable layers given the limited number of independent inputs that the cross-correlation functions provide and (III) the minimum length of data required for a satisfactory convergence of the turbulence parameters without breaking the assumption of statistical stationarity of the turbulence. The method is applied to the Gemini South multiconjugate AO system that comprises five wavefront sensors and two deformable mirrors. Statistics of L0(h) at Cerro Pachón from data acquired during 3 yr of campaigns show interesting resemblance to other independent results in the literature. A final analysis suggests that the impact of error sources will be substantially reduced in instruments of the next generation of giant telescopes.
Self-sustaining processes at all scales in wall-bounded turbulent shear flows
NASA Astrophysics Data System (ADS)
Cossu, Carlo; Hwang, Yongyun
2017-03-01
We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend's attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier-Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions.
Two-Scale Ion Meandering Caused by the Polarization Electric Field During Asymmetric Reconnection
NASA Technical Reports Server (NTRS)
Wang, Shan; Chen, Li-Jen; Hesse, Michael; Bessho, Naoki; Gershman, Daniel J.; Dorelli, John; Giles, Barbara L.; Torbert, Roy B.; Pollock, Craig J.; Strangeway, Robert;
2016-01-01
Ion velocity distribution functions (VDFs) from a particle-in-cell simulation of asymmetric reconnection are investigated to reveal a two-scale structure of the ion diffusion region (IDR). Ions bouncing in the inner IDR are trapped mainly by the electric field normal to the current sheet (N direction), while those reaching the outer IDR are turned back mainly by the magnetic force. The resulting inner layer VDFs have counter-streaming populations along N with decreasing counter-streaming speeds away from the midplane while maintaining the out-of-plane speed, and the outer layer VDFs exhibit crescent shapes toward the out-of-plane direction. Observations of the above VDF features and the normal electric fields provide evidence for the two-scale meandering motion.
Two-scale ion meandering caused by the polarization electric field during asymmetric reconnection
NASA Astrophysics Data System (ADS)
Wang, Shan; Chen, Li-Jen; Hesse, Michael; Bessho, Naoki; Gershman, Daniel J.; Dorelli, John; Giles, Barbara; Torbert, Roy B.; Pollock, Craig J.; Strangeway, Robert; Ergun, Robert E.; Burch, James L.; Avanov, Levon; Lavraud, Benoit; Moore, Thomas E.; Saito, Yoshifumi
2016-08-01
Ion velocity distribution functions (VDFs) from a particle-in-cell simulation of asymmetric reconnection are investigated to reveal a two-scale structure of the ion diffusion region (IDR). Ions bouncing in the inner IDR are trapped mainly by the electric field normal to the current sheet (N direction), while those reaching the outer IDR are turned back mainly by the magnetic force. The resulting inner layer VDFs have counter-streaming populations along N with decreasing counter-streaming speeds away from the midplane while maintaining the out-of-plane speed, and the outer layer VDFs exhibit crescent shapes toward the out-of-plane direction. Observations of the above VDF features and the normal electric fields provide evidence for the two-scale meandering motion.
The Characteristics of Fatigue Damage in the Fuselage Riveted Lap Splice Joint
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Willard, Scott A.
1997-01-01
An extensive data base has been developed to form the physical basis for new analytical methodology to predict the onset of widespread fatigue damage in the fuselage lap splice joint. The results of detailed destructive examinations have been cataloged to describe the physical nature of MSD in the lap splice joint. ne catalog includes a detailed description, e.g., crack initiation, growth rates, size, location, and fracture morphology, of fatigue damage in the fuselage lap splice joint structure. Detailed examinations were conducted on a lap splice joint panel removed from a full scale fuselage test article after completing a 60,000 cycle pressure test. The panel contained a four bay region that exhibited visible outer skin cracks and regions of crack link-up along the upper rivet row. Destructive examinations revealed undetected fatigue damage in the outer skin, inner skin, and tear strap regions. Outer skin fatigue cracks were found to initiate by fretting damage along the faying surface. The cracks grew along the faying surface to a length equivalent to two to three skin thicknesses before penetrating the outboard surface of the outer skin. Analysis of fracture surface marker bands produced during full scale testing revealed that all upper rivet row fatigue cracks contained in a dim bay region grow at similar rates; this important result suggests that fracture mechanics based methods can be used to predict the growth of outer skin fatigue cracks in lap splice structure. Results are presented showing the affects of MSD and out-of-plane pressure loads on outer skin crack link-up.
Estimates of effective elastic thickness at subduction zones
NASA Astrophysics Data System (ADS)
Yang, An; Fu, Yongtao
2018-06-01
The effective elastic thickness (Te) is an important parameter that characterizes the long-term strength of the lithosphere. Estimates of Te at subduction zones have important tectonic and geodynamic implications, providing constraints for the strength of the oceanic lithosphere at a short-term scale. We estimated Te values in several subduction zones worldwide by using models including both surface and subsurface loads from the analysis of free-air gravity anomaly and bathymetric data, together with a moving window admittance technique (MWAT). Tests with synthetic gravity and bathymetry data show that this method is a reliable way to recover Te of oceanic lithosphere. Our results show that there is a noticeable reduction in the effective elastic thickness of the subducting plate from the outer rise to the trench axis for most studied subduction zones, suggesting plate weakening at the trench-outer rise of the subduction zones. These subduction zones have Te range of 6-60 km, corresponding to a wide range of isotherms from 200 to 800 °C. Different trenches show distinct patterns. The Caribbean, Kuril-Japan, Mariana and Tonga subduction zones show predominantly high Te. By contrast, the Middle America and Java subduction zones have a much lower Te. The Peru-Chile, Aleutian and Philippine subduction zones show considerable scatter. The large variation of the isotherm for different trenches does not show clear relationship with plate weakening at the outer rise.
NASA Technical Reports Server (NTRS)
Janardan, B. A.; Brausch, J. F.; Majjigi, R. K.
1985-01-01
The influence of selected geometric and aerodynamic flow variables of an unsuppressed coannular plug nozzle and a coannular plug nozzle with a 20-chute outer stream suppressor were experimentally determined. A total of 136 static and simulated flight acoustic test points were conducted with 9 scale model nozzles. Also, aerodynamic measurements of four selected plumes were made with a laser velocimeter. The presence of the 180 deg shield produced different mixing characteristics on the shield side compared to the unshield side because of the reduced mixing with ambient air on the shielded side. This resulted in a stretching of the jet, yielding a higher peak mean velocity up to a length of 10 equivalent diameters from the nozzle exit. The 180 deg shield in community orientation around the suppressed coannular plug nozzle yielded acoustic benefit at all observer angles for a simulated takeoff. While the effect of shield-to-outer stream velocity ratio was small at angles up to 120 deg, beyond this angle significant acoustic benefit was realized with a shield-to-outer stream velocity ratio of 0.64.
Lumley decomposition of turbulent boundary layer at high Reynolds numbers
NASA Astrophysics Data System (ADS)
Tutkun, Murat; George, William K.
2017-02-01
The decomposition proposed by Lumley in 1966 is applied to a high Reynolds number turbulent boundary layer. The experimental database was created by a hot-wire rake of 143 probes in the Laboratoire de Mécanique de Lille wind tunnel. The Reynolds numbers based on momentum thickness (Reθ) are 9800 and 19 100. Three-dimensional decomposition is performed, namely, proper orthogonal decomposition (POD) in the inhomogeneous and bounded wall-normal direction, Fourier decomposition in the homogeneous spanwise direction, and Fourier decomposition in time. The first POD modes in both cases carry nearly 50% of turbulence kinetic energy when the energy is integrated over Fourier dimensions. The eigenspectra always peak near zero frequency and most of the large scale, energy carrying features are found at the low end of the spectra. The spanwise Fourier mode which has the largest amount of energy is the first spanwise mode and its symmetrical pair. Pre-multiplied eigenspectra have only one distinct peak and it matches the secondary peak observed in the log-layer of pre-multiplied velocity spectra. Energy carrying modes obtained from the POD scale with outer scaling parameters. Full or partial reconstruction of turbulent velocity signal based only on energetic modes or non-energetic modes revealed the behaviour of urms in distinct regions across the boundary layer. When urms is based on energetic reconstruction, there exists (a) an exponential decay from near wall to log-layer, (b) a constant layer through the log-layer, and (c) another exponential decay in the outer region. The non-energetic reconstruction reveals that urms has (a) an exponential decay from the near-wall to the end of log-layer and (b) a constant layer in the outer region. Scaling of urms using the outer parameters is best when both energetic and non-energetic profiles are combined.
NASA Astrophysics Data System (ADS)
Sánchez-Menguiano, L.; Sánchez, S. F.; Pérez, I.; Ruiz-Lara, T.; Galbany, L.; Anderson, J. P.; Krühler, T.; Kuncarayakti, H.; Lyman, J. D.
2018-02-01
We characterised the oxygen abundance radial distribution of a sample of 102 spiral galaxies observed with VLT/MUSE using the O3N2 calibrator. The high spatial resolution of the data allowed us to detect 14345 H II regions with the same image quality as with photometric data, avoiding any dilution effect. We developed a new methodology to automatically fit the abundance radial profiles, finding that 55 galaxies of the sample exhibit a single negative gradient. The remaining 47 galaxies also display, as well as this negative trend, either an inner drop in the abundances (21), an outer flattening (10), or both (16), which suggests that these features are a common property of disc galaxies. The presence and depth of the inner drop depends on the stellar mass of the galaxies with the most massive systems presenting the deepest abundance drops, while there is no such dependence in the case of the outer flattening. We find that the inner drop appears always around 0.5 re, while the position of the outer flattening varies over a wide range of galactocentric distances. Regarding the main negative gradient, we find a characteristic slope in the sample of αO/H =-0.10 ± 0.03 dex /re. This slope is independent of the presence of bars and the density of the environment. However, when inner drops or outer flattenings are detected, slightly steeper gradients are observed. This suggests that radial motions might play an important role in shaping the abundance profiles. We define a new normalisation scale ("the abundance scale length", rO/H) for the radial profiles based on the characteristic abundance gradient, with which all the galaxies show a similar position for the inner drop ( 0.5 rO/H) and the outer flattening ( 1.5 rO/H). Finally, we find no significant dependence of the dispersion around the negative gradient with any property of the galaxies, with values compatible with the uncertainties associated with the derivation of the abundances.
Hernandez-Moreno, J Melissa; Bayeur, Nicole M; Coley, Harold D; Hughes, Nicole M
2017-03-01
Multiple studies have examined the effects of clouds on shoot and canopy-level microclimate and physiological processes; none have yet done so on the scale of individual plant crowns. We compared incident photosynthetically active radiation (PAR), leaf temperatures, chlorophyll fluorescence, and photosynthetic gas exchange of shoots in three different spatial locations of Abies fraseri crowns on sunny (clear to partly cloudy) versus overcast days. The field site was a Fraser fir farm (1038 m elevation) in the Appalachian mountains, USA. Ten saplings of the same age class were marked and revisited for all measurements. Sunny conditions corresponded with 5-10× greater sunlight incidence on south-facing outer shoots compared to south-facing inner and north-facing outer shoots, which were shaded and received only indirect (diffuse) sunlight. Differences in spatial distribution of irradiance were mirrored in differences in shoot temperatures, photosynthesis, and transpiration, which were all greater in south-facing outer shoots compared to more shaded crown locations. In contrast, overcast conditions corresponded with more homogeneous sunlight distribution between north and south-facing outer shoots, and similar shoot temperatures, chlorophyll fluorescence (ΦPSII), photosynthesis, and transpiration; these effects were observed in south-facing inner shoots as well, but to a lesser extent. There was no significant difference in conductance between different crown locations on sunny or overcast days, indicating spatial differences in transpiration under sunny conditions were likely driven by leaf temperature differences. We conclude that clouds can affect spatial distribution of sunlight and associated physiological parameters not only within forest communities, but within individual crowns as well.
On the outer scale of turbulence in the atmospheric surface layer
NASA Astrophysics Data System (ADS)
de Bruin, H. A. R.; Beyrich, F.
2009-09-01
The well-known Kolmogorov and Tatarskii similarity relations for spectra in the atmospheric surface layer are derived for an eddy-size region between the outer and inner scale (L0 and l0 respectively). Remarkably few studies are devoted to the outer scale L0. Tatarski (1992) defined it through the ratio of twice the variance and the structure parameter of temperature to the power 3/2. In most studies L0 is assumed to be proportional to the height z (Wheelon, 2001, pag. 79). In our study we will introduce an alternative definition for L0.. Next, its behavior will be investigated analyzing different data sets gathered under a wide range of conditions and observations height. During daytime, L0 appears to vary with z indeed, but with lot of scatter and systematic differences. The consequences of these findings for different remote sensing techniques such a scintillometry will be discussed. Tatarskii, V.I., 1992: Review of scintillation phenomena, in: Tatarskii et al. (Eds.): Wave Propagation in Random Media (Scintillation), Spie Press, 2-16. Wheelon, A.D., 2001: Electromagnetic Scintillation, part I Geometrical Optics, Cambridge University Press, 455 pp
Experimental investigation on aero-optics of supersonic turbulent boundary layers.
Ding, Haolin; Yi, Shihe; Zhu, Yangzhu; He, Lin
2017-09-20
Nanoparticle-based planar laser scattering was used to measure the density distribution of the supersonic (Ma=3.0) turbulent boundary layer and the optical path difference (OPD), which is quite crucial for aero-optics study. Results were obtained using ray tracing. The influences of different layers in the boundary layer, turbulence scales, and light incident angle on aero-optics were examined, and the underlying flow physics were analyzed. The inner layer plays a dominant role, followed by the outer layer. One hundred OPD rms of the outer layer at different times satisfy the normal distribution better than that of the inner layer. Aero-optics induced by the outer layer is sensitive to the filter scale. When induced by the inner layer, it is not sensitive to the filter scale. The vortices with scales less than the Kolmogorov scale (=46.0 μm) have little influence on the aero-optics and could be ignored; the validity of the smallest optically active scale (=88.1 μm) proposed by Mani is verified, and vortices with scales less than that are ignored, resulting in a 1.62% decay of aero-optics; the filter with a width of 16-grid spacing (=182.4 μm) decreases OPD rms by 7.04%. With the increase of the angle between the wall-normal direction and the light-incident direction, the aero-optics becomes more serious, and the difference between the distribution of the OPD rms and the normal distribution increases. The difficulty of aero-optics correction is increased. Light tilted toward downstream experiences more distortions than when tilted toward upstream at the same angle relative to the wall-normal direction.
Temperature and circulation in the stratospheres of the outer planets
NASA Technical Reports Server (NTRS)
Conrath, Barney J.; Gierasch, Peter J.; Leroy, Stephen S.
1989-01-01
A zonally symmetric, linear radiative-dynamical model is compared with observations of the upper tropospheres and stratospheres of the outer planets. Seasonal variation is included in the model. Friction is parameterized by linear drag (Rayleigh friction). Gas opacities are accounted for but aerosols are omitted. Horizontal temperature gradients are small on all the planets. Seasonal effects are strongest on Saturn and Neptune but are weak even in these cases, because the latitudinal gradient of radiative heating is weak. Seasonal effects on Uranus are extremely weak because the radiative time constant is longer that the orbital period. One free parameter in the model is the frictional time constant. Comparison with observed temperature perturbations over zonal currents in the troposphere shows that the frictional time constant is on the same order as the radiative time constant for all these objects. Vertical motions predicted by the model are extremely weak. They are much smaller than one scale height per orbital period, except in the immediate neighborhood of tropospheric and zonal currents.
Microbial Morphology and Motility as Biosignatures for Outer Planet Missions
NASA Astrophysics Data System (ADS)
Nadeau, Jay; Lindensmith, Chris; Deming, Jody W.; Fernandez, Vicente I.; Stocker, Roman
2016-10-01
Meaningful motion is an unambiguous biosignature, but because life in the Solar System is most likely to be microbial, the question is whether such motion may be detected effectively on the micrometer scale. Recent results on microbial motility in various Earth environments have provided insight into the physics and biology that determine whether and how microorganisms as small as bacteria and archaea swim, under which conditions, and at which speeds. These discoveries have not yet been reviewed in an astrobiological context. This paper discusses these findings in the context of Earth analog environments and environments expected to be encountered in the outer Solar System, particularly the jovian and saturnian moons. We also review the imaging technologies capable of recording motility of submicrometer-sized organisms and discuss how an instrument would interface with several types of sample-collection strategies.
A new approach to plasmasphere refilling: Anomalous plasma effects
NASA Technical Reports Server (NTRS)
Singh, N.
1991-01-01
During the last 10 months of the grant, both laminar and anomalous plasma processes occurring during the refilling of the outer plasmasphere after magnetic storms are investigated. Theoretical investigations were based on two types of models: (1) two-stream hydrodynamic model in which plasma flows from the conjugate ionospheres are treated as separate fluids and the ion temperature anisotropies are treated self-consistently; and (2) large-scale particle-in-cell code.
Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe 2O 3 nanoparticles
Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; ...
2015-10-27
Disorder among surface spins largely dominates the magnetic response of ultrafine magnetic particle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8±0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and becomes frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point tomore » highly frustrated surface spins that rearrange much more slowly than interior spins with bulk coordination. Monte Carlo simulations of a hollow particle reproducing the experimental morphology corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Lastly, our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.« less
Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles
Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan
2015-01-01
Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8 ± 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and become frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures. PMID:26503506
Torus models of the outer disc of the Milky Way using LAMOST survey data
NASA Astrophysics Data System (ADS)
Wang, Qiao; Wang, Yougang; Liu, Chao; Mao, Shude; Long, R. J.
2017-09-01
With a sample of 48 161 K giant stars selected from the LAMOST DR 2 catalogue, we construct torus models in a large volume extending, for the first time, from the solar vicinity to a Galactocentric distance of ∼20 kpc, reaching the outskirts of the Galactic disc. We show that the kinematics of the K giant stars match conventional models, e.g. as created by Binney in 2012, in the Solar vicinity. However such two-disc models fail if they are extended to the outer regions, even if an additional disc component is utilized. If we loosen constraints in Sun's vicinity, we find that an effective thick disc model could explain the anticentre of the MW. The Large Area Multi-Object Spectroscopic Telescope data imply that the sizes of the Galactic discs are much larger, and that the outer disc is much thicker, than previously thought, or alternatively that the outer structure is not a conventional disc at all. However, the velocity dispersion σ0z of the kinematically thick disc in the best-fitting model is about 80 km s-1 and has a scale parameter Rσ for an exponential distribution function of ∼19 kpc. Such a height σ0z is strongly rejected by current measurements in the solar neighbourhood, and thus a model beyond quasi-thermal, two or three thin or thick discs is required.
Worobec, E A; Martin, N L; McCubbin, W D; Kay, C M; Brayer, G D; Hancock, R E
1988-04-07
A large-scale purification scheme was developed for lipopolysaccharide-free protein P, the phosphate-starvation-inducible outer-membrane porin from Pseudomonas aeruginosa. This highly purified protein P was used to successfully form hexagonal crystals in the presence of n-octyl-beta-glucopyranoside. Amino-acid analysis indicated that protein P had a similar composition to other bacterial outer membrane proteins, containing a high percentage (50%) of hydrophilic residues. The amino-terminal sequence of this protein, although not homologous to either outer membrane protein, PhoE or OmpF, of Escherichia coli, was found to have an analogous protein-folding pattern. Protein P in the native trimer form was capable of maintaining a stable functional trimer after proteinase cleavage. This suggested the existence of a strongly associated tertiary and quaternary structure. Circular dichroism studies confirmed these results in that a large proportion of the protein structure was determined to be beta-sheet and resistant to acid pH and heating in 0.1% sodium dodecyl sulphate.
NASA Technical Reports Server (NTRS)
Jones, J. S.; Sharon, J. A.; Mohammed, J.; Hemker, K. J.
2012-01-01
Multi-layer insulation panels from the Hubble Space Telescope have been recovered after 19.1 years of on-orbit service and micro-tensile experiments have been performed to characterize the effect of space exposure on the mechanical response of the outermost layer. This outer layer, 127 m thick fluorinated ethylene propylene with a 100 nm thick vapor deposited aluminum reflective coating, maintained significant tensile ductility but exhibited a degradation of strength that scales with severity of space exposure. This change in properties is attributed to damage from incident solar flux, atomic oxygen damage, and thermal cycling.
NASA Astrophysics Data System (ADS)
Lang, Philipp; Förster Schreiber, Natascha M.; Genzel, Reinhard; Wuyts, Stijn; Wisnioski, Emily; Beifiori, Alessandra; Belli, Sirio; Bender, Ralf; Brammer, Gabe; Burkert, Andreas; Chan, Jeffrey; Davies, Ric; Fossati, Matteo; Galametz, Audrey; Kulkarni, Sandesh K.; Lutz, Dieter; Mendel, J. Trevor; Momcheva, Ivelina G.; Naab, Thorsten; Nelson, Erica J.; Saglia, Roberto P.; Seitz, Stella; Tacchella, Sandro; Tacconi, Linda J.; Tadaki, Ken-ichi; Übler, Hannah; van Dokkum, Pieter G.; Wilman, David J.
2017-05-01
We exploit the deep, resolved, Hα kinematic data from the KMOS3D and SINS/zC-SINF surveys to examine the largely unexplored outer-disk kinematics of star-forming galaxies (SFGs), out to the peak of cosmic star formation. Our sample contains 101 SFGs, representative of the more massive (9.3≲ {log}{M}* /{M}⊙ ≲ 11.5) main sequence population at 0.6 ≤ z ≤ 2.6. Through a novel stacking approach, we are able to constrain a representative rotation curve extending out to ˜4 effective radii. This average rotation curve exhibits a significant drop in rotation velocity beyond the turnover, with a slope of {{Δ }}V/{{Δ }}R=-{0.26}-0.09+0.10 in units of normalized coordinates V/V max and R/R turn. This result confirms that the fall-off seen in some individual galaxies is a common feature of our sample of high-z disks. The outer fall-off strikingly deviates from the flat or mildly rising rotation curves of local spiral galaxies that have similar masses. Through a comparison with models that include baryons and dark matter, we demonstrate that the falling stacked rotation curve is consistent with a high mass fraction of baryons, relative to the total dark matter halo (m d ≳ 0.05), in combination with a sizeable level of pressure support in the outer disk. These findings agree with recent studies demonstrating that high-z star-forming disks are strongly baryon-dominated within the disk scale, and furthermore suggest that pressure gradients caused by large, turbulent gas motions are present even in their outer disks. These results are largely independent of our model assumptions, such as the presence of stellar bulges, the effect of adiabatic contraction, and variations in halo concentration.
Molecular Clouds in the Extreme Outer Galaxy between l = 34.°75 to 45.°25
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yan; Su, Yang; Zhang, Shao-Bo
We present the results of an unbiased CO survey in the Galactic range of 34.°75 ≤ l ≤ 45.°25 and −5.°25 ≤ b ≤ 5.°25, and the velocity range beyond the Outer arm. A total of 168 molecular clouds (MCs) are identified within the Extreme Outer Galaxy (EOG) region, and 31 of these MCs are associated with {sup 13}CO emission. However, none of them show significant C{sup 18}O emission under the current detection limit. The typical size and mass of these MCs are 5 pc and 3 × 10{sup 3} M {sub ⊙}, implying a lack of large and massive MCs in the EOG region. Similar to MCsmore » in the outer Galaxy, the velocity dispersions of EOG clouds are also correlated with their sizes; however, they are well displaced below the scaling relationship defined by the inner Galaxy MCs. These MCs with a median Galactocentric radius of 12.6 kpc show very different distributions from those of the MCs in the Outer arm published in our previous paper, while roughly following the Outer Scutum–Centaurus arm defined by Dame and Thaddeus. This result may provide robust evidence for the existence of the Outer Scutum–Centaurus arm. The lower limit of the total mass of this segment is about 2.7 × 10{sup 5} M {sub ⊙}, which is about one magnitude lower than that of the Outer arm. The mean thickness of the gaseous disk is about 1.°45 or 450 pc, and the scale height is about 1.°27, or 400 pc above the b = 0° plane. The warp traced by CO emission is very obvious in the EOG region and its amplitude is consistent with the predictions by other warp models using different tracers, such as dust, H i, and stellar components of our Galaxy.« less
The spanwise spectra in wall-bounded turbulence
NASA Astrophysics Data System (ADS)
Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei
2017-12-01
The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.
The spanwise spectra in wall-bounded turbulence
NASA Astrophysics Data System (ADS)
Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei
2018-06-01
The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.
Magnetic circuit for hall effect plasma accelerator
NASA Technical Reports Server (NTRS)
Manzella, David H. (Inventor); Jacobson, David T. (Inventor); Hofer, Richard (Inventor); Peterson, Peter (Inventor); Jankovsky, Robert S. (Inventor)
2009-01-01
A Hall effect plasma accelerator includes inner and outer electromagnets, circumferentially surrounding the inner electromagnet along a thruster centerline axis and separated therefrom, inner and outer magnetic conductors, in physical connection with their respective inner and outer electromagnets, with the inner magnetic conductor having a mostly circular shape and the outer magnetic conductor having a mostly annular shape, a discharge chamber, located between the inner and outer magnetic conductors, a magnetically conducting back plate, in magnetic contact with the inner and outer magnetic conductors, and a combined anode electrode/gaseous propellant distributor, located at a bottom portion of the discharge chamber. The inner and outer electromagnets, the inner and outer magnetic conductors and the magnetically conducting back plate form a magnetic circuit that produces a magnetic field that is largely axial and radially symmetric with respect to the thruster centerline.
``Large''- vs Small-scale friction control in turbulent channel flow
NASA Astrophysics Data System (ADS)
Canton, Jacopo; Örlü, Ramis; Chin, Cheng; Schlatter, Philipp
2017-11-01
We reconsider the ``large-scale'' control scheme proposed by Hussain and co-workers (Phys. Fluids 10, 1049-1051 1998 and Phys. Rev. Fluids, 2, 62601 2017), using new direct numerical simulations (DNS). The DNS are performed in a turbulent channel at friction Reynolds number Reτ of up to 550 in order to eliminate low-Reynolds-number effects. The purpose of the present contribution is to re-assess this control method in the light of more modern developments in the field, in particular also related to the discovery of (very) large-scale motions. The goals of the paper are as follows: First, we want to better characterise the physics of the control, and assess what external contribution (vortices, forcing, wall motion) are actually needed. Then, we investigate the optimal parameters and, finally, determine which aspects of this control technique actually scale in outer units and can therefore be of use in practical applications. In addition to discussing the mentioned drag-reduction effects, the present contribution will also address the potential effect of the naturally occurring large-scale motions on frictional drag, and give indications on the physical processes for potential drag reduction possible at all Reynolds numbers.
NASA Astrophysics Data System (ADS)
Tenerani, Anna; Velli, Marco
2017-07-01
Alfvénic fluctuations in the solar wind display many properties reflecting an ongoing nonlinear cascade, e.g., a well-defined spectrum in frequency, together with some characteristics more commonly associated with the linear propagation of waves from the Sun, such as the variation of fluctuation amplitude with distance, dominated by solar wind expansion effects. Therefore, both nonlinearities and expansion must be included simultaneously in any successful model of solar wind turbulence evolution. Because of the disparate spatial scales involved, direct numerical simulations of turbulence in the solar wind represent an arduous task, especially if one wants to go beyond the incompressible approximation. Indeed, most simulations neglect solar wind expansion effects entirely. Here we develop a numerical model to simulate turbulent fluctuations from the outer corona to 1 au and beyond, including the sub-Alfvénic corona. The accelerating expanding box (AEB) extends the validity of previous expanding box models by taking into account both the acceleration of the solar wind and the inhomogeneity of background density and magnetic field. Our method incorporates a background accelerating wind within a magnetic field that naturally follows the Parker spiral evolution using a two-scale analysis in which the macroscopic spatial effect coupling fluctuations with background gradients becomes a time-dependent coupling term in a homogeneous box. In this paper we describe the AEB model in detail and discuss its main properties, illustrating its validity by studying Alfvén wave propagation across the Alfvén critical point.
Documentation of roller-bearing effect on butterfly inspired grooves
NASA Astrophysics Data System (ADS)
Gautam, Sashank; Lang, Amy
2017-11-01
Butterfly wings are covered with scales in a roof shingle pattern which align together to form grooves. The increase or decrease of laminar friction drag depends on the flow orientation to the scales. Flow in the longitudinal direction to the grooves encounters increased surface area which increases the friction drag. However, in the transverse direction, for low Re laminar flow, a single vortex is formed inside each groove and is predicted to remain stable due to the very low Re of the flow in each cavity. These embedded vortices act as roller bearings to the flow above, such that the fluid from the outer boundary layer does not mix with fluid inside the cavities. This leads to a reduction of skin friction drag when compared to a smooth surface. When the cavity flow Re is increased beyond a critical point, the vortex becomes unstable and the low-momentum fluid in the grooves mixes with the outer boundary layer flow, increasing the drag. The objective of this experiment is to determine the critical Re where the embedded vortex transitions from a stable to an unstable state using DPIV. Subsequently, for steady vortex conditions, a comparison of skin friction drag between the grooved and flat plate can show that the butterfly scaled surface can result in sub-laminar friction drag. The National Science Foundation (Grant No. 1335848).
Superresolution Imaging Captures Carbohydrate Utilization Dynamics in Human Gut Symbionts
Karunatilaka, Krishanthi S.; Cameron, Elizabeth A.; Martens, Eric C.; Koropatkin, Nicole M.
2014-01-01
ABSTRACT Gut microbes play a key role in human health and nutrition by catabolizing a wide variety of glycans via enzymatic activities that are not encoded in the human genome. The ability to recognize and process carbohydrates strongly influences the structure of the gut microbial community. While the effects of diet on the microbiota are well documented, little is known about the molecular processes driving metabolism. To provide mechanistic insight into carbohydrate catabolism in gut symbionts, we studied starch processing in real time in the model Bacteroides thetaiotaomicron starch utilization system (Sus) by single-molecule fluorescence. Although previous studies have explored Sus protein structure and function, the transient interactions, assembly, and collaboration of these outer membrane proteins have not yet been elucidated in live cells. Our live-cell superresolution imaging reveals that the polymeric starch substrate dynamically recruits Sus proteins, serving as an external scaffold for bacterial membrane assembly of the Sus complex, which may promote efficient capturing and degradation of starch. Furthermore, by simultaneously localizing multiple Sus outer membrane proteins on the B. thetaiotaomicron cell surface, we have characterized the dynamics and stoichiometry of starch-induced Sus complex assembly on the molecular scale. Finally, based on Sus protein knockout strains, we have discerned the mechanism of starch-induced Sus complex assembly in live anaerobic cells with nanometer-scale resolution. Our insights into the starch-induced outer membrane protein assembly central to this conserved nutrient uptake mechanism pave the way for the development of dietary or pharmaceutical therapies to control Bacteroidetes in the intestinal tract to enhance human health and treat disease. PMID:25389179
Radiation belt electron observations following the January 1997 magnetic cloud event
NASA Astrophysics Data System (ADS)
Selesnick, R. S.; Blake, J. B.
Relativistic electrons in the outer radiation belt associated with the January 1997 magnetic cloud event were observed by the HIST instrument on POLAR at kinetic energies from 0.7 to 7 MeV and L shells from 3 to 9. The electron enhancement occurred on a time scale of hours or less throughout the outer radiation belt, except for a more gradual rise in the higher energy electrons at the lower L values indicative of local acceleration and inward radial diffusion. At the higher L values, variations on a time scale of several days following the initial injection on January 10 are consistent with data from geosynchronous orbit and may be an adiabatic response.
NASA Technical Reports Server (NTRS)
Straight, D. M.; Harrington, D. E.
1973-01-01
A concept for plug nozzles cooled by inlet ram air is presented. Experimental data obtained with a small scale model, 21.59-cm (8.5-in.) diameter, in a static altitude facility demonstrated high thrust performance and excellent pumping characteristics. Tests were made at nozzle pressure ratios simulating supersonic cruise and takeoff conditions. Effect of plug size, outer shroud length, and varying amounts of secondary flow were investigated.
Evolution over time of the Milky Way's disc shape
NASA Astrophysics Data System (ADS)
Amôres, E. B.; Robin, A. C.; Reylé, C.
2017-06-01
Context. Galactic structure studies can be used as a path to constrain the scenario of formation and evolution of our Galaxy. The dependence with the age of stellar population parameters would be linked with the history of star formation and dynamical evolution. Aims: We aim to investigate the structures of the outer Galaxy, such as the scale length, disc truncation, warp and flare of the thin disc and study their dependence with age by using 2MASS data and a population synthesis model (the so-called Besançon Galaxy Model). Methods: We have used a genetic algorithm to adjust the parameters on the observed colour-magnitude diagrams at longitudes 80° ≤ ℓ ≤ 280° for | b | ≤ 5.5°. We explored parameter degeneracies and uncertainties. Results: We identify a clear dependence of the thin disc scale length, warp and flare shapes with age. The scale length is found to vary between 3.8 kpc for the youngest to about 2 kpc for the oldest. The warp shows a complex structure, clearly asymmetrical with a node angle changing with age from approximately 165° for old stars to 195° for young stars. The outer disc is also flaring with a scale height that varies by a factor of two between the solar neighbourhood and a Galactocentric distance of 12 kpc. Conclusions: We conclude that the thin disc scale length is in good agreement with the inside-out formation scenario and that the outer disc is not in dynamical equilibrium. The warp deformation with time may provide some clues to its origin.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-18
...: Availability of Revised North American Datum of 1983 (NAD 83) Outer Continental Shelf Official Protraction... that effective with this publication, the following NAD 83-based Outer Continental Shelf (OCS) Official...
NASA Astrophysics Data System (ADS)
Awasthi, Ankit; Anderson, William
2018-04-01
We have studied the effects of topographically driven secondary flows on inner-outer interaction in turbulent channel flow. Recent studies have revealed that large-scale motions in the logarithmic region impose an amplitude and frequency modulation on the dynamics of small-scale structures near the wall. This led to development of a predictive model for near-wall dynamics, which has practical relevance for large-eddy simulations. Existing work on amplitude modulation has focused on smooth-wall flows; however, Anderson [J. Fluid Mech. 789, 567 (2016), 10.1017/jfm.2015.744] addressed the problem of rough-wall turbulent channel flow in which the correlation profiles for amplitude modulation showed trends similar to those reported by Mathis et al. [Phys. Fluids 21, 111703 (2009), 10.1063/1.3267726]. For the present study, we considered flow over surfaces with a prominent spanwise heterogeneity, such that domain-scale turbulent secondary flows in the form of counter-rotating vortices are sustained within the flow. (We also show results for flow over a homogeneous roughness, which serves as a benchmark against the spanwise-perturbed cases.) The vortices are anchored to the topography such that prominent upwelling and downwelling occur above the low and high roughness, respectively. We have quantified the extent to which such secondary flows disrupt the distribution of spectral density across constituent wavelengths throughout the depth of the flow, which has direct implications for the existence of amplitude and frequency modulation. We find that the distinct outer peak associated with large-scale motions—the "modulators"—is preserved within the upwelling zone but vanishes in the downwelling zone. Within the downwelling zones, structures are steeper and shorter. Single- and two-point correlations for inner-outer amplitude and frequency modulation demonstrate insensitivity to resolution across cases. We also show a pronounced crossover between the single- and two-point correlations, a product of modulation quantification based upon Parseval's theorem (i.e., spectral density, but not the wavelength at which energy resides, defines the strength of modulation).
ON THE STAR FORMATION LAW FOR SPIRAL AND IRREGULAR GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmegreen, Bruce G., E-mail: bge@us.ibm.com
2015-12-01
A dynamical model for star formation on a galactic scale is proposed in which the interstellar medium is constantly condensing to star-forming clouds on the dynamical time of the average midplane density, and the clouds are constantly being disrupted on the dynamical timescale appropriate for their higher density. In this model, the areal star formation rate scales with the 1.5 power of the total gas column density throughout the main regions of spiral galaxies, and with a steeper power, 2, in the far outer regions and in dwarf irregular galaxies because of the flaring disks. At the same time, theremore » is a molecular star formation law that is linear in the main and outer parts of disks and in dIrrs because the duration of individual structures in the molecular phase is also the dynamical timescale, canceling the additional 0.5 power of surface density. The total gas consumption time scales directly with the midplane dynamical time, quenching star formation in the inner regions if there is no accretion, and sustaining star formation for ∼100 Gyr or more in the outer regions with no qualitative change in gas stability or molecular cloud properties. The ULIRG track follows from high densities in galaxy collisions.« less
Planet population synthesis driven by pebble accretion in cluster environments
NASA Astrophysics Data System (ADS)
Ndugu, N.; Bitsch, B.; Jurua, E.
2018-02-01
The evolution of protoplanetary discs embedded in stellar clusters depends on the age and the stellar density in which they are embedded. Stellar clusters of young age and high stellar surface density destroy protoplanetary discs by external photoevaporation and stellar encounters. Here, we consider the effect of background heating from newly formed stellar clusters on the structure of protoplanetary discs and how it affects the formation of planets in these discs. Our planet formation model is built on the core accretion scenario, where we take the reduction of the core growth time-scale due to pebble accretion into account. We synthesize planet populations that we compare to observations obtained by radial velocity measurements. The giant planets in our simulations migrate over large distances due to the fast type-II migration regime induced by a high disc viscosity (α = 5.4 × 10-3). Cold Jupiters (rp > 1 au) originate preferably from the outer disc, due to the large-scale planetary migration, while hot Jupiters (rp < 0.1 au) preferably form in the inner disc. We find that the formation of gas giants via pebble accretion is in agreement with the metallicity correlation, meaning that more gas giants are formed at larger metallicity. However, our synthetic population of isolated stars host a significant amount of giant planets even at low metallicity, in contradiction to observations where giant planets are preferably found around high metallicity stars, indicating that pebble accretion is very efficient in the standard pebble accretion framework. On the other hand, discs around stars embedded in cluster environments hardly form any giant planets at low metallicity in agreement with observations, where these changes originate from the increased temperature in the outer parts of the disc, which prolongs the core accretion time-scale of the planet. We therefore conclude that the outer disc structure and the planet's formation location determines the giant planet occurrence rate and the formation efficiency of cold and hot Jupiters.
Microbial Morphology and Motility as Biosignatures for Outer Planet Missions
Lindensmith, Chris; Deming, Jody W.; Fernandez, Vicente I.; Stocker, Roman
2016-01-01
Abstract Meaningful motion is an unambiguous biosignature, but because life in the Solar System is most likely to be microbial, the question is whether such motion may be detected effectively on the micrometer scale. Recent results on microbial motility in various Earth environments have provided insight into the physics and biology that determine whether and how microorganisms as small as bacteria and archaea swim, under which conditions, and at which speeds. These discoveries have not yet been reviewed in an astrobiological context. This paper discusses these findings in the context of Earth analog environments and environments expected to be encountered in the outer Solar System, particularly the jovian and saturnian moons. We also review the imaging technologies capable of recording motility of submicrometer-sized organisms and discuss how an instrument would interface with several types of sample-collection strategies. Key Words: In situ measurement—Biosignatures—Microbiology—Europa—Ice. Astrobiology 16, 755–774. PMID:27552160
Microbial Morphology and Motility as Biosignatures for Outer Planet Missions.
Nadeau, Jay; Lindensmith, Chris; Deming, Jody W; Fernandez, Vicente I; Stocker, Roman
2016-10-01
Meaningful motion is an unambiguous biosignature, but because life in the Solar System is most likely to be microbial, the question is whether such motion may be detected effectively on the micrometer scale. Recent results on microbial motility in various Earth environments have provided insight into the physics and biology that determine whether and how microorganisms as small as bacteria and archaea swim, under which conditions, and at which speeds. These discoveries have not yet been reviewed in an astrobiological context. This paper discusses these findings in the context of Earth analog environments and environments expected to be encountered in the outer Solar System, particularly the jovian and saturnian moons. We also review the imaging technologies capable of recording motility of submicrometer-sized organisms and discuss how an instrument would interface with several types of sample-collection strategies. Key Words: In situ measurement-Biosignatures-Microbiology-Europa-Ice. Astrobiology 16, 755-774.
Direct numerical simulation of Taylor-Couette flow subjected to a radial temperature gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, Hao; Liu, Nansheng, E-mail: lns@ustc.edu.cn; Lu, Xiyun
Direct numerical simulations have been performed to study the Taylor-Couette (TC) flow between two rotating, coaxial cylinders in the presence of a radial temperature gradient. Specifically, the influence of the buoyant force and the outer cylinder rotation on the turbulent TC flow system with the radius ratio η = 0.912 was examined. For the co-rotating TC flows with Re{sub i} (inner cylinder) =1000 and Re{sub o} (outer cylinder) =100, a transition pathway to highly turbulent flows is realized by increasing σ, a parameter signifying the ratio of buoyant to inertial force. This nonlinear flow transition involves four intriguing states thatmore » emerge in sequence as chaotic wavy vortex flow for σ = 0, wavy interpenetrating spiral flows for σ = 0.02 and 0.05, intermittent turbulent spirals for σ = 0.1 and 0.2, and turbulent spirals for σ = 0.4. Overall, the fluid motion changes from a centrifugally driven flow regime characterized by large-scale wavy Taylor vortices (TVs) to a buoyancy-dominated flow regime characterized by small-scale turbulent vortices. Commensurate changes in turbulence statistics and heat transfer are seen as a result of the weakening of large-scale TV circulations and enhancement of turbulent motions. Additionally, the influence of variation of the outer cylinder rotation, −500 < Re{sub o} < 500 in presence of buoyancy (σ = 0.1) with Re{sub i} = 1000, has been considered. Specifically, it is demonstrated that this variation strongly influences the azimuthal and axial mean flows with a weaker influence on the fluctuating fluid motions. Of special interest, here are the turbulent dynamics near the outer wall where a marked decrease of turbulence intensity and a sign inversion of the Reynolds stress R{sub rz} are observed for the strongly counter-rotating regimes (Re{sub o} = − 300 and −500). To this end, it has been shown that the underlying flow physics for this drastic modification are associated with the modification of the correlation between the radial and axial fluctuating motions. In turn, the intriguing effects of this modification on the mean axial flow, turbulent statistics, force balance, and dynamic processes such as turbulence production and dissipation are discussed.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-02
.... ACTION: Availability of revised North American Datum of 1927 (NAD 27) Outer Continental Shelf Official...: Notice is hereby given that effective with this publication, the following NAD 27-based Outer Continental...
Evolution of Multiscale Multifractal Turbulence in the Heliosphere
NASA Astrophysics Data System (ADS)
Macek, W. M.; Wawrzaszek, A.
2009-04-01
The aim of this study is to examine the question of scaling properties of intermittent turbulence in the space environment. We analyze time series of velocities of the slow and fast speed streams of the solar wind measured in situ by Helios 2, Advanced Composition Explorer and Voyager 2 spacecraft in the inner and outer heliosphere during solar minimum and maximum at various distances from the Sun. To quantify asymmetric scaling of solar wind turbulence, we consider a generalized two-scale weighted Cantor set with two different scales describing nonuniform distribution of the kinetic energy flux between cascading eddies of various sizes. We investigate the resulting spectrum of generalized dimensions and the corresponding multifractal singularity spectrum depending on one probability measure parameter and two rescaling parameters, demonstrating that the multifractal scaling is often rather asymmetric. In particular, we show that the degree of multifractality for the solar wind during solar minimum is greater for fast streams velocity fluctuations than that for the slow streams; the fast wind during solar minimum may exhibit strong asymmetric scaling. Moreover, we observe the evolution of multifractal scaling of the solar wind in the outer heliosphere. It is worth noting that for the model with two different scaling parameters a much better agreement with the solar wind data is obtained, especially for the negative index of the generalized dimensions. Therefore we argue that there is a need to use a two-scale cascade model. Hence we propose this new more general model as a useful tool for analysis of intermittent turbulence in various environments. References [1] W. M. Macek and A. Szczepaniak, Generalized two-scale weighted Cantor set model for solar wind turbulence, Geophys. Res. Lett., 35, L02108, doi:10.1029/2007GL032263 (2008). [2] A. Szczepaniak and W. M. Macek, Asymmetric multifractal model for solar wind intermittent turbulence, Nonlin. Processes Geophys., 15, 615-620 (2008), http://www.nonlin-processes-geophys.net/15/615/2008/. [3] W. M. Macek and A. Wawrzaszek, Evolution of asymmetric multifractal scaling of solar wind turbulence in the outer heliosphere, J. Geophys. Res., A013795, doi:10.1029/2008JA013795, in press.
Ludt, William B.; Bernal, Moisés A.; Bowen, Brian W.; Rocha, Luiz A.
2012-01-01
Sea level fluctuations during glacial cycles affect the distribution of shallow marine biota, exposing the continental shelf on a global scale, and displacing coral reef habitat to steep slopes on oceanic islands. In these circumstances we expect that species inhabiting lagoons should show shallow genetic architecture relative to species inhabiting more stable outer reefs. Here we test this expectation on an ocean-basin scale with four wrasses (genus Halichoeres): H. claudia (N = 194, with ocean-wide distribution) and H. ornatissimus (N = 346, a Hawaiian endemic) inhabit seaward reef slopes, whereas H. trimaculatus (N = 239) and H. margaritaceus (N = 118) inhabit lagoons and shallow habitats throughout the Pacific. Two mitochondrial markers (cytochrome oxidase I and control region) were sequenced to resolve population structure and history of each species. Haplotype and nucleotide diversity were similar among all four species. The outer reef species showed significantly less population structure, consistent with longer pelagic larval durations. Mismatch distributions and significant negative Fu’s F values indicate Pleistocene population expansion for all species, and (contrary to expectations) shallower histories in the outer slope species. We conclude that lagoonal wrasses may persist through glacial habitat disruptions, but are restricted to refugia during lower sea level stands. In contrast, outer reef slope species have homogeneous and well-connected populations through their entire ranges regardless of sea level fluctuations. These findings contradict the hypothesis that shallow species are less genetically diverse as a consequence of glacial cycles. PMID:22701597
The link between the baryonic mass distribution and the rotation curve shape
NASA Astrophysics Data System (ADS)
Swaters, R. A.; Sancisi, R.; van der Hulst, J. M.; van Albada, T. S.
2012-09-01
The observed rotation curves of disc galaxies, ranging from late-type dwarf galaxies to early-type spirals, can be fitted remarkably well simply by scaling up the contributions of the stellar and H I discs. This 'baryonic scaling model' can explain the full breadth of observed rotation curves with only two free parameters. For a small fraction of galaxies, in particular early-type spiral galaxies, H I scaling appears to fail in the outer parts, possibly due to observational effects or ionization of H I. The overall success of the baryonic scaling model suggests that the well-known global coupling between the baryonic mass of a galaxy and its rotation velocity (known as the baryonic Tully-Fisher relation) applies at a more local level as well, and it seems to imply a link between the baryonic mass distribution and the distribution of total mass (including dark matter).
Singular perturbation and time scale approaches in discrete control systems
NASA Technical Reports Server (NTRS)
Naidu, D. S.; Price, D. B.
1988-01-01
After considering a singularly perturbed discrete control system, a singular perturbation approach is used to obtain outer and correction subsystems. A time scale approach is then applied via block diagonalization transformations to decouple the system into slow and fast subsystems. To a zeroth-order approximation, the singular perturbation and time-scale approaches are found to yield equivalent results.
A model for allometric scaling of mammalian metabolism with ambient heat loss.
Kwak, Ho Sang; Im, Hong G; Shim, Eun Bo
2016-03-01
Allometric scaling, which represents the dependence of biological traits or processes on body size, is a long-standing subject in biological science. However, there has been no study to consider heat loss to the ambient and an insulation layer representing mammalian skin and fur for the derivation of the scaling law of metabolism. A simple heat transfer model is proposed to analyze the allometry of mammalian metabolism. The present model extends existing studies by incorporating various external heat transfer parameters and additional insulation layers. The model equations were solved numerically and by an analytic heat balance approach. A general observation is that the present heat transfer model predicted the 2/3 surface scaling law, which is primarily attributed to the dependence of the surface area on the body mass. External heat transfer effects introduced deviations in the scaling law, mainly due to natural convection heat transfer, which becomes more prominent at smaller mass. These deviations resulted in a slight modification of the scaling exponent to a value < 2/3. The finding that additional radiative heat loss and the consideration of an outer insulation fur layer attenuate these deviation effects and render the scaling law closer to 2/3 provides in silico evidence for a functional impact of heat transfer mode on the allometric scaling law in mammalian metabolism.
NASA Astrophysics Data System (ADS)
Major, Maciej; Kosiń, Mariusz
2017-12-01
The paper analyses the effect of steel framing used to secure drywall panels on thermal and humidity properties of outer walls. In the practice of building a light structure, the most popular components are steel and wood studs. They are used to obtain framing for building a wall (an outer wall in this study). Analysis presented in this study concerned the corner of the outer wall build using the technology of light steel framing. Computer simulation was used to perform thermal and humidity analysis for the joint of the outer wall.
Vertical Scales of Turbulence at the Mount Wilson Observatory
NASA Technical Reports Server (NTRS)
Treuhaft, Robert N.; Lowe, Stephen T.; Bester, Manfred; Danchi, William C.; Townes, Charles H.
1995-01-01
The vertical scales of turbulence at the Mount Wilson Observatory are inferred from data from the University of California at Berkeley Infrared Spatial Interferometer (ISI), by modeling path length fluctuations observed in the interferometric paths to celestial objects and those in instrumental ground-based paths. The correlations between the stellar and ground-based path length fluctuations and the temporal statistics of those fluctuations are modeled on various timescales to constrain the vertical scales. A Kolmogorov-Taylor turbulence model with a finite outer scale was used to simulate ISI data. The simulation also included the white instrumental noise of the interferometer, aperture-filtering effects, and the data analysis algorithms. The simulations suggest that the path delay fluctuations observed in the 1992-1993 ISI data are largely consistent with being generated by refractivity fluctuations at two characteristic vertical scales: one extending to a height of 45 m above the ground, with a wind speed of about 1 m/ s, and another at a much higher altitude, with a wind speed of about 10 m/ s. The height of the lower layer is of the order of the dimensions of trees and other structures near the interferometer, which suggests that these objects, including elements of the interferometer, may play a role in generating the lower layer of turbulence. The modeling indicates that the high- attitude component contributes primarily to short-period (less than 10 s) fluctuations, while the lower component dominates the long-period (up to a few minutes) fluctuations. The lower component turbulent height, along with outer scales of the order of 10 m, suggest that the baseline dependence of long-term interferometric, atmospheric fluctuations should weaken for baselines greater than a few tens of meters. Simulations further show that there is the potential for improving the seeing or astrometric accuracy by about 30%-50% on average, if the path length fluctuations in the lower component are directly calibrated. Statistical and systematic effects induce an error of about 15 m in the estimate of the lower component turbulent altitude.
Endobronchial Photoacoustic Microscopy for Staging of Lung Cancer
2016-08-01
acoustic lens: (1) Three hairs were buried at different depths within the background phantom with 4mm distance between each hair . The advantage of this...and carried out tests to demonstrate this advantage using human hair as micro-scale targets (Figure 4). The targets were buried in a background with...the signal from the hair targets. The 30MHz transducer has outer diameter 11mm, and was equipped with corresponding lens whose apertures fit its outer
Dissecting Escherichia coli Outer Membrane Biogenesis Using Differential Proteomics
Martorana, Alessandra M.; Motta, Sara; Di Silvestre, Dario; Falchi, Federica; Dehò, Gianni; Mauri, Pierluigi; Sperandeo, Paola; Polissi, Alessandra
2014-01-01
The cell envelope of Gram-negative bacteria is a complex multi-layered structure comprising an inner cytoplasmic membrane and an additional asymmetric lipid bilayer, the outer membrane, which functions as a selective permeability barrier and is essential for viability. Lipopolysaccharide, an essential glycolipid located in the outer leaflet of the outer membrane, greatly contributes to the peculiar properties exhibited by the outer membrane. This complex molecule is transported to the cell surface by a molecular machine composed of seven essential proteins LptABCDEFG that form a transenvelope complex and function as a single device. While advances in understanding the mechanisms that govern the biogenesis of the cell envelope have been recently made, only few studies are available on how bacterial cells respond to severe envelope biogenesis defects on a global scale. Here we report the use of differential proteomics based on Multidimensional Protein Identification Technology (MudPIT) to investigate how Escherichia coli cells respond to a block of lipopolysaccharide transport to the outer membrane. We analysed the envelope proteome of a lptC conditional mutant grown under permissive and non permissive conditions and identified 123 proteins whose level is modulated upon LptC depletion. Most such proteins belong to pathways implicated in cell envelope biogenesis, peptidoglycan remodelling, cell division and protein folding. Overall these data contribute to our understanding on how E. coli cells respond to LPS transport defects to restore outer membrane functionality. PMID:24967819
NASA Astrophysics Data System (ADS)
Turner, Drew; Mann, Ian; Usanova, Maria; Rodriguez, Juan; Henderson, Mike; Angelopoulos, Vassilis; Morley, Steven; Claudepierre, Seth; Li, Wen; Kellerman, Adam; Boyd, Alexander; Kim, Kyung-Chan
Earth’s outer electron radiation belt is a region of extreme variability, with relativistic electron intensities changing by orders of magnitude over time scales ranging from minutes to years. Extreme variations of outer belt electrons ultimately result from the relative impacts of various competing source (and acceleration), loss, and transport processes. Most of these processes involve wave-particle interactions between outer belt electrons and different types of plasma waves in the inner magnetosphere, and in turn, the activity of these waves depends on different solar wind and magnetospheric driving conditions and thus can vary drastically from event to event. Using multipoint analysis with data from NASA’s Van Allen Probes, THEMIS, and SAMPEX missions, NOAA’s GOES and POES constellations, and ground-based observatories, we present results from case studies revealing how different source/acceleration and loss mechanisms compete during active periods to result in drastically different distributions of outer belt electrons. By using a combination of low-Earth orbiting and high-altitude-equatorial orbiting satellites, we briefly review how it is possible to get a much more complete picture of certain wave activity and electron losses over the full range of MLTs and L-shells throughout the radiation belt. We then show example cases highlighting the importance of particular mechanisms, including: substorm injections and whistler-mode chorus waves for the source and acceleration of relativistic electrons; magnetopause shadowing and wave-particle interactions with EMIC waves for sudden losses; and ULF wave activity for driving radial transport, a process which is important for redistributing relativistic electrons, contributing both to acceleration and loss processes. We show how relativistic electron enhancement events involve local acceleration that is consistent with wave-particle interactions between a seed population of 10s to 100s of keV electrons, with a source in the plasma sheet, and chorus waves. We show how sudden losses during outer belt dropout events are dominated at higher L-shells (L>~4) by magnetopause shadowing and outward radial transport, which is effective over the full ranges of energy and equatorial pitch angle of outer belt electrons, but at lower L-shells near the plasmapause, energy and pitch angle dependent losses can also occur and are consistent with rapid scattering by interactions between relativistic electrons and EMIC waves. We show cases demonstrating how these different processes occur simultaneously during active periods, with relative effects that vary as a function of L-shell and electron energy and pitch angle. Ultimately, our results highlight the complexity of competing source/acceleration, loss, and transport processes in Earth’s outer radiation belt and the necessity of using multipoint observations to disambiguate between them for future studies.
NASA Astrophysics Data System (ADS)
Deng, Feiyue; Yang, Shaopu; Tang, Guiji; Hao, Rujiang; Zhang, Mingliang
2017-04-01
Wheel bearings are essential mechanical components of trains, and fault detection of the wheel bearing is of great significant to avoid economic loss and casualty effectively. However, considering the operating conditions, detection and extraction of the fault features hidden in the heavy noise of the vibration signal have become a challenging task. Therefore, a novel method called adaptive multi-scale AVG-Hat morphology filter (MF) is proposed to solve it. The morphology AVG-Hat operator not only can suppress the interference of the strong background noise greatly, but also enhance the ability of extracting fault features. The improved envelope spectrum sparsity (IESS), as a new evaluation index, is proposed to select the optimal filtering signal processed by the multi-scale AVG-Hat MF. It can present a comprehensive evaluation about the intensity of fault impulse to the background noise. The weighted coefficients of the different scale structural elements (SEs) in the multi-scale MF are adaptively determined by the particle swarm optimization (PSO) algorithm. The effectiveness of the method is validated by analyzing the real wheel bearing fault vibration signal (e.g. outer race fault, inner race fault and rolling element fault). The results show that the proposed method could improve the performance in the extraction of fault features effectively compared with the multi-scale combined morphological filter (CMF) and multi-scale morphology gradient filter (MGF) methods.
NASA Technical Reports Server (NTRS)
Johnson, J. L., Jr.; Newsom, W. A.; Satran, D. R.
1980-01-01
The paper presents the results of a recent investigation to determine the effects of wing leading-edge modifications on the high angle-of-attack aerodynamic characteristics of a low-wing general aviation airplane in the Langley Full-Scale Wind Tunnel. The investigation was conducted to provide aerodynamic information for correlation and analysis of flight-test results obtained for the configuration. The wind-tunnel investigation consisted of force and moment measurements, wing pressure measurements, flow surveys, and flow visualization studies utilizing a tuft grid, smoke and nonintrusive mini-tufts which were illuminated by ultra-violet light. In addition to the tunnel scale system which measured overall forces and moments, the model was equipped with an auxiliary strain-gage balance within the left wing panel to measure lift and drag forces on the outer wing panel independent of the tunnel scale system. The leading-edge modifications studied included partial- and full-span leading-edge droop arrangements as well as leading-edge slats.
NASA Astrophysics Data System (ADS)
Liu, Xu; Chen, Lunjin; Yang, Lixia; Xia, Zhiyang; Malaspina, David M.
2018-01-01
The effect of the plasmapause on equatorially radially propagating fast magnetosonic (MS) waves in the Earth's dipole magnetic field is studied by using finite difference time domain method. We run 1-D simulation for three different density profiles: (1) no plasmapause, (2) with a plasmapause, and (3) with a plasmapause accompanied with fine-scale density irregularity. We find that (1) without plasmapause the radially inward propagating MS wave can reach ionosphere and continuously propagate to lower altitude if no damping mechanism is considered. The wave properties follow the cold plasma dispersion relation locally along its trajectory. (2) For simulation with a plasmapause with a scale length of 0.006 RE compared to wavelength, only a small fraction of the MS wave power is reflected by the plasmapause. WKB approximation is generally valid for such plasmapause. (3) The multiple fine-scale density irregularities near the outer edge of plasmapause can effectively block the MS wave propagation, resulting in a terminating boundary for MS waves near the plasmapause.
Bumps of the wave structure function in non-Kolmogorov turbulence
NASA Astrophysics Data System (ADS)
Qiao, Chunhong; Lu, Lu; Zhang, Pengfei; Wang, Haitao; Huang, Honghua; Fan, Chengyu
2015-10-01
The analytical expressions for wave structure function of plane and spherical waves are derived both in the viscous dissipation and inertial range. Due to previously research, there is a discrepancy between theoretical results and the experimental datum in viscous dissipation range. In this paper, only considering the inertial range, taking plane waves for example, we give a comparison of results of WSF calculated by the analytical formula obtained in this paper and the numerical calculations of the definition at the fixed parameter (i.e., the generalized exponent α), it can be seen that the two results are in agreement with each other exactly. Based on non-Kolmogorov power spectrum, new characteristics for wave structure function (WSF) have been found for plane and spherical wave models when the different ratio of inner scale l0 and outer scale of turbulence L0 is obtained. In outer scale assumed finite case (i.e., L0 =1m), WSF obtains the maximum when α approximates to 3.3 both for plane and spherical wave models. In outer scale assumed infinite case (i.e., L0 = ∞), the WSF can be sorted into three parts, including two rapid-rising regions (i.e., 3.0 < α < 3.3 and 3.8 < α < 4.0 ) and one gently rising region (i.e., 3.3 < α < 3.8 ).Further, the changes of scaled WSF versus the ratio of separation distance and inner scale ( p/ l0 ) are investigated under mentioned above conditions for two models. In L0 = 1m case, both for plane and spherical waves, the value of α determines the bump position of WSF. In L0 = ∞ case, the bump of scaled WSF disappears when the generalized exponent has large values. The changings of scaled WSF monotonically increase as α increased when the generalized exponent is larger than11/3 for two models. Besides, the properties of spherical waves are similar to plane waves, except which the values of WSF and the scaled WSF are smaller than plane ones.
Analytical Estimation of the Scale of Earth-Like Planetary Magnetic Fields
NASA Astrophysics Data System (ADS)
Bologna, Mauro; Tellini, Bernardo
2014-10-01
In this paper we analytically estimate the magnetic field scale of planets with physical core conditions similar to that of Earth from a statistical physics point of view. We evaluate the magnetic field on the basis of the physical parameters of the center of the planet, such as density, temperature, and core size. We look at the contribution of the Seebeck effect on the magnetic field, showing that a thermally induced electrical current can exist in a rotating fluid sphere. We apply our calculations to Earth, where the currents would be driven by the temperature difference at the outer-inner core boundary, Jupiter and the Jupiter's satellite Ganymede. In each case we show that the thermal generation of currents leads to a magnetic field scale comparable to the observed fields of the considered celestial bodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenerani, Anna; Velli, Marco
Alfvénic fluctuations in the solar wind display many properties reflecting an ongoing nonlinear cascade, e.g., a well-defined spectrum in frequency, together with some characteristics more commonly associated with the linear propagation of waves from the Sun, such as the variation of fluctuation amplitude with distance, dominated by solar wind expansion effects. Therefore, both nonlinearities and expansion must be included simultaneously in any successful model of solar wind turbulence evolution. Because of the disparate spatial scales involved, direct numerical simulations of turbulence in the solar wind represent an arduous task, especially if one wants to go beyond the incompressible approximation. Indeed,more » most simulations neglect solar wind expansion effects entirely. Here we develop a numerical model to simulate turbulent fluctuations from the outer corona to 1 au and beyond, including the sub-Alfvénic corona. The accelerating expanding box (AEB) extends the validity of previous expanding box models by taking into account both the acceleration of the solar wind and the inhomogeneity of background density and magnetic field. Our method incorporates a background accelerating wind within a magnetic field that naturally follows the Parker spiral evolution using a two-scale analysis in which the macroscopic spatial effect coupling fluctuations with background gradients becomes a time-dependent coupling term in a homogeneous box. In this paper we describe the AEB model in detail and discuss its main properties, illustrating its validity by studying Alfvén wave propagation across the Alfvén critical point.« less
Mesoscale Models of Fluid Dynamics
NASA Astrophysics Data System (ADS)
Boghosian, Bruce M.; Hadjiconstantinou, Nicolas G.
