Valve assembly for use with high temperature and high pressure fluids
De Feo, Angelo
1982-01-01
The valve assembly for use with high temperature and high pressure fluids has inner and outer spaced shells and a valve actuator support of inner and outer spaced members which are connected at their end portions to the inner and outer shells, respectively, to extend substantially normal to the longitudinal axis of the inner shell. A layer of resilient heat insulating material covers the outer surfaces of the inner shell and the inner actuator support member and is of a thickness to only occupy part of the spaces between the inner and outer shells and inner and outer actuator support members. The remaining portion of the space between the inner and outer shells and the space between the inner and outer members is substantially filled with a body of castable, rigid refractory material. A movable valve member is disposed in the inner shell. A valve actuator assembly is supported in the valve actuator support to extend into the inner shell for connection with the movable valve member for movement of the movable valve member to positions from a fully open to a fully closed position to control flow of fluid through the inner shell. An anchor mneans is disposed adjacent opposite sides of the axis of the valve actuator support and attached to the inner shell so that relative radial movement between the inner and outer shell is permitted by the layer of resilient heat insulating material and relative longitudinal movement of the inner shell to the outer shell is permitted in opposite directions from the anchor means to thereby maintain the functional integrity of the movable valve member by providing an area of the inner shell surrounding the movable valve member longitdinally stationary, but at the same time allowing radial movement.
Biomineral repair of abalone shell apertures.
Cusack, Maggie; Guo, Dujiao; Chung, Peter; Kamenos, Nicholas A
2013-08-01
The shell of the gastropod mollusc, abalone, is comprised of nacre with an outer prismatic layer that is composed of either calcite or aragonite or both, depending on the species. A striking characteristic of the abalone shell is the row of apertures along the dorsal margin. As the organism and shell grow, new apertures are formed and the preceding ones are filled in. Detailed investigations, using electron backscatter diffraction, of the infill in three species of abalone: Haliotis asinina, Haliotis gigantea and Haliotis rufescens reveals that, like the shell, the infill is composed mainly of nacre with an outer prismatic layer. The infill prismatic layer has identical mineralogy as the original shell prismatic layer. In H. asinina and H. gigantea, the prismatic layer of the shell and infill are made of aragonite while in H. rufescens both are composed of calcite. Abalone builds the infill material with the same high level of biological control, replicating the structure, mineralogy and crystallographic orientation as for the shell. The infill of abalone apertures presents us with insight into what is, effectively, shell repair. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, B I; Tyshkunova, E S; Kondorskiy, A D
2015-12-31
Optical properties of hybrid rod-like nanoparticles, consisting of a gold core, an intermediate passive organic layer (spacer) and outer layer of ordered molecular cyanine dye aggregates, are experimentally and theoretically investigated. It is shown that these dyes can form not only ordered J-aggregates but also H-aggregates (differing by the packing angle of dye molecules in an aggregate and having other spectral characteristics) in the outer shell of the hybrid nanostructure. Absorption spectra of synthesised three-layer nanorods are recorded, and their sizes are determined. The optical properties of the composite nanostructures under study are found to differ significantly, depending on themore » type of the molecular aggregate formed in the outer shell. The experimental data are quantitatively explained based on computer simulation using the finite-difference time-domain (FDTD) method, and characteristic features of the plasmon – exciton interaction in the systems under study are revealed. (nanophotonics)« less
Helmet of a laminate construction of polycarbonate and polysulfone polymeric material
NASA Technical Reports Server (NTRS)
Kosmo, Joseph J. (Inventor); Dawn, Frederic S. (Inventor)
1991-01-01
An article of laminate construction is disclosed which is comprised of an underlayer of polycarbonate polymer material to which is applied a chemically resistant outer layer of polysulfone. The layers which are joined by compression-heat molding, are molded to form the shape of a body protective shell such as a space helmet comprising a shell of polycarbonate, polysulfone laminate construction attached at its open end to a sealing ring adapted for connection to a space suit. The front portion of the shell provides a transparent visor for the helmet. An outer visor of polycarbonate polysulfone laminate construction is pivotally mounted to the sealing ring for covering the transparent visor portion of the shell during extravehicular activities. The polycarbonate under layer of the outer visor is coated on its inner surface with a vacuum deposit of gold to provide additional thermal radiation resistance.
Method to produce large, uniform hollow spherical shells
Hendricks, C.D.
1983-09-26
The invention is a method to produce large uniform hollow spherical shells by (1) forming uniform size drops of heat decomposable or vaporizable material, (2) evaporating the drops to form dried particles, (3) coating the dried particles with a layer of shell forming material and (4) heating the composite particles to melt the outer layer and to decompose or vaporize the inner particle to form an expanding inner gas bubble. The expanding gas bubble forms the molten outer layer into a shell of relatively large diameter. By cycling the temperature and pressure on the molten shell, nonuniformities in wall thickness can be reduced. The method of the invention is utilized to produce large uniform spherical shells, in the millimeter to centimeter diameter size range, from a variety of materials and of high quality, including sphericity, concentricity and surface smoothness, for use as laser fusion or other inertial confinement fusion targets as well as other applications.
Radioactive waste disposal package
Lampe, Robert F.
1986-11-04
A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.
Radioactive waste disposal package
Lampe, Robert F.
1986-01-01
A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.
Growth history of cultured pearl oysters based on stable oxygen isotope analysis
NASA Astrophysics Data System (ADS)
Nakashima, R.; Furuta, N.; Suzuki, A.; Kawahata, H.; Shikazono, N.
2007-12-01
We investigated the oxygen isotopic ratio in shells of the pearl oyster Pinctada martensii cultivated in embayments in Mie Prefecture, central Japan, to evaluate the biomineralization of shell structures of the species and its pearls in response to environmental change. Microsamples for oxygen isotope analysis were collected from the surfaces of shells (outer, middle, and inner shell layers) and pearls. Water temperature variations were estimated from the oxygen isotope values of the carbonate. Oxygen isotope profiles of the prismatic calcite of the outer shell layer reflected seasonal variations of water temperature, whereas those of nacreous aragonites of the middle and inner shell layers and pearls recorded temperatures from April to November, June to September, and July to September, respectively. Lower temperatures in autumn and winter might slow the growth of nacreous aragonites. The oxygen isotope values are controlled by both variations of water temperature and shell structures; the prismatic calcite of this species is useful for reconstructing seasonal changes of calcification temperature.
Rogalla, N.S.; Carter, J.G.; Pojeta, J.
2003-01-01
The Late Carboniferous bransoniid conocardioidean Apotocardium lanterna (Branson, 1965) had an entirely aragonitic shell with a finely prismatic outer shell layer, a predominantly crossed lamellar to complex crossed lamellar middle shell layer, and an "inner" shell layer of finely textured porcelaneous and/or matted structure. This "inner" layer is probably homologous with the inner part of the middle shell layer and the inner layer sensu stricto of bivalved molluscs. Shell morphological and microstructural convergences between conocardioids and living heart cockles suggest that at least some conocardioids may have farmed algal endosymbionts in their posterior mantle margins. This symbiosis may have helped conocardioids compete with the biomechanically more efficient bivalves during the latter part of the Paleozoic.
NASA Technical Reports Server (NTRS)
Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.
1996-01-01
This paper examines sound transmission into two concentric cylindrical sandwich shells subject to turbulent flow on the exterior surface of the outer shell. The interior of the shells is filled with fluid medium and there is an airgap between the shells in the annular space. The description of the pressure field is based on the cross-spectral density formulation of Corcos, Maestrello, and Efimtsov models of the turbulent boundary layer. The classical thin shell theory and the first-order shear deformation theory are applied for the inner and outer shells, respectively. Modal expansion and the Galerkin approach are used to obtain closed-form solutions for the shell displacements and the radiation and transmission pressures in the cavities including both the annular space and the interior. The average spectral density of the structural responses and the transmitted interior pressures are expressed explicitly in terms of the summation of the cross-spectral density of generalized force induced by the boundary layer turbulence. The effects of acoustic and hydrodynamic coincidences on the spectral density are observed. Numerical examples are presented to illustrate the method for both subsonic and supersonic flows.
Kim, Tae-Hyung; Kwak, Chang-Hoon; Lee, Jong-Heun
2017-09-20
NiO/NiWO 4 composite yolk-shell spheres with a nanoscale NiO outer layer were prepared using one-pot ultrasonic spray pyrolysis and their gas sensing characteristics were studied. The NiO/NiWO 4 yolk-shell spheres exhibited an extremely high response to 5 ppm p-xylene (ratio of resistance to gas and air = 343.5) and negligible cross-responses to 5 ppm ethanol, ammonia, carbon monoxide, hydrogen, and benzene, whereas pure NiO yolk-shell spheres showed very low responses and selectivity to all the analyte gases. The detection limit for p-xylene was as low as 22.7 ppb. This ultrasensitive and selective detection of p-xylene is attributed to a synergistic catalytic effect between NiO and NiWO 4 , high gas accessibility with large specific surface area, and increased chemiresistive variation due to the formation of a heterojunction. The NiO/NiWO 4 yolk-shell spheres with a thin NiO outer layer can be used to detect subppm-level p-xylene in a highly sensitive and selective manner for monitoring indoor air pollution.
Process Development and Micro-Machining of MARBLE Foam-Cored Rexolite Hemi-Shell Ablator Capsules
Randolph, Randall Blaine; Oertel, John A.; Schmidt, Derek William; ...
2016-06-30
For this study, machined CH hemi-shell ablator capsules have been successfully produced by the MST-7 Target Fabrication Team at Los Alamos National Laboratory. Process development and micro-machining techniques have been developed to produce capsules for both the Omega and National Ignition Facility (NIF) campaigns. These capsules are gas filled up to 10 atm and consist of a machined plastic hemi-shell outer layer that accommodates various specially engineered low-density polystyrene foam cores. Machining and assembly of the two-part, step-jointed plastic hemi-shell outer layer required development of new techniques, processes, and tooling while still meeting very aggressive shot schedules for both campaigns.more » Finally, problems encountered and process improvements will be discussed that describe this very unique, complex capsule design approach through the first Omega proof-of-concept version to the larger NIF version.« less
NASA Astrophysics Data System (ADS)
Vecchione, Raffaele; Luciani, Giuseppina; Calcagno, Vincenzo; Jakhmola, Anshuman; Silvestri, Brigida; Guarnieri, Daniela; Belli, Valentina; Costantini, Aniello; Netti, Paolo A.
2016-04-01
Stable, biocompatible, multifunctional and multicompartment nanocarriers are much needed in the field of nanomedicine. Here, we report a simple, novel strategy to design an engineered nanocarrier system featuring an oil-core/hybrid polymer/silica-shell. Silica shells with a tunable thickness were grown in situ, directly around a highly mono-disperse and stable oil-in-water emulsion system, stabilized by a double bio-functional polyelectrolyte heparin/chitosan layer. Such silica showed a complete degradation in a physiological medium (SBF) in a time frame of three days. Moreover, the outer silica shell was coated with polyethyleneglycol (PEG) in order to confer antifouling properties to the final nanocapsule. The outer silica layer combined its properties (it is an optimal bio-interface for bio-conjugations and for the embedding of hydrophilic drugs in the porous structure) with the capability to stabilize the oil core for the confinement of high payloads of lipophilic tracers (e.g. CdSe quantum dots, Nile Red) and drugs. In addition, polymer layers - besides conferring stability to the emulsion while building the silica shell - can be independently exploited if suitably functionalized, as demonstrated by conjugating chitosan with fluorescein isothiocyanate. Such numerous features in a single nanocarrier system make it very intriguing as a multifunctional platform for smart diagnosis and therapy.Stable, biocompatible, multifunctional and multicompartment nanocarriers are much needed in the field of nanomedicine. Here, we report a simple, novel strategy to design an engineered nanocarrier system featuring an oil-core/hybrid polymer/silica-shell. Silica shells with a tunable thickness were grown in situ, directly around a highly mono-disperse and stable oil-in-water emulsion system, stabilized by a double bio-functional polyelectrolyte heparin/chitosan layer. Such silica showed a complete degradation in a physiological medium (SBF) in a time frame of three days. Moreover, the outer silica shell was coated with polyethyleneglycol (PEG) in order to confer antifouling properties to the final nanocapsule. The outer silica layer combined its properties (it is an optimal bio-interface for bio-conjugations and for the embedding of hydrophilic drugs in the porous structure) with the capability to stabilize the oil core for the confinement of high payloads of lipophilic tracers (e.g. CdSe quantum dots, Nile Red) and drugs. In addition, polymer layers - besides conferring stability to the emulsion while building the silica shell - can be independently exploited if suitably functionalized, as demonstrated by conjugating chitosan with fluorescein isothiocyanate. Such numerous features in a single nanocarrier system make it very intriguing as a multifunctional platform for smart diagnosis and therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01192f
Zhang, Zewu; Zhou, Yuming; Zhang, Yiwei; Zhou, Shijian; Shi, Junjun; Kong, Jie; Zhang, Sicheng
2013-04-14
Mesoporous anatase-phase TiO2 hollow shells were successfully fabricated by the solvothermal and calcination process. This method involves preparation of SiO2@TiO2 core-shell colloidal templates, sequential deposition of carbon and then silica layers through solvothermal and sol-gel processes, crystallization of TiO2 by calcination and finally removal of the inner and outer silica to produce hollow anatase TiO2 shells. The prepared samples were characterized by transmission electron microscopy, X-ray diffraction, N2 adsorption-desorption isotherms and UV-vis absorption spectroscopy. The results show that a uniform carbon layer is coated on the core-shell particles through the solvothermal process. The combustion of carbon offers the space for the TiO2 to further grow into large crystal grains, and the outer silica layer serves as a barrier against the excessive growth of anatase TiO2 nanocrystals. Furthermore, the initial crystallization of TiO2 generated in the carbon coating step and the heat generated by the combustion of the carbon layer allow the crystallization of TiO2 at a relatively low temperature without changing the uniform structure. When used as photocatalysts for the oxidation decomposition of Rhodamine B in aqueous solution under UV irradiation, the hollow TiO2 shells showed enhanced catalytic activity. Moreover, the TiO2 hollow shells prepared with optimal crystallinity by this method showed a higher performance than commercial P25 TiO2.
Singh, Kislay; Jaiswal, Swadha; Singh, Richa; Fatma, Sana; Prasad, Bhim Bali
2018-07-15
Double layered one-by-one imprinted hollow core-shells@ pencil graphite electrode was fabricated for sequential sensing of anti-HIV drugs. For this, two eccentric layers were developed on the surface of vinylated silica nanospheres to obtain double layered one-by-one imprinted solid core-shells. This yielded hollow core-shells on treatment with hydrofluoric acid. The modified hollow core-shells (single layered dual imprinted) evolved competitive diffusion of probe/analyte molecules. However, the corresponding double layered one-by-one imprinted hollow core-shells (outer layer imprinted with Zidovudine, and inner layer with Lamivudine) were found relatively better owing to their bilateral diffusions into molecular cavities, without any competition. The entire work is based on differential pulse anodic stripping voltammetry at double layered one-by-one imprinted hollow core-shells. This resulted in indirect detection of electro inactive targets with limits of detection as low as 0.91 and 0.12 (aqueous sample), 0.94 and 0.13 (blood serum), and 0.99 and 0.20 ng mL -1 (pharmaceutics) for lamivudine and zidovudine, respectively in anti-HIV drug combination. Copyright © 2018 Elsevier B.V. All rights reserved.
Sayell, E.H.
1973-10-23
A radioisotopic heat source is described which includes a core of heat productive, radioisotopic material, an impact resistant layer of graphite surrounding said core, and a shell of iridium metal intermediate the core and the impact layer. The source may also include a compliant mat of iridium between the core and the iridium shell, as well as an outer covering of iridium metal about the entire heat source. (Official Gazette)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randolph, Randall Blaine; Oertel, John A.; Schmidt, Derek William
For this study, machined CH hemi-shell ablator capsules have been successfully produced by the MST-7 Target Fabrication Team at Los Alamos National Laboratory. Process development and micro-machining techniques have been developed to produce capsules for both the Omega and National Ignition Facility (NIF) campaigns. These capsules are gas filled up to 10 atm and consist of a machined plastic hemi-shell outer layer that accommodates various specially engineered low-density polystyrene foam cores. Machining and assembly of the two-part, step-jointed plastic hemi-shell outer layer required development of new techniques, processes, and tooling while still meeting very aggressive shot schedules for both campaigns.more » Finally, problems encountered and process improvements will be discussed that describe this very unique, complex capsule design approach through the first Omega proof-of-concept version to the larger NIF version.« less
An investigation of green iridescence on the mollusc Patella granatina
NASA Astrophysics Data System (ADS)
Brink, D. J.; van der Berg, N. G.
2005-01-01
In this paper we investigate the relatively rare phenomenon of iridescence on the outer surface of seashells (not the well known pearly inner surfaces). Using reflection spectroscopy and scanning electron microscopy we show that rows of iridescent green spots on the mollusc Patella granatina are caused by a thin-film stack buried about 100 µm below the rough outer surface of the shell. The high-density layers in the stack seem to be made of crystalline aragonite, but according to Raman spectroscopy and ellipsometry measurements the low-density layers as well as the bulk of the shell wall are a mixture of porous aragonite and organic materials such as carotenoids.
Electromagnetic valve for controlling the flow of molten, magnetic material
Richter, T.
1998-06-16
An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell. 5 figs.
Electromagnetic valve for controlling the flow of molten, magnetic material
Richter, Tomas
1998-01-01
An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell.
NASA Astrophysics Data System (ADS)
Labonne, Maylis; Hillaire-Marcel, Claude
2000-05-01
Seriate geochemical measurements through shells of one modern, one Holocene, and two Sangamonian Concholepas concholepas, from marine terraces of Northern Chile, were performed to document diagenetic vs. authigenic geochemical signatures, and to better interpret U-series ages on such material. Subsamples were recovered by drilling from the outer calcitic layer to the inner aragonitic layer of each of the studied shells. Unfortunately, this sampling procedure induces artifacts, notably the convertion of up to ˜20% of calcite into aragonite, and of up to ˜6% of aragonite into calcite, as well as in the epimerization of a few percent of isoleucine into D-alloisoleucine/ L-isoleucine. Negligible sampling artifacts were noticed for stable isotope and total amino acid contents. Diagenetic effects on the geochemical properties of the shells are particularly pronounced in the inner aragonitic layer and more discrete in the outer calcitic layer. The time-dependent decay of the organic matrix of the shell is illustrated by a one order of magnitude lower total amino acid content in the Sangamonian specimens by comparison with the modern shell. Conversely, the Sangamonian shells U contents increase by a similar factor and 13C- 18O enrichments as high as 2 to 3‰ seem also to occur through the same time interval possibly due to partial replacement of aragonite by gypsum. The decay of the organic matrix of the aragonitic layer of the shell is thought to play a major role with respect to U-uptake processes and stable isotope shifts. Nevertheless, asymptotic 230Th-ages (˜100 ka) in the inner U-rich layers of the Sangamonian shells, and 234U/ 238U ratios compatible with a marine origin for U, suggest U-uptake within a short diagenetic interval, when marine waters were still bathing the embedding sediment. Thus, U-series ages on fossil mollusks from such a hyper-arid environment should not differ much from the age of the corresponding marine unit deposition. However, the diagenetic enrichments in stable isotopes raise concerns about their use for paleoenvironmental reconstructions under such climate conditions.
Ethanol Gas Detection Using a Yolk-Shell (Core-Shell) α-Fe2O3 Nanospheres as Sensing Material.
Wang, LiLi; Lou, Zheng; Deng, Jianan; Zhang, Rui; Zhang, Tong
2015-06-17
Three-dimensional (3D) nanostructures of α-Fe2O3 materials, including both hollow sphere-shaped and yolk-shell (core-shell)-shaped, have been successfully synthesized via an environmentally friendly hydrothermal approach. By expertly adjusting the reaction time, the solid, hollow, and yolk-shell shaped α-Fe2O3 can be selectively synthesized. Yolk-shell α-Fe2O3 nanospheres display outer diameters of 350 nm, and the interstitial hollow spaces layer is intimately sandwiched between the inner and outer shell of α-Fe2O3 nanostructures. The possible growth mechanism of the yolk-shell nanostructure is proposed. The results showed that the well-defined bilayer interface effectively enhanced the sensing performance of the α-Fe2O3 nanostructures (i.e., yolk-shell α-Fe2O3@α-Fe2O3), owing predominantly to the unique nanostructure, thus facilitated the transport rate and augmented the adsorption quantity of the target gas molecule under gas detection.
Theory of nanotube faraday cage
NASA Astrophysics Data System (ADS)
Roxana Margine, Elena; Nisoli, Cristiano; Kolmogorov, Aleksey; Crespi, Vincent H.
2003-03-01
Charge transfer between dopants and double-wall carbon nanotubes is examined theoretically. We model the system as a triple cylindrical capacitor with the dopants forming a shell around the outer wall of the nanotube. The total energy of the system contains three terms: the band structure energies of the inner and outer tube, calculated in a tight-binding model with rigid bands, and the electrostatic energy of the tri-layer distribution. Even for metallic inner and outer tube walls, wherein the diameter dependence of the bandgap does not favor the outer wall, nearly all of the dopant charge resides on the outer layer, a nanometer-scale Faraday cage. The calculated charge distribution is in agreement with recent experimental measurements.
NASA Astrophysics Data System (ADS)
Reddy, Vanteru M.; Rahman, Mustafa M.; Gandi, Appala N.; Elbaz, Ayman M.; Schrecengost, Robert A.; Roberts, William L.
2016-01-01
Heavy fuel oil (HFO) as a fuel in industrial and power generation plants ensures the availability of energy at economy. Coke and cenosphere emissions from HFO combustion need to be controlled by particulate control equipment such as electrostatic precipitators, and collection effectiveness is impacted by the properties of these particulates. The cenosphere formation is a function of HFO composition, which varies depending on the source of the HFO. Numerical modelling of the cenosphere formation mechanism presented in this paper is an economical method of characterising cenosphere formation potential for HFO in comparison to experimental analysis of individual HFO samples, leading to better control and collection. In the present work, a novel numerical model is developed for understanding the global cenosphere formation mechanism. The critical diameter of the cenosphere is modelled based on the balance between two pressures developed in an HFO droplet. First is the pressure (Prpf) developed at the interface of the liquid surface and the inner surface of the accumulated coke due to the flow restriction of volatile components from the interior of the droplet. Second is the pressure due to the outer shell strength (PrC) gained from van der Walls energy of the coke layers and surface energy. In this present study it is considered that when PrC ≥ Prpf the outer shell starts to harden. The internal motion in the shell layer ceases and the outer diameter (DSOut) of the shell is then fixed. The entire process of cenosphere formation in this study is analysed in three phases: regression, shell formation and hardening, and post shell hardening. Variations in pressures during shell formation are analysed. Shell (cenosphere) dimensions are evaluated at the completion of droplet evaporation. The rate of fuel evaporation, rate of coke formation and coke accumulation are analysed. The model predicts shell outer diameters of 650, 860 and 1040 µm, and inner diameters are 360, 410 and 430 µm respectively, for 700, 900 and 1100 µm HFO droplets. The present numerical model is validated with experimental results available from the literature. Total variation between computational and experimental results is in the range of 3-7%.
78 FR 14122 - Revocation of Permanent Variances
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-04
... these tanks involves attaching curved steel plates together to form the outer surface of a tank. After attaching a horizontal layer (ring) of steel plates around the circumference of the existing shell, employees raise the scaffolds to attach the next ring of steel plates onto the existing shell. Steel mills...
Multilayer Composite Pressure Vessels
NASA Technical Reports Server (NTRS)
DeLay, Tom
2005-01-01
A method has been devised to enable the fabrication of lightweight pressure vessels from multilayer composite materials. This method is related to, but not the same as, the method described in gMaking a Metal- Lined Composite-Overwrapped Pressure Vessel h (MFS-31814), NASA Tech Briefs, Vol. 29, No. 3 (March 2005), page 59. The method is flexible in that it poses no major impediment to changes in tank design and is applicable to a wide range of tank sizes. The figure depicts a finished tank fabricated by this method, showing layers added at various stages of the fabrication process. In the first step of the process, a mandrel that defines the size and shape of the interior of the tank is machined from a polyurethane foam or other suitable lightweight tooling material. The mandrel is outfitted with metallic end fittings on a shaft. Each end fitting includes an outer flange that has a small step to accommodate a thin layer of graphite/epoxy or other suitable composite material. The outer surface of the mandrel (but not the fittings) is covered with a suitable release material. The composite material is filament- wound so as to cover the entire surface of the mandrel from the step on one end fitting to the step on the other end fitting. The composite material is then cured in place. The entire workpiece is cut in half in a plane perpendicular to the axis of symmetry at its mid-length point, yielding two composite-material half shells, each containing half of the foam mandrel. The halves of the mandrel are removed from within the composite shells, then the shells are reassembled and bonded together with a belly band of cured composite material. The resulting composite shell becomes a mandrel for the subsequent steps of the fabrication process and remains inside the final tank. The outer surface of the composite shell is covered with a layer of material designed to be impermeable by the pressurized fluid to be contained in the tank. A second step on the outer flange of each end fitting accommodates this layer. Depending on the application, this layer could be, for example, a layer of rubber, a polymer film, or an electrodeposited layer of metal. If the fluid to be contained in the tank is a gas, then the best permeation barrier is electrodeposited metal (typically copper or nickel), which can be effective at a thickness of as little as 0.005 in (.0.13 mm). The electrodeposited metal becomes molecularly bonded to the second step on each metallic end fitting. The permeation-barrier layer is covered with many layers of filament-wound composite material, which could be the same as, or different from, the composite material of the inner shell. Finally, the filament-wound composite material is cured in an ov
Deep electromagnetic sounding of the moon with Lunokhod 2 data
NASA Technical Reports Server (NTRS)
Vanyan, L. L.; Yegorov, I. V.; Faynberg, E. B.
1977-01-01
Results of electromagnetic sounding distinguished an outer high resistance shell about 200 km thick in the moon's structure. A preliminary petrological interpretation of the moon's layers indicated their origin as a consequence of differentiation of the initial peridotite material. Upon melting, 20% to 40% of the material melts and is removed to form a high resistance basaltic shell underlain by a layer of spinal peridotites enriched in divalent iron oxides and having a reduced resistance.
Apparatus for integrating a rigid structure into a flexible wall of an inflatable structure
NASA Technical Reports Server (NTRS)
Johnson, Christopher J. (Inventor); Patterson, Ross M. (Inventor); Spexarth, Gary R. (Inventor)
2009-01-01
For an inflatable structure having a flexible outer shell or wall structure having a flexible restraint layer comprising interwoven, load-bearing straps, apparatus for integrating one or more substantially rigid members into the flexible shell. For each rigid member, a corresponding opening is formed through the flexible shell for receiving the rigid member. A plurality of connection devices are mounted on the rigid member for receiving respective ones of the load-bearing straps. In one embodiment, the connection devices comprise inner connecting mechanisms and outer connecting mechanisms, the inner and outer connecting mechanisms being mounted on the substantially rigid structure and spaced along a peripheral edge portion of the structure in an interleafed array in which respective outer connecting mechanisms are interposed between adjacent pairs of inner connecting mechanisms, the outer connecting mechanisms projecting outwardly from the peripheral edge portion of the substantially rigid structure beyond the adjacent inner connecting mechanisms to form a staggered array of connecting mechanisms extending along the panel structure edge portion. In one embodiment, the inner and outer connecting mechanisms form part of an integrated, structure rotatably mounted on the rigid member peripheral edge portion.
Dudev, Todor; Lin, Yen-lin; Dudev, Minko; Lim, Carmay
2003-03-12
The role of the second shell in the process of metal binding and selectivity in metalloproteins has been elucidated by combining Protein Data Bank (PDB) surveys of Mg, Mn, Ca, and Zn binding sites with density functional theory/continuum dielectric methods (DFT/CDM). Peptide backbone groups were found to be the most common second-shell ligand in Mg, Mn, Ca, and Zn binding sites, followed (in decreasing order) by Asp/Glu, Lys/Arg, Asn/Gln, and Ser/Thr side chains. Aromatic oxygen- or nitrogen-containing side chains (Tyr, His, and Trp) and sulfur-containing side chains (Cys and Met) are seldom found in the second coordination layer. The backbone and Asn/Gln side chain are ubiquitous in the metal second coordination layer as their carbonyl oxygen and amide hydrogen can act as a hydrogen-bond acceptor and donor, respectively, and can therefore partner practically every first-shell ligand. The second most common outer-shell ligand, Asp/Glu, predominantly hydrogen bonds to a metal-bound water or Zn-bound histidine and polarizes the H-O or H-N bond. In certain cases, a second-shell Asp/Glu could affect the protonation state of the metal ligand. It could also energetically stabilize a positively charged metal complex more than a neutral ligand such as the backbone and Asn/Gln side chain. As for the first shell, the second shell is predicted to contribute to the metal selectivity of the binding site by discriminating between metal cations of different ionic radii and coordination geometries. The first-shell-second-shell interaction energies decay rapidly with increasing solvent exposure of the metal binding site. They are less favorable but are of the same order of magnitude as compared to the respective metal-first-shell interaction energies. Altogether, the results indicate that the structure and properties of the second shell are dictated by those of the first layer. The outer shell is apparently designed to stabilize/protect the inner-shell and complement/enhance its properties.
Fabrication of bifunctional core-shell Fe3O4 particles coated with ultrathin phosphor layer
2013-01-01
Bifunctional monodispersed Fe3O4 particles coated with an ultrathin Y2O3:Tb3+ shell layer were fabricated using a facile urea-based homogeneous precipitation method. The obtained composite particles were characterized by powder X-ray diffraction, transmission electron microscopy (TEM), quantum design vibrating sample magnetometry, and photoluminescence (PL) spectroscopy. TEM revealed uniform spherical core-shell-structured composites ranging in size from 306 to 330 nm with a shell thickness of approximately 25 nm. PL spectroscopy confirmed that the synthesized composites displayed a strong eye-visible green light emission. Magnetic measurements indicated that the composite particles obtained also exhibited strong superparamagnetic behavior at room temperature. Therefore, the inner Fe3O4 core and outer Y2O3:Tb3+ shell layer endow the composites with both robust magnetic properties and strong eye-visible luminescent properties. These composite materials have potential use in magnetic targeting and bioseparation, simultaneously coupled with luminescent imaging. PMID:23962025
Fabrication of bifunctional core-shell Fe3O4 particles coated with ultrathin phosphor layer
NASA Astrophysics Data System (ADS)
Atabaev, Timur Sh; Kim, Hyung-Kook; Hwang, Yoon-Hwae
2013-08-01
Bifunctional monodispersed Fe3O4 particles coated with an ultrathin Y2O3:Tb3+ shell layer were fabricated using a facile urea-based homogeneous precipitation method. The obtained composite particles were characterized by powder X-ray diffraction, transmission electron microscopy (TEM), quantum design vibrating sample magnetometry, and photoluminescence (PL) spectroscopy. TEM revealed uniform spherical core-shell-structured composites ranging in size from 306 to 330 nm with a shell thickness of approximately 25 nm. PL spectroscopy confirmed that the synthesized composites displayed a strong eye-visible green light emission. Magnetic measurements indicated that the composite particles obtained also exhibited strong superparamagnetic behavior at room temperature. Therefore, the inner Fe3O4 core and outer Y2O3:Tb3+ shell layer endow the composites with both robust magnetic properties and strong eye-visible luminescent properties. These composite materials have potential use in magnetic targeting and bioseparation, simultaneously coupled with luminescent imaging.
Nakayama, Seiji; Suzuki, Michio; Endo, Hirotoshi; Iimura, Kurin; Kinoshita, Shigeharu; Watabe, Shugo; Kogure, Toshihiro; Nagasawa, Hiromichi
2013-01-01
The periostracum is a layered structure that is formed as a mollusk shell grows. The shell is covered by the periostracum, which consists of organic matrices that prevent decalcification of the shell. In the present study, we discovered the presence of chitin in the periostracum and identified a novel matrix protein, Pinctada fucata periostracum protein named PPP-10. It was purified from the sodium dodecyl sulfate/dithiothreitol-soluble fraction of the periostracum of the Japanese pearl oyster, P. fucata. The deduced amino acid sequence was determined by a combination of amino acid sequence analysis and cDNA cloning. The open reading frame encoded a precursor protein of 112 amino acid residues including a 21-residue signal peptide. The 91 residues following the signal peptide contained abundant Cys and Tyr residues. PPP-10 was expressed on the outer side of the outer fold in the mantle, indicating that PPP-10 was present in the second or third layer of the periostracum. We also determined that the recombinant PPP-10 had chitin-binding activity and could incorporate chitin into the scaffolds of the periostracum. These results shed light on the early steps in mollusk shell formation.
Nakayama, Seiji; Suzuki, Michio; Endo, Hirotoshi; Iimura, Kurin; Kinoshita, Shigeharu; Watabe, Shugo; Kogure, Toshihiro; Nagasawa, Hiromichi
2013-01-01
The periostracum is a layered structure that is formed as a mollusk shell grows. The shell is covered by the periostracum, which consists of organic matrices that prevent decalcification of the shell. In the present study, we discovered the presence of chitin in the periostracum and identified a novel matrix protein, Pinctada fucata periostracum protein named PPP-10. It was purified from the sodium dodecyl sulfate/dithiothreitol-soluble fraction of the periostracum of the Japanese pearl oyster, P. fucata. The deduced amino acid sequence was determined by a combination of amino acid sequence analysis and cDNA cloning. The open reading frame encoded a precursor protein of 112 amino acid residues including a 21-residue signal peptide. The 91 residues following the signal peptide contained abundant Cys and Tyr residues. PPP-10 was expressed on the outer side of the outer fold in the mantle, indicating that PPP-10 was present in the second or third layer of the periostracum. We also determined that the recombinant PPP-10 had chitin-binding activity and could incorporate chitin into the scaffolds of the periostracum. These results shed light on the early steps in mollusk shell formation. PMID:24251105
Rochette, Christophe N; Crassous, Jérôme J; Drechsler, Markus; Gaboriaud, Fabien; Eloy, Marie; de Gaudemaris, Benoît; Duval, Jérôme F L
2013-11-26
The interfacial structure of natural rubber (NR) colloids is investigated by means of cryogenic transmission electron microscopy (cryo-TEM) and electrokinetics over a broad range of KNO3 electrolyte concentrations (4-300 mM) and pH values (1-8). The asymptotic plateau value reached by NR electrophoretic mobility (μ) in the thin double layer limit supports the presence of a soft (ion- and water-permeable) polyelectrolytic type of layer located at the periphery of the NR particles. This property is confirmed by the analysis of the electron density profile obtained from cryo-TEM that evidences a ∼2-4 nm thick corona surrounding the NR polyisoprene core. The dependence of μ on pH and salt concentration is further marked by a dramatic decrease of the point of zero electrophoretic mobility (PZM) from 3.6 to 0.8 with increasing electrolyte concentration in the range 4-300 mM. Using a recent theory for electrohydrodynamics of soft multilayered particles, this "anomalous" dependence of the PZM on electrolyte concentration is shown to be consistent with a radial organization of anionic and cationic groups across the peripheral NR structure. The NR electrokinetic response in the pH range 1-8 is indeed found to be equivalent to that of particles surrounded by a positively charged ∼3.5 nm thick layer (mean dissociation pK ∼ 4.2) supporting a thin and negatively charged outermost layer (0.6 nm in thickness, pK ∼ 0.7). Altogether, the strong dependence of the PZM on electrolyte concentration suggests that the electrostatic properties of the outer peripheral region of the NR shell are mediated by lipidic residues protruding from a shell containing a significant amount of protein-like charges. This proposed NR shell interfacial structure questions previously reported NR representations according to which the shell consists of either a fully mixed lipid-protein layer, or a layer of phospholipids residing exclusively beneath an outer proteic film.
Accident resistant transport container
Andersen, John A.; Cole, James K.
1980-01-01
The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.
Accident resistant transport container
Anderson, J.A.; Cole, K.K.
The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.
Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo
2016-09-21
Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.
Study on the Impact Resistance of Bionic Layered Composite of TiC-TiB2/Al from Al-Ti-B4C System
Zhao, Qian; Liang, Yunhong; Zhang, Zhihui; Li, Xiujuan; Ren, Luquan
2016-01-01
Mechanical property and impact resistance mechanism of bionic layered composite was investigated. Due to light weight and high strength property, white clam shell was chosen as bionic model for design of bionic layered composite. The intercoupling model between hard layer and soft layer was identical to the layered microstructure and hardness tendency of the white clam shell, which connected the bionic design and fabrication. TiC-TiB2 reinforced Al matrix composites fabricated from Al-Ti-B4C system with 40 wt. %, 50 wt. % and 30 wt. % Al contents were treated as an outer layer, middle layer and inner layer in hard layers. Pure Al matrix was regarded as a soft layer. Compared with traditional homogenous Al-Ti-B4C composite, bionic layered composite exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The intercoupling effect of layered structure and combination model of hard and soft played a key role in high impact resistance of the bionic layered composite, proving the feasibility and practicability of the bionic model of a white clam shell. PMID:28773827
Method of synthesizing small-diameter carbon nanotubes with electron field emission properties
NASA Technical Reports Server (NTRS)
Liu, Jie (Inventor); Du, Chunsheng (Inventor); Qian, Cheng (Inventor); Gao, Bo (Inventor); Qiu, Qi (Inventor); Zhou, Otto Z. (Inventor)
2009-01-01
Carbon nanotube material having an outer diameter less than 10 nm and a number of walls less than ten are disclosed. Also disclosed are an electron field emission device including a substrate, an optionally layer of adhesion-promoting layer, and a layer of electron field emission material. The electron field emission material includes a carbon nanotube having a number of concentric graphene shells per tube of from two to ten, an outer diameter from 2 to 8 nm, and a nanotube length greater than 0.1 microns. One method to fabricate carbon nanotubes includes the steps of (a) producing a catalyst containing Fe and Mo supported on MgO powder, (b) using a mixture of hydrogen and carbon containing gas as precursors, and (c) heating the catalyst to a temperature above 950.degree. C. to produce a carbon nanotube. Another method of fabricating an electron field emission cathode includes the steps of (a) synthesizing electron field emission materials containing carbon nanotubes with a number of concentric graphene shells per tube from two to ten, an outer diameter of from 2 to 8 nm, and a length greater than 0.1 microns, (b) dispersing the electron field emission material in a suitable solvent, (c) depositing the electron field emission materials onto a substrate, and (d) annealing the substrate.
NASA Astrophysics Data System (ADS)
Bednaršek, N.; Johnson, J.; Feely, R. A.
2016-05-01
Pteropods have been recognized as one of the most sensitive marine organisms to ocean acidification (OA). Their susceptibility is mostly related to rapid shell dissolution, which is correlated with exposure to waters undersaturated with respect to aragonite (Ωar≤ 1) (e.g., Lischka et al., 2011; Bednaršek et al., 2012a,b, 2014a,b; Busch et al., 2014). Increased dissolution weakens the shell, increases vulnerability to predation and infection, and imposes an energetic cost. The rapidity of shell dissolution is attributed to the combination of metastable aragonitic crystal structure of shells that are among the thinnest known for calcifying organisms, and an extremely thin outer organic layer (i.e. periostracum <1 μm thick), suggesting insufficient protection against shell dissolution at Ωar≤1 (Bednaršek et al., 2014b). The periostracum generally consists of polysaccharide and proteinaceous components (Gaffey and Bronnimann, 1993) but varies significantly in its structure and composition amongst taxa.
Lindenblatt, Nicole; El-Rabadi, Karem; Helbich, Thomas H; Czembirek, Heinrich; Deutinger, Maria; Benditte-Klepetko, Heike
2014-01-01
Silicone gel breast implants may silently rupture without detection. This has been the main reason for magnetic resonance imaging (MRI) of the augmented or reconstructed breast. The aim of the present study was to investigate the accuracy of MRI for implant rupture. Fifty consecutive patients with 85 silicone gel implants were included in the study. The mean age of the patients was 51 (range 21-72) years, with a mean duration of implantation of 3.8 (range 1-28) years. All patients underwent clinical examination and breast MRI. Intraoperative implant rupture was diagnosed by the operating surgeon. Nineteen of the 50 patients suffered from clinical symptoms. An implant rupture was diagnosed by MRI in 22 of 85 implants (26%). In seven of 17 removed implants (41%), the intraoperative diagnosis corresponded with the positive MRI result. However, only 57% of these patients were symptomatic. Ultrasound imaging of the harvested implants showed signs of interrupted inner layers of the implant despite integrity of the outer shell. By microsurgical separation of the different layers of the implant shell, we were able to reproduce this phenomenon and to produce signs of implant rupture on MRI. Our results show that rupture of only the inner layers of the implant shell with integrity of the outer shell leads to a misdiagnosis on MRI. Correlation with clinical symptoms and the specific wishes of the patient should guide the indication for implant removal.
Lindenblatt, Nicole; El-Rabadi, Karem; Helbich, Thomas H; Czembirek, Heinrich; Deutinger, Maria; Benditte-Klepetko, Heike
2014-01-01
Background Silicone gel breast implants may silently rupture without detection. This has been the main reason for magnetic resonance imaging (MRI) of the augmented or reconstructed breast. The aim of the present study was to investigate the accuracy of MRI for implant rupture. Methods Fifty consecutive patients with 85 silicone gel implants were included in the study. The mean age of the patients was 51 (range 21–72) years, with a mean duration of implantation of 3.8 (range 1–28) years. All patients underwent clinical examination and breast MRI. Intraoperative implant rupture was diagnosed by the operating surgeon. Results Nineteen of the 50 patients suffered from clinical symptoms. An implant rupture was diagnosed by MRI in 22 of 85 implants (26%). In seven of 17 removed implants (41%), the intraoperative diagnosis corresponded with the positive MRI result. However, only 57% of these patients were symptomatic. Ultrasound imaging of the harvested implants showed signs of interrupted inner layers of the implant despite integrity of the outer shell. By microsurgical separation of the different layers of the implant shell, we were able to reproduce this phenomenon and to produce signs of implant rupture on MRI. Conclusion Our results show that rupture of only the inner layers of the implant shell with integrity of the outer shell leads to a misdiagnosis on MRI. Correlation with clinical symptoms and the specific wishes of the patient should guide the indication for implant removal. PMID:25114595
Containers and systems for the measurement of radioactive gases and related methods
Mann, Nicholas R; Watrous, Matthew G; Oertel, Christopher P; McGrath, Christopher A
2017-06-20
Containers for a fluid sample containing a radionuclide for measurement of radiation from the radionuclide include an outer shell having one or more ports between an interior and an exterior of the outer shell, and an inner shell secured to the outer shell. The inner shell includes a detector receptacle sized for at least partial insertion into the outer shell. The inner shell and outer shell together at least partially define a fluid sample space. The outer shell and inner shell are configured for maintaining an operating pressure within the fluid sample space of at least about 1000 psi. Systems for measuring radioactivity in a fluid include such a container and a radiation detector received at least partially within the detector receptacle. Methods of measuring radioactivity in a fluid sample include maintaining a pressure of a fluid sample within a Marinelli-type container at least at about 1000 psi.
Poprawa, Izabela
2005-01-01
The eggs of Dactylobiotus dispar, similar to other Tardigrada eggs, are covered with two shells: the vitelline envelope and the chorion. Ultrastructural studies have shown that the oocyte actively participates in the formation of both shells. The process of egg capsule formation begins at the midpoint of vitellogenesis. The chorion at first appears as isolated cones resulting from the exocytotic activity of the oocyte and the ovarian epithelium. Subsequently, connections between the cones are formed. Three layers can be distinguished in the completely developed chorion: (1) the inner layer of medium electron density; (2) the middle, labyrinthine layer; (3) the outer layer of medium electron density with cones (future conical processes). After chorion formation, a vitelline envelope is secreted by the oocyte. The Dactylobiotus dispar egg is covered with small, conical processes with hooked tips. The surface of the chorion is covered with a mesh-like network consisting of elongated interstices. The egg capsule has no micropylar opening.
http://www.nasa.gov/image-feature/goddard/hubble-spots-the-layers-of-ngc-3923
2015-05-15
The glowing object in this Hubble Space Telescope image is an elliptical galaxy called NGC 3923. It is located over 90 million light-years away in the constellation of Hydra. NGC 3923 is an example of a shell galaxy where the stars in its halo are arranged in layers. Finding concentric shells of stars enclosing a galaxy is quite common and is observed in many elliptical galaxies. In fact, every tenth elliptical galaxy exhibits this onion-like structure, which has never been observed in spiral galaxies. The shell-like structures are thought to develop as a consequence of galactic cannibalism, when a larger galaxy ingests a smaller companion. As the two centers approach, they initially oscillate about a common center, and this oscillation ripples outwards forming the shells of stars just as ripples on a pond spread when the surface is disturbed. NGC 3923 has over twenty shells, with only a few of the outer ones visible in this image, and its shells are much more subtle than those of other shell galaxies. The shells of this galaxy are also interestingly symmetrical, while other shell galaxies are more skewed. Credit: ESA/Hubble & NASA
Leach, David; Bergendahl, Peter Allen; Waldo, Stuart Forrest; Smith, Robert Leroy; Phelps, Robert Kim
2001-01-01
A turbine includes upper and lower inner shell sections mounting the nozzles and shrouds and which inner shell is supported by pins secured to a surrounding outer shell. To disassemble the turbine for access to the inner shell sections and rotor, an alignment fixture is secured to the lower outer shell section and has pins engaging the inner shell section. To disassemble the turbine, the inner shell weight is transferred to the lower outer shell section via the alignment fixture and cradle pins. Roller assemblies are inserted through access openings vacated by support pins to permit rotation of the lower inner shell section out of and into the lower outer shell section during disassembly and assembly. The alignment fixture includes adjusting rods for adjusting the inner shell axially, vertically, laterally and about a lateral axis. A roller over-cage is provided to rotate the inner shell and a dummy shell to facilitate assembly and disassembly in the field.
Baek, Hyoung Gee; Liu, Ruiwu; Lam, Kit S
2009-01-01
The one-bead one-compound (OBOC) combinatorial library method enables the rapid generation and screening of millions of discrete chemical compounds on beads. Most of the OBOC screening methods require the library compounds to remain tethered to the bead during screening process. Methods have also been developed to release library compounds from immobilized beads for in situ solution phase or "lawn" assays. However, this latter approach, while extremely powerful, is severely limited by the lack of suitable solid supports for such assays. Here, we report on the development of a novel hydrogel TentaGel shell-core (HTSC) bead in which hydrogel is grafted onto the polystyrene-based TentaGel (TG) bead as an outer shell (5-80 mum thick) via free radical surface-initiated polymerization. This novel shell-core bilayer resin enables the preparation of encoded OBOC combinatorial small molecule libraries, such that the library compounds reside on the highly hydrophilic outer layer and the coding tags reside in the polystyrene-based TG core. Using fluorescein as a model small molecule compound, we have demonstrated that fluorescein molecules that have been linked covalently to the hydrogel shell via a disulfide bond could readily diffuse out of the hydrogel layer into the bead surrounding after reduction with dithiothreitol. In contrast, under identical condition, the released fluorescein molecules remained bound to unmodified TG bead. We have prepared an encoded OBOC small molecule library on the novel shell-core beads and demonstrated that the beads can be readily decoded.
Annular fuel and air co-flow premixer
Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David
2013-10-15
Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.
Method for Detecting Perlite Compaction in Large Cryogenic Tanks
NASA Technical Reports Server (NTRS)
Youngquist, Robert
2010-01-01
Perlite is the most typical insulating powder used to separate the inner and outer shells of cryogenic tanks. The inner tank holds the low-temperature commodity, while the outer shell is exposed to the ambient temperature. Perlite minimizes radiative energy transfer between the two tanks. Being a powder, perlite will settle over time, leading to the danger of transferring any loads from the inner shell to the outer shell. This can cause deformation of the outer shell, leading to damaged internal fittings. The method proposed is to place strain or displacement sensors on several locations of the outer shell. Loads induced on the shell by the expanding inner shell and perlite would be monitored, providing an indication of the location and degree of compaction.
FAILURE OF A NEUTRINO-DRIVEN EXPLOSION AFTER CORE-COLLAPSE MAY LEAD TO A THERMONUCLEAR SUPERNOVA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kushnir, Doron; Katz, Boaz, E-mail: kushnir@ias.edu
We demonstrate that ∼10 s after the core-collapse of a massive star, a thermonuclear explosion of the outer shells is possible for some (tuned) initial density and composition profiles, assuming that the neutrinos failed to explode the star. The explosion may lead to a successful supernova, as first suggested by Burbidge et al. We perform a series of one-dimensional (1D) calculations of collapsing massive stars with simplified initial density profiles (similar to the results of stellar evolution calculations) and various compositions (not similar to 1D stellar evolution calculations). We assume that the neutrinos escaped with a negligible effect on themore » outer layers, which inevitably collapse. As the shells collapse, they compress and heat up adiabatically, enhancing the rate of thermonuclear burning. In some cases, where significant shells of mixed helium and oxygen are present with pre-collapsed burning times of ≲100 s (≈10 times the free-fall time), a thermonuclear detonation wave is ignited, which unbinds the outer layers of the star, leading to a supernova. The energy released is small, ≲10{sup 50} erg, and negligible amounts of synthesized material (including {sup 56}Ni) are ejected, implying that these 1D simulations are unlikely to represent typical core-collapse supernovae. However, they do serve as a proof of concept that the core-collapse-induced thermonuclear explosions are possible, and more realistic two-dimensional and three-dimensional simulations are within current computational capabilities.« less
Peharda, Melita; Calcinai, Barbara; Puljas, Sanja; Golubić, Stjepko; Arapov, Jasna; Thébault, Julien
2015-07-01
Pronounced differences with respect to the extent of infestation and the degree of Lithophaga lithophaga shell damage inflicted by euendolithic taxa at two sites in the Adriatic Sea representing different productivity conditions, are described. Shells collected from the eastern part of Kaštela Bay, which is characterized by higher primary productivity, have significantly more shell damage then the shell collected from a site on the outer coast of the island of Čiovo exposed to the oligotrophic Adriatic Sea. The presence of endoliths and their perforations were detected in different layers of the shell, including solidly mineralized parts of the skeleton and within the organic lamellae incorporated into the shell. Phototrophic endoliths were not observed in the specimens. The most serious damage to L. lithophaga shells was the boring clionaid sponge Pione vastifica, which was more common in shells collected from Kaštela. Copyright © 2015 Elsevier Ltd. All rights reserved.
Material with core-shell structure
Luhrs, Claudia [Rio Rancho, NM; Richard, Monique N [Ann Arbor, MI; Dehne, Aaron [Maumee, OH; Phillips, Jonathan [Rio Rancho, NM; Stamm, Kimber L [Ann Arbor, MI; Fanson, Paul T [Brighton, MI
2011-11-15
Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozioziemski, B.
A foam shell, 1.2 mm outer diameter with a 35 μm thick foam layer, is used to quickly form a solid deuterium layer for ICF. Figures show the visible light microscope image and a corresponding schematic representation. In each case, images show the empty foam shell, with the dark and light patches due to the foam imperfections; the foam shell with liquid deuterium filling the foam (in this case, the liquid level exceeds the foam level because the deuterium will shrink when it freezes); and an image of the shell taken 10 minutes after the center image, after the temperaturemore » was reduced by 2 K to freeze the deuterium. This image shows that the majority of the solid deuterium has no observable defects, with the exception of the isolated crystal that formed on the foam surface. The next step is to get the correct level of liquid and cooling rate to prevent the extra crystal on the surface. In contrast, typical ICF DT fuel layers require ~13 hours to solidify in order to be defect free with a success rate of approximately 20%.« less
Inner shell radial pin geometry and mounting arrangement
Leach, David; Bergendahl, Peter Allen
2002-01-01
Circumferentially spaced arrays of support pins are disposed through access openings in an outer turbine shell and have projections received in recesses in forward and aft sections of an inner turbine shell supported from the outer shell. The projections have arcuate sides in a circumferential direction affording line contacts with the side walls of the recesses and are spaced from end faces of the recesses, enabling radial and axial expansion and contraction of the inner shell relative to the outer shell. All loads are taken up in a tangential direction by the outer shell with the support pins taking no radial loadings.
Removable inner turbine shell with bucket tip clearance control
Sexton, Brendan F.; Knuijt, Hans M.; Eldrid, Sacheverel Q.; Myers, Albert; Coneybeer, Kyle E.; Johnson, David Martin; Kellock, Iain R.
2000-01-01
A turbine includes a plurality of inner shell sections mounting first and second stage nozzle and shroud portions. The inner shell sections are pinned to an outer containment shell formed of sections to preclude circumferential movement of the inner shell relative to the outer shell and enable thermal expansion and contraction of the inner shell relative to the outer shell. Positive bucket tip clearance control is afforded by passing a thermal medium about the inner shell in heat transfer relation with the shrouds about the first and second stage bucket tips, the thermal medium being provided from a source of heating/cooling fluid independent of the turbine. Access is provided to the rotor and turbine buckets by removing the outer and inner shell sections.
Dissipation in the deep interiors of Ganymede and Europa
NASA Astrophysics Data System (ADS)
Hussmann, Hauke; Shoji, Daigo; Steinbruegge, Gregor; Stark, Alexander; Sohl, Frank
2017-04-01
Jupiter's satellites are subject to strong tidal forces which result in variations of the gravitational potential and deformations of the satellites' surfaces on the diurnal tidal cycle. Tidal flexing in the deep interiors can be a significant heat source for the satellites' thermal-orbital evolution. Whereas typical structure models of Europa consist of a core, a silicate mantle, an ocean and an outer ice-I shell [1], pressures inside Ganymede are sufficient for high-pressure ice phases to occur between the silicate mantle and the ocean [2]. With current data it is unknown whether the deep interiors (i.e., Europa's silicate shell and Ganymede's silicate mantle and/or high-pressure ice layer) are dissipative. Other possibilities would be that the dissipation rates are in general very low (unlikely at least for Europa due to recent observations) or that dissipative processes are mainly occurring in the ice-I shell and/or ocean. Thus, for evaluations of the heating state of these satellites, it is important to measure the magnitude of the interior dissipation. However, observation of the interior layers such as high-pressure ice layers is more challenging than that of the surface ice-I layer. Here we suggest a method to constrain the dissipation states of the deep interiors of Ganymede and Europa by altimetry and gravity measurements from an orbiting or multi-flyby spacecraft. Tidal variations are generally described by the Love numbers k2 and h2 for the tide-induced potential variation due to internal mass redistribution and the radial surface displacement, respectively. The phase-lags of these complex numbers contain information about the rheological and dissipative states of the satellites. For the satellites we assume a decoupling of the outer ice-shell from the deep interior by a liquid subsurface water ocean. We show that, in this case, the phase-lag difference between the lags of k2 and h2 can provide information on the rheological and thermal state of the deep interiors if the viscosities of the deeper layers are small (the phase-lag difference is almost independent of the dissipation in the surface layer). In case of Ganymede, phase-lag differences can reach values of a few degrees for high-pressure ice viscosities of 1e13-1e14 Pa s (around the lower boundary at its melting temperature) and would indicate a highly dissipative state of the deep interior. In this case, in contrast to the phase lags itself, the phase-lag difference is dominated by dissipation in the high-pressure ice layer rather than dissipation within the ice-I shell. These phase lags would be detectable from spacecraft in orbit around the satellite [3]. For Europa the phase-lag difference could reach values exceeding 20 deg if the silicate mantle contains melt and phase-lag measurements could help distinguish between (1) a hot dissipative (melt-containing) silicate mantle which would in thermal equilibrium correspond to a very thin outer ice-I shell and (2) a cold deep interior implying that dissipation would mainly occur in a thick (several tens of km) outer ice-I shell. These measurements are highly relevant for ESA's Jupiter Icy Moons Explorer (JUICE) and NASA's Europa Multiple Flyby Mission, both targeted for the Jupiter system. References: [1] Schubert, G., F. Sohl and H. Hussmann 2009. Interior of Europa. In: Europa, (R.T. Pappalardo, W.B. McKinnon, K. Khurana, Eds.), University of Arizona Press, pp. 353 - 368. [2] Schubert G., J. D. Anderson, T. Spohn, and W. B. McKinnon 2004. Interior composition, structure, and dynamics of the Galilean satellites. In: F. Bagenal, T. E. Dowling, and W. B. McKinnon (eds.) Jupiter. The Planet, Satellites, and Magnetosphere, pp. 281-306. Cambridge University Press. [3] Hussmann, H., D. Shoji, G. Steinbrügge, A. Stark, F. Sohl 2016. Constraints on dissipation in the deep interiors of Ganymede and Europa from tidal phase-lags. Cel. Mech. Dyn. Astr. 126, 131 - 144.
NASA Astrophysics Data System (ADS)
Peck, Victoria L.; Tarling, Geraint A.; Manno, Clara; Harper, Elizabeth M.; Tynan, Eithne
2016-05-01
Scarred shells of polar pteropod Limacina helicina collected from the Greenland Sea in June 2012 reveal a history of damage, most likely failed predation, in earlier life stages. Evidence of shell fracture and subsequent re-growth is commonly observed in specimens recovered from the sub-Arctic and further afield. However, at one site within sea-ice on the Greenland shelf, shells that had been subject to mechanical damage were also found to exhibit considerable dissolution. It was evident that shell dissolution was localised to areas where the organic, periostracal sheet that covers the outer shell had been damaged at some earlier stage during the animal's life. Where the periostracum remained intact, the shell appeared pristine with no sign of dissolution. Specimens which appeared to be pristine following collection were incubated for four days. Scarring of shells that received periostracal damage during collection only became evident in specimens that were incubated in waters undersaturated with respect to aragonite, ΩAr≤1. While the waters from which the damaged specimens were collected at the Greenland Sea sea-ice margin were not ΩAr≤1, the water column did exhibit the lowest ΩAr values observed in the Greenland and Barents Seas, and was likely to have approached ΩAr≤1 during the winter months. We demonstrate that L. helicina shells are only susceptible to dissolution where both the periostracum has been breached and the aragonite beneath the breach is exposed to waters of ΩAr≤1. Exposure of multiple layers of aragonite in areas of deep dissolution indicate that, as with many molluscs, L. helicina is able to patch up dissolution damage to the shell by secreting additional aragonite internally and maintain their shell. We conclude that, unless breached, the periostracum provides an effective shield for pteropod shells against dissolution in waters ΩAr≤1, and when dissolution does occur the animal has an effective means of self-repair. We suggest that future studies of pteropod shell condition are undertaken on specimens from which the periostracum has not been removed in preparation.
Novel Architecture for a Long-Life, Lightweight Venus Lander
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bugby, D.; Seghi, S.; Kroliczek, E.
2009-03-16
This paper describes a novel concept for an extended lifetime, lightweight Venus lander. Historically, to operate in the 480 deg. C, 90 atm, corrosive, mostly CO{sub 2} Venus surface environment, previous landers have relied on thick Ti spherical outer shells and thick layers of internal insulation. But even the most resilient of these landers operated for only about 2 hours before succumbing to the environment. The goal on this project is to develop an architecture that extends lander lifetime to 20-25 hours and also reduces mass compared to the Pioneer Venus mission architecture. The idea for reducing mass is to:more » (a) contain the science instruments within a spherical high strength lightweight polymer matrix composite (PMC) tank; (b) surround the PMC tank with an annular shell of high performance insulation pre-pressurized to a level that (after landing) will exceed the external Venus surface pressure; and (c) surround the insulation with a thin Ti outer shell that contains only a net internal pressure, eliminating buckling overdesign mass. The combination of the PMC inner tank and thin Ti outer shell is lighter than a single thick Ti outer shell. The idea for extending lifetime is to add the following three features: (i) an expendable water supply that is placed within the insulation or is contained in an additional vessel within the PMC tank; (ii) a thin spherical evaporator shell placed within the insulation a short radial distance from the outer shell; and (iii) a thin heat-intercepting liquid cooled shield placed inboard of the evaporator shell. These features lower the temperature of the insulation below what it would have been with the insulation alone, reducing the internal heat leak and lengthening lifetime. The use of phase change materials (PCMs) inside the PMC tank is also analyzed as a lifetime-extending design option. The paper describes: (1) analytical modeling to demonstrate reduced mass and extended life; (2) thermal conductivity testing of high performance insulation as a function of temperature and pressure; (3) a bench-top ambient pressure thermal test of the evaporation system; and (4) a higher fidelity test, to be conducted in a high pressure, high temperature inert gas test chamber, of a small-scale Venus lander prototype (made from two hemispherical interconnecting halves) that includes all of the aforesaid features.22 CFR 125.4(b)(13) applicable.« less
NASA Astrophysics Data System (ADS)
Takehiro, Shin-ichi; Sasaki, Youhei
2018-03-01
Penetration of steady magneto-hydrodynamic (MHD) disturbances into an upper strongly stratified stable layer excited by MHD thermal convection in rotating spherical shells is investigated. The theoretical model proposed by Takehiro (2015) is reexamined in the case of steady fluid motion below the bottom boundary. Steady disturbances penetrate into a density stratified MHD fluid existing in the semi-infinite region in the vertical direction. The axis of rotation of the system is tilted with respect to the vertical. The basic magnetic field is uniform and may be tilted with respect to the vertical and the rotation axis. Linear dispersion relation shows that the penetration distance with zero frequency depends on the amplitude of Alfvén wave speed. When Alfvén wave speed is small, viscous diffusion becomes dominant and penetration distance is similar to the horizontal scale of the disturbance at the lower boundary. In contrast, when Alfvén wave speed becomes larger, disturbance can penetrate deeper, and penetration distance becomes proportional to the Alfvén wave speed and inversely proportional to the geometric average of viscous and magnetic diffusion coefficients and to the total horizontal wavenumber. The analytic expression of penetration distance is in good agreement with the extent of penetration of mean zonal flow induced by finite amplitude convection in a rotating spherical shell with an upper stably stratified layer embedded in an axially uniform basic magnetic field. The theory expects that the stable layer suggested in the upper part of the outer core of the earth could be penetrated completely by mean zonal flows excited by thermal/compositional convection developing below the stable layer.
76 FR 78698 - Proposed Revocation of Permanent Variances
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-19
... cylindrical steel tanks. Construction of these tanks involves attaching curved steel plates together to form the outer surface of a tank. After attaching a horizontal layer (ring) of steel plates around the circumference of the existing shell, employees raise the scaffolds to attach the next ring of steel plates onto...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuchun; Zhou, Liyan; Zhao, Shangqian
2014-06-14
We investigate electronic transport properties of field-effect transistors based on double-walled carbon nanotubes, of which inner shells are metallic and outer shells are semiconducting. When both shells are turned on, electron-phonon scattering is found to be the dominant phenomenon. On the other hand, when outer semiconducting shells are turned off, a zero-bias anomaly emerges in the dependence of differential conductance on the bias voltage, which is characterized according to the Tomonaga-Luttinger liquid model describing tunneling into one-dimensional materials. We attribute these behaviors to different contact conditions for outer and inner shells of the double-walled carbon nanotubes. A simple model combiningmore » Luttinger liquid model for inner metallic shells and electron-phonon scattering in outer semiconducting shells is given here to explain our transport data at different temperatures.« less
Wei, Yi; d'Errico, Francesco; Vanhaeren, Marian; Li, Feng; Gao, Xing
2016-01-01
We report the discovery and present a detailed analysis of a freshwater bivalve from Shuidonggou Locality 2, layer CL3. This layer is located c. 40 cm below layer CL2, which has yielded numerous ostrich eggshell beads. The shell is identified as the valve of a Corbicula fluminea. Data on the occurrence of this species in the Shuidonggou region during Marine Isotope Stage 3 and taphonomic analysis, conducted in the framework of this study, of a modern biocoenosis and thanatocoenosis suggest that the archeological specimen was collected at one of the numerous fossil or sub-fossil outcrops where valves of this species were available at the time of occupation of level CL3. Experimental grinding and microscopic analysis of modern shells of the same species indicate that the Shuidonggou shell was most probably ground on coarse sandstone to open a hole on its umbo, attach a thread, and use the valve as a personal ornament. Experimental engraving of freshwater shells and microscopic analysis identify an incision crossing the archaeological valve outer surface as possible deliberate engraving. Reappraisal of the site chronology in the light of available radiocarbon evidence suggests an age of at least 34-33 cal kyr BP for layer CL3. Such estimate makes the C. fluminea recovered from CL3 one of the earliest instances of personal ornamentation and the earliest example of a shell bead from China.
Chemical modification of the cocoa shell surface using diazonium salts.
Fioresi, Flavia; Vieillard, Julien; Bargougui, Radhouane; Bouazizi, Nabil; Fotsing, Patrick Nkuigue; Woumfo, Emmanuel Djoufac; Brun, Nicolas; Mofaddel, Nadine; Le Derf, Franck
2017-05-15
The outer portion of the cocoa bean, also known as cocoa husk or cocoa shell (CS), is an agrowaste material from the cocoa industry. Even though raw CS is used as food additive, garden mulch, and soil conditioner or even burnt for fuel, this biomass material has hardly ever been investigated for further modification. This article proposes a strategy of chemical modification of cocoa shell to add value to this natural material. The study investigates the grafting of aryl diazonium salt on cocoa shell. Different diazonium salts were grafted on the shell surface and characterized by infrared spectroscopy and scanning electronic microscopy imaging. Strategies were developed to demonstrate the spontaneous grafting of aryl diazonium salt on cocoa shell and to elucidate that lignin is mainly involved in immobilizing the phenyl layer. Copyright © 2017 Elsevier Inc. All rights reserved.
Floating basaltic lava balloons - constrains on the eruptive process based on morphologic parameters
NASA Astrophysics Data System (ADS)
Pacheco, J. M.; Zanon, V.; Kueppers, U.
2011-12-01
The 1998-2001 submarine Serreta eruption brought to science a new challenge. This eruption took place offshore of Terceira Island (Azores), on the so-called Serreta Submarine Ridge, corresponding to a basaltic fissure zone with alkaline volcanism, within a tectonic setting controlled by an hyper-slow spreading rift (the Terceira Rift). The inferred eruptive centers are alignment along a NE-SW direction over an area with depths ranging from 300 to more than 1000 meters. The most remarkable products of this eruption, were large basaltic balloons observed floating at the sea surface. Those balloons, designated as Lava Balloons, are spherical to ellipsoidal structures, ranging from 0.4 up to about 3 m in length, consisting of a thin lava shell enveloping a closed hollow interior, normally formed by a single large vesicle, or a few large convoluted vesicles, that grants an overall density below water density. The cross section of the lava shell usually ranges between 3 and 8 cm and has a distinct layered structure, with different layers defined by different vesicularity, bubble number density and crystal content. The outermost layer is characterized by very small vesicles and high bubble number density whereas the innermost layer has larger vesicles, lower bubble number density and higher crystal content. These observations indicate that the rapidly quenched outer layer preserved the original small vesicles present on the magma at the time of the balloon's formation while the inner layer continued to evolve, producing higher crystal content and allowing time for the expansion of vesicles inward and their efficient coalescence. The outer surface of the balloons exhibits patches of very smooth glassy surface and areas with striation and grooves resulting from small scale fluidal deformation. These surface textures are interpreted as the result of the extrusion process and were produced in a similar manner to the striation found on subaerial toothpaste lavas. Such characteristics are indicative that the outer surface of the balloon quenched as it was being extruded and preserved the scars of a squeeze-up process. On this outer surface, several superficial expansion cracks reveal that after its generation the balloon endured some expansion before reaching the sea surface, most likely due to hydrostatic decompression during its rise. The entire shell of the balloons shows bends and folds resulting from large ductile deformations, also suggesting an origin as an effusive process of squeezing-up a large vesicle through a fissure in a thin lava crust, similarly to the extrusion of a gas filled lava toe. Actually, the volume of the lava shell is not enough to produce all the gas in the balloons interior. More likely, at an earlier stage, degassing of magma as an open system allowed gas to segregate and accumulate to form large vesicles. The development of very large vesicles would be favored by a ponding system such as a lava lake.
Power recovery system for coal liquefaction process
Horton, J.R.; Eissenberg, D.M.
A flow work exchanger for use in feeding a reactant material to a high-pressure reactor vessel comprises an outer shell, an inner shell concentrically disposed within said outer shell, means for conducting said reactant into the lower end of said lower shell and thence to said reactor vessel, and means for conducting a hotter product effluent from said reactor vessel into the upper end of said inner shell and out of the annulus between said inner and outer shells.
Power recovery system for coal liquefaction process
Horton, Joel R.; Eissenberg, David M.
1985-01-01
A flow work exchanger for use in feeding a reactant material to a high-pressure reactor vessel comprises an outer shell, an inner shell concentrically disposed within said outer shell, means for conducting said reactant into the lower end of said lower shell and then to said reactor vessel, and means for conducting a hotter product effluent from said reactor vessel into the upper end of said inner shell and out of the annulus between said inner and outer shells.