During the last half century, enormous progress has been made in the field of computational materials modeling, to the extent that in many cases computational approaches are used in a predictive fashion. Despite this progress, modeling of general hydrodynamic behavior remains a challenging task. One of the main challenges stems from the fact that hydrodynamics manifests itself over a very wide range of length and time scales. On one end of the spectrum, one finds the fluid's "internal" scale characteristic of its molecular structure (in the absence of quantum effects, which we omit in this chapter). On the other end, the "outer" scale is set by the characteristic sizes of the problem's domain. The resulting scale separation or lack thereof as well as the existence of intermediate scales are key to determining the optimal approach. Successful treatments require a judicious choice of the level of description which is a delicate balancing act between the conflicting requirements of fidelity and manageable computational cost: a coarse description typically requires models for underlying processes occuring at smaller length and time scales; on the other hand, a fine-scale model will incur a significantly larger computational cost.
Self-sustaining processes at all scales in wall-bounded turbulent shear flows
Hwang, Yongyun
2017-01-01
We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend’s attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier–Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167581
Self-sustaining processes at all scales in wall-bounded turbulent shear flows.
Cossu, Carlo; Hwang, Yongyun
2017-03-13
We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend's attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier-Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
1985-03-01
aluminum outer walls by a matrix of studs screwed into blind holes in the inner wall plates and extending through the outer walls. Thermoelectric cooling...studied. The problem of the uncooled sample ports might have been dealt with, however the failure of several sections of thermoelectric cooling...encountered with the Proto I chamber. It should be kept in mind that the basic cooled wall design consists of thermoelectric cooling modules (TEM’s
THE SKIN | Functional morphology of the integumentary system in fishes
Elliott, D.G.; Farrell, Anthony P.
2011-01-01
The integument that covers the outer surface of a fish’s body and fins is a multifunctional organ, with morphological features highly adapted to carry out these functions. The integument consists of two layers. The outer layer, the epidermis, is essentially cellular in structure, comprised of a multilayered epithelium that usually includes specialized cells. The inner layer, the dermis, is primarily a fibrous structure with relatively few cells, although it may contain scales, nerves, blood vessels, adipose tissue, and pigment cells.
A Heliosphere Buffeted by Interstellar Turbulence?
NASA Astrophysics Data System (ADS)
Jokipii, J. R.; Giacalone, J.
2014-12-01
Recent observations from IBEX combined with previous measurements from other sources suggest new, local, effects of interstellar turbulence. Observations of various interstellar parameters such as the magnetic field, fluid velocity and electron density, over large spatial scales, have revealed a broadband Kolmogorov spectrum of interstellar turbulence which pervades most of interstellar space. The outer scale (or coherence scale of this turbulence) is found to be approximately 10^19 cm and the inner cutoff scale is less than 1000 km. The root-mean-square relative fluctuation in the fluid and the magnetic-field parameters is of order unity. If this turbulence exists at the heliosphere, the root-mean-square relative fluctuations at 100 (heliospheric) AU scales is approximately 0.1. The recently published value for the change In observed velocity direction for the interstellar flow relative to the heliosphere (Frisch, etal, 2014)is consistent with this. Similarly, interpreting the width of the IBEX ribbon in terms of a fluctuating magnetic field also is in agreement with this picture. Observations of TeV cosmic rays can also be explained. Potential effects of these fluctuations in the interstellar medium on the heliosphere will be discussed. Reference: Frisch, etal, Science, 341, 480
Effect of LES models on the entrainment of a passive scalar in a turbulent planar jet
NASA Astrophysics Data System (ADS)
Chambel Lopes, Diogo; da Silva, Carlos; Reis, Ricardo; Raman, Venkat
2011-11-01
Direct and large-eddy simulations (DNS/LES) of turbulent planar jets are used to study the role of subgrid-scale models in the integral characteristics of the passive scalar mixing in a jet. Specifically the effect of subgrid-scale models in the jet spreading rate and centreline passive scalar decay rates are assessed and compared. The modelling of the subgrid-scale fluxes is particularly challenging in the turbulent/nonturbulent (T/NT) region that divides the two regions in the jet flow: the outer region where the flow is irrotational and the inner region where the flow is turbulent. It has been shown that important Reynolds stresses exist near the T/NT interface and that these stresses determine in part the mixing and combustion rates in jets. The subgrid scales of motion near the T/NT interface are far from equilibrium and contain an important fraction of the total kinetic energy. Model constants used in several subgrid-scale models such as the Smagorinsky and the gradient models need to be corrected near the jet edge. The procedure used to obtain the dynamic Smagorinsky constant is not able to cope with the intermittent nature of this region.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; (g) Sunburn when more than 33 percent of the onions in a lot have a medium green color on one-third...; (i) Peeling when more than one-half of the thin papery skin is missing, leaving the underlying fleshy...) Watery scales when more than the equivalent of the entire outer fleshy scale is affected by an off-color...
Code of Federal Regulations, 2011 CFR
2011-01-01
...; (g) Sunburn when more than 33 percent of the onions in a lot have a medium green color on one-third...; (i) Peeling when more than one-half of the thin papery skin is missing, leaving the underlying fleshy...) Watery scales when more than the equivalent of the entire outer fleshy scale is affected by an off-color...
Large scale structures in a turbulent boundary layer and their imprint on wall shear stress
NASA Astrophysics Data System (ADS)
Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark
2015-11-01
Experiments were performed on a turbulent boundary layer developing on a flat plate model under zero pressure gradient flow. A MEMS differential capacitive shear stress sensor with a 1 mm × 1 mm floating element was used to capture the fluctuating wall shear stress simultaneously with streamwise velocity measurements from a hot-wire anemometer traversed in the wall normal direction. Near the wall, the peak in the cross correlation corresponds to an organized motion inclined 45° from the wall. In the outer region, the peak diminishes in value, but is still significant at a distance greater than half the boundary layer thickness, and corresponds to a structure inclined 14° from the wall. High coherence between the two signals was found for the low-frequency content, reinforcing the belief that large scale structures have a vital impact on wall shear stress. Thus, estimation of the wall shear stress from the low-frequency velocity signal will be performed, and is expected to be statistically significant in the outer boundary layer. Additionally, conditionally averaged mean velocity profiles will be presented to assess the effects of high and low shear stress. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.
Epidermis architecture and material properties of the skin of four snake species
Klein, Marie-Christin G.; Gorb, Stanislav N.
2012-01-01
On the basis of structural and experimental data, it was previously demonstrated that the snake integument consists of a hard, robust, inflexible outer surface (Oberhäutchen and β-layer) and softer, flexible inner layers (α-layers). It is not clear whether this phenomenon is a general adaptation of snakes to limbless locomotion or only to specific conditions, such as habitat and locomotion. The aim of the present study was to compare the structure and material properties of the outer scale layers (OSLs) and inner scale layers (ISLs) of the exuvium epidermis in four snake species specialized to live in different habitats: Lampropeltis getula californiae (terrestrial), Epicrates cenchria cenchria (generalist), Morelia viridis (arboreal) and Gongylophis colubrinus (sand-burrowing). Scanning electron microscopy (SEM) of skin cross sections revealed a strong variation in the epidermis structure between species. The nanoindentation experiments clearly demonstrated a gradient of material properties along the epidermis in the integument of all the species studied. The presence of such a gradient is a possible adaptation to locomotion and wear minimization on natural substrates. In general, the difference in both the effective elastic modulus and hardness of the OSL and ISL between species was not large compared with the difference in epidermis thickness and architecture. PMID:22896567
Passive Plasma Contact Mechanisms for Small-Scale Spacecraft
NASA Astrophysics Data System (ADS)
McTernan, Jesse K.
Small-scale spacecraft represent a paradigm shift in how entities such as academia, industry, engineering firms, and the scientific community operate in space. However, although the paradigm shift produces unique opportunities to build satellites in unique ways for novel missions, there are also significant challenges that must be addressed. This research addresses two of the challenges associated with small-scale spacecraft: 1) the miniaturization of spacecraft and associated instrumentation and 2) the need to transport charge across the spacecraft-environment boundary. As spacecraft decrease in size, constraints on the size, weight, and power of on-board instrumentation increase--potentially limiting the instrument's functionality or ability to integrate with the spacecraft. These constraints drive research into mechanisms or techniques that use little or no power and efficiently utilize existing resources. One limited resource on small-scale spacecraft is outer surface area, which is often covered with solar panels to meet tight power budgets. This same surface area could also be needed for passive neutralization of spacecraft charging. This research explores the use of a transparent, conductive layer on the solar cell coverglass that is electrically connected to spacecraft ground potential. This dual-purpose material facilitates the use of outer surfaces for both energy harvesting of solar photons as well as passive ion collection. Mission capabilities such as in-situ plasma measurements that were previously infeasible on small-scale platforms become feasible with the use of indium tin oxide-coated solar panel coverglass. We developed test facilities that simulate the space environment in low Earth orbit to test the dual-purpose material and the various application of this approach. Particularly, this research is in support of two upcoming missions: OSIRIS-3U, by Penn State's Student Space Programs Lab, and MiTEE, by the University of Michigan. The purpose of OSIRIS-3U is to investigate the effects of space weather on the ionosphere. The spacecraft will use a pulsed Langmuir probe, an instrument now enabled on small-scale spacecraft through the techniques outlined in this research.
76 FR 20530 - Safety Zone; Boom Days, Buffalo Outer Harbor, Buffalo, NY
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-13
...[deg]51'47.61'' W (NAD 83). (b) Effective period. This regulation will be effective and the safety zone...-AA00 Safety Zone; Boom Days, Buffalo Outer Harbor, Buffalo, NY AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone in the Buffalo Outer...
NASA Technical Reports Server (NTRS)
Whipple, F. L.
1973-01-01
Growing planetesimals and a range of drag laws depending on the Reynolds number and on the ratio of particle size to mean free path are considered. Particles spiral in the direction of positive gradient, thus being concentrated toward toroidal concentrations of gas. The effect increases with decreasing rates of particle growth, i.e., with increasing time scales of planet formation by accretion. In the outer regions, where evidence suggests that comets were formed and Uranus and Neptune were so accumulated, the effect of the pressure gradient is to clear the forming comets from those regions. The large mass of Neptune may have developed because of this effect, perhaps Neptune's solar distance was reduced from Bode's law, and perhaps no comet belt exists beyond Neptune. In the asteroid belt, on a slow time scale, the effect may have spiraled planetesimals toward Mars and Jupiter, thus contributing to the lack of planet formation in this region.
Heat shield characterization: Outer planet atmospheric entry probe
NASA Technical Reports Server (NTRS)
Mezines, S. A.; Rusert, E. L.; Disser, E. F.
1976-01-01
A full scale carbon phenolic heat shield was fabricated for the Outer Planet Probe in order to demonstrate the feasibility of molding large carbon phenolic parts with a new fabrication processing method (multistep). The sphere-cone heat shield was molded as an integral unit with the nose cap plies configured into a double inverse chevron shape to achieve the desired ply orientation. The fabrication activity was successful and the feasibility of the multistep processing technology was established. Delaminations or unbonded plies were visible on the heat shield and resulted from excessive loss of resin and lack of sufficient pressure applied on the part during the curing cycle. A comprehensive heat shield characterization test program was conducted, including: nondestructive tests with the full scale heat shield and thermal and mechanical property tests with small test specimen.
The dynamics of rings around small, irregular bodies
NASA Astrophysics Data System (ADS)
Sicardy, Bruno
2017-06-01
Stellar occultations revealed the presence of two dense rings around the Centaur object (10199) Chariklo (Braga-Ribas et al., Nature 508, 72, 2014). This is the first ring system discovered around an object that is not a giant planet, suggesting that rings may exist around numerous bodies in the solar system. Chariklo's rings roughly reside at the outer limit of the Roche zone of the body. Moreover, the main ring has sharp edges, which call for the presence of putative shepherd satellites. Those characteristics give an image of Chariklo's rings that are rather similar, in terms of dynamics, to those surrounding the gaseous planets.An important difference exists, however, between giant planets and small bodies: the formers are highly axisymmetric, while the latters can support mass anomalies (eg surface topographic features) or non-spherical shapes (eg an ellipsoidal figure of equilibrium) that involve masses, relative to the body itself, as large as 10-4-10-3.We investigate the effect of non-axisymmetric terms in the potential of the body upon a collisional debris disk that initially surrounds a small irregular body. We show that the corotation points being maxima of energy, dissipative collisions remove the particles from the corotation zone over short time scales (< 106 years). Moreover, the Lindblad resonances inside the corotation radius create torques that drive the particles onto the surface of the central body. Conversely, the outer Lindblad resonances push the disk material beyond the outer 3/2 and 2/1 Lindblad resonances.Taking as an example Chariklo's ring system, for which recent data have been obtained from stellar occultations, we show that the Lindblad resonant torques actuate over short time scales (< 106 years). This general picture offers a natural explanation of the presence of dense rings at the outer limit of Chariklo's Roche zone, and their absence closer to the body.The work leading to this results has received funding from the European Research Council under the European Community's H2020 2014-2020 ERC grant Agreement n°669416 "Lucky Star".
Destruction and Re-Accretion of Mid-Size Moons During an Outer Solar System Late Heavy Bombardment
NASA Astrophysics Data System (ADS)
Movshovitz, N.; Nimmo, F.; Korycansky, D. G.; Asphaug, E. I.; Owen, M.
2014-12-01
To explain the lunar Late Heavy Bombardment the Nice Model (Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. 2005, Nature, 435, 459; Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. 2005, Nature, 435, 459) invokes a period of dynamical instability, occurring long after planet formation, that destabilizes both the main asteroid belt and a remnant exterior planetesimal disk. As a side effect of explaining the lunar LHB, this model also predicts an LHB-like period in the outer Solar System. With higher collision probabilities and impact energies due to gravitational focusing by the giant planets the inner satellites of Jupiter, Saturn, and Uranus would have experienced a bombardment much more severe than the one supposedly responsible for the lunar basins. The concern is that such bombardment should have resulted in significant, even catastrophic modification of the mid-size satellites. Here we look at the problem of satellite survival during a hypothetical outer Solar System LHB. Using a Monte-Carlo approach we calculate, for 10 satellites of Saturn and Uranus, the probability of having experienced at least one catastrophic collision during an LHB. We use a scaling law for the energy required to disrupt a target in a gravity-dominated collision derived from new SPH simulations. These simulations extend the scaling law previously obtained by Benz & Asphaug (1999, Icarus, 142, 5) to larger targets. We then simulate randomized LHB impacts by drawing from appropriate size and velocity distributions, with the total delivered mass as a controlled parameter. We find that Mimas, Enceladus, Tethys, Hyperion, and Miranda experience at least one catastrophic impact in every simulation. In most simulations, Mimas, Enceladus, and Tethys experience multiple catastrophic impacts, including impacts with energies several times that required to completely disrupt the target. The implication is that these close-in, mid-size satellites could not have survived a Late Heavy Bombardment unmodified, unless the mass delivered to the outer Solar System was at least 30 times less that the value predicted by the Nice Model, or 10 times less than the reduced value more recently suggested by Dones & Levison (2013, in 44th Lunar Planet. Sci. Conf.).
Scale Properties of Anisotropic and Isotropic Turbulence in the Urban Surface Layer
NASA Astrophysics Data System (ADS)
Liu, Hao; Yuan, Renmin; Mei, Jie; Sun, Jianning; Liu, Qi; Wang, Yu
2017-11-01
The scale properties of anisotropic and isotropic turbulence in the urban surface layer are investigated. A dimensionless anisotropic tensor is introduced and the turbulent tensor anisotropic coefficient, defined as C, where C = 3d3 + 1 (d3 is the minimum eigenvalue of the tensor) is used to characterize the turbulence anisotropy or isotropy. Turbulence is isotropic when C ≈ 1, and anisotropic when C ≪ 1. Three-dimensional velocity data collected using a sonic anemometer are analyzed to obtain the anisotropic characteristics of atmospheric turbulence in the urban surface layer, and the tensor anisotropic coefficient of turbulent eddies at different spatial scales calculated. The analysis shows that C is strongly dependent on atmospheric stability ξ = (z-zd)/L_{{it{MO}}}, where z is the measurement height, zd is the displacement height, and L_{{it{MO}}} is the Obukhov length. The turbulence at a specific scale in unstable conditions (i.e., ξ < 0) is closer to isotropic than that at the same scale under stable conditions. The maximum isotropic scale of turbulence is determined based on the characteristics of the power spectrum in three directions. Turbulence does not behave isotropically when the eddy scale is greater than the maximum isotropic scale, whereas it is horizontally isotropic at relatively large scales. The maximum isotropic scale of turbulence is compared to the outer scale of temperature, which is obtained by fitting the temperature fluctuation spectrum using the von Karman turbulent model. The results show that the outer scale of temperature is greater than the maximum isotropic scale of turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronson, Arturo; Kumar, Vinod
The effects of plasma on carbides were computationally investigated for the ultimate development of adherent, dense scales such as Al 2O 3-TiO 2 systems toward oxidation resistance at 1873 K. An alumina scale forms on the carbide because of the significant stability of Al 2O 3 as the outer scale adjacent to the gas phase compared to rutile, though TiO and Ti 2O 3 may form as components of an inner layer of a complicated scale. A sequence of surface reactions starting with the adsorption of oxygen on the surface was applied to experimental data from Donnelly’s research group whomore » reported the adsorption of O 2 in a plasma atmosphere as a function of power. In addition to the adsorbed oxygen (Oad) as the rate determining step, it controlled the cascading reaction sequence of the adsorbed species of AlO, AlO 2 and AlO 3, as indicated in the present study. The rate of oxygen adsorption also depends on the ratio of the final to initial adsorbed oxygen as a function the oxygen potential. In a secondary research thrust, Ti 3AlC was synthesized and subsequently oxidized. A 39Ti-14Al-47TiC (in wt%) mixture was equilibrated by using a pseudo-isopiestic technique to form ultimately an aggregate of Ti3AlC, Ti 2AlC and TiC phases. The aggregate was primarily composed of Ti 3AlC with minor amounts of Ti 2AlC and TiC, as determined by an X-ray diffraction analysis. The Ti 3AlC/Ti 2AlC/TiC aggregate was subsequently oxidized at 1873 K to form a scale composed of an outer layer of Al 2O 3-TiO 2-Al 2TiO 5 with an inner layer consisting of TiO-Al 2O 3- Al 4CO 3. The measured scale thickness grew according to Wagner’s parabolic growth rate, which estimates an effective diffusion coefficient of 6 (10)-8 cm 2/s. The scale appears to grow with Ti ions migrating outward from the Ti 3AlC/Ti 2AlC/TiC core and oxygen ions diffusing inwardly toward the core. The transient temperature distribution of a cylindrical, carbide packed bed (i.e., B4C) was simulated with COMSOL software to determine the response of the bed to a sudden temperature spike exposed to the outer wall of the bed. The temperature distribution of B4C was similarly heated and compared with Hf and Zr metal. The thermal conductivity of Hf and Zr is higher than the B4C packed bed and hence they respond quicker than B4C. The packed bed still takes approximately 1200 s to plateau the temperature distribution between the cylinder surfaces to the centerline of the carbide packed bed of 5 cm diameter. Though the modeling of the distributions in the carbide packed bed gives an understanding of the transient heat response behavior driven by radiation, the effect of the plasma on the surface temperature of individual carbide particles needs further investigation to understand the plasma contribution to densification of a carbide packed bed.« less
A Volcanic Hydrogen Habitable Zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez, Ramses M.; Kaltenegger, Lisa, E-mail: rmr277@cornell.edu
The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N{sub 2}–CO{sub 2}–H{sub 2}O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO{sub 2} outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H{sub 2} can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N{sub 2}–CO{sub 2}–H{sub 2}O–H{sub 2}) can be sustained as long as volcanic H{submore » 2} output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H{sub 2} warming is reduced in dense H{sub 2}O atmospheres. The atmospheric scale heights of such volcanic H{sub 2} atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.« less
Outer Membrane Protein Folding and Topology from a Computational Transfer Free Energy Scale.
Lin, Meishan; Gessmann, Dennis; Naveed, Hammad; Liang, Jie
2016-03-02
Knowledge of the transfer free energy of amino acids from aqueous solution to a lipid bilayer is essential for understanding membrane protein folding and for predicting membrane protein structure. Here we report a computational approach that can calculate the folding free energy of the transmembrane region of outer membrane β-barrel proteins (OMPs) by combining an empirical energy function with a reduced discrete state space model. We quantitatively analyzed the transfer free energies of 20 amino acid residues at the center of the lipid bilayer of OmpLA. Our results are in excellent agreement with the experimentally derived hydrophobicity scales. We further exhaustively calculated the transfer free energies of 20 amino acids at all positions in the TM region of OmpLA. We found that the asymmetry of the Gram-negative bacterial outer membrane as well as the TM residues of an OMP determine its functional fold in vivo. Our results suggest that the folding process of an OMP is driven by the lipid-facing residues in its hydrophobic core, and its NC-IN topology is determined by the differential stabilities of OMPs in the asymmetrical outer membrane. The folding free energy is further reduced by lipid A and assisted by general depth-dependent cooperativities that exist between polar and ionizable residues. Moreover, context-dependency of transfer free energies at specific positions in OmpLA predict regions important for protein function as well as structural anomalies. Our computational approach is fast, efficient and applicable to any OMP.
Jonas, Ludwig; Jaksch, Heiner; Zellmann, Erhard; Klemm, Kerstin I; Andersen, Peter Hvilshøj
2012-10-01
Hairs more than 400 years old of the famous astronomer Tycho Brahe were studied by electron microscopy to evaluate the hypothesis that Johannes Kepler murdered his teacher Brahe by mercury intoxication. The beard hairs showed a well-preserved ultrastructure with typical hair scales and melanosomes. The authors detected an accumulation of electron-dense granules of about 10 nm inside the outer hair scales, but not in the hair shaft and roots. At the places of these heavy-metal-containing granules they detected mercury besides other elements by energy dispersive X-ray analysis (EDX, Oxford, UK) in a field cathode scanning electron microscope (SEM, Gemini, Zeiss). The mercury-containing granules were found over the whole length of hairs, but only in the outer hair scales. Nevertheless, surface coatings of hairs were free of mercury. This distribution of mercury does not support the murder hypothesis, but could be related to precipitation of mercury dust from the air during long-term alchemistic activities.
NASA Astrophysics Data System (ADS)
Xu, Yonggen; Tian, Huanhuan; Dan, Youquan; Feng, Hao; Wang, Shijian
2017-04-01
Propagation formulae for M2-factor and beam wander of partially coherent electromagnetic hollow Gaussian (PCEHG) beam in non-Kolmogorov turbulence are derived based on the extended Huygens-Fresnel principle and the second-order moments of the Wigner distribution function. Our results indicate that the normalized M2-factors of PCEHG beam with larger beam order, waist width, inner scale of turbulence, the generalized exponent parameter, and smaller transverse coherent widths, outer scale of turbulence, the generalized structure parameter are less affected by the turbulence. The root mean square beam wander and relative beam wander are more obvious for PCEHG beam with smaller beam order, larger inner and outer scales of turbulence, exponent parameter, transverse coherent widths, and the generalized structure parameter. What is more, the beam wander properties of PCEHG beam in non-Kolmogorov turbulence are very different from M2-factor and spreading properties of beam in turbulence.
Plasmas in the outer heliosphere
NASA Technical Reports Server (NTRS)
Belcher, J. W.; Richardson, J. D.; Lazarus, A. J.; Gazis, P. R.; Barnes, A.
1995-01-01
We review the observed properties of the solar wind in the outer heliosphere, including observations from Voyager and the Pioneers, as well as from inner heliospheric probes as appropriate. These observations are crucial to modeling of the heliosphere and its interactions with the interstellar medium, since the wind ram pressure and its temporal variations are important in understanding the distance to the termination shock and heliopause and how those boundaries might vary in time. We focus on results since Solar Wind 7. Among the issues we will discuss are: (1) the time scales for and statistical properties of variations in the ram pressure in the outer heliosphere, and how those variations might affect the morphology of the heliospheric/interstellar medium interface; (2) the question of possible solar wind slowing in the outer heliosphere due to the pick-up of interstellar ions; (3) the issue of whether there is bulk heating of the solar wind associated either with interstellar ion pick-up or with continued heating due to stream-stream interactions; (4) evidence for latitudinal variations in solar wind properties; and (5) the 1.3 year periodicities apparent in the outer heliosphere, and the close correspondence with similar variations seen with inner heliospheric probes.
NASA Astrophysics Data System (ADS)
Salaris, M.; Cassisi, S.; Schiavon, R. P.; Pietrinferni, A.
2018-04-01
Red giants in the updated APOGEE-Kepler catalogue, with estimates of mass, chemical composition, surface gravity and effective temperature, have recently challenged stellar models computed under the standard assumption of solar calibrated mixing length. In this work, we critically reanalyse this sample of red giants, adopting our own stellar model calculations. Contrary to previous results, we find that the disagreement between the Teff scale of red giants and models with solar calibrated mixing length disappears when considering our models and the APOGEE-Kepler stars with scaled solar metal distribution. However, a discrepancy shows up when α-enhanced stars are included in the sample. We have found that assuming mass, chemical composition and effective temperature scale of the APOGEE-Kepler catalogue, stellar models generally underpredict the change of temperature of red giants caused by α-element enhancements at fixed [Fe/H]. A second important conclusion is that the choice of the outer boundary conditions employed in model calculations is critical. Effective temperature differences (metallicity dependent) between models with solar calibrated mixing length and observations appear for some choices of the boundary conditions, but this is not a general result.
EMIC Wave Scale Size in the Inner Magnetosphere: Observations From the Dual Van Allen Probes
NASA Technical Reports Server (NTRS)
Blum, L. W.; Bonnell, J. W.; Agapitov, O.; Paulson, K.; Kletzing, C.
2017-01-01
Estimating the spatial scales of electromagnetic ion cyclotron (EMIC) waves is critical for quantifying their overall scattering efficiency and effects on thermal plasma, ring current, and radiation belt particles. Using measurements from the dual Van Allen Probes in 2013-2014, we characterize the spatial and temporal extents of regions of EMIC wave activity and how these depend on local time and radial distance within the inner magnetosphere. Observations are categorized into three types: waves observed by only one spacecraft, waves measured by both spacecraft simultaneously, and waves observed by both spacecraft with some time lag. Analysis reveals that dayside (and H+ band) EMIC waves more frequently span larger spatial areas, while nightside (and He+ band) waves are more often localized but can persist many hours. These investigations give insight into the nature of EMIC wave generation and support more accurate quantification of their effects on the ring current and outer radiation belt.
EMIC wave scale size in the inner magnetosphere: Observations from the dual Van Allen Probes
NASA Astrophysics Data System (ADS)
Blum, L. W.; Bonnell, J. W.; Agapitov, O.; Paulson, K.; Kletzing, C.
2017-02-01
Estimating the spatial scales of electromagnetic ion cyclotron (EMIC) waves is critical for quantifying their overall scattering efficiency and effects on thermal plasma, ring current, and radiation belt particles. Using measurements from the dual Van Allen Probes in 2013-2014, we characterize the spatial and temporal extents of regions of EMIC wave activity and how these depend on local time and radial distance within the inner magnetosphere. Observations are categorized into three types—waves observed by only one spacecraft, waves measured by both spacecraft simultaneously, and waves observed by both spacecraft with some time lag. Analysis reveals that dayside (and H+ band) EMIC waves more frequently span larger spatial areas, while nightside (and He+ band) waves are more often localized but can persist many hours. These investigations give insight into the nature of EMIC wave generation and support more accurate quantification of their effects on the ring current and outer radiation belt.
Safak, Ilgar; List, Jeffrey; Warner, John C.; Kumar, Nirnimesh
2017-01-01
Long-term decadal-scale shoreline change is an important parameter for quantifying the stability of coastal systems. The decadal-scale coastal change is controlled by processes that occur on short time scales (such as storms) and long-term processes (such as prevailing waves). The ability to predict decadal-scale shoreline change is not well established and the fundamental physical processes controlling this change are not well understood. Here we investigate the processes that create large-scale long-term shoreline change along the Outer Banks of North Carolina, an uninterrupted 60 km stretch of coastline, using both observations and a numerical modeling approach. Shoreline positions for a 24-yr period were derived from aerial photographs of the Outer Banks. Analysis of the shoreline position data showed that, although variable, the shoreline eroded an average of 1.5 m/yr throughout this period. The modeling approach uses a three-dimensional hydrodynamics-based numerical model coupled to a spectral wave model and simulates the full 24-yr time period on a spatial grid running on a short (second scale) time-step to compute the sediment transport patterns. The observations and the model results show similar magnitudes (O(105 m3/yr)) and patterns of alongshore sediment fluxes. Both the observed and the modeled alongshore sediment transport rates have more rapid changes at the north of our section due to continuously curving coastline, and possible effects of alongshore variations in shelf bathymetry. The southern section with a relatively uniform orientation, on the other hand, has less rapid transport rate changes. Alongshore gradients of the modeled sediment fluxes are translated into shoreline change rates that have agreement in some locations but vary in others. Differences between observations and model results are potentially influenced by geologic framework processes not included in the model. Both the observations and the model results show higher rates of erosion (∼−1 m/yr) averaged over the northern half of the section as compared to the southern half where the observed and modeled averaged net shoreline changes are smaller (<0.1 m/yr). The model indicates accretion in some shallow embayments, whereas observations indicate erosion in these locations. Further analysis identifies that the magnitude of net alongshore sediment transport is strongly dominated by events associated with high wave energy. However, both big- and small- wave events cause shoreline change of the same order of magnitude because it is the gradients in transport, not the magnitude, that are controlling shoreline change. Results also indicate that alongshore momentum is not a simple balance between wave breaking and bottom stress, but also includes processes of horizontal vortex force, horizontal advection and pressure gradient that contribute to long-term alongshore sediment transport. As a comparison to a more simple approach, an empirical formulation for alongshore sediment transport is used. The empirical estimates capture the effect of the breaking term in the hydrodynamics-based model, however, other processes that are accounted for in the hydrodynamics-based model improve the agreement with the observed alongshore sediment transport.
ARES I Aerodynamic Testing at the NASA Langley Unitary Plan Wind Tunnel
NASA Technical Reports Server (NTRS)
Erickson, Gary E.; Wilcox, Floyd J.
2011-01-01
Small-scale force and moment and pressure models based on the outer mold lines of the Ares I design analysis cycle crew launch vehicle were tested in the NASA Langley Research Center Unitary Plan Wind Tunnel from May 2006 to September 2009. The test objectives were to establish supersonic ascent aerodynamic databases and to obtain force and moment, surface pressure, and longitudinal line-load distributions for comparison to computational predictions. Test data were obtained at low through high supersonic Mach numbers for ranges of the Reynolds number, angle of attack, and roll angle. This paper focuses on (1) the sensitivity of the supersonic aerodynamic characteristics to selected protuberances, outer mold line changes, and wind tunnel boundary layer transition techniques, (2) comparisons of experimental data to computational predictions, and (3) data reproducibility. The experimental data obtained in the Unitary Plan Wind Tunnel captured the effects of evolutionary changes to the Ares I crew launch vehicle, exhibited good agreement with predictions, and displayed satisfactory within-test and tunnel-to-tunnel data reproducibility.
Embedded function methods for supersonic turbulent boundary layers
NASA Technical Reports Server (NTRS)
He, J.; Kazakia, J. Y.; Walker, J. D. A.
1990-01-01
The development of embedded functions to represent the mean velocity and total enthalpy distributions in the wall layer of a supersonic turbulent boundary layer is considered. The asymptotic scaling laws (in the limit of large Reynolds number) for high speed compressible flows are obtained to facilitate eventual implementation of the embedded functions in a general prediction method. A self-consistent asymptotic structure is derived, as well as a compressible law of the wall in which the velocity and total enthalpy are logarithmic within the overlap zone, but in the Howarth-Dorodnitsyn variable. Simple outer region turbulence models are proposed (some of which are modifications of existing incompressible models) to reflect the effects of compressibility. As a test of the methodology and the new turbulence models, a set of self-similar outer region profiles is obtained for constant pressure flow; these are then coupled with embedded functions in the wall layer. The composite profiles thus obtained are compared directly with experimental data and good agreement is obtained for flows with Mach numbers up to 10.
Laboratory Investigation of Astrophysical Collimated Jets with Intense Lasers
NASA Astrophysics Data System (ADS)
Yuan, Dawei; Li, Yutong; Tao, Tao; Wei, Huigang; Zhong, Jiayong; Zhu, Baojun; Li, Yanfei; Zhao, Jiarui; Li, Fang; Han, Bo; Zhang, Zhe; Liang, Guiyun; Wang, Feilu; Hu, Guangyue; Zheng, Jian; Jiang, Shaoen; Du, Kai; Ding, Yongkun; Zhou, Shenlei; Zhu, Baoqiang; Zhu, Jianqiang; Zhao, Gang; Zhang, Jie
2018-06-01
One of the remarkable dynamic features of the Herbig–Haro (HH) object is its highly collimated propagation far away from the accretion disk. Different factors are proposed to give us a clearly physical explanation behind these fascinating phenomena, including magnetic field, radiation cooling, surrounding medium, and so on. Laboratory astrophysics, as a new complementary method of studying astrophysical issues, can provide an insight into these behaviors in a similar and controllable laboratory environment. Here we report the scaled laboratory experiments that a well-collimated radiative jet with high Mach number is successfully created to mimic the evolution of HH objects. According to our results, we find that the radiation cooling effect within the jet and the outer rare surrounding plasmas from the X-ray (>keV) photoionized target contribute to the jet collimation. The local nonuniform density structures along the collimated radiative jet axis are caused by the pressure competition between the inner jet and the outer plasmas. The corresponding simulations performed with radiation-hydrodynamic codes FLASH reveal how the radiative jet evolves.
High-purity silica reflecting heat shield development
NASA Technical Reports Server (NTRS)
Congdon, W. M.
1974-01-01
A high-purity, fused-silica reflecting heat shield for the thermal protection of outer-planet probes was developed. Factors that strongly influence the performance of a silica heat shield were studied. Silica-bonded silica configurations, each prepared by a different technique, were investigated and rated according to its relative merits. Slip-casting was selected as the preferred fabrication method because it produced good reflectivity and good strength, and is relatively easy to scale up for a full-size outer-planet probe. The slips were cast using a variety of different particle sizes: continuous particle-size slips; monodisperse particle-size slips; and blends of monodisperse particle-size slips were studied. In general, smaller particles gave the highest reflectance. The monodisperse slips as well as the blend slips gave a higher reflectance than the continuous particle-size slips. An upgraded and fused natural quartz was used to study the effects of microstructure on reflectance and as the baseline to ascertain the increase in reflectance obtained from using a higher-purity synthetic material.
Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow
Orosa, John
2014-03-11
An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.
NASA Astrophysics Data System (ADS)
Jordan, T. H.; Boettcher, M.; Richardson, E.
2002-12-01
Using scaling relations to understand nonlinear geosystems has been an enduring theme of Don Turcotte's research. In particular, his studies of scaling in active fault systems have led to a series of insights about the underlying physics of earthquakes. This presentation will review some recent progress in developing scaling relations for several key aspects of earthquake behavior, including the inner and outer scales of dynamic fault rupture and the energetics of the rupture process. The proximate observations of mining-induced, friction-controlled events obtained from in-mine seismic networks have revealed a lower seismicity cutoff at a seismic moment Mmin near 109 Nm and a corresponding upper frequency cutoff near 200 Hz, which we interpret in terms of a critical slip distance for frictional drop of about 10-4 m. Above this cutoff, the apparent stress scales as M1/6 up to magnitudes of 4-5, consistent with other near-source studies in this magnitude range (see special session S07, this meeting). Such a relationship suggests a damage model in which apparent fracture energy scales with the stress intensity factor at the crack tip. Under the assumption of constant stress drop, this model implies an increase in rupture velocity with seismic moment, which successfully predicts the observed variation in corner frequency and maximum particle velocity. Global observations of oceanic transform faults (OTFs) allow us to investigate a situation where the outer scale of earthquake size may be controlled by dynamics (as opposed to geologic heterogeneity). The seismicity data imply that the effective area for OTF moment release, AE, depends on the thermal state of the fault but is otherwise independent of fault's average slip rate; i.e., AE ~ AT, where AT is the area above a reference isotherm. The data are consistent with β = 1/2 below an upper cutoff moment Mmax that increases with AT and yield the interesting scaling relation Amax ~ AT1/2. Taken together, the OTF relations imply that the seismic productivity for small earthquakes (frequency per unit area) should scale as AT-1/4, which we verify using seismicity catalogs based on both surface-wave and body-wave magnitude. These scaling relations place fundamental constraints on the dynamics of strike-slip faulting on the mid-ocean ridge system.
The shape of oxygen abundance profiles explored with MUSE
NASA Astrophysics Data System (ADS)
Sánchez, S. F.; Sánchez-Menguiano, L.; Pérez, I.
2017-11-01
We characterise the oxygen abundance radial distribution of a sample of 102 spiral galaxies observed with VLT/MUSE using the O3N2 calibrator. The high spatial resolution of the data allows us to detect 14345 HII regions with the same image quality as with photometric data, avoiding any dilution effect. We develop a new methodology to automatically fit the abundance radial profiles, finding that 55 galaxies of the sample exhibit a single negative gradient. The remaining 47 galaxies also display, as well as this negative trend, either an inner drop in the abundances (21), an outer flattening (10) or both (16), which suggests that these features are a common property of disc galaxies. The presence and depth of the inner drop depends on the stellar mass of the galaxies with the most massive systems presenting the deepest abundance drops, while there is no such dependence for the outer flattening. We find that the inner drop appears always around 0.5 r_e, while the position of the outer flattening varies over a wide range of galactocentric distances. Regarding the main negative gradient, we find a characteristic slope of α_{O/H} = - 0.10±0.03 dex/r_e. This slope is independent of the presence of bars and the density of the environment. However, when inner drops or outer flattenings are detected, slightly steeper gradients are observed. This suggests that radial motions might play an important role in shaping the abundance profiles. We define a new normalisation scale (r_{O/H}) for the radial profiles based on the characteristic abundance gradient, with which all the galaxies show a similar position for the inner drop (˜0.5 r_{O/H}) and the outer flattening (˜1.5 r_{O/H}).Finally, we find no significant dependence of the dispersion around the negative gradient with any galaxy property, with values compatible with the uncertainties of the derived abundances.
Convection Electric Field Observations by THEMIS and the Van Allen Probes
NASA Astrophysics Data System (ADS)
Califf, S.; Li, X.; Bonnell, J. W.; Wygant, J. R.; Malaspina, D.; Hartinger, M.; Thaller, S. A.
2013-12-01
We present direct electric field measurements made by THEMIS and the Van Allen Probes in the inner magnetosphere, focusing on the large-scale, near-DC convection electric field. The convection electric field drives plasma Earthward from the tail into the inner magnetosphere, playing a critical role in forming the ring current. Although it is normally shielded deep inside the magnetosphere, during storm times this large-scale electric field can penetrate to low L values (L < 3), eroding the plasmasphere and also providing a mechanism for ~100 keV electron injection into the slot region and inner radiation belt. The relationship of the convection electric field with the plasmasphere is also important for understanding the dynamic outer radiation belt, as the plasmapause boundary has been strongly correlated with the dynamic variation of the outer radiation belt electrons.
Effect of nuclear stars gravity on quasar radiation feedback on the parsec-scale
NASA Astrophysics Data System (ADS)
Yang, Xiao-Hong; Bu, De-Fu
2018-05-01
It is often suggested that a super massive black hole is embedded in a nuclear bulge of size of a few 102 parsec . The nuclear stars gravity is not negligible near ˜10parsec. In order to study the effect of nuclear stars gravity on quasar radiation feedback on the parsec scale, we have simulated the parsec scale flows irradiated by a quasar by taking into account the gravitational potential of both the black hole and the nuclear star cluster. We find that the effect of nuclear stars gravity on the parsec-scale flows is related to the fraction of X-ray photons in quasar radiation. For the models in which the fraction of X-ray photons is not small (e.g. the X-ray photons contribute to 20% of the quasar radiation), the nuclear stars gravity is very helpful to collimate the outflows driven by UV photons, significantly weakens the outflow power at the outer boundary and significantly enhances the net accretion rate onto the black hole. For the models in which X-ray photons are significantly decreased (e.g. the X-ray photons contribute to 5% of the quasar radiation), the nuclear stars gravity can just slightly change properties of outflow and slightly enhance the net accretion rate onto the black hole.
NASA Astrophysics Data System (ADS)
Ramandhany, S.; Sugiarti, E.; Desiati, R. D.; Martides, E.; Junianto, E.; Prawara, B.; Sukarto, A.; Tjahjono, A.
2018-03-01
The microstructure formed on the bond coat affects the oxidation resistance, particularly the formation of a protective oxide layer. The adhesion of bond coat and TGO increased significantly by addition of reactive element. In the present work, the effect of yttrium and yttrium silicon as reactive element (RE) on NiCrAl coating was investigated. The NiCrAl (without RE) and NiCrAlX (X:Y or YSi) bond coating were deposited on Hastelloy C-276 substrate by High Velocity Oxygen Fuel (HVOF) method. Isothermal oxidation was carried out at 1000 °C for 100 hours. The results showed that the addition of RE could prevent the breakaway oxidation. Therefore, the coating with reactive element were more protective against high temperature oxidation. Furthermore, the oxidation rate of NiCrAlY coating was lower than NiCrAlYSi coating with the total mass change was ±2.394 mg/cm2 after 100 hours of oxidation. The thickness of oxide scale was approximately 1.18 μm consisting of duplex oxide scale of spinel NiCr2O4 in outer scale and protective α-Al2O3 in inner scale.
On effects of topography in rotating flows
NASA Astrophysics Data System (ADS)
Burmann, Fabian; Noir, Jerome; Jackson, Andrew
2017-11-01
Both, seismological studies and geodynamic arguments suggest that there is significant topography at the core mantle boundary (CMB). This leads to the question whether the topography of the CMB could influence the flow in the Earth's outer core. As a preliminary experiment, we investigate the effects of bottom topography in the so-called Spin-Up, where motion of a contained fluid is created by a sudden increase of rotation rate. Experiments are performed in a cylindrical container mounted on a rotating table and quantitative results are obtained with particle image velocimetry. Several horizontal length scales of topography (λ) are investigated, ranging from cases where λ is much smaller then the lateral extend of the experiment (R) to cases where λ is a fraction of R. We find that there is an optimal λ that creates maximum dissipation of kinetic energy. Depending on the length scale of the topography, kinetic energy is either dissipated in the boundary layer or in the bulk of the fluid. Two different phases of fluid motion are present: a starting flow in the from of solid rotation (phase I), which is later replaced by meso scale vortices on the length scale of bottom topography (phase II).
Application of optimized multiscale mathematical morphology for bearing fault diagnosis
NASA Astrophysics Data System (ADS)
Gong, Tingkai; Yuan, Yanbin; Yuan, Xiaohui; Wu, Xiaotao
2017-04-01
In order to suppress noise effectively and extract the impulsive features in the vibration signals of faulty rolling element bearings, an optimized multiscale morphology (OMM) based on conventional multiscale morphology (CMM) and iterative morphology (IM) is presented in this paper. Firstly, the operator used in the IM method must be non-idempotent; therefore, an optimized difference (ODIF) operator has been designed. Furthermore, in the iterative process the current operation is performed on the basis of the previous one. This means that if a larger scale is employed, more fault features are inhibited. Thereby, a unit scale is proposed as the structuring element (SE) scale in IM. According to the above definitions, the IM method is implemented on the results over different scales obtained by CMM. The validity of the proposed method is first evaluated by a simulated signal. Subsequently, aimed at an outer race fault two vibration signals sampled by different accelerometers are analyzed by OMM and CMM, respectively. The same is done for an inner race fault. The results show that the optimized method is effective in diagnosing the two bearing faults. Compared with the CMM method, the OMM method can extract much more fault features under strong noise background.
Publisher Correction: Role of outer surface probes for regulating ion gating of nanochannels.
Li, Xinchun; Zhai, Tianyou; Gao, Pengcheng; Cheng, Hongli; Hou, Ruizuo; Lou, Xiaoding; Xia, Fan
2018-02-08
The original version of this Article contained an error in Fig. 3. The scale bars in Figs 3c and 3d were incorrectly labelled as 50 μA. In the correct version, the scale bars are labelled as 0.5 μA. This has now been corrected in both the PDF and HTML versions of the Article.
Fade Analysis of ORCA DATA Beam at NTTR and Pax River
2010-08-01
bit-error-rate (BER) of the data beam on the downlink path. 15 Start Time-PST (Duration) Range Scin Index 1 Rx=5.1cm... Scin Index 2 Rx=13.7cm Scin Index 3 Rx=27.2cm Path Ave Cn2 (m-2/3) Path Ave Inner Scale Path Ave Outer Scale Flight 2 May 16
Extremely high wall-shear stress events in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Pan, Chong; Kwon, Yongseok
2018-04-01
The present work studies the fluctuating characteristics of the streamwise wall-shear stress in a DNS of a turbulent boundary layer at Re τ =1500 from a structural view. The two-dimensional field of the fluctuating friction velocity u‧ τ (x,z) is decomposed into the large- and small-scale components via a recently proposed scale separation algorithm, Quasi-bivariate Variational Mode Decomposition (QB-VMD). Both components are found to be dominated by streak-like structures, which can be regarded as the wall signature of the inner-layer streaks and the outer-layer LSMs, respectively. Extreme positive/negative wall-shear stress fluctuation events are detected in the large-scale component. The former’s occurrence frequency is nearly one order of magnitude higher than the latter; therefore, they contribute a significant portion of the long tail of the wall-shear stress distribution. Both two-point correlations and conditional averages show that these extreme positive wall-shear stress events are embedded in the large-scale positive u‧ τ streaks. They seem to be formed by near-wall ‘splatting’ process, which are related to strong finger-like sweeping (Q4) events originated from the outer-layer positive LSMs.
Time scales of radiation damage decay in four optical materials
NASA Astrophysics Data System (ADS)
Grupp, Frank; Geis, Norbert; Katterloher, Reinhard; Bender, Ralf
2017-09-01
In the framework of the qualification campaigns for the near infrared spectrometer and photometer instrument (NISP) on board the ESA/EUCLID satellite six optical materials where characterized with respect to their transmission losses after a radiation dose representing the mission exposure to high energy particles in the outer Lagrange point L2. Data was taken between 500 and 2000nm on six 25mm thick coated probes. Thickness and coating being representative for the NISP flight configuration. With this paper we present results owing up the radiation damage shown in [1]. We where able to follow up the decay of the radiation damage over almost one year under ambient conditions. This allows us to distinguish between curing effects that happen on different time-scales. As for some of the materials no radiation damage and thus no curing was detected, all materials that showed significant radiation damage in the measured passband showed two clearly distinguished time scales of curing. Up to 70% of the transmission losses cured on half decay time scales of several tens of days, while the rest of the damage cures on time scales of years.
Strategy for outer planets exploration
NASA Technical Reports Server (NTRS)
1975-01-01
NASA's Planetary Programs Office formed a number of scientific working groups to study in depth the potential scientific return from the various candidate missions to the outer solar system. The results of these working group studies were brought together in a series of symposia to evaluate the potential outer planet missions and to discuss strategies for exploration of the outer solar system that were consistent with fiscal constraints and with anticipated spacecraft and launch vehicle capabilities. A logical, scientifically sound, and cost effective approach to exploration of the outer solar system is presented.
Effect of Al and Cr Content on Air and Steam Oxidation of FeCrAl Alloys and Commercial APMT Alloy
Unocic, Kinga A.; Yamamoto, Yukinori; Pint, Bruce A.
2017-03-09
To develop the next generation of accident-tolerant fuel cladding for light-water nuclear reactors, wrought FeCrAlY alloys with varying amounts of Cr and Al and commercial Kanthal APMT alloy were evaluated for short-term (4 h) oxidation resistance in steam and air at 1200–1475 °C. Model alloys with lower Cr contents and higher Al contents were evaluated in this paper as lower Cr contents are desirable for radiation damage resistance during operation. As expected, a synergistic effect was found between the Cr and Al contents to enable protective Al 2O 3 formation under these conditions. Characterization of the alumina scales formed inmore » steam found that the scale morphology was affected by the alloy Y content and detailed scanning transmission electron microscopy (STEM) detected Y segregation along scale grain boundaries at 1200 °C. However, after 4 h at 1475 °C, Y and Hf were not segregated to the oxide grain boundaries formed on APMT and the scale had a single layer structure. Finally, compared to oxidation in air, STEM characterization of the outer scale showed differences in the Fe and Cr distributions in steam.« less
Multi-scale Structural and Tensile Mechanical Response of Annulus Fibrosus to Osmotic Loading
Han, Woojin M.; Nerurkar, Nandan L.; Smith, Lachlan J.; Jacobs, Nathan T.; Mauck, Robert L.; Elliott, Dawn M.
2012-01-01
This study investigates differential multi-scale structure and function relationships of the outer and inner annulus fibrosus (AF) to osmotic swelling in different buffer solutions by quantifying tensile mechanics, GAG content, water content and tissue swelling, and collagen fibril ultrastructure. In the outer AF, the tensile modulus decreased by over 70% with 0.15M PBS treatment but was unchanged with 2M PBS treatment. Moreover, the modulus loss following 0.15M PBS treatment was reversed when followed by 2M PBS treatment, potentially from increased interfibrillar and interlamellar shearing associated with fibril swelling. In contrast, the inner AF tensile modulus was unchanged by 0.15M PBS treatment and increased following 2M treatment. Transmission electron microscopy revealed that the mean collagen fibril diameters of the untreated outer and inner AF were 87.8 ± 27.9 and 71.0 ± 26.9 nm, respectively. In the outer AF, collagen fibril swelling was observed with both 0.15M and 2M PBS treatments, but inherently low GAG content remained unchanged. In the inner AF, 2M PBS treatment caused fibril swelling and GAG loss, suggesting that GAG plays a role in maintaining the structure of collagen fibrils leading to modulation of the native tissue mechanical properties. These results demonstrate important regional variations in structure and composition, and their influence on the heterogeneous mechanics of the AF. Moreover, because the composition and structure is altered as a consequence of progressive disc degeneration, quantification of these interactions is critical for study of the AF pathogenesis of degeneration and tissue engineering. PMID:22314837
Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, M.; Wu, W.-M.; Wu, L.
2010-02-15
A pilot-scale field test system with an inner loop nested within an outer loop was constructed for in situ U(VI) bioremediation at a US Department of Energy site, Oak Ridge, TN. The outer loop was used for hydrological protection of the inner loop where ethanol was injected for biostimulation of microorganisms for U(VI) reduction/immobilization. After 2 years of biostimulation with ethanol, U(VI) levels were reduced to below drinking water standard (<30 {micro}gl{sup -1}) in the inner loop monitoring wells. To elucidate the microbial community structure and functions under in situ uranium bioremediation conditions, we used a comprehensive functional gene arraymore » (GeoChip) to examine the microbial functional gene composition of the sediment samples collected from both inner and outer loop wells. Our study results showed that distinct microbial communities were established in the inner loop wells. Also, higher microbial functional gene number, diversity and abundance were observed in the inner loop wells than the outer loop wells. In addition, metal-reducing bacteria, such as Desulfovibrio, Geobacter, Anaeromyxobacter and Shewanella, and other bacteria, for example, Rhodopseudomonas and Pseudomonas, are highly abundant in the inner loop wells. Finally, the richness and abundance of microbial functional genes were highly correlated with the mean travel time of groundwater from the inner loop injection well, pH and sulfate concentration in groundwater. These results suggest that the indigenous microbial communities can be successfully stimulated for U bioremediation in the groundwater ecosystem, and their structure and performance can be manipulated or optimized by adjusting geochemical and hydrological conditions.« less
A GLIMPSE of Star Formation in the Outer Galaxy
NASA Astrophysics Data System (ADS)
Winston, Elaine; Hora, Joseph L.; Tolls, Volker
2018-01-01
The wealth of infrared data provided by recent infrared missions such as Spitzer, Herschel, and WISE has yet to be fully mined in the study of star formation in the outer galaxy. The nearby galaxy and massive star forming regions towards the galactic center have been extensively studied. However the outer regions of the Milky Way, where the metallicity is intermediate in value between the inner galactic disk and the Magellanic Clouds, has not been systematically studied. We are using Spitzer/IRAC’s GLIMPSE (Galactic Legacy Infrared Mid-plane Survey Extraordinaire) observations of the galactic plane at 3.6, 4.5, 5.8, and 8.0 microns to identify young stellar objects (YSOs) via their disk emission in the mid-infrared. A tiered clustering analysis is then performed: preliminary large scale clustering is identified across the field using a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) technique. Smaller scale sub clustering within these regions is performed using an implementation of the Minimum Spanning Tree (MST) technique. The YSOs are then compared to known objects in the SIMBAD catalogue and their photometry and cluster membership is augmented using available Herschel and WISE photometry. We compare our results to those in the inner galaxy to determine how dynamical processes and environmental factors affect the star formation efficiency. These results will have applications to the study of star formation in other galaxies, where only global properties can be determined. We will present here the results of our initial investigation into star formation in the outer galaxy using the Spitzer/GLIMPSE observations of the SMOG field.
NASA Astrophysics Data System (ADS)
Novikova, N.; Deshevaya, E.; Levinskikh, M.; Polikarpov, N.; Poddubko, S.; Gusev, O.
2015-01-01
Investigations of the effects of solar radiation combined with the spaceflight factors on biological objects were performed in the «EXPOSE-R» experiment on the outer surface of ISS. After more than 1 year of outer space exposure, the spores of microorganisms and fungi, as well as two species of plant seeds were analysed for viability and the set of biological properties. The experiment provided evidence that not only bacterial and fungal spores but also dormant forms of plants had the capability to survive a long-term exposure to outer space.
Jupiter's Magnetodisc in the Juno Era and Implications for the Aurora
NASA Astrophysics Data System (ADS)
Vogt, M. F.; Spalsbury, L.; Connerney, J. E. P.
2017-12-01
The magnetic field in Jupiter's middle and outer magnetosphere is highly radially stretched by the presence of an azimuthally directed current sheet or magnetodisc. Magnetic field measurements from the Voyager, Pioneer, and Galileo spacecraft have been used to construct models of this current sheet, but these observations were limited to latitudes near the jovigraphic equator. High-latitude measurements, such as those recently collected by the Juno spacecraft in its polar orbit of Jupiter, are needed to more fully constrain our understanding of the magnetodisc structure and its effects on the coupling between the ionosphere and middle and outer magnetosphere. Here we will present Juno magnetic field observations from Jupiter's middle magnetosphere and will fit these data to current sheet models, including the Connerney et al. (1981) and Khurana (1997) models, to study the structure of the magnetodisc. We will examine how well the observations are fit by the available current sheet models and discuss any model modifications that are necessary to accurately represent the magnetic field measurements at high latitudes. We will also discuss temporal changes in the magnetodisc between successive Juno orbits ( 53 days) and on longer time scales by comparing Juno data to data from the Voyager, Pioneer, and Galileo spacecraft. Finally, we will consider the implications of our findings for other magnetospheric and auroral processes, particularly the magnetic mapping between the ionosphere and middle and outer magnetosphere.
Coherent spin-exchange via a quantum mediator.
Baart, Timothy Alexander; Fujita, Takafumi; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven Mark Koenraad
2017-01-01
Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors and DNA. The same superexchange concept can also be applied in cold atom experiments.
Li, Ping; Wu, Jia-Gui; Wu, Zheng-Mao; Lin, Xiao-Dong; Deng, Dao; Liu, Yu-Ran; Xia, Guang-Qiong
2011-11-21
Based on a linear chain composed of a central semiconductor laser and two outer semiconductor lasers, chaos synchronization and bidirectional communication between two outer lasers have been investigated under the case that the central laser and the two outer lasers are coupled mutually, whereas there exists no coupling between the two outer lasers. The simulation results show that high-quality and stable isochronal synchronization between the two outer lasers can be achieved, while the cross-correlation coefficients between the two outer lasers and the central laser are very low under proper operation condition. Based on the high performance chaos synchronization between the two outer lasers, message bidirectional transmissions of bit rates up to 20 Gbit/s can be realized through adopting a novel decoding scheme which is different from that based on chaos pass filtering effect. Furthermore, the security of bidirectional communication is also analyzed. © 2011 Optical Society of America
Yang, Chih-Wei; Wu, Mai-Szu; Pan, Ming-Jeng; Hsieh, Wang-Ju; Vandewalle, Alain; Huang, Chiu-Ching
2002-08-01
Tubulointerstitial nephritis is a main renal manifestation caused by pathogenic leptospira that accumulate mostly in the proximal tubules, thereby inducing tubular injury and tubulointerstitial nephritis. To elucidate the role of leptospira outer membrane proteins in tubulointerstitial nephritis, outer membrane proteins from pathogenic Leptospira shermani and nonpathogenic Leptospira patoc extracted by Triton X-114 were administered to cultured mouse proximal tubule cells. A dose-dependent increase of monocyte chemoattractant protein-1 (MCP-1), RANTES, nitrite, and tumor necrosis factor-alpha (TNF-alpha) in the culture supernatant was observed 48 h after incubating Leptospira shermani outer membrane proteins with mouse proximal tubule cells. RT competitive-PCR experiments showed that Leptospira shermani outer membrane proteins (0.2 microg/ml) increased the expression of MCP-1, nitric oxide synthase (iNOS), RANTES, and TNF-alpha mRNA by 3.0-, 9.4-, 2.5-, and 2.5-fold, respectively, when compared with untreated cells. Outer membrane proteins extract from avirulent Leptospira patoc did not induce significant effects. The pathogenic outer membrane proteins extract contain a major component of a 32-kD lipoprotein (LipL32), which is absent in the nonpathogenic leptospira outer membrane. An antibody raised against LipL32 prevented the stimulatory effect of Leptospira shermani outer membrane proteins extract on MCP-1 and iNOS mRNA expression in cultured proximal tubule cells, whereas recombinant LipL32 significantly stimulated the expression of MCP-1 and iNOS mRNAs and augmented nuclear binding of nuclear factor-kappaB (NF-kappaB) and AP-1 transcription factors in proximal tubule cells. An antibody raised against LipL32 also blunted the effects induced by the recombinant LipL32. This study demonstrates that LipL32 is a major component of pathogenic leptospira outer membrane proteins involved in the pathogenesis of tubulointerstitial nephritis.
NASA Astrophysics Data System (ADS)
Gallo, A.; Fedorczak, N.; Elmore, S.; Maurizio, R.; Reimerdes, H.; Theiler, C.; Tsui, C. K.; Boedo, J. A.; Faitsch, M.; Bufferand, H.; Ciraolo, G.; Galassi, D.; Ghendrih, P.; Valentinuzzi, M.; Tamain, P.; the EUROfusion MST1 Team; the TCV Team
2018-01-01
A deep understanding of plasma transport at the edge of magnetically confined fusion plasmas is needed for the handling and control of heat loads on the machine first wall. Experimental observations collected on a number of tokamaks over the last three decades taught us that heat flux profiles at the divertor targets of X-point configurations can be parametrized by using two scale lengths for the scrape-off layer (SOL) transport, separately characterizing the main SOL ({λ }q) and the divertor SOL (S q ). In this work we challenge the current interpretation of these two scale lengths as well as their dependence on plasma parameters by studying the effect of divertor geometry modifications on heat exhaust in the Tokamak à Configuration Variable. In particular, a significant broadening of the heat flux profiles at the outer divertor target is diagnosed while increasing the length of the outer divertor leg in lower single null, Ohmic, L-mode discharges. Efforts to reproduce this experimental finding with both diffusive (SolEdge2D-EIRENE) and turbulent (TOKAM3X) modelling tools confirm the validity of a diffusive approach for simulating heat flux profiles in more traditional, short leg, configurations while highlighting the need of a turbulent description for modified, long leg, ones in which strongly asymmetric divertor perpendicular transport develops.
Phanguphangu, Mukovhe Chad
2017-04-01
To determine the prevalence of outer and middle ear pathologies in paediatrics in Limpopo, South Africa. Cross-sectional retrospective review of otoscopy results obtained during a school health screening campaign conducted between March and June 2015. Descriptive statistics through percentages and frequency tables were used to analyse the data. Logistic regression was used to determine associations between age, gender and pathologies observed. Medical folders of 1089 pupils. Forty-nine percent had normal otoscopy results. A significant 36% (n = 392) had impacted cerumen. Furthermore, 45% of those with impacted cerumen were bilaterally impacted. Additionally, 4% presented with foreign bodies and a further 8% had otitis externa and otitis media. The remaining 3% had tympanic membrane perforations. The odds of developing outer and middle ear pathologies were higher in pupils below 6 years of age (p = 0.046). This study highlights a high prevalence of outer and middle ear pathologies in paediatrics in Limpopo and therefore recommends comprehensive baseline and periodic screenings; to identify children with outer and middle ear pathologies and need further management, and consequently prevent the complications of these pathologies. Additionally, this report highlights a rising need for large-scale research to provide comprehensive analysis of these pathologies.
Jupiter's magnetosphere and radiation belts
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Coroniti, F. V.
1979-01-01
Radioastronomy and Pioneer data reveal the Jovian magnetosphere as a rotating magnetized source of relativistic particles and radio emission, comparable to astrophysical cosmic ray and radio sources, such as pulsars. According to Pioneer data, the magnetic field in the outer magnetosphere is radially extended into a highly time variable disk-shaped configuration which differs fundamentally from the earth's magnetosphere. The outer disk region, and the energetic particles confined in it, are modulated by Jupiter's 10 hr rotation period. The entire outer magnetosphere appears to change drastically on time scales of a few days to a week. In addition to its known modulation of the Jovian decametric radio bursts, Io was found to absorb some radiation belt particles and to accelerate others, and most importantly, to be a source of neutral atoms, and by inference, a heavy ion plasma which may significantly affect the hydrodynamic flow in the magnetosphere. Another important Pioneer finding is that the Jovian outer magnetosphere generates, or permits to escape, fluxes of relativistic electrons of such intensities that Jupiter may be regarded as the dominant source of 1 to 30 MeV cosmic ray electrons in the heliosphere.