Hollow Pollen Shells to Enhance Drug Delivery
Diego-Taboada, Alberto; Beckett, Stephen T.; Atkin, Stephen L.; Mackenzie, Grahame
2014-01-01
Pollen grain and spore shells are natural microcapsules designed to protect the genetic material of the plant from external damage. The shell is made up of two layers, the inner layer (intine), made largely of cellulose, and the outer layer (exine), composed mainly of sporopollenin. The relative proportion of each varies according to the plant species. The structure of sporopollenin has not been fully characterised but different studies suggest the presence of conjugated phenols, which provide antioxidant properties to the microcapsule and UV (ultraviolet) protection to the material inside it. These microcapsule shells have many advantageous properties, such as homogeneity in size, resilience to both alkalis and acids, and the ability to withstand temperatures up to 250 °C. These hollow microcapsules have the ability to encapsulate and release actives in a controlled manner. Their mucoadhesion to intestinal tissues may contribute to the extended contact of the sporopollenin with the intestinal mucosa leading to an increased efficiency of delivery of nutraceuticals and drugs. The hollow microcapsules can be filled with a solution of the active or active in a liquid form by simply mixing both together, and in some cases operating a vacuum. The active payload can be released in the human body depending on pressure on the microcapsule, solubility and/or pH factors. Active release can be controlled by adding a coating on the shell, or co-encapsulation with the active inside the shell. PMID:24638098
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Pizá-Ruiz, P.
2015-07-15
Core–shell nanorod structures were prepared by a sequential synthesis using an aerosol assisted chemical vapor deposition technique. Several samples consisting of ZnO nanorods were initially grown over TiO{sub 2} film-coated borosilicate glass substrates, following the synthesis conditions reported elsewhere. Later on, a uniform layer consisting of individual Al, Ni, Ti or Fe oxides was grown onto ZnO nanorod samples forming the so-called single MO{sub x}/ZnO nanorod core–shell structures, where MO{sub x} was the metal oxide shell. Additionally, a three-layer core–shell sample was developed by growing Fe, Ti and Fe oxides alternately, onto the ZnO nanorods. The microstructure of the core–shellmore » materials was characterized by grazing incidence X-ray diffraction, scanning and transmission electron microscopy. Energy dispersive X-ray spectroscopy was employed to corroborate the formation of different metal oxides. X-ray diffraction outcomes for single core–shell structures showed solely the presence of ZnO as wurtzite and TiO{sub 2} as anatase. For the multi-layered shell sample, the existence of Fe{sub 2}O{sub 3} as hematite was also detected. Morphological observations suggested the existence of an outer material grown onto the nanorods and further microstructural analysis by HR-STEM confirmed the development of core–shell structures in all cases. These studies also showed that the individual Al, Fe, Ni and Ti oxide layers are amorphous; an observation that matched with X-ray diffraction analysis where no apparent extra oxides were detected. For the multi-layered sample, the development of a shell consisting of three different oxide layers onto the nanorods was found. Overall results showed that no alteration in the primary ZnO core was produced during the growth of the shells, indicating that the deposition technique used herein was and it is suitable for the synthesis of homogeneous and complex nanomaterials high in quality and purity. In addition, materials absorptance determined from the total transmittance and reflectance spectra revealed a broader absorption interval including visible light, indicating potential uses of these nanostructures on solar energy appliances. - Graphical abstract: Display Omitted - Highlights: • Uniform ZnO nanorods (core)–metal oxide (shell) were obtained sequentially by AACVD. • Shells were structured of homogeneous single or multi-layered non-mixed metal oxides. • ZnO nanorod core was preserved during the shell synthesis. • Optical absorptance revealed visible interval absorption for FeO{sub x} shell samples. • Materials can be suitable for photocatalytic or photovoltaic applications.« less
49 CFR 178.338-1 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... outer shell or jacket, with insulation between the inner vessel and outer shell or jacket, and having... specification, tank means inner vessel and jacket means either the outer shell or insulation cover. (c) Each.... (1) Each cargo tank must have an insulation system that will prevent the tank pressure from exceeding...
49 CFR 178.338-1 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... outer shell or jacket, with insulation between the inner vessel and outer shell or jacket, and having... specification, tank means inner vessel and jacket means either the outer shell or insulation cover. (c) Each.... (1) Each cargo tank must have an insulation system that will prevent the tank pressure from exceeding...
49 CFR 178.338-1 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... outer shell or jacket, with insulation between the inner vessel and outer shell or jacket, and having... specification, tank means inner vessel and jacket means either the outer shell or insulation cover. (c) Each.... (1) Each cargo tank must have an insulation system that will prevent the tank pressure from exceeding...
NIF Double Shell outer/inner shell collision experiments
NASA Astrophysics Data System (ADS)
Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.
2017-10-01
Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.
Zone heated diesel particulate filter electrical connection
Gonze, Eugene V.; Paratore, Jr., Michael J.
2010-03-30
An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.
Transport comparison of multiwall carbon nanotubes by contacting outer shell and all shells.
Luo, Qiang; Cui, A-Juan; Zhang, Yi-Guang; Lu, Chao; Jin, Ai-Zi; Yang, Hai-Fang; Gu, Chang-Zhi
2010-11-01
Carbon nanotubes, particularly multiwall carbon nanotubes (MWCNTs) can serve as interconnects in nanoelectronic devices and integrated circuits because of their extremely large current-carrying capacity. Many experimental results about the transport properties of individual MWCNTs by contacting outer shell or all shells have been reported. In this work, a compatible method with integrated circuit manufacturing process was presented to compare the transport property of an individual multiwall carbon nanotube (MWCNT) by contacting outer shell only and all shells successively. First of the Ti/Au electrodes contacting outer shell only were fabricated onto the nanotube through the sequence of electron beam lithography (EBL) patterning, metal deposition and lift-off process. After the characterization of its transport property, focused ion beam (FIB) was used to drill holes through the same nanotube at the as-deposited electrodes. Then new contact to the holes and electrodes were made by ion-induced deposition of tungsten from W(CO)6 precursor gas. The transport results indicated that the new contact to all shells can clear up the intershell resistance and the electrical conductance of the tube can be improved about 8 times compared to that of by contacting outer shell only.
Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony
1996-01-01
A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-09
... Outer Continental Shelf Minor Source/Title V Minor Permit Modification Issued to Shell Offshore, Inc. for the Kulluk Conical Drilling Unit AGENCY: United States Environmental Protection Agency (EPA... decision granting Shell Offshore Inc.'s (``Shell'') request for minor modifications of Clean Air Act Outer...
77 FR 24980 - Notice on Outer Continental Shelf Oil and Gas Lease Sales
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-26
... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Notice on Outer Continental Shelf Oil... Outer Continental Shelf oil and gas lease sales to be held during the bidding period May 1, 2012... Corporation ExxonMobil Exploration Company Group II. Shell Oil Company Shell Offshore Inc. SWEPI LP Shell...
The 3-D ionization structure and evolution of NGC 7009 (Saturn Nebula)
NASA Astrophysics Data System (ADS)
Sabbadin, F.; Turatto, M.; Cappellaro, E.; Benetti, S.; Ragazzoni, R.
2004-03-01
Tomographic and 3-D analyses for extended, emission-line objects are applied to long-slit ESO NTT + EMMI high-resolution spectra of the intriguing planetary nebula NGC 7009, covered at twelve position angles. We derive the gas expansion law, the diagnostics and ionic radial profiles, the distance and the central star parameters, the nebular photo-ionization model and the spatial recovery of the plasma structure and evolution. The Saturn Nebula (distance≃1.4 kpc, age≃6000 yr, ionized mass≃0.18 M⊙) consists of several interconnected components, characterized by different morphology, physical conditions, excitation and kinematics. We identify four ``large-scale'', mean-to-high excitation sub-systems (the internal shell, the main shell, the outer shell and the halo), and as many ``small-scale'' ones: the caps (strings of low-excitation knots within the outer shell), the ansae (polar, low-excitation, likely shocked layers), the streams (high-excitation polar regions connecting the main shell with the ansae), and an equatorial, medium-to-low excitation pseudo-ring within the outer shell. The internal shell, the main shell, the streams and the ansae expand at Vexp≃4.0 × R arcsec km s-1, the outer shell, the caps and the equatorial pseudo-ring at Vexp≃3.15 × R arcsec km s-1, and the halo at Vexp≃10 km s-1. We compare the radial distribution of the physical conditions and the line fluxes observed in the eight sub-systems with the theoretical profiles coming from the photo-ionization code CLOUDY, inferring that all the spectral characteristics of NGC 7009 are explainable in terms of photo-ionization by the central star, a hot ( log T* ≃4.95) and luminous ( log L*/L⊙≃3.70) 0.60-0.61 M⊙ post-AGB star in the hydrogen-shell nuclear burning phase. The 3-D shaping of the Saturn Nebula is discussed within an evolutionary scenario dominated by photo-ionization and supported by the fast stellar wind: it begins with the superwind ejection (first isotropic, then polar deficient), passes through the neutral, transition phase ({lasting} ≃3000 yr), the ionization start (occurred ≃2000 yr ago), and the full ionization of the main shell (≃1000 yr ago), at last reaching the present days: the whole nebula is optically thin to the UV stellar flux, except the caps (mean latitude condensations in the outer shell, shadowed by the main shell) and the ansae (supersonic ionization fronts along the major axis). Based on observations made with: ESO Telescopes at the La Silla Observatories (program ID 65.I-0524), and the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Institute. Observing programs: GO 6117 (P.I. Bruce Balick), GO 6119 (P.I. Howard Bond) and GO 8390 (P.I. Arsen Hajian). STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555. We extensively apply the photo-ionization code CLOUDY, developed at the Institute of Astronomy of the Cambridge University (Ferland et al. 1998).
NASA Astrophysics Data System (ADS)
Guo, Bangjun; Feng, Yu; Chen, Xiaofan; Li, Bo; Yu, Ke
2018-03-01
Molybdenum disulfide is regarded as one of the most promising electrode materials for high performance lithium-ion batteries. Designing firm basal structure is a key point to fully utilize the high capacity of layered MoS2 nanomaterials. Here, yolk-shell structured MoS2 nanospheres is firstly designed and fabricated to meet this needs. This unique yolk-shell nanospheres are transformed from solid nanospheres by a simply weak alkaline etching method. Then, the yolk-shell MoS2/C is synthesized by a facile process to protect the outside MoS2 shell and promote the conductivity. Taking advantages of high capacity and well-defined cavity space, allowing the core MoS2 to expand freely without breaking the outer shells, yolk-shell MoS2/C nanospheres delivers long cycle life (94% of capacity retained after 200 cycles) and high rate behaviour (830 mA h g-1 at 5 A g-1). This design of yolk-shell structure may set up a new strategy for preparing next generation anode materials for LIBs.
"Solid State" Chemistry in Titan Ice Particles
2016-09-20
Scientists from NASA's Cassini mission suggested in a 2016 paper that the appearance of a cloud of dicyanoacetylene (C4N2) ice in Titan's stratosphere may be explained by "solid-state" chemistry taking place inside ice particles. The particles have an inner layer of cyanoacetylene (HC3N) ice coated with an outer layer of hydrogen cyanide (HCN) ice. Left: When a photon of light penetrates the outer shell, it can interact with the HC3N, producing C3N and H. Center: The C3N then reacts with HCN to yield C4N2 and H (shown at right). Another reaction that also yields C4N2 ice and H also is possible, but the researchers think it is less likely. http://photojournal.jpl.nasa.gov/catalog/PIA20715
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-10
... Shelf Permits Issued to Shell Gulf of Mexico, Inc., and Shell Offshore, Inc. for the Discoverer... Clean Air Act Outer Continental Shelf (OCS) permit applications, one from Shell Gulf of Mexico, Inc., for operation of the Discoverer drillship in the Chukchi Sea and one from Shell Offshore, Inc...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesh, Panchapakesan; Kent, Paul R; Mochalin, Vadym N
We simulate the experimentally observed graphitization of nanodiamonds into multi-shell onion-like carbon nanostructures, also called carbon onions, at different temperatures, using reactive force fields. The simulations include long-range Coulomb and van der Waals interactions. Our results suggest that long-range interactions play a crucial role in the phase-stability and the graphitization process. Graphitization is both enthalpically and entropically driven and can hence be controlled with temperature. The outer layers of the nanodiamond have a lower kinetic barrier toward graphitization irrespective of the size of the nanodiamond and graphitize within a few-hundred picoseconds, with a large volume increase. The inner core ofmore » the nanodiamonds displays a large size-dependent kinetic barrier, and graphitizes much more slowly with abrupt jumps in the internal energy. It eventually graphitizes by releasing pressure and expands once the outer shells have graphitized. The degree of transformation at a particular temperature is thereby determined by a delicate balance between the thermal energy, long-range interactions, and the entropic/enthalpic free energy gained by graphitization. Upon full graphitization, a multi-shell carbon nanostructure appears, with a shell-shell spacing of about {approx}3.4 {angstrom} for all sizes. The shells are highly defective with predominantly five- and seven-membered rings to curve space. Larger nanodiamonds with a diameter of 4 nm can graphitize into spiral structures with a large ({approx}29-atom carbon ring) pore opening on the outermost shell. Such a large one-way channel is most attractive for a controlled insertion of molecules/ions such as Li ions, water, or ionic liquids, for increased electrochemical capacitor or battery electrode applications.« less
Bhattarai, Nabraj; Prozorov, Tanya
2015-11-05
Transformation of metallic or bimetallic (BM) nanoparticles (NPs) from one shape to another desired shape is of importance to nanoscience and nanotechnology, where new morphologies of NPs lead to enhancement of their exploitable properties. In this report, we present the shape transformation of Au octahedral NPs to Au–Pd core–shell nanocubes, followed by their transformation to nanostars and finally to multilayered Au–Pd–Au core–shell hexagonal platelets in the presence of T30 DNA. The weaker binding affinity of T30 DNA directs the growth to favor the formation of lower energy {111} facets, changing the morphology from nanocubes to nanostar. The nanostars, exhibiting unusualmore » intermediate morphologies, are comprised two sets of shell layers and have Au core, Pd intermediate shell, and Au outer shell. Similarly, the hexagonal platelets, which also have Au core and inner Pd shell, are encased in an external gold shell. As a result, the formation of multilayered Au–Pd–Au core–shell hexagonal platelets from Au–Pd core–shell nanocubes via the multilayered nanostars is monitored using scanning/transmission electron microscopy analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattarai, Nabraj; Prozorov, Tanya
Transformation of metallic or bimetallic (BM) nanoparticles (NPs) from one shape to another desired shape is of importance to nanoscience and nanotechnology, where new morphologies of NPs lead to enhancement of their exploitable properties. In this report, we present the shape transformation of Au octahedral NPs to Au–Pd core–shell nanocubes, followed by their transformation to nanostars and finally to multilayered Au–Pd–Au core–shell hexagonal platelets in the presence of T30 DNA. The weaker binding affinity of T30 DNA directs the growth to favor the formation of lower energy {111} facets, changing the morphology from nanocubes to nanostar. The nanostars, exhibiting unusualmore » intermediate morphologies, are comprised two sets of shell layers and have Au core, Pd intermediate shell, and Au outer shell. Similarly, the hexagonal platelets, which also have Au core and inner Pd shell, are encased in an external gold shell. As a result, the formation of multilayered Au–Pd–Au core–shell hexagonal platelets from Au–Pd core–shell nanocubes via the multilayered nanostars is monitored using scanning/transmission electron microscopy analysis.« less
NASA Astrophysics Data System (ADS)
Li, Junbo; Zhao, Jianlong; Wu, Wenlan; Liang, Ju; Guo, Jinwu; Zhou, Huiyun; Liang, Lijuan
2016-06-01
In this paper, double hydrophilic ionic liquid block copolymers (ILBCs), poly poly[1-methyl-3-(2-methacryloyloxy propylimidazolium bromine)]- block-(N-isopropylacrylamide) (PMMPImB- b-PNIPAAm) was first synthesized by reversible additionfragmentation chain transfer (RAFT) and then attached on the surface of gold nanoparticles (Au NPs) via a strong gold-sulfur bonding for preparing hybrid nanoparticles (PMMPImB- b-PNIPAAm-@-Au NPs). The hybrid NPs had a three layers micelle-like structure, including a gold core, thermo-responsive inner shell and anion responsive outer corona. The self-assembling behavior of thermal- and anion-response from shell and corona were respectively investigated by change of temperature and addition of (CF3SO2)2N-. The results showed the hybrid NPs retained a stable dispersion beyond the lower critical solution temperature (LCST) because of the space or electrostatic protecting by outer PMMPImB. However, with increasing concentration of (CF3SO2)2N-, the micellization of self-assembling PMMPImB- b-PNIPAAm-@-Au NPs was induced to form micellar structure containing the core with hydrophobic PMMPImB-(CF3SO2)2N- surrounded by composite shell of Au NPs-PNIPAAm via the anionresponsive properties of ILBCs. These results indicated that the block copolymers protected plasmonic nanoparticles remain self-assembling properties of block copolymers when phase transition from outer corona polymer.
Peculiarities of light absorption by spherical microcapsules
NASA Astrophysics Data System (ADS)
Geints, Yurii E.; Panina, Ekaterina K.; Zemlyanov, Alexander A.
2018-04-01
Optical radiation absorption in the poly-layer spherical microparticles simulating the inorganic/organic polyshell absorbing microcapsules is considered. With the aim of the finite-difference time-domain technique, the spatial distribution of the absorbed light power in microcapsules of various sizes and internal structure is numerically calculated. For the purpose of light absorption enhancement, we have engineered the optimal structure of a capsule consisting of a strong-refracting transparent outer coating and an absorbing layer which covers a liquid core. The proposed microcapsule prototype provides for a manifold increase in the absorbed light power density in comparison with the usual single-layer absorbing capsule. We show that for light-wavelengths-scaled microcapsules it is optimal to use a material with the refractive index larger than two as an outer shell, for example, titanium dioxide (TiO2). The highest values of the absorbed power density can be obtained in microcapsules with absorbing shell thickness of approximately a tenth of a laser wavelength. When laser radiation is scattered by a dimer constituted by two identical absorbing microcapsules the absorbed power density can be maximized by the choosing of proper dimer spatial configuration. In the case of strongly absorbing particles, the absorption maximum corresponds to a shift of the capsules to a distance of about their diameter, and in the case of weakly absorbing particles the absorption is maximal when particles are in geometrical shades of each other.
Huang, Junrong; Chen, Zhenghong; Xu, Yalun; Li, Hongliang; Liu, Shuxing; Yang, Daqing; Schols, Henk A
2014-02-15
To understand the contribution of granule inner portion to the pasting property of starch, waxy potato starch and two normal potato starches and their acetylated starch samples were subjected to chemical surface gelatinization by 3.8 mol/L CaCl2 to obtain remaining granules. Native and acetylated, original and remaining granules of waxy potato starch had similar rapid visco analyzer (RVA) pasting profiles, while those of two normal potato starches behaved obviously different from each other. All remaining granules had lower peak viscosity than the corresponding original granules. Contribution of waxy potato starch granule's inner portion to the peak viscosity was significant more than those of normal potato starches. The shell structure appearing on the remaining granule surface for waxy potato starch was smoother and thinner than that for normal potato starches as observed by scanning electron microscopy, indicating a more regular structure of shell and a more ordered packing of shell for waxy potato starch granules. The blocklet size of waxy potato starch was smaller and more uniform than those of normal potato starches as shown by atomic force microscopy images of original and remaining granules. In general, our results provided the evidence for the spatial structure diversity between waxy and normal potato starch granules: outer layer and inner portion of waxy potato starch granule had similar structure, while outer layer had notably different structure from inner portion for normal potato starch granule. Copyright © 2013 Elsevier Ltd. All rights reserved.
Inertial modes and their transition to turbulence in a differentially rotating spherical gap flow
NASA Astrophysics Data System (ADS)
Hoff, Michael; Harlander, Uwe; Andrés Triana, Santiago; Egbers, Christoph
2016-04-01
We present a study of inertial modes in a spherical shell experiment. Inertial modes are Coriolis-restored linear wave modes, often arise in rapidly-rotating fluids (e.g. in the Earth's liquid outer core [1]). Recent experimental works showed that inertial modes exist in differentially rotating spherical shells. A set of particular inertial modes, characterized by (l,m,ˆω), where l, m is the polar and azimuthal wavenumber and ˆω = ω/Ωout the dimensionless frequency [2], has been found. It is known that they arise due to eruptions in the Ekman boundary layer of the outer shell. But it is an open issue why only a few modes develop and how they get enhanced. Kelley et al. 2010 [3] showed that some modes draw their energy from detached shear layers (e.g. Stewartson layers) via over-reflection. Additionally, Rieutord et al. (2012) [4] found critical layers within the shear layers below which most of the modes cannot exist. In contrast to other spherical shell experiments, we have a full optical access to the flow. Therefore, we present an experimental study of inertial modes, based on Particle-Image-Velocimetry (PIV) data, in a differentially rotating spherical gap flow where the inner sphere is subrotating or counter-rotating at Ωin with respect to the outer spherical shell at Ωout, characterized by the Rossby number Ro = (Ωin - Ωout)/Ωout. The radius ratio of η = 1/3, with rin = 40mm and rout = 120mm, is close to that of the Earth's core. Our apparatus is running at Ekman numbers (E ≈ 10-5, with E = ν/(Ωoutrout2), two orders of magnitude higher than most of the other experiments. Based on a frequency-Rossby number spectrogram, we can partly confirm previous considerations with respect to the onset of inertial modes. In contrast, the behavior of the modes in the counter-rotation regime is different. We found a triad interaction between three dominant inertial modes, where one is a slow axisymmetric Rossby mode [5]. We show that the amplitude of the most dominant mode (l,m,ˆω) = (3,2,˜ 0.71) is increasing with increasing |Ro| until a critical Rossby number Rocrit. Accompanying with this is an increase of the zonal mean flow outside the tangent cylinder, leading to enhanced angular momentum transport. At the particular Rocrit, the wave mode, and the entire flow, breaks up into smaller-scale turbulence [6], together with a strong increase of the zonal mean flow inside the tangent cylinder. We found that the critical Rossby number scales approximately with E1/5. References [1] Aldridge, K. D.; Lumb, L. I. (1987): Inertial waves identified in the Earth's fluid outer core. Nature 325 (6103), S. 421-423. DOI: 10.1038/325421a0. [2] Greenspan, H. P. (1968): The theory of rotating fluids. London: Cambridge U.P. (Cambridge monographs on mechanics and applied mathematics). [3] Kelley, D. H.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2010): Selection of inertial modes in spherical Couette flow. Phys. Rev. E 81 (2), 26311. DOI: 10.1103/PhysRevE.81.026311. [4] Rieutord, M.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2012): Excitation of inertial modes in an experimental spherical Couette flow. Phys. Rev. E 86 (2), 026304. DOI: 10.1103/PhysRevE.86.026304. [5] Hoff, M., Harlander, U., Egbers, C. (2016): Experimental survey of linear and nonlinear inertial waves and wave instabilities in a spherical shell. J. Fluid Mech., (in print) [6] Kerswell, R. R. (1999): Secondary instabilities in rapidly rotating fluids: inertial wave breakdown. Journal of Fluid Mechanics 382, S. 283-306. DOI: 10.1017/S0022112098003954.
Duan, Li; Qi, Wei; Yan, Xuehai; He, Qiang; Cui, Yue; Wang, Kewei; Li, Dongxiang; Li, Junbai
2009-01-15
Glucose oxidase (GOD) microcapsules held together by cross-linker, glutaraldehyde (GA), are fabricated by the layer-by-layer (LbL) assembly technique. The lipid bilayer containing CF(0)F(1)-ATPase was coated on the outer shell of GOD microcapsules. Driven under the proton gradients produced by catalysis of GOD microcapsules for glucose, ATP is synthesized from ADP and inorganic phosphate catalyzed by the ATPase rotary catalysis. The results show here that ATPase reconstituted on the GOD microcapsules retains its catalytic activity.
High-efficiency red electroluminescent device based on multishelled InP quantum dots.
Jo, Jung-Ho; Kim, Jong-Hoon; Lee, Ki-Heon; Han, Chang-Yeol; Jang, Eun-Pyo; Do, Young Rag; Yang, Heesun
2016-09-01
We report on the synthesis of highly fluorescent red-emitting InP quantum dots (QDs) and their application to the fabrication of a high-efficiency QD-light-emitting diode (QLED). The core/shell heterostructure of the QDs is elaborately tailored toward a multishelled structure with a composition-gradient ZnSeS intermediate shell and an outer ZnS shell. Using the resulting InP/ZnSeS/ZnS QDs as an emitting layer, all-solution-processible red InP QLEDs are fabricated with a hybrid multilayered device structure having an organic hole transport layer (HTL) and an inorganic ZnO nanoparticle electron transport layer. Two HTLs of poly(9-vinlycarbazole) or poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenyl-amine), whose hole mobilities are different by at least three orders of magnitude, are individually applied for QLED fabrication and such HTL-dependent device performances are compared. Our best red device displays exceptional figures of merit such as a maximum luminance of 2849 cd/m2, a current efficiency of 4.2 cd/A, and an external quantum efficiency of 2.5%.
Hierarchically structured nanowires on and nanosticks in ZnO microtubes
Rivaldo-Gómez, C. M.; Cabrera-Pasca, G. A.; Zúñiga, A.; Carbonari, A. W.; Souza, J. A.
2015-01-01
We report both coaxial core-shell structured microwires and ZnO microtubes with growth of nanosticks in the inner and nanowires on the outer surface as a novel hierarchical micro/nanoarchitecture. First, a core-shell structure is obtained—the core is formed by metallic Zn and the semiconducting shell is comprised by a thin oxide layer covered with a high density of nanowires. Such Zn/ZnO core-shell array showed magnetoresistance effect. It is suggested that magnetic moments in the nanostructured shell superimposes to the external magnetic field enhancing the MR effect. Second, microtubes decorated with nanowires on the external surface are obtained. In an intermediate stage, a hierarchical morphology comprised of discrete nanosticks in the inner surface of the microtube has been found. Hyperfine interaction measurements disclosed the presence of confined metallic Zn regions at the interface between linked ZnO grains forming a chain and a ZnO thicker layer. Surprisingly, the metallic clusters form highly textured thin flat regions oriented parallel to the surface of the microtube as revealed by the electrical field gradient direction. The driving force to grow the internal nanosticks has been ascribed to stress-induced migration of Zn ions due to compressive stress caused by the presence of these confined regions. PMID:26456527
Layer-by-Layer Assembled Nanotubes as Biomimetic Nanoreactors for Calcium Carbonate Deposition.
He, Qiang; Möhwald, Helmuth; Li, Junbai
2009-09-17
Enzyme-loaded magnetic polyelectrolyte multilayer nanotubes prepared by layer-by-layer assembly combined with the porous template could be used as biomimetic nanoreactors. It is demonstrated that calcium carbonate can be biomimetically synthesized inside the cavities of the polyelectrolyte nanotubes by the catalysis of urease, and the size of the calcium carbonate precipitates was controlled by the cavity dimensions. The metastable structure of the calcium carbonate precipitates inside the nanotubes was protected by the outer shell of the polyelectrolyte multilayers. These features may allow polyelectrolyte nanotubes to be applied in the fields of nanomaterials synthesis, controlled release, and drug delivery. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The ultrastructure of shelled and unshelled cashew nuts.
Muniz, Celli R; Freire, Francisco C O; Soares, Arlete Aparecida; Cooke, Peter H; Guedes, Maria I F
2013-01-01
Cashew nuts have many attributes, including sensory, nutritional and health appeal, which contribute to their worldwide acceptance. We demonstrate details of the microstructure of shelled and unshelled cashew kernels with regard to pericarp and cotyledon organization. This study also provides evidence of the colonization of these kernels by filamentous fungi. Nuts were examined by scanning electron and confocal scanning laser microscopy. Staining with acridine orange was performed. A tight lignified palisade layer adjacent to the exocarp surface explains the hardness of the shell's pericarp. The mesocarp contains large secretory cavities that confer a spongy property to this tissue. Papillose cells, which are responsible for secreting CNSL (cashew nutshell liquid), were observed to cover the inner wall of these cavities. Lipid components are readily released from the parenchyma and appear as oil droplets. The outer surface of the shelled samples exhibited a dense Aspergillus infestation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Min; Su, Chefu; Yu, Tzuyang; Tan, Loon-Seng; Hu, Bin; Urbas, Augustine; Chiang, Long Y
2016-03-28
We unexpectedly observed a large amplification of the dielectric properties associated with the photoswitching effect and the new unusual phenomenon of delayed photoinduced capacitor-like (i.e. electric polarization) behavior at the interface on samples of three-layered core-shell (γ-FeOx@AuNP)@[C60(>DPAF-C9)](n)2 nanoparticles (NPs) in frequencies of 0.5-4.0 GHz. The detected relative dielectric constant amplification was initiated upon switching off the light followed by relaxation to give an excellent recyclability. These NPs having e(-)-polarizable fullerosomic structures located at the outer layer were fabricated from highly magnetic core-shell γ-FeOx@AuNPs. Surface-stabilized 2 in a core-shell structure was found to be capable of photoinducing the surface plasmonic resonance (SPR) effect by white LED light. The accumulated SPR energy was subsequently transferred to the partially bilayered C60(>DPAF-C9) fullerosomic membrane layer in a near-field (∼1.5 nm) region without producing radiation heat. Since the monostatic SAR signal is dielectric property-dependent, we used these measurements to provide evidence of derived reflectivity changes on a surface coated with 2 at 0.5-4.0 GHz upon illumination of LED white light. We found that a high, >99%, efficiency of response amplification in image amplitude can be achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hui; Mu, Qingxin; Revia, Richard
In this study, we present a multifunctional yet structurally simple nanocarrier that has a high drug loading capacity, releases drug in response to onset of an AC magnetic field, and can serve as a long-term imaging contrast agent and effectively kills cancer cells by synergistic action. This nanocarrier (HMMC-NC) has a spherical shell structure with a center cavity of 80 nm in diameter. The shell is comprised of two layers: an inner layer of magnetite that exhibits superparamagnetism and an outer layer of mesoporous carbon embedded with carbon dots that exhibit photoluminescence property. Thus in addition to being a drugmore » carrier, HMMC-NC is also a contrast agent for bioimaging. The switchable drug release is enabled by the chitosan molecules attached on the nanocarrier as the switching material which turns on or off the drug release in response to the application or withdrawal of an AC magnetic field.« less
Superplastic Forming of Duplex Stainless Steel for Aerospace Part
NASA Astrophysics Data System (ADS)
Lee, Ho-Sung; Yoon, Jong-Hoon; Yoo, Joon-Tae; Yi, Young-Moo
2011-08-01
In this study, the high temperature forming behavior of duplex stainless steel has been characterized and the outer shell of a combustion chamber was fabricated with pressure difference of hot gas. It consists of two parts which are the outer skin made of stainless steel to sustain the internal pressure and the inner shell made of copper alloy for regenerative cooling channels. Two outer skins partitioned to half with respect to the symmetric axis was prepared by hot gas forming process with a maximum pressure of 7 MPa following to FEM analysis. For inner layer, copper alloy was machined for cooling channels and then placed in the gas pressure welding fixture. It is shown that the optimum condition of gas pressure welding is 7 MPa at 890 °C, for one hour. EDX analysis and scanning electron microscope micrograph confirm the atomic diffusion process is observed at the interface and copper atoms diffuse into steel, while iron and chrome atoms diffuse into copper. The result shows that the manufacturing method with superplastic forming and gas pressure welding of steel and copper alloy has been successful for near net shape manufacturing of scaled combustion chamber of launch vehicle.
Quantum transport through single and multilayer icosahedral fullerenes
NASA Astrophysics Data System (ADS)
Lovey, Daniel A.; Romero, Rodolfo H.
2013-10-01
We use a tight-binding Hamiltonian and Green functions methods to calculate the quantum transmission through single-wall fullerenes and bilayered and trilayered onions of icosahedral symmetry attached to metallic leads. The electronic structure of the onion-like fullerenes takes into account the curvature and finite size of the fullerenes layers as well as the strength of the intershell interactions depending on to the number of interacting atom pairs belonging to adjacent shells. Misalignment of the symmetry axes of the concentric iscosahedral shells produces breaking of the level degeneracies of the individual shells, giving rise some narrow quasi-continuum bands instead of the localized discrete peaks of the individual fullerenes. As a result, the transmission function for non symmetrical onions is rapidly varying functions of the Fermi energy. Furthermore, we found that most of the features of the transmission through the onions are due to the electronic structure of the outer shell with additional Fano-like antiresonances arising from coupling with or between the inner shells.
The asymmetry of avian egg-shape: an adaptation for reproduction on dry land
Mao, Kun-Ming; Murakami, Ayako; Iwasawa, Atsushi; Yoshizaki, Norio
2007-01-01
The present study describes the biological meaning of the asymmetrical shape in avian reproduction using quail. During the incubation of eggs, water was gradually lost and the air chamber which appeared in between the inner and outer shell membranes at the blunt end expanded, so that the angle made by the long egg-axis and the horizontal line increased, presumably because the centre of gravity of the egg contents moved toward the sharp end. The increase in angle occurred in both fertile and infertile eggs, suggesting that this phenomenon occurs irrespective of fertility and is due to the asymmetrical shape. The increase in the volume of the air chamber resulted in an increase in the area of the inner shell membrane at the chamber to satisfy the amount of gas exchange needed by the developing embryo for better hatching. We isolated a 300-kDa protein from the inner shell membrane. It was produced by cells in the luminal epithelium of the oviductal isthmus and was found in the cortex of the fibres of shell membranes and a lining surrounding the air chamber. The lining comprised a medial layer between the inner and outer shell membranes in uterine eggs. The asymmetrical ellipsoid produces the air chamber at the blunt end of the avian egg during its sojourn in the oviductal isthmus, to maintain the blunt end up after oviposition and to raise that end during incubation in a dry environment, leading to high hatchability. PMID:17523938
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesh, P.; Kent, P. R. C.; Mochalin, V.
We simulate the experimentally observed graphitization of nanodiamonds into multi-shell onion-like carbonnanostructures, also called carbon onions, at different temperatures, using reactive force fields. The simulations include long-range Coulomb and van der Waals interactions. Our results suggest that long-range interactions play a crucial role in the phase-stability and the graphitization process. Graphitization is both enthalpically and entropically driven and can hence be controlled with temperature. The outer layers of the nanodiamond have a lower kinetic barrier toward graphitization irrespective of the size of the nanodiamond and graphitize within a few-hundred picoseconds, with a large volume increase. The inner core of themore » nanodiamonds displays a large size-dependent kinetic barrier, and graphitizes much more slowly with abrupt jumps in the internal energy. It eventually graphitizes by releasing pressure and expands once the outer shells have graphitized. The degree of transformation at a particular temperature is thereby determined by a delicate balance between the thermal energy, long-range interactions, and the entropic/enthalpic free energy gained by graphitization. Upon full graphitization, a multi-shell carbonnanostructure appears, with a shell-shell spacing of about ~3.4 Å for all sizes. The shells are highly defective with predominantly five- and seven-membered rings to curve space. Larger nanodiamonds with a diameter of 4 nm can graphitize into spiral structures with a large (~29-atom carbon ring) pore opening on the outermost shell. Such a large one-way channel is most attractive for a controlled insertion of molecules/ions such as Li ions, water, or ionic liquids, for increased electrochemical capacitor or battery electrode applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kent, Paul R
We simulate the experimentally observed graphitization of nanodiamonds into multi-shell onion-like carbon nanostructures, also called carbon onions, at different temperatures, using reactive force fields. The simulations include long-range Coulomb and van der Waals interactions. Our results suggest that long-range interactions play a crucial role in the phase-stability and the graphitization process. Graphitization is both enthalpically and entropically driven and can hence be controlled with temperature. The outer layers of the nanodiamond have a lower kinetic barrier toward graphitization irrespective of the size of the nanodiamond and graphitize within a few-hundred picoseconds, with a large volume increase. The inner core ofmore » the nanodiamonds displays a large size-dependent kinetic barrier, and graphitizes much more slowly with abrupt jumps in the internal energy. It eventually graphitizes by releasing pressure and expands once the outer shells have graphitized. The degree of transformation at a particular temperature is thereby determined by a delicate balance between the thermal energy, long-range interactions, and the entropic/enthalpic free energy gained by graphitization. Upon full graphitization, a multi-shell carbon nanostructure appears, with a shell-shell spacing of about {approx}3.4 {angstrom} for all sizes. The shells are highly defective with predominantly five- and seven-membered rings to curve space. Larger nanodiamonds with a diameter of 4 nm can graphitize into spiral structures with a large ({approx}29-atom carbon ring) pore opening on the outermost shell. Such a large one-way channel is most attractive for a controlled insertion of molecules/ions such as Li ions, water, or ionic liquids, for increased electrochemical capacitor or battery electrode applications.« less
Mallette, Evan
2017-01-01
Bacterial microcompartments are bacterial analogs of eukaryotic organelles in that they spatially segregate aspects of cellular metabolism, but they do so by building not a lipid membrane but a thin polyhedral protein shell. Although multiple shell protein structures are known for several microcompartment types, additional uncharacterized components complicate systematic investigations of shell architecture. We report here the structures of all four proteins proposed to form the shell of an uncharacterized microcompartment designated the Rhodococcus and Mycobacterium microcompartment (RMM), which, along with crystal interactions and docking studies, suggests possible models for the particle's vertex and edge organization. MSM0272 is a typical hexameric β-sandwich shell protein thought to form the bulk of the facet. MSM0273 is a pentameric β-barrel shell protein that likely plugs the vertex of the particle. MSM0271 is an unusual double-ringed bacterial microcompartment shell protein whose rings are organized in an offset position relative to all known related proteins. MSM0275 is related to MSM0271 but self-organizes as linear strips that may line the facet edge; here, the presence of a novel extendable loop may help ameliorate poor packing geometry of the rigid main particle at the angled edges. In contrast to previously characterized homologs, both of these proteins show closed pores at both ends. This suggests a model where key interactions at the vertex and edges are mediated at the inner layer of the shell by MSM0271 (encircling MSM0273) and MSM0275, and the facet is built from MSM0272 hexamers tiling in the outer layer of the shell. PMID:27927988
Mallette, Evan; Kimber, Matthew S
2017-01-27
Bacterial microcompartments are bacterial analogs of eukaryotic organelles in that they spatially segregate aspects of cellular metabolism, but they do so by building not a lipid membrane but a thin polyhedral protein shell. Although multiple shell protein structures are known for several microcompartment types, additional uncharacterized components complicate systematic investigations of shell architecture. We report here the structures of all four proteins proposed to form the shell of an uncharacterized microcompartment designated the Rhodococcus and Mycobacterium microcompartment (RMM), which, along with crystal interactions and docking studies, suggests possible models for the particle's vertex and edge organization. MSM0272 is a typical hexameric β-sandwich shell protein thought to form the bulk of the facet. MSM0273 is a pentameric β-barrel shell protein that likely plugs the vertex of the particle. MSM0271 is an unusual double-ringed bacterial microcompartment shell protein whose rings are organized in an offset position relative to all known related proteins. MSM0275 is related to MSM0271 but self-organizes as linear strips that may line the facet edge; here, the presence of a novel extendable loop may help ameliorate poor packing geometry of the rigid main particle at the angled edges. In contrast to previously characterized homologs, both of these proteins show closed pores at both ends. This suggests a model where key interactions at the vertex and edges are mediated at the inner layer of the shell by MSM0271 (encircling MSM0273) and MSM0275, and the facet is built from MSM0272 hexamers tiling in the outer layer of the shell. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
A heat transfer model for incorporating carbon foam fabrics in firefighter's garment
NASA Astrophysics Data System (ADS)
Elgafy, Ahmed; Mishra, Sarthak
2014-04-01
In the present work, a numerical study was performed to predict and investigate the performance of a thermal protection system for firefighter's garment consisting of carbon foam fabric in both the outer shell and the thermal liner elements. Several types of carbon foam with different thermal conductivity, porosity, and density were introduced to conduct a parametric study. Additionally, the thickness of the introduced carbon foam fabrics was varied to acquire optimum design. Simulation was conducted for a square planar 2D geometry of the clothing comprising of different fabric layers and a double precision pressure-based implicit solver, under transient state condition was used. The new anticipated thermal protection system was tested under harsh thermal environmental conditions that firefighters are exposed to. The parametric study showed that employing carbon foam fabric with one set of designed parameters, weight reduction of 33 % in the outer shell, 56 % in the thermal liner and a temperature reduction of 2 % at the inner edge of the garment was achieved when compared to the traditional firefighter garment model used by Song et al. (Int J Occup Saf Ergon 14:89-106, 2008). Also, carbon foam fabric with another set of designed parameters resulted in a weight reduction of 25 % in the outer shell, 28 % in the thermal liner and a temperature reduction of 6 % at the inner edge of the garment. As a result, carbon foam fabrics make the firefighter's garment more protective, durable, and lighter in weight.
Liu, Airong; Zhang, Wei-xian
2014-09-21
An angstrom-resolution physical model of nanoscale zero-valent iron (nZVI) is generated with a combination of spherical aberration corrected scanning transmission electron microscopy (Cs-STEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy (EELS) on the Fe L-edge. Bright-field (BF), high-angle annular dark-field (HAADF) and secondary electron (SE) imaging of nZVI acquired by a Hitachi HD-2700 STEM show near atomic resolution images and detailed morphological and structural information of nZVI. The STEM-EDS technique confirms that the fresh nZVI comprises of a metallic iron core encapsulated with a thin layer of iron oxides or oxyhydroxides. SAED patterns of the Fe core suggest the polycrystalline structure in the metallic core and amorphous nature of the oxide layer. Furthermore, Fe L-edge of EELS shows varied structural features from the innermost Fe core to the outer oxide shell. A qualitative analysis of the Fe L(2,3) edge fine structures reveals that the shell of nZVI consists of a mixed Fe(II)/Fe(III) phase close to the Fe (0) interface and a predominantly Fe(III) at the outer surface of nZVI.
Lipids from the nacreous and prismatic layers of two Pteriomorpha Mollusc shells
NASA Astrophysics Data System (ADS)
Farre, B.; Dauphin, Y.
2009-04-01
Mollusc shells are the best-known Ca-carbonate biominerals. They are commonly described as a mineralized two layered structure: an outer layer composed of calcite prismatic units, and an internal layer composed of tablets of aragonite: the nacreous layer. An external organic layer (periostracum) is present in most taxa. However, the most common structure in the Mollusc shell is the aragonite crossed lamellar layer, but aragonite prisms, calcite foliated layers and homogeneous layers have been also described by Boggild (1930) in all the Mollusc orders. Since, more detailed descriptions of Bivalve shells have been done (Taylor et al., 1969, 1973). Despite the nacroprismatic arrangement is rare, calcite prismatic and aragonite nacreous layers are the best studied because of their simple 3D structure and large units. Among these Molluscs, some Bivalve species composed of these two layers are of commercial interest, such as the pearl oyster, Pinctada margaritifera, cultivated in French Polynesia to produce black pearls. It is well established that Mollusc shells are composite structures of organic and inorganic components (Hatchett, 1799; Grégoire et al., 1955; Beedham, 1958; Simkiss, 1965; Mutvei, 1969; Cuif et al., 1980; Berman et al., 1993; Kobayashi and Samata, 2006). Numerous studies are concerned with the organic matrix of the shell. Organic components are commonly obtained after a strong or mild decalcification process. They are said to consist of both a soluble and insoluble fraction. The main part of studies is dedicated to the soluble components, and among them, proteins (Grégoire et al., 1955; Grégoire, 1961; Krampitz et al., 1976; Samata et al., 1980, 2004; Weiner, 1983; Miyamoto et al., 2006). Despite the pioneering work of Wada (1980) sugars are usually neglected despite their role in biomineralization. The third component of the organic matrix of calcareous biominerals is lipids. To date, there is a paucity of information concerning the presence, abundance and composition of these components in Mollusc shells. Goulletquer and Wolowicz (1989) have estimated that proteins represent 90% of the organic matrix of the shell, carbohydrates vary from 0.15 to 0.29%, while lipids vary from 0.8 to 2.9%. Fatty acids, cholesterol, phytadienes and ketones have been described in modern and fossil shells (Cobabe and Pratt, 1995). Using a procedure to extract intra- and intercrystalline organic matrices, Collins et al. (1995) have detected n-alkanes, n-alcohols, fatty acids and sterols in modern shells. It is suggested that the contents and ratios of these components are dependant on the environment and phylogeny. Lipids of the nacreous layer of Pinctada are diverse, with cholesterol, fatty acids, triglycerides and other unknown components (Rousseau et al., 2006). It has been established that the main part of the soluble organic matrices of the nacreous layer is composed of acidic proteins (Samata, 1988, 1990), whereas the prismatic layer of Pinna is mainly composed of acidic and sulphated polysaccharides (Dauphin, 2002; Dauphin et al., 2003). The amino acid compositions of the two layers are also different (Samata, 1990). Because the organic matrices extracted from the aragonite nacre and calcite prisms are the best known materials, the lipids extracted from the calcite prisms of Pinna nobilis and Pinctada margaritifera and the aragonite nacre of P. margaritifera have been chosen as test material for characterisation of the lipid fraction of molusk shells. The nacreous layer of Pinctada is thick,whereas its prismatic layer is thin, and the prisms display complex structures. On the opposite, the calcitic prismatic layer of Pinna is thick, with no intraprismatic membranes, and its nacreous layer is thin and present only in the oldest part of the shell. Moreover, these layers have a simple geometry so that some organic components (membranes, wall…) said to be insoluble, are clearly visible. Lipids were extracted from the calcite prismatic and aragonite nacreous layer of two mollusc shells thanks organic solvents. Two methods were used for the characterisation of the lipid obtaiened Fourier Tranform Infrared Spectrometry and thin layed chromatography. Fourier Transform Infrared Spectrometry shows that lipids are present in both samples, but they are not similar. Thin layer chromatography confirms that lipids are different in the two studied layers, so that it may be suggested they are species-dependant, but also structure-dependant. Although not yet deciphered, their role in biomineralization and fossilisation processes is probably important.
Ishihara, Tomoe; Kaidzu, Sachiko; Kimura, Hideto; Koyama, Yasurou; Matsuoka, Yotaro
2018-01-01
Retinal tissue is exposed to oxidative stress caused by visible light. Light-damaged rat used in age-related macular degeneration (AMD) studies clarified that antioxidants decrease retinal light damage. Albino rats were exposed to 5000 Lux light for 12 h with oral administration of the polyphenolic compounds fraction (PF) from the seed shells of Japanese horse chestnut (30 mg/kg, 100 mg/kg, and 300 mg/kg body weight: BW). To evaluate the protective effects against light damage, electroretinograms (ERGs), the outer nuclear layer (ONL) thickness, the antioxidant activity of plasma, oxidized retinal lipids, and the detection of apoptosis were examined. To reveal their active compounds, PF were separated into an A-type proanthocyanidin (PAF) and a flavonol O-glycosides fraction. The protective effects of these fractions against light damage were compared by measuring the thickness of the ERGs and ONL. Compared with the negative control, the PF group (100 mg/kg and 300 mg/kg BW) significantly suppressed the decrease of the ERG amplitudes and ONL thickness. PF (300 mg/kg BW) induced the elevation of in vivo antioxidant activity, and the suppression of retinal lipid oxidation. PF administration also suppressed apoptotic cell death. The protective effects against light damage were attributable to the antioxidant activity of PAF. The light-induced damage of retinas was protected by oral administration of PF and PAF. Taken together, these compounds are potentially useful for the prevention of the disease caused by light exposure. Highlights: The protective effects of retinal damage by light exposure were evaluated using polyphenolic compounds from the seed shells of Japanese horse chestnut (Aesculus turbinata BLUME) as an antioxidant. Decreases in the electroretinographic amplitude and outer nuclear layer thickness were suppressed by the polyphenolic compounds of the seed shells. Polyphenolic compounds from the seed shells of Japanese horse chestnut inhibited the oxidation of retinal lipids. Highly polymeric A-type proanthocyanidin from the seed shells protected the rat retina from light exposure damage by inhibiting oxidative stress and apoptotic mechanisms. PMID:29748512
Ishihara, Tomoe; Kaidzu, Sachiko; Kimura, Hideto; Koyama, Yasurou; Matsuoka, Yotaro; Ohira, Akihiro
2018-05-10
Retinal tissue is exposed to oxidative stress caused by visible light. Light-damaged rat used in age-related macular degeneration (AMD) studies clarified that antioxidants decrease retinal light damage. Albino rats were exposed to 5000 Lux light for 12 h with oral administration of the polyphenolic compounds fraction (PF) from the seed shells of Japanese horse chestnut (30 mg/kg, 100 mg/kg, and 300 mg/kg body weight: BW). To evaluate the protective effects against light damage, electroretinograms (ERGs), the outer nuclear layer (ONL) thickness, the antioxidant activity of plasma, oxidized retinal lipids, and the detection of apoptosis were examined. To reveal their active compounds, PF were separated into an A-type proanthocyanidin (PAF) and a flavonol O -glycosides fraction. The protective effects of these fractions against light damage were compared by measuring the thickness of the ERGs and ONL. Compared with the negative control, the PF group (100 mg/kg and 300 mg/kg BW) significantly suppressed the decrease of the ERG amplitudes and ONL thickness. PF (300 mg/kg BW) induced the elevation of in vivo antioxidant activity, and the suppression of retinal lipid oxidation. PF administration also suppressed apoptotic cell death. The protective effects against light damage were attributable to the antioxidant activity of PAF. The light-induced damage of retinas was protected by oral administration of PF and PAF. Taken together, these compounds are potentially useful for the prevention of the disease caused by light exposure. The protective effects of retinal damage by light exposure were evaluated using polyphenolic compounds from the seed shells of Japanese horse chestnut ( Aesculus turbinata BLUME) as an antioxidant. Decreases in the electroretinographic amplitude and outer nuclear layer thickness were suppressed by the polyphenolic compounds of the seed shells. Polyphenolic compounds from the seed shells of Japanese horse chestnut inhibited the oxidation of retinal lipids. Highly polymeric A-type proanthocyanidin from the seed shells protected the rat retina from light exposure damage by inhibiting oxidative stress and apoptotic mechanisms.
Titan's interior from Cassini-Huygens
NASA Astrophysics Data System (ADS)
Tobie, G.; Baland, R.-M.; Lefevre, A.; Monteux, J.; Cadek, O.; Choblet, G.; Mitri, G.
2013-09-01
The Cassini-Huygens mission has brought many informations about Titan that can be used to infer its interior structure: the gravity field coefficients (up to degree 3, [1]), the surface shape (up to degree 6, [2]), the tidal Love number [1], the electric field [3], and the orientation of its rotation axis [4]. The measured obliquity and gravity perturbation due to tides, as well as the electric field, are lines of evidence for the presence of an internal global ocean beneath the ice surface of Titan [5,1,3]. The observed surface shape and gravity can be used to further constrain the structure of the ice shell above the internal ocean. The presence of a significant topography associated with weak gravity anomalies indicates that deflections of internal interface or lateral density variations may exist to compensate the topography. To assess the sources of compensation, we consider interior models including interface deflections and/or density variations, which reproduces simultaneously the surface gravity and long-wavelength topography data [6]. Furthermore, in order to test the long-term mechanical stability of the internal mass anomalies, we compute the relaxation rate of each internal interface in response to surface mass load. We show that the topography can be explained either by defections of the ocean/ice interface or by density variations in an upper crust [6]. For non-perfectly compensated models of the outer ice shell, the present-day structure is stable only for a conductive layer above a relatively cold ocean (for bottom viscosity > 1016 Pa.s, T < 250 K). For perfectly compensated models, a convective ice shell is stable (with a bottom viscosity lower than 1015 Pas) if the source of compensation is due to density variations in the upper crust (2-3 km below the surface). In this case, deep gravity anomalies are required to explain the observed geoid. Our calculations show that the high pressure ice layer cannot be the source of the residual gravity anomalies. The existence of mass anomalies in the rocky core is a most likely explanation. However, as the observed geoid and topography are mostly sensitive to the lateral structure of the outer ice shell, no information can be retrieved on the ice shell thickness, ocean density and/or size of the rocky core. Constraints on these internal parameters can be obtained from the tidal Love number and the obliquity. To derive the possible density profile, the obliquity is computed from a Cassini state model for a satellite with an internal liquid layer, each layer having an ellipsoidal shape consistent with the measured surface shape and gravity field [7]. We show that, once the observed surface flattening is taken into account, the measured obliquity can be reproduced only for internal models with a dense ocean (between 1275 and 1350 kg.m-3) above a differentiated interior with a full separation of rock and ice [7]. We obtain normalized moments of inertia between 0.31 and 0.33, significantly lower than the expected hydrostatic value (0.34). The tidal Love number is also found to be mostly sensitive to the ocean density and to a lesser extent the ice shell thickness. By combining obliquity and tidal Love number constraints, we show that the thickness of the outer ice shell is at least 40 km and the ocean thickness is less than 100 km, with an averaged density of 1275-1350 kg.m-3. Such a high density indicates that the ocean may contain a significant fraction of salts. Our calculations also imply that there is a significant difference of flattening between the surface and the ice/ocean interface. This is possible only if the ice layer is viscous enough to limit relaxation, as indicated above. This is also consistent with an ocean enriched in salts for which the crystallization point can be several tens of degree below the crystallization point of pure water system. The elevated density (> 3800 kg.m-3) found for the rocky core further suggests that Titan might have a differentiated iron core. The rocky core is likely fully dehydrated at present, suggesting warm conditions during most of its evolution. All the water contained in the deep interior has probably been expelled to the outer regions, thus potentially explaining the salt enrichments.
Iancu, Cristina V.; Ding, H. Jane; Morris, Dylan M.; Dias, D. Prabha; Gonzales, Arlene D.; Martino, Anthony; Jensen, Grant J.
2007-01-01
Carboxysomes are organelle-like polyhedral bodies found in cyanobacteria and many chemoautotrophic bacteria that are thought to facilitate carbon fixation. Carboxysomes are bounded by a proteinaceous outer shell and filled with ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the first enzyme in the CO2 fixation pathway, but exactly how they enhance carbon fixation is unclear. Here we report the three-dimensional structure of purified carboxysomes from Synechococcus species strain WH8102 as revealed by electron cryotomography. We found that while the sizes of individual carboxysomes in this organism varied from 114 to 137 nm, surprisingly, all were approximately icosahedral. There were on average ∼250 RuBisCOs per carboxysome, organized into 3-4 concentric layers. Some models of carboxysome function depend on specific contacts between individual RuBisCOs and the shell, but no evidence of such contacts was found: no systematic patterns of connecting densities or RuBisCO positions against the shell's presumed hexagonal lattice could be discerned, and simulations showed that packing forces alone could account for the layered organization of RuBisCOs. PMID:17669419
SIMS depth profiling of working environment nanoparticles
NASA Astrophysics Data System (ADS)
Konarski, P.; Iwanejko, I.; Mierzejewska, A.
2003-01-01
Morphology of working environment nanoparticles was analyzed using sample rotation technique in secondary ion mass spectrometry (SIMS). The particles were collected with nine-stage vacuum impactor during gas tungsten arc welding (GTAW) process of stainless steel and shielded metal arc welding (SMAW) of mild steel. Ion erosion of 300-400 nm diameter nanoparticles attached to indium substrate was performed with 2 keV, 100 μm diameter, Ar + ion beam at 45° ion incidence and 1 rpm sample rotation. The results show that both types of particles have core-shell morphology. A layer of fluorine, chlorine and carbon containing compounds covers stainless steel welding fume particles. The cores of these particles are enriched in iron, manganese and chromium. Outer shell of mild steel welding fume particles is enriched in carbon, potassium, chlorine and fluorine, while the deeper layers of these nanoparticles are richer in main steel components.
Prospects For Earth-Based Measurements Of Europa's Librations
NASA Astrophysics Data System (ADS)
Margot, Jean-Luc; Campbell, D. B.; Peale, S. J.
2010-10-01
The exploration of Europa is of great interest because it may be hospitable to certain life forms [1]. Several lines of evidence suggest that a subsurface ocean exists beneath an icy shell [2,3], but there is debate about the thickness of the shell [4], which impacts Europa's astrobiological potential. As in the case of Mercury, it may be possible to determine whether an outer shell is decoupled from the interior and to evaluate the shell thickness by measuring the amplitude of forced longitude librations [5,6]. In the simplest configuration of a rigid shell decoupled from a spherically symmetric interior, the libration amplitude is amplified from the nominal value of 18" by C/Cs, where C is the polar moment of inertia of the body and Cs is that of the outer shell that participates in the librations. For a 100-km thick shell, the libration amplitude would reach 200", an estimate that remains valid even in the presence of gravitational coupling between asymmetrical layers [7]. If there are significant departures from rigid behavior, the shell may deform with the ocean underneath and exhibit a libration amplitude of 52" [8]. Europa reaches closest approach in October 2011, offering a once-in-a-decade opportunity to measure spin rate variations by tracking radar speckles, as advocated by Holin [9,10]. Librations of a rigid shell thinner than 100 km would be detectable. We will describe the experimental design and expected sensitivity. References: [1] NRC, Europa Science Strategy, 1999. [2,3] Kivelson et al, Greeley et al, in Jupiter, CUP, 2004. [4] Greenberg, Unmasking Europa, Praxis, 2008. [5] Peale, Nature 262, 1976. [6] Margot et al, Science 316, 2007. [7] van Hoolst et al, Icarus 195, 2008. [8] Goldreich and Mitchell, Icarus, in press. [9] Green, in Radar Astronomy, McGraw-Hill, 1968. [10] Holin, Radiophys. Quant. Elec. 31, 1988.
Controlling energy transfer between multiple dopants within a single nanoparticle
DiMaio, Jeffrey R.; Sabatier, Clément; Kokuoz, Baris; Ballato, John
2008-01-01
Complex core-shell architectures are implemented within LaF3 nanoparticles to allow for a tailored degree of energy transfer (ET) between different rare earth dopants. By constraining specific dopants to individual shells, their relative distance to one another can be carefully controlled. Core-shell LaF3 nanoparticles doped with Tb3+ and Eu3+ and consisting of up to four layers were synthesized with an outer diameter of ≈10 nm. It is found that by varying the thicknesses of an undoped layer between a Tb3+-doped layer and a Eu3+-doped layer, the degree of ET can be engineered to allow for zero, partial, or total ET from a donor ion to an acceptor ion. More specifically, the ratio of the intensities of the 541-nm Tb3+ and 590 nm Eu3+ peaks was tailored from <0.2 to ≈2.4 without changing the overall composition of the particles but only by changing the internal structure. Further, the emission spectrum of a blend of singly doped nanoparticles is shown to be equivalent to the spectra of co-doped particles when a core-shell configuration that restricts ET is used. Beyond simply controlling ET, which can be limiting when designing materials for optical applications, this approach can be used to obtain truly engineered spectral features from nanoparticles and composites made from them. Further, it allows for a single excitation source to yield multiple discrete emissions from numerous lanthanide dopants that heretofore would have been quenched in a more conventional active optical material. PMID:18250307
NASA Astrophysics Data System (ADS)
Cudennec, Jean-François; Stephan, Pierre; Dupont, Catherine; Pailler, Yvan; Thébault, Julien; Schöne, Bernd; Paulet, Yves-Marie
2017-04-01
During the winter 2013-2014, severe storm events caused a coastal erosion in the southern part of the Beniguet Island (Brittany, France). The associated shoreline retreat had uncovered three layers of shell middens interbedded into an aeolian sand dune deposit. From several radiocarbon dating crossed with the study of ceramic and lithic contents, the shell middens were dated to the Final Neolithic (2400 BC), the Early Bronze Age (2000 BC) and the Early Middle Age (800 AD) respectively. This site offers a unique opportunity to collect two types of information: palaeo-environmental (palaeo-temperature of sea water) and archaeological (determination of harvest season). In this study, we focus on gastropod of the genus Patella which represent 90% of the remains found in this midden. This organism is potentially a highly valuable archive for these environments because they are intertidal and relatively sedentary. We studied the growth rings in the outer calcitic layer of individual limpet shells from the Neolithic, Early Bronze Age and Present Day populations. We report here the results of δ18O analyses. We found a similarity between the reconstructed palaeo-temperature in the Neolithic and the Present periods (between 13 and 14°C in summer and about 8 - 9°C in winter). However, palaeo-temperatures of the Early Bronze Age shells are significantly lower in winter (5 - 6 °C). Moreover, the initial results of the δ18O analyses at the margin of these shells showed that they were harvested during a specific season (end of spring or early summer). Additional work will be done to address questions about shell growth dynamics of these species. These results confirm the interest of using ancient limpet shells as palaeo-environmental and archaeological archives.
Coomes, Edmund P.; Luksic, Andrzej T.
1988-12-06
Radiation pellets having an outer shell, preferably, of Mo, W or depleted U nd an inner filling of lithium hydride wherein the outer shell material has a greater melting point than does the inner filling material.
Low temperature storage container for transporting perishables to space station
NASA Technical Reports Server (NTRS)
Owen, James W. (Inventor); Dean, William G. (Inventor)
1989-01-01
Two storage containers are disclosed within which food or biological samples may be stored for transfer in a module by the space shuttle to a space station while maintaining the food or samples at very low temperatures. The container is formed in two parts, each part having an inner shell and an outer shell disposed about the inner shell. The space between the shells is filled with a continuous wrap multi-layer insulation and a getter material. The two parts of the container have interlocking members and when connected together are sealed for preventing leakage from the space between the shells. After the two parts are filled with frozen food or samples they are connected together and a vacuum is drawn in the space between the shells and the container is stored in the module. For the extremely low temperature requirements of biological samples, an internal liner having a phase change material charged by a refrigerant coil is disposed in the space between the shells, and the container is formed from glass fiber material including honeycomb structural elements. All surfaces of the glass fiber which face the vacuum space are lined with a metal foil.
Burnet, George; Gokhale, Ashok J.
1990-07-10
A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste, and method for producing the same, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces.
Burnet, G.; Gokhale, A.J.
1990-07-10
A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste and method for producing the same are disclosed, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces. 3 figs.
Sound Transmission through Two Concentric Cylindrical Sandwich Shells
NASA Technical Reports Server (NTRS)
Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.
1996-01-01
This paper solves the problem of sound transmission through a system of two infinite concentric cylindrical sandwich shells. The shells are surrounded by external and internal fluid media and there is fluid (air) in the annular space between them. An oblique plane sound wave is incident upon the surface of the outer shell. A uniform flow is moving with a constant velocity in the external fluid medium. Classical thin shell theory is applied to the inner shell and first-order shear deformation theory is applied to the outer shell. A closed form for transmission loss is derived based on modal analysis. Investigations have been made for the impedance of both shells and the transmission loss through the shells from the exterior into the interior. Results are compared for double sandwich shells and single sandwich shells. This study shows that: (1) the impedance of the inner shell is much smaller than that of the outer shell so that the transmission loss is almost the same in both the annular space and the interior cavity of the shells; (2) the two concentric sandwich shells can produce an appreciable increase of transmission loss over single sandwich shells especially in the high frequency range; and (3) design guidelines may be derived with respect to the noise reduction requirement and the pressure in the annular space at a mid-frequency range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, P.; Bock, C.W.; Trachtman, M.
1979-04-01
The expectation energy values E/sub k/, V/sub ee/, V/sub nn/, V/sub en/, and E/sub T/ have been calculated for H/sub 2/ and the C/sub 1/, C/sub 2/, and C/sub 3/ hydrocarbons using a (9,5) basis set and the experimental geometries. Treating the theoretical reaction heat, ..delta..E/sub T/, as the resultant of the nuclear repulsion term, ..delta..V/sub nn/, and the net electron energy term, ..delta..E/sub elec/ = ..delta..E/sub k/ + ..delta..V/sub ee/ + ..delta..V/sub en/, the contribution of inner and outer shell electron energies to ..delta..E/sub elec/, and hence to ..delta..E/sub T/, has been calculated for a large number of hydrocarbonmore » reactions by evaluating the Coulson--Neilson energies eta/sub i/, where eta/sub i/ = E/sub elec/. For the vast majority of reactions, 67/84, the change in inner shell electron energy, (..delta sigma..eta/sub i/)/sub inner/, accounts for more than 10% of ..delta..E/sub elec/, in many cases being as high as 20-35%. Furthermore, in addition to these cases in which the change in inner shell electron energy serves to augment (significantly) the change in outer shell electron energy, there are other cases in which the change in inner shell electron energy either exceeds in magnitude the change in outer shell energy, or is even opposite in sign, indicative of inner and outer shell electrons acting contrariwise. Inner shell electron energies contribute to the reaction heats because they are structure dependent, like the more familiar orbital energies epsilon, but the dependence is of a different kind.« less
Thick-shell nanocrystal quantum dots
Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM
2011-05-03
Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.
Structure of faustovirus, a large dsDNA virus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klose, Thomas; Reteno, Dorine G.; Benamar, Samia
Many viruses protect their genome with a combination of a protein shell with or without a membrane layer. In this paper, we describe the structure of faustovirus, the first DNA virus (to our knowledge) that has been found to use two protein shells to encapsidate and protect its genome. The crystal structure of the major capsid protein, in combination with cryo-electron microscopy structures of two different maturation stages of the virus, shows that the outer virus shell is composed of a double jelly-roll protein that can be found in many double-stranded DNA viruses. The structure of the repeating hexameric unitmore » of the inner shell is different from all other known capsid proteins. In addition to the unique architecture, the region of the genome that encodes the major capsid protein stretches over 17,000 bp and contains a large number of introns and exons. Finally, this complexity might help the virus to rapidly adapt to new environments or hosts.« less
Structure of faustovirus, a large dsDNA virus
Klose, Thomas; Reteno, Dorine G.; Benamar, Samia; ...
2016-05-16
Many viruses protect their genome with a combination of a protein shell with or without a membrane layer. In this paper, we describe the structure of faustovirus, the first DNA virus (to our knowledge) that has been found to use two protein shells to encapsidate and protect its genome. The crystal structure of the major capsid protein, in combination with cryo-electron microscopy structures of two different maturation stages of the virus, shows that the outer virus shell is composed of a double jelly-roll protein that can be found in many double-stranded DNA viruses. The structure of the repeating hexameric unitmore » of the inner shell is different from all other known capsid proteins. In addition to the unique architecture, the region of the genome that encodes the major capsid protein stretches over 17,000 bp and contains a large number of introns and exons. Finally, this complexity might help the virus to rapidly adapt to new environments or hosts.« less
Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires.
Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T; Martinez, Julio A
2016-01-08
The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. Selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.
Ring Beholds a Delicate Flower
NASA Technical Reports Server (NTRS)
2005-01-01
NASA's Spitzer Space Telescope finds a delicate flower in the Ring Nebula, as shown in this image. The outer shell of this planetary nebula looks surprisingly similar to the delicate petals of a camellia blossom. A planetary nebula is a shell of material ejected from a dying star. Located about 2,000 light years from Earth in the constellation Lyra, the Ring Nebula is also known as Messier Object 57 and NGC 6720. It is one of the best examples of a planetary nebula and a favorite target of amateur astronomers. The 'ring' is a thick cylinder of glowing gas and dust around the doomed star. As the star begins to run out of fuel, its core becomes smaller and hotter, boiling off its outer layers. The telescope's infrared array camera detected this material expelled from the withering star. Previous images of the Ring Nebula taken by visible-light telescopes usually showed just the inner glowing loop of gas around the star. The outer regions are especially prominent in this new image because Spitzer sees the infrared light from hydrogen molecules. The molecules emit infrared light because they have absorbed ultraviolet radiation from the star or have been heated by the wind from the star. Download the QuickTime movie for the animated version of this Ring Nebula image.A numerical study of active structural acoustic control in a stiffened, double wall cylinder
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Coats, T. J.; Lester, H. C.; Silcox, R. J.
1994-01-01
It is demonstrated that active structural acoustic control of complex structural/acoustic coupling can be numerically modeled using finite element and boundary element techniques in conjunction with an optimization procedure to calculate control force amplitudes. Appreciable noise reduction is obtained when the structure is excited at a structural resonance of the outer shell or an acoustic resonance of the inner cavity. Adding ring stiffeners as a connection between the inner and outer shells provides an additional structural transmission path to the interior cavity and coupled the modal behavior of the inner and outer shells. For the case of excitation at the structural resonance of the unstiffened outer shell, adding the stiffeners raises the structural resonance frequencies. The effectiveness of the control forces is reduced due to the off resonance structural response. For excitation at an acoustic cavity resonance, the controller effectiveness is enhanced.
DNA cytoskeleton for stabilizing artificial cells.