Neutron Reflectivity as a Tool for Physics-Based Studies of Model Bacterial Membranes.
Barker, Robert D; McKinley, Laura E; Titmuss, Simon
2016-01-01
The principles of neutron reflectivity and its application as a tool to provide structural information at the (sub-) molecular unit length scale from models for bacterial membranes are described. The model membranes can take the form of a monolayer for a single leaflet spread at the air/water interface, or bilayers of increasing complexity at the solid/liquid interface. Solid-supported bilayers constrain the bilayer to 2D but can be used to characterize interactions with antimicrobial peptides and benchmark high throughput lab-based techniques. Floating bilayers allow for membrane fluctuations, making the phase behaviour more representative of native membranes. Bilayers of varying levels of compositional accuracy can now be constructed, facilitating studies with aims that range from characterizing the fundamental physical interactions, through to the characterization of accurate mimetics for the inner and outer membranes of Gram-negative bacteria. Studies of the interactions of antimicrobial peptides with monolayer and bilayer models for the inner and outer membranes have revealed information about the molecular control of the outer membrane permeability, and the mode of interaction of antimicrobials with both inner and outer membranes.
Praying Mantis Bending Core Breakoff and Retention Mechanism
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Lindermann, Randel A.
2011-01-01
Sampling cores requires the controlled breakoff of the core at a known location with respect to the drill end. An additional problem is designing a mechanism that can be implemented at a small scale, yet is robust and versatile enough to be used for a variety of core samples. The new design consists of a set of tubes (a drill tube, an outer tube, and an inner tube) and means of sliding the inner and outer tubes axially relative to each other. Additionally, a sample tube can be housed inside the inner tube for storing the sample. The inner tube fits inside the outer tube, which fits inside the drill tube. The inner and outer tubes can move axially relative to each other. The inner tube presents two lamellae with two opposing grabbing teeth and one pushing tooth. The pushing tooth is offset axially from the grabbing teeth. The teeth can move radially and their motion is controlled by the outer tube. The outer tube presents two lamellae with radial extrusions to control the inner tube lamellae motion. In breaking the core, the mechanism creates two support points (the grabbing teeth and the bit tip) and one push point. The core is broken in bending. The grabbing teeth can also act as a core retention mechanism. The praying mantis that is disclosed herein is an active core breaking/retention mechanism that requires only one additional actuator other than the drilling actuator. It can break cores that are attached to the borehole bottom as
Beam wander of dark hollow, flat-topped and annular beams
NASA Astrophysics Data System (ADS)
Eyyuboğlu, H. T.; Çil, C. Z.
2008-11-01
Benefiting from the earlier derivations for the Gaussian beam, we formulate beam wander for dark hollow (DH) and flat-topped (FT) beams, also covering the annular Gaussian (AG) beam as a special case. Via graphical illustrations, beam wander variations of these beams are analyzed and compared among themselves and to the fundamental Gaussian beam against changes in propagation length, amplitude factor, source size, wavelength of operation, inner and outer scales of turbulence. These comparisons show that in relation to the fundamental Gaussian beam, DH and FT beams will exhibit less beam wander, particularly at small primary beam source sizes, lower amplitude factors of the secondary beam and higher beam orders. Furthermore, DH and FT beams will continue to preserve this advantageous position all throughout the considered range of wavelengths, inner and outer scales of turbulence. FT beams, in particular, are observed to have the smallest beam wander values among all, up to certain source sizes.
Oxidation and corrosion resistance of candidate Stirling engine heater-head-tube alloys
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Barrett, C. A.
1984-01-01
Sixteen candidate iron base Stirling engine heater head tube alloys are evaluated in a diesel fuel fired simulator materials test rig to determine their oxidation and corrosion resistance. Sheet specimens are tested at 820 C for 3500 hr in 5 hr heating cycles. Specific weight change data and an attack parameter are used to categorize the alloys into four groups; 10 alloys show excellent for good oxidation and corrosion resistance and six alloys exhibit poor or catastrophic resistance. Metallographic, X-ray, and electron microprobe analyses aid in further characterizing the oxidation and corrosion behavior of the alloys. Alloy compositions, expecially the reactive elements aluminum, titanium, and chromium, play a major role in the excellent oxidation and corrosion behavior of the alloys. The best oxidation resistance is associated with the formation of an iron nickel aluminum outer oxide scale, an intermediate oxide scale rich in chromium and titanium, and an aluminum outer oxide scale adjacent to the metallic substrate, which exhibits a zone of internal oxidation of aluminum and to some extent titanium.
NASA Astrophysics Data System (ADS)
Curtis, S. A.; Grebowsky, J. M.
1980-07-01
Potentially serious environmental effects exist when cargo orbital transfer vehicle (COTV) ion propulsion is used on the scale proposed in the preliminary definition studies of the Satellite Power System. These effects of the large scale injections of ion propulsion exhaust in the plasmasphere and in the outer magnetosphere were shown to be highly model dependent with major differences existing in the predicted effects of two models, the ion cloud model and the ion sheath model. The expected total number density deposition of the propellant Ar(+) in the plasmasphere, the energy spectra of the deposited Ar(+) and time dependent behavior of the Ar(+) injected into the plasmasphere by a fleet of COTV vehicles differ drastically between the two models. The ion sheath model was demonstrated to be applicable to the proposed Ar(+) beam physics if the beam was divergent and turbulent whereas the ion cloud model was not a realistic approximation for such a beam because the "frozen-field" assumption on which it is based is not valid.
An integrated model for Jupiter's dynamo action and mean jet dynamics
NASA Astrophysics Data System (ADS)
Gastine, Thomas; Wicht, Johannes; Duarte, Lucia; Heimpel, Moritz
2014-05-01
Data from various space crafts revealed that Jupiter's large scale interior magnetic field is very Earth-like. This is surprising since numerical simulations have demonstrated that, for example, the radial dependence of density, electrical conductivity and other physical properties, which is only mild in the iron cores of terrestrial planets but very drastic in gas planets, can significantly affect the interior dynamics. Jupiter's dynamo action is thought to take place in the deeper envelope where hydrogen, the main constituent of Jupiter's atmosphere, assumes metallic properties. The potential interaction between the observed zonal jets and the deeper dynamo region is an unresolved problem with important consequences for the magnetic field generation. Here we present the first numerical simulation that is based on recent interior models and covers 99% of the planetary radius (below the 1 bar level). A steep decease in the electrical conductivity over the outer 10% in radius allowed us to model both the deeper metallic region and the outer molecular layer in an integrated approach. The magnetic field very closely reproduces Jupiter's known large scale field. A strong equatorial zonal jet remains constrained to the molecular layer while higher latitude jets are suppressed by Lorentz forces. This suggests that Jupiter's higher latitude jets remain shallow and are driven by an additional effect not captured in our deep convection model. The dynamo action of the equatorial jet produces a band of magnetic field located around the equator. The unprecedented magnetic field resolution expected from the Juno mission will allow to resolve this feature allowing a direct detection of the equatorial jet dynamics at depth. Typical secular variation times scales amount to around 750 yr for the dipole contribution but decrease to about 5 yr at the expected Juno resolution (spherical harmonic degree 20). At a nominal mission duration of one year Juno should therefore be able to directly detect secular variation effects in the higher field harmonics.
NASA Astrophysics Data System (ADS)
Veale, Melanie; Ma, Chung-Pei; Greene, Jenny E.; Thomas, Jens; Blakeslee, John P.; Walsh, Jonelle L.; Ito, Jennifer
2018-02-01
We measure the radial profiles of the stellar velocity dispersions, σ(R), for 90 early-type galaxies (ETGs) in the MASSIVE survey, a volume-limited integral-field spectroscopic (IFS) galaxy survey targeting all northern-sky ETGs with absolute K-band magnitude MK < -25.3 mag, or stellar mass M* ≳ 4 × 1011M⊙, within 108 Mpc. Our wide-field 107 arcsec × 107 arcsec IFS data cover radii as large as 40 kpc, for which we quantify separately the inner (2 kpc) and outer (20 kpc) logarithmic slopes γinner and γouter of σ(R). While γinner is mostly negative, of the 56 galaxies with sufficient radial coverage to determine γouter we find 36 per cent to have rising outer dispersion profiles, 30 per cent to be flat within the uncertainties and 34 per cent to be falling. The fraction of galaxies with rising outer profiles increases with M* and in denser galaxy environment, with 10 of the 11 most massive galaxies in our sample having flat or rising dispersion profiles. The strongest environmental correlations are with local density and halo mass, but a weaker correlation with large-scale density also exists. The average γouter is similar for brightest group galaxies, satellites and isolated galaxies in our sample. We find a clear positive correlation between the gradients of the outer dispersion profile and the gradients of the velocity kurtosis h4. Altogether, our kinematic results suggest that the increasing fraction of rising dispersion profiles in the most massive ETGs are caused (at least in part) by variations in the total mass profiles rather than in the velocity anisotropy alone.
Algorithms for Autonomous Plume Detection on Outer Planet Satellites
NASA Astrophysics Data System (ADS)
Lin, Y.; Bunte, M. K.; Saripalli, S.; Greeley, R.
2011-12-01
We investigate techniques for automated detection of geophysical events (i.e., volcanic plumes) from spacecraft images. The algorithms presented here have not been previously applied to detection of transient events on outer planet satellites. We apply Scale Invariant Feature Transform (SIFT) to raw images of Io and Enceladus from the Voyager, Galileo, Cassini, and New Horizons missions. SIFT produces distinct interest points in every image; feature descriptors are reasonably invariant to changes in illumination, image noise, rotation, scaling, and small changes in viewpoint. We classified these descriptors as plumes using the k-nearest neighbor (KNN) algorithm. In KNN, an object is classified by its similarity to examples in a training set of images based on user defined thresholds. Using the complete database of Io images and a selection of Enceladus images where 1-3 plumes were manually detected in each image, we successfully detected 74% of plumes in Galileo and New Horizons images, 95% in Voyager images, and 93% in Cassini images. Preliminary tests yielded some false positive detections; further iterations will improve performance. In images where detections fail, plumes are less than 9 pixels in size or are lost in image glare. We compared the appearance of plumes and illuminated mountain slopes to determine the potential for feature classification. We successfully differentiated features. An advantage over other methods is the ability to detect plumes in non-limb views where they appear in the shadowed part of the surface; improvements will enable detection against the illuminated background surface where gradient changes would otherwise preclude detection. This detection method has potential applications to future outer planet missions for sustained plume monitoring campaigns and onboard automated prioritization of all spacecraft data. The complementary nature of this method is such that it could be used in conjunction with edge detection algorithms to increase effectiveness. We have demonstrated an ability to detect transient events above the planetary limb and on the surface and to distinguish feature classes in spacecraft images.
NASA Technical Reports Server (NTRS)
Magliozzi, B.; Hanson, D. B.
1991-01-01
An analysis of tone noise propagation through a boundary layer and fuselage scattering effects was derived. This analysis is a three dimensional and the complete wave field is solved by matching analytical expressions for the incident and scattered waves in the outer flow to a numerical solution in the boundary layer flow. The outer wave field is constructed analytically from an incident wave appropriate to the source and a scattered wave in the standard Hankel function form. For the incident wave, an existing function - domain propeller noise radiation theory is used. In the boundary layer region, the wave equation is solved by numerical methods. The theoretical analysis is embodied in a computer program which allows the calculation of correction factors for the fuselage scattering and boundary layer refraction effects. The effects are dependent on boundary layer profile, flight speed, and frequency. Corrections can be derived for any point on the fuselage, including those on the opposite side from the source. The theory was verified using limited cases and by comparing calculations with available measurements from JetStar tests of model prop-fans. For the JetStar model scale, the boundary layer refraction effects produce moderate fuselage pressure reinforcements aft of and near the plane of rotation and significant attenuation forward of the plane of rotation at high flight speeds. At lower flight speeds, the calculated boundary layer effects result in moderate amplification over the fuselage area of interest. Apparent amplification forward of the plane of rotation is a result of effective changes in the source directivity due to boundary layer refraction effects. Full scale effects are calculated to be moderate, providing fuselage pressure amplification of about 5 dB at the peak noise location. Evaluation using available noise measurements was made under high-speed, high-altitude flight conditions. Comparisons of calculations made of free field noise, using a current frequency-domain propeller noise prediction method, and fuselage effects using this new procedure show good agreement with fuselage measurements over a wide range of flight speeds and frequencies. Correction factors for the JetStar measurements made on the fuselage are provided in an Appendix.
NASA Astrophysics Data System (ADS)
Dong, Qingming; Sau, Amalendu
2016-06-01
Interfacial mass-transport and redistribution in the micro-scale liquid droplets are important in diverse fields of research interest. The role of the "inflow" and the "outflow" type convective eddy-pairs in the entrainment of outer solute and internal relocation are examined for different homogeneous and heterogeneous water droplet pairs appearing in a tandem arrangement. Two micro-droplets of pure (rain) water interact with an oncoming outer air stream (Re ≤ 100) contaminated by uniformly distributed SO2. By virtue of separation/attachment induced non-uniform interfacial shear-stress gradient, the well-defined inflow/outflow type pairs of recirculating eddy-based convective motion quickly develops, and the eddies effectively attract/repel the accumulated outer solute and control the physical process of mass-transport in the droplet-pair. The non-uniformly shear-driven flow interaction and bifurcation of the circulatory internal flow lead to growth of important micro-scale "secondary" eddies which suitably regroup with the adjacent "primary" one to create the sustained inflow/outflow type convective dynamics. The presently derived flow characteristics and in-depth analysis help to significantly improve our understanding of the micro-droplet based transport phenomena in a wider context. By tuning "Re" (defined in terms of the droplet diameter and the average oncoming velocity of the outer air) and gap-ratio "α," the internal convective forcing and the solute entrainment efficiency could be considerably enhanced. The quantitative estimates for mass entrainment, convective strength, and saturation characteristics for different coupled micro-droplet pairs are extensively examined here for 0.2 ≤ α ≤ 2.0 and 30 ≤ Re ≤ 100. Interestingly, for the compound droplets, with suitably tuned radius-ratio "B" (of upstream droplet with respect to downstream one) the generated "inflow" type coherent convective dynamics helped to significantly augment the centre-line mass flow, which in turn facilitate faster saturation of the upstream droplet. However, for heterogeneous droplet-pairs containing solid nucleus, while increased solid-fraction "S" (the ratio between the radius of the solid nucleus and that of the droplet) through 0.25 ≤ S ≤ 0.45 caused gradual reductions of convective strength and mass absorption rate (RSO2) for the upstream droplet, beyond a critical value S ≥ 0.45 the RSO2 therein continued to rise again owing to the reduced film thickness.
EVALUATION PLAN FOR TWO LARGE-SCALE LANDFILL BIOREACTOR TECHNOLOGIES
Abstract - Waste Management, Inc., is operating two long-term bioreactor studies at the Outer Loop Landfill in Louisville, KY, including facultative landfill bioreactor and staged aerobic-anaerobic landfill bioreactor demonstrations. A Quality Assurance Project Plan (QAPP) was p...
NASA Astrophysics Data System (ADS)
Mochizuki, M.; Uehira, K.; Kanazawa, T.; Shiomi, K.; Kunugi, T.; Aoi, S.; Matsumoto, T.; Sekiguchi, S.; Yamamoto, N.; Takahashi, N.; Nakamura, T.; Shinohara, M.; Yamada, T.
2017-12-01
NIED has launched the project of constructing a seafloor observatory network for tsunamis and earthquakes after the occurrence of the 2011 Tohoku Earthquake to enhance reliability of early warnings of tsunamis and earthquakes. The observatory network was named "S-net". The S-net project has been financially supported by MEXT.The S-net consists of 150 seafloor observatories which are connected in line with submarine optical cables. The total length of submarine optical cable is about 5,500 km. The S-net covers the focal region of the 2011 Tohoku Earthquake and its vicinity regions. Each observatory equips two units of a high sensitive pressure gauges as a tsunami meter and four sets of three-component seismometers. The S-net is composed of six segment networks. Five of six segment networks had been already installed. Installation of the last segment network covering the outer rise area have been finally finished by the end of FY2016. The outer rise segment has special features like no other five segments of the S-net. Those features are deep water and long distance. Most of 25 observatories on the outer rise segment are located at the depth of deeper than 6,000m WD. Especially, three observatories are set on the seafloor of deeper than about 7.000m WD, and then the pressure gauges capable of being used even at 8,000m WD are equipped on those three observatories. Total length of the submarine cables of the outer rise segment is about two times longer than those of the other segments. The longer the cable system is, the higher voltage supply is needed, and thus the observatories on the outer rise segment have high withstanding voltage characteristics. We employ a dispersion management line of a low loss formed by combining a plurality of optical fibers for the outer rise segment cable, in order to achieve long-distance, high-speed and large-capacity data transmission Installation of the outer rise segment was finished and then full-scale operation of S-net has started. All the data from 150 seafloor observatories are being transferred to and stored in the Tsukuba DC. Some data are being transmitted directly to JMA and have been used for monitoring of earthquakes and tsunamis. We will report construction and operation of the S-net system as well as the outline of the obtained data in this presentation.
NASA Astrophysics Data System (ADS)
Mustill, Alexander J.; Davies, Melvyn B.; Johansen, Anders
2017-07-01
We study how close-in systems such as those detected by Kepler are affected by the dynamics of bodies in the outer system. We consider two scenarios: outer systems of giant planets potentially unstable to planet-planet scattering and wide binaries that may be capable of driving Kozai or other secular variations of outer planets' eccentricities. Dynamical excitation of planets in the outer system reduces the multiplicity of Kepler-detectable planets in the inner system in ˜20-25 per cent of our systems. Accounting for the occurrence rates of wide-orbit planets and binary stars, ≈18 per cent of close-in systems could be destabilized by their outer companions in this way. This provides some contribution to the apparent excess of systems with a single transiting planet compared to multiple; however, it only contributes at most 25 per cent of the excess. The effects of the outer dynamics can generate systems similar to Kepler-56 (two coplanar planets significantly misaligned with the host star) and Kepler-108 (two significantly non-coplanar planets in a binary). We also identify three pathways to the formation of eccentric warm Jupiters resulting from the interaction between outer and inner systems: direct inelastic collision between an eccentric outer and an inner planet; secular eccentricity oscillations that may 'freeze out' when scattering resolves in the outer system; and scattering in the inner system followed by 'uplift', where inner planets are removed by interaction with the outer planets. In these scenarios, the formation of eccentric warm Jupiters is a signature of a past history of violent dynamics among massive planets beyond ˜1 au.
Error Control Coding Techniques for Space and Satellite Communications
NASA Technical Reports Server (NTRS)
Lin, Shu
2000-01-01
This paper presents a concatenated turbo coding system in which a Reed-Solomom outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft-decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.
An Interactive Concatenated Turbo Coding System
NASA Technical Reports Server (NTRS)
Liu, Ye; Tang, Heng; Lin, Shu; Fossorier, Marc
1999-01-01
This paper presents a concatenated turbo coding system in which a Reed-Solomon outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft- decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.
Román-Valencia, César; Ruiz-C, Raquel I.; Taphorn, Donald C.; García-Alzate, Carlos A.
2014-01-01
Abstract Hemibrycon sanjuanensis, new species, is described from the upper San Juan River drainage, Pacific versant, Colombia. It is distinguished from Hemibrycon boquiae, Hemibrycon brevispini, Hemibrycon cairoense, Hemibrycon colombianus, Hemibrycon mikrostiktos, Hemibrycon metae, Hemibrycon palomae, Hemibrycon rafaelense and Hemibrycon tridens by the presence of a circular or oblong humeral spot that is located two scales posterior to the opercle (vs. 3–4 scales in Hemibrycon palomae, Hemibrycon rafaelense, Hemibrycon brevispini and Hemibrycon cairoense, and 0–1 scales, in Hemibrycon metae and Hemibrycon boquiae). It further differs from Hemibrycon colombianus in having a round or oblong humeral spot (vs. rectangular). It differs from Hemibrycon beni, Hemibrycon dariensis, Hemibrycon divisorensis, Hemibrycon helleri, Hemibrycon huambonicus, Hemibrycon inambari, Hemibrycon jabonero, Hemibrycon jelskii, Hemibrycon mikrostiktos, Hemibrycon polyodon, Hemibrycon quindos, Hemibrycon raqueliae, Hemibrycon santamartae, Hemibrycon surinamensis, Hemibrycon taeniurus, Hemibrycon tridens, and Hemibrycon yacopiae in having melanophores on the posterior margins of the scales along the sides of body (vs. lacking melanophores on margins of scales along entire length of the sides of body). The new species differs from all congeners mentioned above in having, among other features, six teeth in the outer premaxillary row arranged in a straight line (vs. five or fewer teeth not arranged in straight line except Hemibrycon cairoense with two to six teeth in the outer premaxillary row). PMID:25493068
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behnamian, Yashar, E-mail: behnamia@ualberta.ca
The oxide scale grown of static capsules made of alloy 310S stainless steel was investigated by exposure to the supercritical water at 500 °C 25 MPa for various exposure times up to 20,000 h. Characterization techniques such as X-ray diffraction, scanning/transmission electron microscopy, energy dispersive spectroscopy, and fast Fourier transformation were employed on the oxide scales. The elemental and phase analyses indicated that long term exposure to the SCW resulted in the formation of scales identified as Fe{sub 3}O{sub 4} (outer layer), Fe-Cr spinel (inner layer), Cr{sub 2}O{sub 3} (transition layer) on the substrate, and Ni-enrichment (chrome depleted region) inmore » the alloy 310S. It was found that the layer thickness and weight gain vs. exposure time followed parabolic law. The oxidation mechanism and scales grown on the alloy 310S stainless steel exposed to SCW are discussed. - Highlights: •Oxidation of alloy 310S stainless steel exposed to SCW (500 °C/25 MPa) •The layer thickness and weight gain vs. exposure time followed parabolic law. •Oxide layers including Fe{sub 3}O{sub 4} (outer), Fe-Cr spinel (inner) and Cr{sub 2}O{sub 3} (transition) •Ni element is segregated by the selective oxidation of Cr.« less
Effect of nacelle on wake meandering in a laboratory scale wind turbine using LES
NASA Astrophysics Data System (ADS)
Foti, Daniel; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis
2015-11-01
Wake meandering, large scale motion in the wind turbine wakes, has considerable effects on the velocity deficit and turbulence intensity in the turbine wake from the laboratory scale to utility scale wind turbines. In the dynamic wake meandering model, the wake meandering is assumed to be caused by large-scale atmospheric turbulence. On the other hand, Kang et al. (J. Fluid Mech., 2014) demonstrated that the nacelle geometry has a significant effect on the wake meandering of a hydrokinetic turbine, through the interaction of the inner wake of the nacelle vortex with the outer wake of the tip vortices. In this work, the significance of the nacelle on the wake meandering of a miniature wind turbine previously used in experiments (Howard et al., Phys. Fluid, 2015) is demonstrated with large eddy simulations (LES) using immersed boundary method with fine enough grids to resolve the turbine geometric characteristics. The three dimensionality of the wake meandering is analyzed in detail through turbulent spectra and meander reconstruction. The computed flow fields exhibit wake dynamics similar to those observed in the wind tunnel experiments and are analyzed to shed new light into the role of the energetic nacelle vortex on wake meandering. This work was supported by Department of Energy DOE (DE-EE0002980, DE-EE0005482 and DE-AC04-94AL85000), and Sandia National Laboratories. Computational resources were provided by Sandia National Laboratories and the University of Minnesota Supercomputing.
Mean turbulence statistics in boundary layers over high-porosity foams
NASA Astrophysics Data System (ADS)
Efstathiou, Christoph; Luhar, Mitul
2018-04-01
This paper reports turbulent boundary layer measurements made over open-cell reticulated foams with varying pore size and thickness, but constant porosity ($\\epsilon \\approx 0.97$). The foams were flush-mounted into a cutout on a flat plate. A Laser Doppler Velocimeter (LDV) was used to measure mean streamwise velocity and turbulence intensity immediately upstream of the porous section, and at multiple measurement stations along the porous substrate. The friction Reynolds number upstream of the porous section was $Re_\\tau \\approx 1690$. For all but the thickest foam tested, the internal boundary layer was fully developed by $<10 \\delta$ downstream from the porous transition, where $\\delta$ is the boundary layer thickness. Fully developed mean velocity profiles showed the presence of a substantial slip velocity at the porous interface ($>30\\%$ of the free stream velocity) and a mean velocity deficit relative to the canonical smooth-wall profile further from the wall. While the magnitude of the mean velocity deficit increased with average pore size, the slip velocity remained approximately constant. Fits to the mean velocity profile suggest that the logarithmic region is shifted relative to a smooth wall, and that this shift increases with pore size until it becomes comparable to substrate thickness $h$. For all foams, the turbulence intensity was found to be elevated further into the boundary layer to $y/ \\delta \\approx 0.2$. An outer peak in intensity was also evident for the largest pore sizes. Velocity spectra indicate that this outer peak is associated with large-scale structures resembling Kelvin-Helmholtz vortices that have streamwise length scale $2\\delta-4\\delta$. Skewness profiles suggest that these large-scale structures may have an amplitude-modulating effect on the interfacial turbulence.
Stokes-Einstein relation in liquid iron-nickel alloy up to 300 GPa
NASA Astrophysics Data System (ADS)
Cao, Q.-L.; Wang, P.-P.
2017-05-01
Molecular dynamic simulations were applied to investigate the Stokes-Einstein relation (SER) and the Rosenfeld entropy scaling law (ESL) in liquid Fe0.9Ni0.1 over a sufficiently broad range of temperatures (0.70 < T/Tm < 1.85 Tm is melting temperature) and pressures (from 50 GPa to 300 GPa). Our results suggest that the SER and ESL hold well in the normal liquid region and break down in the supercooled region under high-pressure conditions, and the deviation becomes larger with decreasing temperature. In other words, the SER can be used to calculate the viscosity of liquid Earth's outer core from the self-diffusion coefficients of iron/nickel and the ESL can be used to predict the viscosity and diffusion coefficients of liquid Earth's outer core form its structural properties. In addition, the pressure dependence of effective diameters cannot be ignored in the course of using the SER. Moreover, ESL provides a useful, structure-based probe for the validity of SER, while the ratio of the self-diffusion coefficients of the components cannot be used as a probe for the validity of SER.
Solar wind temperature observations in the outer heliosphere
NASA Technical Reports Server (NTRS)
Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.
1992-01-01
The Pioneer 10, Pioneer 11, and Voyager 2 spacecraft are now at heliocentric distances of 50, 32 and 33 AU, and heliographic latitudes of 3.5 deg N, 17 deg N, and 0 deg N, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer l0 is on the opposite side of the sun. The baselines defined by these spacecraft make it possible to resolve radial, longitudinal, and latitudinal variations of solar wind parameters. The solar wind temperature decreases with increasing heliocentric distance out to a distance of 10-15 AU. At larger heliocentric distances, this gradient disappears. These high solar wind temperatures in the outer heliosphere have persisted for at least 10 years, which suggests that they are not a solar cycle effect. The solar wind temperature varied with heliographic latitude during the most recent solar minimum. The solar wind temperature at Pioneer 11 and Voyager 2 was higher than that seen at Pioneer 10 for an extended period of time, which suggests the existence of a large-scale variation of temperature with celestial longitude, but the contribution of transient phenomena is yet to be clarified.
STEM and APT characterization of scale formation on a La,Hf,Ti-doped NiCrAl model alloy.
Unocic, Kinga A; Chen, Yimeng; Shin, Dongwon; Pint, Bruce A; Marquis, Emmanuelle A
2018-06-01
A thermally grown scale formed on a cast NiCrAl model alloy doped with lanthanum, hafnium, and titanium was examined after isothermal exposure at 1100 °C for 100 h in dry flowing O 2 to understand the dopant segregation along scale grain boundaries. The complex scale formed on the alloy surface was composed of two types of substrates: phase-dependent, thin (<250 nm) outer layers and a columnar-grained ∼3.5 μm inner alumina layer. Two types of oxides formed between the inner and outer scale layers: small (3-15 nm) La 2 O 3 and larger (≤50 nm) HfO 2 oxide precipitates. Nonuniform distributions of the hafnium, lanthanum, and titanium dopants were observed along the inner scale grain boundaries, with hafnium dominating in most of the grain boundaries of α-Al 2 O 3. The concentration of reactive elements (RE) seemed to strongly depend on the grain boundary structure. The level of titanium grain boundary segregation in the inner scale decreased toward the model alloy (substrate), confirming the fast outward diffusion of titanium. Hafnium was also observed at the metal-scale interface and in the γ' (Ni 3 Al) phase of the alloy. High-resolution scanning transmission electron microscopy (STEM) confirmed the substitution of REs for aluminum atoms at the scale grain boundaries, consistent with both the semiconducting band structure and the site-blocking models. Both STEM and atom probe tomography allowed quantification of REs along the scale grain boundaries across the scale thickness. Analysis of the scale morphology after isothermal exposure in flowing oxygen revealed a myriad of new precipitate phases, RE segregation dependence on grain boundary type, and atomic arrangement along scale grain boundaries, which is expected to influence the scale growth rate, stability, and mechanical properties. Copyright © 2018 Elsevier Ltd. All rights reserved.
Extreme-scale motions in turbulent plane Couette flows
NASA Astrophysics Data System (ADS)
Lee, Myoungkyu; Moser, Robert D.
2018-05-01
We study the size of large-scale motions in turbulent plane Couette flows at moderate Reynolds number up to $Re_\\tau$ = 500. Direct numerical simulation domains were as large as $100\\pi\\delta\\times2\\delta\\times5\\pi\\delta$, where $\\delta$ is half the distance between the walls. The results indicate that there are structures with streamwise extent, as measured by the wavelength, as long as 78$\\delta$ and at least 310$\\delta$ at $Re_\\tau$ = 220 and 500, respectively. The presence of these very long structures is apparent in the spectra of all three velocity components and the Reynolds stress. In DNS using a smaller domain, the large structures are constrained, eliminating the streamwise variations present in the larger domain. Effects of a smaller domain are also present in the mean velocity and the streamwise velocity variance in the outer flow.
Molecular Structure of a Helical ribbon in a Peptide Self-Assembly
NASA Astrophysics Data System (ADS)
Hwang, Wonmuk; Marini, Davide; Kamm, Roger D.; Zhang, Shuguang
2002-03-01
We have studied the molecular structure of nanometer scale helical ribbons observed during self-assembly of the peptide KFE8 (amino acid sequence: FKFEFKFE) (NanoLetters (2002, in press)). By analyzing the hydrogen bonding patterns between neighboring peptide backbones, we constructed a number of possible β-sheets. Using all possible combinations of these, we built helical ribbons with dimensions close to those found experimentally and performed molecular dynamics simulations to identify the most stable structure. Solvation effects were implemented by the analytic continuum electrostatics (ACE) model developed by Schaefer and Karplus (J. Phys. Chem. 100, 1578 (1996)). By applying electrostatic double layer theory, we incorporated the effect of pH by scaling the amount of charge on the sidechains. Our results suggest that the helical ribbon is comprised of a double β-sheet where the inner and the outer helices have distinct hydrogen bonding patterns. Our approach has general applicability to the study of helices formed by the self-assembly of β-sheet forming peptides with various amino acid sequences.
NASA Technical Reports Server (NTRS)
Schuller, F. T.; Pinel, S. I.; Signer, H. R.
1980-01-01
Parametric tests were conducted with a 35 mm bore angular contact ball bearing with a double outer land guided cage. Provisions were made for jet lubrication and outer-ring cooling of the bearing. Test conditions included a combined thrust and radial load at nominal shaft speeds of 48,000 rpm, and an oil-in temperature of 394 K (250 F). Successful operation of the test bearing was accomplished up to 2.5 million DN. Test results were compared with those obtained with similar bearing having a single outer land guided cage. Higher temperatures were generated with the double outer land guided cage bearing, and bearing power loss and cage slip were greater. Cooling the outer ring resulted in a decrease in overall bearing operating temperature.
NASA Astrophysics Data System (ADS)
Stork, D.; Baranov, Yu.; Belo, P.; Bertalot, L.; Borba, D.; Brzozowski, J. H.; Challis, C. D.; Ciric, D.; Conroy, S.; de Baar, M.; de Vries, P.; Dumortier, P.; Garzotti, L.; Hawkes, N. C.; Hender, T. C.; Joffrin, E.; Jones, T. T. C.; Kiptily, V.; Lamalle, P.; Mailloux, J.; Mantsinen, M.; McDonald, D. C.; Nave, M. F. F.; Neu, R.; O'Mullane, M.; Ongena, J.; Pearce, R. J.; Popovichev, S.; Sharapov, S. E.; Stamp, M.; Stober, J.; Surrey, E.; Valovic, M.; Voitsekhovitch, I.; Weisen, H.; Whiteford, A. D.; Worth, L.; Yavorskij, V.; Zastrow, K.-D.; EFDA contributors, JET
2005-10-01
Results are presented from the JET Trace Tritium Experimental (TTE) campaign using minority tritium (T) plasmas (nT/nD < 3%). Thermal tritium particle transport coefficients (DT, vT) are found to exceed neo-classical values in all regimes, except in ELMy H-modes at high densities and in the region of internal transport barriers (ITBs) in reversed shear plasmas. In ELMy H-mode dimensionless parameter scans, at q95 ~ 2.8 and triangularity δ = 0.2, the T particle transport scales in a gyro-Bohm manner in the inner plasma (r/a < 0.4), whilst the outer plasma particle transport scaling is more Bohm-like. Dimensionless parameter scans show contrasting behaviour for the trace particle confinement (increases with collisionality, ν* and β) and bulk energy confinement (decreases with ν* and is independent of β). In an extended ELMy H-mode data set, with ρ*, ν*, β and q varied but with neo-classical tearing modes (NTMs) either absent or limited to weak, benign core modes (4/3 or above), the multiparameter fit to the normalized diffusion coefficient in the outer plasma (0.65 < r/a < 0.8) gives DT/Bphi ~ ρ*2.46ν*-0.23β-1.01q2.03. In hybrid scenarios (qmin ~ 1, low positive shear, no sawteeth), the T particle confinement is found to scale with increasing triangularity and plasma current. Comparing regimes (ELMy H-mode, ITB plasma and hybrid scenarios) in the outer plasma region, a correlation of high values of DT with high values of vT is seen. The normalized diffusion coefficients for the hybrid and ITB scenarios do not fit the scaling derived for ELMy H-modes. The normalized tritium diffusion scales with normalized poloidal Larmor radius (\\rho_{\\theta}^\\ast=q\\rho^{\\ast}) in a manner close to gyro-Bohm ({\\sim}\\rho_{\\theta}^{\\ast 3}) , with an added inverse β dependence. The effects of ELMs, sawteeth and NTMs on the T particle transport are described. Fast-ion confinement in current-hole (CH) plasmas was tested in TTE by tritium neutral beam injection into JET CH plasmas. γ-rays from the reactions of fusion alpha and beryllium impurities (9Be(α, nγ)12C) characterized the fast fusion-alpha population evolution. The γ-decay times are consistent with classical alpha plus parent fast triton slowing down times (τTs + ταs) for high plasma currents (Ip > 2 MA) and monotonic q-profiles. In CH discharges the γ-ray emission decay times are much lower than classical (τTs+ταs), indicating alpha confinement degradation, due to the orbit losses and particle orbit drift predicted by a 3-D Fokker-Planck numerical code and modelled using TRANSP.
NASA Astrophysics Data System (ADS)
Macek, W. M.; Wawrzaszek, A.
2011-05-01
To quantify solar wind turbulence, we consider a generalized two-scale weighted Cantor set with two different scales describing nonuniform distribution of the kinetic energy flux between cascading eddies of various sizes. We examine generalized dimensions and the corresponding multifractal singularity spectrum depending on one probability measure parameter and two rescaling parameters. In particular, we analyse time series of velocities of the slow speed streams of the solar wind measured in situ by Voyager 2 spacecraft in the outer heliosphere during solar maximum at various distances from the Sun: 10, 30, and 65 AU. This allows us to look at the evolution of multifractal intermittent scaling of the solar wind in the distant heliosphere. Namely, it appears that while the degree of multifractality for the solar wind during solar maximum is only weakly correlated with the heliospheric distance, but the multifractal spectrum could substantially be asymmetric in a very distant heliosphere beyond the planetary orbits. Therefore, one could expect that this scaling near the frontiers of the heliosphere should rather be asymmetric. It is worth noting that for the model with two different scaling parameters a better agreement with the solar wind data is obtained, especially for the negative index of the generalized dimensions. Therefore we argue that there is a need to use a two-scale cascade model. Hence we propose this model as a useful tool for analysis of intermittent turbulence in various environments and we hope that our general asymmetric multifractal model could shed more light on the nature of turbulence.
Effect of LES models on the entrainment characteristics in a turbulent planar jet
NASA Astrophysics Data System (ADS)
Chambel Lopes, Diogo; da Silva, Carlos; Raman, Venkat
2012-11-01
The effect of subgrid-scale (SGS) models in the jet spreading rate and centreline passive scalar decay rates are assessed and compared. The modelling of the subgrid-scale fluxes is particularly challenging in the turbulent/nonturbulent (T/NT) region that divides the two regions in the jet flow: the outer region where the flow is irrotational and the inner region where the flow is turbulent: it has been shown that important Reynolds stresses exist near the T/NT interface and that these stresses determine in part the mixing and combustion rates in jets. In this work direct and large-eddy simulations (DNS/LES) of turbulent planar jets are used to study the role of subgrid-scale models in the integral characteristics of the passive scalar mixing in a jet. LES show that different SGS modes lead to different spreading rates for the velocity and scalar fields, and the scalar quantities are more affected than the velocity e.g. SGS models affect strongly the centreline mean scalar decay than the centreline mean velocity decay. The results suggest the need for a minimum resolution close to the Taylor micro-scale in order to recover the correct results for the integral quantities and this can be explained by recent results on the dynamics of the T/NT interface.
Multi-scale coupled modelling of waves and currents on the Catalan shelf.
NASA Astrophysics Data System (ADS)
Grifoll, M.; Warner, J. C.; Espino, M.; Sánchez-Arcilla, A.
2012-04-01
Catalan shelf circulation is characterized by a background along-shelf flow to the southwest (including some meso-scale features) plus episodic storm driven patterns. To investigate these dynamics, a coupled multi-scale modeling system is applied to the Catalan shelf (North-western Mediterranean Sea). The implementation consists of a set of increasing-resolution nested models, based on the circulation model ROMS and the wave model SWAN as part of the COAWST modeling system, covering from the slope and shelf region (~1 km horizontal resolution) down to a local area around Barcelona city (~40 m). The system is initialized with MyOcean products in the coarsest outer domain, and uses atmospheric forcing from other sources for the increasing resolution inner domains. Results of the finer resolution domains exhibit improved agreement with observations relative to the coarser model results. Several hydrodynamic configurations were simulated to determine dominant forcing mechanisms and hydrodynamic processes that control coastal scale processes. The numerical results reveal that the short term (hours to days) inner-shelf variability is strongly influenced by local wind variability, while sea-level slope, baroclinic effects, radiation stresses and regional circulation constitute second-order processes. Additional analysis identifies the significance of shelf/slope exchange fluxes, river discharge and the effect of the spatial resolution of the atmospheric fluxes.
Miyata, Yoshiki; Minami, Masayo; Onbe, Shin; Sakamoto, Minoru; Matsuzaki, Hiroyuki; Nakamura, Toshio; Imamura, Mineo
2011-01-01
AMS (Accelerator Mass Spectrometry) radiocarbon dates for eight potsherds from a single piece of pottery from a wetland archaeological site indicated that charred material from the inner pottery surfaces (5052 ± 12 BP; N = 5) is about 90 (14)C years older than that from the outer surfaces (4961 ± 22 BP; N = 7). We considered three possible causes of this difference: the old wood effect, reservoir effects, and diagenesis. We concluded that differences in the radiocarbon ages between materials from the inner and outer surfaces of the same pot were caused either by the freshwater reservoir effect or by diagenesis. Moreover, we found that the radiocarbon ages of carbonized material on outer surfaces (soot) of pottery from other wetland archaeological sites were the same as the ages of material on inner surfaces (charred food) of the same pot within error, suggesting absence of freshwater reservoir effect or diagenesis.
Thermal Equation of State of Iron: Constraint on the Density Deficit of Earth's Core
NASA Astrophysics Data System (ADS)
Fei, Y.; Murphy, C. A.; Shibazaki, Y.; Huang, H.
2013-12-01
The seismically inferred densities of Earth's solid inner core and the liquid outer core are smaller than the measured densities of solid hcp-iron and liquid iron, respectively. The inner core density deficit is significantly smaller than the outer core density deficit, implying different amounts and/or identities of light-elements incorporated in the inner and outer cores. Accurate measurements of the thermal equation-of-state of iron over a wide pressure and temperature range are required to precisely quantify the core density deficits, which are essential for developing a quantitative composition model for the core. The challenge has been evaluating the experimental uncertainties related to the choice of pressure scales and the sample environment, such as hydrostaticity at multi-megabar pressures and extreme temperatures. We have conducted high-pressure experiments on iron in MgO, NaCl, and Ne pressure media and obtained in-situ X-ray diffraction data up to 200 GPa at room temperature. Using inter-calibrated pressure scales including the MgO, NaCl, Ne, and Pt scales, we have produced a consistent compression curve of hcp-Fe at room temperature. We have also performed laser-heated diamond-anvil cell experiments on both Fe and Pt in a Ne pressure medium. The experiment was designed to quantitatively compare the thermal expansion of Fe and Pt in the same sample environment using Ne as the pressure medium. The thermal expansion data of hcp-Fe at high pressure were derived based on the thermal equation of state of Pt. Using the 300-K isothermal compression curve of iron derived from our static experiments as a constraint, we have developed a thermal equation of state of hcp-Fe that is consistent with the static P-V-T data of iron and also reproduces the shock wave Hugoniot data for pure iron. The thermodynamic model, based on both static and dynamic data, is further used to calculate the density and bulk sound velocity of liquid iron. Our results define the solid inner core and liquid outer core density deficits, which can serve as the basis for any core composition models.
NASA Astrophysics Data System (ADS)
Lee, J. D.; Gunnarsson, O.; Hedin, L.
1999-09-01
We consider core electron photoemission in a localized system, where there is a charge transfer excitation. Examples are transition metal and rare earth compounds, chemisorption systems, and high-Tc compounds. The system is modeled by three electron levels, one core level, and two outer levels. In the initital state the core level and one outer level is filled (a spinless two-electron problem). This model system is embedded in a solid state environment, and the implications of our model system results for solid state photoemission are discussed. When the core hole is created, the more localized outer level (d) is pulled below the less localized level (L). The spectrum has a leading peak corresponding to a charge transfer between L and d (``shakedown''), and a satellite corresponding to no charge transfer. The model has a Coulomb interaction between these levels and the continuum states into which the core electron is emitted. The model is simple enough to allow an exact numerical solution, and with a separable potential an analytic solution. Analytic results are also obtained in lowest order perturbation theory, and in the high-energy limit of the semiclassical approximation. We calculate the ratio r(ω) between the weights of the satellite and the main peak as a function of the photon energy ω. The transition from the adiabatic to the sudden limit is found to take place for quite small kinetic energies of the photoelectron. For such small energies, the variation of the dipole matrix elements is substantial and described by the energy scale E~d. Without the coupling to the photoelectron, the corresponding ratio r0(ω) shows a smooth turn-on of the satellite intensity, due to the turn on of the dipole matrix element. The characteristic energy scales are E~d and the satellite excitation energy δE. When the interaction potential with the continuum states is introduced an energy scale E~s=1/(2R~2s) enters, where R~s is a length scale of the interaction (scattering) potential. At threshold there is typically a (weak) constructive interference between intrinsic and extrinsic contributions, and the ratio r(ω)/r0(ω) is larger than its limiting value for large ω. The interference becomes small or weakly destructive for photoelectron energies of the order E~s. For larger photoelectron energies r(ω)/r0(ω) therefore typically has a weak undershoot. If this undershoot is neglected, r(ω)/r0(ω) reaches its limiting value on the energy scale E~s for the parameter range considered here. In a ``shake-up'' scenario, where the two outer levels do not cross as the core hole is created, we instead find that r(ω)/r0(ω) is typically reduced for small ω by interference effects, as in the case of plasmon excitation. Even for this shake-down case, however, the results are very different from those for a simple metal, where plasmons dominate the picture. In particular, the adiabatic to sudden transition takes place at much lower energies in the case of a localized excitation. The reasons for the differences are briefly discussed.
Design and Analysis of A Spin-Stabilized Projectile Experimental Apparatus
NASA Astrophysics Data System (ADS)
Siegel, Noah; Rodebaugh, Gregory; Elkins, Christopher; van Poppel, Bret; Benson, Michael; Cremins, Michael; Lachance, Austin; Ortega, Raymond; Vanderyacht, Douglas
2017-11-01
Spinning objects experience an effect termed `The Magnus Moment' due to an uneven pressure distribution based on rotation within a crossflow. Unlike the Magnus force, which is often small for spin-stabilized projectiles, the Magnus moment can have a strong detrimental effect on aerodynamic flight stability. Simulations often fail to accurately predict the Magnus moment in the subsonic flight regime. In an effort to characterize the conditions that cause the Magnus moment, researchers in this work employed Magnetic Resonance Velocimetry (MRV) techniques to measure three dimensional, three component, sub-millimeter resolution fluid velocity fields around a scaled model of a spinning projectile in flight. The team designed, built, and tested using a novel water channel apparatus that was fully MRI-compliant - water-tight and non-ferrous - and capable of spinning a projectile at a constant rotational speed. A supporting numerical simulation effort informed the design process of the scaled projectile to thicken the hydrodynamic boundary layer near the outer surface of the projectile. Preliminary testing produced two-dimensional and three-dimensional velocity data and revealed an asymmetric boundary layer around the projectile, which is indicative of the Magnus effect.
Corrosion of pre-oxidized nickel alloy X-750 in simulated BWR environment
NASA Astrophysics Data System (ADS)
Tuzi, Silvia; Lai, Haiping; Göransson, Kenneth; Thuvander, Mattias; Stiller, Krystyna
2017-04-01
Samples of pre-oxidized Alloy X-750 were exposed to a simulated boiling water reactor environment in an autoclave at a temperature of 286 °C and a pressure of 80 bar for four weeks. The effect of alloy iron content on corrosion was investigated by comparing samples with 5 and 8 wt% Fe, respectively. In addition, the effect of two different surface pre-treatments was investigated. The microstructure of the formed oxide scales was studied using mainly electron microscopy. The results showed positive effects of an increased Fe content and of removing the deformed surface layer by pickling. After four weeks of exposure the oxide scale consists of oxides formed in three different ways. The oxide formed during pre-oxidization at 700 °C, mainly consisting of chromia, is partly still present. There is also an outer oxide consisting of NiFe2O4 crystals, reaching a maximum size of 3 μm, which has formed by precipitation of dissolved metal ions. Finally, there is an inner nanocrystalline and porous oxide, with a metallic content reflecting the alloy composition, which has formed by corrosion.
NASA Technical Reports Server (NTRS)
Petrozzi, M. T.; Milam, M. D.
1975-01-01
Experimental aerodynamic investigations were conducted in the NASA/Langley unitary plan wind tunnel on a sting mounted 0.010-scale outer mold line model of the 140A/B configuration of the Rockwell International Space Shuttle Vehicle. The primary test objectives were to obtain: (1) six component force and moment data for the mated vehicle at subsonic and transonic conditions, (2) effects of configuration build-up, (3) effects of protuberances, ET/orbiter fairings and attach structures, and (4) elevon deflection effects on wing bending moment. Six component aerodynamic force and moment data and base and balance cavity pressures were recorded over Mach numbers of 1.6, 2.0, 2.5, 2.86, 3.9, and 4.63 at a nominal Reynolds number of 20 to the 6th power per foot. Selected configurations were tested at angles of attack and sideslip from -10 deg to +10 deg. For all configurations involving the orbiter, wing bending, and torsion coefficients were measured on the right wing.
Evaluation of inner-outer space distinction and verbal hallucinations in schizophrenia.
Stephane, Massoud; Kuskowski, Michael; McClannahan, Kate; Surerus, Christa; Nelson, Katie
2010-09-01
Verbal hallucinations could result from attributing one's own inner speech to another. Inner speech is usually experienced in inner space, whereas hallucinations are often experienced in outer space. To clarify this paradox, we investigated schizophrenia patients' ability to distinguish between speech experienced in inner space, and speech experienced in outer space. 32 schizophrenia patients and 26 matched healthy controls underwent a two-stage experiment. First, they read sentences aloud or silently. Afterwards, they were required to distinguish between the sentences read aloud (experienced in outer space), the sentences read silently (experienced in inner space), and new sentences not previously read (no space coding). The sentences were in the first, second, or third person in equal proportions. Linear mixed models were used to investigate the effects of group, sentence location, pronoun, and hallucinations status. Schizophrenia patients were similar to controls in recognition capacity of sentences without space coding. They exhibited both inner-outer and outer-inner space confusion (they confused silently read sentences for sentences read aloud, and vice versa). Patients who experienced hallucinations inside their head were more likely to have outer-inner space bias. For speech generated by one's own brain, schizophrenia patients have bidirectional failure of inner-outer space distinction (inner-outer and outer-inner space biases); this might explain why hallucinations (abnormal inner speech) could be experienced in outer space. Furthermore, the direction of inner-outer space indistinction could determine the spatial location of the experienced hallucinations (inside or outside the head).
Blowout Surge due to Interaction between a Solar Filament and Coronal Loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Haidong; Jiang, Yunchun; Yang, Jiayan
2017-06-20
We present an observation of the interaction between a filament and the outer spine-like loops that produces a blowout surge within one footpoint of large-scale coronal loops on 2015 February 6. Based the observation of the AIA 304 and 94 Å, the activated filament is initially embedded below a dome of a fan-spine configuration. Due to the ascending motion, the erupting filament reconnects with the outer spine-like field. We note that the material in the filament blows out along the outer spine-like field to form the surge with a wider spire, and a two-ribbon flare appears at the site ofmore » the filament eruption. In this process, small bright blobs appear at the interaction region and stream up along the outer spine-like field and down along the eastern fan-like field. As a result, a leg of the filament becomes radial and the material in it erupts, while another leg forms the new closed loops. Our results confirm that the successive reconnection occurring between the erupting filament and the coronal loops may lead to a strong thermal/magnetic pressure imbalance, resulting in a blowout surge.« less
Comparison of Coastal Inundation in the Outer Banks during Three Recent Hurricanes
NASA Astrophysics Data System (ADS)
Liu, T.; Sheng, Y.
2012-12-01
Coastal inundation in the Outer Banks and Chesapeake Bay during several recent hurricanes - Isabel, Earl and Irene, in 2005, 2010 and 2011, respectively, have been successfully simulated using the storm surge modeling system, CH3D-SSMS, which includes coupled coastal and basin-scale storm surge and wave models. Hurricane Isabel, which made landfall at the Outer Banks area in 2005, generated high waves up to 20 m offshore and 2.5 m inside the Chesapeake Bay which significantly affected the peak surge, with wave induced set-up contributing up to about 20% of the peak surge. During Isabel, the observed wave height at Duck station (1 km offshore) reached over 6 meters at landfall time, while Earl and Irene generated relatively moderate waves, with peak wave height around 4 meters at that station but a much lower wave height before landfall. Simulations show that during Earl and Irene, wave induced set-up did not contribute as much as that during Isabel. At Duck Pier, wave effects accounted for ~36 cm or 20% of the peak surge of 1.71 m during Isabel, while waves contributed ~10 cm (10%) toward the peak surge of 1 m during Irene and even less during Earl. The maximum surge during Irene was largely caused by the strong wind, as confirmed by the model using H* wind. Inundation maps have been generated and compared based on the simulations of Isabel, Earl and Irene.
Detailed Structure of the Outer Disk Around HD 169142 with Polarized Light in H-band
NASA Technical Reports Server (NTRS)
Momose, Munetake; Morita, Ayaka; Fukagawa, Misato; Muto, Takayuki; Takeuchi, Taku; Hashimoto, Jun; Honda, Mitsuhiko; Kudo, Tomoyuki; Okamoto, Yoshiko K.; Kanagawa, Kazuhiro D.;
2015-01-01
Coronagraphic imagery of the circumstellar disk around HD 169142 in H-band polarized intensity (PI) with Subaru/HiCIAO is presented. The emission scattered by dust particles at the disk surface in 0.''2=r=1.''2, or 29=r=174 AU, is successfully detected. The azimuthally-averaged radial profile of the PI shows a double power-law distribution, in which the PIs in r = 29-52 AU and r = 81.2-145 AU respectively show r-3-dependence. These two power-law regions are connected smoothly with a transition zone (TZ), exhibiting an apparent gap in r = 40-70 AU. The PI in the inner power-law region shows a deep minimum whose location seems to coincide with the point source at lambda = 7 mm. This can be regarded as another sign of a protoplanet in TZ. The observed radial profile of the PI is reproduced by a minimally flaring disk with an irregular surface density distribution or with an irregular temperature distribution or with the combination of both. The depletion factor of surface density in the inner power-law region (r <50 AU) is derived to be =0.16 from a simple model calculation. The obtained PI image also shows small scale asymmetries in the outer power-law region. Possible origins for these asymmetries include corrugation of the scattering surface in the outer region, and shadowing effect by a puffed up structure in the inner power-law region.
Orisme, Wilda; Li, Jian; Goldmann, Tobias; Bolch, Susan; Wolfrum, Uwe; Smith, W Clay
2010-03-01
Partitioning of cellular components is a critical mechanism by which cells can regulate their activity. In rod photoreceptors, light induces a large-scale translocation of arrestin from the inner segments to the outer segments. The purpose of this project is to elucidate the signaling pathway necessary to initiate arrestin translocation to the outer segments and the mechanism for arrestin translocation. Mouse retinal organotypic cultures and eyes from transgenic Xenopus tadpoles expressing a fusion of GFP and rod arrestin were treated with both activators and inhibitors of proteins in the phosphoinositide pathway. Confocal microscopy was used to image the effects of the pharmacological agents on arrestin translocation in rod photoreceptors. Retinas were also depleted of ATP using potassium cyanide to assess the requirement for ATP in arrestin translocation. In this study, we demonstrate that components of the G-protein-linked phospholipase C (PLC) pathway play a role in initiating arrestin translocation. Our results show that arrestin translocation can be stimulated by activators of PLC and protein kinase C (PKC), and by cholera toxin in the absence of light. Arrestin translocation to the outer segments is significantly reduced by inhibitors of PLC and PKC. Importantly, we find that treatment with potassium cyanide inhibits arrestin translocation in response to light. Collectively, our results suggest that arrestin translocation is initiated by a G-protein-coupled cascade through PLC and PKC signaling. Furthermore, our results demonstrate that at least the initiation of arrestin translocation requires energy input.
Impacts and recovery from severe tropical cyclone Yasi on the Great Barrier Reef.
Beeden, Roger; Maynard, Jeffrey; Puotinen, Marjetta; Marshall, Paul; Dryden, Jen; Goldberg, Jeremy; Williams, Gareth
2015-01-01
Full recovery of coral reefs from tropical cyclone (TC) damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second) within the Great Barrier Reef Marine Park (GBRMP). Of the hurricane strength TCs (≥H1-Saffir Simpson scale; ≥ category 3 Australian scale), TC Yasi (February, 2011) was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3) and reef structural damage (4, 5). Average damage severity was significantly affected by direction (north vs south of the cyclone track), reef shelf position (mid-shelf vs outer-shelf) and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km). Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2) of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2) sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance.
Impacts and Recovery from Severe Tropical Cyclone Yasi on the Great Barrier Reef
Beeden, Roger; Maynard, Jeffrey; Puotinen, Marjetta; Marshall, Paul; Dryden, Jen; Goldberg, Jeremy; Williams, Gareth
2015-01-01
Full recovery of coral reefs from tropical cyclone (TC) damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second) within the Great Barrier Reef Marine Park (GBRMP). Of the hurricane strength TCs (≥H1—Saffir Simpson scale; ≥ category 3 Australian scale), TC Yasi (February, 2011) was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3) and reef structural damage (4, 5). Average damage severity was significantly affected by direction (north vs south of the cyclone track), reef shelf position (mid-shelf vs outer-shelf) and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km). Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2) of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2) sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance. PMID:25874718
Respiratory potential in sapwood of old versus young ponderosa pine trees in the Pacific Northwest.
Pruyn, Michele L; Gartner, Barbara L; Harmon, Mark E
2002-02-01
Our primary objective was to present and test a new technique for in vitro estimation of respiration of cores taken from old trees to determine respiratory trends in sapwood. Our secondary objective was to quantify effects of tree age and stem position on respiratory potential (rate of CO2 production of woody tissue under standardized laboratory conditions). We extracted cores from one to four vertical positions in boles of +200-, +50- and +15-year-old Pinus ponderosa Dougl. ex Laws. trees. Cores were divided into five segments corresponding to radial depths of inner bark; outer, middle and inner sapwood; and heartwood. Data suggested that core segment CO2 production was an indicator of its respiratory activity, and that potential artifacts caused by wounding and extraction were minimal. On a dry mass basis, respiratory potential of inner bark was 3-15 times greater than that of sapwood at all heights for all ages (P < 0.0001). Within sapwood at all heights and in all ages of trees, outer sapwood had a 30-60% higher respiratory potential than middle or inner sapwood (P < 0.005). Heartwood had only 2-10% of the respiratory potential of outer sapwood. For all ages of trees, sapwood rings produced in the same calendar year released over 50% more CO2 at treetops than at bases (P < 0.0001). When scaled to the whole-tree level on a sapwood volume basis, sapwood of younger trees had higher respiratory potential than sapwood of older trees. In contrast, the trend was reversed when using the outer-bark surface area of stems as a basis for comparing respiratory potential. The differences observed in respiratory potential calculated on a core dry mass, sapwood volume, or outer-bark surface area basis clearly demonstrate that the resulting trends within and among trees are determined by the way in which the data are expressed. Although these data are based on core segments rather than in vivo measurements, we conclude that the relative differences are probably valid even if the absolute differences are not.
Model of driven and decaying magnetic turbulence in a cylinder.
Kemel, Koen; Brandenburg, Axel; Ji, Hantao
2011-11-01
Using mean-field theory, we compute the evolution of the magnetic field in a cylinder with outer perfectly conducting boundaries and imposed axial magnetic and electric fields. The thus injected magnetic helicity in the system can be redistributed by magnetic helicity fluxes down the gradient of the local current helicity of the small-scale magnetic field. A weak reversal of the axial magnetic field is found to be a consequence of the magnetic helicity flux in the system. Such fluxes are known to alleviate so-called catastrophic quenching of the α effect in astrophysical applications. A stronger field reversal can be obtained if there is also a significant kinetic α effect. Application to the reversed field pinch in plasma confinement devices is discussed.
NASA Astrophysics Data System (ADS)
Li, Haifeng; Cui, Guixiang; Zhang, Zhaoshun
2018-04-01
A coupling scheme is proposed for the simulation of microscale flow and dispersion in which both the mesoscale field and small-scale turbulence are specified at the boundary of a microscale model. The small-scale turbulence is obtained individually in the inner and outer layers by the transformation of pre-computed databases, and then combined in a weighted sum. Validation of the results of a flow over a cluster of model buildings shows that the inner- and outer-layer transition height should be located in the roughness sublayer. Both the new scheme and the previous scheme are applied in the simulation of the flow over the central business district of Oklahoma City (a point source during intensive observation period 3 of the Joint Urban 2003 experimental campaign), with results showing that the wind speed is well predicted in the canopy layer. Compared with the previous scheme, the new scheme improves the prediction of the wind direction and turbulent kinetic energy (TKE) in the canopy layer. The flow field influences the scalar plume in two ways, i.e. the averaged flow field determines the advective flux and the TKE field determines the turbulent flux. Thus, the mean, root-mean-square and maximum of the concentration agree better with the observations with the new scheme. These results indicate that the new scheme is an effective means of simulating the complex flow and dispersion in urban canopies.
The merger remnant NGC 3610 and its globular cluster system: a large-scale study
NASA Astrophysics Data System (ADS)
Bassino, Lilia P.; Caso, Juan P.
2017-04-01
We present a photometric study of the prototype merger remnant NGC 3610 and its globular cluster (GC) system, based on new Gemini/GMOS and Advanced Camera for Surveys/Hubble Space Telescope archival images. Thanks to the large field of view of our GMOS data, larger than previous studies, we are able to detect a 'classical' bimodal GC colour distribution, corresponding to metal-poor and metal-rich GCs, at intermediate radii and a small subsample of likely young clusters of intermediate colours, mainly located in the outskirts. The extent of the whole GC system is settled as about 40 kpc. The GC population is quite poor, about 500 ± 110 members that corresponds to a low total specific frequency SN ˜ 0.8. The effective radii of a cluster sample are determined, including those of two spectroscopically confirmed young and metal-rich clusters, that are in the limit between GC and UCD sizes and brightness. The large-scale galaxy surface-brightness profile can be decomposed as an inner embedded disc and an outer spheroid, determining for both larger extents than earlier research (10 and 30 kpc, respectively). We detect boxy isophotes, expected in merger remnants, and show a wealth of fine-structure in the surface-brightness distribution with unprecedented detail, coincident with the outer spheroid. The lack of symmetry in the galaxy colour map adds a new piece of evidence to the recent merger scenario of NGC 3610.
Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass
NASA Technical Reports Server (NTRS)
Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kotte, James Schottel; Kasting, James F.; Domagal-Goldman, Shawn; Eymet, Vincent
2014-01-01
The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1M and 5M. Assuming H2O-(inner HZ) and CO2-(outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (approx.10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing long-wave radiation. Hence the inner edge moves inward (approx.7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.