Kurokawa, Chikako; Fujiwara, Kei; Morita, Masamune; Kawamata, Ibuki; Kawagishi, Yui; Sakai, Atsushi; Murayama, Yoshihiro; Nomura, Shin-Ichiro M; Murata, Satoshi; Takinoue, Masahiro; Yanagisawa, Miho
2017-07-11
Cell-sized liposomes and droplets coated with lipid layers have been used as platforms for understanding live cells, constructing artificial cells, and implementing functional biomedical tools such as biosensing platforms and drug delivery systems. However, these systems are very fragile, which results from the absence of cytoskeletons in these systems. Here, we construct an artificial cytoskeleton using DNA nanostructures. The designed DNA oligomers form a Y-shaped nanostructure and connect to each other with their complementary sticky ends to form networks. To undercoat lipid membranes with this DNA network, we used cationic lipids that attract negatively charged DNA. By encapsulating the DNA into the droplets, we successfully created a DNA shell underneath the membrane. The DNA shells increased interfacial tension, elastic modulus, and shear modulus of the droplet surface, consequently stabilizing the lipid droplets. Such drastic changes in stability were detected only when the DNA shell was in the gel phase. Furthermore, we demonstrate that liposomes with the DNA gel shell are substantially tolerant against outer osmotic shock. These results clearly show the DNA gel shell is a stabilizer of the lipid membrane akin to the cytoskeleton in live cells.
Electrophoretic manipulation of multiple-emulsion droplets
NASA Astrophysics Data System (ADS)
Schoeler, Andreas M.; Josephides, Dimitris N.; Chaurasia, Ankur S.; Sajjadi, Shahriar; Mesquida, Patrick
2014-02-01
Electrophoretic manipulation of multiple-emulsion oil-in-water-in-oil (O/W)/O and water-in-oil-in-water-in-oil (W/O/W)/O core-shell droplets is shown. It was found that the electrophoretic mobility of the droplets is determined solely by the outer water shell, regardless of size or composition of the inner droplets. It was observed that the surface charge of the outer water shell can be changed and the polarity can be reversed through contact with a biased electrode in a similar way as with simple W/O droplets. Furthermore, addition of the anionic surfactant, sodium dodecyl sulfate to the outer water shell reverses the initial polarity and hence, electrophoretic mobility of the core-shell droplets before contact with an electrode. The results have practical implications for the manipulation of oil droplets in a continuous oil phase.
Band Formation and Ocean-Surface Interaction on Europa and Ganymede
NASA Astrophysics Data System (ADS)
Howell, Samuel M.; Pappalardo, Robert T.
2018-05-01
Geologic activity in the outer H2O ice shells of Europa and Ganymede, Galilean moons of Jupiter, may facilitate material exchange between global water oceans and the icy surface, fundamentally affecting potential habitability and the future search for life. Spacecraft imagery reveals surfaces rich with tectonic bands, predominantly attributed to the extension of brittle ice overlaying a convecting ice layer. However, the details of band-forming processes and links to potential ocean-surface exchange have remained elusive. We simulate ice shell faulting and convection with two-dimensional numerical models and track the movement of "fossil" ocean material frozen into the base of the ice shell and deformed through geologic time. We find that distinct band types form within a spectrum of extensional terrains correlated to lithosphere strength, governed by lithosphere thickness and cohesion. Furthermore, we find that smooth bands formed in weak lithosphere promote exposure of fossil ocean material at the surface.
Gu, Shunchao; Kondo, Tomohiro; Mine, Eiichi; Nagao, Daisuke; Kobayashi, Yoshio; Konno, Mikio
2004-11-01
Jingle bell-shaped hollow spheres were fabricated starting from multilayered particles composed of a silica core, a polystyrene inner shell, and a titania outer shell. Composite particles of silica core-polystyrene shell, synthesized by coating a 339-nm-sized silica core with a polystyrene shell of thickness 238 nm in emulsion polymerization, were used as core particles for a succeeding titania-coating. A sol-gel method was employed to form the titania outer shell with a thickness of 37 nm. The inner polystyrene shell in the multilayered particles was removed by immersing them in tetrahydrofuran. These successive procedures could produce jingle bell-shaped hollow spheres that contained a silica core in the titania shell.
Method of fabricating nested shells and resulting product
Henderson, Timothy M.; Kool, Lawrence B.
1982-01-01
A multiple shell structure and a method of manufacturing such structure wherein a hollow glass microsphere is surface treated in an organosilane solution so as to render the shell outer surface hydrophobic. The surface treated glass shell is then suspended in the oil phase of an oil-aqueous phase dispersion. The oil phase includes an organic film-forming monomer, a polymerization initiator and a blowing agent. A polymeric film forms at each phase boundary of the dispersion and is then expanded in a blowing operation so as to form an outer homogeneously integral monocellular substantially spherical thermoplastic shell encapsulating an inner glass shell of lesser diameter.
Computational studies of the 2D self-assembly of bacterial microcompartment shell proteins
NASA Astrophysics Data System (ADS)
Mahalik, Jyoti; Brown, Kirsten; Cheng, Xiaolin; Fuentes-Cabrera, Miguel
Bacterial microcomartments (BMCs) are subcellular organelles that exist within wide variety of bacteria and function like nano-reactors. Among the different types of BMCs known, the carboxysome has been studied the most. The carboxysomes plays an important role in the transport of metabolites across its outer proteinaceous shell. Plenty of studies have investigated the structure of this shell, yet little is known about its self-assembly . Understanding the self-assembly process of BMCs' shell might allow disrupting their functioning and designing new synthetic nano-reactors. We have investigated the self-assembly process of a major protein component of the carboxysome's shell using a Monte Carlo technique that employed a coarse-grained protein model that was calibrated with the all-atomistic potential of mean force. The simulations reveal that this protein self-assembles into clusters that resemble what were seen experimentally in 2D layers. Further analysis of the simulation results suggests that the 2D self-assembly of carboxysome's facets is driven by nucleation-growth process, which in turn could play an important role in the hierarchical self-assembly of BMCs' shell in general. 1. Science Undergraduate Laboratory Internships, ORNL 2. Oak Ridge Leadership Computing Facility, ORNL.
High efficiency replicated x-ray optics and fabrication method
Barbee, Jr., Troy W.; Lane, Stephen M.; Hoffman, Donald E.
2001-01-01
Replicated x-ray optics are fabricated by sputter deposition of reflecting layers on a super-polished reusable mandrel. The reflecting layers are strengthened by a supporting multilayer that results in stronger stress-relieved reflecting surfaces that do not deform during separation from the mandrel. The supporting multilayer enhances the ability to part the replica from the mandrel without degradation in surface roughness. The reflecting surfaces are comparable in smoothness to the mandrel surface. An outer layer is electrodeposited on the supporting multilayer. A parting layer may be deposited directly on the mandrel before the reflecting surface to facilitate removal of the layered, tubular optic device from the mandrel without deformation. The inner reflecting surface of the shell can be a single layer grazing reflection mirror or a resonant multilayer mirror. The resulting optics can be used in a wide variety of applications, including lithography, microscopy, radiography, tomography, and crystallography.
Rollable Thin-Shell Nanolaminate Mirrors
NASA Technical Reports Server (NTRS)
Hickey, Gregory; Lih, Shyh-Shiuh; Barbee, Troy, Jr.
2003-01-01
A class of lightweight, deployable, thin-shell, curved mirrors with built-in precise-shape-control actuators is being developed for high-resolution scientific imaging. This technology incorporates a combination of advanced design concepts in actuation and membrane optics that, heretofore, have been considered as separate innovations. These mirrors are conceived to be stowed compactly in a launch shroud and transported aboard spacecraft, then deployed in outer space to required precise shapes at much larger dimensions (diameters of the order of meters or tens of meters). A typical shell rollable mirror structure would include: (1) a flexible single- or multiple-layer face sheet that would include an integrated reflective surface layer that would constitute the mirror; (2) structural supports in the form of stiffeners made of a shape-memory alloy (SMA); and (3) piezoelectric actuators. The actuators, together with an electronic control subsystem, would implement a concept of hierarchical distributed control, in which (1) the SMA actuators would be used for global shape control and would generate the large deformations needed for the deployment process and (2) the piezoelectric actuators would generate smaller deformations and would be used primarily to effect fine local control of the shape of the mirror.
Palm fruit in traditional African food culture.
Atinmo, Tola; Bakre, Aishat Taiwo
2003-01-01
The centre of origin of the oil palm is the tropical rain forest region of West Africa. It is considered to be the 200-300 kilometre wide coastal belt between Liberia and Mayumbe. The oil palm tree has remained the 'tree of life' of Yoruba land as well as of other parts of southern West Africa to which it is indigenous. The Yoruba are adept at spinning philosophical and poetical proverbs around such ordinary things as hills, rivers, birds, animals and domestic tools. Hundreds of the traditional proverbs are still with us, and through them one can see the picture of the environment that contributed to the moulding of the thoughts of the people. Yoruba riddles or puzzles were also couched in terms of the environment and the solutions to them were also environmental items. They have a popular saying: A je eran je eran a kan egungun, a je egungun je egungun a tun kan eran: 'A piece of meat has an outer layer of flesh, an intermediate layer of bone and an inner layer of flesh'. What is it? A palm fruit: it has an outer edible layer, the mesocarp; then a layer of shell, inedible, and the kernel inside, edible. The solution to this puzzle summarises the botanical and cultural characteristics of the palm fruit.
Multi-Shell Hollow Nanogels with Responsive Shell Permeability
Schmid, Andreas J.; Dubbert, Janine; Rudov, Andrey A.; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I.; Richtering, Walter
2016-01-01
We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity. PMID:26984478
Yang, Lingang; Cui, Chuanfeng; Wang, Lingzhi; Lei, Juying; Zhang, Jinlong
2016-07-27
The rational design and controlled synthesis of a smart device with flexibly tailored response ability is all along desirable for bioapplication but long remains a considerable challenge. Here, a pH-stimulated valve system with a visualized "on-off" mode is constructed through a dual-shell fluorescence resonance energy transfer (FRET) strategy. The dual shells refer to carbon dots and fluorescent molecules embedded polymethacrylic acid (F-PMAA) layers successively coating around a SiO2 core (ca. 120 nm), which play the roles as energy donor and acceptor, respectively. The total thickness of the dual-shell in the solid composite is ca. 10 nm. The priorities of this dual-shell FRET nanovalve stem from three facts: (1) the thin shell allows the formation of efficient FRET system without chemical bonding between energy donor and acceptor; (2) the maximum emission wavelength of CD layer is tunable in the range of 400-600 nm, thus providing a flexible energy donor for a wide variety of energy acceptors; (3) the outer F-PMAA shell with a pH-sensitive swelling-shrinking (on-off) behavior functions as a valve for regulating the FRET process. As such, a sensitive and stable pH ratiometric sensor with a working pH range of 3-6 has been built by simply encapsulating pH-responsive fluorescein isothiocyanate (FITC) into PMAA; a pH-dependent swelling-shrinking shuttle carrier with a finely controllable molecule-release behavior has been further fabricated using rhodamine B isothiocyanate (RBITC) as the energy donor and model guest molecule. Significantly, the controlled releasing process is visually self-monitorable.
Partially segmented deformable mirror
Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.
1991-05-21
A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.
Partially segmented deformable mirror
Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.
1991-01-01
A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Individual specification requirements applicable to tank car tanks consisting of an inner container supported within an outer shell. 179.221 Section... within an outer shell. ...
Thermonuclear targets for direct-drive ignition by a megajoule laser pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bel’kov, S. A.; Bondarenko, S. V.; Vergunova, G. A.
2015-10-15
Central ignition of a thin two-layer-shell fusion target that is directly driven by a 2-MJ profiled pulse of Nd laser second-harmonic radiation has been studied. The parameters of the target were selected so as to provide effective acceleration of the shell toward the center, which was sufficient for the onset of ignition under conditions of increased hydrodynamic stability of the ablator acceleration and compression. The aspect ratio of the inner deuterium-tritium layer of the shell does not exceed 15, provided that a major part (above 75%) of the outer layer (plastic ablator) is evaporated by the instant of maximum compression.more » The investigation is based on two series of numerical calculations that were performed using one-dimensional (1D) hydrodynamic codes. The first 1D code was used to calculate the absorption of the profiled laser-radiation pulse (including calculation of the total absorption coefficient with allowance for the inverse bremsstrahlung and resonance mechanisms) and the spatial distribution of target heating for a real geometry of irradiation using 192 laser beams in a scheme of focusing with a cubo-octahedral symmetry. The second 1D code was used for simulating the total cycle of target evolution under the action of absorbed laser radiation and for determining the thermonuclear gain that was achieved with a given target.« less
Is Ceres' deep interior ice-rich? Constraints from crater morphology
NASA Astrophysics Data System (ADS)
Bland, M. T.; Raymond, C. A.; Fu, R.; Marchi, S.; Castillo, J. C.; King, S. D.; Schenk, P.; Preusker, F.; Park, R. S.; Russell, C. T.
2016-12-01
Determining the composition and internal structure of Ceres is critical to understanding its origin and evolution. Analysis of the depths of Ceres' largest impact craters [Bland et al. 2016] and global shape [Fu et al. 2016] using data returned by NASA's Dawn spacecraft indicate that the dwarf planet's subsurface contains no more than 30% water ice by volume, with the other 70% consisting of salts (hydrated and/or anhydrous), clathrates, and phyllosilicates. Despite these findings, Ceres is unlikely to be ice-free. The GRaND instrument has detected probable water ice at decimeter depths (with strong latitudinal variations) [Prettyman et al. 2016], water ice has been detected in fresh [Combe et al. 2016] and permanently shadowed craters [Schorghofer et al. 2016], and the simple-complex morphologic transition diameter is consistent with a weak (icy) surface layer [Schenk et al. 2016]. Furthermore, a cryovolcanic origin for Ahuna Mons requires a source of water-rich material [Ruesch et al. 2016]. Here we use numerical simulations of the viscous relaxation of impact craters to provide new constraints on the water ice content of Ceres as a function of depth that enable a more complete understanding of the thickness and composition of its outer layer. These new simulations include three rheological layers: a high-viscosity near-surface layer, a weaker (possibly ice-rich layer), and an essentially immobile rocky layer at depth. Results are latitude (temperature) dependent; however, we generally find that retaining crater topography requires a high-viscosity (ice-poor) layer with a thickness of 50% the crater radius. For example, retaining a 100-km diameter crater at latitudes below 50o requires a high-viscosity (103x water ice) layer at least 30 km thick, if the underlying layer is pure ice. Deep, low-latitude craters 150 km in diameter are observed on Ceres [Bland et al. 2016], so the high-viscosity layer is likely >40 km thick. However, our results do not exclude the existence of a reservoir enriched in water ice at the base of Ceres' outer layer. We also find that the unique morphology of Ceres' largest crater, Kerwan, may result from viscous relaxation in a thin outer layer, potentially providing a constraint on the local thickness of Ceres outer shell.
Material Parameter Sensitivity of Predicted Injury in the Lower Leg
2015-06-01
in a region of the structure that experienced the largest strains due to geometric or structural features, e.g., a sharp curve or point. The specific...Annals of Biomedical Engineering. 2012;40(12):2519–2531. 23. Iwamoto M, Omori K, Kimpara H, Nakahira Y, Tamura A, Watanabe I, Miki K, Hasegawa J...cortical layer; the void space between the inner scaled bone and the original outer bone was considered the cortical shell. Thus, a sharp interface exists
Zhang, Maofeng; Zhao, Aiwu; Wang, Dapeng; Sun, Henghui
2015-01-21
The hierarchically nanosheet-assembled NiCo@SiO2@Ag (NSA) core-shell microspheres have been synthesized by a layer-by-layer procedure at ambient temperature. The mean particle size of NSA microspheres is about 1.7 μm, which is made up of some nanosheets with an average thickness of ∼20 nm. The outer silver shell surface structures can be controlled well by adjusting the concentration of Ag(+) ions and the reaction times. The obtained NSA 3D micro/nanostructures show a structure enhanced SERS performance, which can be attributed to the special nanoscale configuration with wedge-shaped surface architecture. We find that NSA microspheres with nanosheet-assembled shell structure exhibit the highest enhancement efficiency and high SERS sensitivity to p-ATP and MBA molecules. We show that the detection limits for both p-ATP and MBA of the optimized NSA microsphere substrates can approach 10(-7) M. And the relative standard deviation of the Raman peak maximum is ∼13%, which indicates good uniformity of the substrate. In addition, the magnetic NSA microspheres with high saturation magnetization show a quick magnetic response, good recoverability and recyclability. Therefore, such NSA microspheres may have great practical potential applications in rapid and reproducible trace detection of chemical, biological and environment pollutants with a simple portable Raman instrument.
Densification control and analysis of outer shell of new high-temperature vacuum insulated composite
NASA Astrophysics Data System (ADS)
Wang, Yang; Chen, Zhaofeng; Jiang, Yun; Yu, Shengjie; Xu, Tengzhou; Li, Binbin; Chen, Zhou
2017-11-01
A novel high temperature vacuum insulated composite with low thermal conductivity composed of SiC foam core material and sealing outer shell is discussed, which will have a great potential to be used as thermal protection system material. In this composite, the outer shell is the key to maintain its internal vacuum, which is consisted of 2.5D C/C and SiC coating. So the densification processes of outer shell, including 2.5D braiding process, chemical vapor infiltration (CVI) pyrolytic carbon (PyC) process, polymer infiltration and pyrolysis (PIP) glassy carbon (GC) process and chemical vapor deposition (CVD) SiC process, are focused in this paper. The measuring result of the gas transmission quantity of outer shell is only 0.14 cm3/m2 · d · Pa after 5 times CVD processes, which is two order of magnitude lower than that sample deposited one time. After 10 times thermal shock cycles, the gas transmission quantity increases to 1.2 cm3/m2 · d · Pa. The effective thermal conductivity of high temperature vacuum insulated composite ranged from 0.19 W m-1 K-1 to 0.747 W m-1 K-1 within the temperature from 20 °C to 900 °C. Even after 10 thermal shock cycles, the variation of the effective thermal conductivity is still consistent with that without treatments.
Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores
NASA Astrophysics Data System (ADS)
Yang, Guomin; Neretnieks, Ivars; Holmboe, Michael
2017-08-01
During the last four decades, numerous studies have been directed to the swelling smectite-rich clays in the context of high-level radioactive waste applications and waste-liners for contaminated sites. The swelling properties of clay mineral particles arise due to hydration of the interlayer cations and the diffuse double layers formed near the negatively charged montmorillonite (MMT) surfaces. To accurately study the cation hydration in the interlayer nanopores of MMT, solvent-solute and solvent-clay surface interactions (i.e., the solvation effects and the shape effects) on the atomic level should be taken into account, in contrast to many recent electric double layer based methodologies using continuum models. Therefore, in this research we employed fully atomistic simulations using classical molecular dynamics (MD) simulations, the software package GROMACS along with the CLAYFF forcefield and the SPC/E water model. We present the ion distributions and the deformation of the hydrated coordination structures, i.e., the hydration shells of Na+ and Ca2+ in the interlayer, respectively, for MMT in the first-layer, the second-layer, the third-layer, the fourth-layer, and the fifth-layer (1W, 2W, 3W, 4W, and 5W) hydrate states. Our MD simulations show that Na+ in Na-MMT nanopores have an affinity to the ditrigonal cavities of the clay layers and form transient inner-sphere complexes at about 3.8 Å from clay midplane at water contents less than the 5W hydration state. However, these phenomena are not observed in Ca-MMT regardless of swelling states. For Na-MMT, each Na+ is coordinated to four water molecules and one oxygen atom of the clay basal-plane in the first hydration shell at the 1W hydration state, and with five to six water molecules in the first hydration shell within a radius of 3.1 Å at all higher water contents. In Ca-MMT, however each Ca2+ is coordinated to approximately seven water molecules in the first hydration shell at the 1W hydration state and about eight water molecules in the first hydration shell within a radius of 3.3 Å at all higher hydration states. Moreover, the MD results show that the complete hydration shells are nearly spherical with an orthogonal coordination sphere. They could only be formed when the basal spacing d001 ≥ 18.7 Å, i.e., approximately, the interlayer separation h ≥ 10 Å. Comparison between DFT and MD simulations shows that DFT failed to reproduce the outer-sphere complexes in the Stern-layer (within ˜5.0 Å from the clay basal-plane), observed in the MD simulations.
Cardenas, Tana; Schmidt, Derek W.; Loomis, Eric N.; ...
2018-01-25
The double-shell platform fielded at the National Ignition Facility requires developments in new machining techniques and robotic assembly stations to meet the experimental specifications. Current double-shell target designs use a dense high-Z inner shell, a foam cushion, and a low-Z outer shell. The design requires that the inner shell be gas filled using a fill tube. This tube impacts the entire machining and assembly design. Other intermediate physics designs have to be fielded to answer physics questions and advance the technology to be able to fabricate the full point design in the near future. One of these intermediate designs ismore » a mid-Z imaging design. The methods of designing, fabricating, and characterizing each of the major components of an imaging double shell are discussed with an emphasis on the fabrication of the machined outer metal shell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardenas, Tana; Schmidt, Derek W.; Loomis, Eric N.
The double-shell platform fielded at the National Ignition Facility requires developments in new machining techniques and robotic assembly stations to meet the experimental specifications. Current double-shell target designs use a dense high-Z inner shell, a foam cushion, and a low-Z outer shell. The design requires that the inner shell be gas filled using a fill tube. This tube impacts the entire machining and assembly design. Other intermediate physics designs have to be fielded to answer physics questions and advance the technology to be able to fabricate the full point design in the near future. One of these intermediate designs ismore » a mid-Z imaging design. The methods of designing, fabricating, and characterizing each of the major components of an imaging double shell are discussed with an emphasis on the fabrication of the machined outer metal shell.« less
Fluidized bed calciner apparatus
Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.
1988-01-01
An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false General specifications applicable to nonpressure tank car tanks consisting of an inner container supported within an outer shell (class DOT-115). 179... within an outer shell (class DOT-115). ...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false General specifications applicable to nonpressure tank car tanks consisting of an inner container supported within an outer shell (class DOT-115). 179... within an outer shell (class DOT-115). ...
Hydrophilic excipients modulate the time lag of time-controlled disintegrating press-coated tablets.
Lin, Shan-Yang; Li, Mei-Jane; Lin, Kung-Hsu
2004-08-16
An oral press-coated tablet was developed by means of direct compression to achieve the time-controlled disintegrating or rupturing function with a distinct predetermined lag time. This press-coated tablet containing sodium diclofenac in the inner core was formulated with an outer shell by different weight ratios of hydrophobic polymer of micronized ethylcellulose (EC) powder and hydrophilic excipients such as spray-dried lactose (SDL) or hydroxypropyl methylcellulose (HPMC). The effect of the formulation of an outer shell comprising both hydrophobic polymer and hydrophilic excipients on the time lag of drug release was investigated. The release profile of the press-coated tablet exhibited a time period without drug release (time lag) followed by a rapid and complete release phase, in which the outer shell ruptured or broke into 2 halves. The lag phase was markedly dependent on the weight ratios of EC/SDL or EC/HPMC in the outer shell. Different time lags of the press-coated tablets from 1.0 to 16.3 hours could be modulated by changing the type and amount of the excipients. A semilogarithmic plot of the time lag of the tablet against the weight ratios of EC/SDL or EC/HPMC in the outer shell demonstrated a good linear relationship, with r = 0.976 and r = 0.982, respectively. The predetermined time lag prior to the drug release from a press-coated tablet prepared by using a micronized EC as a retarding coating shell can be adequately scheduled with the addition of hydrophilic excipients according to the time or site requirements.
NASA Technical Reports Server (NTRS)
Chlebowski, T.; Seward, F. D.; Swank, J.; Szymkowiak, A.
1984-01-01
X-ray observations of Eta Car obtained with the high-resolution imager and solid-state spectrometer of the Einstein observatory are reported and interpreted in terms of a two-shell model. A soft component with temperature 5 million K is located in the expanding outer shell, and the hard core component with temperature 80 million K is attributed to the interaction of a high-velocity stellar wind from the massive central object with the inner edge of a dust shell. Model calculations based on comparison with optical and IR data permit estimation of the mass of the outer shell (0.004 solar mass), the mass of the dust shell (3 solar mass), and the total shell expansion energy (less than 2 x 10 to the 49th ergs).
Anti-predator adaptations in a great scallop (Pecten maximus) - a palaeontological perspective
NASA Astrophysics Data System (ADS)
Brom, Krzysztof Roman; Szopa, Krzysztof; Krzykawski, Tomasz; Brachaniec, Tomasz; Salamon, Mariusz Andrzej
2015-12-01
Shelly fauna was exposed to increased pressure exerted by shell-crushing durophagous predators during the so-called Mesozoic Marine Revolution that was initiated in the Triassic. As a result of evolutionary `arms race', prey animals such as bivalves, developed many adaptations to reduce predation pressure (e.g. they changed lifestyle and shell morphology in order to increase their mechanical strength). For instance, it was suggested that Pectinidae had acquired the ability to actively swim to avoid predator attack during the early Mesozoic. However, pectinids are also know to have a specific shell microstructure that may effectively protect them against predators. For instance, we highlight that the shells of some recent pectinid species (e.g. Pecten maximus) that display cross-lamellar structures in the middle part playing a significant role in the energy dissipation, improve the mechanical strength. In contrast, the outer layers of these bivalves are highly porous, which allow them to swim more efficiently by reducing the shell weight. Pectinids are thus perfect examples of animals optimising their skeletons for several functions. We suggest that such an optimisation of their skeletons for multiple functions likely occurred as a results of increased predation pressure during the so-called Mesozoic Marine Revolution.
Hollow Pd/MOF Nanosphere with Double Shells as Multifunctional Catalyst for Hydrogenation Reaction.
Wan, Mingming; Zhang, Xinlu; Li, Meiyan; Chen, Bo; Yin, Jie; Jin, Haichao; Lin, Lin; Chen, Chao; Zhang, Ning
2017-10-01
A new type of hollow nanostructure featured double metal-organic frameworks shells with metal nanoparticles (MNPs) is designed and fabricated by the methods of ship in a bottle and bottle around the ship. The nanostructure material, hereinafter denoted as Void@HKUST-1/Pd@ZIF-8, is confirmed by the analyses of photograph, transmission electron microscopy, scanning electron microscopy, powder X-ray diffraction, inductively coupled plasma, and N 2 sorption. It possesses various multifunctionally structural characteristics such as hollow cavity which can improve mass transfer, the adjacent of the inner HKUST-1 shell to the void which enables the matrix of the shell to host and well disperse MNPs, and an outer ZIF-8 shell which acts as protective layer against the leaching of MNPs and a sieve to guarantee molecular-size selectivity. This makes the material eligible candidates for the heterogeneous catalyst. As a proof of concept, the liquid-phase hydrogenation of olefins with different molecular sizes as a model reaction is employed. It demonstrates the efficient catalytic activity and size-selectivity of Void@HKUST-1/Pd@ZIF-8. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydrazine-Assisted Formation of Indium Phosphide (InP)-Based Nanowires and Core-Shell Composites
Patzke, Greta R.; Kontic, Roman; Shiolashvili, Zeinab; Makhatadze, Nino; Jishiashvili, David
2012-01-01
Indium phosphide nanowires (InP NWs) are accessible at 440 °C from a novel vapor phase deposition approach from crystalline InP sources in hydrazine atmospheres containing 3 mol % H2O. Uniform zinc blende (ZB) InP NWs with diameters around 20 nm and lengths up to several tens of micrometers are preferably deposited on Si substrates. InP particle sizes further increase with the deposition temperature. The straightforward protocol was extended on the one-step formation of new core-shell InP–Ga NWs from mixed InP/Ga source materials. Composite nanocables with diameters below 20 nm and shells of amorphous gallium oxide are obtained at low deposition temperatures around 350 °C. Furthermore, InP/Zn sources afford InP NWs with amorphous Zn/P/O-coatings at slightly higher temperatures (400 °C) from analogous setups. At 450 °C, the smooth outer layer of InP-Zn NWs is transformed into bead-shaped coatings. The novel combinations of the key semiconductor InP with isotropic insulator shell materials open up interesting application perspectives in nanoelectronics. PMID:28809296
Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Erdong; Li, Qiming; Swartzentruber, Brian
2015-11-25
The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN coremore » of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. As a result, selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.« less
Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering.
Çınar, Simge; Tevis, Ian D; Chen, Jiahao; Thuo, Martin
2016-02-23
Phase-change materials, such as meta-stable undercooled (supercooled) liquids, have been widely recognized as a suitable route for complex fabrication and engineering. Despite comprehensive studies on the undercooling phenomenon, little progress has been made in the use of undercooled metals, primarily due to low yields and poor stability. This paper reports the use of an extension of droplet emulsion technique (SLICE) to produce undercooled core-shell particles of structure; metal/oxide shell-acetate ('/' = physisorbed, '-' = chemisorbed), from molten Field's metal (Bi-In-Sn) and Bi-Sn alloys. These particles exhibit stability against solidification at ambient conditions. Besides synthesis, we report the use of these undercooled metal, liquid core-shell, particles for heat free joining and manufacturing at ambient conditions. Our approach incorporates gentle etching and/or fracturing of outer oxide-acetate layers through mechanical stressing or shearing, thus initiating a cascade entailing fluid flow with concomitant deformation, combination/alloying, shaping, and solidification. This simple and low cost technique for soldering and fabrication enables formation of complex shapes and joining at the meso- and micro-scale at ambient conditions without heat or electricity.
Hydrazine-Assisted Formation of Indium Phosphide (InP)-Based Nanowires and Core-Shell Composites.
Patzke, Greta R; Kontic, Roman; Shiolashvili, Zeinab; Makhatadze, Nino; Jishiashvili, David
2012-12-27
Indium phosphide nanowires (InP NWs) are accessible at 440 °C from a novel vapor phase deposition approach from crystalline InP sources in hydrazine atmospheres containing 3 mol % H₂O. Uniform zinc blende (ZB) InP NWs with diameters around 20 nm and lengths up to several tens of micrometers are preferably deposited on Si substrates. InP particle sizes further increase with the deposition temperature. The straightforward protocol was extended on the one-step formation of new core-shell InP-Ga NWs from mixed InP/Ga source materials. Composite nanocables with diameters below 20 nm and shells of amorphous gallium oxide are obtained at low deposition temperatures around 350 °C. Furthermore, InP/Zn sources afford InP NWs with amorphous Zn/P/O-coatings at slightly higher temperatures (400 °C) from analogous setups. At 450 °C, the smooth outer layer of InP-Zn NWs is transformed into bead-shaped coatings. The novel combinations of the key semiconductor InP with isotropic insulator shell materials open up interesting application perspectives in nanoelectronics.
Measuring Air Leaks into the Vacuum Space of Large Liquid Hydrogen Tanks
NASA Technical Reports Server (NTRS)
Youngquist, Robert; Starr, Stanley; Nurge, Mark
2012-01-01
Large cryogenic liquid hydrogen tanks are composed of inner and outer shells. The outer shell is exposed to the ambient environment while the inner shell holds the liquid hydrogen. The region between these two shells is evacuated and typically filled with a powderlike insulation to minimize radiative coupling between the two shells. A technique was developed for detecting the presence of an air leak from the outside environment into this evacuated region. These tanks are roughly 70 ft (approx. equal 21 m) in diameter (outer shell) and the inner shell is roughly 62 ft (approx. equal 19 m) in diameter, so the evacuated region is about 4 ft (approx. equal 1 m) wide. A small leak's primary effect is to increase the boil-off of the tank. It was preferable to install a more accurate fill level sensor than to implement a boil-off meter. The fill level sensor would be composed of an accurate pair of pressure transducers that would essentially weigh the remaining liquid hydrogen. This upgrade, allowing boil-off data to be obtained weekly instead of over several months, is ongoing, and will then provide a relatively rapid indication of the presence of a leak.
Experimental characterization of fire-induced response of rigid polyurethane foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.Y.; Gill, W.; Moore, J.W.
1995-12-31
Reported is the result of an experimental investigation of fire-induced response of a 96 kg/m{sup 3} closed cell rigid polyurethane foam. The specimen is 0.37 m in diameter, and 152 mm thick, placed in a cylindrical test vessel. The fire condition is simulated by heating the bottom of the test vessel to 1283 K using a radiant heat source. Real-time x-ray shows that the degradation process involves the progression of a charring front into the virgin material. The charred region has a regular and graded structure consisting of a packed bubble outer layer and successive layers of thin shells. Themore » layer-to-layer permeability appears to be poor. There are indications that gas vents laterally. The shell-like structure might be the result of lateral venting. Although the foam degradation process is quite complicated, the in-depth temperature responses in the uncharted foam appear to be consistent with steady state ablation. The measured temperature responses are well represented by the exponential distribution for steady state ablation. An estimate of the thermal diffusivity of the foam is obtained from the ablation model. The experiment is part of a more comprehensive program to develop material response models of foams and encapsulants.« less
NASA Astrophysics Data System (ADS)
Xue, Baoxia; Niu, Mei; Yang, Yongzhen; Bai, Jie; Song, Yinghao; Peng, Yun; Liu, Xuguang
2018-03-01
Carbon microspheres (CMSs) as a core material had been coated by two capsule walls: an inorganic material of magnesium hydroxide (MH) as inner shell layer and an organic material of poly (ethylene terephthalate) (PET) as outer shell layer. MH coating CMSs (MCMSs) were fabricated by liquid phase deposition method, then grafted 3-Aminopropyltriethoxysilane (APTS) to obtain the Si-MCMSs. Microencapsulated Si-MCMSs (PMCMSs) was prepared by in situ polymerization method. Morphology structure, dispersion, flame retardant and other properties of PMCMSs have been investigated. A series of PET blends were prepared by melt compounding. The results showed that MH and PET as two layers were coated on CMSs surface with the optimal thickness of about 70 nm. The PMCMSs owned better dispersion in PET matrix. Compared with MCMSs/PET composites, the mechanical property of PMCMSs/PET composites had significantly increased because of the strong interface binding force between PMCMSs and PET matrix. Moreover, PMCMSs was proved to be an effective flame retardant. For PMCMSs/PET with 2 wt% PMCMSs, the limiting oxygen index (LOI) value increased from 21.0% (pristine PET) to 27.2%, and the peak heat release rate (pk-HRR) decreased from 513.22 kW/m2 to 352.14 kW/m2. The decreased smoke production rate (SPR) and total smoke production (TSP) values demonstrated PMCMSs suppressed the smoke production. The increased Fire performance index (FPI) value illustrated PMCMSs significantly reduced the fire risk of PET. Overall, the two capsular walls endowed the PMCMSs/PET composites with good mechanical and flame-retardant properties.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Shell. 51.2289 Section 51.2289 Agriculture Regulations... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2289 Shell. Shell means the outer shell and/or the woody partition from between the halves of the kernel, and any fragments of either. ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Shell. 51.2289 Section 51.2289 Agriculture Regulations... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2289 Shell. Shell means the outer shell and/or the woody partition from between the halves of the kernel, and any fragments of either. ...
NASA Astrophysics Data System (ADS)
Fang, Jiasheng; Zhang, Yiwei; Zhou, Yuming; Zhao, Shuo; Zhang, Chao; Huang, Mengqiu; Gao, Yan
2017-08-01
Novel NiO-TiO2 hybrids/mSiO2 yolk-shell architectures loaded with ultrasmall Au nanoparticles (STNVS-Au) were developed via the rational synthetic strategy. The hierarchical yolk-shell nanostructures (STNVS) with high surface areas were constructed by a facile "bottom-up" assembly process using SiO2 materials and polymer resins as cores/shells and sacrificial templates, accompanied by a simple hydrothermal incorporation of NiO into uniform amorphous TiO2 layers that were converted to NiO-anatase TiO2 p-n heterojunction hybrids. Then, numerous sub-3 nm Au nanoparticles were post encapsulated within STNVS nanostructures through the low-temperature hydrogen reduction based on the unique deposition-precipitation method with Au(en)2Cl3 compounds as gold precursors. The NiO-TiO2 hybrids alloying with Au nanoparticles were effectively protected and entrapped within STNVS architectures, and interacted with outer mSiO2-Au shells, which comprised the powerful STNVS-Au yolk-shell nanoreactors and produced stronger configural synergies in enhancing the heterogeneous catalysis. Into catalyzing the reduction of 4-nitrophenol to 4-aminophenol, the STNVS-Au was shown with outstanding activity and reusability, and its pristine morphology was well retained during the recycling process.
Solid oxide fuel cell matrix and modules
Riley, B.
1988-04-22
Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs. 11 figs.
LC and ferromagnetic resonance in soft/hard magnetic microwires
NASA Astrophysics Data System (ADS)
Tian, Bin; Vazquez, Manuel
2015-12-01
The magnetic behavior of soft/hard biphase microwires is introduced here. The microwires consist of a Co59.1Fe14.8Si10.2B15.9 soft magnetic nucleus and a Co90Ni10 hard outer shell separated by an intermediate insulating Pyrex glass microtube. By comparing the resistance spectrums of welding the ends of metallic core (CC) or welding the metallic core and outer shell (CS) to the connector, it is found that one of the two peaks in the resistance spectrum is because the LC resonance depends on the inductor and capacitors in which one is the capacitor between the metallic core and outer shell, and the other is between the outer shell and connector. Correspondingly, another peak is for the ferromagnetic resonance of metallic core. After changing the capacitance of the capacitors, the frequency of LC resonance moves to high frequency band, and furthermore, the peak of LC resonance in the resistance spectrum disappeared. These magnetostatically coupled biphase systems are thought to be of large potential interest as sensing elements in sensor devices.
Turbine airfoil with a compliant outer wall
Campbell, Christian X [Oviedo, FL; Morrison, Jay A [Oviedo, FL
2012-04-03
A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation in the outer layer is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a support structure. The outer layer may be a compliant layer configured such that the outer layer may thermally expand and thereby reduce the stress within the outer layer. The outer layer may be formed from a nonplanar surface configured to thermally expand. In another embodiment, the outer layer may be planar and include a plurality of slots enabling unrestricted thermal expansion in a direction aligned with the outer layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Hai-Xia; Wang, Xiao-Xu; Beijing Computing Center, Beijing 100094
Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations showmore » that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement. - Graphical abstract: Geometric structure of (a) Ag@ZnO core-shell nanostructure; (b) the core of Ag; (c) the shell of ZnO The core-shell nanoparticle Ag@ZnO contains Ag inner core of radius of 4 Å and ZnO outer shell with thickness of 2 Å. Ag@ZnO core-shell nanoparticles of around 72 atoms have been proved for the first time that the core-shell structure exhibit a shrinkage phenomenon from outer shell. Our calculations predict that the Ag@ZnO core-shell structure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. The absorption edge of Ag@ZnO have a red shift and get good photo-catalysis compare to that of the bulk ZnO.« less
Nano-G research laboratory for a spacecraft
NASA Technical Reports Server (NTRS)
Vonbun, Friedrich O. (Inventor); Garriott, Owen K. (Inventor)
1991-01-01
An acceleration free research laboratory is provided that is confined within a satellite but free of any physical engagement with the walls of the satellite, wherein the laboratory has adequate power, heating, cooling, and communications services to conduct basic research and development. An inner part containing the laboratory is positioned at the center-of-mass of a satellite within the satellite's outer shell. The satellite is then positioned such that its main axes are in a position parallel to its flight velocity vector or in the direction of the residual acceleration vector. When the satellite is in its desired orbit, the inner part is set free so as to follow that orbit without contacting the inside walls of the outer shell. Sensing means detect the position of the inner part with respect to the outer shell, and activate control rockets to move the outer shell; thereby, the inner part is repositioned such that it is correctly positioned at the center-of-mass of the satellite. As a consequence, all disturbing forces, such as drag forces, act on the outer shell, and the inner part containing the laboratory is shielded and is affected only by gravitational forces. Power is supplied to the inner part and to the laboratory by a balanced microwave/laser link which creates the kind of environment necessary for basic research to study critical phenomena such as the Lambda transition in helium and crystal growth, and to perform special metals and alloys research, etc.
Catalytic activity in lithium-treated core–shell MoO x/MoS 2 nanowires
Cummins, Dustin R.; Martinez, Ulises; Kappera, Rajesh; ...
2015-09-22
Significant interest has grown in the development of earth-abundant and efficient catalytic materials for hydrogen generation. Layered transition metal dichalcogenides present opportunities for efficient electrocatalytic systems. Here, we report the modification of 1D MoO x/MoS 2 core–shell nanostructures by lithium intercalation and the corresponding changes in morphology, structure, and mechanism of H 2 evolution. The 1D nanowires exhibit significant improvement in H 2 evolution properties after lithiation, reducing the hydrogen evolution reaction (HER) onset potential by ~50 mV and increasing the generated current density by ~600%. The high electrochemical activity in the nanowires results from disruption of MoS 2 layersmore » in the outer shell, leading to increased activity and concentration of defect sites. This is in contrast to the typical mechanism of improved catalysis following lithium exfoliation, i.e., crystal phase transformation. As a result, these structural changes are verified by a combination of Raman and X-ray photoelectron spectroscopy (XPS).« less
Seltzer, Michaeld; Berry, Kristinh
2005-03-01
The outer keratin layer (scute) of desert tortoise shells consists of incrementally grown laminae in which various bioaccumulated trace elements are sequestered during scute deposition. Laser ablation ICP-MS examination of laminae in scutes of dead tortoises revealed patterns of trace elemental distribution from which the chronology of elemental uptake can be inferred. These patterns may be of pathologic significance in the case of elemental toxicants such as arsenic, which has been linked to both shell and respiratory diseases. Laser ablation transects, performed along the lateral surfaces of sectioned scutes, offered the most successful means of avoiding exogenous contamination that was present on the scute exterior. Semiquantitative determination of elemental concentrations was achieved using sulfur, a keratin matrix element, as an internal standard. The results presented here highlight the potential of laser ablation ICP-MS as a diagnostic tool for investigating toxic element uptake as it pertains to tortoise morbidity and mortality.
Seltzer, M.D.; Berry, K.H.
2005-01-01
The outer keratin layer (scute) of desert tortoise shells consists of incrementally grown laminae in which various bioaccumulated trace elements are sequestered during scute deposition. Laser ablation ICP-MS examination of laminae in scutes of dead tortoises revealed patterns of trace elemental distribution from which the chronology of elemental uptake can be inferred. These patterns may be of pathologic significance in the case of elemental toxicants such as arsenic, which has been linked to both shell and respiratory diseases. Laser ablation transects, performed along the lateral surfaces of sectioned scutes, offered the most successful means of avoiding exogenous contamination that was present on the scute exterior. Semiquantitative determination of elemental concentrations was achieved using sulfur, a keratin matrix element, as an internal standard. The results presented here highlight the potential of laser ablation ICP-MS as a diagnostic tool for investigating toxic element uptake as it pertains to tortoise morbidity and mortality.
Kitjaruwankul, Sunan; Wapeesittipan, Pattama; Boonamnaj, Panisak; Sompornpisut, Pornthep
2016-01-28
Structural data of CorA Mg(2+) channels show that the five Gly-Met-Asn (GMN) motifs at the periplasmic loop of the pentamer structure form a molecular scaffold serving as a selectivity filter. Unfortunately, knowledge about the cation selectivity of Mg(2+) channels remains limited. Since Mg(2+) in aqueous solution has a strong first hydration shell and apparent second hydration sphere, the coordination structure of Mg(2+) in a CorA selectivity filter is expected to be different from that in bulk water. Hence, this study investigated the hydration structure and ligand coordination of Mg(2+) in a selectivity filter of CorA using molecular dynamics (MD) simulations. The simulations reveal that the inner-shell structure of Mg(2+) in the filter is not significantly different from that in aqueous solution. The major difference is the characteristic structural features of the outer shell. The GMN residues engage indirectly in the interactions with the metal ion as ligands in the second shell of Mg(2+). Loss of hydrogen bonds between inner- and outer-shell waters observed from Mg(2+) in bulk water is mostly compensated by interactions between waters in the first solvation shell and the GMN motif. Some water molecules in the second shell remain in the selectivity filter and become less mobile to support the metal binding. Removal of Mg(2+) from the divalent cation sensor sites of the protein had an impact on the structure and metal binding of the filter. From the results, it can be concluded that the GMN motif enhances the affinity of the metal binding site in the CorA selectivity filter by acting as an outer coordination ligand.
Onset and Cessation of Thermal Convection within Titan's Ice Shell
NASA Astrophysics Data System (ADS)
Mitri, G.; Tobie, G.; Choblet, G.
2015-12-01
The onset of thermal convection within the outer ice shell of Titan is believed to be at the origin of methane outgassing on Titan (Tobie et al., 2006), a possible factor in Titan's resurfacing processes (Mitri et al., 2008), and to have a major role in the evolution and tectonic activity of this Saturnian icy satellite (Tobie et al., 2005; Mitri and Showman, 2008; Mitri et al., 2010). Recent measurements of the gravity field (Iess et al., 2010, 2012) and the modeling of the shape and topography (Zebker et al., 2009; Mitri et al., 2014) have recently improved our knowledge of the thermal state and structure of Titan's outer ice shell. Mitri et al. (2014) found that Titan's surface topography is consistent with an isostatically compensated ice shell of variable thickness, likely at the present in a thermally conductive state (see also Nimmo and Bills, 2010; Hemingway et al., 2013), overlying a relatively dense (~1200-1350 kg m-3) subsurface ocean. As Titan's ice shell is not currently experiencing thermal convection it is likely that the ice shell could have experienced during its history both the onset and the cessation of thermal convection; thermal convection could be present within the ice shell for limited times or in fact be episodic. We investigate the evolution of Titan's outer ice shell from the crystallization of the underlying ocean with a focus on the onset and cessation of thermal convection. To simulate convection in a growing ice shell, we numerically solve the thermal convection equations for a Newtonian rheology in a two dimensional Cartesian domain using finite element method, with a moving bottom boundary to ocean crystallization. We discuss how the crystallization process affects the onset of convection and in which conditions the cessation of thermal convection may occur. The geological consequences of the changes of the thermal state and structure of the outer ice shell will also be discussed.
Evidence for a subsurface ocean on Europa.
Carr, M H; Belton, M J; Chapman, C R; Davies, M E; Geissler, P; Greenberg, R; McEwen, A S; Tufts, B R; Greeley, R; Sullivan, R; Head, J W; Pappalardo, R T; Klaasen, K P; Johnson, T V; Kaufman, J; Senske, D; Moore, J; Neukum, G; Schubert, G; Burns, J A; Thomas, P; Veverka, J
1998-01-22
Ground-based spectroscopy of Jupiter's moon Europa, combined with gravity data, suggests that the satellite has an icy crust roughly 150 km thick and a rocky interior. In addition, images obtained by the Voyager spacecraft revealed that Europa's surface is crossed by numerous intersecting ridges and dark bands (called lineae) and is sparsely cratered, indicating that the terrain is probably significantly younger than that of Ganymede and Callisto. It has been suggested that Europa's thin outer ice shell might be separated from the moon's silicate interior by a liquid water layer, delayed or prevented from freezing by tidal heating; in this model, the lineae could be explained by repetitive tidal deformation of the outer ice shell. However, observational confirmation of a subsurface ocean was largely frustrated by the low resolution (>2 km per pixel) of the Voyager images. Here we present high-resolution (54 m per pixel) Galileo spacecraft images of Europa, in which we find evidence for mobile 'icebergs'. The detailed morphology of the terrain strongly supports the presence of liquid water at shallow depths below the surface, either today or at some time in the past. Moreover, lower-resolution observations of much larger regions suggest that the phenomena reported here are widespread.
Evidence for a subsurface ocean on Europa
Carr, M.H.; Belton, M.J.S.; Chapman, C.R.; Davies, M.E.; Geissler, P.; Greenberg, R.; McEwen, A.S.; Tufts, B.R.; Greeley, R.; Sullivan, R.; Head, J.W.; Pappalardo, R.T.; Klaasen, K.P.; Johnson, T.V.; Kaufman, J.; Senske, D.; Moore, J.; Neukum, G.; Schubert, G.; Burns, J.A.; Thomas, P.; Veverka, J.
1998-01-01
Ground-based spectroscopy of Jupiter's moon Europa, combined with gravity data, suggests that the satellite has an icy crust roughly 150 km thick and a rocky interior. In addition, images obtained by the Voyager spacecraft revealed that Europa's surface is crossed by numerous intersecting ridges and dark bands (called lineae) and is sparsely cratered, indicating that the terrain is probably significantly younger than that of Ganymede and Callisto. It has been suggested that Europa's thin outer ice shell might be separated from the moon's silicate interior by a liquid water layer, delayed or prevented from freezing by tidal heating; in this model, the lineae could be explained by repetitive tidal deformation of the outer ice shell. However, observational confirmation of a subsurface ocean was largely frustrated by the low resolution (>2 km per pixel) of the Voyager images. Here we present high-resolution (54 m per pixel) Galileo spacecraft images of Europa, in which we find evidence for mobile 'icebergs'. The detailed morphology of the terrain strongly supports the presence of liquid water at shallow depths below the surface, either today or at some time in the past. Moreover, lower- resolution observations of much larger regions suggest that the phenomena reported here are widespread.
46 CFR 42.13-15 - Definitions of terms.
Code of Federal Regulations, 2013 CFR
2013-10-01
... line of the frame in a vessel with a metal shell and to the outer surface of the hull in a vessel with... vessel with a metal shell, and is the volume of displacement to the outer surface of the hull in a vessel... between the machinery space and peak bulkheads and continuous athwartships. When this lower deck is...
46 CFR 42.13-15 - Definitions of terms.
Code of Federal Regulations, 2012 CFR
2012-10-01
... line of the frame in a vessel with a metal shell and to the outer surface of the hull in a vessel with... vessel with a metal shell, and is the volume of displacement to the outer surface of the hull in a vessel... between the machinery space and peak bulkheads and continuous athwartships. When this lower deck is...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-07
... shore protection and beach and coastal restoration, or for use in construction projects funded in whole... Considering the Use of Outer Continental Shelf Sand, Gravel, and Shell Resources for Coastal Restoration and... will submit to BOEMRE to obtain OCS sand, gravel, and shell resources for use in shore protection and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demin, V. A., E-mail: victordemin88@gmail.com; Blank, V. D.; Karaeva, A. R.
A new fully carbon nanocomposite material is synthesized by the immersion of carbon nanotubes in a fullerene solution in carbon disulfide. The presence of a dense layer of fullerene molecules on the outer nanotube surface is demonstrated by TEM and XPS. Fullerenes are redistributed on the nanotube surface during a long-term action of an electron beam, which points to the existence of a molecular bond between a nanotube and fullerenes. Theoretical calculations show that the formation of a fullerene shell begins with the attachment of one C{sub 60} molecule to a defect on the nanotube surface.
Tube-in-tube thermophotovoltaic generator
Ashcroft, John; Campbell, Brian; DePoy, David
1998-01-01
A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.
NASA Astrophysics Data System (ADS)
Füllenbach, Christoph S.; Schöne, Bernd R.; Shirai, Kotaro; Takahata, Naoto; Ishida, Akizumi; Sano, Yuji
2017-05-01
It remains a challenging task to reconstruct water temperatures from Sr/Ca ratios of bivalve shells. Although in many aragonitic species, Sr/Ca is negatively correlated to temperature - which is expected based on abiogenic precipitation experiments, the incorporation of Sr into the shell of bivalves is strongly controlled by physiological processes and occurs away from the predicted thermodynamic equilibrium. Strontium-to-calcium ratios of aragonitic shells remain far below that of the ambient water. Moreover, Sr concentrations vary considerably among shell portions consisting of different microstructures and/or organic content. Values observed at annual growth lines and within the intervening shell portions (= annual growth increments) deviate much stronger from each other than expected from a change in temperature or Sr/Cawater. As demonstrated here by ultra-high-resolution chemical analysis (EPMA, NanoSIMS) of a Cerastoderma edule shell, Sr concentrations are also heterogeneously distributed at approximately micrometer resolution. For example, in the outer portion of the outer shell layer, Sr/Ca ratios were statistically significantly (t-, u-tests) higher at circatidal growth lines (irregular simple prismatic structure; arithmetic mean ± 1 standard deviation = 2.86 ± 0.38 mmol/mol; n = 53) than within circatidal increments (nondenticular prismatic structure; 2.42 ± 0.25 mmol/mol; n = 51). S/Cashell, a representative of the concentration of organics, showed the opposite pattern, i.e., significantly higher values in circatidal increments (2.37 ± 0.29 mmol/mol; n = 51) than at circatidal growth lines (2.13 ± 0.47 mmol/mol; n = 53). Overall highest values of Sr/Cashell (3.47 ± 0.65 mmol/mol; n = 3) and S/Cashell (3.98 ± 0.65 mmol/mol; n = 3), however, were typically associated with annual growth lines and larger biomineral units. The intimate link between Sr/Cashell, S/Cashell and shell architecture may indicate that microstructures or the processes controlling their formation exert a strong control over the incorporation of strontium into shells of C. edule. Analytical techniques with lower sampling resolution, e.g., LA-ICP-MS, cannot resolve such fine-scale Sr variations. As a result, the signal-to-noise ratio decreases and the data generated by such techniques may therefore not seem to provide useful paleotemperature data. Future studies should therefore employ a combined analysis of Sr/Cashell and shell microstructures, and interpret Sr/Ca values of shell portions with different microstructures separately.
Protein profiles of hatchery egg shell membrane
USDA-ARS?s Scientific Manuscript database
Background: Eggshells, which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of m...
Interior Structure of Ceres Artist Concept
2016-08-03
This artist's concept shows a diagram of how the inside of Ceres could be structured, based on data about the dwarf planet's gravity field from NASA's Dawn mission. Using information about Ceres' gravity and topography, scientists found that Ceres is "differentiated," which means that it has compositionally distinct layers at different depths. The densest layer is at the core, which scientists suspect is made of hydrated silicates. Above that is a volatile-rich shell, topped with a crust of mixed materials. This research teaches scientists about what internal processes could have occurred during the early history of Ceres. It appears that, during a heating phase early in the history of Ceres, water and other light materials partially separated from rock. These light materials and water then rose to the outer layer of Ceres. http://photojournal.jpl.nasa.gov/catalog/PIA20867
NASA Astrophysics Data System (ADS)
Yuan, Peiyan; Lee, Yih Hong; Gnanasammandhan, Muthu Kumara; Guan, Zhenping; Zhang, Yong; Xu, Qing-Hua
2012-07-01
NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites were prepared to investigate metal-enhanced upconversion luminescence. Two sizes (15 and 30 nm) of Ag nanoparticles were used. The emission intensity of the upconversion nanocrystals was found to be strongly modulated by the presence of Ag nanoparticles (NPs) on the outer shell layer of the nanocomposites. The extent of modulation depended on the separation distance between Ag NPs and upconversion nanocrystals. The optimum upconversion luminescence enhancement was observed at a separation distance of 10 nm for Ag NPs with two different sizes (15 and 30 nm). A maximum upconversion luminescence enhancement of 14.4-fold was observed when 15 nm Ag nanoparticles were used and 10.8-fold was observed when 30 nm Ag NPs were used. The separation distance dependent emission intensity is ascribed to the competition between energy transfer and enhanced radiative decay rates. The biocompatibility of the nanocomposites was significantly improved by surface modification with DNA. The biological imaging capabilities of these nanocomposites were demonstrated using B16F0 cells.NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites were prepared to investigate metal-enhanced upconversion luminescence. Two sizes (15 and 30 nm) of Ag nanoparticles were used. The emission intensity of the upconversion nanocrystals was found to be strongly modulated by the presence of Ag nanoparticles (NPs) on the outer shell layer of the nanocomposites. The extent of modulation depended on the separation distance between Ag NPs and upconversion nanocrystals. The optimum upconversion luminescence enhancement was observed at a separation distance of 10 nm for Ag NPs with two different sizes (15 and 30 nm). A maximum upconversion luminescence enhancement of 14.4-fold was observed when 15 nm Ag nanoparticles were used and 10.8-fold was observed when 30 nm Ag NPs were used. The separation distance dependent emission intensity is ascribed to the competition between energy transfer and enhanced radiative decay rates. The biocompatibility of the nanocomposites was significantly improved by surface modification with DNA. The biological imaging capabilities of these nanocomposites were demonstrated using B16F0 cells. Electronic supplementary information (ESI) available: More TEM images, distribution histograms, UV-Vis extinction spectra, and XRD analysis of the core-shell nanocomposites; the emission enhancement mechanisms, bright field images, the effect of DNA modification on the emission; luminescence stability and size changes of the DNA modified nanocomposites in the cell culture. See DOI: 10.1039/c2nr31241g
Fabrication of SiO2@ZrO2@Y2O3:Eu3+ core-multi-shell structured phosphor.
Gao, Xuan; He, Diping; Jiao, Huan; Chen, Juan; Meng, Xin
2011-08-01
ZrO2 interface was designed to block the reaction between SiO2 and Y2O3 in SiO2@Y2O3:Eu coreshell structure phosphor. SiO2@ZrO2@Y2O3:Eu core-multi-shell phosphors were successfully synthesized by combing an LBL method with a Sol-gel process. Based on electron microscopy, X-ray diffraction, and spectroscopy experiments, compelling evidence for the formation of the Y2O3:Eu outer shell on ZrO2 were presented. The presence of ZrO2 layer on SiO2 core can block the reaction of SiO2 core and Y2O3 shell effectively. By this kind of structure, the reaction temperature of the SiO2 core and Y2O3 shell in the SiO2@Y2O3:Eu core-shell structure phosphor can be increased about 200-300 degrees C and the luminescent intensity of this structure phosphor can be improved obviously. Under the excitation of ultraviolet (254 nm), the Eu3+ ion mainly shows its characteristic red (611 nm, 5D0-7F2) emissions in the core-multi-shell particles from Y2O3:Eu3+ shells. The emission intensity of Eu3+ ions can be tuned by the annealing temperatures, the number of coating times, and the thickness of ZrO2 interface, respectively.
Synthesis of core-shell AlOOH hollow nanospheres by reacting Al nanoparticles with water
NASA Astrophysics Data System (ADS)
Lozhkomoev, A. S.; Glazkova, E. A.; Bakina, O. V.; Lerner, M. I.; Gotman, I.; Gutmanas, E. Y.; Kazantsev, S. O.; Psakhie, S. G.
2016-05-01
A novel route for the synthesis of boehmite nanospheres with a hollow core and the shell composed of highly crumpled AlOOH nanosheets by oxidizing Al nanopowder in pure water under mild processing conditions is described. The stepwise events of Al transformation into boehmite are followed by monitoring the pH in the reaction medium. A mechanism of formation of hollow AlOOH nanospheres with a well-defined shape and crystallinity is proposed which includes the hydration of the Al oxide passivation layer, local corrosion of metallic Al accompanied by hydrogen evolution, the rupture of the protective layer, the dissolution of Al from the particle interior and the deposition of AlOOH nanosheets on the outer surface. In contrast to previously reported methods of boehmite nanoparticle synthesis, the proposed method is simple, and environmentally friendly and allows the generation of hydrogen gas as a by-product. Due to their high surface area and high, slit-shaped nanoporosity, the synthesized AlOOH nanostructures hold promise for the development of more effective catalysts, adsorbents, vaccines and drug carriers.
Target electron ionization in Li2+-Li collisions: A multi-electron perspective
NASA Astrophysics Data System (ADS)
Śpiewanowski, M. D.; Gulyás, L.; Horbatsch, M.; Kirchner, T.
2015-05-01
The recent development of the magneto-optical trap reaction-microscope has opened a new chapter for detailed investigations of charged-particle collisions from alkali atoms. It was shown that energy-differential cross sections for ionization from the outer-shell in O8+-Li collisions at 1500 keV/amu can be readily explained with the single-active-electron approximation. Understanding of K-shell ionization, however, requires incorporating many-electron effects. An ionization-excitation process was found to play an important role. We present a theoretical study of target electron removal in Li2+-Li collisions at 2290 keV/amu. The results indicate that in outer-shell ionization a single-electron process plays the dominant part. However, the K-shell ionization results are more difficult to interpret. On one hand, we find only weak contributions from multi-electron processes. On the other hand, a large discrepancy between experimental and single-particle theoretical results indicate that multi-electron processes involving ionization from the outer shell may be important for a complete understanding of the process. Work supported by NSERC, Canada and the Hungarian Scientific Research Fund.
Capturing a flavivirus pre-fusion intermediate.
Kaufmann, Bärbel; Chipman, Paul R; Holdaway, Heather A; Johnson, Syd; Fremont, Daved H; Kuhn, Richard J; Diamond, Michael S; Rossmann, Michael G
2009-11-01
During cell entry of flaviviruses, low endosomal pH triggers the rearrangement of the viral surface glycoproteins to a fusion-active state that allows the release of the infectious RNA into the cytoplasm. In this work, West Nile virus was complexed with Fab fragments of the neutralizing mAb E16 and was subsequently exposed to low pH, trapping the virions in a pre-fusion intermediate state. The structure of the complex was studied by cryo-electron microscopy and provides the first structural glimpse of a flavivirus fusion intermediate near physiological conditions. A radial expansion of the outer protein layer of the virion was observed compared to the structure at pH 8. The resulting approximately 60 A-wide shell of low density between lipid bilayer and outer protein layer is likely traversed by the stem region of the E glycoprotein. By using antibody fragments, we have captured a structural intermediate of a virus that likely occurs during cell entry. The trapping of structural transition states by antibody fragments will be applicable for other processes in the flavivirus life cycle and delineating other cellular events that involve conformational rearrangements.
Synthesis and spectroscopic properties of silica-dye-semiconductor nanocrystal hybrid particles.
Ren, Ting; Erker, Wolfgang; Basché, Thomas; Schärtl, Wolfgang
2010-12-07
We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with numerically calculated FRET efficiencies and by control experiments confirming attractive interaction between the nanocrystals and Texas Red freely dissolved in solution.
Patterns of muscular strain in the embryonic heart wall.
Damon, Brooke J; Rémond, Mathieu C; Bigelow, Michael R; Trusk, Thomas C; Xie, Wenjie; Perucchio, Renato; Sedmera, David; Denslow, Stewart; Thompson, Robert P
2009-06-01
The hypothesis that inner layers of contracting muscular tubes undergo greater strain than concentric outer layers was tested by numerical modeling and by confocal microscopy of strain within the wall of the early chick heart. We modeled the looped heart as a thin muscular shell surrounding an inner layer of sponge-like trabeculae by two methods: calculation within a two-dimensional three-variable lumped model and simulated expansion of a three-dimensional, four-layer mesh of finite elements. Analysis of both models, and correlative microscopy of chamber dimensions, sarcomere spacing, and membrane leaks, indicate a gradient of strain decreasing across the wall from highest strain along inner layers. Prediction of wall thickening during expansion was confirmed by ultrasonography of beating hearts. Degree of stretch determined by radial position may thus contribute to observed patterns of regional myocardial conditioning and slowed proliferation, as well as to the morphogenesis of ventricular trabeculae and conduction fascicles. Developmental Dynamics 238:1535-1546, 2009. (c) 2009 Wiley-Liss, Inc.
Tube-in-tube thermophotovoltaic generator
Ashcroft, J.; Campbell, B.; DePoy, D.
1998-06-30
A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell. 8 figs.
NASA Astrophysics Data System (ADS)
Radermacher, Pascal; Schöne, Bernd R.; Nunn, Elizabeth V.; Zengjie, Zhang
2010-05-01
Quantifiable paleotemperature data can help to verify predictions made by numerical climate models. Traditionally, paleotemperature estimates are based on δ18O values of biogenic hard parts. However, oxygen isotope values not only reflect changes in ambient temperature, but also changes in δ18Owater, i.e. driven by freshwater influx, evaporation etc. Information regarding the δ18Owater value of past environments is limited for the geological past. The validity of published δ18O paleotemperature data can be tested using element-to-calcium ratios of bivalve shells such as the long-lived ocean quahog, Arctica islandica. Preliminary investigations suggest that Sr/Ca ratios of this species may provide more reliable paleotemperature data. However, contemporaneously deposited shell portions within the outer shell layer demonstrate at least a 30% variability in the Sr/Ca value. This study presents Sr/Ca ratios measured by ICP-OES wet-chemical analyses. Significantly different distributions of Sr/Ca ratios were recorded from the shell surface (over 1330 ppm), through the interior (850 ppm) and to the inner shell surface (1860 ppm). Furthermore, this study showed that different shell crystal fabrics incorporate different amounts of Sr into the CaCO3 lattice of the A. islandica shell. Disparate Sr distribution could potentially be explained either by postdepositional diagenetic processes or syndepositional processes during biomineralization (i.e. different amounts of Sr incorporated into the shell). Understanding the mechanism of the observed Sr heterogeneity is essential if Sr/Ca ratios are to be used confidently in paleotemperature reconstructions.
Loo, Billy W.
1982-01-01
A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).
NASA Astrophysics Data System (ADS)
Izquierdo, Germán; Blanquet-Jaramillo, Roberto C.; Sussman, Roberto A.
2018-01-01
The quasi-local scalar variables approach is applied to a spherically symmetric inhomogeneous Lemaître-Tolman-Bondi metric containing a mixture of non-relativistic cold dark matter and coupled dark energy with constant equation of state. The quasi-local coupling term considered is proportional to the quasi-local cold dark matter energy density and a quasi-local Hubble factor-like scalar via a coupling constant α . The autonomous numerical system obtained from the evolution equations is classified for different choices of the free parameters: the adiabatic constant of the dark energy w and α . The presence of a past attractor in a non-physical region of the energy densities phase-space of the system makes the coupling term non physical when the energy flows from the matter to the dark energy in order to avoid negative values of the dark energy density in the past. On the other hand, if the energy flux goes from dark energy to dark matter, the past attractor lies in a physical region. The system is also numerically solved for some interesting initial profiles leading to different configurations: an ever expanding mixture, a scenario where the dark energy is completely consumed by the non-relativistic matter by means of the coupling term, a scenario where the dark energy disappears in the inner layers while the outer layers expand as a mixture of both sources, and, finally, a structure formation toy model scenario, where the inner shells containing the mixture collapse while the outer shells expand.
Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering
Çınar, Simge; Tevis, Ian D.; Chen, Jiahao; Thuo, Martin
2016-01-01
Phase-change materials, such as meta-stable undercooled (supercooled) liquids, have been widely recognized as a suitable route for complex fabrication and engineering. Despite comprehensive studies on the undercooling phenomenon, little progress has been made in the use of undercooled metals, primarily due to low yields and poor stability. This paper reports the use of an extension of droplet emulsion technique (SLICE) to produce undercooled core-shell particles of structure; metal/oxide shell-acetate (‘/’ = physisorbed, ‘-’ = chemisorbed), from molten Field’s metal (Bi-In-Sn) and Bi-Sn alloys. These particles exhibit stability against solidification at ambient conditions. Besides synthesis, we report the use of these undercooled metal, liquid core-shell, particles for heat free joining and manufacturing at ambient conditions. Our approach incorporates gentle etching and/or fracturing of outer oxide-acetate layers through mechanical stressing or shearing, thus initiating a cascade entailing fluid flow with concomitant deformation, combination/alloying, shaping, and solidification. This simple and low cost technique for soldering and fabrication enables formation of complex shapes and joining at the meso- and micro-scale at ambient conditions without heat or electricity. PMID:26902483
Code of Federal Regulations, 2010 CFR
2010-10-01
...: Material ASTM A240-316L. Shell thickness Shell 0.167 in. Head thickness Head 0.150 in. Tank builders initials ABC. Date of original test 00-0000. Outer shell: Material ASTM A285-C. Tank builders initials WYZ...
Wang, Jian-Tao; Wang, Hui; Ou, Xue-Mei; Lee, Chun-Sing; Zhang, Xiao-Hong
2011-07-05
Geometry-based adhesion arising from hierarchical surface structure enables microspheres to adhere to cells strongly, which is essential for inorganic microcapsules that function as drug delivery or diagnostic imaging agents. However, constructing a hierarchical structure on the outer shell of the products via the current microcapsule synthesis method is difficult. This work presents a novel approach to fabricating hollow microspheres with a hierarchical shell structure through the vapor-liquid-solid (VLS) process in which liquid indium droplets act as both templates for the formation of silica capsules and catalysts for the growth of hierarchical shell structure. This hierarchical shell structure offers the hollow microsphere an enhanced geometry-based adhesion. The results provide a facile method for fabricating hollow spheres and enriching their function through tailoring the geometry of their outer shells. © 2011 American Chemical Society
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.
1996-01-01
The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.