Swadźba, Elwira; Rupik, Weronika
2012-01-01
The monoclonal anti-cytokeratin 1/10 (LH1) antibody recognizing K1/K10 keratin epitopes that characterizes a keratinized epidermis of mammals cross-reacts with the beta and Oberhäutchen layers covering the scales and gastrosteges of grass snake embryos during the final period of epidermis differentiation. The immunolocalization of the anti-cytokeratin 1/10 (LH1) antibody appears in the beta layer of the epidermis, covering the outer surface of the gastrosteges at the beginning of developmental stage XI, and in the beta layer of the epidermis, covering the outer surface of the scales at the end of developmental stage XI. This antibody cross-reacts with the Oberhäutchen layers in the epidermis covering the outer surface of both scales and gastrosteges at developmental stages XI and XII just before its fusion with the beta layers. After fusion of the Oberhäutchen and beta layers, LH1 immunolabeling is weaker than before. This might suggest that alpha-keratins in these layers of the epidermis are masked by beta-keratins, modified, or degraded. The anti-cytokeratin 1/10 (LH1) antibody stains the Oberhäutchen layer in the epidermis covering the inner surface of the gastrosteges and the hinge regions between gastrosteges at the end of developmental stage XI. However, the Oberhäutchen of the epidermis covering the inner surfaces of the scales and the hinge regions between scales does not show cytokeratin 1/10 (LH1) immunolabeling until hatching. This cross-reactivity suggests that the beta and Oberhäutchen layers probably contain some alpha-keratins that react with the LH1 antibody. It is possible that these alpha-keratins create specific scaffolding for the latest beta-keratin deposition. It is also possible that the LH1 antibody cross-reacts with other epidermal proteins such as filament-associated proteins, i.e., filaggrin-like. The anti-cytokeratin 1/10 (LH1) antibody does not stain the alpha and mesos layers until hatching. We suppose that the differentiation of these layers will begin just after the first postnatal sloughing.
Similarity Scaling for the Inner Region of the Turbulent Boundary Layer
2009-11-20
Turan , O., Anderson, C, and Castillo, L., "Outer Scaling in Turbulent Boundary Layers," AIAA 2005-4814 (2005). 25 [28] Townsend, A ., The Structure of...for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO...2010-0012 12. DISTRIBUTION / AVAILABILITY STATEMENT DISTRIBUTION A : APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED 13. SUPPLEMENTARY NOTES
2016-11-28
olivocochlear reflex (MOCR), a feedback mechanism that controls gain of the outer hair cells, is thought to provide protection and enhancement for a listener in...effectively reduce the outer hair cell gain, depending on the stimulus frequency, level, and timing. Human Envelope Following Responses (EFRs
Rarefaction effects in gas flows over curved surfaces
NASA Astrophysics Data System (ADS)
Dongari, Nishanth; White, Craig; Scanlon, Thomas J.; Zhang, Yonghao; Reese, Jason M.
2012-11-01
The fundamental test case of gas flow between two concentric rotating cylinders is considered in order to investigate rarefaction effects associated with the Knudsen layers over curved surfaces. We carry out direct simulation Monte Carlo simulations covering a wide range of Knudsen numbers and accommodation coefficients, and for various outer-to-inner cylinder radius ratios. Numerical data is compared with classical slip flow theory and a new power-law (PL) wall scaling model. The PL model incorporates Knudsen layer effects in near-wall regions by taking into account the boundary limiting effects on the molecular free paths. The limitations of both theoretical models are explored with respect to rarefaction and curvature effects. Torque and velocity profile comparisons also convey that mere prediction of integral flow parameters does not guarantee the accuracy of a theoretical model, and that it is important to ensure that prediction of the local flowfield is in agreement with simulation data.
Thermal structure and heat balance of the outer planets
NASA Technical Reports Server (NTRS)
Conrath, B. J.; Hanel, R. A.; Samuelson, R. E.
1989-01-01
Current knowledge of the thermal structure and energy balance of the outer planets is summarized. The Voyager spacecraft experiments have provided extensive new information on the atmospheric temperatures and energetics of Jupiter, Saturn and Uranus. All three planets show remarkably small global-scale horizontal thermal contrast, indicating efficient redistribution of heat within the atmospheres or interiors. Horizontal temperature gradients on the scale of the zonal jets indicate that the winds decay with height in the upper troposphere. This suggests that the winds are driven at deeper levels and are subjected to frictional damping of unknown origin at higher levels. Both Jupiter and Saturn have internal power sources equal to about 70 percent of the absorbed solar power. This result is consistent with the view that significant helium differentiation has occurred on Saturn. Uranus has an internal power no greater than 13 percent of the absorbed solar power, while earth-based observations suggest Neptune has an internal power in excess of 100 percent of the absorbed solar power.
When Might Barrier Island Chains 'Collapse'? An Initial Model Investigation
NASA Astrophysics Data System (ADS)
Slott, J. M.; Murray, A. B.
2007-12-01
There has been recent speculation that, in response to the accelerated sea-level rise and intensified storms expected over the coming century, barrier island chains such as those found on the US Atlantic and Gulf coastlines, could develop large (10-kilometer-scale) gaps in their most narrow stretches, or might disappear completely (Riggs, S. R., 2001). Such a collapse along the North Carolina Outer Banks barrier island chain, for example, would leave the mainland vulnerable to direct hits from Western Atlantic storm systems, and also would dramatically alter the estuarine system it encloses with potentially devastating effects to marine life. Concern for the future of the Outer Banks is also motivated by the decimation of the Chandeleur Islands in 2005 from Hurricane Katrina. We will present a series of initial numerical modeling experiments addressing how barrier island morphodynamics respond to the sudden creation of kilometer-scale gaps. Large-scale barrier island evolution is influenced by sea-level rise and barrier island overwash, alongshore sediment transport, tidal currents, and the availability of mobile sediment. Barrier islands transgress towards the mainland in response to sea-level rise through overwash: ocean-facing shorelines provide sediment that is transported onto the island to maintain its subaerial height and behind the island to maintain its width, while gradients in alongshore sediment transport typically dictate the large-scale shape of a coastline over long time frames (decades to millenia). Tidal currents also tend to scour inlet channels; the relative strength of this effect depends in part upon the width of the inlet channel. Our exploratory model includes both a one-line alongshore transport component and a cross-shore overwash component, as well as representations of underlying geology (weathering rates and material compositions). In our modeling experiments, we test the effects of perforating a 30 km barrier island chain with variable-sized gaps, ranging between 2.5-10 km. In preliminary model experiments, where we do not limit the availability of mobile sediment nor include tidal inlet dynamics, large gaps tend to close under all of the erosion rate scenarios and gap sizes. The ends of barrier islands extend to fill in the gaps and recurve landward. The rate of closure of gaps is unaffected by sea-level rise rates even under the most extreme cases; alongshore sediment fluxes exceed those associated with sea-level rise as highly curved isolated islands migrate rapidly landward before coalescing into an island chain again at a new location. In a natural setting, the overwash and spit-growth that maintain sub-aerial islands and tend to knit them back together (respectively) could be inhibited by a lack of mobile sediment. The shoreface of the Outer Banks, for example, consists of sometimes patchy Holocene sands perched atop a semi-lithified, sometimes more muddy Pleistocene substrate. Weathering of the Pleistocene substrate over long timescales generates mobile sediment consisting of both sands and muds. The fine-grained material, however, is typically lost to the nearshore system. The shoreface may not be able to weather fast enough to keep up with rapidly migrating islands. This effect, combined with that of substrate composition, will tend to limit the rate that sediment can be liberated, and, in turn, could prevent island-chain recovery. We conduct a series of model experiments to determine the combinations of geological parameters (weathering rates, composition) and forcing parameters (rate of sea-level rise, frequency of storms) that prevent barrier-island-chain recovery.
Cang, Ji; Liu, Xu
2011-09-26
Based on the generalized spectral model for non-Kolmogorov atmospheric turbulence, analytic expressions of the scintillation index (SI) are derived for plane, spherical optical waves and a partially coherent Gaussian beam propagating through non-Kolmogorov turbulence horizontally in the weak fluctuation regime. The new expressions relate the SI to the finite turbulence inner and outer scales, spatial coherence of the source and spectral power-law and then used to analyze the effects of atmospheric condition and link length on the performance of wireless optical communication links. © 2011 Optical Society of America
Glass/Epoxy Door Panel for Automobiles
NASA Technical Reports Server (NTRS)
Bauer, J. L. JR.
1985-01-01
Lightweight panel cost-effective. Integrally-molded intrusion strap key feature of composite outer door panel. Strap replaces bulky and heavy steel instrusion beam of conventional door. Standard steel inner panel used for demonstration purposes. Door redesigned to exploit advantages of composite outer panel thinner. Outer panel for automobilie door, made of glass/epoxy composite material, lighter than conventional steel door panel, meets same strength requirements, and less expensive.
Empirical scaling laws for coronal heating
NASA Technical Reports Server (NTRS)
Golub, L.
1983-01-01
The origins and uses of scaling laws in studies of stellar outer atmospheres are reviewed with particular emphasis on the properties of coronal loops. Some evidence is presented for a fundamental structuring of the solar corona and the thermodynamics of scaling laws are discussed. It is found that magnetic field-related scaling laws can be obtained by relating coronal pressure, temperature, and magnetic field strength. Available data validate this method. Some parameters of the theory, however, must be treated as adjustable, and it is considered necessary to examine data from other stars in order to determine the validity of the parameters. Using detailed observational data, the applicability of single loop models is examined.
NASA Astrophysics Data System (ADS)
Bruff, M.; Jaynes, A. N.; Zhao, H.; Malaspina, D.
2017-12-01
The plasmasphere is a highly dynamic toroidal region of cold, dense plasma around Earth. Plasma waves exist both inside and outside this region and can contribute to the loss and acceleration of high energy outer radiation belt electrons. Early observational studies found an apparent correlation on long time scales between the observed inner edge of the outer radiation belt and the simulated innermost plasmapause location. More recent work using high resolution Van Allen Probe satellite data has found a more complex relationship. The aim of this project was to provide a systematic study of the location and dynamics of the plasmapause compared to the MeV electrons in the outer radiation belt. We used spin-averaged electron flux data from the Relativistic Electron Proton Telescope (REPT) and density data derived from the EFW instrument on the Van Allen Probe satellites. We analyzed these data to determine the standoff distance of the location of peak electron flux of the outer belt MeV electrons from the plasmapause. We found that the location of peak flux was consistently outside but within ΔL=2.5 from the innermost location of the plasmapause at enhancement times, with an average standoff distance ΔL=1.0 +/- 0.5. This is consistent with the current model of chorus enhancement and previous observations of chorus activity. Finally, we identified "three-belt" structure events where a second outer belt formed and found a repeated pattern of plasmapause dynamics associated with specific changes in electron flux required to generate and sustain these structures. This study is significant to improving our understanding of how the plasmasphere under differing conditions can both shield Earth from or worsen the impacts of geomagnetic activity.
Fu, Yulong; Ma, Jing; Tan, Liying; Yu, Siyuan; Lu, Gaoyuan
2018-04-10
In this paper, new expressions of the channel-correlation coefficient and its components (the large- and small-scale channel-correlation coefficients) for a plane wave are derived for a horizontal link in moderate-to-strong non-Kolmogorov turbulence using a generalized effective atmospheric spectrum which includes finite-turbulence inner and outer scales and high-wave-number "bump". The closed-form expression of the average bit error rate (BER) of the coherent free-space optical communication system is derived using the derived channel-correlation coefficients and an α-μ distribution to approximate the sum of the square root of arbitrarily correlated Gamma-Gamma random variables. Analytical results are provided to investigate the channel correlation and evaluate the average BER performance. The validity of the proposed approximation is illustrated by Monte Carlo simulations. This work will help with further investigation of the fading correlation in spatial diversity systems.
Menke, J.R.
1963-06-11
This patent relates to a reactor having a core which comprises an inner active region and an outer active region, each region separately having a k effective less than one and a k infinity greater than one. The inner and outer regions in combination have a k effective at least equal to one and each region contributes substantially to the k effective of the reactor core. The inner region has a low moderator to fuel ratio such that the majority of fissions occurring therein are induced by neutrons having energies greater than thermal. The outer region has a high moderator to fuel ratio such that the majority of fissions occurring therein are induced by thermal neutrons. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Xinyu; Xu, Ye; Yang, Ji
The lack of arm tracers, especially remote tracers, is one of the most difficult problems preventing us from studying the structure of the Milky Way. Fortunately, with its high-sensitivity CO survey, the Milky Way Imaging Scroll Painting (MWISP) project offers such an opportunity. Since completing about one-third of its mission, an area of l = [100, 150]°, b = [−3, 5]° has nearly been covered. The Outer arm of the Milky Way first clearly revealed its shape in the second galactic quadrant in the form of molecular gas—this is the first time that the Outer arm has been reported inmore » such a large-scale mapping of molecular gas. Using the 115 GHz {sup 12}CO(1–0) data of MWISP at the LSR velocity ≃[−100, −60] km s{sup −1} and in the area mentioned above, we have detected 481 molecular clouds in total, and among them 332 (about 69%) are newly detected and 457 probably belong to the Outer arm. The total mass of the detected Outer arm clouds is ∼3.1 × 10{sup 6} M {sub ⊙}. Assuming that the spiral arm is a logarithmic spiral, the pitch angle is fitted as ∼13.°1. Besides combining both the CO data from MWISP and the 21 cm H i data from the Canadian Galactic Plane Survey (CGPS), the gas distribution, warp, and thickness of the Outer arm are also studied.« less
Multifocal microlens for bionic compound eye
NASA Astrophysics Data System (ADS)
Cao, Axiu; Wang, Jiazhou; Pang, Hui; Zhang, Man; Shi, Lifang; Deng, Qiling; Hu, Song
2017-10-01
Bionic compound eye optical element composed of multi-dimensional sub-eye microlenses plays an important role in miniaturizing the volume and weight of an imaging system. In this manuscript, we present a novel structure of the bionic compound eye with multiple focal lengths. By the division of the microlens into two concentric radial zones including the inner zone and the outer zone with independent radius, the sub-eye which is a multi-level micro-scale structure can be formed with multiple focal lengths. The imaging capability of the structure has been simulated. The results show that the optical information in different depths can be acquired by the structure. Meanwhile, the parameters including aperture and radius of the two zones, which have an influence on the imaging quality have been analyzed and discussed. With the increasing of the ratio of inner and outer aperture, the imaging quality of the inner zone is becoming better, and instead the outer zone will become worse. In addition, through controlling the radius of the inner and outer zone independently, the design of sub-eye with different focal lengths can be realized. With the difference between the radius of the inner and outer zone becoming larger, the imaging resolution of the sub-eye will decrease. Therefore, the optimization of the multifocal structure should be carried out according to the actual imaging quality demands. Meanwhile, this study can provide references for the further applications of multifocal microlens in bionic compound eye.
Multifractal Turbulence in the Heliosphere
NASA Astrophysics Data System (ADS)
Macek, Wieslaw M.; Wawrzaszek, Anna
2010-05-01
We consider a solar wind plasma with frozen-in interplanetary magnetic fields, which is a complex nonlinear system that may exhibit chaos and intermittency, resulting in a multifractal scaling of plasma characteristics. We analyze time series of plasma velocity and interplanetary magnetic field strengths measured during space missions onboard various spacecraft, such as Helios, Advanced Composition Explorer, Ulysses, and Voyager, exploring different regions of the heliosphere during solar minimum and maximum. To quantify the multifractality of solar wind turbulence, we use a generalized two-scale weighted Cantor set with two different rescaling parameters [1]. We investigate the resulting spectrum of generalized dimensions and the corresponding multifractal singularity spectrum depending on the parameters of this new cascade model [2]. We show that using the model with two different scaling parameters one can explain the multifractal singularity spectrum, which is often asymmetric. In particular, the multifractal scaling of magnetic fields is asymmetric in the outer heliosphere, in contrast to the symmetric spectrum observed in the heliosheath as described by the standard one-scale model [3]. We hope that the generalized multifractal model will be a useful tool for analysis of intermittent turbulence in the heliospheric plasma. We thus believe that multifractal analysis of various complex environments can shed light on the nature of turbulence. [1] W. M. Macek and A. Szczepaniak, Generalized two-scale weighted Cantor set model for solar wind turbulence, Geophys. Res. Lett., 35, L02108 (2008), doi:10.1029/2007GL032263. [2] W. M. Macek and A. Wawrzaszek, Evolution of asymmetric multifractal scaling of solar wind turbulence in the outer heliosphere, J. Geophys. Res., A013795 (2009), doi:10.1029/2008JA013795. [3] W. M. Macek and A. Wawrzaszek, Multifractal turbulence at the termination shock, in Solar Wind Twelve, edited by M. Maximovic et al., American Institute of Physics, 2010.
Flow and heat transfer in a curved channel
NASA Technical Reports Server (NTRS)
Brinich, P. F.; Graham, R. W.
1977-01-01
Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.
Dynamics of High Sound-Speed Metal Confiners Driven By Non-Ideal High-Explosive Detonation
Short, Mark; Jackson, Scott I.
2015-01-23
Here, the results of 14 tests examining the behavior of aluminum (Al) conifners driven by non-ideal ANFO detonation in a cylinder test configuration are presented. In each test, the measured detonation phase velocity is slower than the aluminum sound speed. Thus, in the detonation reference frame, the ow in the Al is both shockless and subsonic. The tests involve: 3-inch inner diameter (ID) cylinders with Al wall thicknesses of 1/4, 3/8, 1/2, 1 and 2 inches; a 4-inch ID cylinder with a 1/2-inch Al wall thickness; and 6-inch ID cylinders with Al wall thicknesses of 1/2, 1 and 2 inches.more » The ANFO detonation velocity is seen to increase with increasing wall thickness for both the 3- and 6-inch ID tests, with no limiting velocity reached for the wall thicknesses used. The motion of the outer Al wall due to precursor elastic waves in the Al running ahead of the detonation is also measured at various axial locations along the cylinders. It is found that the magnitude of the outer wall motion due to the precursor elastic waves is small, while the associated wall motion is unsteady and decays in amplitude as the elastic disturbances move further ahead of the detonation front. The variations in the expansion history of the main outer wall motion of the cylinders are presented for increasing wall thickness at fixed ID, and for increasing cylinder inner diameter at a fixed wall thickness. Finally, we also explore the existence of a geometric similarity scaling of the wall expansion history for three geometrically scaled tests (3- and 6-inch ID cylinders with 1/4- and 1/2-inch walls respectively, 3- and 6-inch ID cylinders with 1/2- and 1-inch walls and 3- and 6-inch ID cylinders with 1- and 2-inch walls respectively). We find that the wall velocity histories for each of the three scaled tests, when plotted directly against time relative to start of main motion of the wall, are similar over a certain range of wall velocities without any geometric based rescaling in time. The range of wall velocities where the overlap occurs increases as the ratio of the wall thickness to inner diameter decreases. In conclusion, this is in contrast to ideal high explosives, where the outer wall velocity histories are only similar when the geometric scale factor (in this case a factor of 2) is applied to the wall velocity motion.« less
Dynamics of High Sound-Speed Metal Confiners Driven By Non-Ideal High-Explosive Detonation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Short, Mark; Jackson, Scott I.
Here, the results of 14 tests examining the behavior of aluminum (Al) conifners driven by non-ideal ANFO detonation in a cylinder test configuration are presented. In each test, the measured detonation phase velocity is slower than the aluminum sound speed. Thus, in the detonation reference frame, the ow in the Al is both shockless and subsonic. The tests involve: 3-inch inner diameter (ID) cylinders with Al wall thicknesses of 1/4, 3/8, 1/2, 1 and 2 inches; a 4-inch ID cylinder with a 1/2-inch Al wall thickness; and 6-inch ID cylinders with Al wall thicknesses of 1/2, 1 and 2 inches.more » The ANFO detonation velocity is seen to increase with increasing wall thickness for both the 3- and 6-inch ID tests, with no limiting velocity reached for the wall thicknesses used. The motion of the outer Al wall due to precursor elastic waves in the Al running ahead of the detonation is also measured at various axial locations along the cylinders. It is found that the magnitude of the outer wall motion due to the precursor elastic waves is small, while the associated wall motion is unsteady and decays in amplitude as the elastic disturbances move further ahead of the detonation front. The variations in the expansion history of the main outer wall motion of the cylinders are presented for increasing wall thickness at fixed ID, and for increasing cylinder inner diameter at a fixed wall thickness. Finally, we also explore the existence of a geometric similarity scaling of the wall expansion history for three geometrically scaled tests (3- and 6-inch ID cylinders with 1/4- and 1/2-inch walls respectively, 3- and 6-inch ID cylinders with 1/2- and 1-inch walls and 3- and 6-inch ID cylinders with 1- and 2-inch walls respectively). We find that the wall velocity histories for each of the three scaled tests, when plotted directly against time relative to start of main motion of the wall, are similar over a certain range of wall velocities without any geometric based rescaling in time. The range of wall velocities where the overlap occurs increases as the ratio of the wall thickness to inner diameter decreases. In conclusion, this is in contrast to ideal high explosives, where the outer wall velocity histories are only similar when the geometric scale factor (in this case a factor of 2) is applied to the wall velocity motion.« less
Modelling end Measurement of Atmospheric Turbulence over Land
1996-07-01
standard, auxquels on ajoute le rayonnement solaire et les parametres caracteristiques du terrain. On compare les resultats obtenus aux mesures de Cn 2 et...outer scale L0 repre- sents the minimum scale size over which turbulence energy is injected into the air through P498995.PDF [Page: 13 of 36...which viscous dissipation converts the turbulent energy into heat. In the surface layer t0 is of the order of millimeters. The region between t0 and
Delimitation of air space and outer space - Is such a boundary needed now?
NASA Technical Reports Server (NTRS)
Hosenball, S. N.
1983-01-01
A discussion is presented of the question of establishing a boundary between air space and outer space. Four theories and approaches for establishing a delimitation between air space and outer space are examined. Spatial approaches include demarcation based on the division of the atmosphere into layers, demarcation based on aerodynamic characteristics of flight instrumentalities (von Karman Line), demarcation according to the lowest perigee of an orbiting satellite, and demarcation based upon the earth's gravitational effects. The functionalist approach is based on the delimitation or definition of the air space/outer space regime by the purpose and activities for which an object is designed in air space or outer space. The arbitrarist approach is supported by those who wish to draw an arbitrary line between air space and outer space. It is proposed that a pragmatist approach will be more useful than the other three approaches. The pragmatist approach advocates not establishing a boundary between air space and outer space at the present time or in the immediate future. It is argued that there are at present no serious problems that can be resolved by the definition/delimitation of air space and outer space.
A scaling law for the local CHF on the external bottom side of a fully submerged reactor vessel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, F.B.; Haddad, K.H.; Liu, Y.C.
1997-02-01
A scaling law for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water has been developed from the results of an advanced hydrodynamic CHF model for pool boiling on a downward facing curved heating surface. The scaling law accounts for the effects of the size of the vessel, the level of liquid subcooling, the intrinsic properties of the fluid, and the spatial variation of the local critical heat flux along the heating surface. It is found that for vessels with diameters considerably larger than the characteristic size ofmore » the vapor masses, the size effect on the local critical heat flux is limited almost entirely to the effect of subcooling associated with the local liquid head. When the subcooling effect is accounted for separately, the local CHF limit is nearly independent of the vessel size. Based upon the scaling law developed in this work, it is possible to merge, within the experimental uncertainties, all the available local CHF data obtained for various vessel sizes under both saturated and subcooled boiling conditions into a single curve. Applications of the scaling law to commercial-size vessels have been made for various system pressures and water levels above the heated vessel. Over the range of conditions explored in this study, the local CHF limit is found to increase by a factor of two or more from the bottom center to the upper edge of the vessel. Meanwhile, the critical heat flux at a given angular position of the heated vessel is also found to increase appreciably with the system pressure and the water level.« less
Activities conducted during the definition phase of the outer planets missions program
NASA Technical Reports Server (NTRS)
1972-01-01
The activities are described of the Meteoroid Science Team for the definition phase of the outer planet missions. Studies reported include: (1) combined zodiacal experiment for the Grand Tour Missions of the outer planets, (2) optical transmission of a honeycomb panel and its effectiveness as a particle impact surface, (3) element identification data from the combined zodiacal OPGT experiment and (4) development of lightweight thermally stable mirrors.
NASA Technical Reports Server (NTRS)
Schuller, F. T.; Pinel, S. I.; Signer, H. R.
1985-01-01
Parametric tests were conducted with a 35-mm-bore, split-inner-ring ball bearing with a double-inner-land-guided cage. Provisions were made for through-the-inner-ring lubrication. Test condictions were either a thrust load of 667 N (150 lb) or a combined load of 667 N (150 lb) thrust and 222 N (50 lb) radial, shaft speeds from 32000 to 72000 rpm, and an oil-inlet temperature of 394 K (250 deg F). Outer ring cooling was used in some tests. Tests were run with either 50 or 75 percent of the total oil flow distributed to the inner-ring raceway. Successful operation was experienced with both 50% and 75% flow patterns to 2.5 million DN. Cooling the outer ring had little effect on inner-ring temperature; however, the outer-ring temperature decreased as much as 7% at 2.5 million DN. Maximum recorded power loss was 3.1 kW (4.2 hp), and maximum cage slip was 8.7 percent. Both occurred at a shaft speed of 72000 rpm, a lubricant flow rate of 1900 cu/min (0.50 gal/min), a combined load, and no outer-ring cooling.
NASA Astrophysics Data System (ADS)
Liang, Feng; Zhou, Ming; Xu, Quanyong
2016-09-01
Semi-floating ring bearing(SFRB) is developed to control the vibration of turbocharger rotor. The outer clearance of SFRB affects the magnitude and frequency of nonlinear whirl motion, which is significant for the design of turbocharger. In order to explore the effects of outer clearance, a transient finite element analysis program for rotor and oil film bearing is built and validated by a published experimental case. The nonlinear dynamic behaviors of rotor-SFRB system are simulated. According to the simulation results, two representative subsynchronous oscillations excited by the two bearings respectively are discovered. As the outer clearance of SFRB increases from 24 μm to 60 μm, the low-frequency subsynchronous oscillation experiences three steps, including a strong start, a gradual recession and a combination with the other one. At the same time, the high-frequency subsynchronous oscillation starts to appear gradually, then strengthens, and finally combines. If gravity and unbalance are neglected, the combination will start starts from high rotor speed and extents to low rotor speed, just like a "zipper". It is found from the quantitative analysis that when the outer clearance increases, the vibration amplitude experiences large value firstly, then reduction, and suddenly increasing after combination. A useful design principle of SFRB outer clearance for minimum vibration amplitude is proposed: the outer clearance value should be chosen to keep the frequency of two subsynchronous oscillations clearly separated and their amplitudes close.
Spector, Alexander A
2005-06-01
Cochlear outer hair cells are crucial for active hearing. These cells have a unique form of motility, named electromotility, whose main features are the cell's length changes, active force production, and nonlinear capacitance. The molecular motor, prestin, that drives outer hair cell electromotility has recently been identified. We reveal relationships between the active energy produced by the outer hair cell molecular motors, motor effectiveness, and the capacitive properties of the cell membrane. We quantitatively characterize these relationships by introducing three characteristics: effective capacitance, zero-strain capacitance, and zero-resultant capacitance. We show that zero-strain capacitance is smaller than zero-resultant capacitance, and that the effective capacitance is between the two. It was also found that the differences between the introduced capacitive characteristics can be expressed in terms of the active energy produced by the cell's molecular motors. The effectiveness of the cell and its molecular motors is introduced as the ratio of the motors'active energy to the energy of the externally applied electric field. It is shown that the effectiveness is proportional to the difference between zero-strain and zero-resultant capacitance. We analyze the cell and motor's effectiveness within a broad range of cellular parameters and estimate it to be within a range of 12%-30%.
Studies on effects of infills in seismic resistant R/C construction
NASA Astrophysics Data System (ADS)
Brokken, S. T.; Bertero, V. V.
1981-10-01
Experimental and analytical studies of the quantitative effects of infills in the seismic performance of buildings (particularly in buildings whose structural systems are based on the use of moment resisting frames alone are summarized); and the implications of these effects regarding the design of new buildings and retrofitting of existing R/C frame structures were evaluated. The first part is concerned with the infill problem and the experimental investigation conducted to study the effects of infill panels on seismic response of reinforced concrete frames. This investigation consisted of a series of quasi-static cyclic and monotonic load tests on 1/3-scale models of the lower 3-1/2 stories of an 11 story-three bay reinforced concrete frame infilled in the outer two bays. The reinforced concrete moment frame was designed for high rotational ductility and resistance to degradation under reversed cyclic shear loads.
Development and application of free pretreatment container steel
NASA Astrophysics Data System (ADS)
Yang, Y.; Liu, Y.; Han, B.; Wei, B.; Wang, S. Z.
2017-12-01
Due to economic and environmental advantages pre-treatment containers have good big development prospects, which can avoid shot blasting processes, and decrease the noise and dust pollution. By analyzing requirements of the container steel surface quality, target oxide scale structure of free pretreatment container steel has been determined. Trial process was carried out, and test results showed that the oxide scale achieved the desired objects, oxide scale with outer thin Fe3O4 layer and inner eutectoid α-Fe+Fe3O4. Salt spray test, second adhesion test, and modeling performance basically corroborated the container feasibility.
Cosmological perturbations in the (1 + 3 + 6)-dimensional space-times
NASA Astrophysics Data System (ADS)
Tomita, K.
2014-12-01
Cosmological perturbations in the (1+3+6)-dimensional space-times including photon gas without viscous processes are studied on the basis of Abbott et al.'s formalism [R. B. Abbott, B. Bednarz, and S. D. Ellis, Phys. Rev. D 33, 2147 (1986)]. Space-times consist of outer space (the 3-dimensional expanding section) and inner space (the 6-dimensional section). The inner space expands initially and later contracts. Abbott et al. derived only power-type solutions, which appear at the final stage of the space-times, in the small wave-number limit. In this paper, we derive not only small wave-number solutions, but also large wave-number solutions. It is found that the latter solutions depend on the two wave-numbers k_r and k_R (which are defined in the outer and inner spaces, respectively), and that the k_r-dependent and k_R-dependent parts dominate the total perturbations when (k_r/r(t))/(k_R/R(t)) ≫ 1 or ≪ 1, respectively, where r(t) and R(t) are the scale-factors in the outer and inner spaces. By comparing the behaviors of these perturbations, moreover, changes in the spectrum of perturbations in the outer space with time are discussed.
Speed-constrained three-axes attitude control using kinematic steering
NASA Astrophysics Data System (ADS)
Schaub, Hanspeter; Piggott, Scott
2018-06-01
Spacecraft attitude control solutions typically are torque-level algorithms that simultaneously control both the attitude and angular velocity tracking errors. In contrast, robotic control solutions are kinematic steering commands where rates are treated as the control variable, and a servo-tracking control subsystem is present to achieve the desired control rates. In this paper kinematic attitude steering controls are developed where an outer control loop establishes a desired angular response history to a tracking error, and an inner control loop tracks the commanded body angular rates. The overall stability relies on the separation principle of the inner and outer control loops which must have sufficiently different response time scales. The benefit is that the outer steering law response can be readily shaped to a desired behavior, such as limiting the approach angular velocity when a large tracking error is corrected. A Modified Rodrigues Parameters implementation is presented that smoothly saturates the speed response. A robust nonlinear body rate servo loop is developed which includes integral feedback. This approach provides a convenient modular framework that makes it simple to interchange outer and inner control loops to readily setup new control implementations. Numerical simulations illustrate the expected performance for an aggressive reorientation maneuver subject to an unknown external torque.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Wei; Reese, Cassandra M.; Xiong, Li
We report a simple route to engineer ultrathin polymer brush surfaces with wrinkled morphologies using postpolymerization modification (PPM), where the length scale of the buckled features can be tuned using PPM reaction time. Here, we show that partial crosslinking of the outer layer of the polymer brush under poor solvent conditions is critical to obtain wrinkled morphologies upon swelling.
Adjusting an electron beam for drilling
NASA Technical Reports Server (NTRS)
Childress, C. L.
1980-01-01
Reticle contains two concentric circles: inner circle insures beam circularity and outer circle is guide to prevent beam from cutting workpiece clamp. Precise measurement of beam and clamp are required with old reticle. New reticle speeds up electron-beam drilling process by eliminating need to rotate eyepiece to make measurements against reticle scale.
Seabed Geoacoustic Planning Support for the QPE Uncertainty DRI
2007-09-30
40% CaCO3 from planktonic foraminfera and pteropod shells associated with upwelling. • Rock fragments are common and abundant constituents of...variable over seasonal time scales. • On outer shelf and slope, presence of deep thermogenic methane leads to mud volcanoes (5-40 m in height; radii ~20
Turbulent Boundary Layer on a Cylinder in Axial Flow
1988-09-29
finding the wall shea stress. Finally, ft ;hould be noted that the wall shear stress can be found from the streamwrwise gradient of the mornsntum...somewhat butter collapse than inner scaling, suggesting that the outer flow affects events at the wall. By comparison, the burst frequency in a planar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Adam J.; Matt, Sean P., E-mail: af472@exeter.ac.uk
Cool stars with outer convective envelopes are observed to have magnetic fields with a variety of geometries, which on large scales are dominated by a combination of the lowest-order fields such as the dipole, quadrupole, and octupole modes. Magnetized stellar wind outflows are primarily responsible for the loss of angular momentum from these objects during the main sequence. Previous works have shown the reduced effectiveness of the stellar wind braking mechanism with increasingly complex but singular magnetic field geometries. In this paper, we quantify the impact of mixed dipolar and quadrupolar fields on the spin-down torque using 50 MHD simulationsmore » with mixed fields, along with 10 each of the pure geometries. The simulated winds include a wide range of magnetic field strength and reside in the slow-rotator regime. We find that the stellar wind braking torque from our combined geometry cases is well described by a broken power-law behavior, where the torque scaling with field strength can be predicted by the dipole component alone or the quadrupolar scaling utilizing the total field strength. The simulation results can be scaled and apply to all main-sequence cool stars. For solar parameters, the lowest-order component of the field (dipole in this paper) is the most significant in determining the angular momentum loss.« less
NASA Astrophysics Data System (ADS)
Cole, Jonathan; Zhang, Yao; Liu, Tianqi; Liu, Chang-jun; Mohan Sankaran, R.
2017-08-01
Scale-up of non-thermal atmospheric-pressure plasma reactors for the synthesis of nanoparticles by homogeneous nucleation is challenging because the active volume is typically reduced to facilitate gas breakdown, enhance discharge stability, and limit particle size and agglomeration, but thus limits throughput. Here, we introduce a dielectric barrier discharge reactor consisting of a coaxial electrode geometry for nanoparticle production that enables a simple scale-up strategy whereby increasing the outer and inner electrode diameters, the plasma volume is increased approximately linearly, while maintaining a sufficiently small electrode gap to maintain the electric field strength. We show with two test reactors that for a given residence time, the nanoparticle production rate increases linearly with volume over a range of precursor concentrations, while having minimal effect on the shape of the particle size distribution. However, our study also reveals that increasing the total gas flow rate in a smaller volume reactor leads to an enhancement of precursor conversion and a comparable production rate to a larger volume reactor. These results suggest that scale-up requires better understanding of the influence of reactor geometry on particle growth dynamics and may not always be a simple function of reactor volume.
NASA Astrophysics Data System (ADS)
Hardersen, Paul S.; Reddy, Vishnu; Cloutis, Edward; Nowinski, Matt; Dievendorf, Margaret; Genet, Russell M.; Becker, Savan; Roberts, Rachel
2018-07-01
Investigations of the main asteroid belt and efforts to constrain that population’s physical characteristics involve the daunting task of studying hundreds of thousands of small bodies. Taxonomic systems are routinely employed to study the large-scale nature of the asteroid belt because they utilize common observational parameters, but asteroid taxonomies only define broadly observable properties and are not compositionally diagnostic. This work builds upon the results of work by Hardersen et al., which has the goal of constraining the abundance and distribution of basaltic asteroids throughout the main asteroid belt. We report on the near-infrared (NIR: 0.7 to 2.5 μm) reflectance spectra, surface mineralogical characterizations, analysis of spectral band parameters, and meteorite analogs for 33 Vp asteroids. NIR reflectance spectroscopy is an effective remote sensing technique to detect most pyroxene group minerals, which are spectrally distinct with two very broad spectral absorptions at ∼0.9 and ∼1.9 μm. Combined with the results from Hardersen et al., we identify basaltic asteroids for ∼95% (39/41) of our inner-belt Vp sample, but only ∼25% (2/8) of the outer-belt Vp sample. Inner-belt basaltic asteroids are most likely associated with (4) Vesta and represent impact fragments ejected from previous collisions. Outer-belt Vp asteroids exhibit disparate spectral, mineralogical, and meteorite analog characteristics and likely originate from diverse parent bodies. The discovery of two additional likely basaltic asteroids provides additional evidence for an outer-belt basaltic asteroid population.
The Effect of Inner Core Translation on Outer Core Flow and the Geomagnetic Field
NASA Astrophysics Data System (ADS)
Mound, J. E.; Davies, C. J.; Silva, L.
2015-12-01
Bulk translation of the inner core has been proposed to explain quasi-hemispheric patterns of seismic heterogeneity. Such a translation would result in differential melting and freezing at the inner core boundary (ICB) and hence a heterogeneous pattern of buoyancy flux that could influence convection in the outer core. This heterogeneous flux at the ICB will tend to promote upwelling on the trailing hemisphere, where enhanced inner core growth results in increased latent heat and light element release, and inhibit upwelling on the leading hemisphere, where melting of the inner core occurs. If this difference in convective driving between the two hemispheres propagated across the thickness of the outer core, then flows near the surface of the core could be linked to the ICB heterogeneity and result in a hemispheric imbalance in the geomagnetic field. We have investigated the influence of such ICB boundary conditions on core flows and magnetic field structure in numerical geodynamo models and analysed the resultant hemispheric imbalance relative to the hemispheric structure in models constructed from observations of Earth's field. Inner core translation at rates consistent with estimates for the Earth produce a strong hemispheric bias in the field, one that should be readily apparent in averages of the field over tens of thousands of years. Current models of the field over the Holocene may be able to rule out the most extreme ICB forcing scenarios, but more information on the dynamic structure of the field over these time scales will be needed to adequately test all cases.
A numerical study of active structural acoustic control in a stiffened, double wall cylinder
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Coats, T. J.; Lester, H. C.; Silcox, R. J.
1994-01-01
It is demonstrated that active structural acoustic control of complex structural/acoustic coupling can be numerically modeled using finite element and boundary element techniques in conjunction with an optimization procedure to calculate control force amplitudes. Appreciable noise reduction is obtained when the structure is excited at a structural resonance of the outer shell or an acoustic resonance of the inner cavity. Adding ring stiffeners as a connection between the inner and outer shells provides an additional structural transmission path to the interior cavity and coupled the modal behavior of the inner and outer shells. For the case of excitation at the structural resonance of the unstiffened outer shell, adding the stiffeners raises the structural resonance frequencies. The effectiveness of the control forces is reduced due to the off resonance structural response. For excitation at an acoustic cavity resonance, the controller effectiveness is enhanced.
Turbine exhaust diffuser with a gas jet producing a coanda effect flow control
Orosa, John; Montgomery, Matthew
2014-02-11
An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub structure that has an upstream end and a downstream end. The outer boundary may include a region in which the outer boundary extends radially inward toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. The hub structure includes at least one jet exit located on the hub structure adjacent to the upstream end of the tail cone. The jet exit discharges a flow of gas substantially tangential to an outer surface of the tail cone to produce a Coanda effect and direct a portion of the exhaust flow in the diffuser toward the inner boundary.
Active Outer Hair Cells Affect the Sound-Evoked Vibration of the Reticular Lamina
NASA Astrophysics Data System (ADS)
Jacob, Stefan; Fridberger, Anders
2011-11-01
It is well established that the organ of Corti uses active mechanisms to enhance its sensitivity and frequency selectivity. Two possible mechanisms have been identified, both capable of producing mechanical forces, which can alter the sound-evoked vibration of the hearing organ. However, little is known about the effect of these forces on the sound-evoked vibration pattern of the reticular lamina. Current injections into scala media were used to alter the amplitude of the active mechanisms in the apex of the guinea pig temporal bone. We used time-resolved confocal imaging to access the vibration pattern of individual outer hair cells. During positive current injection the the sound-evoked vibration of outer hair cell row three increased while row one showed a small decrease. Negative currents reversed the observed effect. We conclude that the outer hair cell mediated modification of reticular lamina vibration patterns could contribute to the inner hair cell stimulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanroose, W.; Broeckhove, J.; Arickx, F.
The paper proposes a hybrid method for calculating scattering processes. It combines the J-matrix method with exterior complex scaling and an absorbing boundary condition. The wave function is represented as a finite sum of oscillator eigenstates in the inner region, and it is discretized on a grid in the outer region. The method is validated for a one- and a two-dimensional model with partial wave equations and a calculation of p-shell nuclear scattering with semirealistic interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Adam; Pati, Soobhankar
2012-03-11
Solid Oxide Membrane (SOM) Electrolysis is a new energy-efficient zero-emissions process for producing high-purity magnesium and high-purity oxygen directly from industrial-grade MgO. SOM Recycling combines SOM electrolysis with electrorefining, continuously and efficiently producing high-purity magnesium from low-purity partially oxidized scrap. In both processes, electrolysis and/or electrorefining take place in the crucible, where raw material is continuously fed into the molten salt electrolyte, producing magnesium vapor at the cathode and oxygen at the inert anode inside the SOM. This paper describes a three-dimensional multi-physics finite-element model of ionic current, fluid flow driven by argon bubbling and thermal buoyancy, and heat andmore » mass transport in the crucible. The model predicts the effects of stirring on the anode boundary layer and its time scale of formation, and the effect of natural convection at the outer wall. MOxST has developed this model as a tool for scale-up design of these closely-related processes.« less
HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kasting, James F.
2014-06-01
The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1 M {sub ⊕} and 5 M {sub ⊕}. Assuming H{sub 2}O-(inner HZ) and CO{sub 2}-(outer HZ) dominated atmospheres, and scaling the background N{sub 2} atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will havemore » less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (∼10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H{sub 2}O column depth. For larger planets, the H{sub 2}O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (∼7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.« less
Metcalf, Talibah; Kelley, Karen; Erdos, Gregory W; Kaplan, Lee; West, Christopher M
2003-02-01
The Dictyostelium spore is surrounded by a 220 microm thick trilaminar coat that consists of inner and outer electron-dense layers surrounding a central region of cellulose microfibrils. In previous studies, a mutant strain (TL56) lacking three proteins associated with the outer layer exhibited increased permeability to macromolecular tracers, suggesting that this layer contributes to the coat permeability barrier. Electron microscopy now shows that the outer layer is incomplete in the coats of this mutant and consists of a residual regular array of punctate electron densities. The outer layer is also incomplete in a mutant lacking a cellulose-binding protein associated with the inner layer, and these coats are deficient in an outer-layer protein and another coat protein. To examine the mechanism by which this inner-layer protein, SP85, contributes to outer-layer formation, various domain fragments were overexpressed in forming spores. Most of these exert dominant negative effects similar to the deletion of outer-layer proteins, but one construct, consisting of a fusion of the N-terminal and Cys-rich C1 domain, induces a dense mat of novel filaments at the surface of the outer layer. Biochemical studies show that the C1 domain binds cellulose, and a combination of site-directed mutations that inhibits its cellulose-binding activity suppresses outer-layer filament induction. The results suggest that, in addition to a previously described early role in regulating cellulose synthesis, SP85 subsequently contributes a cross-bridging function between cellulose and other coat proteins to organize previously unrecognized structural elements in the outer layer of the coat.
Estimation of the specific surface area for a porous carrier.
Levstek, Meta; Plazl, Igor; Rouse, Joseph D
2010-03-01
In biofilm systems, treatment performance is primarily dependent upon the available biofilm growth surface area in the reactor. Specific surface area is thus a parameter that allows for making comparisons between different carrier technologies used for wastewater treatment. In this study, we estimated the effective surface area for a spherical, porous polyvinyl alcohol (PVA) gel carrier (Kuraray) that has previously demonstrated effectiveness for retention of autotrophic and heterotrophic biomass. This was accomplished by applying the GPS-X modeling tool (Hydromantis) to a comparative analysis of two moving-bed biofilm reactor (MBBR) systems. One system consisted of a lab-scale reactor that was fed synthetic wastewater under autotrophic conditions where only the nitrification process was studied. The other was a pre-denitrification pilot-scale plant that was fed real, primary-settled wastewater. Calibration of an MBBR process model for both systems indicated an effective specific surface area for PVA gel of 2500 m2/m3, versus a specific surface area of 1000 m2/m3 when only the outer surface of the gel beads is considered. In addition, the maximum specific growth rates for autotrophs and heterotrophs were estimated to be 1.2/day and 6.0/day, respectively.
Ultra-fine-scale filamentary structures in the Outer Corona and the Solar Magnetic Field
NASA Technical Reports Server (NTRS)
Woo, Richard
2006-01-01
Filamentary structures following magnetic field lines pervade the Sun's atmosphere and offer us insight into the solar magnetic field. Radio propagation measurements have shown that the smallest filamentary structures in the solar corona are more than 2 orders of magnitude finer than those seen in solar imaging. Here we use radio Doppler measurements to characterize their transverse density gradient and determine their finest scale in the outer corona at 20-30 R(circled dot operator), where open magnetic fields prevail. Filamentary structures overly active regions have the steepest gradient and finest scale, while those overlying coronal holes have the shallowest gradient and least finest scale. Their organization by the underlying corona implies that these subresolution structures extend radially from the entire Sun, confirming that they trace the coronal magnetic field responsible for the radial expansion of the solar wind. That they are rooted all over the Sun elucidates the association between the magnetic field of the photosphere and that of the corona, as revealed by the similarity between the power spectra of the photospheric field and the coronal density fluctuations. This association along with the persistence of filamentary structures far from the Sun demonstrate that subresolution magnetic fields must play an important role not only in magnetic coupling of the photosphere and corona, but also in coronal heating and solar wind acceleration through the process of small-scale magnetic reconnection. They also explain why current widely used theoretical models that extrapolate photospheric magnetic fields into the corona do not predict the correct source of the solar wind.
NASA Astrophysics Data System (ADS)
Léonide, Philippe; Fournier, François; Reijmer, John J. G.; Vonhof, Hubert; Borgomano, Jean; Dijk, Jurrien; Rosenthal, Maelle; van Goethem, Manon; Cochard, Jean; Meulenaars, Karlien
2014-06-01
The Urgonian limestones of Late Barremian/Early Aptian from Provence (SE, France) are characterized by the occurrence of microporous limestones at regional scale alternating with tight carbonates. This study, based on petrographical (sediment texture, facies) and diagenetical analyses (cement stratigraphy, porosity and isotope geochemistry) of more than 800 limestone samples provides insight into the parameters controlling the genesis, preservation or occlusion of microporosity along an inner platform to outer shelf transect. The tight and microporous Urgonian limestones from Provence can be grouped into 5 rock-types based on textures, associated depositional environments, porosity and pore-type, being: (1) tight inner-platform: TIP; (2) porous inner platform: PIP; (3) tight outer platform: TOP; (4) porous outer platform: POP and (5) tight outer shelf: TOS. In tight (TIP, TOP and TOS types) limestones intergranular and intragranular pore spaces were entirely occluded by early marine and/or early meteoric cementation, whereas in microporous (PIP, POP) limestones a significant fraction of the intergranular macroporosity was preserved during early and shallow burial diagenesis. Micrite neomorphism (hybrid Ostwald ripening process) occurred during meteoric shallow burial diagenesis in PIP and POP limestones during the regional Durancian Uplift event (Albian-Lower Cenomanian). This process resulted in microporosity enhancement and preservation. Circulation of meteoric fluids during exhumation produces intercrystalline microporosity enhancement and moldic porosity development. The present study documents the important role that both early diagenetic and depositional cycles and long-term tectonic processes have on pore space evolution and distribution in Mesozoic platform carbonates.
Effects of Gravity-Assist Timing on Outer-Planet Missions Using Solar-Electric Propulsion
NASA Technical Reports Server (NTRS)
Woo, Byoungsam; Coverstone, Victoria L.; Cupples, Michael
2004-01-01
Missions to the outer planets for spacecraft with a solar-electric propulsion system (SEPS) and that utilize a single Venus gravity assist are investigated. The trajectories maximize the delivered mass to the target planet for a range of flight times. A comparison of the trajectory characteristics (delivered mass, launch energy and onboard propulsive energy) is made for various Venus gravity assist opportunities. Methods to estimate the delivered mass to the outer planets are developed.
Modeling Protostar Envelopes and Disks Seen With ALMA: A Focus on L1527 Kinematics
NASA Astrophysics Data System (ADS)
Terebey, Susan; Flores Rivera, Lizxandra; Willacy, Karen
2018-06-01
ALMA probes continuum and spectral line emission from protostars that comes from both the envelope and circumstellar disk. The dust and gas emit on a variety of spatial scales, ranging from sub-arcseconds for disks to roughly 10 arcseconds for envelopes for nearby protostars. We present models of what ALMA should detect that incorporate a self-consistent collapse solution, radiative transfer, and realistic dust properties. Molecular abundances are also calculated; we present results for CO and isotopologues for the Class 0 source L1527. Results for the outer disk show that there can be significant differences from standard assumptions due to the effect of CO freeze out and non-Keplerian dynamics.
The effects of streamwise concave curvature on turbulent boundary layer structure
NASA Astrophysics Data System (ADS)
Jeans, A. H.; Johnston, J. P.
1982-06-01
Concave curvature has a relatively large, unpredictable effect on turbulent boundary layers. Some, but not all previous studies suggest that a large-scale, stationary array of counter-rotating vortices exists within the turbulent boundary layer on a concave wall. The objective of the present study was to obtain a qualitative model of the flow field in order to increase our understanding of the underlying physics. A large free-surface water channel was constructed in order to perform a visual study of the flow. Streamwise components of mean velocity and turbulence intensity were measured using a hot film anemometer. The upstream boundary was spanwise uniform with a momentum thickness to radius of curvature of 0.05. Compared to flat wall flow, large-scale, randomly distributed sweeps and ejections were seen in the boundary layer on the concave wall. The sweeps appear to suppress the normal mechanism for turbulence production near the wall by inhibiting the bursting process. The ejections appear to enhance turbulence production in the outer layers as the low speed fluid convected from regions near the wall interacts with the higher speed fluid farther out. The large-scale structures did not occur at fixed spanwise locations, and could not be called roll cells or vortices.
Performance Characteristics of a New Generation Pressure Microsensor for Physiologic Applications
Cottler, Patrick S.; Karpen, Whitney R.; Morrow, Duane A.; Kaufman, Kenton R.
2009-01-01
A next generation fiber-optic microsensor based on the extrinsic Fabry–Perot interferometric (EFPI) technique has been developed for pressure measurements. The basic physics governing the operation of these sensors makes them relatively tolerant or immune to the effects of high-temperature, high-EMI, and highly-corrosive environments. This pressure microsensor represents a significant improvement in size and performance over previous generation sensors. To achieve the desired overall size and sensitivity, numerical modeling of diaphragm deflection was incorporated in the design, with the desired dimensions and calculated material properties. With an outer diameter of approximately 250 µm, a dynamic operating range of over 250 mmHg, and a sampling frequency of 960 Hz, this sensor is ideal for the minimally invasive measurement of physiologic pressures and incorporation in catheter-based instrumentation. Nine individual sensors were calibrated and characterized by comparing the output to a U.S. National Institute of Standards and Technology (NIST) Traceable reference pressure over the range of 0–250 mmHg. The microsensor performance demonstrated accuracy of better than 2% full-scale output, and repeatability, and hysteresis of better than 1% full-scale output. Additionally, fatigue effects on five additional sensors were 0.25% full-scale output after over 10,000 pressure cycles. PMID:19495983
Alibardi, Lorenzo
2002-02-01
The morphogenesis and ultrastructure of the epidermis of snake embryos were studied at progressive stages of development through hatching to determine the time and modality of differentiation of the shedding complex. Scales form as symmetric epidermal bumps that become slanted and eventually very overlapped. During the asymmetrization of the bumps, the basal cells of the forming outer surface of the scale become columnar, as in an epidermal placode, and accumulate glycogen. Small dermal condensations are sometimes seen and probably represent primordia of the axial dense dermis of the growing tip of scales. Deep, dense, and superficial loose dermal regions are formed when the epidermis is bilayered (periderm and basal epidermis) and undifferentiated. Glycogen and lipids decrease from basal cells to differentiating suprabasal cells. On the outer scale surface, beneath the peridermis, a layer containing dense granules and sparse 25-30-nm thick coarse filaments is formed. The underlying clear layer does not contain keratohyalin-like granules but has a rich cytoskeleton of intermediate filaments. Small denticles are formed and they interdigitate with the oberhautchen spinulae formed underneath. On the inner scale surface the clear layer contains dense granules, coarse filaments, and does not form denticles with the aspinulated oberhautchen. On the inner side surface the oberhautchen only forms occasional spinulae. The sloughing of the periderm and embryonic epidermis takes place in ovo 5-6 days before hatching. There follow beta-, mesos-, and alpha-layers, not yet mature before hatching. No resting period is present but a new generation is immediately produced so that at 6-10 h posthatching an inner generation and a new shedding complex are forming beneath the outer generation. The first shedding complex differentiates 10-11 days before hatching. In hatchlings 6-10 h old, tritiated histidine is taken up in the epidermis 4 h after injection and is found mainly in the shedding complex, especially in the apposed membranes of the clear layer and oberhautchen cells. This indicates that a histidine-rich protein is produced in preparation for shedding, as previously seen in lizard epidermis. The second shedding (first posthatching) takes place at 7-9 days posthatching. It is suggested that the shedding complex in lepidosaurian reptiles has evolved after the production of a histidine-rich protein and of a beta-keratin layer beneath the former alpha-layer. Copyright 2002 Wiley-Liss, Inc.
Wood and bark anatomy of young beech in relation to Cryptococcus attack
David Lonsdale
1983-01-01
Within a sample of European beech, partial resistance to attack by the beech scale, Cryptococcus fagisuga, was associated with a smooth bark which had a regular, vertical pattern in its surface 'growth lines'. Such bark contained relatively little lignified outer parenchyma, and the main stone cell layer was strongly developed. The '...
Biomimetic mechanism for micro aircraft
NASA Technical Reports Server (NTRS)
Pines, Darryll J. (Inventor); Bohorquez, Felipe A. (Inventor); Sirohi, Jayant (Inventor)
2005-01-01
A biomimetic pitching and flapping mechanism including a support member, at least two blade joints for holding blades and operatively connected to the support member. An outer shaft member is concentric with the support member, and an inner shaft member is concentric with the outer shaft member. The mechanism allows the blades of a small-scale rotor to be actuated in the flap and pitch degrees of freedom. The pitching and the flapping are completely independent from and uncoupled to each other. As such, the rotor can independently flap, or independently pitch, or flap and pitch simultaneously with different amplitudes and/or frequencies. The mechanism can also be used in a non-rotary wing configuration, such as an ornithopter, in which case the rotational degree of freedom would be suppressed.
Karl, Herman A.; Carlson, P.R.
1987-01-01
Samples of total suspended matter (TSM) were collected at the surface over the northern outer continental margin of the Bering Sea during the summers of 1980 and 1981. Volume concentrations of surface TSM averaged 0.6 and 1.1 mg l-1 for 1980 and 1981, respectively. Organic matter, largely plankton, made up about 65% of the near-surface TSM for both years. Distributions of TSM suggested that shelf circulation patterns were characterized either by meso- and large- scale eddies or by cross-shelf components of flow superimposed on a general northwesterly net drift. These patterns may be caused by large submarine canyons which dominate the physiography of this part of the Bering Sea continental margin. ?? 1987.
Characterizing Relativistic Electrons Flux Enhancement Events using sensors onboard SAMPEX and POLAR
NASA Astrophysics Data System (ADS)
Kanekal, S. G.; Selesnick, R. S.; Baker, D. N.; Blake, J. B.
2004-12-01
Relativistic electron fluxes in the Earth's outer Van Allen belt are highly variable with flux enhancements of several orders of magnitude occurring on time scales of a few days. Radiation belt electrons often are energized to relativistic energies when the magnetosphere is subjected to high solar wind speed and the southward turning of the interplanetary magnetic field. Characterization of electron acceleration properties such as electron spectra and flux isotropization are important in understanding acceleration models. We use sensors onboard SAMPEX and POLAR to measure and survey systematically these properties. SAMPEX measurements cover the entire outer zone for more than a decade from mid 1992 to mid 2004 and POLAR covers the time period from mid 1996 to the present. We use the pulse height analyzed data from the PET detector onboard SAMPEX to measure electron spectra. Fluxes measured by the HIST detector onboard POLAR together with the PET measurements are used to characterize isotropization times. This paper presents electron spectra and isotropization time scales for a few representative events. We will eventually extend these measurements and survey the entire solar cycle 23.
The Cosmic Battery in Astrophysical Accretion Disks
NASA Astrophysics Data System (ADS)
Contopoulos, Ioannis; Nathanail, Antonios; Katsanikas, Matthaios
2015-06-01
The aberrated radiation pressure at the inner edge of the accretion disk around an astrophysical black hole imparts a relative azimuthal velocity on the electrons with respect to the ions which gives rise to a ring electric current that generates large-scale poloidal magnetic field loops. This is the Cosmic Battery established by Contopoulos and Kazanas in 1998. In the present work we perform realistic numerical simulations of this important astrophysical mechanism in advection-dominated accretion flows, ADAFs. We confirm the original prediction that the inner parts of the loops are continuously advected toward the central black hole and contribute to the growth of the large-scale magnetic field, whereas the outer parts of the loops are continuously diffusing outward through the turbulent accretion flow. This process of inward advection of the axial field and outward diffusion of the return field proceeds all the way to equipartition, thus generating astrophysically significant magnetic fields on astrophysically relevant timescales. We confirm that there exists a critical value of the magnetic Prandtl number between unity and 10 in the outer disk above which the Cosmic Battery mechanism is suppressed.
NASA Astrophysics Data System (ADS)
Knudsen, Steven; Golubovic, Leonardo
Prospects to build Space Elevator (SE) systems have become realistic with ultra-strong materials such as carbon nano-tubes and diamond nano-threads. At cosmic length-scales, space elevators can be modeled as polymer like floppy strings of tethered mass beads. A new venue in SE science has emerged with the introduction of the Rotating Space Elevator (RSE) concept supported by novel algorithms discussed in this presentation. An RSE is a loopy string reaching into outer space. Unlike the classical geostationary SE concepts of Tsiolkovsky, Artsutanov, and Pearson, our RSE exhibits an internal rotation. Thanks to this, objects sliding along the RSE loop spontaneously oscillate between two turning points, one of which is close to the Earth whereas the other one is in outer space. The RSE concept thus solves a major problem in SE technology which is how to supply energy to the climbers moving along space elevator strings. The investigation of the classical and statistical mechanics of a floppy string interacting with objects sliding along it required development of subtle computational algorithms described in this presentation
NASA Astrophysics Data System (ADS)
Placidi, M.; Ganapathisubramani, B.
2018-04-01
Wind-tunnel experiments were carried out on fully-rough boundary layers with large roughness (δ /h ≈ 10, where h is the height of the roughness elements and δ is the boundary-layer thickness). Twelve different surface conditions were created by using LEGO™ bricks of uniform height. Six cases are tested for a fixed plan solidity (λ _P) with variations in frontal density (λ _F), while the other six cases have varying λ _P for fixed λ _F. Particle image velocimetry and floating-element drag-balance measurements were performed. The current results complement those contained in Placidi and Ganapathisubramani (J Fluid Mech 782:541-566, 2015), extending the previous analysis to the turbulence statistics and spatial structure. Results indicate that mean velocity profiles in defect form agree with Townsend's similarity hypothesis with varying λ _F, however, the agreement is worse for cases with varying λ _P. The streamwise and wall-normal turbulent stresses, as well as the Reynolds shear stresses, show a lack of similarity across most examined cases. This suggests that the critical height of the roughness for which outer-layer similarity holds depends not only on the height of the roughness, but also on the local wall morphology. A new criterion based on shelter solidity, defined as the sheltered plan area per unit wall-parallel area, which is similar to the `effective shelter area' in Raupach and Shaw (Boundary-Layer Meteorol 22:79-90, 1982), is found to capture the departure of the turbulence statistics from outer-layer similarity. Despite this lack of similarity reported in the turbulence statistics, proper orthogonal decomposition analysis, as well as two-point spatial correlations, show that some form of universal flow structure is present, as all cases exhibit virtually identical proper orthogonal decomposition mode shapes and correlation fields. Finally, reduced models based on proper orthogonal decomposition reveal that the small scales of the turbulence play a significant role in assessing outer-layer similarity.
Scaling of Asymmetric Magnetic Reconnection Rate with Guide Field
NASA Astrophysics Data System (ADS)
Liang, H.; Cassak, P.; Swisdak, M.; Hartke, T.; Oieroset, M.; Phan, T.; Liu, Y. H.; Hesse, M.; Shay, M.; Beidler, M.
2017-12-01
An out-of-plane (guide) magnetic field in asymmetric magnetic reconnection with an in-plane gas pressure gradient can lead to diamagnetic effects in the plane of reconnection. Simulations showed that such effects can make the X-line convect in the outflow direction and reduce the reconnection rate. They can even suppress the reconnection completely under certain upstream conditions. The complete suppression of reconnection due to these effects has been observed in the solar wind and Earth's magnetopause, and it has also been discussed as being important in the outer heliosphere, the magnetospheres of Jupiter, Saturn, and Mercury, and in magnetically confined fusion devices. Recent studies showed that diamagnetic effects set up by a density gradient are different from those set up by a temperature gradient. Although it is known that reconnection can be significantly slowed down and even suppressed by diamagnetic effects, there is neither a comprehensive understanding of the impact of the guide field and the diamagnetic effects on asymmetric reconnection nor quantitative scaling prediction for the reconnection rate as a function of arbitrary upstream conditions including guide fields. The purpose of this work is a first step towards these goals. We investigate the scaling of the reconnection rate using two-dimensional particle-in-cell simulations. This study will be important for asymmetric reconnections in many settings, including those in the solar wind and those at planetary magnetospheres in reference to solar wind-magnetospheric coupling at the dayside magnetopause. It will also be useful for gaining perspective and making comparisons to Magnetospheric Multiscale (MMS) observations of dayside reconnection.
SUPERNOVA DRIVING. I. THE ORIGIN OF MOLECULAR CLOUD TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padoan, Paolo; Pan, Liubin; Haugbølle, Troels
2016-05-01
Turbulence is ubiquitous in molecular clouds (MCs), but its origin is still unclear because MCs are usually assumed to live longer than the turbulence dissipation time. Interstellar medium (ISM) turbulence is likely driven by supernova (SN) explosions, but it has never been demonstrated that SN explosions can establish and maintain a turbulent cascade inside MCs consistent with the observations. In this work, we carry out a simulation of SN-driven turbulence in a volume of (250 pc){sup 3}, specifically designed to test if SN driving alone can be responsible for the observed turbulence inside MCs. We find that SN driving establishesmore » a velocity scaling consistent with the usual scaling laws of supersonic turbulence, suggesting that previous idealized simulations of MC turbulence, driven with a random, large-scale volume force, were correctly adopted as appropriate models for MC turbulence, despite the artificial driving. We also find that the same scaling laws extend to the interiors of MCs, and that the velocity–size relation of the MCs selected from our simulation is consistent with that of MCs from the Outer-Galaxy Survey, the largest MC sample available. The mass–size relation and the mass and size probability distributions also compare successfully with those of the Outer Galaxy Survey. Finally, we show that MC turbulence is super-Alfvénic with respect to both the mean and rms magnetic-field strength. We conclude that MC structure and dynamics are the natural result of SN-driven turbulence.« less
Physical and Electronic Isolation of Carbon Nanotube Conductors
NASA Technical Reports Server (NTRS)
OKeeffe, James; Biegel, Bryan (Technical Monitor)
2001-01-01
Multi-walled nanotubes are proposed as a method to electrically and physically isolate nanoscale conductors from their surroundings. We use tight binding (TB) and density functional theory (DFT) to simulate the effects of an external electric field on multi-wall nanotubes. Two categories of multi-wall nanotube are investigated, those with metallic and semiconducting outer shells. In the metallic case, simulations show that the outer wall effectively screens the inner core from an applied electric field. This offers the ability to reduce crosstalk between nanotube conductors. A semiconducting outer shell is found not to perturb an electric field incident on the inner core, thereby providing physical isolation while allowing the tube to remain electrically coupled to its surroundings.
EIDOSCOPE: particle acceleration at plasma boundaries
NASA Astrophysics Data System (ADS)
Vaivads, A.; Andersson, G.; Bale, S. D.; Cully, C. M.; De Keyser, J.; Fujimoto, M.; Grahn, S.; Haaland, S.; Ji, H.; Khotyaintsev, Yu. V.; Lazarian, A.; Lavraud, B.; Mann, I. R.; Nakamura, R.; Nakamura, T. K. M.; Narita, Y.; Retinò, A.; Sahraoui, F.; Schekochihin, A.; Schwartz, S. J.; Shinohara, I.; Sorriso-Valvo, L.
2012-04-01
We describe the mission concept of how ESA can make a major contribution to the Japanese Canadian multi-spacecraft mission SCOPE by adding one cost-effective spacecraft EIDO (Electron and Ion Dynamics Observatory), which has a comprehensive and optimized plasma payload to address the physics of particle acceleration. The combined mission EIDOSCOPE will distinguish amongst and quantify the governing processes of particle acceleration at several important plasma boundaries and their associated boundary layers: collisionless shocks, plasma jet fronts, thin current sheets and turbulent boundary layers. Particle acceleration and associated cross-scale coupling is one of the key outstanding topics to be addressed in the Plasma Universe. The very important science questions that only the combined EIDOSCOPE mission will be able to tackle are: 1) Quantitatively, what are the processes and efficiencies with which both electrons and ions are selectively injected and subsequently accelerated by collisionless shocks? 2) How does small-scale electron and ion acceleration at jet fronts due to kinetic processes couple simultaneously to large scale acceleration due to fluid (MHD) mechanisms? 3) How does multi-scale coupling govern acceleration mechanisms at electron, ion and fluid scales in thin current sheets? 4) How do particle acceleration processes inside turbulent boundary layers depend on turbulence properties at ion/electron scales? EIDO particle instruments are capable of resolving full 3D particle distribution functions in both thermal and suprathermal regimes and at high enough temporal resolution to resolve the relevant scales even in very dynamic plasma processes. The EIDO spin axis is designed to be sun-pointing, allowing EIDO to carry out the most sensitive electric field measurements ever accomplished in the outer magnetosphere. Combined with a nearby SCOPE Far Daughter satellite, EIDO will form a second pair (in addition to SCOPE Mother-Near Daughter) of closely separated satellites that provides the unique capability to measure the 3D electric field with high accuracy and sensitivity. All EIDO instrumentation are state-of-the-art technology with heritage from many recent missions. The EIDOSCOPE orbit will be close to equatorial with apogee 25-30 RE and perigee 8-10 RE. In the course of one year the orbit will cross all the major plasma boundaries in the outer magnetosphere; bow shock, magnetopause and magnetotail current sheets, jet fronts and turbulent boundary layers. EIDO offers excellent cost/benefits for ESA, as for only a fraction of an M-class mission cost ESA can become an integral part of a major multi-agency L-class level mission that addresses outstanding science questions for the benefit of the European science community.
Dimensionless size scaling of intrinsic rotation in DIII-D
deGrassie, John S.; Solomon, Wayne M.; Rice, J. E.; ...
2016-08-01
A dimensionless empirical scaling for intrinsic toroidal rotation is given; M A ~β Nρ*, where M A is the toroidal velocity divided by the Alfvén velocity, β N the usual normalized β value, and ρ* is the ion gyroradius divided by the minor radius. This scaling describes well experimental data from DIII-D, and also some published data from C-Mod and JET. The velocity used in this scaling is in an outer location in minor radius, outside of the interior core and inside of the large gradient edge region in H-mode conditions. Furthermore, this scaling establishes the basic magnitude of themore » intrinsic toroidal rotation and its relation to the rich variety of rotation profiles that can be realized for intrinsic conditions is discussed.« less
Inner- and outer-wall sorting of double-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott
2017-12-01
Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.
Serial turbo trellis coded modulation using a serially concatenated coder
NASA Technical Reports Server (NTRS)
Divsalar, Dariush (Inventor); Dolinar, Samuel J. (Inventor); Pollara, Fabrizio (Inventor)
2010-01-01
Serial concatenated trellis coded modulation (SCTCM) includes an outer coder, an interleaver, a recursive inner coder and a mapping element. The outer coder receives data to be coded and produces outer coded data. The interleaver permutes the outer coded data to produce interleaved data. The recursive inner coder codes the interleaved data to produce inner coded data. The mapping element maps the inner coded data to a symbol. The recursive inner coder has a structure which facilitates iterative decoding of the symbols at a decoder system. The recursive inner coder and the mapping element are selected to maximize the effective free Euclidean distance of a trellis coded modulator formed from the recursive inner coder and the mapping element. The decoder system includes a demodulation unit, an inner SISO (soft-input soft-output) decoder, a deinterleaver, an outer SISO decoder, and an interleaver.
Turbine airfoil with laterally extending snubber having internal cooling system
Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.
2016-09-06
A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuchun; Zhou, Liyan; Zhao, Shangqian
2014-06-14
We investigate electronic transport properties of field-effect transistors based on double-walled carbon nanotubes, of which inner shells are metallic and outer shells are semiconducting. When both shells are turned on, electron-phonon scattering is found to be the dominant phenomenon. On the other hand, when outer semiconducting shells are turned off, a zero-bias anomaly emerges in the dependence of differential conductance on the bias voltage, which is characterized according to the Tomonaga-Luttinger liquid model describing tunneling into one-dimensional materials. We attribute these behaviors to different contact conditions for outer and inner shells of the double-walled carbon nanotubes. A simple model combiningmore » Luttinger liquid model for inner metallic shells and electron-phonon scattering in outer semiconducting shells is given here to explain our transport data at different temperatures.« less
Inner- and outer-wall sorting of double-walled carbon nanotubes.
Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott
2017-12-01
Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.
Asai, Y; Katayose, Y; Hikita, C; Ohta, A; Shibuya, I
1989-01-01
The Escherichia coli pgsA3 allele encoding a defective phosphatidylglycerophosphate synthase is lethal for all but certain strains. Genetic analysis of such strains has revealed that the lethal effect is fully suppressed by the lack of the major outer membrane lipoprotein that consumes phosphatidylglycerol for its maturation. Images PMID:2556377
Hindcasting Storm-Induced Erosional Hazards for the Outer Banks, NC.
NASA Astrophysics Data System (ADS)
Wetzell, L. M.; Howd, P. A.; Sallenger, A. H.
2002-12-01
The spatial variability of dune response along a section of the NC Outer Banks has been examined for the 1999 Hurricane Dennis. Dennis generated some of the largest wave heights recorded in the past 20 years along the Outer Banks of North Carolina, reaching 6.3 meters (measured at the U.S. Army Corps of Engineers Field Research Facility at Duck, North Carolina). Pre and post-storm topography was measured as part of a joint USGS-NASA program using lidar technology. These data were used to calculate changes in the elevation and location of the dune crest and dune base (Dhi and Dlo). Roughly 66% of the region from Cape Hatteras to Ocracoke Inlet experienced some dune erosion. The spatial variability in dune response is compared to hindcast erosion hazard predictions. Observations of maximum wave conditions are used as input to SWAN, a 3rd generation and shoaling wave model, output from which is used to drive empirical relationships for wave runup. Estimates of hazard potential are derived from Sallenger's recently proposed storm impact scale. The hindcast hazard potentials are then compared to direct observations.
Chan, E; Evans, M G
1998-09-18
It has been shown that the application of acetylcholine activates a Ca2+-dependent K+ current in outer hair cells, and the resulting hyperpolarization is thought to be an important part of the inhibition mediated by cholinergic efferent nerve fibres to the cochlea. In order to study the kinetics of the current, flash photolysis has been used to apply a cholinergic agonist, carbachol, rapidly to isolated outer hair cells. A delay in the onset of the outward potassium current following photorelease of carbachol was consistently observed, and the activation phase of the response could be described by a sigmoidal-like function with a mean delay of 59 ms and time constant of 71 ms. The sum of these values lies within the time scale reported for the onset of the inhibition following electrical stimulation of the efferent nerves. Although a distinct current attributable to an acetylcholine receptor was not visible in these experiments, indirect evidence for a carbachol-induced influx of Ca2+ was obtained.
Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.
The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg 2+ and Ca 2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-raymore » and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca 2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less
Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models
Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; ...
2014-12-09
The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg 2+ and Ca 2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-raymore » and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca 2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less
Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models
2014-01-01
The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration. PMID:25489959
Effect of outer wing separation on lift and thrust generation in a flapping wing system.
Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol
2011-09-01
We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.
Constraints on the outer radius of the broad emission line region of active galactic nuclei
NASA Astrophysics Data System (ADS)
Landt, Hermine; Ward, Martin J.; Elvis, Martin; Karovska, Margarita
2014-03-01
Here we present observational evidence that the broad emission line region (BELR) of active galactic nuclei (AGN) generally has an outer boundary. This was already clear for sources with an obvious transition between the broad and narrow components of their emission lines. We show that the narrow component of the higher-order Paschen lines is absent in all sources, revealing a broad emission line profile with a broad, flat top. This indicates that the BELR is kinematically separate from the narrow emission line region. We use the virial theorem to estimate the BELR outer radius from the flat top width of the unblended profiles of the strongest Paschen lines, Paα and Paβ, and find that it scales with the ionizing continuum luminosity roughly as expected from photoionization theory. The value of the incident continuum photon flux resulting from this relationship corresponds to that required for dust sublimation. A flat-topped broad emission line profile is produced by both a spherical gas distribution in orbital motion and an accretion disc wind if the ratio between the BELR outer and inner radius is assumed to be less than ˜100-200. On the other hand, a pure Keplerian disc can be largely excluded, since for most orientations and radial extents of the disc the emission line profile is double-horned.
Generating large misalignments in gapped and binary discs
NASA Astrophysics Data System (ADS)
Owen, James E.; Lai, Dong
2017-08-01
Many protostellar gapped and binary discs show misalignments between their inner and outer discs; in some cases, ˜70° misalignments have been observed. Here, we show that these misalignments can be generated through a secular resonance between the nodal precession of the inner disc and the precession of the gap-opening (stellar or massive planetary) companion. An evolving protostellar system may naturally cross this resonance during its lifetime due to disc dissipation and/or companion migration. If resonance crossing occurs on the right time-scale, of the order of a few million years, characteristic for young protostellar systems, the inner and outer discs can become highly misaligned, with misalignments ≳ 60° typical. When the primary star has a mass of order a solar mass, generating a significant misalignment typically requires the companion to have a mass of ˜0.01-0.1 M⊙ and an orbital separation of tens of astronomical units. The recently observed companion in the cavity of the gapped, highly misaligned system HD 142527 satisfies these requirements, indicating that a previous resonance crossing event misaligned the inner and outer discs. Our scenario for HD 142527's misaligned discs predicts that the companion's orbital plane is aligned with the outer disc's; this prediction should be testable with future observations as the companion's orbit is mapped out. Misalignments observed in several other gapped disc systems could be generated by the same secular resonance mechanism.
NASA Astrophysics Data System (ADS)
Cheng, Jieyu; Qiu, Wu; Yuan, Jing; Fenster, Aaron; Chiu, Bernard
2016-03-01
Registration of longitudinally acquired 3D ultrasound (US) images plays an important role in monitoring and quantifying progression/regression of carotid atherosclerosis. We introduce an image-based non-rigid registration algorithm to align the baseline 3D carotid US with longitudinal images acquired over several follow-up time points. This algorithm minimizes the sum of absolute intensity differences (SAD) under a variational optical-flow perspective within a multi-scale optimization framework to capture local and global deformations. Outer wall and lumen were segmented manually on each image, and the performance of the registration algorithm was quantified by Dice similarity coefficient (DSC) and mean absolute distance (MAD) of the outer wall and lumen surfaces after registration. In this study, images for 5 subjects were registered initially by rigid registration, followed by the proposed algorithm. Mean DSC generated by the proposed algorithm was 79:3+/-3:8% for lumen and 85:9+/-4:0% for outer wall, compared to 73:9+/-3:4% and 84:7+/-3:2% generated by rigid registration. Mean MAD of 0:46+/-0:08mm and 0:52+/-0:13mm were generated for lumen and outer wall respectively by the proposed algorithm, compared to 0:55+/-0:08mm and 0:54+/-0:11mm generated by rigid registration. The mean registration time of our method per image pair was 143+/-23s.
Numerical simulations of the stratified oceanic bottom boundary layer
NASA Astrophysics Data System (ADS)
Taylor, John R.
Numerical simulations are used to consider several problems relevant to the turbulent oceanic bottom boundary layer. In the first study, stratified open channel flow is considered with thermal boundary conditions chosen to approximate a shallow sea. Specifically, a constant heat flux is applied at the free surface and the lower wall is assumed to be adiabatic. When the surface heat flux is strong, turbulent upwellings of low speed fluid from near the lower wall are inhibited by the stable stratification. Subsequent studies consider a stratified bottom Ekman layer over a non-sloping lower wall. The influence of the free surface is removed by using an open boundary condition at the top of the computational domain. Particular attention is paid to the influence of the outer layer stratification on the boundary layer structure. When the density field is initialized with a linear profile, a turbulent mixed layer forms near the wall, which is separated from the outer layer by a strongly stable pycnocline. It is found that the bottom stress is not strongly affected by the outer layer stratification. However, stratification reduces turbulent transport to the outer layer and strongly limits the boundary layer height. The mean shear at the top of the boundary layer is enhanced when the outer layer is stratified, and this shear is strong enough to cause intermittent instabilities above the pycnocline. Turbulence-generated internal gravity waves are observed in the outer layer with a relatively narrow frequency range. An explanation for frequency content of these waves is proposed, starting with an observed broad-banded turbulent spectrum and invoking linear viscous decay to explain the preferential damping of low and high frequency waves. During the course of this work, an open-source computational fluid dynamics code has been developed with a number of advanced features including scalar advection, subgrid-scale models for large-eddy simulation, and distributed memory parallelism.
NASA Technical Reports Server (NTRS)
Mosqueira, I.; Estrada, P. R.
2000-01-01
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect a giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet's centrifugal radius (located at r(sub c, sup J) = l5R(sub J) for Jupiter and r(sub c, sup S) = 22R(sub S) for Saturn), and an optically thin, extended outer disk out to a fraction of the planet's Roche lobe, which we choose to be R(sub roche)/5 (located at approximately 150R(sub J) near the inner irregular satellites for Jupiter, and approximately 200R(sub S) near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk results from the solar torque on nebula gas flowing into the protoplanet during the time of giant planet gap opening. For the sake of specificity, we use a cosmic mixture 'minimum mass' model to constrain the gas densities of the inner disks of Jupiter and Saturn (and also Uranus). For the total mass of the outer disk we use the simple scaling M(sub disk) = M(sub P)tau(sub gap)/tau(sub acc), where M(sub P) is the mass of the giant planet, tau(sub gap) is the gap opening timescale, and tau(sub acc) is the giant planet accretion time. This gives a total outer disk mass of approximately 100M(sub Callisto) for Jupiter and possibly approximately 200M(sub Iapetus) for Saturn (which contain enough condensables to form Callisto and Iapetus respectively). Our model has Ganymede at a subnebula temperature of approximately 250 K and Titan at approximately 100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 K and 90 K respectively.
A Test of the Interstellar Boundary EXplorer Ribbon Formation in the Outer Heliosheath
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamayunov, Konstantin V.; Rassoul, Hamid; Heerikhuisen, Jacob, E-mail: kgamayunov@fit.edu
NASA’s Interstellar Boundary EXplorer ( IBEX ) mission is imaging energetic neutral atoms (ENAs) propagating to Earth from the outer heliosphere and local interstellar medium (LISM). A dominant feature in all ENA maps is a ribbon of enhanced fluxes that was not predicted before IBEX . While more than a dozen models of the ribbon formation have been proposed, consensus has gathered around the so-called secondary ENA model. Two classes of secondary ENA models have been proposed; the first class assumes weak scattering of the energetic pickup protons in the LISM, and the second class assumes strong but spatially localizedmore » scattering. Here we present a numerical test of the “weak scattering” version of the secondary ENA model using our gyro-averaged kinetic model for the evolution of the phase-space distribution of protons in the outer heliosheath. As input for our test, we use distributions of the primary ENAs from our MHD-plasma/kinetic-neutral model of the heliosphere-LISM interaction. The magnetic field spectrum for the large-scale interstellar turbulence and an upper limit for the amplitude of small-scale local turbulence (SSLT) generated by protons are taken from observations by Voyager 1 in the LISM. The hybrid simulations of energetic protons are also used to set the bounding wavenumbers for the spectrum of SSLT. Our test supports the “weak scattering” version. This makes an additional solid step on the way to understanding the origin and formation of the IBEX ribbon and thus to improving our understanding of the interaction between the heliosphere and the LISM.« less
Fractionaly Integrated Flux model and Scaling Laws in Weather and Climate
NASA Astrophysics Data System (ADS)
Schertzer, Daniel; Lovejoy, Shaun
2013-04-01
The Fractionaly Integrated Flux model (FIF) has been extensively used to model intermittent observables, like the velocity field, by defining them with the help of a fractional integration of a conservative (i.e. strictly scale invariant) flux, such as the turbulent energy flux. It indeed corresponds to a well-defined modelling that yields the observed scaling laws. Generalised Scale Invariance (GSI) enables FIF to deal with anisotropic fractional integrations and has been rather successful to define and model a unique regime of scaling anisotropic turbulence up to planetary scales. This turbulence has an effective dimension of 23/9=2.55... instead of the classical hypothesised 2D and 3D turbulent regimes, respectively for large and small spatial scales. It therefore theoretically eliminates a non plausible "dimension transition" between these two regimes and the resulting requirement of a turbulent energy "mesoscale gap", whose empirical evidence has been brought more and more into question. More recently, GSI-FIF was used to analyse climate, therefore at much larger time scales. Indeed, the 23/9-dimensional regime necessarily breaks up at the outer spatial scales. The corresponding transition range, which can be called "macroweather", seems to have many interesting properties, e.g. it rather corresponds to a fractional differentiation in time with a roughly flat frequency spectrum. Furthermore, this transition yields the possibility to have at much larger time scales scaling space-time climate fluctuations with a much stronger scaling anisotropy between time and space. Lovejoy, S. and D. Schertzer (2013). The Weather and Climate: Emergent Laws and Multifractal Cascades. Cambridge Press (in press). Schertzer, D. et al. (1997). Fractals 5(3): 427-471. Schertzer, D. and S. Lovejoy (2011). International Journal of Bifurcation and Chaos 21(12): 3417-3456.
Features of separating turbulent boundary layers
NASA Technical Reports Server (NTRS)
Nagabushana, K. A.; Agarwal, Naval K.; Simpson, Roger L.
1988-01-01
In the present study of two strong adverse pressure gradient flows, mean flow and turbulence characteristics are measured, together with frequency spectra, using hot-wire and laser anemometry. In these separating flows, reattachment occurs over a shorter distance than separation. It is noted that the outer flow variables form a unique set of scaling parameters for streamwise power spectra in adverse pressure gradient flows. The inner flow scaling of Perry et al. (1985) for streamwise spectra does not hold in the backflow region unless the value of the downstream-upstream intermittency in the flow is unity.
Basu, Sukanta
2015-09-01
Utilizing the so-called Thorpe scale as a measure of the turbulence outer scale, we propose a physically-based approach for the estimation of Cn2 profiles in the lower atmosphere. This approach only requires coarse-resolution temperature profiles (a.k.a., soundings) as input, yet it has the intrinsic ability to capture layers of high optical turbulence. The prowess of this computationally inexpensive approach is demonstrated by validations against observational data from a field campaign over Mauna Kea, Hawaii.
Dual-scale topology optoelectronic processor.
Marsden, G C; Krishnamoorthy, A V; Esener, S C; Lee, S H
1991-12-15
The dual-scale topology optoelectronic processor (D-STOP) is a parallel optoelectronic architecture for matrix algebraic processing. The architecture can be used for matrix-vector multiplication and two types of vector outer product. The computations are performed electronically, which allows multiplication and summation concepts in linear algebra to be generalized to various nonlinear or symbolic operations. This generalization permits the application of D-STOP to many computational problems. The architecture uses a minimum number of optical transmitters, which thereby reduces fabrication requirements while maintaining area-efficient electronics. The necessary optical interconnections are space invariant, minimizing space-bandwidth requirements.
Experimental room temperature hohlraum performance study on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Ralph, J. E.; Strozzi, D.; Ma, T.; Moody, J. D.; Hinkel, D. E.; Callahan, D. A.; MacGowan, B. J.; Michel, P.; Kline, J. L.; Glenzer, S. H.; Albert, F.; Benedetti, L. R.; Divol, L.; MacKinnon, A. J.; Pak, A.; Rygg, J. R.; Schneider, M. B.; Town, R. P. J.; Widmann, K.; Hsing, W.; Edwards, M. J.
2016-12-01
Room temperature or "warm" (273 K) indirect drive hohlraum experiments have been conducted on the National Ignition Facility with laser energies up to 1.26 MJ and compared to similar cryogenic or "cryo" (˜20 K) experiments. Warm experiments use neopentane (C5H12) as the low pressure hohlraum fill gas instead of helium, and propane (C3H8) to replace the cryogenic DT or DHe3 capsule fill. The increased average Z of the hohlraum fill leads to increased inverse bremsstrahlung absorption and an overall hotter hohlraum plasma in simulations. The cross beam energy transfer (CBET) from outer laser beams (pointed toward the laser entrance hole) to inner beams (pointed at the equator) was inferred indirectly from measurements of Stimulated Raman Scattering (SRS). These experiments show that a similar hot spot self-emission shape can be produced with less CBET in warm hohlraums. The measured inner cone SRS reflectivity (as a fraction of incident power neglecting CBET) is ˜2.5 × less in warm than cryo shots with similar hot spot shapes, due to a less need for CBET. The measured outer-beam stimulated the Brillouin scattering power that was higher in the warm shots, leading to a ceiling on power to avoid the optics damage. These measurements also show that the CBET induced by the flow where the beams cross can be effectively mitigated by a 1.5 Å wavelength shift between the inner and outer beams. A smaller scale direct comparison indicates that warm shots give a more prolate implosion than cryo shots with the same wavelength shift and pulse shape. Finally, the peak radiation temperature was found to be between 5 and 7 eV higher in the warm than the corresponding cryo experiments after accounting for differences in backscatter.
Transport and Fate of Nutrients Along the U.S. East Coast
NASA Astrophysics Data System (ADS)
Hofmann, E. E.; Narvaez, D.; Friedrichs, M. A. M.; Najjar, R.; Tian, H.; Hyde, K.; Mannino, A.; Signorini, S. R.; Wilkin, J.; St-Laurent, P.
2017-12-01
As part of a NASA-funded multi-investigator project, a land-estuarine-ocean biogeochemical modeling system was implemented and verified with remote sensing and in situ data to examine processes controlling fluxes on land, their coupling to riverine systems, the delivery of materials to estuaries and the coastal ocean, and marine ecosystem responses to these changing riverine inputs and changing climate forcing. This modeling system is being used to develop nutrient budgets for the U.S. east coast continental shelf and to examine seasonal and interannual variability in nutrient fluxes. An important aspect of these nutrient budgets is the transport and fate of nutrients released along the inner shelf. Results from a five-year simulation (2004 to 2008) that used tracer releases from the main rivers along the Middle Atlantic Bight (MAB) and South Atlantic Bight (SAB) provide insights into transport pathways that connect the inner and outer continental shelf. Tracers released along the inner MAB spread along the shelf with a general southward and offshore transport. Inner shelf inputs from the large estuarine systems are transported to the mid and outer MAB shelf. Tracers that reach the mid to outer shelf can be entrained in the Gulf Stream. Export from the MAB to the SAB occurs during periods of southerly winds. Transport processes along the SAB are similar, but Gulf Stream entrainment is a larger component of tracer transport. Superimposed on the MAB and SAB transport patterns is considerable seasonal and interannual variability. The results from these retrospective simulations improve understanding of the coupling at the land-water interface and shelf-wide transport patterns that advance the ability to predict the effects of localized human impacts and broader-scale climate-related impacts on the U.S. east coast continental shelf system.
Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?
NASA Astrophysics Data System (ADS)
Evonuk, M.; Samuel, H.
2012-04-01
Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratification may be non-negligible.
Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?
NASA Astrophysics Data System (ADS)
Evonuk, M.; Samuel, H.
2012-12-01
Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratification may be non-negligible.
Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?
NASA Astrophysics Data System (ADS)
Evonuk, M.; Samuel, H.
2012-02-01
Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratificationmay be non-negligible.
Self sterilization of bodies during outer planet entry. [atmospheric temperature effects
NASA Technical Reports Server (NTRS)
Hoffman, A. R.; Jaworski, W.; Taylor, D. M.
1975-01-01
As a body encounters the atmosphere of an outer planet, whether accidentally or by plan, it will be subjected to heat loads which could result in high temperature conditions that render terrestrial organisms on or within the body non-viable. To determine whether an irregularly shaped entering body, consisting of several different materials, would be sterilized during inadvertent entry at high velocity, the thermal response of a typical outer planet spacecraft instrument was studied. The results indicate that the Teflon-insulated cable and electronic circuit boards may not experience sterilizing temperatures during a Jupiter, Saturn, or Titan entry. Another conclusion of the study is that small plastic particles entering Saturn from outer space have wider survival corridors than do those at Jupiter.
Thermal insulating conformal blanket
NASA Technical Reports Server (NTRS)
Barney, Andrea (Inventor); Whittington, Charles A (Inventor); Eilertson, Bryan (Inventor); Siminski, Zenon (Inventor)
2003-01-01
The conformal thermal insulating blanket may have generally rigid batting material covered by an outer insulating layer formed of a high temperature resistant woven ceramic material and an inner insulating layer formed of a woven ceramic fiber material. The batting and insulating layers may be fastened together by sewing or stitching using an outer mold layer thread fabricated of a high temperature resistant material and an inner mold layer thread of a ceramic fiber material. The batting may be formed to a composite structure that may have a firmness factor sufficient to inhibit a pillowing effect after the stitching to not more than 0.03 inch. The outer insulating layer and an upper portion of the batting adjacent the outer insulating layer may be impregnated with a ceramic coating material.
NASA Technical Reports Server (NTRS)
Mennell, R. C.
1976-01-01
Experimental aerodynamic investigations were conducted on a sting mounted scale representation of the 140C outer mold line space shuttle orbiter configuration in the low speed wind tunnel. The primary test objectives were to define the orbiter landing gear system pressure loading and to record landing gear door and strut hingemoment levels. Secondary objectives included recording the aerodynamic influence of various landing gear configurations on orbiter force data as well as investigating 40 x 80 ft. Ames Wind Tunnel strut simulation effects on both orbiter landing gear loads and aerodynamic characteristics. Testing was conducted at a Mach number of 0.17, free stream dynamic pressure of 42.5 PSF, and Reynolds number per unit length of 1.2 million per foot. Angle of attack variation was 0 to 20 while yaw angles ranged from -10 to 10 deg.
Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers
Stamopoulos, D.; Aristomenopoulou, E.
2015-01-01
Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent ‘on’ and ‘off’, thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis. PMID:26306543
NASA Astrophysics Data System (ADS)
Yang, Xiang I. A.; Meneveau, Charles
2016-01-01
The technique by Lund et al. to generate turbulent inflow for simulations of developing boundary layers over smooth flat plates is extended to the case of surfaces with roughness elements. In the Lund et al. method, turbulent velocities on a sampling plane are rescaled and recycled back to the inlet as inflow boundary condition. To rescale mean and fluctuating velocities, appropriate length scales need be identified and for smooth surfaces, the viscous scale lν = ν/uτ (where ν is the kinematic viscosity and uτ is the friction velocity) is employed for the inner layer. Different from smooth surfaces, in rough wall boundary layers the length scale of the inner layer, i.e. the roughness sub-layer scale ld, must be determined by the geometric details of the surface roughness elements and the flow around them. In the proposed approach, it is determined by diagnosing dispersive stresses that quantify the spatial inhomogeneity caused by the roughness elements in the flow. The scale ld is used for rescaling in the inner layer, and the boundary layer thickness δ is used in the outer region. Both parts are then combined for recycling using a blending function. Unlike the blending function proposed by Lund et al. which transitions from the inner layer to the outer layer at approximately 0.2δ, here the location of blending is shifted upwards to enable simulations of very rough surfaces in which the roughness length may exceed the height of 0.2δ assumed in the traditional method. The extended rescaling-recycling method is tested in large eddy simulation of flow over surfaces with various types of roughness element shapes.
NASA Technical Reports Server (NTRS)
Lund, Kurt O.
1991-01-01
The simplified geometry for the analysis is an infinite, axis symmetric annulus with a specified solar flux at the outer radius. The inner radius is either adiabatic (modeling Flight Experiment conditions), or convective (modeling Solar Dynamic conditions). Liquid LiF either contacts the outer wall (modeling ground based testing), or faces a void gap at the outer wall (modeling possible space based conditions). The analysis is presented in three parts: Part 3 considers and adiabatic inner wall and linearized radiation equations; part 2 adds effects of convection at the inner wall; and part 1 includes the effect of the void gap, as well as previous effects, and develops the radiation model further. The main results are the differences in melting behavior which can occur between ground based 1 g experiments and the microgravity flight experiments. Under 1 gravity, melted PCM will always contact the outer wall having the heat flux source, thus providing conductance from this source to the phase change front. In space based tests where a void gap may likely form during solidification, the situation is reversed; radiation is now the only mode of heat transfer and the majority of melting takes place from the inner wall.
Effects of CNT size on the desalination performance of an outer-wall CNT slit membrane.
Ang, Elisa Y M; Ng, Teng Yong; Yeo, Jingjie; Lin, Rongming; Liu, Zishun; Geethalakshmi, K R
2018-05-23
We investigate the effect of varying carbon nanotube (CNT) size on the desalination performance through slit confinements formed by horizontally aligned CNTs stacked on top of one another. By increasing the CNT size, the results obtained from this study indicate a corresponding increase in the water flow rate, accompanied by a slight reduction in salt rejection performance. However, due to the increase in the membrane area with CNT size, the permeability performance is observed to reduce as the CNT size increases. Nevertheless, a comparison with nanoporous 2D membranes shows that the permeability of an outer-wall CNT slit membrane remains significantly higher for all CNT sizes considered. This indicates that precise dimensions of the CNTs are not highly crucial for achieving ultra-high permeability performance in such membranes, as long as the critical slit size is maintained. In-depth analytical studies were further conducted to correlate the influence of curvature effects due to increasing CNT size on the flow characteristcis of the outer-wall CNT membrane. These include the analysis of the measured velocity profiles, oxygen density mapping, potential of mean force profile and friction profile. The present numerical results demonstrate the superb desalination performance of the outer-wall CNT slit membrane, regardless of the size of CNTs used. In addition, an extensive analysis conducted provides detailed characterization of how the curvature affects flow across outer-wall CNTs, and can be used to guide future design and fabrication for experimental testing.
Effect of aging on the microstructure, hardness and chemical composition of dentin.
Montoya, C; Arango-Santander, S; Peláez-Vargas, A; Arola, D; Ossa, E A
2015-12-01
Understanding the effects of biological aging on human tissues has been a topic of extensive research. With the increase in healthy seniors and quality of life that topic is becoming increasingly important. In this investigation the effects of aging on the microstructure, chemical composition and hardness of human coronal dentin was studied from a comparison of teeth within "young" and "old" age groups. The microstructure of dentin within three regions (i.e., inner, middle and outer) was analyzed using electron and optical microscopy. The mineral-to-collagen ratio in these three regions was estimated using Raman spectroscopy and the hardness was evaluated using microindentation. Results showed that there were significant differences in tubule density, tubule diameter and peritubular cuff diameter with depth. Although there was no difference in tubule density and diameter of the tubules between the age groups, there was a significant difference in the occlusion ratio. A significant increase in hardness between young and old patients was found for middle and outer dentin. An increase in mineral-to-collagen ratio from inner to outer dentin was also found for both groups. In old patients, an increase in mineral content was found in outer coronal dentin as a consequence of tubule occlusion. An increase in occlusion ratio, hardness, and mineral content was found in the dentin of adult patients with age. This increase is most evident in the outer coronal dentin. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Effects of Forming Parameters on Conical Ring Rolling Process
Meng, Wen; Zhao, Guoqun; Guan, Yanjin
2014-01-01
The plastic penetration condition and biting-in condition of a radial conical ring rolling process with a closed die structure on the top and bottom of driven roll, simplified as RCRRCDS, were established. The reasonable value range of mandrel feed rate in rolling process was deduced. A coupled thermomechanical 3D FE model of RCRRCDS process was established. The changing laws of equivalent plastic strain (PEEQ) and temperature distributions with rolling time were investigated. The effects of ring's outer radius growth rate and rolls sizes on the uniformities of PEEQ and temperature distributions, average rolling force, and average rolling moment were studied. The results indicate that the PEEQ at the inner layer and outer layer of rolled ring are larger than that at the middle layer of ring; the temperatures at the “obtuse angle zone” of ring's cross-section are higher than those at “acute angle zone”; the temperature at the central part of ring is higher than that at the middle part of ring's outer surfaces. As the ring's outer radius growth rate increases at its reasonable value ranges, the uniformities of PEEQ and temperature distributions increase. Finally, the optimal values of the ring's outer radius growth rate and rolls sizes were obtained. PMID:25202716
Outer-layer manipulators for turbulent drag reduction
NASA Technical Reports Server (NTRS)
Anders, J. B., Jr.
1990-01-01
The last ten years have yielded intriguing research results on aerodynamic boundary outer-layer manipulators as local skin friction reduction devices at low Reynolds numbers; net drag reduction device systems for entire aerodynamic configurations are nevertheless noted to remain elusive. Evidence has emerged for dramatic alterations of the structure of a turbulent boundary layer which persist for long distances downstream and reduce wall shear as a results of any one of several theoretically possible mechanisms. Reduced effectiveness at high Reynolds numbers may, however, limit the applicability of outer-layer manipulators to practical aircraft drag reduction.
Spherical bearing. [to reduce vibration effects
NASA Technical Reports Server (NTRS)
Myers, W. N.; Hein, L. A. (Inventor)
1978-01-01
A spherical bearing including an inner ball with an opening for receiving a shaft and a spherical outer surface is described. Features of the bearing include: (1) a circular outer race including a plurality of circumferentially spaced sections extending around the inner ball for snugly receiving the inner ball; and (2) a groove extending circumferentially around the race producing a thin wall portion which permits the opposed side portions to flex relative to the ball for maximizing the physical contact between the inner surface of the race and the spherical outer surface of the ball.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
... all requirements of NEPA, the Coastal Zone Management Act, Outer Continental Shelf Lands Act, and... consistent with each affected state's federally approved Coastal Zone Management program. Finally, the MMS...-circulation modeling, ecological effects of oil and gas activities, and hurricane impacts on coastal...
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.
1993-01-01
Outer layer of silver lubricates, while intermediate layer of titanium ensures adhesion. Lubricating outer films of silver deposited on thin intermediate films of titanium on alumina substrates found to reduce sliding friction and wear. Films provide effective lubrication for ceramic seals, bearings, and other hot sliding components in advanced high-temperature engines.
An empirical model for inverted-velocity-profile jet noise prediction
NASA Technical Reports Server (NTRS)
Stone, J. R.
1977-01-01
An empirical model for predicting the noise from inverted-velocity-profile coaxial or coannular jets is presented and compared with small-scale static and simulated flight data. The model considered the combined contributions of as many as four uncorrelated constituent sources: the premerged-jet/ambient mixing region, the merged-jet/ambient mixing region, outer-stream shock/turbulence interaction, and inner-stream shock/turbulence interaction. The noise from the merged region occurs at relatively low frequency and is modeled as the contribution of a circular jet at merged conditions and total exhaust area, with the high frequencies attenuated. The noise from the premerged region occurs at high frequency and is modeled as the contribution of an equivalent plug nozzle at outer stream conditions, with the low frequencies attenuated.
An adaptive scale factor based MPPT algorithm for changing solar irradiation levels in outer space
NASA Astrophysics Data System (ADS)
Kwan, Trevor Hocksun; Wu, Xiaofeng
2017-03-01
Maximum power point tracking (MPPT) techniques are popularly used for maximizing the output of solar panels by continuously tracking the maximum power point (MPP) of their P-V curves, which depend both on the panel temperature and the input insolation. Various MPPT algorithms have been studied in literature, including perturb and observe (P&O), hill climbing, incremental conductance, fuzzy logic control and neural networks. This paper presents an algorithm which improves the MPP tracking performance by adaptively scaling the DC-DC converter duty cycle. The principle of the proposed algorithm is to detect the oscillation by checking the sign (ie. direction) of the duty cycle perturbation between the current and previous time steps. If there is a difference in the signs then it is clear an oscillation is present and the DC-DC converter duty cycle perturbation is subsequently scaled down by a constant factor. By repeating this process, the steady state oscillations become negligibly small which subsequently allows for a smooth steady state MPP response. To verify the proposed MPPT algorithm, a simulation involving irradiances levels that are typically encountered in outer space is conducted. Simulation and experimental results prove that the proposed algorithm is fast and stable in comparison to not only the conventional fixed step counterparts, but also to previous variable step size algorithms.
NASA Technical Reports Server (NTRS)
Boldman, Donald R.; Moore, Royce D.; Shyne, Rickey J.
1987-01-01
Two turning vane designs were experimentally evaluated for corner 2 of a 0.1 scale model of the NASA Lewis Research Center's proposed Altitude Wind Tunnel (AWT). Corner 2 contained a simulated shaft fairing for a fan drive system to be located downstream of the corner. The corner was tested with a bellmouth inlet followed by a 0.1 scale model of the crossleg diffuser designed to connect corners 1 and 2 of the AWT. Vane A was a controlled-diffusion airfoil shape; vane B was a circular-arc airfoil shape. The A vanes were tested in several arrangements which included the resetting of the vane angle by -5 degrees or the removal of the outer vane. The lowest total pressure loss for vane A configuration was obtained at the negative reset angle. The loss coefficient increased slightly with the Mach number, ranging from 0.165 to 0.175 with a loss coefficient of 0.170 at the inlet design Mach number of 0.24. Removal of the outer vane did not alter the loss. Vane B loss coefficients were essentially the same as those for the reset vane A configurations. The crossleg diffuser loss coefficient was 0.018 at the inlet design Mach number of 0.33.
Limits on the location of planetesimal formation in self-gravitating protostellar discs
NASA Astrophysics Data System (ADS)
Clarke, C. J.; Lodato, G.
2009-09-01
In this Letter, we show that if planetesimals form in spiral features in self-gravitating discs, as previously suggested by the idealized simulations of Rice et al., then in realistic protostellar discs, this process will be restricted to the outer regions of the disc (i.e. at radii in excess of several tens of au). This restriction relates to the requirement that dust has to be concentrated in spiral features on a time-scale that is less than the (roughly dynamical) lifetime of such features, and that such rapid accumulation requires spiral features whose fractional amplitude is not much less than unity. This in turn requires that the cooling time-scale of the gas is relatively short, which restricts the process to the outer disc. We point out that the efficient conversion of a large fraction of the primordial dust in the disc into planetesimals could rescue this material from the well-known problem of rapid inward migration at an approximate metre-size scale and that in principle the collisional evolution of these objects could help to resupply small dust to the protostellar disc. We also point out the possible implications of this scenario for the location of planetesimal belts inferred in debris discs around main sequence stars, but stress that further dynamical studies are required in order to establish whether the disc retains a memory of the initial site of planetesimal creation.
Voyager Observations of the Color of Saturn's Ring
NASA Technical Reports Server (NTRS)
Estrada, Paul R.; Cuzzi, Jeffrey N.; Morrison, David (Technical Monitor)
1994-01-01
Previously unreduced high resolution Voyager 2 images of Saturn's main rings are used to generate reflectivity (I/F) profiles as a function of radius. Ratios of profiles taken from green, violet, orange, and UV filter images are then produced. The I/F ratios are diagnostic of composition, and provide us with information on the rings' present state of compositional evolution. The rings are extremely reddish in color which suggests that they could not be pure water ice. The most likely candidates for the non-icy components are silicates and organics. The sources of these pollutants are of extreme importance in determining the compositional history of the rings. The radial profiles of ring color ratio exhibit several very interesting properties: (a) broad-scale, fairly smooth, color variations which are only weakly correlated with underlying ring structure (optical depth variations) across the outer C ring and inner B ring as well as the Cassini division region. These variations are probably consistent with ballistic transport; (b) fine-scale, noise-Like (but unquestionably real) color variations across at least the outer two-thirds of the B ring. Not only the "redness" but the spectral shape varies. These variations are currently unexplained. Groundbased spectroscopic observations should be pursued to study the implied compositional heterogeneities on at least the larger scales. This data set will be used for modeling of the color and composition of the main rings using ballistic transport and radiative transfer theories.
Lithospheric structure of the southern French Alps inferred from broadband analysis
NASA Astrophysics Data System (ADS)
Bertrand, E.; Deschamps, A.
2000-11-01
Broadband receiver functions analysis is commonly used to evaluate the fine-scale S-velocity structure of the lithosphere. We analyse teleseismic P-waves and their coda from 30 selected teleseismic events recorded at three seismological stations of to the French TGRS network in the Alpes Maritimes. Receiver functions are computed in the time domain using an SVD matrix inversion method. Dipping Moho and lateral heterogeneities beneath the array are inferred from the amplitude, arrival time and polarity of locally-generated PS phases. We propose that the Moho dips 11° towards 25°±10°N below station CALF, in the outer part of the Alpine belt. At this station, we determine a Moho depth of about 20±2 km; the same depth is suggested below SAOF station also located in the fold-trust belt. Beneath station STET located in the inner part of the Alpine belt, the Moho depth increases to 30 km and dips towards the N-NW. Moreover, 1D-modelling of summed receiver function from STET station constrains a crustal structure significantly different from that observed at stations located in the outer part of the Alps. Indeed, beneath CALF and SAOF stations we need a 2 km thick shallow low velocity layer to fit best the observed receiver functions whereas this layer seems not to be present beneath STET station. Because recent P-coda studies have shown that near-receiver scattering can dominate teleseismic P-wave recordings in tectonically complicated areas, we account for effect of scattering energy in our records from array measurements. As the array aperture is wide relative to the heterogeneity scale length in the area, the array analysis produces only smooth imaging of scatterers beneath the stations.
NASA Astrophysics Data System (ADS)
Hong, Hoonbin; Liang, Ming
2009-02-01
This paper proposes a new version of the Lempel-Ziv complexity as a bearing fault (single point) severity measure based on the continuous wavelet transform (CWT) results, and attempts to address the issues present in the current version of the Lempel-Ziv complexity measure. To establish the relationship between the Lempel-Ziv complexity and bearing fault severity, an analytical model for a single-point defective bearing is adopted and the factors contributing to the complexity value are explained. To avoid the ambiguity between fault and noise, the Lempel-Ziv complexity is jointly applied with the CWT. The CWT is used to identify the best scale where the fault resides and eliminate the interferences of noise and irrelevant signal components as much as possible. Then, the Lempel-Ziv complexity values are calculated for both the envelope and high-frequency carrier signal obtained from wavelet coefficients at the best scale level. As the noise and other un-related signal components have been largely removed, the Lempel-Ziv complexity value will be mostly contributed by the bearing system and hence can be reliably used as a bearing fault measure. The applications to the bearing inner- and outer-race fault signals have demonstrated that the revised Lempel-Ziv complexity can effectively measure the severity of both inner- and outer-race faults. Since the complexity values are not dependent on the magnitude of the measured signal, the proposed method is less sensitive to the data sets measured under different data acquisition conditions. In addition, as the normalized complexity values are bounded between zero and one, it is convenient to observe the fault growing trend by examining the Lempel-Ziv complexity.
Confined Mobility of TonB and FepA in Escherichia coli Membranes
Lill, Yoriko; Jordan, Lorne D.; Smallwood, Chuck R.; Newton, Salete M.; Lill, Markus A.; Klebba, Phillip E.; Ritchie, Ken
2016-01-01
The important process of nutrient uptake in Escherichia coli, in many cases, involves transit of the nutrient through a class of beta-barrel proteins in the outer membrane known as TonB-dependent transporters (TBDTs) and requires interaction with the inner membrane protein TonB. Here we have imaged the mobility of the ferric enterobactin transporter FepA and TonB by tracking them in the membranes of live E. coli with single-molecule resolution at time-scales ranging from milliseconds to seconds. We employed simple simulations to model/analyze the lateral diffusion in the membranes of E.coli, to take into account both the highly curved geometry of the cell and artifactual effects expected due to finite exposure time imaging. We find that both molecules perform confined lateral diffusion in their respective membranes in the absence of ligand with FepA confined to a region 0.180−0.007+0.006 μm in radius in the outer membrane and TonB confined to a region 0.266−0.009+0.007 μm in radius in the inner membrane. The diffusion coefficient of these molecules on millisecond time-scales was estimated to be 21−5+9 μm2/s and 5.4−0.8+1.5 μm2/s for FepA and TonB, respectively, implying that each molecule is free to diffuse within its domain. Disruption of the inner membrane potential, deletion of ExbB/D from the inner membrane, presence of ligand or antibody to FepA and disruption of the MreB cytoskeleton was all found to further restrict the mobility of both molecules. Results are analyzed in terms of changes in confinement size and interactions between the two proteins. PMID:27935943
Confined Mobility of TonB and FepA in Escherichia coli Membranes.
Lill, Yoriko; Jordan, Lorne D; Smallwood, Chuck R; Newton, Salete M; Lill, Markus A; Klebba, Phillip E; Ritchie, Ken
2016-01-01
The important process of nutrient uptake in Escherichia coli, in many cases, involves transit of the nutrient through a class of beta-barrel proteins in the outer membrane known as TonB-dependent transporters (TBDTs) and requires interaction with the inner membrane protein TonB. Here we have imaged the mobility of the ferric enterobactin transporter FepA and TonB by tracking them in the membranes of live E. coli with single-molecule resolution at time-scales ranging from milliseconds to seconds. We employed simple simulations to model/analyze the lateral diffusion in the membranes of E.coli, to take into account both the highly curved geometry of the cell and artifactual effects expected due to finite exposure time imaging. We find that both molecules perform confined lateral diffusion in their respective membranes in the absence of ligand with FepA confined to a region [Formula: see text] μm in radius in the outer membrane and TonB confined to a region [Formula: see text] μm in radius in the inner membrane. The diffusion coefficient of these molecules on millisecond time-scales was estimated to be [Formula: see text] μm2/s and [Formula: see text] μm2/s for FepA and TonB, respectively, implying that each molecule is free to diffuse within its domain. Disruption of the inner membrane potential, deletion of ExbB/D from the inner membrane, presence of ligand or antibody to FepA and disruption of the MreB cytoskeleton was all found to further restrict the mobility of both molecules. Results are analyzed in terms of changes in confinement size and interactions between the two proteins.
Prompt enhancement of the Earth's outer radiation belt due to substorm electron injections
Tang, C. L.; Zhang, J. -C.; Reeves, G. D.; ...
2016-12-17
Here, we present multipoint simultaneous observations of the near-Earth magnetotail and outer radiation belt during the substorm electron injection event on 16 August 2013. Time History of Events and Macroscale Interactions during Substorms A in the near-Earth magnetotail observed flux-enhanced electrons of 300 keV during the magnetic field dipolarization. Geosynchronous orbit satellites also observed the intensive electron injections. Located in the outer radiation belt, RBSP-A observed enhancements of MeV electrons accompanied by substorm dipolarization. The phase space density (PSD) of MeV electrons at L* ~5.4 increased by 1 order of magnitude in 1 h, resulting in a local PSD peakmore » of MeV electrons, which was caused by the direct effect of substorm injections. We also detected an enhanced MeV electrons in the heart of the outer radiation belt within 2 h, which may be associated with intensive substorm electron injections and subsequent local acceleration by chorus waves. Multipoint observations have shown that substorm electron injections not only can be the external source of MeV electrons at the outer edge of the outer radiation belt (L* ~5.4) but also can provide the intensive seed populations in the outer radiation belt. These initial higher-energy electrons from injection can reach relativistic energy much faster. Furthermore, these observations also provide evidence that enhanced substorm electron injections can explain rapid enhancements of MeV electrons in the outer radiation belt.« less
Prompt enhancement of the Earth's outer radiation belt due to substorm electron injections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, C. L.; Zhang, J. -C.; Reeves, G. D.
Here, we present multipoint simultaneous observations of the near-Earth magnetotail and outer radiation belt during the substorm electron injection event on 16 August 2013. Time History of Events and Macroscale Interactions during Substorms A in the near-Earth magnetotail observed flux-enhanced electrons of 300 keV during the magnetic field dipolarization. Geosynchronous orbit satellites also observed the intensive electron injections. Located in the outer radiation belt, RBSP-A observed enhancements of MeV electrons accompanied by substorm dipolarization. The phase space density (PSD) of MeV electrons at L* ~5.4 increased by 1 order of magnitude in 1 h, resulting in a local PSD peakmore » of MeV electrons, which was caused by the direct effect of substorm injections. We also detected an enhanced MeV electrons in the heart of the outer radiation belt within 2 h, which may be associated with intensive substorm electron injections and subsequent local acceleration by chorus waves. Multipoint observations have shown that substorm electron injections not only can be the external source of MeV electrons at the outer edge of the outer radiation belt (L* ~5.4) but also can provide the intensive seed populations in the outer radiation belt. These initial higher-energy electrons from injection can reach relativistic energy much faster. Furthermore, these observations also provide evidence that enhanced substorm electron injections can explain rapid enhancements of MeV electrons in the outer radiation belt.« less
Optical technique for inner-scale measurement: possible astronomical applications.
Masciadri, E; Vernin, J
1997-02-20
We propose an optical technique that allows us to estimate the inner scale by measuring the variance of angle of arrival fluctuations of collimated laser beams of different sections w (i) passing through a turbulent layer. To test the potential efficiency of the system, we made measurements on a turbulent air flow generated in the laboratory, the statistical properties of which are known and controlled, unlike atmospheric turbulence. We deduced a Kolmogorov behavior with a 6-mm inner scale and a 90-mm outer scale in accordance with measurements by a more complicated technique using the same turbulent channel. Our proposed method is especially sensitive to inner-scale measurement and can be adapted easily to atmospheric turbulence analysis. We propose an outdoor experimental setup that should work in less controlled conditions that can affect astronomical observations. The inner-scale assessment might be important when phase retrieval with Laplacian methods is used for adaptive optics purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Erwin T.; Nagai, Daisuke; Avestruz, Camille
2015-06-10
Galaxy clusters exhibit remarkable self-similar behavior which allows us to establish simple scaling relationships between observable quantities and cluster masses, making galaxy clusters useful cosmological probes. Recent X-ray observations suggested that self-similarity may be broken in the outskirts of galaxy clusters. In this work, we analyze a mass-limited sample of massive galaxy clusters from the Omega500 cosmological hydrodynamic simulation to investigate the self-similarity of the diffuse X-ray emitting intracluster medium (ICM) in the outskirts of galaxy clusters. We find that the self-similarity of the outer ICM profiles is better preserved if they are normalized with respect to the mean densitymore » of the universe, while the inner profiles are more self-similar when normalized using the critical density. However, the outer ICM profiles as well as the location of accretion shock around clusters are sensitive to their mass accretion rate, which causes the apparent breaking of self-similarity in cluster outskirts. We also find that the collisional gas does not follow the distribution of collisionless dark matter (DM) perfectly in the infall regions of galaxy clusters, leading to 10% departures in the gas-to-DM density ratio from the cosmic mean value. Our results have a number implications for interpreting observations of galaxy clusters in X-ray and through the Sunyaev–Zel’dovich effect, and their applications to cosmology.« less
Grooves and Kinks in the Rings
2017-06-19
Many of the features seen in Saturn's rings are shaped by the planet's moons. This view from NASA's Cassini spacecraft shows two different effects of moons that cause waves in the A ring and kinks in a faint ringlet. The view captures the outer edge of the 200-mile-wide (320-kilometer-wide) Encke Gap, in the outer portion of Saturn's A ring. This is the same region features the large propeller called Earhart. Also visible here is one of several kinked and clumpy ringlets found within the gap. Kinks and clumps in the Encke ringlet move about, and even appear and disappear, in part due to the gravitational effects of Pan -- which orbits in the gap and whose gravitational influence holds it open. The A ring, which takes up most of the image on the left side, displays wave features caused by Pan, as well as the moons Pandora and Prometheus, which orbit a bit farther from Saturn on both sides of the planet's F ring. This view was taken in visible light with the Cassini spacecraft narrow-angle camera on March 22, 2017, and looks toward the sunlit side of the rings from about 22 degrees above the ring plane. The view was acquired at a distance of approximately 63,000 miles (101,000 kilometers) from Saturn and at a phase angle (the angle between the sun, the rings and the spacecraft) of 59 degrees. Image scale is 1,979 feet (603 meters) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21333
Accommodating Thickness in Origami-Based Deployable Arrays
NASA Technical Reports Server (NTRS)
Zirbel, Shannon A.; Magleby, Spencer P.; Howell, Larry L.; Lang, Robert J.; Thomson, Mark W.; Sigel, Deborah A.; Walkemeyer, Phillip E.; Trease, Brian P.
2013-01-01
The purpose of this work is to create deployment systems with a large ratio of stowed-to-deployed diameter. Deployment from a compact form to a final flat state can be achieved through origami-inspired folding of panels. There are many models capable of this motion when folded in a material with negligible thickness; however, when the application requires the folding of thick, rigid panels, attention must be paid to the effect of material thickness not only on the final folded state, but also during the folding motion (i.e., the panels must not be required to flex to attain the final folded form). The objective is to develop new methods for deployment from a compact folded form to a large circular array (or other final form). This paper describes a mathematical model for modifying the pattern to accommodate material thickness in the context of the design, modeling, and testing of a deployable system inspired by an origami six-sided flasher model. The model is demonstrated in hardware as a 1/20th scale prototype of a deployable solar array for space applications. The resulting prototype has a ratio of stowed-to-deployed diameter of 9.2 (or 1.25 m deployed outer diameter to 0.136 m stowed outer diameter).
NASA Astrophysics Data System (ADS)
Diz, Paula; Francés, Guillermo; Rosón, Gabriel
2006-04-01
Live benthic foraminifera in the superficial sediments from the muddy central axis of the Ría de Vigo were examined under two contrasting hydrographic conditions: downwelling and upwelling. During downwelling conditions the abundance of benthic foraminifera does not show large differences between sites with different organic carbon contents. The arrival of labile organic carbon to the seafloor delivered during upwelling events causes an increase in the abundance of the most significant species and the appearance of new species in the life assemblage. This suggests that benthic foraminiferal faunas strongly depend on high quality organic carbon supply and the sedimentary organic carbon is not a good indicator of food availability to benthic foraminifera. The response of benthic foraminifera to phytoplankton blooms differs between outer and inner sites. In outer and middle areas benthic foraminiferal assemblages show quick population growth in reaction to phytoplankton blooms (r-strategists), whereas in inner sites the most abundant species displays both growth and reproduction (k-strategists). It is suggested that r-strategy results of adaptation to perturbations on short time-scales (downwelling/upwelling cycles) under favourable microenvironmental conditions, while the k-strategy represents the adaptation to long term perturbations, such as relatively low oxygen concentrations and/or reducing microenvironmental conditions in the sediment.
Mielke, Howard W; Gonzales, Christopher R; Powell, Eric T; Mielke, Paul W
2017-05-01
Anthropogenic re-distribution of lead (Pb) principally through its use in gasoline additives and lead-based paints have transformed the urban exposome. This unique study tracks urban-scale soil Pb (SPb) and blood Pb (BPb) responses of children living in public and private communities in New Orleans before and ten years after Hurricane Katrina (29 August 2005). To compare and evaluate associations of pre- and ten years post-Katrina SPb and children's BPb on public and private residential census tracts in the core and outer areas of New Orleans, and to examine correlations between SPb and nine other soil metals. The Louisiana Healthy Housing and Childhood Lead Poisoning Prevention Program BPb (µg/dL) data from pre- (2000-2005) and post-Katrina (2010-2015) for ≤6-year-old children. Data from public and adjacent private residential census tracts within core and outer areas are stratified from a database that includes 916 and 922 SPb and 13,379 and 4830 BPb results, respectively, from pre- and post-Katrina New Orleans. Statistical analyses utilize Multi-Response Permutation Procedure and Spearman's Rho Correlation. Pre- to Post-Katrina median SPb decreases in public and private core census tracts were from 285 to 55mg/kg and 710-291mg/kg, respectively. In public and private outer census tracts the median SPb decreased from 109 to 56mg/kg and 88-55mg/kg. Children's BPb percent ≥5µg/dL on public and private core areas pre-Katrina was 63.2% and 67.5%, and declined post-Katrina to 7.6% and 20.2%, respectively. BPb decreases also occurred in outer areas. Soil Pb is strongly correlated with other metals. Post-Katrina re-building of public housing plus landscaping amends the exposome and reduces children's BPb. Most importantly, Hurricane Katrina revealed that decreasing the toxicants in the soil exposome is an effective intervention for decreasing children's BPb. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Lee, C. C.; Leslie, F. W.
1991-01-01
The dynamical behavior of fluids, in particular the effect of surface tension on partially-filled rotating fluids, in a full-scale Gravity Probe-B Spacecraft propellant dewar tank imposed by various frequencies of gravity jitters have been investigated. Results show that fluid stress distribution exerted on the outer and inner walls of rotating dewar are closely related to the characteristics of slosh waves excited on the liquid-vapor interface in the rotating dewar tank. This can provide a set of tool for the spacecraft dynamic control leading toward the control of spacecraft unbalance caused by the uneven fluid stress distribution due to slosh wave excitations.
Experimental investigation of optimum beam size for FSO uplink
NASA Astrophysics Data System (ADS)
Kaushal, Hemani; Kaddoum, Georges; Jain, Virander Kumar; Kar, Subrat
2017-10-01
In this paper, the effect of transmitter beam size on the performance of free space optical (FSO) communication has been determined experimentally. Irradiance profile for varying turbulence strength is obtained using optical turbulence generating (OTG) chamber inside laboratory environment. Based on the results, an optimum beam size is investigated using the semi-analytical method. Moreover, the combined effects of atmospheric scintillation and beam wander induced pointing errors are considered in order to determine the optimum beam size that minimizes the bit error rate (BER) of the system for a fixed transmitter power and link length. The results show that the optimum beam size for FSO uplink depends upon Fried parameter and outer scale of the turbulence. Further, it is observed that the optimum beam size increases with the increase in zenith angle but has negligible effect with the increase in fade threshold level at low turbulence levels and has a marginal effect at high turbulence levels. Finally, the obtained outcome is useful for FSO system design and BER performance analysis.
Gas turbine engine exhaust diffuser including circumferential vane
Orosa, John A.; Matys, Pawel
2015-05-19
A flow passage defined between an inner and an outer boundary for guiding a fluid flow in an axial direction. A flow control vane is supported at a radial location between the inner and outer boundaries. A fluid discharge opening is provided for discharging a flow of the compressed fluid from a trailing edge of the vane, and a fluid control surface is provided adjacent to the fluid discharge opening and extends in the axial direction at the trailing edge of the vane. The fluid control surface has a curved trailing edge forming a Coanda surface. The fluid discharge opening is selectively provided with a compressed fluid to produce a Coanda effect along the control surface. The Coanda effect has a component in the radial direction effecting a turning of the fluid flow in the flow path radially inward or outward toward one of the inner and outer boundaries.
Effect of horizontal pick and place locations on shoulder kinematics.