One-dimensional arrangement of nanoparticles utilizing the V-groove and cage shaped proteins
NASA Astrophysics Data System (ADS)
Ban, Takahiko; Uenuma, Mutsunori; Migita, Shinji; Okamoto, Naofumi; Ishikawa, Yasuaki; Uraoka, Yukiharu; Yamashita, Ichiro; Yamamoto, Shin-ichi
2017-06-01
The one-dimensional arrangement of nanoparticles (NPs) was performed using a V-groove and ferritins as spherical shell proteins. The V-groove was synthesized by lithography and anisotropic etching of a Si substrate. Ferritin has an outer diameter of 12 nm and an inner diameter of 6 nm, and various inorganic substances can be formed into the cavity. In this study, iron oxide, cobalt oxide, and indium oxide cores were used. The surface potential of ferritin can be changed by genetic modification. Particularly, by using Fer8-K98E, NPs could be arranged one-dimensionally onto the bottom of the V-groove. In addition, we succeeded in selectively forming a one-dimensional array of one layer, two layers, and three layers by changing the protein concentration. This experiment is expected to be applicable to various one-dimensional devices.
NASA Astrophysics Data System (ADS)
Zhang, Haibao; Wang, Jingjing; Wang, Hua; Tian, Xingyou
2017-09-01
In this paper, we presented the fabrication of mace-like gold hollow hierarchical micro/nanostructures (HMNs) grafted on ZnO nanorods array by using an electrochemical deposition in chloroauric acid solution on gold layer pre-coated ZnO nanorods array. Different from general electrochemical deposition process, the catalytic etching to ZnO and electrodeposition of gold are co-existed in our case, which lead to an inner hollow structure and an outer gold shell. Due to the appropriate electrodeposition conditions, the outer gold shell was built of many wimble-like nanoparticles, and the hierarchical micro/nanostructures were thus formed. In addition, because of the deposition rate is decreased gradually away from the top of ZnO nanorods, the final structures show mace-like appearance. The surface-enhanced Raman scattering (SERS) effect of the as-prepared gold hollow HMNs was further studied by using rhodamine 6G as probe molecule. It is demonstrated that these structures show ultrahigh SERS activity, and the detecting low limit of R6G solution can be to 10-10 M on single mace-like gold HMNs, which is quite important for their potential application in SERS-based surface analysis and sensors.
Probe Measures Fouling As In Heat Exchangers
NASA Technical Reports Server (NTRS)
Marner, Wilbur J.; Macdavid, Kenton S.
1990-01-01
Combustion deposits reduce transfer of heat. Instrument measures fouling like that on gas side of heat exchanger in direct-fired boiler or heat-recovery system. Heat-flux probe includes tube with embedded meter in outer shell. Combustion gases flow over probe, and fouling accumulates on it, just as fouling would on heat exchanger. Embedded heat-flow meter is sandwich structure in which thin Chromel layers and middle alloy form thermopile. Users determine when fouling approaches unacceptable levels so they schedule cleaning and avoid decreased transfer of heat and increased drop in pressure fouling causes. Avoids cost of premature, unnecessary maintenance.
NASA Astrophysics Data System (ADS)
Dresvyannikov, A. F.; Kolpakov, M. E.
2018-05-01
X-ray fluorescence, X-ray phase analysis, and transmission Mössbauer and NGR spectrometry are used to study the formation, phase, and elemental composition of Fe-Ti particles. The interaction between Fe(III) ions and dispersed titanium in an aqueous solution containing chloride ions and HF is studied. It is shown that the resulting Fe-Ti samples are a set of core-shell microparticles with titanium cores coated with micro- and nanosized α-Fe nucleation centers with the thinness outer layer of iron(III) oxide characterized by a developed surface.
Coherent Extreme Ultraviolet Generation and Surface Studies Using Ultraviolet Excimer Lasers.
1986-02-10
of Outer-Shell Electrons" 7. "A Theoretical Model of Inner-Shell ......................... 30 A Excitation by Outer-Snell Electrons" E. "Anomalous...rays are feasible. Our work involves a program of activities, involving both experimental and theoretical components, to explore the physical... theoretical effort con- centrating on the character of high order multiquantum coupling in the inten- sity regime above 1017 WcM2 . In addition
Yu, Wenchao; He, Cheng; Cai, Zhongqiang; Xu, Fei; Wei, Lei; Chen, Jun; Jiang, Qiuyun; Wei, Na; Li, Zhuang; Guo, Wen; Wang, Xiaotong
2017-01-01
The melanin pigmentation of the adductor muscle scar and the outer surface of the shell are among attractive features and their pigmentation patterns and mechanism still remains unknown in the Pacific oyster Crassostrea gigas. To study these pigmentation patterns, the colors of the adductor muscle scar vs. the outer surface of the shell on the same side were compared. No relevance was found between the colors of the adductor muscle scars and the corresponding outer surface of the shells, suggesting that their pigmentation processes were independent. Interestingly, a relationship between the color of the adductor muscle scars and the dried soft-body weight of Pacific oysters was found, which could be explained by the high hydroxyl free radical scavenging capacity of the muscle attached to the black adductor muscle scar. After the transcriptomes of pigmented and unpigmented adductor muscles and mantles were studied by RNAseq and compared, it was found that the retinol metabolism pathway were likely to be involved in melanin deposition on the adductor muscle scar and the outer surface of the shell, and that the different members of the tyrosinase or Cytochrome P450 gene families could play a role in the independent pigmentation of different organs. PMID:28955252
Nano Titanium Monoxide Crystals and Unusual Superconductivity at 11 K.
Xu, Jijian; Wang, Dong; Yao, Heliang; Bu, Kejun; Pan, Jie; He, Jianqiao; Xu, Fangfang; Hong, Zhanglian; Chen, Xiaobo; Huang, Fuqiang
2018-03-01
Nano TiO 2 is investigated intensely due to extraordinary photoelectric performances in photocatalysis, new-type solar cells, etc., but only very few synthesis and physical properties have been reported on nanostructured TiO or other low valent titanium-containing oxides. Here, a core-shell nanoparticle made of TiO core covered with a ≈5 nm shell of amorphous TiO 1+ x is newly constructed via a controllable reduction method to synthesize nano TiO core and subsequent soft oxidation to form the shell (TiO 1+ x ). The physical properties measurements of electrical transport and magnetism indicate these TiO@TiO 1+ x nanocrystals are a type-ІІ superconductor of a recorded T c onset = 11 K in the binary Ti-O system. This unusual superconductivity could be attributed to the interfacial effect due to the nearly linear gradient of O/Ti ratio across the outer amorphous layer. This novel synthetic method and enhanced superconductivity could open up possibilities in interface superconductivity of nanostructured composites with well-controlled interfaces. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yuan, Peiyan; Lee, Yih Hong; Gnanasammandhan, Muthu Kumara; Guan, Zhenping; Zhang, Yong; Xu, Qing-Hua
2012-08-21
NaYF(4):Yb,Er@SiO(2)@Ag core-shell nanocomposites were prepared to investigate metal-enhanced upconversion luminescence. Two sizes (15 and 30 nm) of Ag nanoparticles were used. The emission intensity of the upconversion nanocrystals was found to be strongly modulated by the presence of Ag nanoparticles (NPs) on the outer shell layer of the nanocomposites. The extent of modulation depended on the separation distance between Ag NPs and upconversion nanocrystals. The optimum upconversion luminescence enhancement was observed at a separation distance of 10 nm for Ag NPs with two different sizes (15 and 30 nm). A maximum upconversion luminescence enhancement of 14.4-fold was observed when 15 nm Ag nanoparticles were used and 10.8-fold was observed when 30 nm Ag NPs were used. The separation distance dependent emission intensity is ascribed to the competition between energy transfer and enhanced radiative decay rates. The biocompatibility of the nanocomposites was significantly improved by surface modification with DNA. The biological imaging capabilities of these nanocomposites were demonstrated using B16F0 cells.
46 CFR 154.170 - Outer hull steel plating.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of the... 46 Shipping 5 2014-10-01 2014-10-01 false Outer hull steel plating. 154.170 Section 154.170...
46 CFR 154.170 - Outer hull steel plating.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of the... 46 Shipping 5 2012-10-01 2012-10-01 false Outer hull steel plating. 154.170 Section 154.170...
46 CFR 154.170 - Outer hull steel plating.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of the... 46 Shipping 5 2013-10-01 2013-10-01 false Outer hull steel plating. 154.170 Section 154.170...
Gravity Field and Internal Structure of Mercury from MESSENGER
NASA Technical Reports Server (NTRS)
Smith, David E.; Zuber, Maria T.; Phillips, Roger J.; Solomon, Sean C.; Hauck, Steven A., II; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Peale, Stanton J.; Margot, Jean-Luc;
2012-01-01
Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/M(R(exp 2) = 0.353 +/- 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(sub m)/C = 0.452 +/- 0.035. A model for Mercury s radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.
Gravity field and internal structure of Mercury from MESSENGER.
Smith, David E; Zuber, Maria T; Phillips, Roger J; Solomon, Sean C; Hauck, Steven A; Lemoine, Frank G; Mazarico, Erwan; Neumann, Gregory A; Peale, Stanton J; Margot, Jean-Luc; Johnson, Catherine L; Torrence, Mark H; Perry, Mark E; Rowlands, David D; Goossens, Sander; Head, James W; Taylor, Anthony H
2012-04-13
Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR(2) = 0.353 ± 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(m)/C = 0.452 ± 0.035. A model for Mercury's radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.
Energy-dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions.
Reeves, Geoffrey D; Friedel, Reiner H W; Larsen, Brian A; Skoug, Ruth M; Funsten, Herbert O; Claudepierre, Seth G; Fennell, Joseph F; Turner, Drew L; Denton, Mick H; Spence, Harlan E; Blake, J Bernard; Baker, Daniel N
2016-01-01
We present observations of the radiation belts from the Helium Oxygen Proton Electron and Magnetic Electron Ion Spectrometer particle detectors on the Van Allen Probes satellites that illustrate the energy dependence and L shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on 1 March in more detail. The observations show the following: (a) at all L shells, lower energy electrons are enhanced more often than higher energies; (b) events that fill the slot region are more common at lower energies; (c) enhancements of electrons in the inner zone are more common at lower energies; and (d) even when events do not fully fill the slot region, enhancements at lower energies tend to extend to lower L shells than higher energies. During enhancement events the outer zone extends to lower L shells at lower energies while being confined to higher L shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L shells for lower energies. Both boundaries are nearly straight in log(energy) versus L shell space. At energies below a few 100 keV, radiation belt electron penetration through the slot region into the inner zone is commonplace, but the number and frequency of "slot filling" events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy- and L shell-dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions.
Energy-dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions
Reeves, Geoffrey D.; Friedel, Reiner H. W.; Larsen, Brian A.; ...
2016-01-28
Here, we present observations of the radiation belts from the Helium Oxygen Proton Electron and Magnetic Electron Ion Spectrometer particle detectors on the Van Allen Probes satellites that illustrate the energy dependence and L shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on 1 March in more detail. The observations show the following: (a) at all L shells, lower energy electrons are enhanced more often than higher energies; (b) events that fill the slot region are more common at lower energies; (c) enhancements of electrons in the inner zone are moremore » common at lower energies; and (d) even when events do not fully fill the slot region, enhancements at lower energies tend to extend to lower L shells than higher energies. During enhancement events the outer zone extends to lower L shells at lower energies while being confined to higher L shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L shells for lower energies. Both boundaries are nearly straight in log(energy) versus L shell space. At energies below a few 100 keV, radiation belt electron penetration through the slot region into the inner zone is commonplace, but the number and frequency of “slot filling” events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy- and L shell-dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions.« less
Shin, Dongjoon; Shin, Jungho; Yeo, Taehan; Hwang, Hayoung; Park, Seonghyun; Choi, Wonjoon
2018-03-01
Core-shell nanostructures of metal oxides and carbon-based materials have emerged as outstanding electrode materials for supercapacitors and batteries. However, their synthesis requires complex procedures that incur high costs and long processing times. Herein, a new route is proposed for synthesizing triple-core-shell nanoparticles of TiO 2 @MnO 2 @C using structure-guided combustion waves (SGCWs), which originate from incomplete combustion inside chemical-fuel-wrapped nanostructures, and their application in supercapacitor electrodes. SGCWs transform TiO 2 to TiO 2 @C and TiO 2 @MnO 2 to TiO 2 @MnO 2 @C via the incompletely combusted carbonaceous fuels under an open-air atmosphere, in seconds. The synthesized carbon layers act as templates for MnO 2 shells in TiO 2 @C and organic shells of TiO 2 @MnO 2 @C. The TiO 2 @MnO 2 @C-based electrodes exhibit a greater specific capacitance (488 F g -1 at 5 mV s -1 ) and capacitance retention (97.4% after 10 000 cycles at 1.0 V s -1 ), while the absence of MnO 2 and carbon shells reveals a severe degradation in the specific capacitance and capacitance retention. Because the core-TiO 2 nanoparticles and carbon shell prevent the deformation of the inner and outer sides of the MnO 2 shell, the nanostructures of the TiO 2 @MnO 2 @C are preserved despite the long-term cycling, giving the superior performance. This SGCW-driven fabrication enables the scalable synthesis of multiple-core-shell structures applicable to diverse electrochemical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SIRTF thermal design modifications to increase lifetime
NASA Astrophysics Data System (ADS)
Petrick, S. W.
1993-01-01
An effort was made to increase the predicted lifetime of the SIRTF dewar by lowering the exterior shell temperature, increasing the radiated energy from the vapor cooled shields and reconfiguring the vapor cooled shields. The lifetime increases can be used to increase the scientific return from the mission and as a trade-off against mass and cost. This paper describes the configurations studied, the steady state thermal model used, the analytical methods and the results of the analysis. Much of the heat input to the outside dewar shell is radiative heat transfer from the solar panel. To lower the shell temperature, radiative cooled shields were placed between the solar panel and the dewar shell and between the bus and the dewar shell. Analysis showed that placing a radiator on the outer vapor cooled shield had a significant effect on lifetime. Lengthening the distance between the outer shell and the point where the vapor cooled shields are attached to the support straps also improved lifetime.
An Ochered Fossil Marine Shell From the Mousterian of Fumane Cave, Italy
Peresani, Marco; Vanhaeren, Marian; Quaggiotto, Ermanno; Queffelec, Alain; d’Errico, Francesco
2013-01-01
A scanty but varied ensemble of finds challenges the idea that Neandertal material culture was essentially static and did not include symbolic items. In this study we report on a fragmentary Miocene-Pliocene fossil marine shell, Aspa marginata , discovered in a Discoid Mousterian layer of the Fumane Cave, northern Italy, dated to at least 47.6-45.0 Cal ky BP. The shell was collected by Neandertals at a fossil exposure probably located more than 100 kms from the site. Microscopic analysis of the shell surface identifies clusters of striations on the inner lip. A dark red substance, trapped inside micropits produced by bioeroders, is interpreted as pigment that was homogeneously smeared on the outer shell surface. Dispersive X-ray and Raman analysis identify the pigment as pure hematite. Of the four hypotheses we considered to explain the presence of this object at the site, two (tool, pigment container) are discarded because in contradiction with observations. Although the other two (“manuport”, personal ornament) are both possible, we favor the hypothesis that the object was modified and suspended by a ‘thread’ for visual display as a pendant. Together with contextual and chronometric data, our results support the hypothesis that deliberate transport and coloring of an exotic object, and perhaps its use as pendant, was a component of Neandertal symbolic culture, well before the earliest appearance of the anatomically modern humans in Europe. PMID:23874677
NASA Astrophysics Data System (ADS)
Coats, T. J.; Silcox, R. J.; Lester, H. C.
Market pressure for more fuel efficient air travel has led to increased use of turboprop and higher bypass turbofan engines. The low frequency components of propeller, jet and boundary layer noise are difficult to attenuate with conventional passive techniques. Weight and geometric restrictions for sound absorbing meterials limit the amount and type of treatment that may be applied. An active noise control (ANC) method is providing to be an attractive alternative. The approach taken in this paper uses a numerical finite/boundary element method (FEM/BEM) that may be easilty adapted to arbitrary geometries. A double walled cylinder is modeled using commercially available software. The outer shell is modeled as an aluminum cylinder, similar to that of aircraft skins. The inner shell is modeled as a composite material representative of a lightweight, stiff trim panel. Two different inner shell materials are used. The first is representative of current trim structure, the second a much stiffer composite. The primary source is generated by an exterior acoustic monopole. Control fields are generated using normal force inputs to the inner cylindrical shell. A linear least mean square (LMS) algorithm is used to determine amplitudes of control forces that minimize the interior acoustic field. Coupling of acoustic and structural modes and noise reductions are discussed for each of the inner shell materials.
NASA Technical Reports Server (NTRS)
Coats, T. J.; Silcox, R. J.; Lester, H. C.
1993-01-01
Market pressure for more fuel efficient air travel has led to increased use of turboprop and higher bypass turbofan engines. The low frequency components of propeller, jet and boundary layer noise are difficult to attenuate with conventional passive techniques. Weight and geometric restrictions for sound absorbing meterials limit the amount and type of treatment that may be applied. An active noise control (ANC) method is providing to be an attractive alternative. The approach taken in this paper uses a numerical finite/boundary element method (FEM/BEM) that may be easilty adapted to arbitrary geometries. A double walled cylinder is modeled using commercially available software. The outer shell is modeled as an aluminum cylinder, similar to that of aircraft skins. The inner shell is modeled as a composite material representative of a lightweight, stiff trim panel. Two different inner shell materials are used. The first is representative of current trim structure, the second a much stiffer composite. The primary source is generated by an exterior acoustic monopole. Control fields are generated using normal force inputs to the inner cylindrical shell. A linear least mean square (LMS) algorithm is used to determine amplitudes of control forces that minimize the interior acoustic field. Coupling of acoustic and structural modes and noise reductions are discussed for each of the inner shell materials.
Metcalf, Talibah; Kelley, Karen; Erdos, Gregory W; Kaplan, Lee; West, Christopher M
2003-02-01
The Dictyostelium spore is surrounded by a 220 microm thick trilaminar coat that consists of inner and outer electron-dense layers surrounding a central region of cellulose microfibrils. In previous studies, a mutant strain (TL56) lacking three proteins associated with the outer layer exhibited increased permeability to macromolecular tracers, suggesting that this layer contributes to the coat permeability barrier. Electron microscopy now shows that the outer layer is incomplete in the coats of this mutant and consists of a residual regular array of punctate electron densities. The outer layer is also incomplete in a mutant lacking a cellulose-binding protein associated with the inner layer, and these coats are deficient in an outer-layer protein and another coat protein. To examine the mechanism by which this inner-layer protein, SP85, contributes to outer-layer formation, various domain fragments were overexpressed in forming spores. Most of these exert dominant negative effects similar to the deletion of outer-layer proteins, but one construct, consisting of a fusion of the N-terminal and Cys-rich C1 domain, induces a dense mat of novel filaments at the surface of the outer layer. Biochemical studies show that the C1 domain binds cellulose, and a combination of site-directed mutations that inhibits its cellulose-binding activity suppresses outer-layer filament induction. The results suggest that, in addition to a previously described early role in regulating cellulose synthesis, SP85 subsequently contributes a cross-bridging function between cellulose and other coat proteins to organize previously unrecognized structural elements in the outer layer of the coat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vissers, Daniel R.; Isheim, Dieter; Zhan, Chun
Lithium-ion batteries utilizing 5 V spinel material, LixMn1.5Ni0.5O4 have received considerable interest in recent years for their ability to deliver high energy and power densities. In this paper, we report an atomic scale analysis of the surface layer of a core–shell 5 V spinel structure where a small amount of the manganese lattice sites have been substituted with cobalt in the shell to reach a stoichiometry of LixMn1.18Ni0.55Co0.27O4. Our analyses include electrochemical analysis, atom probe tomography (APT) analysis, kinetic analysis of the interfacial reactions, and high resolution scanning transmission electron microscopy (HR-TEM) analysis. The APT analysis is performed on themore » material before and after long-term cycling at room temperature to provide insights into the atomic scale phenomena within the surface layer of the electrode material. Our APT data reveals a 25–30 nano-meter (nm) region which forms after cycling. From our analyses, we believe that the outer few nanometers of this region stabilizes the 5 V spinel within the chemical environment of the lithium-ion cell such that its structure is not compromised and thereby enables this material to cycle without significant capacity fading.« less
Layer-by-Layer Proteomic Analysis of Mytilus galloprovincialis Shell
Wang, Xin-xing; Bao, Lin-fei; Fan, Mei-hua; Li, Xiao-min; Wu, Chang-wen; Xia, Shu-wei
2015-01-01
Bivalve shell is a biomineralized tissue with various layers/microstructures and excellent mechanical properties. Shell matrix proteins (SMPs) pervade and envelop the mineral crystals and play essential roles in biomineralization. Despite that Mytilus is an economically important bivalve, only few proteomic studies have been performed for the shell, and current knowledge of the SMP set responsible for different shell layers of Mytilus remains largely patchy. In this study, we observed that Mytilus galloprovincialis shell contained three layers, including nacre, fibrous prism, and myostracum that is involved in shell-muscle attachment. A parallel proteomic analysis was performed for these three layers. By combining LC-MS/MS analysis with Mytilus EST database interrogations, a whole set of 113 proteins was identified, and the distribution of these proteins in different shell layers followed a mosaic pattern. For each layer, about a half of identified proteins are unique and the others are shared by two or all of three layers. This is the first description of the protein set exclusive to nacre, myostracum, and fibrous prism in Mytilus shell. Moreover, most of identified proteins in the present study are novel SMPs, which greatly extended biomineralization-related protein data of Mytilus. These results are useful, on one hand, for understanding the roles of SMPs in the deposition of different shell layers. On the other hand, the identified protein set of myostracum provides candidates for further exploring the mechanism of adductor muscle-shell attachment. PMID:26218932
NASA Technical Reports Server (NTRS)
Schenk, Paul M.
2002-01-01
A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometers of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7-8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25-0.5 times the thickness of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.
NASA Astrophysics Data System (ADS)
Matsui, H.; Buffett, B. A.
2017-12-01
The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.
Fukui, E; Miyamura, N; Uemura, K; Kobayashi, M
2000-08-25
As a new oral drug delivery system for colon targeting, enteric coated timed-release press-coated tablets (ETP tablets) were developed by coating enteric polymer on timed-release press-coated tablets composed of an outer shell of hydroxypropylcellulose and core tablet containing diltiazem hydrochloride (DIL) as a model drug. The results of the in vitro dissolution tests in JP 1st fluid (pH 1.2) and JP 2nd fluid (pH 6.8) indicated that these tablets showed both acid resistance and timed-release. To clarify whether ETP tablets could have been of use in the gastrointestinal tract, ETP tablets with a layer of phenylpropanolamine hydrochloride (PPA) (a marker of gastric emptying) between the enteric coating layer and outer shell were prepared, and were administered to beagle dogs. The gastric emptying time and lag time after gastric emptying were evaluated by determining the times at which PPA and DIL first appeared in the plasma (TFA(PPA) and TFA(DIL), respectively). TFA(PPA) and TFA(DIL) were about 4 and 7 h, respectively. This value of TFA(PPA) indicated that ETP tablets displayed acid resistance in the stomach as well as in JP Ist fluid. Subtraction of TFA(PPA) from TFA(DIL) gave a value of about 3 h which agreed well with the lag time determined by in vitro dissolution test in JP 2nd fluid. Also, the results seemed to be in accordance with the time at which the tablets reached the colon after gastric emptying. Therefore, ETP tablets seemed to be an effective tool for oral site-specific delivery including targeting of the colon.
Investigation of compound jet electrospray: Particle encapsulation
NASA Astrophysics Data System (ADS)
Mei, Fan; Chen, Da-Ren
2007-10-01
Experiments were performed to investigate the effect of surface tension on the particle encapsulation formation in the compound jet electrospray process. The outer liquid used in this study were olive oil and mineral oil; and inner liquids were ethanol, tri-butyl phosphate, ethylene glycol, and triethylene glycol. It was found that the core-shell structured droplets are formed only when the ratio of charge relaxation lengths of the inner and outer jets [i.e., rO*/rI*, where r *=(Qɛɛ0/K)1/3, in which ɛ is the dielectric constant of liquid] is less than 500, and the ratio of inertial breakup lengths of the inner and outer jets [i.e., RO*/RI*, where R *=(ρQ2/γ)1/3, in which ρ and γ are the density and surface tension of liquid, respectively] is less than 0.015. In this work we further studied the effect of inner and outer liquid flow rates on the size of compound droplets using an Aerosizer (TSI model 3220). The parameters affecting the droplet size distribution were obtained. We also observed that the spray current emitted through the compound jet was merely a linear function of the inner jet flow rate. This observation implies that olive oil and mineral oil, as the outer liquids, serve as an electrically insulated layer during the spray process.
Heat resistant protective hand covering
NASA Technical Reports Server (NTRS)
Tschirch, R. P.; Sidman, K. R.; Arons, I. J. (Inventor)
1984-01-01
A heat-resistant aromatic polyamide fiber is described. The outer surface of the shell is coated with a fire-resistant elastomer and liner. Generally conforming and secured to the shell and disposed inwardly of the shell, the liner is made of a felt fabric of temperature-resistant aromatic polymide fiber.
NASA Astrophysics Data System (ADS)
Rosli, Najmiah; Mansor, Hafizuddin; Ismail, N. A.; Masnan, S. S. K.; Saidin, M.
2018-04-01
2-D electrical resistivity method was done at an archaeological site in Guar Kepah, Penang, to determine its stratigraphy with emphasis to shells layer. This study aims to guide the archaeological studies where many prehistoric findings are related to shells and also for engineering purposes as an archaeological gallery is to be built there. Results show that the area is composed of three unconsolidated soil strata where the uppermost layer is sandy-clay, followed by shells layer, and lastly sandy layer. The shells layer is undulating with similar thickness throughout the site, but thickens at the northern part of the study area. The depth of the shells layer however, is different at different parts of the site.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-08
... Shelf Permits Issued to Shell Offshore, Inc. for the Kulluk Conical Drilling Unit AGENCY: United States... (OCS) permit to construct and Title V air quality operating permit to Shell Offshore, Inc. (``Shell'') for operation of the Kulluk conical drilling unit in the Beaufort Sea off the north coast of Alaska...
Probabilistic Dynamic Buckling of Smart Composite Shells
NASA Technical Reports Server (NTRS)
Abumeri, Galib H.; Chamis, Christos C.
2003-01-01
A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10 percent at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.
Probabilistic Dynamic Buckling of Smart Composite Shells
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2007-01-01
A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of intraply hybrid composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right next to the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.
Characterization of Platinum and Iridium Oxyhydrate Surface Layers from Platinum and Iridium Foils.
Johnson, Benjamin; Ranjan, Chinmoy; Greiner, Mark; Arrigo, Rosa; Schuster, Manfred Erwin; Höpfner, Britta; Gorgoi, Mihaela; Lauermann, Iver; Willinger, Marc; Knop-Gericke, Axel; Schlögl, Robert
2016-07-07
Platinum and iridium polycrystalline foils were oxidized electrochemically through anodization to create thin platinum and iridium hydrous oxide layers, which were analyzed through laboratory photoelectron spectroscopy during heating and time series (temperature-programmed spectroscopy). The films contain oxygen in the form of bound oxides, water, and hydroxides and were investigated by depth profiling with high-energy photoelectron spectroscopy. The Pt films are unstable and begin to degrade immediately after removal from the electrolyte to form core-shell structures with a metallic inner core and a hydrous oxide outer shell almost devoid of Pt. However, evidence was found for metastable intermediate states of degradation; therefore, it may be possible to manufacture PtOx phases with increased stability. Heating the film to even 100 °C causes accelerated degradation, which shows that stoichiometric oxides such as PtO2 or PtO are not the active species in the electrolyte. The Ir films exhibit increased stability and higher surface Ir content, and gentle heating at low temperatures leads to a decrease in defect density. Although both layers are based on noble metals, their surface structures are markedly different. The complexity of such hydrous oxide systems is discussed in detail with the goal of identifying the film composition more precisely. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy‐dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions
Friedel, Reiner H. W.; Larsen, Brian A.; Skoug, Ruth M.; Funsten, Herbert O.; Claudepierre, Seth G.; Fennell, Joseph F.; Turner, Drew L.; Denton, Mick H.; Spence, Harlan E.; Blake, J. Bernard; Baker, Daniel N.
2016-01-01
Abstract We present observations of the radiation belts from the Helium Oxygen Proton Electron and Magnetic Electron Ion Spectrometer particle detectors on the Van Allen Probes satellites that illustrate the energy dependence and L shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on 1 March in more detail. The observations show the following: (a) at all L shells, lower energy electrons are enhanced more often than higher energies; (b) events that fill the slot region are more common at lower energies; (c) enhancements of electrons in the inner zone are more common at lower energies; and (d) even when events do not fully fill the slot region, enhancements at lower energies tend to extend to lower L shells than higher energies. During enhancement events the outer zone extends to lower L shells at lower energies while being confined to higher L shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L shells for lower energies. Both boundaries are nearly straight in log(energy) versus L shell space. At energies below a few 100 keV, radiation belt electron penetration through the slot region into the inner zone is commonplace, but the number and frequency of “slot filling” events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy‐ and L shell‐dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions. PMID:27818855
West, Kelly; Cohen, Andrew
1996-04-01
Gastropod shells from Lake Tanganyika, with their heavy calcification, coarse noded ribbing, spines, apertural lip thickening and repair scars, resemble marine shells more closely than they resemble other lacustrine shells. This convergence between Tanganyikan and marine gastropod shells, however, is not just superficial. Scanning electron microscope (SEM) studies reveal that the Tanganyikan shells are primarily layers of crossed-lamellar crystal architecture (that is, needle-like aragonite crystals arranged into laths that are packed into sheets such that the aragonite needles of adjacent laths are never parallel). The number of crossed-lamellar layers can vary from one to four between different Tanganyikan gastropod species. In species with two or more crossed-lamellar layers, the orientation of the lamellae is offset by approximately 90° between the different layers. The number of crossed-lamellar layers in the shell wall is positively correlated with shell strength and with predation resistance. Three and four crossed-lamellar layers in the shell wall evolved several times independently within the endemic thiarid gastropod radiation in Lake Tanganyika. Repeated origins of three and four crossed-lamellar layers suggest that they may be specific adaptations by Tanganyikan gastropods to strengthen their shells as a defense against shell-crushing predators. © 1996 The Society for the Study of Evolution.
Synthesis of Colloidal Nanocrystal Heterostructures for High-Efficiency Light Emission
NASA Astrophysics Data System (ADS)
Lu, Yifei
Group II-VI semiconductor nanocrystals, particularly those based on ZnCdS(Se), can be synthesized using well established chemical colloidal processes, and have been a subject of extensive research over the past decade. Their optical properties can be easily tuned through size and composition variations, making them very attractive for many optoelectronic applications including light-emitting diodes (LEDs) and solar cells. Incorporation of diverse internal heterostructures provides an additional means for tuning the optical and electronic properties of conventional ZnCdS(Se) nanocrystals. Extensive bandgap and strain engineering may be applied to the resultant nanocrystal heterostructures to achieve desirable properties and enhanced performance. Despite the high scientific and practical interests of this unique class of nanomaterials, limited efforts have been made to explore their synthesis and potential device applications. This thesis focuses on the synthesis, engineering, characterization, and device demonstration of two types of CdSe-based nanocrystal heterostructures: core/multishell quantum dots (QDs) and QD quantum wells (QDQWs). Their optical properties have been tuned by bandgap and strain engineering to achieve efficient photoluminescence (PL) and electroluminescence (EL).Firstly, yellow light-emitting CdSe QDs with a strain-compensated ZnS/ZnCdS bilayer shell were synthesized using the successive ion layer adsorption and reaction technique and the effects of the shell on the luminescent properties were investigated. The core/shell/shell QDs enjoyed the benefits of excellent exciton confinement by the ZnS intermediate shell and strain compensation by the ZnCdS outer shell, and exhibited 40% stronger PL and a smaller peak redshift upon shell growth compared to conventional CdSe/ZnCdS/ZnS core/shell/shell QDs with an intermediate lattice adaptor. CdSe/ZnS/ZnCdS QD-LEDs had a luminance of 558 cd/m2 at 20 mA/cm 2, 28% higher than that of CdSe/ZnCdS/ZnS QD-LEDs. Secondly, CdS/CdSe/ZnS QDQWs were synthesized and their luminescence was tuned in an effort to realize efficient blue light emission from CdSe nanocrystals. CdSe QWs with a well width of 1.05 nm emitted at 467 nm with a spectral full-width-at-half-maximum of ~30 nm. With a 3-monolayer ZnS cladding layer which also acts as a passivating and strain-compensating layer, the QDQWs acquired a ~35% PL quantum yield (QY). Blue and green EL was obtained from QDQW-LEDs with 3-4.5 monolayers (MLs) QWs. It was found that as the well width and peak wavelength decreased, the overall EL was increasingly dominated by defect state emission, suggesting the device performance is mainly limited by poor charge injection into the QDQWs.
Ultrastructure of Lymphocystis Virus
Zwillenberg, Lutz O.; Wolf, Ken
1968-01-01
Lymphocystis virus obtained from bluegills (Lepomis macrochirus) was cultured in the permanent bluegill cell line BF-2 and examined by electron microscopy in ultrathin sections of cell cultures and in negative-contrast preparations from cells and from centrifuged culture medium. According to negative-contrast preparations, the icosahedral virions have an overall diameter close to but not exceeding 300 mμ. Delicate filaments seem to issue from the vertices. In collapsed virions, an ordered array of morphological units was seen. Positively contrasted virions in ultrathin sections show a shell with three dark (heavy metal-stained) layers alternating with and separated by two clear layers. The acquisition of an additional outer membrane during release from the cell, as found in African swine fever virus, was never seen. Morphologically, lymphocystis virus is considered to be closely related to Tipula iridescent virus. Images PMID:4986903
Self-consistent simulations of a von Kármán type dynamo in a spherical domain with metallic walls.
Guervilly, Céline; Brummell, Nicholas H
2012-10-01
We have performed numerical simulations of boundary-driven dynamos using a three-dimensional nonlinear magnetohydrodynamical model in a spherical shell geometry. A conducting fluid of magnetic Prandtl number Pm=0.01 is driven into motion by the counter-rotation of the two hemispheric walls. The resulting flow is of von Kármán type, consisting of a layer of zonal velocity close to the outer wall and a secondary meridional circulation. Above a certain forcing threshold, the mean flow is unstable to non-axisymmetric motions within an equatorial belt. For fixed forcing above this threshold, we have studied the dynamo properties of this flow. The presence of a conducting outer wall is essential to the existence of a dynamo at these parameters. We have therefore studied the effect of changing the material parameters of the wall (magnetic permeability, electrical conductivity, and thickness) on the dynamo. In common with previous studies, we find that dynamos are obtained only when either the conductivity or the permeability is sufficiently large. However, we find that the effect of these two parameters on the dynamo process are different and can even compete to the detriment of the dynamo. Our self-consistent approach allow us to analyze in detail the dynamo feedback loop. The dynamos we obtain are typically dominated by an axisymmetric toroidal magnetic field and an axial dipole component. We show that the ability of the outer shear layer to produce a strong toroidal field depends critically on the presence of a conducting outer wall, which shields the fluid from the vacuum outside. The generation of the axisymmetric poloidal field, on the other hand, occurs in the equatorial belt and does not depend on the wall properties.