Könemann, R; Bosch, T; Kingma, I; Van Dieën, J H; De Looze, M P
2015-01-01
In this study the effects of horizontal bin locations in an order picking workstation on upper arm elevation, trunk inclination and hand use were investigated. Eight subjects moved (self-paced) light or heavy products (0.2 and 3.0 kg) from a central product bin to an inner or outer order bin (at 60 or 150 cm) on the left or right side of the workstation, while movements were recorded. The outer compared to inner bin location resulted in more upper arm elevation and trunk inclination per work cycle, both in terms of number of peak values and in terms of time integrals of angles (which is a dose measure over time). Considering the peak values and time integrals per minute (instead of per work cycle), these effects are reduced, due to the higher cycle times for outer bins. Hand use (left, right or both) was not affected by order bin locations.
VizieR Online Data Catalog: CALIFA galaxies observational hints (Ruiz-Lara+, 2017)
NASA Astrophysics Data System (ADS)
Ruiz-Lara, T.; Perez, I.; Florido, E.; Sanchez-Blazquez, P.; Mendez-Abreu, J.; Sanchez-Menguiano, L.; Sanchez, S. F.; Lyubenova, M.; Falcon-Barroso, J.; van de Ven, G.; Marino, R. A.; de Lorenzo-Caceres, A.; Catalan-Torrecilla, C.; Costantin, L.; Bland-Hawthorn, J.; Galbany, L.; Garcia-Benito, R.; Husemann, B.; Kehrig, C.; Marquez, I.; Mast, D.; Walcher, C. J.; Zibetti, S.; Ziegle, B.; Califa Team
2017-05-01
Characterisation of the sample of galaxies under analysis in the paper. The sample comprises 214 galaxies from the CALIFA survey. For each galaxy the name, equatorial coordinates, morphological type, presence of a bar, surface brightness profile type, inner disc scale length (kpc), outer disc scale length (kpc), and break radius in units of the inner disc scale length are given. Columns (1), (2), (3), and (4) from the CALIFA general sample characterisation (Walcher et al., 2014A&A...569A...1W). Columns (5), (6), (7), (8), (9), and (10) from the 2D decomposition performed in Mendez-Abreu et al. (2017, Cat. J/A+A/598/A32). (1 data file).
Keatinge, W R; Torrie, C
1976-01-01
1. The direction of torsion produced during active shortening of helical strips of sheep carotid arteries was measured to assess whether inner or outer muscle was contracting. 2. Noradrenaline contracted inner (non-innervated) muscle in lower concentrations than were needed to contract outer (innervated) muscle, even with desipramine present to prevent uptake of noradrenaline by the nerves and with enough cyanide present to rise the normally low O2 tension of inner muscle to that of outer muscle. 3. Activation of sympathetic nerves in the outer part of the artery by nicotine caused almost evenly balanced contraction of both parts of the wall, with slight bias to outer contraction. 4. Moderate external constriction of the artery in vivo for 10-17 days, in order to raise pressure throughout the wall to intraluminal pressure, made the entire wall nerve-free. 5. The results provide evidence that the nerves can induce substantial activation of inner muscle, which is highly sensitive to noradrenaline, and that the absence of nerves from inner muscle can be explained by the high pressure there. Images Plate 1 PMID:950610
How does an asymmetric magnetic field change the vertical structure of a hot accretion flow?
NASA Astrophysics Data System (ADS)
Samadi, M.; Abbassi, S.; Lovelace, R. V. E.
2017-09-01
This paper explores the effects of large-scale magnetic fields in hot accretion flows for asymmetric configurations with respect to the equatorial plane. The solutions that we have found show that the large-scale asymmetric magnetic field can significantly affect the dynamics of the flow and also cause notable outflows in the outer parts. Previously, we treated a viscous resistive accreting disc in the presence of an odd symmetric B-field about the equatorial plane. Now, we extend our earlier work by taking into account another configuration of large-scale magnetic field that is no longer symmetric. We provide asymmetric field structures with small deviations from even and odd symmetric B-field. Our results show that the disc's dynamics and appearance become different above and below the equatorial plane. The set of solutions also predicts that even a small deviation in a symmetric field causes the disc to compress on one side and expand on the other. In some cases, our solution represents a very strong outflow from just one side of the disc. Therefore, the solution may potentially explain the origin of one-sided jets in radio galaxies.
NASA Astrophysics Data System (ADS)
Abdelrhman, Ahmed M.; Sei Kien, Yong; Salman Leong, M.; Meng Hee, Lim; Al-Obaidi, Salah M. Ali
2017-07-01
The vibration signals produced by rotating machinery contain useful information for condition monitoring and fault diagnosis. Fault severities assessment is a challenging task. Wavelet Transform (WT) as a multivariate analysis tool is able to compromise between the time and frequency information in the signals and served as a de-noising method. The CWT scaling function gives different resolutions to the discretely signals such as very fine resolution at lower scale but coarser resolution at a higher scale. However, the computational cost increased as it needs to produce different signal resolutions. DWT has better low computation cost as the dilation function allowed the signals to be decomposed through a tree of low and high pass filters and no further analysing the high-frequency components. In this paper, a method for bearing faults identification is presented by combing Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT) with envelope analysis for bearing fault diagnosis. The experimental data was sampled by Case Western Reserve University. The analysis result showed that the proposed method is effective in bearing faults detection, identify the exact fault’s location and severity assessment especially for the inner race and outer race faults.
Corotating pressure waves without streams in the solar wind
NASA Technical Reports Server (NTRS)
Burlaga, L. F.
1983-01-01
Voyager 1 and 2 magnetic field and plasma data are presented which demonstrate the existence of large scale, corotating, non-linear pressure waves between 2 AU and 4 AU that are not accompanied by fast streams. The pressure waves are presumed to be generated by corotating streams near the Sun. For two of the three pressure waves that are discussed, the absence of a stream is probably a real, physical effect, viz., a consequence of deceleration of the stream by the associated compression wave. For the third pressure wave, the apparent absence of a stream may be a geometrical effect; it is likely that the stream was at latitudes just above those of the spacecraft, while the associated shocks and compression wave extended over a broader range of latitudes so that they could be observed by the spacecraft. It is suggested that the development of large-scale non-linear pressure waves at the expense of the kinetic energy of streams produces a qualitative change in the solar wind in the outer heliosphere. Within a few AU the quasi-stationary solar wind structure is determined by corotating streams whose structure is determined by the boundary conditions near the Sun.
Droplet breakup dynamics of weakly viscoelastic fluids
NASA Astrophysics Data System (ADS)
Marshall, Kristin; Walker, Travis
2016-11-01
The addition of macromolecules to solvent, even in dilute quantities, can alter a fluid's response in an extensional flow. For low-viscosity fluids, the presence of elasticity may not be apparent when measured using a standard rotational rheometer, yet it may still alter the response of a fluid when undergoing an extensional deformation, especially at small length scales where elastic effects are enhanced. Applications such as microfluidics necessitate investigating the dynamics of fluids with elastic properties that are not pronounced at large length scales. In the present work, a microfluidic cross-slot configuration is used to study the effects of elasticity on droplet breakup. Droplet breakup and the subsequent iterated-stretching - where beads form along a filament connecting two primary droplets - were observed for a variety of material and flow conditions. We present a relationship on the modes of bead formation and how and when these modes will form based on key parameters such as the properties of the outer continuous-phase fluid. The results are vital not only for simulating the droplet breakup of weakly viscoelastic fluids but also for understanding how the droplet breakup event can be used for characterizing the extensional properties of weakly-viscoelastic fluids.
NASA Astrophysics Data System (ADS)
van Wyk, F.; Highcock, E. G.; Field, A. R.; Roach, C. M.; Schekochihin, A. A.; Parra, F. I.; Dorland, W.
2017-11-01
We investigate the effect of varying the ion temperature gradient (ITG) and toroidal equilibrium scale sheared flow on ion-scale turbulence in the outer core of MAST by means of local gyrokinetic simulations. We show that nonlinear simulations reproduce the experimental ion heat flux and that the experimentally measured values of the ITG and the flow shear lie close to the turbulence threshold. We demonstrate that the system is subcritical in the presence of flow shear, i.e., the system is formally stable to small perturbations, but transitions to a turbulent state given a large enough initial perturbation. We propose that the transition to subcritical turbulence occurs via an intermediate state dominated by low number of coherent long-lived structures, close to threshold, which increase in number as the system is taken away from the threshold into the more strongly turbulent regime, until they fill the domain and a more conventional turbulence emerges. We show that the properties of turbulence are effectively functions of the distance to threshold, as quantified by the ion heat flux. We make quantitative comparisons of correlation lengths, times, and amplitudes between our simulations and experimental measurements using the MAST BES diagnostic. We find reasonable agreement of the correlation properties, most notably of the correlation time, for which significant discrepancies were found in previous numerical studies of MAST turbulence.
Yuldashev, Petr V; Ollivier, Sébastien; Karzova, Maria M; Khokhlova, Vera A; Blanc-Benon, Philippe
2017-12-01
Linear and nonlinear propagation of high amplitude acoustic pulses through a turbulent layer in air is investigated using a two-dimensional KZK-type (Khokhlov-Zabolotskaya-Kuznetsov) equation. Initial waves are symmetrical N-waves with shock fronts of finite width. A modified von Kármán spectrum model is used to generate random wind velocity fluctuations associated with the turbulence. Physical parameters in simulations correspond to previous laboratory scale experiments where N-waves with 1.4 cm wavelength propagated through a turbulence layer with the outer scale of about 16 cm. Mean value and standard deviation of peak overpressure and shock steepness, as well as cumulative probabilities to observe amplified peak overpressure and shock steepness, are analyzed. Nonlinear propagation effects are shown to enhance pressure level in random foci for moderate initial amplitudes of N-waves thus increasing the probability to observe highly peaked waveforms. Saturation of the pressure level is observed for stronger nonlinear effects. It is shown that in the linear propagation regime, the turbulence mainly leads to the smearing of shock fronts, thus decreasing the probability to observe high values of steepness, whereas nonlinear effects dramatically increase the probability to observe steep shocks.
Fixed-Time Outer Synchronization of Complex Networks with Noise Coupling
NASA Astrophysics Data System (ADS)
Shi, Hong-Jun; Miao, Lian-Ying; Sun, Yong-Zheng; Liu, Mao-Xing
2018-03-01
In this paper, the fixed-time outer synchronization of complex networks with noise coupling is investigated. Based on the theory of fixed-time stability and matrix inequalities, sufficient conditions for fixed-time outer synchronization are established and the estimation of the upper bound of the setting time is obtained. The result shows that the setting time can be adjusted to a desired value regardless of the initial states. Numerical simulations are performed to verify the effectiveness of the theoretical results. The effects of control parameters and the density of controlled nodes on the converging time are studied. Supported by the National Natural Science Foundation of China under Grant Nos. 11711530203 and 11771443, and the Fundamental Research Funds for the Central Universities under Grant No. 2015XKMS076
Stratification of earth's outermost core inferred from SmKS array data
NASA Astrophysics Data System (ADS)
Kaneshima, Satoshi; Matsuzawa, Takanori
2015-12-01
S mKS arrivals recorded by large-scale broadband seismometer arrays are analyzed to investigate the depth profile of P wave speed ( V p ) in the outermost core. The V p structure of the upper 700 km of the outer core has been determined using S mKS waves of Fiji-Tonga events recorded at stations in Europe. According to a recent outer core model (KHOMC), the V p value is 0.45 % slower at the core mantle boundary (CMB) than produced by the Preliminary Reference Earth Model (PREM), and the slow anomaly gradually diminishes to insignificant values at ˜300 km below the CMB. In this study, after verifying these KHOMC features, we show that the differential travel times measured for S mKS waves that are recorded by other large-scale arrays sampling laterally different regions are well matched by KHOMC. We also show that KHOMC precisely fits the observed relative slowness values between S2KS, S3KS, and S4KS (S mKS waves with m= 2, 3, and 4). Based on these observations, we conclude that S mKS predominantly reflect the outer core structure. Then we evaluate biases of secondary importance which may be caused by mantle heterogeneity. The KHOMC V p profile can be characterized by a significant difference in the radial V p gradient between the shallower 300 km and the deeper part of the upper 700 km of the core. The shallower part has a V p gradient of -0.0018 s -1, which is steeper by 0.0001 s -1 when compared to the deeper core presented by PREM. The steeper V p gradient anomaly of the uppermost core corresponds to a radial variation in the pressure derivative of the bulk modulus, K '= d K/ d P. The K ' value is 3.7, which is larger by about 0.2 than that of the deeper core. The radial variation in K ' is too large to have a purely thermal origin, according to recent ab initio calculations on liquid iron alloys, and thus requires a thick and compositionally stratified layering at the outermost outer core.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-18
... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management [MMAA104000] North American Datum of 1983 (NAD 83) Outer Continental Shelf (OCS) Provisional Official Protraction Diagram (OPDs) AGENCY... OPDs. SUMMARY: Notice is hereby given that effective with this publication two NAD 83-based OCS...
A New Perspective on Galaxy Evolution from the Low Density Outskirts of Galaxies
NASA Astrophysics Data System (ADS)
Emery Watkins, Aaron
2017-01-01
In order to investigate the nature of galaxy outskirts, we carried out a deep imaging campaign of several nearby ($D\\lesssim$10Mpc) galaxies, across a range of environments. We found that most of the galaxies we imaged show red and non-star-forming outer disks, implying evolved stellar populations. Such populations in outer disks are expected as the result of radial migration, yet through Fourier analysis we found no evidence of extended spiral structure in these galaxies. Without star formation or outer spiral structure, it is difficult to determine how these outer disks formed. To investigate the effects of interactions on outer disks, we also observed the Leo I Group; however, while group environments are expected to promote frequent interactions, we found only three extremely faint tidal streams, implying a calm interaction history. As Leo I is fairly low density, this implies that loose groups are ineffective at producing intragroup light (IGL). In the famous interacting system M51, we found that its extended tidal features show similarly red colors as the typical outer disks we observed, implying that M51 had a similar outer disk prior to the interaction, and that the interaction induced no extended star formation, including in the system's HI tail. Therefore, to investigate the nature of star formation in low-density environments, we carried out deep narrow-band H$\\alpha$ imaging of M101 and M51.
Viability of cumulus cells is associated with basal AMH levels in assisted reproduction.
Ebner, Thomas; Shebl, Omar; Holzer, Sandra; Oppelt, Peter; Petek, Erwin; Schappacher-Tilp, Gudrun; Mayer, Richard B
2014-12-01
An interesting non-invasive approach to select embryos for transfer is analyzing the health state of somatic granulosa cells surrounding the oocyte addressing their mutual dependence. This prospective study was set up to analyse whether the DNA integrity of cumulus cells correlates with preimplantation development and basal AMH levels. Therefore, 56 patients who gave written consent were enrolled. Sequential denudation of the cumulus-oocyte-complexes was performed in order to separate corona radiata from outer cumulus cells. DNA integrity of both cell types was analysed using a modified chromatin dispersion test. The percentage of viable corona radiata cells per patient showed a linear correlation to blastulation (P<0.05). These innermost cells showed significantly lower rates of strand breaks (P<0.01) as compared to outer cumulus cells. Age-corrected AMH was significantly associated with the DNA integrity of outer cumulus cells (P<0.05). For the first time it could be shown that in fact clinical embryologists deal with two different entities of cumulus cells, inner and outer ones. It seems that any protective mechanism of the female gamete follows an outward gradient, so that negative effects, e.g. apoptosis, may impair outer cumulus cells first. Age-corrected AMH reflects quality of these outer cumulus cells. AMH; Corona radiata cells; DNA fragmentation; Outer cumulus cells; SCD test. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
An, Nam Hyun; Ryu, Sang Hoon; Chun, Ho Hwan; Lee, Inwon
2014-03-01
In this study, an experimental investigation has been made of the applicability of outer-layer vertical blades to real ship model. After first devised by Hutchins and Choi (2003), the outer-layer vertical blades demonstrated its effectiveness in reducing total drag of flat plate (Park et al., 2011) with maximum drag reduction of 9.6%. With a view to assessing the effect in the flow around a ship, the arrays of outer-layer vertical blades have been installed onto the side bottom and flat bottom of a 300k KVLCC model. A series of towing tank test has been carried out to investigate resistance (CTM) reduction efficiency and improvement of stern wake distribution with varying geometric parameters of the blades array. The installation of vertical blades led to the CTM reduction of 2.15~2.76% near the service speed. The nominal wake fraction was affected marginally by the blades array and the axial velocity distribution tended to be more uniform by the blades array.
2016-01-01
Understanding the electrostatic interactions between bacterial membranes and exogenous proteins is crucial to designing effective antimicrobial agents against Gram-negative bacteria. Here we study, using neutron reflecometry under multiple isotopic contrast conditions, the role of the uncharged sugar groups in the outer core region of lipopolysaccharide (LPS) in protecting the phosphate-rich inner core region from electrostatic interactions with antimicrobial proteins. Models of the asymmetric Gram negative outer membrane on silicon were prepared with phopshatidylcholine (PC) in the inner leaflet (closest to the silicon), whereas rough LPS was used to form the outer leaflet (facing the bulk solution). We show how salt concentration can be used to reversibly alter the binding affinity of a protein antibiotic colicin N (ColN) to the anionic LPS confirming that the interaction is electrostatic in nature. By examining the interaction of ColN with two rough LPS types with different-sized core oligosaccharide regions we demonstrate the role of uncharged sugars in blocking short-range electrostatic interactions between the cationic antibiotics and the vulnerable anionic phosphate groups. PMID:27003358
Impact of GODAE Products on Nested HYCOM Simulations of the West Florida Shelf
2009-01-20
circulation and the Atlantic Meridional Overturning Circulation . For temperature, the non-assimilative outer model had a cold...associated with the basin-scale wind-driven gyres and with the Atlantic Meridional Overturning Circulation is incor- rectly represented. In contrast...not contain realistic LC transport variability associated with the wind-driven gyre circulation and the Atlantic Meridio- nal Overturning Circulation
2009-04-01
outer ends of the MEMS-stage connect the stage to a macroscopic piezo -electric actuated test frame using rigid pins. In order to apply uniaxial...carbide also served as the resistor for Joule heating. This heater was used to melt glass (Soda lime glass, softening temperature: 720C, Gold Seal
Buckling Instabilities in Polymer Brush Surfaces via Postpolymerization Modification
Guo, Wei; Reese, Cassandra M.; Xiong, Li; ...
2017-10-30
We report a simple route to engineer ultrathin polymer brush surfaces with wrinkled morphologies using postpolymerization modification (PPM), where the length scale of the buckled features can be tuned using PPM reaction time. Here, we show that partial crosslinking of the outer layer of the polymer brush under poor solvent conditions is critical to obtain wrinkled morphologies upon swelling.
NASA Astrophysics Data System (ADS)
Harthøj, Anders; Holt, Tobias; Møller, Per
2015-05-01
This work evaluates the performance of cobalt/cerium oxide (Co/CeO2) composite coatings and pure Co coatings to be used for solid oxide fuel cell (SOFC) interconnects. The coatings are electroplated on the ferritic stainless steels Crofer 22 APU and Crofer 22H. Coated and uncoated samples are exposed in air at 800 °C for 3000 h and oxidation rates are measured and oxide scale microstructures are investigated. Area-specific resistances (ASR) in air at 850 °C of coated and uncoated samples are also measured. A dual layered oxide scale formed on all coated samples. The outer layer consisted of Co, Mn, Fe and Cr oxide and the inner layer consisted of Cr oxide. The CeO2 was present as discrete particles in the outer oxide layer after exposure. The Cr oxide layer thicknesses and oxidations rates were significantly reduced for Co/CeO2 coated samples compared to for Co coated and uncoated samples. The ASR of all Crofer 22H samples increased significantly faster than of Crofer 22 APU samples which was likely due to the presence of SiO2 in the oxide/metal interface of Crofer 22H.
Results from core-edge experiments in high Power, high performance plasmas on DIII-D
Petrie, T. W.; Fenstermacher, M. E.; Holcomb, C. T.; ...
2016-12-24
Here, significant challenges to reducing divertor heat flux in highly powered near-double null divertor (DND) hybrid plasmas, while still maintaining both high performance metrics and low enough density for application of RF heating, are identified. For these DNDs on DIII-D, the scaling of the peak heat flux at the outer target (q ⊥ P) ∝ [P SOL x I P] 0.92 for P SOL = 8-19 MW and I P = 1.0–1.4 MA, and is consistent with standard ITPA scaling for single-null H-mode plasmas. Two divertor heat flux reduction methods were tested. First, applying the puff-and-pump radiating divertor to DIII-Dmore » plasmas may be problematical at high power and H98 (≥ 1.5) due to improvement in confinement time with deuterium gas puffing which can lead to unacceptably high core density under certain conditions. Second, q ⊥ P for these high performance DNDs was reduced by ≈35% when an open divertor is closed on the common flux side of the outer divertor target (“semi-slot”) but also that heating near the slot opening is a significant source for impurity contamination of the core.« less
Imaging spectroscopy of solar radio burst fine structures.
Kontar, E P; Yu, S; Kuznetsov, A A; Emslie, A G; Alcock, B; Jeffrey, N L S; Melnik, V N; Bian, N H; Subramanian, P
2017-11-15
Solar radio observations provide a unique diagnostic of the outer solar atmosphere. However, the inhomogeneous turbulent corona strongly affects the propagation of the emitted radio waves, so decoupling the intrinsic properties of the emitting source from the effects of radio wave propagation has long been a major challenge in solar physics. Here we report quantitative spatial and frequency characterization of solar radio burst fine structures observed with the Low Frequency Array, an instrument with high-time resolution that also permits imaging at scales much shorter than those corresponding to radio wave propagation in the corona. The observations demonstrate that radio wave propagation effects, and not the properties of the intrinsic emission source, dominate the observed spatial characteristics of radio burst images. These results permit more accurate estimates of source brightness temperatures, and open opportunities for quantitative study of the mechanisms that create the turbulent coronal medium through which the emitted radiation propagates.
Effects of turbulence in the atmosphere of Venus on Pioneer Venus radio, phase 1
NASA Technical Reports Server (NTRS)
Woo, R.; Kendall, W.; Ishimaru, A.; Berwin, R.
1973-01-01
The prediction of the turbulence effects in the Venus atmosphere on Pioneer Venus radio was investigated. A careful investigation based on a theoretical and experimental study of the power spectrum of the Mariner 5 amplitude fluctuations is carried out and the results contribute considerably to our scientific knowledge of turbulence in the atmosphere of Venus. Fully developed turbulence is seen to exist predominantly in the altitude range of 41 - 49 km. This result is consistent with the high wind shear and wind velocities observed by Venera 4 for altitudes higher than 40 km. The outer scale size of turbulence is on the order of 100 m, the structure constant for the dayside atmosphere 3.9 x 10 to the -7 power m to the -1/3rd power, and that for the nightside atmosphere 2.9 x 10 to the -7 power m to the -1/3rd power.
The effects of profiles on supersonic jet noise
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Bhat, T. R. S.
1994-01-01
The effect of velocity profiles on supersonic jet noise are studied by using stability calculations made for a shock-free coannular jet, with both the inner and outer flows supersonic. The Mach wave emission process is modeled as the noise generated by the large scale turbulent structures or the instability waves in the mixing region. Both the vortex-sheet and the realistic finite thickness shear layer models are considered. The stability calculations were performed for both inverted and normal velocity profiles. Comparisons are made with the results for an equivalent single jet, based on equal thrust, mass flow rate and exit area to that of the coannular jet. The advantages and disadvantages of these velocity profiles as far as noise radiation is concerned are discussed. It is shown that the Rayleigh's model prediction of the merits and demerits of different velocity profiles are in good agreement with the experimental data.
Yamaguchi, Motonori; Logan, Gordon D; Li, Vanessa
2013-08-01
Does response selection select words or letters in skilled typewriting? Typing performance involves hierarchically organized control processes: an outer loop that controls word level processing, and an inner loop that controls letter (or keystroke) level processing. The present study addressed whether response selection occurs in the outer loop or the inner loop by using the psychological refractory period (PRP) paradigm in which Task1 required typing single words and Task2 required vocal responses to tones. The number of letters (string length) in the words was manipulated to discriminate selection of words from selection of keystrokes. In Experiment 1, the PRP effect depended on string length of words in Task1, suggesting that response selection occurs in the inner loop. To assess contributions of the outer loop, the influence of string length was examined in a lexical-decision task that also involves word encoding and lexical access (Experiment 2), or to-be-typed words were preexposed so outer-loop processing could finish before typing started (Experiment 3). Response time for Task2 (RT2) did not depend on string length with lexical decision, and RT2 still depended on string length with typing preexposed strings. These results support the inner-loop locus of the PRP effect. In Experiment 4, typing was performed as Task2, and the effect of string length on typing RT interacted with stimulus onset asynchrony superadditively, implying that another bottleneck also exists in the outer loop. We conclude that there are at least two bottleneck processes in skilled typewriting. 2013 APA, all rights reserved
Superplastic Forming of Duplex Stainless Steel for Aerospace Part
NASA Astrophysics Data System (ADS)
Lee, Ho-Sung; Yoon, Jong-Hoon; Yoo, Joon-Tae; Yi, Young-Moo
2011-08-01
In this study, the high temperature forming behavior of duplex stainless steel has been characterized and the outer shell of a combustion chamber was fabricated with pressure difference of hot gas. It consists of two parts which are the outer skin made of stainless steel to sustain the internal pressure and the inner shell made of copper alloy for regenerative cooling channels. Two outer skins partitioned to half with respect to the symmetric axis was prepared by hot gas forming process with a maximum pressure of 7 MPa following to FEM analysis. For inner layer, copper alloy was machined for cooling channels and then placed in the gas pressure welding fixture. It is shown that the optimum condition of gas pressure welding is 7 MPa at 890 °C, for one hour. EDX analysis and scanning electron microscope micrograph confirm the atomic diffusion process is observed at the interface and copper atoms diffuse into steel, while iron and chrome atoms diffuse into copper. The result shows that the manufacturing method with superplastic forming and gas pressure welding of steel and copper alloy has been successful for near net shape manufacturing of scaled combustion chamber of launch vehicle.
Modification of First Impression Formation and "Personality" by Manipulating Outer Appearance.
Hüttner, Susanne-Marie; Linden, Michael
2017-01-01
Global impression is the first item in any psychopathological evaluation, as patients often elicit negative responses in other persons by a dysfunctional first impression formation. This can lead to interactional problems and stigmatization. This study tested to what degree the perception of "personality" can be changed by simple manipulations of the outer appearance of a person. A total of 92 persons were given two different photos of the same female, one with hair combed back and the other with "open" curly hair. For each picture they made ratings on the Bipolar MED Rating Scale, which asks for judgements on 23 emotional impressions. The rating on the "two" persons differed significantly for 16 of the 23 items. Curled open hair led to a more open-hearted and trusting impression, while the combed-back hair was perceived as more reserved, earnest, and defiant. Results were independent of age and gender. People come to far-reaching conclusions about the "personality" of other persons (first impression formation) based on the outer appearance. This opens treatment options for improving social interaction and fighting stigma in patients with mental disorders. © 2017 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Stapelfeldt, K. R.; Menard, F.; Brandner, W.; Padgett, D. L.; Krist, J. E.; Watson, A. M.
2000-12-01
Hubble Space Telescope images of the HV Tauri triple system show that HV Tau C appears as a compact bipolar nebula at visual wavelengths. Near-infrared adaptive optics observations made at the Canada France Hawaii Telescope show a similar morphology, and no directly visible star at wavelengths less than 2 microns. These results confirm the conclusions of Monin & Bouvier 2000, namely that HV Tau C is an optically thick circumstellar disk seen close to edge-on. The images are compared to scattered light models for circumstellar disks. We find that the HV Tau C disk has an outer radius of 85 AU, inclination of about 6 deg, gaussian scale height of 15 AU at its outer radius, and is flared. The thickness of the dark lane indicates a total disk mass about half that of Jupiter. There is clear evidence for declining dust opacity toward longer wavelengths, as the dust lane thickness shrinks by 30 between 0.8 and 2.2 microns; the trend is consistent with interstellar dust grains. Tidal truncation of the disk outer radius may have occurred in this system.
NASA Astrophysics Data System (ADS)
Mishra, Sudheer K.; Singh, Talwinder; Kayshap, P.; Srivastava, A. K.
2018-03-01
We analyze the observations from Solar TErrestrial RElations Observatory (STEREO)-A and B/COR-1 of an eruptive prominence in the intermediate corona on 2011 June 7 at 08:45 UT, which consists of magnetic Rayleigh–Taylor (MRT) unstable plasma segments. Its upper-northward segment shows spatio-temporal evolution of MRT instability in form of finger structures up to the outer corona and low interplanetary space. Using the method of Dolei et al., It is estimated that the density in each bright finger is greater than the corresponding dark region lying below it in the surrounding intermediate corona. The instability is evolved due to wave perturbations that are parallel to the magnetic field at the density interface. We conjecture that the prominence plasma is supported by tension component of the magnetic field against gravity. Through the use of linear stability theory, the magnetic field is estimated as 21–40 mG to suppress growth of MRT instability in the observed finger structures. In the southward plasma segment, a horn-like structure is observed at 11:55 UT in the intermediate corona that also indicates MRT instability. Falling blobs are also observed in both of the plasma segments. In the outer corona, up to 6–13 solar radii, the mushroom-like plasma structures have been identified in the upper-northward MRT unstable plasma segment using STEREO-A/COR-2. These structures most likely grew due to the breaking and twisting of fingers at large spatial scales in weaker magnetic fields. In the lower interplanetary space up to 20 solar radii, these structures are fragmented into various small-scale localized plasma spikes, most likely due to turbulent mixing.
The potential use of low-frequency tones to locate regions of outer hair cell loss.
Kamerer, Aryn M; Diaz, Francisco J; Peppi, Marcello; Chertoff, Mark E
2016-12-01
Current methods used to diagnose cochlear hearing loss are limited in their ability to determine the location and extent of anatomical damage to various cochlear structures. In previous experiments, we have used the electrical potential recorded at the round window -the cochlear response (CR) -to predict the location of damage to outer hair cells in the gerbil. In a follow-up experiment, we applied 10 mM ouabain to the round window niche to reduce neural activity in order to quantify the neural contribution to the CR. We concluded that a significant proportion of the CR to a 762 Hz tone originated from phase-locking activity of basal auditory nerve fibers, which could have contaminated our conclusions regarding outer hair cell health. However, at such high concentrations, ouabain may have also affected the responses from outer hair cells, exaggerating the effect we attributed to the auditory nerve. In this study, we lowered the concentration of ouabain to 1 mM and determined the physiologic effects on outer hair cells using distortion-product otoacoustic emissions. As well as quantifying the effects of 1 mM ouabain on the auditory nerve and outer hair cells, we attempted to reduce the neural contribution to the CR by using near-infrasonic stimulus frequencies of 45 and 85 Hz, and hypothesized that these low-frequency stimuli would generate a cumulative amplitude function (CAF) that could reflect damage to hair cells in the apex more accurately than the 762 stimuli. One hour after application of 1 mM ouabain, CR amplitudes significantly increased, but remained unchanged in the presence of high-pass filtered noise conditions, suggesting that basal auditory nerve fibers have a limited contribution to the CR at such low frequencies. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Splinter, Kristen D.; Gonzalez, Maria V. G.; Oltman-Shay, Joan; Rutten, Jantien; Holman, Robert
2018-05-01
This contribution describes 10 years of observed sandbar and shoreline cross-shore position variability at a meso-tidal, high energy, multiple sandbar beach. To examine relationships between the temporal variability in shoreline/sandbar position with offshore wave forcing, a simple equilibrium model is applied to these data. The analysis presented in this paper shows that the equilibrium model is skilled at predicting the alongshore-averaged, time-varying position of the shoreline (R = 0.82) and the outer sandbar position (R = 0.75), suggesting that these end members of the nearshore sediment system are most strongly influenced by offshore wave forcing in a predictable, equilibrium-forced manner. The middle and inner bars are hypothesized to act as sediment transport pathways between the shoreline and the outer bar. Prediction of these more transient features by an equilibrium model was less skilful. Model coefficients reveal that these two end members (outer bar and shoreline) in the sediment system act in opposite directions to changes in the annual offshore wave forcing. During high wave events, sediment is removed from the shoreline and deposited in the nearshore sediment system with simultaneous landward retreat of the shoreline and offshore migration of the outer sandbar. While both end member features have cycles at annual and inter-annual scales, their respective equilibrium response factor differs by almost a factor of 10, with the shoreline responding around an inter-annual mean (ϕ = 1000 days) and the outer bar responding around a seasonal mean (ϕ = 170 days). The model accurately predicts shoreline response to both mild (e.g. 2004/05, 2008/09) and extreme (e.g. 2005/06, 2009/10) winter storms, as well as their summer recovery. The more mobile and dynamic outer sandbar is well-modelled during typical winters. Summer onshore sandbar migration of the outer bar in 2005 and 2006 is under-predicted as the system transitioned between a triple (winter) and double (summer) sandbar system. The changing of the number of bars present in the system is something that this simple model cannot predict. Analysis of the data suggests that this multi-bar system adjusts its cross-shore seasonal movement when there is a significant change in the sediment supply to the system (e.g., nourishment projects, severe storms).
NASA Astrophysics Data System (ADS)
Mehner, A.; Steffen, W.; Groh, J. H.; Vogt, F. P. A.; Baade, D.; Boffin, H. M. J.; Davidson, K.; de Wit, W. J.; Humphreys, R. M.; Martayan, C.; Oudmaijer, R. D.; Rivinius, T.; Selman, F.
2016-11-01
Aims: The role of episodic mass loss is one of the outstanding questions in massive star evolution. The structural inhomogeneities and kinematics of their nebulae are tracers of their mass-loss history. We conduct a three-dimensional morpho-kinematic analysis of the ejecta of η Car outside its famous Homunculus nebula. Methods: We carried out the first large-scale integral field unit observations of η Car in the optical, covering a field of view of 1'× 1' centered on the star. Observations with the Multi Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope (VLT) reveal the detailed three-dimensional structure of η Car's outer ejecta. Morpho-kinematic modeling of these ejecta is conducted with the code SHAPE. Results: The largest coherent structure in η Car's outer ejecta can be described as a bent cylinder with roughly the same symmetry axis as the Homunculus nebula. This large outer shell is interacting with the surrounding medium, creating soft X-ray emission. Doppler velocities of up to 3000 km s-1 are observed. We establish the shape and extent of the ghost shell in front of the southern Homunculus lobe and confirm that the NN condensation can best be modeled as a bowshock in the orbital/equatorial plane. Conclusions: The SHAPE modeling of the MUSE observations provides a significant gain in the study of the three-dimensional structure of η Car's outer ejecta. Our SHAPE modeling indicates that the kinematics of the outer ejecta measured with MUSE can be described by a spatially coherent structure, and that this structure also correlates with the extended soft X-ray emission associated with the outer debris field. The ghost shell immediately outside the southern Homunculus lobe hints at a sequence of eruptions within the time frame of the Great Eruption from 1837-1858 or possibly a later shock/reverse shock velocity separation. Our 3D morpho-kinematic modeling and the MUSE observations constitute an invaluable dataset to be confronted with future radiation-hydrodynamics simulations. Such a comparison may shed light on the yet elusive physical mechanism responsible for η Car-like eruptions. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 094.D-0215(A).
Densification control and analysis of outer shell of new high-temperature vacuum insulated composite
NASA Astrophysics Data System (ADS)
Wang, Yang; Chen, Zhaofeng; Jiang, Yun; Yu, Shengjie; Xu, Tengzhou; Li, Binbin; Chen, Zhou
2017-11-01
A novel high temperature vacuum insulated composite with low thermal conductivity composed of SiC foam core material and sealing outer shell is discussed, which will have a great potential to be used as thermal protection system material. In this composite, the outer shell is the key to maintain its internal vacuum, which is consisted of 2.5D C/C and SiC coating. So the densification processes of outer shell, including 2.5D braiding process, chemical vapor infiltration (CVI) pyrolytic carbon (PyC) process, polymer infiltration and pyrolysis (PIP) glassy carbon (GC) process and chemical vapor deposition (CVD) SiC process, are focused in this paper. The measuring result of the gas transmission quantity of outer shell is only 0.14 cm3/m2 · d · Pa after 5 times CVD processes, which is two order of magnitude lower than that sample deposited one time. After 10 times thermal shock cycles, the gas transmission quantity increases to 1.2 cm3/m2 · d · Pa. The effective thermal conductivity of high temperature vacuum insulated composite ranged from 0.19 W m-1 K-1 to 0.747 W m-1 K-1 within the temperature from 20 °C to 900 °C. Even after 10 thermal shock cycles, the variation of the effective thermal conductivity is still consistent with that without treatments.
Investigation of compound jet electrospray: Particle encapsulation
NASA Astrophysics Data System (ADS)
Mei, Fan; Chen, Da-Ren
2007-10-01
Experiments were performed to investigate the effect of surface tension on the particle encapsulation formation in the compound jet electrospray process. The outer liquid used in this study were olive oil and mineral oil; and inner liquids were ethanol, tri-butyl phosphate, ethylene glycol, and triethylene glycol. It was found that the core-shell structured droplets are formed only when the ratio of charge relaxation lengths of the inner and outer jets [i.e., rO*/rI*, where r *=(Qɛɛ0/K)1/3, in which ɛ is the dielectric constant of liquid] is less than 500, and the ratio of inertial breakup lengths of the inner and outer jets [i.e., RO*/RI*, where R *=(ρQ2/γ)1/3, in which ρ and γ are the density and surface tension of liquid, respectively] is less than 0.015. In this work we further studied the effect of inner and outer liquid flow rates on the size of compound droplets using an Aerosizer (TSI model 3220). The parameters affecting the droplet size distribution were obtained. We also observed that the spray current emitted through the compound jet was merely a linear function of the inner jet flow rate. This observation implies that olive oil and mineral oil, as the outer liquids, serve as an electrically insulated layer during the spray process.
NASA Astrophysics Data System (ADS)
Moya, Pablo S.; Pinto, Víctor A.; Sibeck, David G.; Kanekal, Shrikanth G.; Baker, Daniel N.
2017-11-01
Using Van Allen Probes Energetic Particle, Composition, and Thermal Plasma-Relativistic Electron-Proton Telescope (ECT-REPT) observations, we performed a statistical study on the effect of geomagnetic storms on relativistic electrons fluxes in the outer radiation belt for 78 storms between September 2012 and June 2016. We found that the probability of enhancement, depletion, and no change in flux values depends strongly on L and energy. Enhancement events are more common for ˜2 MeV electrons at L ˜ 5, and the number of enhancement events decreases with increasing energy at any given L shell. However, considering the percentage of occurrence of each kind of event, enhancements are more probable at higher energies, and the probability of enhancement tends to increases with increasing L shell. Depletion are more probable for 4-5 MeV electrons at the heart of the outer radiation belt, and no-change events are more frequent at L < 3.5 for E ˜ 3 MeV particles. Moreover, for L > 4.5 the probability of enhancement, depletion, or no-change response presents little variation for all energies. Because these probabilities remain relatively constant as a function of radial distance in the outer radiation belt, measurements obtained at geosynchronous orbit may be used as a proxy to monitor E≥1.8 MeV electrons in the outer belt.
"Phase capture" in amblyopia: the influence function for sampled shape.
Levi, Dennis M; Li, Roger W; Klein, Stanley A
2005-06-01
This study was concerned with what stimulus information humans with amblyopia use to judge the shape of simple objects. We used a string of four Gabor patches to define a contour. A fifth, center patch served as the test pattern. The observers' task was to judge the location of the test pattern relative to the contour. The contour was either a straight line, or an arc with positive or negative curvature. We asked whether phase shifts in the inner or outer pairs of patches distributed along the contour influence the perceived shape. That is, we measured the phase shift influence function. Our results, consistent with previous studies, show that amblyopes are imprecise in shape discrimination, showing elevated thresholds for both lines and curves. We found that amblyopes often make much larger perceptual errors (biases) than do normal observers in the absence of phase shifts. These errors tend to be largest for curved shapes and at large separations. In normal observers, shifting the phase of inner patches of the string by 0.25 cycle results in almost complete phase capture (attraction) at the smallest separation (2 lambda), and the capture effect falls off rapidly with separation. A 0.25 cycle shift of the outer pair of patches has a much smaller effect, in the opposite direction (repulsion). While several amblyopic observers showed reduced capture by the phase of the inner patches, to our surprise, several of the amblyopes were sensitive to the phase of the outer patches. We used linear multiple regression to determine the weights of all cues to the task: the carrier phase of the inner patches, carrier phase of the outer patches and the envelope of the outer patches. Compared to normal observers, some amblyopes show a weaker influence of the phase of the inner patches, and a stronger influence of both the phase and envelope of the outer patches. We speculate that this may be a consequence of abnormal "crowding" of the inner patches by the outer ones.
Advanced specialty fiber designs for high power fiber lasers
NASA Astrophysics Data System (ADS)
Gu, Guancheng
The output power of fiber lasers has increased rapidly over the last decade. There are two major limiting factors, namely nonlinear effects and transverse mode instability, prohibiting the power scaling capability of fiber lasers. The nonlinear effects, originating from high optical intensity, primarily limit the peak power scaling. The mode instability, on the other hand, arises from quantum-defect driven heating, causing undesired mode coupling once the power exceeds the threshold and degradation of beam quality. The mode instability has now become the bottleneck for average output power scaling of fiber lasers. Mode area scaling is the most effective way to mitigate nonlinear effects. However, the use of large mode area may increase the tendency to support multiple modes in the core, resulting in lower mode instability threshold. Therefore, it is critical to maintain single mode operation in a large mode area fiber. Sufficient higher order mode suppression can lead to effective single-transverse-mode propagation. In this dissertation, we explore the feasibility of using specialty fiber to construct high power fiber lasers with robust single-mode output. The first type of fiber discussed is the resonantly-enhanced leakage channel fiber. Coherent reflection at the fiber outer boundary can lead to additional confinement especially for highly leaky HOM, leading to lower HOM losses than what are predicted by conventional finite element mothod mode solver considering infinite cladding. In this work, we conducted careful measurements of HOM losses in two leakage channel fibers (LCF) with circular and rounded hexagonal boundary shapes respectively. Impact on HOM losses from coiling, fiber boundary shapes and coating indexes were studied in comparison to simulations. This work demonstrates the limit of the simulation method commonly used in the large-mode-area fiber designs and the need for an improved approach. More importantly, this work also demonstrates that a deviation from circular fiber outer shape may be an effective method to mitigate HOM loss reduction from coherent reflection from fiber outer boundary. In an all-solid photonic bandgap fiber, modes are only guided due to anti-resonance of cladding photonic crystal lattice. This provides strongly mode-dependent guidance, leading to very high differential mode losses, which is essential for lasing far from the gain peak and suppression of stimulated Raman scattering. We will show that all-solid photonic bandgap fibers with effective mode area of 920microm2 can be made with excellent higher order mode suppression. We then demonstrate a 50microm-core-diameter Yb-doped all-solid photonic bandgap fiber laser. 75W output power has been generated with a diffraction-limited beam and an efficiency of 70% relative to the launched pump power. We have also experimentally confirmed that a robust single-mode regime exists near the high frequency edge of the bandgap. It is well known that incorporation of additional smaller cores in the cladding can be used to resonantly out-couple higher-order modes from a main core to suppress higher-order-mode propagation in the main core. Using a novel design with multiple coupled smaller cores in the cladding, we further scaled up the mode area and have successfully demonstrated a single-mode photonic bandgap fiber with record effective mode area of 2650microm2. Detailed numeric studies have been conducted for multiple cladding designs. For the optimal designs, the simulated minimum higher-order-mode losses are well over two orders of magnitudes higher than that of fundamental mode when expressed in dBs. We have also experimentally validated one of the designs. M 2<1.08 across the transmission band was demonstrated. Lowering quantum defect heating is another approach to mitigate mode instability. Highly-efficient high-power fiber lasers operating at wavelength below 1020nm are critical for tandem-pumping in >10kW fiber lasers to provide high pump brightness and low thermal loading. Using an ytterbium-doped-phosphosilicate double-clad leakage-channel fiber with 50microm core and 420microm cladding, we have achieved 70% optical-to-optical efficiency at 1018nm. The much larger cladding than those in previous reports demonstrates the much lower required pump brightness, a key for efficient kW operation. The demonstrated 1018nm fiber laser has ASE suppression of 41dB. This is higher than previous reports and further demonstrates the advantages of the fiber used. Limiting factors to efficiency are also systematically studied.
Pressure Sensitive Paint Measurements on 15% Scale Rotor Blades in Hover
NASA Technical Reports Server (NTRS)
Wong, Oliver D.; Watkins, Anthony Neal; Ingram, JoAnne L.
2005-01-01
This paper describes a proof of concept test to examine the feasibility of using pressure sensitive paint (PSP) to measure the pressure distributions on a rotor in hover. The test apparatus consisted of the US Army 2-meter Rotor Test Stand (2MRTS) and 15% scale swept tip rotor blades. Two camera/rotor separations were examined: 0.76 and 1.35 radii. The outer 15% of each blade was painted with PSP. Intensity and lifetime based PSP measurement techniques were attempted. Data were collected from all blades at thrust coefficients ranging from 0.004 to 0.009.
Analysis of the fluctuations of a laser beam due to thermal turbulence
NASA Astrophysics Data System (ADS)
Ndlovu, Sphumelele C.; Chetty, Naven
2014-07-01
A laser beam propagating in air and passing through a point diffraction interferometer (PDI) produces stable interferograms that can be used to extract wavefront data such as major atmospheric characteristics: turbulence strength, inner scale and outer scale of the refractive index. These parameters need to be taken into consideration when developing defense laser weapons since they can be affected by thermal fluctuations that are due to the changes in temperature in close proximity to the propagating beam and results in phase shifts that can be used to calculate the temperature which causes wavefront perturbations on a propagating beam.
Lesna, Izabela; da Silva, Fernando R; Sato, Yukie; Sabelis, Maurice W; Lommen, Suzanne T E
2014-06-01
The dry bulb mite, Aceria tulipae, is the most important pest of stored tulip bulbs in The Netherlands. This tiny, eriophyoid mite hides in the narrow space between scales in the interior of the bulb. To achieve biological control of this hidden pest, candidate predators small enough to move in between the bulb scales are required. Earlier experiments have shown this potential for the phytoseiid mite, Neoseiulus cucumeris, but only after the bulbs were exposed to ethylene, a plant hormone that causes a slight increase in the distance between tulip bulb scales, just sufficient to allow this predator to reach the interior part of the bulb. Applying ethylene, however, is not an option in practice because it causes malformation of tulip flowers. In fact, to prevent this cosmetic damage, bulb growers ventilate rooms where tulip bulbs are stored, thereby removing ethylene produced by the bulbs (e.g. in response to mite or fungus infestation). Recently, studies on the role of predatory mites in controlling another eriophyoid mite on coconuts led to the discovery of an exceptionally small phytoseiid mite, Neoseiulus paspalivorus. This predator is able to move under the perianth of coconuts where coconut mites feed on meristematic tissue of the fruit. This discovery prompted us to test N. paspalivorus for its ability to control A. tulipae on tulip bulbs under storage conditions (ventilated rooms with bulbs in open boxes; 23 °C; storage period June-October). Using destructive sampling we monitored predator and prey populations in two series of replicated experiments, one at a high initial level of dry bulb mite infestation, late in the storage period, and another at a low initial dry bulb mite infestation, halfway the storage period. The first and the second series involved treatment with N. paspalivorus and a control experiment, but the second series had an additional treatment in which the predator N. cucumeris was released. Taking the two series of experiments together we found that N. paspalivorus controlled the populations of dry bulb mites both on the outer scale of the bulbs as well as in the interior part of the bulbs, whereas N. cucumeris significantly reduced the population of dry bulb mites on the outer scale, but not in the interior part of the bulb. Moreover, N. paspalivorus was found predominantly inside the bulb, whereas N. cucumeris was only found on the outer scale, thereby confirming our hypothesis that the small size of N. paspalivorus facilitates access to the interior of the bulbs. We argue that N. paspalivorus is a promising candidate for the biological control of dry bulb mites on tulip bulbs under storage conditions in the Netherlands.
Scale-up of recombinant Opc protein production in Escherichia coli for a meningococcal vaccine.
Pérez, Raúl Espinosa; Lasa, Alexis Musacchio; Rodríguez, Ricardo Silva; Menéndez, Evelin Caballero; Suárez, José García; Balaguer, Héctor Díaz
2006-12-15
Opc is an outer membrane protein from Neisseria meningitidis present in meningococcal vaccine preparations. The opc gene, codifying for this protein, was cloned in to Escherichia coli and the Opc protein was expressed under the control of a tryptophan promoter. The recombinant strain was grown in batch cultures. Opc was expressed as inclusion bodies at about 32% of the total cellular protein. We examined the scale-up culture conditions for the production of the recombinant Opc. The scale-up process was performed from 1.5 l to 50 l culture, using first, the constant power per unit of volume (P/V) as main scaling criteria, and then the oxygen mass transfer coefficient (K(L)a) scaling criteria to adjust the optimal aeration conditions. A final productivity of 52 mgl(-1)h(-1) was obtained at the 50l culture scale compared with the 49 mgl(-1)h(-1) productivity at 1.5l laboratory scale.
Large-scale density structures in the outer heliosphere
NASA Technical Reports Server (NTRS)
Belcher, J. W.; Lazarus, A. J.; Mcnutt, R. L., Jr.; Gordon, G. S., Jr.
1993-01-01
The Plasma Science experiment on the Voyager 2 spacecraft has measured the solar wind density from 1 to 38 AU. Over this distance, the solar wind density decreases as the inverse square of the heliocentric distance. However, there are large variations in this density at a given radius. Such changes in density are the dominant cause of changes in the solar wind ram pressure in the outer heliosphere and can cause large perturbations in the location of the termination shock of the solar wind. Following a simple model suggested by Suess, we study the non-equilibrium, dynamic location of the termination shock as it responds to these pressure changes. The results of this study suggest that the termination shock is rarely if ever at its equilibrium distance and may depart from that distance by as much as 50 AU at times.
Fault tolerance in an inner-outer solver: A GVR-enabled case study
Zhang, Ziming; Chien, Andrew A.; Teranishi, Keita
2015-04-18
Resilience is a major challenge for large-scale systems. It is particularly important for iterative linear solvers, since they take much of the time of many scientific applications. We show that single bit flip errors in the Flexible GMRES iterative linear solver can lead to high computational overhead or even failure to converge to the right answer. Informed by these results, we design and evaluate several strategies for fault tolerance in both inner and outer solvers appropriate across a range of error rates. We implement them, extending Trilinos’ solver library with the Global View Resilience (GVR) programming model, which provides multi-streammore » snapshots, multi-version data structures with portable and rich error checking/recovery. Lastly, experimental results validate correct execution with low performance overhead under varied error conditions.« less
Philip A. Marcus; Ethan T. Smith
1979-01-01
Five petroleum-related facilities often sited in the coastal zone during development of Outer Continental oil and gas can change the visual appearance of coastal areas. These facilities are service bases, platform fabrication yards, marine terminals and associated storage facilities, oil and gas processing facilities, and liquified natural gas terminals. Examples of...
NASA Technical Reports Server (NTRS)
Miller, C. G.
1972-01-01
The design considerations influencing the choice and utility of environmental simulation methods and facilities are described, insofar as they relate to the requirements imposed on outer planet spacecraft because of radiation environments to be expected. Possible means for duplicating the radioisotope thermoelectric generator radiation environment, and for duplicating the effects of the trapped radiation belt environment are described, together with an assessment of radiation levels to be expected in the vicinity of an environmental testing chamber when in use.
A MegaCam Survey of Outer Halo Satellites. III. Photometric and Structural Parameters
NASA Astrophysics Data System (ADS)
Muñoz, Ricardo R.; Côté, Patrick; Santana, Felipe A.; Geha, Marla; Simon, Joshua D.; Oyarzún, Grecco A.; Stetson, Peter B.; Djorgovski, S. G.
2018-06-01
We present structural parameters from a wide-field homogeneous imaging survey of Milky Way satellites carried out with the MegaCam imagers on the 3.6 m Canada–France–Hawaii Telescope and 6.5 m Magellan-Clay telescope. Our survey targets an unbiased sample of “outer halo” satellites (i.e., substructures having galactocentric distances greater than 25 kpc) and includes classical dSph galaxies, ultra-faint dwarfs, and remote globular clusters. We combine deep, panoramic gr imaging for 44 satellites and archival gr imaging for 14 additional objects (primarily obtained with the DECam instrument as part of the Dark Energy Survey) to measure photometric and structural parameters for 58 outer halo satellites. This is the largest and most uniform analysis of Milky Way satellites undertaken to date and represents roughly three-quarters (58/81 ≃ 72%) of all known outer halo satellites. We use a maximum-likelihood method to fit four density laws to each object in our survey: exponential, Plummer, King, and Sérsic models. We systematically examine the isodensity contour maps and color–magnitude diagrams for each of our program objects, present a comparison with previous results, and tabulate our best-fit photometric and structural parameters, including ellipticities, position angles, effective radii, Sérsic indices, absolute magnitudes, and surface brightness measurements. We investigate the distribution of outer halo satellites in the size–magnitude diagram and show that the current sample of outer halo substructures spans a wide range in effective radius, luminosity, and surface brightness, with little evidence for a clean separation into star cluster and galaxy populations at the faintest luminosities and surface brightnesses.
Dynamic axial crushing of bitubular tubes with curvy polygonal inner-tube sections
NASA Astrophysics Data System (ADS)
Ahmed, Naveed; Xue, Pu; Zafar, Naeem
Bitubular structural configurations, where the outer tube is circular, square and curvy square in shape while the inner-tube section is curvy triangular, square and hexagonal in different proposed configurations, are numerically crushed under dynamic axial loading. The crashworthiness effectiveness for changing inner-tube polygonal cross-section for each of the outer tube sections is studied and compared with changing outer tube shape. The deformation plots and energy absorption (EA) parameters such as peak crushing force (PCF) mean crushing force (MCF), energy absorption and crush force efficiency for each case are evaluated. Most of the configurations showed ovalization with low PCF and MCF and moderate crush force efficiency. Afterwards, effects of L/D and t/R on deformation modes and EA are demonstrated by selecting one of the configurations from each group using published experimental results.
NASA Astrophysics Data System (ADS)
Kalyaan, A.; Desch, S. J.; Monga, N.
2015-12-01
The structure and evolution of protoplanetary disks, especially the radial flows of gas through them, are sensitive to a number of factors. One that has been considered only occasionally in the literature is external photoevaporation by far-ultraviolet (FUV) radiation from nearby, massive stars, despite the fact that nearly half of disks will experience photoevaporation. Another effect apparently not considered in the literature is a spatially and temporally varying value of α in the disk (where the turbulent viscosity ν is α times the sound speed C times the disk scale height H). Here we use the formulation of Bai & Stone to relate α to the ionization fraction in the disk, assuming turbulent transport of angular momentum is due to the magnetorotational instability. We calculate the ionization fraction of the disk gas under various assumptions about ionization sources and dust grain properties. Disk evolution is most sensitive to the surface area of dust. We find that typically α ≲ 10-5 in the inner disk (<2 AU), rising to ˜10-1 beyond 20 AU. This drastically alters the structure of the disk and the flow of mass through it: while the outer disk rapidly viscously spreads, the inner disk hardly evolves; this leads to a steep surface density profile ({{Σ }}\\propto {r}-< p> with < p> ≈ 2-5 in the 5-30 AU region) that is made steeper by external photoevaporation. We also find that the combination of variable α and external photoevaporation eventually causes gas as close as 3 AU, previously accreting inward, to be drawn outward to the photoevaporated outer edge of the disk. These effects have drastic consequences for planet formation and volatile transport in protoplanetary disks.
Lutterodt, G; Basnet, M; Foppen, J W A; Uhlenbrook, S
2009-02-01
Bacteria properties play an important role in the transport of bacteria in groundwater, but their role, especially for longer transport distances (>0.5 m) has not been studied. Thereto, we studied the effects of cell surface hydrophobicity, outer surface potential (OSP), cell sphericity, motility, and Ag43 protein expression on the outer cell surface for a number of E. coli strains, obtained from the environment on their transport behavior in columns of saturated quartz sand of 5 m height in two solutions: demineralized (DI) water and artificial groundwater (AGW). In DI water, sticking efficiencies ranged between 0.1 and 0.4 at the column inlet, and then decreased with transport distance to 0.02-0.2. In AGW, sticking efficiencies were on average 1log-unit higher than those in DI (water). Bacteria motility and Ag43 expression affected attachment with a (high) statistical significance. In contrast, hydrophobicity, OSP and cell sphericity did not significantly correlate with sticking efficiency. However, for transport distances more than 0.33 m, the correlation between sticking efficiency, Ag43 expression, and motility became insignificant. We concluded that Ag43 and motility played an important role in E. coli attachment to quartz grain surfaces, and that the transport distance dependent sticking efficiency reductions were caused by motility and Ag43 expression variations within a population. The implication of our findings is that less motile bacteria with little or no Ag43 expression may travel longer distances once they enter groundwater environments. In future studies, the possible effect of bacteria surface structures, like fimbriae, pili and surface proteins on bacteria attachment need to be considered more systematically in order to arrive at more meaningful inter-population comparisons of the transport behavior of E. coli strains in aquifers.
Investigation on the Enhanced Oxidation of Ferritic/Martensitic Steel P92 in Pure Steam
Yuan, Juntao; Wu, Ximao; Wang, Wen; Zhu, Shenglong; Wang, Fuhui
2014-01-01
Oxidation of ferritic/martensitic steel P92 was investigated in pure oxygen and in pure steam at 600–800 °C by thermogravimetric analysis (TGA), optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The results showed that the oxidation of P92 was significantly enhanced and multilayer scale with an outer iron oxides layer formed in pure steam. At 700 °C, the gas switch markedly influenced the scaling kinetics and scale microstructure. It was supposed that the higher affinity of iron to steam would be attributed to the enhanced oxidation of P92 in pure steam, and the much easier transport of hydroxyl would account for the significant difference induced by gas switch. PMID:28788592
Global Magnetohydrodynamic Modeling of the Solar Corona
NASA Technical Reports Server (NTRS)
Linker, Jon A.; Wagner, William (Technical Monitor)
2001-01-01
The solar corona, the hot, tenuous outer atmosphere of the Sun, exhibits many fascinating phenomena on a wide range of scales. One of the ways that the Sun can affect us here at Earth is through the large-scale structure of the corona and the dynamical phenomena associated with it, as it is the corona that extends outward as the solar wind and encounters the Earth's magnetosphere. The goal of our research sponsored by NASA's Supporting Research and Technology Program in Solar Physics is to develop increasingly realistic models of the large-scale solar corona, so that we can understand the underlying properties of the coronal magnetic field that lead to the observed structure and evolution of the corona. We describe the work performed under this contract.
NASA Astrophysics Data System (ADS)
Souza, V. M. C. E. S.; Da Silva, L. A.; Sibeck, D. G.; Alves, L. R.; Jauer, P. R.; Dias Silveira, M. V.; Medeiros, C.; Marchezi, J.; Rockenbach, M.; Baker, D. N.; Kletzing, C.; Kanekal, S. G.; Georgiou, M.; Mendes, O., Jr.; Dal Lago, A.; Vieira, L. E. A.
2015-12-01
We present a case study describing the dynamics of the outer radiation belt for two different solar wind conditions. First, we discuss a dropout of outer belt energetic electron fluxes corresponding to the arrival of an interplanetary coronal mass ejection (ICME) followed by a corotating stream in September 2014. Second, we discuss the reformation of the outer radiation belt that began on September 22nd. We find that the arrival of the ICME and the corotating interaction region that preceded the stream cause a long-duration (many day) dropout of high-energy electrons. The recovery in radiation belt fluxes only begins when the high-speed stream begins to develop IMF Bz fluctuations and auroral activity resumes. Furthermore, during periods in which several consecutive solar wind structures appear, the first structure primes the outer radiation belt prior to the interaction of the subsequent solar wind structures with the magnetosphere. Consequently, the evolution of the outer radiation belt through the solar cycle is significantly affected by the dominant structure of each phase of the cycle. We use energetic electron and magnetic field observations provided by the Van Allen Probes, THEMIS, and GOES missions.
Vacuum-isolation vessel and method for measurement of thermal noise in microphones
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J. (Inventor); Ngo, Kim Chi T. (Inventor)
1992-01-01
The vacuum isolation vessel and method in accordance with the present invention are used to accurately measure thermal noise in microphones. The apparatus and method could be used in a microphone calibration facility or any facility used for testing microphones. Thermal noise is measured to determine the minimum detectable sound pressure by the microphone. Conventional isolation apparatus and methods have been unable to provide an acoustically quiet and substantially vibration free environment for accurately measuring thermal noise. In the present invention, an isolation vessel assembly comprises a vacuum sealed outer vessel, a vacuum sealed inner vessel, and an interior suspension assembly coupled between the outer and inner vessels for suspending the inner vessel within the outer vessel. A noise measurement system records thermal noise data from the isolation vessel assembly. A vacuum system creates a vacuum between an internal surface of the outer vessel and an external surface of the inner vessel. The present invention thus provides an acoustically quiet environment due to the vacuum created between the inner and outer vessels and a substantially vibration free environment due to the suspension assembly suspending the inner vessel within the outer vessel. The thermal noise in the microphone, effectively isolated according to the invention, can be accurately measured.
Geramy, Allahyar; Hassanpour, Mehdi; Emadian Razavi, Elham Sadat
2015-03-01
This study sought to assess distal and lateral forces and moments of asymmetric headgears by variable outer bow lengths. Four 3D finite element method (FEM) models of a cervical headgear attached to the maxillary first molars were designed in SolidWorks 2010 software and transferred to ANSYS Workbench ver. 11 software. Models contained the first molars, their periodontal ligament (PDL), cancellous and cortical bones, a mesiodistal slice of the maxillae and the headgear. Models were the same except for the outer bow length in headgears. The headgear was symmetric in model 1. In models 2 to 4, the headgears were asymmetric in length with differences of 5mm, 10mm and 15mm, respectively. A 2.5 N force in horizontal plane was applied and the loading manner of each side of the outer bow was calculated trigonometrically using data from a volunteer. The 15mm difference in outer bow length caused the greatest difference in lateral (=0.21 N) and distal (= 1.008 N) forces and also generated moments (5.044 N.mm). As the difference in outer bow length became greater, asymmetric effects increased. Greater distal force in the longer arm side was associated with greater lateral force towards the shorter arm side and more net yawing moment. A difference range of 1mm to 15 mm of length in cervical headgear can be considered as a safe length of outer bow shortening in clinical use.
Rodriguez-Padilla, Julio A.; Hedges, Thomas R.; Monson, Bryan; Srinivasan, Vivek; Wojtkowski, Maciej; Reichel, Elias; Duker, Jay S.; Schuman, Joel S.; Fujimoto, James G.
2007-01-01
Objectives To compare structural changes in the retina seen on high-speed ultra–high-resolution optical coherence tomography (hsUHR-OCT) with multifocal electroretinography (mfERG) and automated visual fields in patients receiving hydroxychloroquine. Methods Fifteen patients receiving hydroxychloroquine were evaluated clinically with hsUHR-OCT, mfERG, and automated visual fields. Six age-matched subjects were imaged with hsUHR-OCT and served as controls. Results Distinctive discontinuity of the perifoveal photoreceptor inner segment/outer segment junction and thinning of the outer nuclear layer were seen with hsUHR-OCT in patients with mild retinal toxic effects. Progression to complete loss of the inner segment/outer segment junction and hyperscattering at the outer segment level were seen in more advanced cases. The mfERG abnormalities correlated with the hsUHR-OCT findings. Asymptomatic patients had normal hsUHR-OCT and mfERG results. Conclusion Distinctive abnormalities in the perifoveal photoreceptor inner segment/outer segment junction were seen on hsUHR-OCT in patients receiving hydroxychloroquine who also were symptomatic and had abnormalities on automated visual fields and mfERG. PMID:17562988
An outer arm dynein light chain acts in a conformational switch for flagellar motility
Patel-King, Ramila S.
2009-01-01
A system distinct from the central pair–radial spoke complex was proposed to control outer arm dynein function in response to alterations in the mechanical state of the flagellum. In this study, we examine the role of a Chlamydomonas reinhardtii outer arm dynein light chain that associates with the motor domain of the γ heavy chain (HC). We demonstrate that expression of mutant forms of LC1 yield dominant-negative effects on swimming velocity, as the flagella continually beat out of phase and stall near or at the power/recovery stroke switchpoint. Furthermore, we observed that LC1 interacts directly with tubulin in a nucleotide-independent manner and tethers this motor unit to the A-tubule of the outer doublet microtubules within the axoneme. Therefore, this dynein HC is attached to the same microtubule by two sites: via both the N-terminal region and the motor domain. We propose that this γ HC–LC1–microtubule ternary complex functions as a conformational switch to control outer arm activity. PMID:19620633
Bandwidth efficient CCSDS coding standard proposals
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.; Perez, Lance C.; Wang, Fu-Quan
1992-01-01
The basic concatenated coding system for the space telemetry channel consists of a Reed-Solomon (RS) outer code, a symbol interleaver/deinterleaver, and a bandwidth efficient trellis inner code. A block diagram of this configuration is shown. The system may operate with or without the outer code and interleaver. In this recommendation, the outer code remains the (255,223) RS code over GF(2 exp 8) with an error correcting capability of t = 16 eight bit symbols. This code's excellent performance and the existence of fast, cost effective, decoders justify its continued use. The purpose of the interleaver/deinterleaver is to distribute burst errors out of the inner decoder over multiple codewords of the outer code. This utilizes the error correcting capability of the outer code more efficiently and reduces the probability of an RS decoder failure. Since the space telemetry channel is not considered bursty, the required interleaving depth is primarily a function of the inner decoding method. A diagram of an interleaver with depth 4 that is compatible with the (255,223) RS code is shown. Specific interleaver requirements are discussed after the inner code recommendations.
Protecting peroxidase activity of multilayer enzyme-polyion films using outer catalase layers.
Lu, Haiyun; Rusling, James F; Hu, Naifei
2007-12-27
Films constructed layer-by-layer on electrodes with architecture {protein/hyaluronic acid (HA)}n containing myoglobin (Mb) or horseradish peroxidase (HRP) were protected against protein damage by H2O2 by using outer catalase layers. Peroxidase activity for substrate oxidation requires activation by H2O2, but {protein/HA}n films without outer catalase layers are damaged slowly and irreversibly by H2O2. The rate and extent of damage were decreased dramatically by adding outer catalase layers to decompose H2O2. Comparative studies suggest that protection results from catalase decomposing a fraction of the H2O2 as it enters the film, rather than by an in-film diffusion barrier. The outer catalase layers controlled the rate of H2O2 entry into inner regions of the film, and they biased the system to favor electrocatalytic peroxide reduction over enzyme damage. Catalase-protected {protein/HA}n films had an increased linear concentration range for H2O2 detection. This approach offers an effective way to protect biosensors from damage by H2O2.
Inner space/outer space - The interface between cosmology and particle physics
NASA Astrophysics Data System (ADS)
Kolb, Edward W.; Turner, Michael S.; Lindley, David; Olive, Keith; Seckel, David
A collection of papers covering the synthesis between particle physics and cosmology is presented. The general topics addressed include: standard models of particle physics and cosmology; microwave background radiation; origin and evolution of large-scale structure; inflation; massive magnetic monopoles; supersymmetry, supergravity, and quantum gravity; cosmological constraints on particle physics; Kaluza-Klein cosmology; and future directions and connections in particle physics and cosmology.
Scaling in two-fluid pinch-off
NASA Astrophysics Data System (ADS)
Pommer, Chris; Harris, Michael; Basaran, Osman
2010-11-01
The physics of two-fluid pinch-off, which arises whenever drops, bubbles, or jets of one fluid are ejected from a nozzle into another fluid, is scientifically important and technologically relevant. While the breakup of a drop in a passive environment is well understood, the physics of pinch-off when both the inner and outer fluids are dynamically active remains inadequately understood. Here, the breakup of a compound jet whose core and shell are incompressible Newtonian fluids is analyzed computationally when the interior is a "bubble" and the exterior is a liquid. The numerical method employed is an implicit method of lines ALE algorithm which uses finite elements with elliptic mesh generation and adaptive finite differences for time integration. Thus, the new approach neither starts with a priori idealizations, as has been the case with previous computations, nor is limited to length scales above that set by the wavelength of visible light as in any experimental study. In particular, three distinct responses are identified as the ratio m of the outer fluid's viscosity to the inner fluid's viscosity is varied. For small m, simulations show that the minimum neck radius r initially scales with time τ before breakup as r ˜0.58° (in accord with previous experiments and inviscid fluid models) but that r ˜τ once r becomes sufficiently small. For intermediate and large values of m, r ˜&αcirc;, where the exponent α may not equal one, once again as r becomes sufficiently small.
NASA Astrophysics Data System (ADS)
Norrbin, F.; Priou, P. D.; Varela, A. P.
2016-02-01
We studied the influence of dense layers of phytoplankton and aggregates on shaping the vertical distribution of zooplankton in a North Norwegian fjord using a Video Plankton Recorder (VPR). This instrument provided fine-scale vertical distribution (cm-m scale) of planktonic organisms as well as aggregates of marine snow in relation to environmental conditions. At the height - later stage of the spring phytoplankton bloom in May, the outer part of the fjord was dominated by Phaeocystis pouchetii, while diatoms (Chaetoceros spp.) were dominating in the innermost basin. Small copepods species like Pseudocalanus spp., Microsetella norvegica, and Oithona spp. prevailed over larger copepod species in the inner part of the fjord whereas the outer part was dominated by large copepods like Calanus finmarchicus. While the zooplankton where spread out over the water column during the early stage of the bloom, in May they were linked to the phytoplankton vertical distribution and in the winter situation they were found in deeper waters. Herbivorous zooplankton species were affected by phytoplankton species composition; C. finmarchicus and Pseudocalanus spp. avoided the dense layer of P. pouchetii while herbivorous zooplankton matched the distribution of the diatom-dominated bloom. Small, omnivorous copepod species like Microsetella sp., Oithona sp. and Pseudocalanus sp. were often associated with dense layers of snow aggregates. This distribution may provide a shelter from predators as well as a food source. Natural or anthropogenic-induced changes in phytoplankton composition and aggregate distribution may thus influence food-web interactions.
Investigation of Ionospheric Turbulence and Whistler Wave Interactions with Space Plasmas
2012-11-21
an oscillating LOS velocity with the same periodicity as the heating modulation pattern. A set of Fourier periodogram from the MUIR LOS velocity...scale ionospheric turbulence are discussed separately, viz., (a) anomalous heat source-induced acoustic gravity waves (AGW), and (b) HF radio wave...ionospheric ducts, acoustic gravity waves (AGWs), anomalous heat sources, inner and outer radiation belts, L parameter, whistler wave interactions
Hönlinger, A; Bömer, U; Alconada, A; Eckerskorn, C; Lottspeich, F; Dietmeier, K; Pfanner, N
1996-01-01
The preprotein translocase of the outer mitochondrial membrane is a multi-subunit complex with receptors and a general import pore. We report the molecular identification of Tom7, a small subunit of the translocase that behaves as an integral membrane protein. The deletion of TOM7 inhibited the mitochondrial import of the outer membrane protein porin, whereas the import of preproteins destined for the mitochondrial interior was impaired only slightly. However, protein import into the mitochondrial interior was strongly inhibited when it occurred in two steps: preprotein accumulation at the outer membrane in the absence of a membrane potential and subsequent further import after the re-establishment of a membrane potential. The delay of protein import into tom7delta mitochondria seemed to occur after the binding of preproteins to the outer membrane receptor sites. A lack of Tom7 stabilized the interaction between the receptors Tom20 and Tom22 and the import pore component Tom40. This indicated that Tom7 exerts a destabilizing effect on part of the outer membrane translocase, whereas Tom6 stabilizes the interaction between the receptors and the import pore. Synthetic growth defects of the double mutants tom7delta tom20delta and tom7delta tom6delta provided genetic evidence for the functional relationship of Tom7 with Tom20 and Tom6. These results suggest that (i) Tom7 plays a role in sorting and accumulation of the preproteins at the outer membrane, and (ii) Tom7 and Tom6 perform complementary functions in modulating the dynamics of the outer membrane translocase. Images PMID:8641278
Fabrication of biomimetic nanomaterials and their effect on cell behavior
NASA Astrophysics Data System (ADS)
Porri, Teresa Jane
Cells in vivo respond to an intricate combination of chemical and mechanical signals. The corneal epithelium, a structure which prevents the admission of bacteria and undesirable molecules into the eye, grows on a basement membrane which presents both nanoscale topographic and adhesive chemical signals. An effective approach to biomaterials design takes advantage of the synergistic effects of the multiple cellular inputs which are available to engineer cell-substrate interactions. We have previously demonstrated the effects of nanoscale topography on a variety of corneal epithelial cell behaviors. To gain a better understanding of cell-level control in vivo, we employ a systems-level approach which looks at the effect of nanoscale topography in conjunction with a biomimetic surface chemistry. First, we discuss a novel method of fabricating nanoscale topography through templated electroless deposition of gold into PVP-coated polycarbonate membranes. This technique creates nanowires of gold with an uniform outer diameter that is dependent upon the size of the pores in the membrane used, and a nanowire length that is dependent upon the extent of etching into the polymer membrane. The gold nanowires can be modified with self-assembled monolayers (SAMs) of alkanethiols. Using these substrates, we study the effect of topographic length scale and surface chemistry on cells attached to a discontinuous nanoscale topography, and find a transition in cellular behavior at a length scale (between 600 and 2000 nm inter-wire spacing) that is commensurate with the transition length scale seen on surfaces presenting continuous grooves and ridges. Secondly, we study the effect of non-fouling peptide-modified SAMs on cellular behavior. We examine the effect of co-presented RGD and AG73 peptides and show that cell spreading is a function of the relative ratios of RGD and AG73 present on the surface. Finally, we explore the combinatorial effects of biologically relevant chemistry with anisotropic nanoscale topography with dimensions that vary from the micron to the nanoscale. We show that integrin binding, syndecan binding, and topographic length scale each independently influence epithelial cell response to nanoscale features, lending a high degree of control over cell morphologic responses.
Search for dark matter from the Galactic halo with the IceCube Neutrino Telescope
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brown, A. M.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Denger, T.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schoenwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Stür, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.
2011-07-01
Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of data from the IceCube 22-string configuration detector acquired during 2007 and 2008. The effect of halo model choice in the extracted limit is reduced by performing a search that considers the outer halo region and not the Galactic Center. We constrain any large-scale neutrino anisotropy and are able to set a limit on the dark matter self-annihilation cross section of ⟨σAv⟩≃10-22cm3s-1 for weakly interacting massive particle masses above 1 TeV, assuming a monochromatic neutrino line spectrum.
The enigmatic WR46: A binary or a pulsator in disguise. II. The spectroscopy
NASA Astrophysics Data System (ADS)
Veen, P. M.; van Genderen, A. M.; Crowther, P. A.; van der Hucht, K. A.
2002-04-01
We present spectroscopic monitoring of the Wolf-Rayet (WR) star WR 46 between 1989 and 1998, which has been obtained simultaneously with multicolour photometry (Veen et al. \\cite{Veen02a}, Paper I). The spectroscopic monitoring data show that the radiative fluxes of the optical emission lines (O Vi 3811/34, O Vi 5290, N V 4944, N V 4604/20, He Ii 4686, He Ii 4859, He Ii 5411, He Ii 6560) vary in concert with the photometric single-wave (sw) frequency f_sw (Paper I), and also the difference of that period between 1989 and 1991. The line-flux variability does not provide obvious support for a short second period (Paper I). The radial-velocity variations show a remarkable behaviour: usually, they display a coherent single-wave on the time scale of the double-wave period, while during some nights the radial velocity appears surprisingly to stay constant (see also Marchenko et al. \\cite{Marchenko00}). These so-called stand-stills may be related to the observed time-delay effects. A time-delay effect manifests itself in several phenomena. Firstly, the line flux shows small, but persistent, time-delays for lines originating from lower optical depths, the outer-wind lines (N V 4604/20 and He Ii). Secondly, the radial-velocity variations display much larger time-delays than the line fluxes and their behaviour appears less consistent. Assuming that the double-wave period controls the radial velocity, the stand-still is observed to start when the radial motion is in anti-phase with the presumed orbital motion. Thirdly, the outer-wind lines are observed to enter a stand-still much later than the inner-wind lines. Fourthly, the radial-velocity variations of the peaks of the emission lines precede the radial-velocity variations of the wings of those lines. In addition to line-flux- and radial-velocity variability, the He Ii 4686 emission line shows pronounced line-profile changes on a time scale of hours. Our monitoring is not sufficient to study this in detail. Furthermore, we discern a flaring behaviour, i.e., an emission bump appeared on the blue wing of two He Ii-lines (around -1700 km s-1) lasting less than 5 min. Finally, the line fluxes follow the observed brightenings, also on a time scale of years. We conclude that the short-term cyclic variability confirms the WR nature as established from the WR standard model analysis by Crowther et al. (\\cite{Crowther95}; hereafter referred to as CSH). The various time-delay effects are consistent with the formation of the spectrum in a stratified stellar wind. The outer layers trail the inner ones. The variability is inconsistent with the formation of the spectrum in a stellar disc as proposed by Niemela et al. (\\cite{Niemela95}) and Steiner & Diaz (\\cite{Steiner98}). The long-term cyclic variability of the brightness and line fluxes is related to an increase of the mass-loss-rate, and, possibly, to the period changes. The interpretation of the nature of the variability is deferred to Veen et al. (\\cite{Veen02b}, Paper III). Based on observations collected at the European Southern Observatory (ESO), La Silla, Chile.
The effect of successful contact lens wear on mucosal immunity of the eye.
McClellan, K A; Cripps, A W; Clancy, R L; Billson, F A
1998-08-01
This study aimed to assess the effect of contact lens wear on the mucosal defenses of the outer eye against infection. A case-controlled study of daily contact lens wearers in their initial 6 months of contact lens wear. Contact lens wearers (mean age, 23.1 years; 47 subjects) were compared with age-matched control subjects (mean age, 24.7 years; 44 subjects). Outer eye defenses were studied by assay of tear constituents and quantitative conjunctival microbiology. Antimicrobial activity of tears was studied by assay of total immunoglobulin A (IgA), IgA isotype-specific antibodies reactive with Escherichia coli, Haemophilus influenzae, Staphylococcus epidermidis, albumin and lysozyme, and the ocular surface microbial load determined using quantitative microbiology of the conjunctival sac. The IgA isotype-specific antibodies reactive with E. coli (P = 0.03) and S. epidermidis (P = 0.068) were lower in contact lens wearers, but antibody:albumin ratios were not significantly different in the two groups. Contact lens wear also had no significant effect on tear IgA, albumin, or lysozyme or its ratios with albumin. Bacterial numbers and colonization rates for coagulase-negative staphylococci were greater in contact lens wearers than in age-matched control subjects. Corynebacterium sp. and non-Enterobacteriaceae (P = 0.007) were isolated more frequently and in greater numbers from contact lens wearers. Colonization rates were increased for Corynebacterium sp., but non-Enterobacteriaceae were transient. In both daily contact lens wearers and age-matched control subjects, most conjunctival flora were transient rather than colonizing, and no subject developed an outer eye infection during the study. These results suggest that daily contact lens wear does not significantly alter the mucosal defenses of the outer eye that function to eliminate organisms from the conjunctival sac and prevent outer eye infection.
NASA Technical Reports Server (NTRS)
Haas, J. E.
1982-01-01
Three stator configurations were studied to determine the effect of stator outer endwall contouring on stator performance. One configuration was a cylindrical stator design. One contoured stator configuration had an S-shaped outer endwall, the other had a conical-convergent outer endwall. The experimental investigation consisted of annular surveys of stator exit total pressure and flow angle for each stator configuration over a range of stator pressure ratio. Radial variations in stator loss and aftermixed flow conditions were obtained when these data were compared with the analytical results to assess the validity of the analysis, good agreement was found.
Outer-Planet Mission Analysis Using Solar-Electric Ion Propulsion
NASA Technical Reports Server (NTRS)
Woo, Byoungsam; Coverstone, Victoria L.; Hartmann, John W.; Cupples, Michael
2003-01-01
Outer-planet mission analysis was performed using three next generation solar-electric ion thruster models. Optimal trajectories are presented that maximize the delivered mass to the designated outer planet. Trajectories to Saturn and Neptune with a single Venus gravity assist are investigated. For each thruster model, the delivered mass versus flight time curve was generated to obtain thruster model performance. The effects of power to the thrusters and resonance ratio of Venutian orbital periods to spacecraft period were also studied. Multiple locally optimal trajectories to Saturn and Neptune have been discovered in different regions of the parameter search space. The characteristics of each trajectory are noted.
NASA Technical Reports Server (NTRS)
Macks, E Fred; Nemeth, Zolton N
1951-01-01
A comparison of the operating characteristics of 75-millimeter-bore (size 215) cylindrical-roller one-piece inner-race-riding cage-type bearings was made using a laboratory test rig and a turbojet engine. Cooling correlation parameters were determined by means of dimensional analysis, and the generalized results for both the inner- and outer-race bearing operating temperatures are compared for the laboratory test rig and the turbojet engine. Inner- and outer-race cooling-correlation curves were obtained for the turbojet-engine turbine-roller bearing with the same inner- and outer-race correlation parameters and exponents as those determined for the laboratory test-rig bearing. The inner- and outer-race turbine roller-bearing temperatures may be predicted from a single curve, regardless of variations in speed, load, oil flow, oil inlet temperature, oil inlet viscosity, oil-jet diameter or any combination of these parameters. The turbojet-engine turbine-roller-bearing inner-race temperatures were 30 to 60 F greater than the outer-race-maximum temperatures, the exact values depending on the operating condition and oil viscosity; these results are in contrast to the laboratory test-rig results where the inner-race temperatures were less than the outer-race-maximum temperatures. The turbojet-engine turbine-roller bearing, maximum outer-race circumferential temperature variation was approximately 30 F for each of the oils used. The effect of oil viscosity on inner- and outer-race turbojet-engine turbine-roller-bearing temperatures was found to be significant. With the lower viscosity oil (6x10(exp -7) reyns (4.9 centistokes) at 100 F; viscosity index, 83), the inner-race temperature was approximately 30 to 35 F less than with the higher viscosity oil (53x10(exp -7) reyns (42.8 centistokes) at 100 F; viscosity index, 150); whereas the outer-race-maximum temperatures were 12 to 28 F lower with the lower viscosity oil over the DN range investigated.
Jellyfish: Special Tools for Biological Research on Earth and in Space
NASA Technical Reports Server (NTRS)
Spangenberg, Dorothy B.
1991-01-01
The most intriguing nature of the jellyfish polyps is their ability to metamorphose, giving rise to tiny immature medusae called ephyrae which have a different form or shape from the polyps. The Aurelia Metamorphosis Test System was used to determine the subtle effects of hydrocarbons found in oil spills and the effects of X-irradiation on developing ephyrae. Currently, this test system is used to determine the effects of the gravity-less environment of outer space on the development and behavior of ephyrae. For this purpose, the effects of clinostat rotation on development of the ephyrae and their gravity receptor are being studied. The behavior of the ephyrae during 0 gravity achieved for short intervals of 30 seconds in parabolic flight is examined. The developing ephyrae and the mature ephyrae are exposed to gravity-less environment of outer space via a six or seven day shuttle experiment. If gravity receptors do form in outer space, they will be studied in detail using various types of microscopes, including the electron microscope, to determin whether they developed normally in space as compared with control on Earth.
The effects of radiation on the outer planets grand tour
NASA Technical Reports Server (NTRS)
1971-01-01
A handbook is presented which was designed to accompany an oral presentation on the effects of radiation on the outer planets grand tour (OPGT). A summary of OPGT radiation environments expected from natural sources and the radioisotope thermoelectric generators and basic radiation effects and processes are reviewed, and ionization and displacement effects are examined. The presentation summarizes the effects of radiation on miscellaneous spacecraft materials and devices. The annealing and hardening of electronics are described. Special emphasis is placed on microcircuits. Mathematical modeling of circuits affected by radiation and radiation environmental testing are discussed. A review of means of evaluating the performance and correcting failures of irradiated devices is also presented.
“Local” Dark Energy Outflows Around Galaxy Groups and Rich Clusters
NASA Astrophysics Data System (ADS)
Byrd, Gene G.; Chernin, A. D.; Teerikorpi, P.; Dolgachev, V. P.; Kanter, A. A.; Domozhilova, L. M.; Valtonen, M.
2013-01-01
First detected at large Gpc distances, dark energy is a vacuum energy formulated as Einstein's cosmological constant, Λ. We have found its effects on “small” 1-3 Mpc scales in our Local Group. We have now found these effects in other nearby groups using member Doppler shifts and 3D distances from group centers (Cen A-M83; M81-M82; CV I). For the larger 20-30 Mpc Virgo and Fornax clusters, we now have found similar effects. Observationally, for both groups and clusters, gravity dominates a bound central system. The system gravitation and dark energy create a “zero-gravity” radius (R_{ZG}) from the center where the two balance. Smaller members bound inside R_{ZG} may be pulled out along with the less bound members which recede farther. A linear increase of recession with distance results which approaches a linear global Hubble law. These outflows are seen around groups in cosmological simulations which include galaxies as small as ~10^{-4} of the group mass. Scaled plots of asymptotic recessional velocity, V/(H(R_{ZG})), versus distance/ R_{ZG} of the outer galaxies are very similar for both the small groups and large clusters. This similarity on 1-30 Mpc scales suggests that a quasi-stationary bound central component and an expanding outflow applies to a wide range of groups and clusters due to small scale action of dark energy. Our new text book: Byrd, G., Chernin, A., Terrikorpi, P. and Valtonen, M. 2012, "Paths to Dark Energy: Theory and Observation," de Gruyter, Berlin/Boston, contains background and cosmological simulation plots. Group data and scaled plots are in our new article: A. D. Chernin, P. Teerikorpi, V. P. Dolgachev, A. A. Kanter, L. M. Domozhilova, M. J. Valtonen, and G. G. Byrd, 2012, Astronomy Reports, Vol. 56 , p. 653-669.
The Role of Ring Current on Slot Region Penetration
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Elkington, Scot
2006-01-01
During magnetic quiet times, the inner belt, slot region and the outer belt are well defined regions. However, during some major storms, outer belt particles penetrate inward and significantly fill the slot region. In some extreme events, the outer belt particles travel through the slot and create a new belt in the inner region that persists from months to years. In this paper, we examine the role of the ring current on this radiation belt penetration into the slot region. The storm-time intensification of the ring current produces strong magnetic depression in the inner magnetosphere. This perturbation and its fluctuation enhance the radial transport and diffusion of the outer radiation belt particles. We perform kinetic and test-particle calculations to quantitatively assess the effects of the ring current field on filling of the slot region. Simulation results during major storms will be presented and discussed.
Energetic heavy ion dominance in the outer magnetosphere
NASA Astrophysics Data System (ADS)
Cohen, Ian; Mitchell, Don; Mauk, Barry; Anderson, Brian; Ohtani, Shin; Kistler, Lynn; Hamilton, Doug; Turner, Drew; Blake, Bern; Fennell, Joe; Jaynes, Allison; Leonard, Trevor; Gerrard, Andy; Lanzerotti, Lou; Burch, Jim
2017-04-01
Despite the extensive study of ring current ion composition, little exists in the literature regarding the nature of energetic ions with energies >200 keV, especially in the outer magnetosphere (r > 9 RE). In particular, information on the relative fluxes and spectral shapes of the different ion species over these energy ranges is lacking. However, new observations from the Energetic Ion Spectrometer (EIS) instruments on the Magnetospheric Multiscale (MMS) spacecraft have revealed the dominance of heavy ion species (specifically oxygen and helium) at these energies in the outer magnetosphere. This result is supported by prior but previously unreported observations obtained by the Geotail spacecraft, which also show that these heavy ion species are primarily dominated by multiply-charged populations from the solar wind. Using additional observations from the inner magnetosphere obtained by the RBSPICE instrument on the Van Allen Probes suggest, we will investigate whether this effect is due to a preferential loss of protons in the outer magnetosphere.
Eshghi, Azad; Pinne, Marija; Haake, David A; Zuerner, Richard L; Frank, Ami; Cameron, Caroline E
2012-03-01
Recent studies have revealed that bacterial protein methylation is a widespread post-translational modification that is required for virulence in selected pathogenic bacteria. In particular, altered methylation of outer-membrane proteins has been shown to modulate the effectiveness of the host immune response. In this study, 2D gel electrophoresis combined with MALDI-TOF MS identified a Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 protein, corresponding to ORF LIC11848, which undergoes extensive and differential methylation of glutamic acid residues. Immunofluorescence microscopy implicated LIC11848 as a surface-exposed outer-membrane protein, prompting the designation OmpL32. Indirect immunofluorescence microscopy of golden Syrian hamster liver and kidney sections revealed expression of OmpL32 during colonization of these organs. Identification of methylated surface-exposed outer-membrane proteins, such as OmpL32, provides a foundation for delineating the role of this post-translational modification in leptospiral virulence.
Gushchin, V I; Zaprisa, N; Kolinichenko, T B; Efimov, V A; Smirnova, T M; Vinokhodova, A G
1997-01-01
Analyzed were indices of communicative activity of crew members during audio- and computer sessions in order to assess status and effectiveness of communicative interaction of crew with external parties. The investigation gave another evidence that an isolated small group develops "closing" and "internal censorship" in contacts with outer personnel. The conclusion was based on limited in intensity, number, topical spectrum and outer companion preference communication. These appeared to be parallel to egocentrism manifested by claims on supreme concern, sensitivity to speech tones and matter of massages of outer supporters, and attempted manipulation with the outer personnel. In the course of the experiment, the subjects were getting more into the habit to use the information channels for expansion of their emotional contacts and "dumping" emotions. Differential attitude to different duty teams and selective manner of communication underlie differences in the intensity of crew-ground personnel communication.
Impacts of raindrop evaporative cooling on tropical cyclone secondary eyewall formation
NASA Astrophysics Data System (ADS)
Ge, Xuyang; Guan, Liang; Yan, Ziyu
2018-06-01
The impacts of raindrop evaporative cooling on secondary eyewall formation (SEF) of simulated tropical cyclones are investigated using idealized numerical experiments. The results suggest that the raindrop evaporative cooling effect is beneficial to the development of secondary eyewall through the planetary boundary layer (PBL) cold pool process. The evaporative cooling-driven downdrafts bring about the surface cold pool beneath a precipitation cloud. This cold pool dynamics act as a lifting mechanism to trigger the outer convection. The radially outward propagation of spiral rainbands broadens the TC size, by which modifies the surface heat fluxes and thus outer convection. Furthermore, the unbalanced PBL process contributes to the SEF. The radially outward surface outflows forces convection at outer region and thus favors a larger TC size. A larger TC implies an enhanced inertial stability at the outer region, which favors a higher conversion efficiency of diabatic heating to kinetic energy.
Progressive outer retinal necrosis: a missed diagnosis and a blind, young woman.
Parekh, Parth; Oldfield, Edward C; Marik, Paul E
2013-04-22
We present a 33-year-old woman with a history significant for HIV/AIDS (CD4 count of 17) and diabetes mellitus who was diagnosed as having progressive outer retinal necrosis (PORN) after presenting with peripheral vision loss. This case provided a diagnostic challenge and demonstrates the devastating effects of a misdiagnosis as it pertains to PORN.
Progressive outer retinal necrosis: a missed diagnosis and a blind, young woman
Parekh, Parth; Oldfield, Edward C; Marik, Paul E
2013-01-01
We present a 33-year-old woman with a history significant for HIV/AIDS (CD4 count of 17) and diabetes mellitus who was diagnosed as having progressive outer retinal necrosis (PORN) after presenting with peripheral vision loss. This case provided a diagnostic challenge and demonstrates the devastating effects of a misdiagnosis as it pertains to PORN. PMID:23608868
Piezoelectricity of green carp scales
NASA Astrophysics Data System (ADS)
Jiang, H. Y.; Yen, F.; Huang, C. W.; Mei, R. B.; Chen, L.
2017-04-01
Piezoelectricity takes part in multiple important functions and processes in biomaterials often vital to the survival of organisms. Here, we investigate the piezoelectric properties of fish scales of green carp by directly examining their morphology at nanometer levels. Two types of regions are found to comprise the scales, a smooth one and a rough one. The smooth region is comprised of a ridge and trough pattern and the rough region characterized by a flat base with an elevated mosaic of crescents. Piezoelectricity is found on the ridges and base regions of the scales. From clear distinctions between the composition of the inner and outer surfaces of the scales, we identify the piezoelectricity to originate from the presence of hydroxyapatite which only exists on the surface of the fish scales. Our findings reveal a different mechanism of how green carp are sensitive to their surroundings and should be helpful to studies related to the electromechanical properties of marine life and the development of bio-inspired materials.
The New Bedford Harbor Superfund site long-term monitoring program (1993-2009).
Nelson, William G; Bergen, Barbara J
2012-12-01
New Bedford Harbor (NBH), located in southeastern Massachusetts, was designated as a marine Superfund site in 1983 due to sediment contamination by polychlorinated biphenyls (PCBs). Based on risks to human health and the environment, the first two phases of the site cleanup involved dredging PCB-contaminated sediments from the harbor. Therefore, a long-term monitoring program (LTM) was developed to measure spatial and temporal chemical and biological changes in sediment, water, and biota to assess the effects and effectiveness of the remedial activities. A systematic, probabilistic sampling design was used to select sediment sampling stations. This unbiased design allowed the three segments of the harbor to be compared spatially and temporally to quantify changes resulting from dredging the contaminated sediments. Sediment was collected at each station, and chemical (e.g., PCBs and metals), physical (e.g., grain size), and biological (e.g., benthic community) measurements were conducted on all samples. This paper describes the overall NBH-LTM approach and the results from the five rounds of sample collections. There is a decreasing spatial gradient in sediment PCB concentrations from the northern boundary (upper harbor) to the southern boundary (outer harbor) of the site. Along this same transect, there is an increase in biological condition (e.g., benthic community diversity). Temporally, the contaminant and biological gradients have been maintained since the 1993 baseline collection; however, since the onset of full-scale remediation, PCB concentrations have decreased throughout the site, and one of the benthic community indices has shown significant improvement in the lower and outer harbor areas.
NASA Technical Reports Server (NTRS)
Knott, P. R.; Janardan, B. A.; Majjigi, R. K.; Shutiani, P. K.; Vogt, P. G.
1981-01-01
Six coannular plug nozzle configurations having inverted velocity and temperature profiles, and a baseline convergent conical nozzle were tested for simulated flight acoustic evaluation in General Electric's Anechoic Free-Jet Acoustic Facility. The nozzles were tested over a range of test conditions that are typical of a Variable Cycle Engine for application to advanced high speed aircraft. The outer stream radius ratio for most of the configurations was 0.853, and the inner-stream-outer-stream area ratio was tested in the range of 0.54. Other variables investigated were the influence of bypass struts, a simple noncontoured convergent-divergent outer stream nozzle for forward quadrant shock noise control, and the effects of varying outer stream radius and inner-stream-to-outer-stream velocity ratios on the flight noise signatures of the nozzles. It was found that in simulated flight, the high-radius-ratio coannular plug nozzles maintain their jet noise and shock noise reduction features previously observed in static testing. The presence of nozzle bypass structs will not significantly effect the acoustic noise reduction features of a General Electric-type nozzle design. A unique coannular plug nozzle flight acoustic spectral prediction method was identified and found to predict the measured results quite well. Special laser velocimeter and acoustic measurements were performed which have given new insight into the jet and shock noise reduction mechanisms of coannular plug nozzles with regard to identifying further beneficial research efforts.
Formation of a White-Light Jet Within a Quadrupolar Magnetic Configuration
NASA Astrophysics Data System (ADS)
Filippov, Boris; Koutchmy, Serge; Tavabi, Ehsan
2013-08-01
We analyze multi-wavelength and multi-viewpoint observations of a large-scale event viewed on 7 April 2011, originating from an active-region complex. The activity leads to a white-light jet being formed in the outer corona. The topology and evolution of the coronal structures were imaged in high resolution using the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). In addition, large field-of-view images of the corona were obtained using the Sun Watcher using Active Pixel System detector and Image Processing (SWAP) telescope onboard the PRoject for Onboard Autonomy (PROBA2) microsatellite, providing evidence for the connectivity of the coronal structures with outer coronal features that were imaged with the Large Angle Spectrometric Coronagraph (LASCO) C2 on the S olar and Heliospheric Observatory (SOHO). The data sets reveal an Eiffel-tower type jet configuration extending into a narrow jet in the outer corona. The event starts from the growth of a dark area in the central part of the structure. The darkening was also observed in projection on the disk by the Solar TErrestrial RElations Observatory-Ahead (STEREO-A) spacecraft from a different point of view. We assume that the dark volume in the corona descends from a coronal cavity of a flux rope that moved up higher in the corona but still failed to erupt. The quadrupolar magnetic configuration corresponds to a saddle-like shape of the dark volume and provides a possibility for the plasma to escape along the open field lines into the outer corona, forming the white-light jet.
Gulmez Sevim, Duygu; Unlu, Metin; Gultekin, Murat; Karaca, Cagatay
2018-02-12
There have been ongoing clinical trials of therapeutic agents in Huntington's disease (HD) which requires development of reliable biomarkers of disease progression. There have been studies in the literature with conflicting results on the involvement of retina in HD, and up to date there is not a study evaluating the single retinal layers in HD. We aimed to evaluate the specific retinal changes in HD and their usability as potential disease progression markers. This cross-sectional study used spectral-domain optical coherence tomography with automatic segmentation to measure peripapillary retinal nerve fiber layer (pRNFL) thickness and the thickness and volume of retinal layers in foveal scans of 15 patients with HD and 15 age- and sex-matched controls. Genetic testing results, disease duration, HD disease burden scores and Unified HD Rating Scales motor scores were acquired for the patients. Temporal pRNFL, macular RNFL (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer and outer plexiform layer thicknesses and IPL, retinal pigment epithelium and outer macular volume were found lower in HD compared to controls, while outer nuclear layer and outer retinal layer thickness were increased (p < 0.05). We found significant correlations between inner retinal layer thicknesses, most significantly with mRNFL and GCL and disease progression markers. The outcomes of this study points out that retinal layers, most significantly mRNFL and GCL, are strongly correlated with the disease progression in HD and could serve as useful biomarkers for disease progression.
Observation of a 3D Magnetic Null Point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, P.; Falco, M.; Guglielmino, S. L.
2017-03-10
We describe high-resolution observations of a GOES B-class flare characterized by a circular ribbon at the chromospheric level, corresponding to the network at the photospheric level. We interpret the flare as a consequence of a magnetic reconnection event that occurred at a three-dimensional (3D) coronal null point located above the supergranular cell. The potential field extrapolation of the photospheric magnetic field indicates that the circular chromospheric ribbon is cospatial with the fan footpoints, while the ribbons of the inner and outer spines look like compact kernels. We found new interesting observational aspects that need to be explained by models: (1)more » a loop corresponding to the outer spine became brighter a few minutes before the onset of the flare; (2) the circular ribbon was formed by several adjacent compact kernels characterized by a size of 1″–2″; (3) the kernels with a stronger intensity emission were located at the outer footpoint of the darker filaments, departing radially from the center of the supergranular cell; (4) these kernels started to brighten sequentially in clockwise direction; and (5) the site of the 3D null point and the shape of the outer spine were detected by RHESSI in the low-energy channel between 6.0 and 12.0 keV. Taking into account all these features and the length scales of the magnetic systems involved in the event, we argue that the low intensity of the flare may be ascribed to the low amount of magnetic flux and to its symmetric configuration.« less
Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers
NASA Astrophysics Data System (ADS)
Watanabe, T.; Zhang, X.; Nagata, K.
2018-03-01
The turbulent/non-turbulent interface (TNTI) detected in direct numerical simulations is studied for incompressible, temporally developing turbulent boundary layers at momentum thickness Reynolds number Reθ ≈ 2000. The outer edge of the TNTI layer is detected as an isosurface of the vorticity magnitude with the threshold determined with the dependence of the turbulent volume on a threshold level. The spanwise vorticity magnitude and passive scalar are shown to be good markers of turbulent fluids, where the conditional statistics on a distance from the outer edge of the TNTI layer are almost identical to the ones obtained with the vorticity magnitude. Significant differences are observed for the conditional statistics between the TNTI detected by the kinetic energy and vorticity magnitude. A widely used grid setting determined solely from the wall unit results in an insufficient resolution in a streamwise direction in the outer region, whose influence is found for the geometry of the TNTI and vorticity jump across the TNTI layer. The present results suggest that the grid spacing should be similar for the streamwise and spanwise directions. Comparison of the TNTI layer among different flows requires appropriate normalization of the conditional statistics. Reference quantities of the turbulence near the TNTI layer are obtained with the average of turbulent fluids in the intermittent region. The conditional statistics normalized by the reference turbulence characteristics show good quantitative agreement for the turbulent boundary layer and planar jet when they are plotted against the distance from the outer edge of the TNTI layer divided by the Kolmogorov scale defined for turbulent fluids in the intermittent region.
NASA Astrophysics Data System (ADS)
Friday, Nancy A.; Waite, Janice M.; Zerbini, Alexandre N.; Moore, Sue E.
2012-06-01
Visual line transect surveys for cetaceans were conducted on the eastern Bering Sea shelf in association with pollock stock assessment surveys aboard the NOAA ship Miller Freeman in June and July of 1999, 2000, 2002, and 2004. Transect survey effort ranged from 1188 km in 1999 to 3761 km in 2002. Fin whales (Balaenoptera physalus) were the most common large whale in all years except 2004 when humpback whales (Megaptera novaeangliae) were more abundant. Dall's porpoise (Phocoenoides dalli) were the most common small cetacean in all years. Abundance estimates were calculated by year for each oceanographic domain: coastal, middle, and outer/slope. The middle and outer/slope domains were divided into two strata ("north" and "south") because of variable survey effort. The distribution and abundance of baleen whales changed between the earlier (colder) and later (warmer) survey years. Fin whales consistently occupied the outer shelf and secondarily the middle shelf, and their abundance was an order of magnitude greater in cold compared to warm years. Humpback whales "lived on the margin" of the northern Alaska Peninsula, eastern Aleutian Islands and Bristol Bay; their preferred habitat is possibly associated with areas of high prey availability due to nutrient upwelling and aggregation mechanisms. Minke whales (Balaenoptera acutorostrata) occur shoreward of fin whales in the outer and middle shelf and in coastal habitats along the Alaska Peninsula. The highest abundance for this species was observed in a cold (1999) year. No clear relationship emerged for odontocetes with regard to warm and cold years. Dall's porpoise occupied both outer and middle domains and harbor porpoise (Phocoena phocoena) were more common in middle and coastal domains. This study provided a unique, broad-scale assessment of cetacean distribution and abundance on the eastern Bering Sea shelf and a baseline for future comparisons.
Disruption of Alfvénic Turbulence by Magnetic Reconnection in a Collisionless Plasma
NASA Astrophysics Data System (ADS)
Mallet, A.; Schekochihin, A. A.; Chandran, B. D. G.
2017-12-01
We propose a mechanism whereby the intense, sheet-like structures naturally formed by dynamically aligning Alfvénic turbulence are destroyed by the onset of magnetic reconnection at a scale λD, which we term the "disruption scale". The scaling of λD depends on the order of the statistics being considered, with more intense structures being disrupted at larger scales, and on the physical mechanism which effects the reconnection. In a low-β collisionless plasma, the disruption scale for the structures which dominate the energy spectrum is λD˜L⊥(deρs)4/9, where de is the electron inertial scale, ρs is the ion sound scale, and L⊥ is the outer scale of the turbulence. When βe and ρs/L⊥ are sufficiently small, λD is larger than ρs and there is a break in the energy spectrum at λD, rather than at ρs. We predict that the energy spectrum in the short range of scales between λD and ρs is steeper than k⊥-3, when this range exists. Such a "transition range" is sometimes observed in the solar wind turbulence. We further propose that the structures produced by the disruption process are circularised flux ropes, which may have already been observed in the solar wind. We make predictions for the amplitude and radius of these structures, and quantify the importance of the reconnection process by estimating the fraction of the remaining undisrupted structures at the ion scale. We show that at low enough βe, the disruption process significantly alters the nature of the fluctuations present at the ion scale, which provide the starting point for the sub-ion-scale kinetic-Alfvén-wave cascade. Thus, magnetic reconnection is shown to be crucially important to the turbulent cascade.
Kawaji, H; Mizuno, T; Mizushima, S
1979-01-01
Supplementation of the growth medium with high concentrations of sugars or low-molecular-weight dextrans results in a drastic change in the ratio of outer membrane proteins O-8 and O-9, due to induction of O-8 synthesis and suppression of O-9 synthesis. Sugars and dextrans of molecular weights greater than 600 to 700 switched the synthesis of O-9 to that of O-8 more effectively than those of lower molecular weight, although the effect was almost the same within each of the two groups irrespective of the differences in molecular weight within the group. Proteins O-8 or O-9, or both, are responsible for the formation of pores that allow the passive diffusion of hydrophilic molecules whose molecular weights are smaller than about 600 (T. Nakae, Biochem. Biophys. Res. Commun. 71:877-884, 1976). The results indicate that substances that cannot pass through the outer membrane switch the synthesis of O-9 to that of O-8 more effectively than those that can penetrate this membrane with the aid of O-8, O-9, or both. It is suggested that the osmotic pressure exerted on the outer membrane plays an important role in the regulation of synthesis of the two proteins. PMID:391802
Lei, Lei; Tzekov, Radouil; Li, Huapeng; McDowell, J. Hugh; Gao, Guangping; Smith, W. Clay; Tang, Shibo; Kaushal, Shalesh
2017-01-01
The accumulation of lipofuscin in the retinal pigment epithelium (RPE) is dependent on the effectiveness of photoreceptor outer segment material degradation. This study explored the role of autophagy in the fate of RPE lipofuscin degradation. After seven days of feeding with either native or modified rod outer segments, ARPE-19 cells were treated with enhancers or inhibitors of autophagy and the autofluorescence was detected by fluorescence-activated cell sorting. Supplementation with different types of rod outer segments increased lipofuscin-like autofluorescence (LLAF) after the inhibition of autophagy, while the induction of autophagy (e.g., application of rapamycin) decreased LLAF. The effects of autophagy induction were further confirmed by Western blotting, which showed the conversion of LC3-I to LC3-II, and by immunofluorescence microscopy, which detected the lysosomal activity of the autophagy inducers. We also monitored LLAF after the application of several autophagy inhibitors by RNA-interference and confocal microscopy. The results showed that, in general, the inhibition of the autophagy-related proteins resulted in an increase in LLAF when cells were fed with rod outer segments, which further confirms the effect of autophagy in the fate of RPE lipofuscin degradation. These results emphasize the complex role of autophagy in modulating RPE autofluorescence and confirm the possibility of the pharmacological clearance of RPE lipofuscin by small molecules. PMID:28353645
Influence of the outer boundary condition on models of AGB stars
NASA Astrophysics Data System (ADS)
Wagstaff, G.; Weiss, A.
2018-07-01
Current implementations of the stellar atmosphere typically derive boundary conditions for the interior model from either grey plane-parallel atmospheres or scaled solar atmospheres, neither of which can be considered to have appropriate underlying assumptions for the Thermally Pulsing Asymptotic Giant Branch (TP-AGB). This paper discusses the treatment and influence of the outer boundary condition within stellar evolution codes, and the resulting effects on the AGB evolution. The complex interaction of processes, such as the third dredge up and mass-loss, governing the TP-AGB can be affected by varying the treatment of this boundary condition. Presented here are the results from altering the geometry, opacities, and the implementation of a grid of MARCS/COMARCS model atmospheres in order to improve this treatment. Although there are changes in the TP-AGB evolution, observable quantities, such as the final core mass, are not significantly altered as a result of the change of atmospheric treatment. During the course of the investigation, a previously unseen phenomenon in the AGB models was observed and further investigated. This is believed to be physical, although arising from specific conditions which make its presence unlikely. If it were present in stars, this phenomenon would increase the carbon-star lifetime above 10 Myr and increase the final core mass by ˜0.1 M⊙ in the narrow initial-mass range where it was observed (˜2-2.3 M⊙).
Influence of the Outer Boundary Condition on models of AGB stars
NASA Astrophysics Data System (ADS)
Wagstaff, G.; Weiss, A.
2018-04-01
Current implementations of the stellar atmosphere typically derive boundary conditions for the interior model from either grey plane-parallel atmospheres or scaled solar atmospheres, neither of which can be considered to have appropriate underlying assumptions for the Thermally Pulsing Asymptotic Giant Branch (TP-AGB). This paper discusses the treatment and influence of the outer boundary condition within stellar evolution codes, and the resulting effects on the AGB evolution. The complex interaction of processes, such as the third dredge up and mass loss, governing the TP-AGB can be affected by varying the treatment of this boundary condition. Presented here are the results from altering the geometry, opacities and the implementation of a grid of MARCS/COMARCS model atmospheres in order to improve this treatment. Although there are changes in the TP-AGB evolution, observable quantities, such as the final core mass, are not significantly altered as a result of the change of atmospheric treatment. During the course of the investigation, a previously unseen phenomena in the AGB models was observed and further investigated. This is believed to be physical, although arising from specific conditions which make its presence unlikely. If it were present in stars, this phenomenon would increase the carbon-star lifetime above 10Myr and increase the final core mass by ˜0.1M⊙ in the narrow initial-mass range where it was observed (˜2 - 2.3M⊙).
SChloro: directing Viridiplantae proteins to six chloroplastic sub-compartments.
Savojardo, Castrense; Martelli, Pier Luigi; Fariselli, Piero; Casadio, Rita
2017-02-01
Chloroplasts are organelles found in plants and involved in several important cell processes. Similarly to other compartments in the cell, chloroplasts have an internal structure comprising several sub-compartments, where different proteins are targeted to perform their functions. Given the relation between protein function and localization, the availability of effective computational tools to predict protein sub-organelle localizations is crucial for large-scale functional studies. In this paper we present SChloro, a novel machine-learning approach to predict protein sub-chloroplastic localization, based on targeting signal detection and membrane protein information. The proposed approach performs multi-label predictions discriminating six chloroplastic sub-compartments that include inner membrane, outer membrane, stroma, thylakoid lumen, plastoglobule and thylakoid membrane. In comparative benchmarks, the proposed method outperforms current state-of-the-art methods in both single- and multi-compartment predictions, with an overall multi-label accuracy of 74%. The results demonstrate the relevance of the approach that is eligible as a good candidate for integration into more general large-scale annotation pipelines of protein subcellular localization. The method is available as web server at http://schloro.biocomp.unibo.it gigi@biocomp.unibo.it.
RADIOISOTOPE-DRIVEN DUAL-MODE PROPULSION SYSTEM FOR CUBESAT-SCALE PAYLOADS TO THE OUTER PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
N. D. Jerred; T. M. Howe; S. D. Howe
It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within themore » solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (approximately 1,000 kgs to LEO) can be targeted. Thus, in effect, allows for beneficial exploration to be conducted within limited budgets. Researchers at the Center for Space Nuclear Research (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO.« less
Direct Numerical Simulation of turbulent heat transfer up to Reτ = 2000
NASA Astrophysics Data System (ADS)
Hoyas, Sergio; Pérez-Quiles, Jezabel; Lluesma-Rodríguez, Federico
2017-11-01
We present a new set of direct numerical simulations of turbulent heat transfer in a channel flow for a Prandtl number of 0.71 and a friction Reynolds number of 2000. Mixed boundary conditions, i.e., wall temperature is time independent and varies linearly along streamwise component, have been used as boundary conditions for the thermal field. The effect of the size of the box in the one point statistics of the thermal field, and the kinetic energy, dissipation and turbulent budgets has been studied, showing that a domain with streamwise and spanwise sizes of 4 πh and 2 πh, where h is the channel half-height, is large enough to reproduce the one point statistics of larger boxes. The scaling of the previous quantities with respect to the Reynolds number has been also studied using a new dataset of simulations at smaller Reynolds number, finding two different scales for the inner and outer layers of the flow. Funded by project ENE2015-71333-R of the Spanish Ministerio de Economía y Competitividad.
Investigation of electroforming techniques. [fabrication of regeneratively cooled thrust chambers
NASA Technical Reports Server (NTRS)
Malone, G. A.
1975-01-01
Copper and nickel electroforming was examined for the purpose of establishing the necessary processes and procedures for repeatable, successful fabrication of the outer structures of regeneratively cooled thrust chambers. The selection of electrolytes for copper and nickel deposition is described. The development studies performed to refine and complete the processes necessary for successful chamber shell fabrication and the testing employed to verify the applicability of the processes and procedures to small scale hardware are described. Specifications were developed to afford a guideline for the electroforming of high quality outer shells on regeneratively cooled thrust chamber liners. Test results indicated repeatable mechanical properties could be produced in copper deposits from the copper sulfate electrolyte with periodic current reversal and in nickel deposits from the sulfamate solution. Use of inert, removable channel fillers and the conductivizing of such is described. Techniques (verified by test) which produce high integrity bonds to copper and copper alloy liners are discussed.
Accretion disc wind variability in the states of the microquasar GRS 1915+105
NASA Astrophysics Data System (ADS)
Neilsen, Joseph; Petschek, Andrew J.; Lee, Julia C.
2012-03-01
Continuing our study of the role and evolution of accretion disc winds in the microquasar GRS 1915+105, we present high-resolution spectral variability analysis of the β and γ states with the Chandra High-Energy Transmission Grating Spectrometer. By tracking changes in the absorption lines from the accretion disc wind, we find new evidence that radiation links the inner and outer accretion discs on a range of time-scales. As the central X-ray flux rises during the high-luminosity γ state, we observe the progressive overionization of the wind. In the β state, we argue that changes in the inner disc leading to the ejection of a transient 'baby jet' also quench the highly ionized wind from the outer disc. Our analysis reveals how the state, structure and X-ray luminosity of the inner accretion disc all conspire to drive the formation and variability of highly ionized accretion disc winds.
Splash control of drop impacts with geometric targets.
Juarez, Gabriel; Gastopoulos, Thomai; Zhang, Yibin; Siegel, Michael L; Arratia, Paulo E
2012-02-01
Drop impacts on solid and liquid surfaces exhibit complex dynamics due to the competition of inertial, viscous, and capillary forces. After impact, a liquid lamella develops and expands radially, and under certain conditions, the outer rim breaks up into an irregular arrangement of filaments and secondary droplets. We show experimentally that the lamella expansion and subsequent breakup of the outer rim can be controlled by length scales that are of comparable dimension to the impacting drop diameter. Under identical impact parameters (i.e., fluid properties and impact velocity) we observe unique splashing dynamics by varying the target cross-sectional geometry. These behaviors include (i) geometrically shaped lamellae and (ii) a transition in splashing stability, from regular to irregular splashing. We propose that regular splashes are controlled by the azimuthal perturbations imposed by the target cross-sectional geometry and that irregular splashes are governed by the fastest-growing unstable Plateau-Rayleigh mode.
Heat and momentum transfer for magnetoconvection in a vertical external magnetic field
NASA Astrophysics Data System (ADS)
Zürner, Till; Liu, Wenjun; Krasnov, Dmitry; Schumacher, Jörg
2016-11-01
The scaling theory of Grossmann and Lohse for the turbulent heat and momentum transfer is extended to the magnetoconvection case in the presence of a (strong) vertical magnetic field. The comparison with existing laboratory experiments and direct numerical simulations in the quasistatic limit allows to restrict the parameter space to very low Prandtl and magnetic Prandtl numbers and thus to reduce the number of unknown parameters in the model. Also included is the Chandrasekhar limit for which the outer magnetic induction field B is large enough such that convective motion is suppressed and heat is transported by diffusion. Our theory identifies four distinct regimes of magnetoconvection which are distinguished by the strength of the outer magnetic field and the level of turbulence in the flow, respectively. LIMTECH Research Alliance and Research Training Group GK 1567 on Lorentz Force Velocimetry, funded by the Deutsche Forschungsgemeinschaft.
[Impression Formation in the Diagnosis and Treatment of Mental Disorders].
Linden, Michael; Dymke, Tina; Hüttner, Susanne; Schnaubelt, Sabine
2016-06-01
The first item of any psychopathological assessment is "general impression". There is some research under the heading of "impression formation" which shows that the outer appearance of a person decides about how a person is perceived by others and how others react. Impression formation is an important factor in social interaction. This is of special importance in mental disorders, which may express themselves in a distorted impression formation. As impression formation is by and large an emotional process, measurement can be done by adjective lists. An example is the bipolar MED rating scale. Such lists can be used in therapy to help patients and therapists to understand the problem and initiate modifications. A special group intervention in occupational therapy is described. Results suggest that impression formation is quite objective, that self- and observer judgments coincide and that therapy can help to adopt a less irritating outer appearance. © Georg Thieme Verlag KG Stuttgart · New York.
Synchronous interhemispheric Holocene climate trends in the tropical Andes
Polissar, Pratigya J.; Abbott, Mark B.; Wolfe, Alexander P.; Vuille, Mathias; Bezada, Maximiliano
2013-01-01
Holocene variations of tropical moisture balance have been ascribed to orbitally forced changes in solar insolation. If this model is correct, millennial-scale climate evolution should be antiphased between the northern and southern hemispheres, producing humid intervals in one hemisphere matched to aridity in the other. Here we show that Holocene climate trends were largely synchronous and in the same direction in the northern and southern hemisphere outer-tropical Andes, providing little support for the dominant role of insolation forcing in these regions. Today, sea-surface temperatures in the equatorial Pacific Ocean modulate rainfall variability in the outer tropical Andes of both hemispheres, and we suggest that this mechanism was pervasive throughout the Holocene. Our findings imply that oceanic forcing plays a larger role in regional South American climate than previously suspected, and that Pacific sea-surface temperatures have the capacity to induce abrupt and sustained shifts in Andean climate. PMID:23959896
Torque scaling in small-gap Taylor-Couette flow with smooth or grooved wall
NASA Astrophysics Data System (ADS)
Zhu, Bihai; Ji, Zengqi; Lou, Zhengkun; Qian, Pengcheng
2018-03-01
The torque in the Taylor-Couette flow for radius ratios η ≥0.97 , with smooth or grooved wall static outer cylinders, is studied experimentally, with the Reynolds number of the inner cylinder reaching up to Rei=2 ×105 , corresponding to the Taylor number up to Ta =5 ×1010 . The grooves are perpendicular to the mean flow, and similar to the structure of a submersible motor stator. It is found that the dimensionless torque G , at a given Rei and η , is significantly greater for grooved cases than smooth cases. We compare our experimental torques for the smooth cases to the fit proposed by Wendt [F. Wendt, Ing.-Arch. 4, 577 (1993), 10.1007/BF02084936] and the fit proposed by Bilgen and Boulos [E. Bilgen and R. Boulos, J Fluids Eng. 95, 122 (1973), 10.1115/1.3446944], which shows both fits are outside their range for small gaps. Furthermore, an additional dimensionless torque (angular velocity flux) N uω in the smooth cases exhibits an effective scaling of N uω˜T a0.39 in the ultimate regime, which occurs at a lower Taylor number, Ta ≈3.5 ×107 , than the well-explored η =0.714 case (at Ta ≈3 ×108 ). The same effective scaling exponent, 0.39, is also evident in the grooved cases, but for η =0.97 and 0.985, there is a peak before this exponent appears.
Geramy, Allahyar; Hassanpour, Mehdi; Emadian Razavi, Elham sadat
2015-01-01
Objectives: This study sought to assess distal and lateral forces and moments of asymmetric headgears by variable outer bow lengths. Materials and Methods: Four 3D finite element method (FEM) models of a cervical headgear attached to the maxillary first molars were designed in SolidWorks 2010 software and transferred to ANSYS Workbench ver. 11 software. Models contained the first molars, their periodontal ligament (PDL), cancellous and cortical bones, a mesiodistal slice of the maxillae and the headgear. Models were the same except for the outer bow length in headgears. The headgear was symmetric in model 1. In models 2 to 4, the headgears were asymmetric in length with differences of 5mm, 10mm and 15mm, respectively. A 2.5 N force in horizontal plane was applied and the loading manner of each side of the outer bow was calculated trigonometrically using data from a volunteer. Results: The 15mm difference in outer bow length caused the greatest difference in lateral (=0.21 N) and distal (= 1.008 N) forces and also generated moments (5.044 N.mm). Conclusion: As the difference in outer bow length became greater, asymmetric effects increased. Greater distal force in the longer arm side was associated with greater lateral force towards the shorter arm side and more net yawing moment. Clinical Relevance: A difference range of 1mm to 15 mm of length in cervical headgear can be considered as a safe length of outer bow shortening in clinical use. PMID:26622275
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belov, A. S., E-mail: alexis-belov@yandex.ru
2015-10-15
Results of numerical simulations of the near-Earth plasma perturbations induced by powerful HF radio waves from the SURA heating facility are presented. The simulations were performed using a modified version of the SAMI2 ionospheric model for the input parameters corresponding to the series of in-situ SURA–DEMETER experiments. The spatial structure and developmental dynamics of large-scale plasma temperature and density perturbations have been investigated. The characteristic formation and relaxation times of the induced large-scale plasma perturbations at the altitudes of the Earth’s outer ionosphere have been determined.
Dutta, Amlan; Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri
2016-01-01
We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism.
Major uncertainties influencing entry probe heat shield design
NASA Technical Reports Server (NTRS)
Congdon, W.
1974-01-01
Factors influencing the design of an outer planet probe heat shield are discussed. Major factors included are: uncertainties in composition and scale height of the planet atmospheres; the augmentation/attenuation of entry heating by ablation products requires more computer study and testing; carbon heat shields, especially carbon phenolic, possessing improved resistance to spallation need developing; and white silica reflecting heat shields with improved resistance to bulk vitrification need further developing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.Y.; Bentz, J.H.; Simpson, R.B.
1995-06-01
Reactor-scale ex-vessel boiling experiments were performed in the CYBL facility at Sandia National Laboratories. The boiling flow pattern outside the RPV bottom head shows a center pulsating region and an outer steady two-phase boundary layer region. The local heat transfer data can be correlated in terms of a modified Rohsenow correlation.
Phase Diversity and Polarization Augmented Techniques for Active Imaging
2007-03-01
build up a system model for use in algorithm development. 32 IV. Conventional Imaging and Atmospheric Turbulence With an understanding of scalar...28, 59, 115 Cholesky Factorization, 14, 42 C2n, see Turbulence Coherent Image Model, 36 Complete Data, see EM Algorithm Complex Coherence...Data, see EM Algorithm Homotopic, 62 Impulse Response, 34, 44 Incoherent Image Model, 36 Incomplete Data, see EM Algorithm Lo- Turbulence Outer Scale
NASA Technical Reports Server (NTRS)
Lecar, Myron; Franklin, Fred A.; Holman, Matthew J.; Murray, Norman J.
2001-01-01
The physical basis of chaos in the solar system is now better understood: In all cases investigated so far, chaotic orbits result from overlapping resonances. Perhaps the clearest examples are found in the asteroid belt. Overlapping resonances account for its kirkwood gaps and were used to predict and find evidence for very narrow gaps in the outer belt. Further afield, about one new "short-peroid" comet is discovered each year. They are believed to come from the "Kuiper Belt" (at 40 AU or more) via chaotic orbits produced by mean-motion and secular resonances with Neptune. Finally, the planetary system itself is not immune from chaos. In the inner solar system, overlapping secular resonances have been identified as the possible source of chaos. For example, Mercury in 1012 years, may suffer a close encounter with Venus or plunge into the Sun. In the outer solar system, three-body resonances have been identified as a source of chaos, but on an even longer time scale of 109 times the age of the solar system. On the human time scale, the planets do follow their orbits in a stately procession, and we can predict their trajectories for hundreds of thousands of years. That is because the mavericks, with shorter instability times, have long since been ejected. The solar system is not stable; it is just old!
DOE Office of Scientific and Technical Information (OSTI.GOV)
August, Tyler M.; Wiegert, Paul A., E-mail: tx_august@laurentian.ca
The size distribution of the asteroid belt is examined with 16956 main belt asteroids detected in data taken from the Canada-France-Hawaii Telescope Legacy Survey in two filters (g' and r'). The cumulative H (absolute magnitude) distribution is examined in both filters, and both match well to simple power laws down to H = 17, with slopes in rough agreement with those reported the literature. This implies that disruptive collisions between asteroids are gravitationally dominated down to at least this size, and probably sub-kilometer scales. The slopes of these distributions appear shallower in the outer belt than the inner belt, andmore » the g' distributions appear slightly steeper than the r'. The slope shallowing in the outer belt may reflect a real compositional difference: the inner asteroid belt has been suggested to consist mostly of stony and/or metallic S-type asteroids, whereas carbonaceous C-types are thought to be more prevalent further from the Sun. No waves are seen in the size distribution above H = 15. Since waves are expected to be produced at the transition from gravitationally-dominated to internal strength-dominated collisions, their absence here may imply that the transition occurs at sub-kilometer scales, much smaller than the H = 17 (diameter {approx} 1.6 km) cutoff of this study.« less
Magnetic braking of stellar cores in red giants and supergiants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeder, André; Meynet, Georges, E-mail: andre.maeder@unige, E-mail: georges.meynet@unige.ch
2014-10-01
Magnetic configurations, stable on the long term, appear to exist in various evolutionary phases, from main-sequence stars to white dwarfs and neutron stars. The large-scale ordered nature of these fields, often approximately dipolar, and their scaling according to the flux conservation scenario favor a fossil field model. We make some first estimates of the magnetic coupling between the stellar cores and the outer layers in red giants and supergiants. Analytical expressions of the truncation radius of the field coupling are established for a convective envelope and for a rotating radiative zone with horizontal turbulence. The timescales of the internal exchangesmore » of angular momentum are considered. Numerical estimates are made on the basis of recent model grids. The direct magnetic coupling of the core to the extended convective envelope of red giants and supergiants appears unlikely. However, we find that the intermediate radiative zone is fully coupled to the core during the He-burning and later phases. This coupling is able to produce a strong spin down of the core of red giants and supergiants, also leading to relatively slowly rotating stellar remnants such as white dwarfs and pulsars. Some angular momentum is also transferred to the outer convective envelope of red giants and supergiants during the He-burning phase and later.« less
Geramy, Allahyar; Mortezai, Omid; Esmaily, Masomeh; Darvishpour, Hojat
2015-04-01
Headgears are among the effective orthodontic appliances to achieve treatment goals. Unilateral molar distal movement is sometimes needed during an orthodontic treatment, which can be achieved by an asymmetric headgear. Different unilateral headgears have been introduced. The main goal of this study was to analyze the force system of unilateral expanded outer bow asymmetric headgears by the finite element method (FEM). Six 3D finite element models of a mesiodistal slice of the maxilla containing upper first molars, their periodontal ligaments (PDLs), cancellous bone, cortical bone, and a cervical headgear with expanded outer bow attached to maxillary first molars were designed in SolidWorks 2010 and meshed in ANSYS Workbench ver. 12.1. The models were the same except for the degree of outer bow expansion. The outer bow ends were loaded with 2 N force. The distal driving force and the net moment were evaluated. A decrease in the distalizing force in the normal side molar from 1.69 N to 1.37 N was shown by increasing the degree of unilateral expansion. At the same time, the force increased from 2.19 N to 2.49 N in the expanded side molar. A net moment increasing from 2.26 N.mm to 4.64 N.mm was also shown. Unilateral outer bow expansion can produce different distalizing forces in molars, which increase by increasing the expansion.
Wing kinematics measurement and aerodynamics of a dragonfly in turning flight.
Li, Chengyu; Dong, Haibo
2017-02-03
This study integrates high-speed photogrammetry, 3D surface reconstruction, and computational fluid dynamics to explore a dragonfly (Erythemis Simplicicollis) in free flight. Asymmetric wing kinematics and the associated aerodynamic characteristics of a turning dragonfly are analyzed in detail. Quantitative measurements of wing kinematics show that compared to the outer wings, the inner wings sweep more slowly with a higher angle of attack during the downstroke, whereas they flap faster with a lower angle of attack during the upstroke. The inner-outer asymmetries of wing deviations result in an oval wingtip trajectory for the inner wings and a figure-eight wingtip trajectory for the outer wings. Unsteady aerodynamics calculations indicate significantly asymmetrical force production between the inner and outer wings, especially for the forewings. Specifically, the magnitude of the drag force on the inner forewing is approximately 2.8 times greater than that on the outer forewing during the downstroke. In the upstroke, the outer forewing generates approximately 1.9 times greater peak thrust than the inner forewing. To keep the body aloft, the forewings contribute approximately 64% of the total lift, whereas the hindwings provide 36%. The effect of forewing-hindwing interaction on the aerodynamic performance is also examined. It is found that the hindwings can benefit from this interaction by decreasing power consumption by 13% without sacrificing force generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The final report for the project is presented in five volumes. This volume is the Programmer's Manual. It covers: a system overview, attractiveness component of gravity model, trip-distribution component of gravity model, economic-effects model, and the consumer-surplus model. The project sought to determine the impact of Outer Continental Shelf development on recreation and tourism.
ERIC Educational Resources Information Center
Frappart, Sören; Frède, Valérie
2016-01-01
Concepts relating to outer space are difficult to grasp because we lack direct experience of this environment. We analysed students' understanding of gravitation on Earth and beyond by testing the effect of training on it. In a pretest (T1), 28 seventh graders answered a questionnaire about space concepts. They all then underwent the same formal…
The spectacle of the ball python (Python regius): a morphological description.
Da Silva, Mari-Ann O; Heegaard, Steffen; Wang, Tobias; Nyengaard, Jens R; Bertelsen, Mads F
2014-05-01
A detailed morphological description of the spectacle of the ball python (Python regius) is provided. The eyes of 21 snakes were examined by light microscopy and/or transmission electron microscopy. Additionally, eyes of nine live snakes were examined using optical coherence tomography (OCT) and Scheimpflug scanning (Pentacam). The spectacle consists of three layers: outer epithelium, stroma and inner epithelium. The outer epithelium is made up of flat basal cells overlaid by keratin, the stroma consists of organized layers of collagen fibrils with interweaving nerve fibers and blood vessels, and the inner epithelium holds squamous cells containing vesicles and microvilli. At the rim of the spectacle, there is a transition zone, where the spectacle merges with the epidermis and dermis of the periocular scales. This zone is characterized by a greater height of the basal cells of the outer epithelium and a less orderly organization of the stroma compared with the spectacle proper. The thickness of the spectacle was uniform throughout. It averaged 96 ± 10 µm in histological specimens and 108 ± 13 µm using OCT. The subspectacular space was extremely narrow in the live snakes; however, the space was visible at the periphery of the spectacle with OCT. Copyright © 2013 Wiley Periodicals, Inc.
Coral forests diversity in the outer shelf of the south Sardinian continental margin
NASA Astrophysics Data System (ADS)
Cau, Alessandro; Moccia, Davide; Follesa, Maria Cristina; Alvito, Andrea; Canese, Simonepietro; Angiolillo, Michela; Cuccu, Danila; Bo, Marzia; Cannas, Rita
2017-04-01
Ecological theory predicts that heterogeneous habitats allow more species to co-exist in a given area, but to date, knowledge on relationships between habitat heterogeneity and biodiversity of coral forests in the outer shelf and upper slope along continental margins is rather limited. We investigated biodiversity of coral forests from 8 sites spread over two different geomorphological settings (namely, pinnacles vs. canyons) in the outer shelf along Sardinian continental margin. Using a combination of multivariate statistical analyses, we show here that differences in the composition of coral assemblages among contrasting geomorphological settings were not statistically significant, whereas significant differences emerged among sites within similar geomorphologies (i.e. among pinnacles and among canyons). Our results reveal that environmental and bathymetric factors such as sediment coverage, slope of the substrate, terrain ruggedness, bathymetric positioning index and aspect were important drivers of the observed patterns of coral biodiversity, in both settings. Spatial variability of coral forests' biodiversity is affected by environmental factors that act at the scale of each geomorphological setting (i.e. within each pinnacle and canyon) rather than by the contrasting geomorphological settings themselves. This result allows us to suggest that simple categorization of benthic communities according topographically defined habitat is unlikely to be sufficient for addressing conservation purposes.
The Geolocation model for lunar-based Earth observation
NASA Astrophysics Data System (ADS)
Ding, Yixing; Liu, Guang; Ren, Yuanzhen; Ye, Hanlin; Guo, Huadong; Lv, Mingyang
2016-07-01
In recent years, people are more and more aware of that the earth need to treated as an entirety, and consequently to be observed in a holistic, systematic and multi-scale view. However, the interaction mechanism between the Earth's inner layers and outer layers is still unclear. Therefore, we propose to observe the Earth's inner layers and outer layers instantaneously on the Moon which may be helpful to the studies in climatology, meteorology, seismology, etc. At present, the Moon has been proved to be an irreplaceable platform for Earth's outer layers observation. Meanwhile, some discussions have been made in lunar-based observation of the Earth's inner layers, but the geolocation model of lunar-based observation has not been specified yet. In this paper, we present a geolocation model based on transformation matrix. The model includes six coordinate systems: The telescope coordinate system, the lunar local coordinate system, the lunar-reference coordinate system, the selenocentric inertial coordinate system, the geocentric inertial coordinate system and the geo-reference coordinate system. The parameters, lncluding the position of the Sun, the Earth, the Moon, the libration and the attitude of the Earth, can be acquired from the Ephemeris. By giving an elevation angle and an azimuth angle of the lunar-based telescope, this model links the image pixel to the ground point uniquely.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nestingen-Palm, David; Stanimirović, Snežana; González-Casanova, Diego F.
2017-08-10
We investigate spatial variations of turbulent properties in the Small Magellanic Cloud (SMC) by using neutral hydrogen (H i) observations. With the goal of testing the importance of stellar feedback on H i turbulence, we define central and outer SMC regions based on the star formation rate (SFR) surface density, as well as the H i integrated intensity. We use the structure function and the velocity channel analysis to calculate the power-law index ( γ ) for both underlying density and velocity fields in these regions. In all cases, our results show essentially no difference in γ between the centralmore » and outer regions. This suggests that H i turbulent properties are surprisingly homogeneous across the SMC when probed at a resolution of 30 pc. Contrary to recent suggestions from numerical simulations, we do not find a significant change in γ due to stellar feedback as traced by the SFR surface density. This could be due to the stellar feedback being widespread over the whole of the SMC, but more likely due to a large-scale gravitational driving of turbulence. We show that the lack of difference between central and outer SMC regions cannot be explained by the high optical depth H I.« less
Burst Ductility of Zirconium Clads: The Defining Role of Residual Stress
NASA Astrophysics Data System (ADS)
Kumar, Gulshan; Kanjarla, A. K.; Lodh, Arijit; Singh, Jaiveer; Singh, Ramesh; Srivastava, D.; Dey, G. K.; Saibaba, N.; Doherty, R. D.; Samajdar, Indradev
2016-08-01
Closed end burst tests, using room temperature water as pressurizing medium, were performed on a number of industrially produced zirconium (Zr) clads. A total of 31 samples were selected based on observed differences in burst ductility. The latter was represented as total circumferential elongation or TCE. The selected samples, with a range of TCE values (5 to 35 pct), did not show any correlation with mechanical properties along axial direction, microstructural parameters, crystallographic textures, and outer tube-surface normal ( σ 11) and shear ( τ 13) components of the residual stress matrix. TCEs, however, had a clear correlation with hydrostatic residual stress ( P h), as estimated from tri-axial stress analysis on the outer tube surface. Estimated P h also scaled with measured normal stress ( σ 33) at the tube cross section. An elastic-plastic finite element model with ductile damage failure criterion was developed to understand the burst mechanism of zirconium clads. Experimentally measured P h gradients were imposed on a solid element continuum finite element (FE) simulation to mimic the residual stresses present prior to pressurization. Trends in experimental TCEs were also brought out with computationally efficient shell element-based FE simulations imposing the outer tube-surface P h values. Suitable components of the residual stress matrix thus determined the burst performance of the Zr clads.
Seismic waves and earthquakes in a global monolithic model
NASA Astrophysics Data System (ADS)
Roubíček, Tomáš
2018-03-01
The philosophy that a single "monolithic" model can "asymptotically" replace and couple in a simple elegant way several specialized models relevant on various Earth layers is presented and, in special situations, also rigorously justified. In particular, global seismicity and tectonics is coupled to capture, e.g., (here by a simplified model) ruptures of lithospheric faults generating seismic waves which then propagate through the solid-like mantle and inner core both as shear (S) or pressure (P) waves, while S-waves are suppressed in the fluidic outer core and also in the oceans. The "monolithic-type" models have the capacity to describe all the mentioned features globally in a unified way together with corresponding interfacial conditions implicitly involved, only when scaling its parameters appropriately in different Earth's layers. Coupling of seismic waves with seismic sources due to tectonic events is thus an automatic side effect. The global ansatz is here based, rather for an illustration, only on a relatively simple Jeffreys' viscoelastic damageable material at small strains whose various scaling (limits) can lead to Boger's viscoelastic fluid or even to purely elastic (inviscid) fluid. Self-induced gravity field, Coriolis, centrifugal, and tidal forces are counted in our global model, as well. The rigorous mathematical analysis as far as the existence of solutions, convergence of the mentioned scalings, and energy conservation is briefly presented.
Effects of scale and logging on landscape structure in a forest mosaic.
Leimgruber, P; McShea, W J; Schnell, G D
2002-03-01
Landscape structure in a forest mosaic changes with spatial scale (i.e. spatial extent) and thresholds may occur where structure changes markedly. Forest management alters landscape structure and may affect the intensity and location of thresholds. Our purpose was to examine landscape structure at different scales to determine thresholds where landscape structure changes markedly in managed forest mosaics of the Appalachian Mountains in the eastern United States. We also investigated how logging influences landscape structure and whether these management activities change threshold values. Using threshold and autocorrelation analyses, we found that thresholds in landscape indices exist at 400, 500, and 800 m intervals from the outer edge of management units in our study region. For landscape indices that consider all landcover categories, such as dominance and contagion, landscape structure and thresholds did not change after logging occurred. Measurements for these overall landscape indices were strongly influenced by midsuccessional deciduous forest, the most common landcover category in the landscape. When restricting analyses for mean patch size and percent cover to individual forest types, thresholds for early-successional forests changed after logging. However, logging changed the landscape structure at small spatial scale, but did not alter the structure of the entire forest mosaic. Previous forest management may already have increased the heterogeneity of the landscape beyond the point where additional small cuts alter the overall structure of the forest. Because measurements for landscape indices yield very different results at different spatial scales, it is important first to identify thresholds in order to determine the appropriate scales for landscape ecological studies. We found that threshold and autocorrelation analyses were simple but powerful tools for the detection of appropriate scales in the managed forest mosaic under study.
THE EFFECTS OF EPISODIC STAR FORMATION ON THE FUV-NUV COLORS OF STAR FORMING REGIONS IN OUTER DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Kate L.; Van Zee, Liese; Dowell, Jayce D., E-mail: barneskl@astro.indiana.edu, E-mail: vanzee@astro.indiana.edu, E-mail: jdowell@unm.edu
2013-09-20
We run stellar population synthesis models to examine the effects of a recently episodic star formation history (SFH) on UV and Hα colors of star forming regions. Specifically, the SFHs we use are an episodic sampling of an exponentially declining star formation rate (SFR; τ model) and are intended to simulate the SFHs in the outer disks of spiral galaxies. To enable comparison between our models and observational studies of star forming regions in outer disks, we include in our models sensitivity limits that are based on recent deep UV and Hα observations in the literature. We find significant dispersionmore » in the FUV-NUV colors of simulated star forming regions with frequencies of star formation episodes of 1 × 10{sup –8} to 4 × 10{sup –9} yr{sup –1}. The dispersion in UV colors is similar to that found in the outer disk of nearby spiral galaxies. As expected, we also find large variations in L{sub H{sub α}}/L{sub FUV}. We interpret our models within the context of inside-out disk growth, and find that a radially increasing τ and decreasing metallicity with an increasing radius will only produce modest FUV-NUV color gradients, which are significantly smaller than what is found for some nearby spiral galaxies. However, including moderate extinction gradients with our models can better match the observations with steeper UV color gradients. We estimate that the SFR at which the number of stars emitting FUV light becomes stochastic is ∼2 × 10{sup –6} M{sub ☉} yr{sup –1}, which is substantially lower than the SFR of many star forming regions in outer disks. Therefore, we conclude that stochasticity in the upper end of the initial mass function is not likely to be the dominant cause of dispersion in the FUV-NUV colors of star forming regions in outer disks. Finally, we note that if outer disks have had an episodic SFH similar to that used in this study, this should be taken into account when estimating gas depletion timescales and modeling chemical evolution of spiral galaxies.« less
Surface roughness effects on turbulent Couette flow
NASA Astrophysics Data System (ADS)
Lee, Young Mo; Lee, Jae Hwa
2017-11-01
Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).
Turbulent pipe flows subjected to temporal decelerations
NASA Astrophysics Data System (ADS)
Jeong, Wongwan; Lee, Jae Hwa
2016-11-01
Direct numerical simulations of temporally decelerating turbulent pipe flows were performed to examine effects of temporal decelerations on turbulence. The simulations were started with a fully developed turbulent pipe flow at a Reynolds number, ReD =24380, based on the pipe radius (R) and the laminar centerline velocity (Uc 0). Three different temporal decelerations were imposed to the initial flow with f= | d Ub / dt | =0.00127, 0.00625 and 0.025, where Ub is the bulk mean velocity. Comparison of Reynolds stresses and turbulent production terms with those for steady flow at a similar Reynolds number showed that turbulence is highly intensified with increasing f due to delay effects. Furthermore, inspection of the Reynolds shear stress profiles showed that strong second- and fourth-quadrant Reynolds shear stresses are greatly increased, while first- and third-quadrant components are also increased. Decomposition of streamwise Reynolds normal stress with streamwise cutoff wavelength (λx) 1 R revealed that the turbulence delay is dominantly originated from delay of strong large-scale turbulent structures in the outer layer, although small-scale motions throughout the wall layer adjusted more rapidly to the temporal decelerations. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).
Numerical simulation of axisymmetric valve operation for different outer cone angle
NASA Astrophysics Data System (ADS)
Smyk, Emil
One of the method of flow separation control is application of axisymmetric valve. It is composed of nozzle with core. Normally the main flow is attached to inner cone and flow by preferential collector to primary flow pipe. If through control nozzle starts flow jet (control jet) the main flow is switched to annular secondary collector. In both situation the main flow is deflected to inner or outer cone (placed at the outlet of the valve's nozzle) by Coanda effect. The paper deals with the numerical simulation of this axisymetric annular nozzle with integrated synthetic jet actuator. The aim of the work is influence examination of outer cone angle on deflection on main stream.
NASA Astrophysics Data System (ADS)
Egbers, C.
The'GeoFlow' is an ESA experiment planned for the Fluid Science Laboratory on ISS under the scientific coordination (PI) of the Department of Aerodynamics and Fluid Mechanics (LAS) at the Brandenburg Technical University (BTU) of Cottbus, Germany. The objective of the experiment is to study thermal convection in the gap between two concentric rotating (full) spheres. A central symmetric force field simi- lar to the gravity field acting on planets can be produced by applying a high voltage between inner and outer sphere using the dielectrophoretic effect (rotating capacitor). To counter the unidirectional gravity under terrestrial conditions, this experiment re- quires a microgravity environment. The parameters of the experiment are chosen in analogy to the thermal convective motions in the outer core of the Earth. In analogy to geophysical motions in the Earth`s liquid core the experiment can rotate as solid body as well as differential (inner to outer). Thermal convection is produced by heat- ing the inner sphere and cooling the outer ones. Furtheron, the variation of radius ratio between inner and outer sphere is foreseen as a parameter variation. The flows to be investigated will strongly depend on the gap width and on the Prandtl number.
Ralph, J. E.; Strozzi, D.; Ma, T.; ...
2016-12-29
Room temperature or “warm” (273 K) indirect drive hohlraum experiments have been conducted on the National Ignition Facility with laser energies up to 1.26 MJ and compared to similar cryogenic or “cryo” (~20 K) experiments. Warm experiments use neopentane (C 5H 12) as the low pressure hohlraum fill gas instead of helium, and propane (C 3H 8) to replace the cryogenic DT or DHe3 capsule fill. The increased average Z of the hohlraum fill leads to increased inverse bremsstrahlung absorption and an overall hotter hohlraum plasma in simulations. The cross beam energy transfer (CBET) from outer laser beams (pointed towardmore » the laser entrance hole) to inner beams (pointed at the equator) was inferred indirectly from measurements of Stimulated Raman Scattering (SRS). These experiments show that a similar hot spot self-emission shape can be produced with less CBET in warm hohlraums. The measured inner cone SRS reflectivity (as a fraction of incident power neglecting CBET) is ~2.5× less in warm than cryo shots with similar hot spot shapes, due to a less need for CBET. The measured outer-beam stimulated the Brillouin scattering power that was higher in the warm shots, leading to a ceiling on power to avoid the optics damage. These measurements also show that the CBET induced by the flow where the beams cross can be effectively mitigated by a 1.5 Å wavelength shift between the inner and outer beams. A smaller scale direct comparison indicates that warm shots give a more prolate implosion than cryo shots with the same wavelength shift and pulse shape. Lastly, the peak radiation temperature was found to be between 5 and 7 eV higher in the warm than the corresponding cryo experiments after accounting for differences in backscatter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Juan; Pearce, Carolyn I.; Shi, Liang
The cycling of iron at the Earth’s near surface is profoundly influenced by dissimilatory metal reducing microorganisms, and many studies have focused on unraveling electron transfer mechanisms between these bacteria and Fe(III)-(oxyhydr)oxides. However, these efforts have been complicated by the fact that these minerals often occur in the micro- to nanosize regime, and in relevant natural environments as well as in the laboratory are subject to aggregation. The nature of the physical interface between the cellular envelope, the outer-membrane cytochromes responsible for facilitating the interfacial electron transfer step, and these complex mineral particulates is thus difficult to probe. Previous studiesmore » using whole cells have reported reduction rates that do not correlate with particle size. In the present study we isolate the interaction between the decaheme outer-membrane cytochrome OmcA of Shewanella oneidensis and nanoparticulate hematite, examining the reduction rate as a function of particle size and reaction products through detailed characterization of the electron balance and the structure and valence of iron at particle surfaces. By comparison with abiotic reduction via the smaller molecule ascorbic acid, we show that the reduction rate is systematically controlled by the sterically accessible interfacial contact area between OmcA and hematite in particle aggregates; rates increase once pore throat sizes in aggregates become as large as OmcA. Simultaneous measure of OmcA oxidation against Fe(II) release shows a ratio of 1:10, consistent with a cascade OmcA oxidation mechanism heme by heme. X-ray absorption spectroscopies reveal incipient magnetite on the reacted surfaces of the hematite nanoparticles after reaction. The collective findings establish the importance of accessibility of physical contact between the terminal reductases and iron oxide surfaces, and through apparent consistency of observations help reconcile behavior reported at the larger more complex scale of whole cell studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ralph, J. E.; Strozzi, D.; Ma, T.
Room temperature or “warm” (273 K) indirect drive hohlraum experiments have been conducted on the National Ignition Facility with laser energies up to 1.26 MJ and compared to similar cryogenic or “cryo” (~20 K) experiments. Warm experiments use neopentane (C 5H 12) as the low pressure hohlraum fill gas instead of helium, and propane (C 3H 8) to replace the cryogenic DT or DHe3 capsule fill. The increased average Z of the hohlraum fill leads to increased inverse bremsstrahlung absorption and an overall hotter hohlraum plasma in simulations. The cross beam energy transfer (CBET) from outer laser beams (pointed towardmore » the laser entrance hole) to inner beams (pointed at the equator) was inferred indirectly from measurements of Stimulated Raman Scattering (SRS). These experiments show that a similar hot spot self-emission shape can be produced with less CBET in warm hohlraums. The measured inner cone SRS reflectivity (as a fraction of incident power neglecting CBET) is ~2.5× less in warm than cryo shots with similar hot spot shapes, due to a less need for CBET. The measured outer-beam stimulated the Brillouin scattering power that was higher in the warm shots, leading to a ceiling on power to avoid the optics damage. These measurements also show that the CBET induced by the flow where the beams cross can be effectively mitigated by a 1.5 Å wavelength shift between the inner and outer beams. A smaller scale direct comparison indicates that warm shots give a more prolate implosion than cryo shots with the same wavelength shift and pulse shape. Lastly, the peak radiation temperature was found to be between 5 and 7 eV higher in the warm than the corresponding cryo experiments after accounting for differences in backscatter.« less
NASA Astrophysics Data System (ADS)
Liu, Juan; Pearce, Carolyn I.; Shi, Liang; Wang, Zheming; Shi, Zhi; Arenholz, Elke; Rosso, Kevin M.
2016-11-01
The cycling of iron at the Earth's near surface is profoundly influenced by dissimilatory metal reducing microorganisms, and many studies have focused on unraveling electron transfer mechanisms between these bacteria and Fe(III)-(oxyhydr)oxides. However, these efforts have been complicated by the fact that these minerals often occur in the micro- to nanosize regime, and in relevant natural environments as well as in the laboratory are subject to aggregation. The nature of the physical interface between the cellular envelope, the outer-membrane cytochromes responsible for facilitating the interfacial electron transfer step, and these complex mineral particulates is thus difficult to probe. Previous studies using whole cells have reported reduction rates that do not correlate with particle size. In the present study we isolate the interaction between the decaheme outer-membrane cytochrome OmcA of Shewanella oneidensis and nanoparticulate hematite, examining the reduction rate as a function of particle size and reaction products through detailed characterization of the electron balance and the structure and valence of iron at particle surfaces. By comparison with abiotic reduction via the smaller molecule ascorbic acid, we show that the reduction rate is systematically controlled by the sterically accessible interfacial contact area between OmcA and hematite in particle aggregates; rates increase once pore throat sizes in aggregates become as large as OmcA. Simultaneous measure of OmcA oxidation against Fe(II) release shows a ratio of 1:10, consistent with a cascade OmcA oxidation mechanism heme by heme. X-ray absorption spectroscopies reveal incipient magnetite on the reacted surfaces of the hematite nanoparticles after reaction. The collective findings establish the importance of accessibility of physical contact between the terminal reductases and iron oxide surfaces, and through apparent consistency of observations help reconcile behavior reported at the larger more complex scale of whole cell studies.
Biological effects of blocking blue and other visible light on the mouse retina.
Narimatsu, Toshio; Ozawa, Yoko; Miyake, Seiji; Kubota, Shunsuke; Yuki, Kenya; Nagai, Norihiro; Tsubota, Kazuo
2014-08-01
To elucidate the biological effects of blocking fluorescent light on the retina using specific blocking materials. Seven- to 8-week-old BALB/c mice were divided into three groups and placed in one of the three boxes: one blocked ultraviolet and violet wavelengths of light (violet blockade), one blocked ultraviolet, violet, blue and some other visible wavelengths (blue-plus blockade), and one allowed most visible light to pass through (control). They were then exposed to a white fluorescent lamp for 1 h at 5.65E-05 mW/cm(2) /s. After treatment, the electroretinogram, retinal outer nuclear layer thickness and retinal outer segment length were measured. In addition, retinal apoptotic cells were quantified by TdT-mediated dUTP nick-end labelling assay and c-Fos messenger RNA, and protein levels were measured by real-time reverse-transcription polymerase chain reaction and immunoblot analyses, respectively. The blue-plus blockade group retained a significantly better electroretinogram response following light exposure than the control or violet blockade groups. The blue-plus blockade group also exhibited greater outer nuclear layer thickness and greater outer-segment length, and fewer apoptotic cells after light exposure than the other groups. The c-Fos messenger RNA and protein levels were substantially reduced in the blue-plus blockade group and reduced to a lesser extent in the violet blockade group. The blockade of blue plus additional visible wavelengths of light was most effective in protecting the retina from light-induced damage. The blockade of violet light alone was also effective in reducing intracellular molecular responses, but these effects were not sufficient for attenuating retinal degeneration. © 2013 Royal Australian and New Zealand College of Ophthalmologists.
Turbine airfoil with outer wall thickness indicators
Marra, John J; James, Allister W; Merrill, Gary B
2013-08-06
A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.
A Look at the Milky Way's Outskirts
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-11-01
Studying the large-scale structure of the Milky Way is difficult given that were stuck in its interior which means we cant step back for a broad overview of our home. Instead, a recent study uses distant variable stars to map out a picture of whats happening in the outskirts of our galaxy.Mapping with TracersPhase-folded light curve for two of the RR Lyrae stars in the authors sample, each with hundreds of observations over 7 years. [Cohen et al. 2017]Since observing the Milky Way from the outside isnt an option, we have to take creative approaches to mapping its outer regions and measuring its total mass and dark matter content. One tool used by astronomers is tracers: easily identifiable stars that can be treated as massless markers moving only as a result of the galactic potential. Mapping the locations and motions of tracers allows us to measure the larger properties of the galaxy.RR Lyrae stars are low-mass, variable stars that make especially good tracers. They pulsate predictably on timescales of less than a day, creating distinctive light curves that can easily be distinguished and tracked in wide-field optical imaging surveys over long periods of time. Their brightness makes them detectable out to large distances, and their blue color helps to separate them from contaminating stars in the foreground.Best of all, RR Lyrae stars are very nearly standard candles: their distances can be determined precisely with only knowledge of their measured light curves.Locations on the sky of the several hundred outer-halo RR Lyrae stars in the authors original sample. The red curve shows the location of the Sagittarius stream, an ordered structure the authors avoided so as to only have unassociated stars in their sample. [Cohen et al. 2017]Distant VariablesIn a new study led by Judith Cohen (California Institute of Technology), the signals of hundreds of distant RR Lyrae stars were identified in observations of transient objects made with the Palomar Transient Factory (PTF) survey. Cohen and collaborators then followed up with the Keck II telescope in Hawaii to obtain spectra fora narrowersample of 122 RR Lyrae stars.The stars in the sample lie at whopping distances of 150,000350,000 light-years from us. For comparison, were about 25,000 light-years from the center of the galaxy, and the stellar disk of the galaxy is only thought to be perhaps 100,000 light-years across so these variable stars lie firmly in the Milky Ways outer halo. The spectra of the stars reveal their radial velocity, providing us with precise measurements of how objects in the outer halo move.More Space in the Suburbs?Histogram with distance for the 450 RR Lyrae stars in the authors broader sample. When the authors include their estimates for the completeness of their sample, the best fit scales with distance as r-4, shown by the red line. [Cohen et al. 2017]After reporting the velocity dispersions that they measure which can be used to make more precise estimates of the Milky Ways total mass Cohen and collaborators discuss the stellar density implied by their sample. They find that the density of stars in the outer halo of the Milky Way scales with their distance as r-4. This is similar to the drop-off in density weve measured in the inner halo, and it contradicts some studies that have predicted a much sharper drop in stellar density in the Milky Ways outermost regions.The work presented in this study goes a long way toward building our view of the galaxys outer halo. Future catalogs like the Pan-STARRS RR Lyrae catalog and upcoming surveys like LSST should also significantly increase the tracer sample size and measurement accuracy, further allowing us to map out the outskirtsof the Milky Way.CitationJudith G. Cohen et al 2017 ApJ 849 150. doi:10.3847/1538-4357/aa9120
Radiolysis and Photolysis of Icy Satellite Surfaces: Experiments and Theory
NASA Technical Reports Server (NTRS)
Cassidy, T.; Coll, P.; Raulin, F.; Carlson, R. W.; Hand, K. P.; Johnson, R. E.; Loeffler, M. J.; Baragiola, R. A.
2010-01-01
The transport and exchange of material between bodies in the outer solar system is often facilitated by their exposure to ionizing radiation. With this in mind we review the effects of energetic ions, electrons and UV photons on materials present in the outer solar system. We consider radiolysis, photolysis, and sputtering of low temperature solids. Radiolysis and photolysis are the chemistry that follows the bond breaking and ionization produced by incident radiation, producing, e.g., O2 and H2 from irradiated H2O ice. Sputtering is the ejection of molecules by incident radiation. Both processes are particularly effective on ices in the outer solar system. Materials reviewed include H2O ice, sulfur-containing compounds (such as S02 and S8), carboncontajning compounds (such as CH4), nitrogen-containing compounds (such as NH3 and N2), and mixtures of those compounds. We also review the effects of ionizing radiation on a mixture of N2 and CH4 gases, as appropriate to Titan's upper atmosphere, where radiolysis and photolysis produce complex organic compounds (tholins).
HCO+ Detection of Dust-depleted Gas in the Inner Hole of the LkCa 15 Pre-transitional Disk
NASA Astrophysics Data System (ADS)
Drabek-Maunder, E.; Mohanty, S.; Greaves, J.; Kamp, I.; Meijerink, R.; Spaans, M.; Thi, W.-F.; Woitke, P.
2016-12-01
LkCa 15 is an extensively studied star in the Taurus region, known for its pre-transitional disk with a large inner cavity in the dust continuum and normal gas accretion rate. The most popular hypothesis to explain the LkCa 15 data invokes one or more planets to carve out the inner cavity, while gas continues to flow across the gap from the outer disk onto the central star. We present spatially unresolved HCO+ J=4\\to 3 observations of the LkCa 15 disk from the James Clerk Maxwell telescope (JCMT) and model the data with the ProDiMo code. We find that: (1) HCO+ line-wings are clearly detected, certifying the presence of gas in the cavity within ≲50 au of the star. (2) Reproducing the observed line-wing flux requires both a significant suppression of cavity dust (by a factor ≳104 compared to the interstellar medium (ISM)) and a substantial increase in the gas scale-height within the cavity (H 0/R 0 ˜ 0.6). An ISM dust-to-gas ratio (d:g = 10-2) yields too little line-wing flux, regardless of the scale-height or cavity gas geometry, while a smaller scale-height also under-predicts the flux even with a reduced d:g. (3) The cavity gas mass is consistent with the surface density profile of the outer disk extended inwards to the sublimation radius (corresponding to mass M d ˜ 0.03 M ⊙), and masses lower by a factor ≳10 appear to be ruled out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The final report for the project is presented in five volumes. The project sought to determine the impact of Outer Continental Shelf development on recreation and tourism in California. This volume is the User's Guide. It includes the following topics: Introduction and Summary Guide; Input Data Files; Gravity Model Programs; Economic Effects Model Programs; Consumer Surplus Model Programs; References; and Appendices.
Coming out prevention by stopper for the shrink fitted sandwiched shaft from the ceramic sleeve
NASA Astrophysics Data System (ADS)
Zhang, Guowei; Noda, Nao-Aki; Sano, Yoshikazu; Sakai, Hiromasa; Oda, Kazuhiro
2017-05-01
Ceramic roller can be used in the heating furnace conveniently because of its high temperature resistance. The roller consists of sleeve and steel shaft connected only under a small shrink fitting ratio because of the brittleness. However, the coming out of the shaft may often happen from the ceramic sleeve under repeated bending load. Therefore, how to prevent the coming out failure becomes an important issue. Based on the previous study, a two-dimensional shrink fitted structure is considered by replacing the shaft with the inner plate and by replacing the sleeve with the outer plate. Then, this research focuses on preventing the inner plate coming out from the outer plate by introducing a newly designed stopper on the outer plate. The simulation results shows that the coming out phenomenon can be prevented effectively due to the contact between the inter plate and the stopper installed on the outer plate. In order to evaluate the contact force between the inner plate and the stopper, the coming out mechanism is clarified. To prevent the coming out by stopper safely, the effects of the magnitude of repeated load and the friction coefficient upon the contact compressive force are investigated under large number of loading cycles by using 2D simulation.
Jet Formation and Penetration Study of Double-Layer Shaped Charge
NASA Astrophysics Data System (ADS)
Wang, Zhe; Jiang, Jian-Wei; Wang, Shu-You; Liu, Han
2018-04-01
A theoretical analysis on detonation wave propagation in a double-layer shaped charge (DLSC) is performed. Numerical simulations using the AUTODYN software are carried out to compare the distinctions between jet formations in DLSC and ordinary shaped charge (OSC), in particular, the OSC made using a higher detonation velocity explosive, which is treated as the outer layer charge in the DLSC. The results show that the improved detonation velocity ratio and radial charge percentage of outer-to-inner layer charge are conducive to the formation of a convergent detonation wave, which contributes to enhancement of jet tip velocity in DLSC. The thickness and mass percentages of liner flowing into jet in DLSC closely follow the exponential distribution along the radial direction, but the percentages in DLSC and the mass of effective jet, which have significant influence on the penetration depth, are lower than those in OSC with the outer layer charge. This implies that the total charge energy is the major factor controlling the effective jet formation, which is confirmed by the verification tests using flash X-ray system and following penetration tests. The numerical simulation and test results compare well, while penetration test results indicate that the performance of DLSC is not better than that of OSC with the outer layer charge, due to the differences in jet formation.
Enhanced renal image contrast by ethanol fixation in phase-contrast X-ray computed tomography.
Shirai, Ryota; Kunii, Takuya; Yoneyama, Akio; Ooizumi, Takahito; Maruyama, Hiroko; Lwin, Thet Thet; Hyodo, Kazuyuki; Takeda, Tohoru
2014-07-01
Phase-contrast X-ray imaging using a crystal X-ray interferometer can depict the fine structures of biological objects without the use of a contrast agent. To obtain higher image contrast, fixation techniques have been examined with 100% ethanol and the commonly used 10% formalin, since ethanol causes increased density differences against background due to its physical properties and greater dehydration of soft tissue. Histological comparison was also performed. A phase-contrast X-ray system was used, fitted with a two-crystal X-ray interferometer at 35 keV X-ray energy. Fine structures, including cortex, tubules in the medulla, and the vessels of ethanol-fixed kidney could be visualized more clearly than that of formalin-fixed tissues. In the optical microscopic images, shrinkage of soft tissue and decreased luminal space were observed in ethanol-fixed kidney; and this change was significantly shown in the cortex and outer stripe of the outer medulla. The ethanol fixation technique enhances image contrast by approximately 2.7-3.2 times in the cortex and the outer stripe of the outer medulla; the effect of shrinkage and the physical effect of ethanol cause an increment of approximately 78% and 22%, respectively. Thus, the ethanol-fixation technique enables the image contrast to be enhanced in phase-contrast X-ray imaging.
Verdia-Baguena, C; Gomez, V; Cervera, J; Ramirez, P; Mafe, S
2016-12-21
We demonstrate the electrical rectification and signal averaging of fluctuating signals using a biological nanostructure in aqueous solution: a single protein ion channel inserted in the lipid bilayer characteristic of cell membranes. The conversion of oscillating, zero time-average potentials into directional currents permits charging of a load capacitor to significant steady-state voltages within a few minutes in the case of the outer membrane porin F (OmpF) protein, a bacterial channel of Escherichia coli. The experiments and simulations show signal averaging effects at a more fundamental level than the traditional cell and tissue scales, which are characterized by ensembles of many ion channels operating simultaneously. The results also suggest signal transduction schemes with bio-electronic interfaces and ionic circuits where soft matter nanodiodes can be coupled to conventional electronic elements.
Direct imaging of multiple planets orbiting the star HR 8799.
Marois, Christian; Macintosh, Bruce; Barman, Travis; Zuckerman, B; Song, Inseok; Patience, Jennifer; Lafrenière, David; Doyon, René
2008-11-28
Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step toward imaging Earth-like planets. Imaging detections are challenging because of the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our solar system.
Engineering monolayer poration for rapid exfoliation of microbial membranes.
Pyne, Alice; Pfeil, Marc-Philipp; Bennett, Isabel; Ravi, Jascindra; Iavicoli, Patrizia; Lamarre, Baptiste; Roethke, Anita; Ray, Santanu; Jiang, Haibo; Bella, Angelo; Reisinger, Bernd; Yin, Daniel; Little, Benjamin; Muñoz-García, Juan C; Cerasoli, Eleonora; Judge, Peter J; Faruqui, Nilofar; Calzolai, Luigi; Henrion, Andre; Martyna, Glenn J; Grovenor, Chris R M; Crain, Jason; Hoogenboom, Bart W; Watts, Anthony; Ryadnov, Maxim G
2017-02-01
The spread of bacterial resistance to traditional antibiotics continues to stimulate the search for alternative antimicrobial strategies. All forms of life, from bacteria to humans, are postulated to rely on a fundamental host defense mechanism, which exploits the formation of open pores in microbial phospholipid bilayers. Here we predict that transmembrane poration is not necessary for antimicrobial activity and reveal a distinct poration mechanism that targets the outer leaflet of phospholipid bilayers. Using a combination of molecular-scale and real-time imaging, spectroscopy and spectrometry approaches, we introduce a structural motif with a universal insertion mode in reconstituted membranes and live bacteria. We demonstrate that this motif rapidly assembles into monolayer pits that coalesce during progressive membrane exfoliation, leading to bacterial cell death within minutes. The findings offer a new physical basis for designing effective antibiotics.
Long-term erosion of plasma-facing materials with different surface roughness in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Hakola, A.; Karhunen, J.; Koivuranta, S.; Likonen, J.; Balden, M.; Herrmann, A.; Mayer, M.; Müller, H. W.; Neu, R.; Rohde, V.; Sugiyama, K.; The ASDEX Upgrade Team
2014-04-01
The effect of surface roughness on the long-term erosion patterns of tungsten coatings was investigated in the outer strike-point region of ASDEX Upgrade during its 2010-11 plasma operations. The net erosion rates of rough coatings (Ra = 5-6 μm) were three to seven times smaller than those of smooth coatings (Ra = 0.4-0.8 μm). This is because rough surfaces are largely modified and damaged in the microscopic scale but the material is re-deposited together with boron, deuterium and carbon on the shadowed sides of the most prominent surface features. In addition, we observed that W coatings were eroded on average at a rate of 0.03 nm s-1, which was three to four times smaller than the value for Cr, simulating here steel.
Discrete element modeling of shock-induced particle jetting
NASA Astrophysics Data System (ADS)
Xue, Kun; Cui, Haoran
2018-05-01
The dispersal of particle shell or ring by divergent impulsive loads takes the form of coherent particle jets with the dimensions several orders larger than that of constituent grain. Particle-scale simulations based on the discrete element method have been carried out to reveal the evolution of jets in semi-two-dimensional rings before they burst out of the external surface. We identify two key events which substantially change the resulted jetting pattern, specifically, the annihilation of incipient jets and the tip-slipping of jets, which become active in different phases of jet evolution. Parametric investigations have been done to assess the correlations between the jetting pattern and a variety of structural parameters. Overpressure, the internal and outer diameters of ring as well as the packing density are found to have effects on the jet evolution with different relative importance.
Evaluation of fluid behavior in spinning toroidal tanks
NASA Technical Reports Server (NTRS)
Anderson, J. E.; Fester, D. A.; Dugan, D. W.
1976-01-01
An experimental study was conducted to evaluate propellant behavior in spinning toroidal tanks that could be used in a retro-propulsion system of an advanced outer-planet Pioneer orbiter. Information on propellant slosh and settling and on ullage orientation and stability was obtained. The effects of axial acceleration, spin rate, spin rate change, and spacecraft wobble, both singly and in combination, were evaluated using a 1/8-scale transparent tank in one-g and low-g environments. Liquid loadings ranged from 5% to 96% full. The impact of a surface tension acquisition device was assessed. Testing simulated the behavior of F2/N2H4 and N2O4/MMH propellants. Results are presented which indicate no major fluid behavior problems would be encountered with any of the four propellants in the toroidal tanks of a spin-stabilized orbiter spacecraft.
Fluid interaction with spinning toroidal tanks
NASA Technical Reports Server (NTRS)
Fester, D. A.; Anderson, J. E.
1977-01-01
An experimental study was conducted to evaluate propellant behavior in spinning torroidal tanks that could be used in a retropropulsion system of an advanced outer-planet Pioneer orbiter. Information on propellant slosh and settling and on ullage orientation and stability was obtained. The effects of axial acceleration, spin rate, spin-rate change, and spacecraft wobble, both singly and in combination, were evaluated using a one-eighth scale transparent tank in one-g and low-g environments. Liquid loadings ranged from 5% to 96% full. The impact of a surface tension acquisition device was assessed by comparison with bare-tank results. The testing simulated the behavior of the fluorine/hydrazine and nitrogen textroxide/monomethylhydrazine propellants. Results are presented that indicate that no major fluid behavior problems would be encountered with any of the four propellants in the toroidal tanks of a spin-stabilized orbiter spacecraft.
Numerical Modeling of Turbulent Combustion
NASA Technical Reports Server (NTRS)
Ghoneim, A. F.; Chorin, A. J.; Oppenheim, A. K.
1983-01-01
The work in numerical modeling is focused on the use of the random vortex method to treat turbulent flow fields associated with combustion while flame fronts are considered as interfaces between reactants and products, propagating with the flow and at the same time advancing in the direction normal to themselves at a prescribed burning speed. The latter is associated with the generation of specific volume (the flame front acting, in effect, as the locus of volumetric sources) to account for the expansion of the flow field due to the exothermicity of the combustion process. The model was applied to the flow in a channel equipped with a rearward facing step. The results obtained revealed the mechanism of the formation of large scale turbulent structure in the wake of the step, while it showed the flame to stabilize on the outer edges of these eddies.
Solar gravitational energy and luminosity variations
NASA Astrophysics Data System (ADS)
Fazel, Z.; Rozelot, J. P.; Lefebvre, S.; Ajabshirizadeh, A.; Pireaux, S.
2008-02-01
Due to non-homogeneous mass distribution and non-uniform velocity rate inside the Sun, the solar outer shape is distorted in latitude. In this paper, we analyze the consequences of a temporal change in this figure on the luminosity. To do so, we use the Total Solar Irradiance (TSI) as an indicator of luminosity. Considering that most of the authors have explained the largest part of the TSI modulation with magnetic network (spots and faculae) but not the whole, we could set constraints on radius and effective temperature variations. Our best fit of modelled to observed irradiance gives d T = 1.2 K at d R = 10 mas. However computations show that the amplitude of solar irradiance modulation is very sensitive to photospheric temperature variations. In order to understand discrepancies between our best fit and recent observations of [Livingston, W.C., Gray, D., Wallace, L., White, O.R., 2005. In: Sankarasubramanian, K., Penn, M., Pevtsov, A. (Eds.), Large-scale Structures and their Role in Solar Activity, ASP Conference Series, vol. 346. Astronomical Society of the Pacific, p. 353], showing no effective surface temperature variation during the solar cycle, we investigated small effective temperature variation in irradiance modeling. We emphasized a phase-shift (correlated or anticorrelated radius and irradiance variations) in the (d R, d T)-parameter plane. We further obtained an upper limit on the amplitude of cyclic solar radius variations between 3.87 and 5.83 km, deduced from the gravitational energy variations. Our estimate is consistent with both observations of the helioseismic radius through the analysis of f-mode frequencies and observations of the basal photospheric temperature at Kitt Peak. Finally, we suggest a mechanism to explain weak changes in the solar shape due to variation of magnetic pressure which modifies the granules size. This mechanism is supported by an estimate of the asphericity-luminosity parameter, w = -7.61 × 10 -3, which implies an effectiveness of convective heat transfer only in very outer layers of the Sun.
Plasmapause Boundary Dynamics and the Interplanetary Magnetic Field Effect
NASA Astrophysics Data System (ADS)
Goldstein, J.
2006-05-01
The plasmapause is the outer boundary of the plasmasphere, the roughly toroidal region of cold, dense, corotating plasma that encircles the Earth and can extend several Earth radii (RE) out into space. The source of plasma in this region is ionospheric outflow (or upflow), which fills plasmaspheric field lines with a mixture of protons, helium ions, and oxygen ions on a timescale of several days. A distinct outer plasmapause boundary forms when plasmaspheric plasma is removed, a process known as erosion. Plasmaspheric erosion occurs most strongly during times of southward interplanetary magnetic field (IMF), when magnetospheric convection is greatly enhanced. Decades of theory and observation support the idea that enhanced sunward convection (during southward IMF) forms large plumes of dense plasma that stretch sunward from the main plasmasphere during erosion. The plasmapause during erosion events is distorted: reduced on the nightside, elongated on the dayside, and in general, overlapping the boundaries of regions of warmer plasmas (such as the ring current and radiation belts) that experience increased loss rates from wave-particle interactions in the overlap regions. Thus, the plasmapause boundary is of critical importance to the global dynamics of these warmer particles. In recent years, the southward IMF (i.e., convection) effect on the plasmapause has been fairly well characterized, but what has received less attention is the northward IMF effect. What happens at the plasmapause boundary following disturbances, when convection is reduced but ionospheric outflow has not yet had enough time to refill the plasmaspheric flux tubes? Observations by CRRES, Polar, IMAGE, Cluster, and other spacecraft have shown a bewildering variety of fine-scale plasmapause density structure during recovery and deep quiet phases. Many plasmapause features have been classified, sorted and named, but nonetheless, remain unexplained. This paper will present our current understanding of IMF effects on the plasmapause, and present the many remaining challenges to a comprehensive model of this critical boundary layer.
Generalized Couette Poiseuille flow with boundary mass transfer
NASA Astrophysics Data System (ADS)
Marques, F.; Sanchez, J.; Weidman, P. D.
1998-11-01
A generalized similarity formulation extending the work of Terrill (1967) for Couette Poiseuille flow in the annulus between concentric cylinders of infinite extent is given. Boundary conditions compatible with the formulation allow a study of the effects of inner and outer cylinder transpiration, rotation, translation, stretching and twisting, in addition to that of an externally imposed constant axial pressure gradient. The problem is governed by [eta], the ratio of inner to outer radii, a Poiseuille number, and nine Reynolds numbers. Single-cylinder and planar problems can be recovered in the limits [eta][rightward arrow]0 and [eta][rightward arrow]1, respectively. Two coupled primary nonlinear equations govern the meridional motion generated by uniform mass flux through the porous walls and the azimuthal motion generated by torsional movement of the cylinders; subsidiary equations linearly slaved to the primary flow govern the effects of cylinder translation, cylinder rotation, and an external pressure gradient. Steady solutions of the primary equations for uniform source/sink flow of strength F through the inner cylinder are reported for 0[less-than-or-eq, slant][eta][less-than-or-eq, slant]1. Asymptotic results corroborating the numerical solutions are found in different limiting cases. For F<0 fluid emitted through the inner cylinder fills the gap and flows uniaxially down the annulus; an asymptotic analysis leads to a scaling that removes the effect of [eta] in the pressure parameter [beta], namely [beta]=[pi]2R*2, where R*=F(1[minus sign][eta])/(1+[eta]). The case of sink flow for F>0 is more complex in that unique solutions are found at low Reynolds numbers, a region of triple solutions exists at moderate Reynolds numbers, and a two-cell solution prevails at large Reynolds numbers. The subsidiary linear equations are solved at [eta]=0.5 to exhibit the effects of cylinder translation, rotation, and an axial pressure gradient on the source/sink flows.
Liquid Iron Alloys with Hydrogen at Outer Core Conditions by First Principles
NASA Astrophysics Data System (ADS)
Umemoto, K.; Hirose, K.
2015-12-01
Since the density of the outer core deduced from seismic data is about 10% lower than that of pure iron at core pressures and temperatures (P-T), it is widely believed that the outer core includes one or more light elements. Although intensive experimental and theoretical studies have been performed so far, the light element in the core has not yet been identified. Comparison of the density and sound velocity of liquid iron alloys with observations, such as the PREM, is a promising way to determine the species and quantity of light alloying component(s) in the outer core. Here we report the results of a first-principles molecular dynamics study on liquid iron alloyed with hydrogen, one of candidates of the light elements. Hydrogen had been much less studied than other candidates. However, hydrogen has been known to reduce the melting temperature of Fe-H solid [1]. Furthermore, very recently, Nomura et al. argued that the outer core may include 24 at.% H in order to be molten under relatively low temperature (< 3600 K) [2]. Since then hydrogen has attracted strong interests. We clarify the effects of hydrogen on density and sound velocity of liquid iron alloys under outer core P-T conditions. It is shown that ~1 wt% hydrogen can reproduce PREM density and sound velocity simultaneously very well. In addition, we show the presence of hydrogen rather reduces Gruneisen parameters. It indicates that, if hydrogen exists in the outer core, temperature profile of the outer core could be changed considerably from one estimated so far. [1] Sakamaki, K., E. Takahashi, Y. Nakajima, Y. Nishihara, K. Funakoshi, T. Suzuki, and Y. Fukai, Phys. Earth Planet. Inter., 174, 192-201 (2009). [2] Nomura, R., K. Hirose, K. Uesugi, Y. Ohishi, A. Tsuchiyama, A. Miyake, and Y. Ueno, Science 31, 522-525 (2014).
Kikuchi, Shinsuke; Kenagy, Richard D; Gao, Lu; Wight, Thomas N; Azuma, Nobuyoshi; Sobel, Michael; Clowes, Alexander W
2014-01-01
Objective Markers containing dyes such as crystal violet (CAS 548-62-9) are routinely used on the adventitia of vein bypass grafts to avoid twisting during placement. Since little is known about how these dyes affect vein graft healing and function, we determined the effect of crystal violet on cell migration and proliferation, which are responses to injury after grafting. Methods Fresh human saphenous veins were obtained as residual specimens from leg bypass surgeries. Portions of the vein that had been surgically marked with crystal violet were analyzed separately from those that had no dye marking. In the laboratory, they were split into easily dissected inner and outer layers after removal of endothelium. This f cleavage plane was within the circular muscle layer of the media. Cell migration from explants was measured daily as either 1) % migration positive explants, which exclusively measures migration, or 2) the number of cells on the plastic surrounding each explant, which measures migration plus proliferation. Cell proliferation and apoptosis (Ki67 and TUNEL staining, respectively) were determined in dye-marked and unmarked areas of cultured vein rings. The dose-dependent effects of crystal violet were measured for cell migration from explants as well as proliferation, migration, and death of cultured outer layer cells. Dye was extracted from explants with ethanol and quantified by spectrophotometry. Results There was significantly less cell migration from visibly blue, compared to unstained, outer layer explants by both methods. There was no significant difference in migration from inner layer explants adjacent to blue-stained or unstained sections of vein, because dye did not penetrate to the inner layer. Ki67 staining of vein in organ culture, which is a measure of proliferation, progressively increased up to 6 days in non-blue outer layer and was abolished in the blue outer layer. Evidence of apoptosis (TUNEL staining) was present throughout the wall and not different in blue-stained and unstained vein wall segments. Blue outer layer explants had 65.9±8.0 ng dye/explant compared to 2.1±1.3 for non-blue outer layer explants. Dye applied in vitro to either outer or inner layer explants dose-dependently inhibited migration (IC50=8.5 ng/explant). The IC50s of crystal violet for outer layer cell proliferation and migration were 0.1 and 1.2 μg/ml, while the EC50 for death was between 1 and 10 μg/ml. Conclusion Crystal violet inhibits venous cell migration and proliferation indicating that alternative methods should be considered for marking vein grafts. PMID:25935273
NASA Technical Reports Server (NTRS)
Ioannou, Petros J.; Lindzen, Richard S.
1993-01-01
Classical tidal theory is applied to the atmospheres of the outer planets. The tidal geopotential due to satellites of the outer planets is discussed, and the solution of Laplace's tidal equation for Hough modes appropriate to tides on the outer planets is examined. The vertical structure of tidal modes is described, noting that only relatively high-order meridional mode numbers can propagate vertically with growing amplitude. Expected magnitudes for tides in the visible atmosphere of Jupiter are discussed. The classical theory is extended to planetary interiors taking the effects of spherically and self-gravity into account. The thermodynamic structure of Jupiter is described and the WKB theory of the vertical structure equation is presented. The regions for which inertial, gravity, and acoustic oscillations are possible are delineated. The case of a planet with a neutral interior is treated, discussing the various atmospheric boundary conditions and showing that the tidal response is small.
Chen, Jing; Edwards, Aurélie; Layton, Anita T
2010-06-01
We used a mathematical model of O(2) transport and the urine concentrating mechanism of the outer medulla of the rat kidney to study the effects of blood pH and medullary blood flow on O(2) availability and Na(+) reabsorption. The model predicts that in vivo paracellular Na(+) fluxes across medullary thick ascending limbs (mTALs) are small relative to transcellular Na(+) fluxes and that paracellular fluxes favor Na(+) reabsorption from the lumen along most of the mTAL segments. In addition, model results suggest that blood pH has a significant impact on O(2) transport and Na(+) reabsorption owing to the Bohr effect, according to which a lower pH reduces the binding affinity of hemoglobin for O(2). Thus our model predicts that the presumed greater acidity of blood in the interbundle regions, where mTALs are located, relative to that in the vascular bundles, facilitates the delivery of O(2) to support the high metabolic requirements of the mTALs and raises the concentrating capability of the outer medulla. Model results also suggest that increases in vascular and tubular flow rates result in disproportional, smaller increases in active O(2) consumption and mTAL active Na(+) transport, despite the higher delivery of O(2) and Na(+). That is, at a sufficiently high medullary O(2) supply, O(2) demand in the outer medulla does not adjust precisely to changes in O(2) delivery.
Casey, Jordan M; Baird, Andrew H; Brandl, Simon J; Hoogenboom, Mia O; Rizzari, Justin R; Frisch, Ashley J; Mirbach, Christopher E; Connolly, Sean R
2017-01-01
Removal of predators is often hypothesized to alter community structure through trophic cascades. However, despite recent advances in our understanding of trophic cascades, evidence is often circumstantial on coral reefs because fishing pressure frequently co-varies with other anthropogenic effects, such as fishing for herbivorous fishes and changes in water quality due to pollution. Australia's outer Great Barrier Reef (GBR) has experienced fishing-induced declines of apex predators and mesopredators, but pollution and targeting of herbivorous fishes are minimal. Here, we quantify fish and benthic assemblages across a fishing-induced predator density gradient on the outer GBR, including apex predators and mesopredators to herbivores and benthic assemblages, to test for evidence of trophic cascades and alternative hypotheses to trophic cascade theory. Using structural equation models, we found no cascading effects from apex predators to lower trophic levels: a loss of apex predators did not lead to higher levels of mesopredators, and this did not suppress mobile herbivores and drive algal proliferation. Likewise, we found no effects of mesopredators on lower trophic levels: a decline of mesopredators was not associated with higher abundances of algae-farming damselfishes and algae-dominated reefs. These findings indicate that top-down forces on coral reefs are weak, at least on the outer GBR. We conclude that predator-mediated trophic cascades are probably the exception rather than the rule in complex ecosystems such as the outer GBR.
NASA Astrophysics Data System (ADS)
Last, Isidore; Jortner, Joshua
2004-11-01
In this paper we present a theoretical and computational study of the temporal dynamics and energetics of Coulomb explosion of (CD4)n and (CH4)n (n=55-4213) molecular heteroclusters in ultraintense (I=1016-1019W cm-2) laser fields, addressing the manifestation of electron dynamics, together with nuclear energetic and kinematic effects on the heterocluster Coulomb instability. The manifestations of the coupling between electron and nuclear dynamics were explored by molecular dynamics simulations for these heteroclusters coupled to Gaussian laser fields (pulse width τ=25 fs), elucidating outer ionization dynamics, nanoplasma screening effects (being significant for I⩽1017 W cm-2), and the attainment of cluster vertical ionization (CVI) (at I=1017 W cm-2 for cluster radius R0⩽31 Å). Nuclear kinematic effects on heterocluster Coulomb explosion are governed by the kinematic parameter η=qCmA/qAmC for (CA4)n clusters (A=H,D), where qj and mj (j=A,C) are the ionic charges and masses. Nonuniform heterocluster Coulomb explosion (η>1) manifests an overrun effect of the light ions relative to the heavy ions, exhibiting the expansion of two spatially separated subclusters, with the light ions forming the outer subcluster at the outer edge of the spatial distribution. Important features of the energetics of heterocluster Coulomb explosion originate from energetic triggering effects of the driving of the light ions by the heavy ions (C4+ for I=1017-1018W cm-2 and C6+ for I=1019 W cm-2), as well as for kinematic effects. Based on the CVI assumption, scaling laws for the cluster size (radius R0) dependence of the energetics of uniform Coulomb explosion of heteroclusters (η=1) were derived, with the size dependence of the average (Ej,av) and maximal (Ej,M) ion energies being Ej,av=aR02 and Ej,M=(5a/3)R02, as well as for the ion energy distributions P(Ej)∝Ej1/2; Ej⩽Ej,M. These results for uniform Coulomb explosion serve as benchmark reference data for the assessment of the effects of nonuniform explosion, where the CVI scaling law for the energetics still holds, with deviations of the a coefficient, which increase with increasing η. Kinematic effects (for η>1) result in an isotope effect, predicting the enhancement (by 9%-11%) of EH,av for Coulomb explosion of (C4+H4+)η (η=3) relative to ED,av for Coulomb explosion of (C4+D4+)η (η=1.5), with the isotope effect being determined by the ratio of the kinematic parameters for the pair of Coulomb exploding clusters. Kinematic effects for nonuniform explosion also result in a narrow isotope dependent energy distribution (of width ΔE) of the light ions (with ΔE/EH,av≃0.3 and ΔE/ED,av≃0.4), with the distribution peaking at the high energy edge, in marked contrast with the uniform explosion case. Features of laser-heterocluster interactions were inferred from the analyses of the intensity dependent boundary radii (R0)I and the corresponding average D+ ion energies (ED,av)I, which provide a measure for optimization of the cluster size at intensity I for the neutron yield from dd nuclear fusion driven by Coulomb explosion (NFDCE) of these heteroclusters. We infer on the advantage of deuterium containing heteronuclear clusters, e.g., (CD4)n in comparison to homonuclear clusters, e.g., (D2)n/2, for dd NFDCE, where the highly charged heavy ions (e.g., C4+ or C6+) serve as energetic and kinematic triggers driving the D+ ions to a high (10-200 keV) energy domain.