Europa's differentiated internal structure: inferences from four Galileo encounters.
Anderson, J D; Schubert, G; Jacobson, R A; Lau, E L; Moore, W B; Sjogren, W L
1998-09-25
Radio Doppler data from four encounters of the Galileo spacecraft with the jovian moon Europa have been used to refine models of Europa's interior. Europa is most likely differentiated into a metallic core surrounded by a rock mantle and a water ice-liquid outer shell, but the data cannot eliminate the possibility of a uniform mixture of dense silicate and metal beneath the water ice-liquid shell. The size of a metallic core is uncertain because of its unknown composition, but it could be as large as about 50 percent of Europa's radius. The thickness of Europa's outer shell of water ice-liquid must lie in the range of about 80 to 170 kilometers.
Reduction of heat insulation upon soaking of the insulation layer
NASA Astrophysics Data System (ADS)
Achtliger, J.
1983-09-01
Improved thermal protection of hollow masonry by introduction of a core insulation between the inner and outer shell is discussed. The thermal conductivity of insulation materials was determined in dry state and after soaking by water with different volume-related moisture contents. The interpolated thermal conductivity values from three measured values at 10 C average temperature are presented as a function of the pertinent moisture content. Fills of expanded polystyrene, perlite and granulated mineral fibers, insulating boards made of mineral fibers and in situ cellular plastics produced from urea-formaldehyde resin were investigated. Test results show a confirmation of thermal conductivity values for insulating materials in hollow masonry.
Physical and Electronic Isolation of Carbon Nanotube Conductors
NASA Technical Reports Server (NTRS)
OKeeffe, James; Biegel, Bryan (Technical Monitor)
2001-01-01
Multi-walled nanotubes are proposed as a method to electrically and physically isolate nanoscale conductors from their surroundings. We use tight binding (TB) and density functional theory (DFT) to simulate the effects of an external electric field on multi-wall nanotubes. Two categories of multi-wall nanotube are investigated, those with metallic and semiconducting outer shells. In the metallic case, simulations show that the outer wall effectively screens the inner core from an applied electric field. This offers the ability to reduce crosstalk between nanotube conductors. A semiconducting outer shell is found not to perturb an electric field incident on the inner core, thereby providing physical isolation while allowing the tube to remain electrically coupled to its surroundings.
Chemically Doped Double-Walled Carbon Nanotubes: Cylindrical Molecular Capacitors
NASA Astrophysics Data System (ADS)
Chen, Gugang; Bandow, S.; Margine, E. R.; Nisoli, C.; Kolmogorov, A. N.; Crespi, Vincent H.; Gupta, R.; Sumanasekera, G. U.; Iijima, S.; Eklund, P. C.
2003-06-01
A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.
Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors.
Chen, Gugang; Bandow, S; Margine, E R; Nisoli, C; Kolmogorov, A N; Crespi, Vincent H; Gupta, R; Sumanasekera, G U; Iijima, S; Eklund, P C
2003-06-27
A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.
Developing Test Apparatus and Measurements of AC Loss of High Temperature Superconductors
2012-11-01
temperature of the coil is not raised significantly. The second system, a larger machine, designed with a long term prospective to serve a test bed for...four sample chambers inside the vacuum gap, LN2 – cooled sample holder (currently only one is in use), the laminated back iron, and the outer shell...machine. accommodate a variety of different small coils and linear tapes. This assembly is surrounded by the laminated back iron and the outer shell
Planar ceramic membrane assembly and oxidation reactor system
Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel
2007-10-09
Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.
Planar ceramic membrane assembly and oxidation reactor system
Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohrn, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, Paul Nigel
2009-04-07
Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.
Connector acts as quick coupling in coaxial cable application
NASA Technical Reports Server (NTRS)
Brejcha, A. G., Jr.
1966-01-01
Quick-coupling connector whose inner shells are threaded to the cable ends and whose outer shells have tracks that register in channels machined in the inner shells are rotated 45 deg to effect a locking of the coupling. This connector faithfully reproduces excellent electrical characteristics no matter how frequently assembled and disassembled.
Detection of MgCn in IRC + 10216: A new metal-bearing free radical
NASA Technical Reports Server (NTRS)
Ziurys, L. M.; Apponi, A. J.; Guelin, M.; Cernicharo, J.
1995-01-01
A new metal-containing molecule, MgCN, has been detected toward the late-type star IRC + 10216, using the NRAO 12 m and IRAM 30 m telescopes. The N = 11 approaches 10, 10 approaches 9, and 9 approaches 8 transtions of this species which has a (sup 2)Sigma(sup +) ground state, have been observed in the outer envelope of this object at 3 mm. For the N = 11 approaches 10 transitions, the two spin-rotation components are clearly resolved and conclusively identify this new radical. These measurements imply a column of density for MgCN of N(sub tot) approximately 10(exp 12)/sq cm in the outer shell, which corresponds to a fractional abundance of f approximately 7x10(exp -10). This molecule, the metastable isomer of MgNC, is the third metal-bearing species thus far identified in the outer shell of IRC + 10216, and its detection implies a ratio of MgNC/MgCN approximately 22/1. MgCN may be formed through a reaction scheme involving magnesium and HNC or CN, both prominent outer shell molecules, or through synthesis on grains.
Rotational Splittings of Acoustic Modes in an Experimental Model of a Planetary Core
NASA Astrophysics Data System (ADS)
Adams, M. M.; Stone, D.; Lathrop, D. P.
2014-12-01
Planetary zonal flows can be probed in principle using the tools of helioseismology. We explore this technique using laboratory experiments where the measurement of zonal flows is also of geophysical relevance. The experiments are carried out in a device with a geometry similar to that of Earth's core. It consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter inner sphere. Air between the inner sphere and outer shell is used as the working fluid. A turbulent shear flow is driven in the air by independently rotating the inner sphere and outer shell. Acoustic modes are excited in the vessel with a speaker, and microphones are used to measure the rotational splittings of these modes. The radial profile of azimuthal velocities is inferred from these splittings, in an approach analogous to that used in helioseismology to determine solar velocity profiles. By varying the inner and outer rotation rates, different turbulent states can be investigated. Comparison is made to previous experimental investigations of turbulent spherical Couette flow. These experiments also serve as a test of this diagnostic, which may be used in the future in liquid sodium experiments, providing information on zonal flows in hydromagnetic experiments.
Multilayer Article Characterized by Low Coefficient of Thermal Expansion Outer Layer
NASA Technical Reports Server (NTRS)
Lee, Kang N. (Inventor)
2004-01-01
A multilayer article comprises a substrate comprising a ceramic or a silicon-containing metal alloy. The ceramic is a Si-containing ceramic or an oxide ceramic with or without silicon. An outer layer overlies the substrate and at least one intermediate layer is located between the outer layer and thc substrate. An optional bond layer is disposed between thc 1 least one intermediate layer and thc substrate. The at least one intermediate layer may comprise an optional chemical barrier layer adjacent the outer layer, a mullite-containing layer and an optional chemical barrier layer adjacent to the bond layer or substrate. The outer layer comprises a compound having a low coefficient of thermal expansion selected from one of the following systems: rare earth (RE) silicates; at least one of hafnia and hafnia-containing composite oxides; zirconia-containing composite oxides and combinations thereof.
... sale in the United States: saline-filled and silicone gel-filled. Both types have a silicone outer shell. They vary in size, shell thickness, ... implant them. Provide information on saline-filled and silicone gel-filled breast implants, including data supporting a ...
NASA Astrophysics Data System (ADS)
Barr, Amy C.; Stillman, David E.
2011-03-01
Orbital radar sounding has been suggested as a means of determining the subsurface thermal and physical structure of the outer ice I shells of the Galilean satellites. At radar frequencies, the dielectric permittivity of single- and polycrystalline water ice I is anisotropic. Crystal orientation fabric (COF), which is indicative of strain history, can be unambiguously detected by comparing the received power of dual co-polarization (linear polarization parallel and perpendicular to the orbit) radar data. Regions with crystal orientations dictated by the local strain field (“fabric”) form in terrestrial ice masses where accumulated strain and temperature are high, similar to conditions expected in a convecting outer ice I shell on Europa, Ganymede, or Callisto. We use simulations of solid-state ice shell convection to show that crystal orientation fabric can form in the warm convecting sublayer of the ice shells for plausible grain sizes. Changes in received power from parallel and perpendicular polarizations in the ice shells due to fabric could be detected if multi-polarization data is collected. With proper instrument design, radar sounding could be used to shed light on the strain history of the satellites' ice shells in addition to their present day internal structures.
Schenk, Paul M
2002-05-23
A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometres to ten or more kilometres. Here I present measurements of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7 8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25 0.5 times the thicknesses of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.
NASA Astrophysics Data System (ADS)
Al-Rashed, Rashed; Lopez JiméNez, Francisco; Reis, Pedro
The wrinkling of elastic bilayers under compression has been explored as a method to produce reversible surface topography, with applications ranging from microfluidics to tunable optics. We introduce a new experimental system to study the effects of pre-stretching on the instability patterns that result from the biaxial compression of thin shells bound to an elastic substrate. A pre-stretched substrate is first prepared by pressurizing an initially flat elastomeric disk and bulging it into a nearly hemispherical thick shell. The substrate is then coated with a thin layer of a polymer suspension, which, upon curing, results in a thin shell of nearly constant thickness. Releasing the pre-stretch in the substrate by deflating the system places the outer film in a state of biaxial compression, resulting in a variety of buckling patterns. We explore the parameter space by systematically varying the pre-stretch, the substrate/film stiffness mismatch, and the thickness of the film. This results in a continuous transition between different buckling patterns, from the dimples and wrinkles that are traditionally associated with the buckling of elastic bilayers, to creases and high aspect ratio `fracture-like' ridges, where the pre-stretch plays an essential role.
A new symmetry model for hohlraum-driven capsule implosion experiments on the NIF
NASA Astrophysics Data System (ADS)
Jones, O.; Rygg, R.; Tomasini, R.; Eder, D.; Kritcher, A.; Milovich, J.; Peterson, L.; Thomas, C.; Barrios, M.; Benedetti, R.; Doeppner, T.; Ma, T.; Nagel, S.; Pak, A.; Field, J.; Izumi, N.; Glenn, S.; Town, R.; Bradley, D.
2016-03-01
We have developed a new model for predicting the time-dependent radiation drive asymmetry in laser-heated hohlraums. The model consists of integrated Hydra capsule-hohlraum calculations coupled to a separate model for calculating the crossbeam energy transfer between the inner and outer cones of the National Ignition Facility (NIF) indirect drive configuration. The time- dependent crossbeam transfer model parameters were adjusted in order to best match the P2 component of the shape of the inflight shell inferred from backlit radiographs of the capsule taken when the shell was at a radius of 150-250 μm. The adjusted model correctly predicts the observed inflight P2 and P4 components of the shape of the inflight shell, and also the P2 component of the shape of the hotspot inferred from x-ray self-emission images at the time of peak emission. It also correctly captures the scaling of the inflight P4 as the hohlraum length is varied. We then applied the newly benchmarked model to quantify the improved symmetry of the N130331 layered deuterium- tritium (DT) experiment in a re-optimized longer hohlraum.
Sun, Yuxia; Ma, Hong; Luo, Yang; Zhang, Shujing; Gao, Jin; Xu, Jie
2018-03-26
It has long been a challenge for activating O 2 by transition-metal nanocatalysts, which might lose activity due to strong tendency for oxidation. Herein, O 2 could be activated by durable encapsulated cobalt nanoparticles (NPs) with N-doped graphitic carbon shells (Co@N-C), but not by encapsulated cobalt NPs with graphitic carbon, exposed cobalt NPs supported on activated carbon, or N-doped carbon. Electron paramagnetic resonance, real-time in situ FTIR spectroscopy, and mass spectrometry measurements demonstrated the generation of the highly active superoxide radical, O 2 .- . This unique ability enables Co@N-C to afford an excellent catalytic performance in model aerobic oxidation of monomeric lignin-derived alcohols. Further analysis elucidated that encapsulated cobalt and nitrogen-doped graphitic carbon might contribute to the capacity through influencing the electronic properties of outer layers. Moreover, through isolation by N-doped graphitic carbon shells, the inner metallic cobalt NPs are inaccessible in term of either alcohols or oxygenated products, and a distinctive resistance to leaching and agglomeration has been achieved. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bhattarai, Nabraj; Prozorov, Tanya
2016-07-25
Bimetallic core-shell nanoparticles are widely used as catalysts in several industrial reactions, with core-shell structures permitting facile surface modification and allowing increased stability and durability, and cost-effectiveness of the catalysts. We report, for the first time, on observing the early stages of the formation of Au-Pd core-shell bimetallic nanoparticles via the seed-mediated growth in the presence of reducing agent, while employing the low-dose scanning transmission electron microscopy imaging with the fluid cell in situ. Use of the continuous flow in situ fluid cell platform allows for delivery of reagent solutions and generation of near-native reaction environment in the reaction chamber,more » and permits direct visualization of the early stages of formation of Au-Pd core-shell structures at low dose rate (0.1 e -/(Å 2s)) in the presence of ascorbic acid. No core-shell structures were detected in the absence of reducing agent at the electron dose of 32.6 e -/Å 2. While the core-shell structures formed in situ under the low-dose imaging closely resemble those obtained in solution synthesis, the reaction kinetics in the fluid cell is affected by the radiolysis of liquid reagents induced by electron beam, altering the rate-determining reaction steps. The enhanced reduction of Pd ions leads to initial rapid growth of the nascent Pd shell along the <111> direction at the Au interface, followed by a slower rearrangement of the outer Pd layer. The latter becomes the rate-determining step in the in situ reaction and appears to follow the oriented attachment-like movement to yield a remodeled, compact and stable Au-Pd core-shell nanostructure. Our findings highlight the differences between the two reaction pathways and aid in understanding the mechanism of formation of the core-shell nanostructure in situ.« less
NASA Astrophysics Data System (ADS)
Kokshenev, V. A.; Labetsky, A. Yu.; Shishlov, A. V.; Kurmaev, N. E.; Fursov, F. I.; Cherdizov, R. K.
2017-12-01
Characteristics of Z-pinch plasma radiation in the form of a double shell neon gas puff with outer plasma shell are investigated in the microsecond implosion mode. Experiments are performed using a GIT-12 mega-joule generator with load current doubler having a ferromagnetic core at implosion currents up to 5 MA. Conditions for matching of the nonlinear load with the mega-ampere current multiplier circuit are determined. The load parameters (plasma shell characteristics and mass and geometry of gas puff shells) are optimized on the energy supplied to the gas puff and n energy characteristics of radiation. It is established that the best modes of K-shell radiation in neon are realized for such radial distribution of the gas-puff material at which the compression velocity of the shell is close to a constant and amounts to 27-30 cm/μs. In these modes, up to 40% of energy supplied to the gas puff is converted into K-shell radiation. The reasons limiting the efficiency of the radiation source with increasing implosion current are analyzed. A modernized version of the energy supply from the current doubler to the Z-pinch is proposed.
Wei, Cai-Jie; Xie, Yue-Feng; Wang, Xiao-Mao; Li, Xiao-Yan
2018-05-23
Nano scale zero-valent iron (nZVI), a promising engineering technology for in situ remediation, has been greatly limited by quick self-corrosion and low mobility in porous media. Highly reactive nZVI particles produced from the borohydride reduction method were enclosed in a releasable Ca(OH) 2 layer by the chemical deposition method. The amount of Ca(OH) 2 coated on nZVI surface were well controlled by the precursor dosage. At moderate Ca(OH) 2 dosage (R Ca/TFe = 0.25) condition, the increment of Fe 0 content for the obtained nZVI/Ca-0.25 sample was observed. The interfacial reactions between the iron oxide shell and the Ca(OH) 2 saturated environment were delicately elucidated by the X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) spectrum. And the coverage of Ca(OH) 2 shell on spherical nZVI surface was found more complete and uniform for the nZVI/Ca sample obtained from the moderate precursor dosage condition (R Ca/TFe = 0.25). The Ca(OH) 2 shell before dissolution was demonstrated owning the anti-corrosion capability to slow down the oxidation of Fe 0 core in air, during ethanol storage and in aqueous environment. The mechanism of anti-corrosion capability for nZVI/Ca-0.25 particle was interestingly found to be attributed to the Ca(OH) 2 shell isolation and also be potentially due to the iron oxide shell phase transformation mediated by the outer Ca(OH) 2 shell. An improved trichloroethylene reduction performance was observed for nZVI/Ca-0.25 than bare nZVI. The mobility of nZVI/Ca particles in water-saturated porous media was moderately improved before shell dissolution. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lattice dynamics of Cs2NaYbF6 and Cs2NaYF6 elpasolites: Ab initio calculation
NASA Astrophysics Data System (ADS)
Chernyshev, V. A.; Petrov, V. P.; Nikiforov, A. E.; Zakir'yanov, D. O.
2015-06-01
The ab initio calculations of the crystal structure and the phonon spectrum of Cs2NaYbF6 and Cs2NaYF6 crystals with the elpasolite structure have been performed. The frequencies and types of fundamental vibrations have been determined. The calculations have been performed in the framework of the density functional theory using the molecular orbital method with hybrid functionals in the CRYSTAL09 program developed for the simulation of periodic structures. The outer 5 s and 5 p shells of the rare-earth ion have been described in Gaussian-type basis sets. The influence of inner shells, including 4 f electron shells, on the outer shells has been described using the pseudopotential. It has been shown that this approach allows the description of the phonon spectrum with the inclusion of the splitting of the longitudinal and transverse optical modes.
Cell Surface Interference with Plasma Membrane and Transport Processes in Yeasts.
Francois, Jean Marie
2016-01-01
The wall of the yeast Saccharomyces cerevisiae is a shell of about 120 nm thick, made of two distinct layers, which surrounds the cell. The outer layer is constituted of highly glycosylated proteins and the inner layer is composed of β-glucan and chitin. These two layers are interconnected through covalent linkages leading to a supramolecular architecture that is characterized by physical and chemical properties including rigidity, porosity and biosorption. The later property results from the presence of highly negative charged phosphate and carboxylic groups of the cell wall proteins, allowing the cell wall to act as an efficient barrier to metals ions, toxins and organic compounds. An intimate connection between cell wall and plasma membrane is indicated by the fact that changes in membrane fluidity results in change in cell wall nanomechanical properties. Finally, cell wall contributes to transport processes through the use of dedicated cell wall mannoproteins, as it is the case for Fit proteins implicated in the siderophore-iron bound transport and the Tir/Dan proteins family in the uptake of sterols.
Analysis of the strength of sea gas pipelines of positive buoyancy conditioned by glaciation
NASA Astrophysics Data System (ADS)
Malkov, Venyamin; Kurbatova, Galina; Ermolaeva, Nadezhda; Malkova, Yulia; Petrukhin, Ruslan
2018-05-01
A technique for estimating the stress state of a gas pipeline laid along the seabed in northern latitudes in the presence of glaciation is proposed. It is assumed that the pipeline lies on the bottom of the seabed, but under certain conditions on the some part of the pipeline a glaciation is formed and the gas pipeline section in the place of glaciation can come off the ground due to the positive buoyancy of the ice. Calculation of additional stresses caused by bending of the pipeline is of practical interest for strength evaluation. The gas pipeline is a two-layer cylindrical shell of circular cross section. The inner layer is made of high-strength steel, the outer layer is made of reinforced ferroconcrete. The proposed methodology for calculating the gas pipeline for strength is based on the equations of the theory of shells. The procedure takes into account the effect of internal gas pressure, external pressure of sea water, the weight of two-layer gas pipeline and the weight of the ice layer. The lifting force created by the displaced fluid and the positive buoyancy of the ice is also taken into account. It is significant that the listed loads cause only two types of deformation of the gas pipeline: axisymmetric and antisymmetric. The interaction of the pipeline with the ground as an elastic foundation is not considered. The main objective of the research is to establish the fact of separation of part of the pipeline from the ground. The method of calculations of stresses and deformations occurring in a model sea gas pipeline is presented.
THE EFFECTS OF CURVATURE AND EXPANSION ON HELIUM DETONATIONS ON WHITE DWARF SURFACES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Kevin; Bildsten, Lars; Townsley, Dean M.
2013-10-20
Accreted helium layers on white dwarfs have been highlighted for many decades as a possible site for a detonation triggered by a thermonuclear runaway. In this paper, we find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically {sup 12}C and {sup 16}O. Detonations in these thin helium layers have speeds slower than the Chapman-Jouget (CJ) speed from complete helium burning, v{sub CJ} = 1.5 × 10{sup 9} cm s{sup –1}. Though gravitationally unbound, the ashes still have unburned helium (≈80%more » in the thinnest cases) and only reach up to heavy elements such as {sup 40}Ca, {sup 44}Ti, {sup 48}Cr, and {sup 52}Fe. It is rare for these thin shells to generate large amounts of {sup 56}Ni. We also find a new set of solutions that can propagate in even thinner helium layers when {sup 16}O is present at a minimum mass fraction of ≈0.07. Driven by energy release from α captures on {sup 16}O and subsequent elements, these slow detonations only create ashes up to {sup 28}Si in the outer detonated He shell. We close by discussing how the unbound helium burning ashes may create faint and fast 'Ia' supernovae as well as events with virtually no radioactivity, and speculate on how the slower helium detonation velocities impact the off-center ignition of a carbon detonation that could cause a Type Ia supernova in the double detonation scenario.« less
NASA Astrophysics Data System (ADS)
Schmiele, Martin; Schindler, Torben; Unruh, Tobias; Busch, Sebastian; Morhenn, Humphrey; Westermann, Martin; Steiniger, Frank; Radulescu, Aurel; Lindner, Peter; Schweins, Ralf; Boesecke, Peter
2013-06-01
Dispersions of crystalline nanoparticles with at least one sufficiently large unit cell dimension can give rise to Bragg reflections in the small-angle scattering range. If the nanocrystals possess only a small number of unit cells along these particular crystallographic directions, the corresponding Bragg reflections will be broadened. In a previous study of phospholipid stabilized dispersions of β-tripalmitin platelets [Unruh, J. Appl. Crystallogr.JACGAR0021-889810.1107/S0021889807044378 40, 1008 (2007)], the x-ray powder pattern simulation analysis (XPPSA) was developed. The XPPSA method facilitates the interpretation of the rather complicated small-angle x-ray scattering (SAXS) curves of such dispersions of nanocrystals. The XPPSA method yields the distribution function of the platelet thicknesses and facilitates a structural characterization of the phospholipid stabilizer layer at the solid-liquid interface between the nanocrystals and the dispersion medium from the shape of the broadened 001 Bragg reflection. In this contribution an improved and extended version of the XPPSA method is presented. The SAXS and small-angle neutron scattering patterns of dilute phospholipid stabilized tripalmitin dispersions can be reproduced on the basis of a consistent simulation model for the particles and their phospholipid stabilizer layer on an absolute scale. The results indicate a surprisingly flat arrangement of the phospholipid molecules in the stabilizer layer with a total thickness of only 12 Å. The stabilizer layer can be modeled by an inner shell for the fatty acid chains and an outer shell including the head groups and additional water. The experiments support a dense packing of the phospholipid molecules on the nanocrystal surfaces rather than isolated phospholipid domains.
Design and Fabrication of the Lithium Tokamak Experiment
NASA Astrophysics Data System (ADS)
Kozub, Thomas; Majeski, Richard; Kaita, Robert; Priniski, Craig; Zakharov, Leonid
2006-10-01
The design objective of the lithium tokamak experiment (LTX) is to investigate the equilibrium and stability of tokamak discharges with near-zero recycling. The construction of LTX incorporates the conversion of the existing current drive experiment (CDX) vessel into one with a nearly complete plasma facing surface of liquid lithium This paper will describe the design, fabrication, and installation activities required to convert CDX into LTX. The most significant new feature is the addition of a plasma facing liner on a shell that will be operated at 300 C to 400 C and covered with an evaporated layer of liquid lithium. The shell has been fabricated in-house from explosively bonded stainless steel on copper to a rather unique geometry to match the outer flux surface. Other significant device modifications include the construction of a new ohmic heating power system, rebuilding of the vacuum vessel, new lithium evaporators, additional diagnostics, modifications to the poloidal field coil geometry and their associated power supplies. Details on the progress of this conversion will be reported.
Li, Bo; Fan, Huitao; Zhao, Qiang; Wang, Congcong
2016-01-01
In this study, multifunctional Fe3O4@SiO2@GdVO4:Dy3+ nanocomposites were successfully synthesized via a two-step method. Their structure, luminescence and magnetic properties were characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). The results indicated that the as-prepared multifunctional composites displayed a well-defined core-shell structure. The composites show spherical morphology with a size distribution of around 360 nm. Additionally, the composites exhibit high saturation magnetization (20.40 emu/g) and excellent luminescence properties. The inner Fe3O4 cores and the outer GdVO4:Dy3+ layers endow the composites with good responsive magnetic properties and strong fluorescent properties, which endow the nanoparticles with great potential applications in drug delivery, magnetic resonance imaging, and marking and separating of cells in vitro. PMID:28773275
Mussel Shell Evaluation as Bioindicator For Heavy Metals
NASA Astrophysics Data System (ADS)
Andrello, Avacir Casanova; Lopes, Fábio; Galvão, Tiago Dutra
2010-05-01
Recently, in Brazil, it has appeared a new and unusual "plague" in lazer and commercial fishing. It is caused by the parasitic larval phase of certain native bivalve mollusks of fresh water known as "Naiades" and its involves the presence of big bivalve of fresh water, mainly Anodontites trapesialis, in the tanks and dams of the fish creation. These bivalve mollusks belong to the Unionoida Order, Mycetopodidae Family. The objective of the present work was to analyze the shells of these mollusks to verify the possibility of use as bioindicators for heavy metals in freshwater. The mollusks shells were collected in a commercial fishing at Londrina-PR. A qualitative analysis was made to determine the chemical composition of the shells and verify a possible correlation with existent heavy metals in the aquatic environment. In the inner part of the shells were identified the elements Ca, P, Fe, Mn and Sr and in the outer part were identified Ca, P, Fe, Mn, Sr and Cu. The Ca ratio of the outer part by inner part of the analyzed shells is around of 1, as expected, because Ca is the main compound of mollusks shells. The ratio of P, Fe, Mn, and Sr to the Ca were constant in all analyzed shells, being close to 0.015. The ratio Cu/Ca varied among the shells, showing that this mollusk is sensitive to concentration of this element in the aquatic environment.
Skin Friction Reduction by Micro-Blowing Technique
NASA Technical Reports Server (NTRS)
Hwang, Danny P. (Inventor)
1998-01-01
A system and method for reducing skin friction of an object in relative motion to a fluid. A skin forming a boundary between the object and the fluid, the skin having holes through which micro-blowing of air is blown and a transmitting mechanism for transmitting air through the skin. The skin has an inner layer and an outer layer. the inner layer being a low permeable porous sheet, the outer layer being a plate having high aspect ratio high porosity. and small holes. The system may further include a suction apparatus for suctioning air from the outer layer. The method includes the steps of transmitting air through the inner layer and passing the air transmitted through the inner layer to the outer layer. The method may further include the step of bleeding air off the outer layer using the suction apparatus.
Validation of a Laser-Ray Package in an Eulerian Code
NASA Astrophysics Data System (ADS)
Bradley, Paul; Hall, Mike; McKenty, Patrick; Collins, Tim; Keller, David
2014-10-01
A laser-ray absorption package was recently installed in the RAGE code by the Laboratory for Laser Energetics (LLE). In this presentation, we describe our use of this package to implode Omega 60 beam symmetric direct drive capsules. The capsules have outer diameters of about 860 microns, CH plastic shell thicknesses between 8 and 32 microns, DD or DT gas fills between 5 and 20 atmospheres, and a 1 ns square pulse of 23 to 27 kJ. These capsule implosions were previously modeled with a calibrated energy source in the outer layer of the capsule, where we matched bang time and burn ion temperature well, but the simulated yields were two to three times higher than the data. We will run simulations with laser ray energy deposition to the experiments and the results to the yield and spectroscopic data. Work performed by Los Alamos National Laboratory under Contract DE-AC52-06NA25396 for the National Nuclear Security Administration of the U.S. Department of Energy.
The stability against freezing of an internal liquid-water ocean in Callisto.
Ruiz, J
2001-07-26
The discovery of the induced magnetic field of Callisto-one of Jupiter's moons-has been interpreted as evidence for a subsurface ocean, even though the presence of such an ocean is difficult to understand in the context of existing theoretical models. Tidal heating should not be significant for Callisto, and, in the absence of such heating, it is difficult to see how this internal ocean could have survived until today without freezing. Previous work indicated that an outer ice layer on the ocean would be unstable against solid-state convection, which once begun would lead to total freezing of liquid water in about 108 years. Here I show that when a methodology for more physically reasonable water ice viscosities (that is, stress-dependent non-newtonian viscosities, rather than the stress-independent newtonian viscosities considered previously) is adopted, the outer ice shell becomes stable against convection. This implies that a subsurface ocean could have survived up to the present, without the need for invoking antifreeze substances or other special conditions.
Vibration Power Flow In A Constrained Layer Damping Cylindrical Shell
NASA Astrophysics Data System (ADS)
Wang, Yun; Zheng, Gangtie
2012-07-01
In this paper, the vibration power flow in a constrained layer damping (CLD) cylindrical shell using wave propagation approach is investigated. The dynamic equations of the shell are derived with the Hamilton principle in conjunction with the Donnell shell assumption. With these equations, the dynamic responses of the system under a line circumferential cosine harmonic exciting force is obtained by employing the Fourier transform and the residue theorem. The vibration power flows inputted to the system and transmitted along the shell axial direction are both studied. The results show that input power flow varies with driving frequency and circumferential mode order, and the constrained damping layer can obviously restrict the exciting force from inputting power flow into the base shell especially for a thicker viscoelastic layer, a thicker or stiffer constraining layer (CL), and a higher circumferential mode order, can rapidly attenuate the vibration power flow transmitted along the base shell axial direction.
Architecture in outer space. [multilayer shell systems filled with gas
NASA Technical Reports Server (NTRS)
Pokrovskiy, G. I.
1974-01-01
Mulilayer thin film structures consisting of systems of shells filled with gas at some pressure are recommended for outer space structures: Large mirrors to collect light and radio waves, protection against meteoric impact and damage, and for connectors between state space stations in the form of orbital rings. It is projected that individual orbital rings will multiply and completely seal a star trapping its high temperature radiation and transforming it into low temperature infrared and short wave radio emission; this radiation energy could be utilized for technological and biological processes.
Structured copolymers and their use as absorbents, gels and carriers of metal ions
Hedstrand, David M.; Helmer, Bradley J.; Tomalia, Donald A.
1996-01-01
Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.
Structured copolymers and their use as absorbents, gels and carriers of metal ions
Hedstrand, D.M.; Helmer, B.J.; Tomalia, D.A.
1996-10-01
Dense star polymers or dendrimers having a highly branched interior structure capable of associating or chelating with metal ions are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. The modified dendrimers are useful for dispersing metal ions in a non-aqueous polymer matrix. Also dense star polymers or dendrimers having a highly branched hydrophilic interior structure are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell, which modified polymers are useful as gels and surfactants.
Array of titanium dioxide nanostructures for solar energy utilization
Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu
2014-12-30
An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.
General route for the assembly of functional inorganic capsules.
Akartuna, Ilke; Tervoort, Elena; Studart, André R; Gauckler, Ludwig J
2009-11-03
Semipermeable, hollow capsules are attractive materials for the encapsulation and delivery of active agents in food processing, pharmaceutical and agricultural industries, and biomedicine. These capsules can be produced by forming a solid shell of close packed colloidal particles, typically polymeric particles, at the surface of emulsion droplets. However, current methods to prepare such capsules may involve multistep chemical procedures to tailor the surface chemistry of particles or are limited to particles that exhibit inherently the right hydrophobic-hydrophilic balance to adsorb around emulsion droplets. In this work, we describe a general and simple method to fabricate semipermeable, inorganic capsules from emulsion droplets stabilized by a wide variety of colloidal metal oxide particles. The assembly of particles at the oil-water interface is induced by the in situ hydrophobization of the particle surface through the adsorption of short amphiphilic molecules. The adsorption of particles at the interface leads to stable capsules comprising a single layer of particles in the outer shell. Such capsules can be used in the wet state or can be further processed into dry capsules. The permeability of the capsules can be modified by filling the interstices between the shell particles with polymeric or inorganic species. Functional capsules with biocompatible, bioresorbable, heat-resistant, chemical-resistant, and magnetic properties were prepared using alumina, silica, iron oxide, or tricalcium phosphate as particles in the shell.
Core-shell silk hydrogels with spatially tuned conformations as drug-delivery system.
Yan, Le-Ping; Oliveira, Joaquim M; Oliveira, Ana L; Reis, Rui L
2017-11-01
Hydrogels of spatially controlled physicochemical properties are appealing platforms for tissue engineering and drug delivery. In this study, core-shell silk fibroin (SF) hydrogels of spatially controlled conformation were developed. The core-shell structure in the hydrogels was formed by means of soaking the preformed (enzymatically crosslinked) random coil SF hydrogels in methanol. When increasing the methanol treatment time from 1 to 10 min, the thickness of the shell layer can be tuned from about 200 to about 850 μm as measured in wet status. After lyophilization of the rehydrated core-shell hydrogels, the shell layer displayed compact morphology and the core layer presented porous structure, when observed by scanning electron microscopy. The conformation of the hydrogels was evaluated by Fourier transform infrared spectroscopy in wet status. The results revealed that the shell layer possessed dominant β-sheet conformation and the core layer maintained mainly random coil conformation. Enzymatic degradation data showed that the shell layers presented superior stability to the core layer. The mechanical analysis displayed that the compressive modulus of the core-shell hydrogels ranged from about 25 kPa to about 1.1 MPa by increasing the immersion time in methanol. When incorporated with albumin, the core-shell SF hydrogels demonstrated slower and more controllable release profiles compared with the non-treated hydrogel. These core-shell SF hydrogels of highly tuned properties are useful systems as drug-delivery system and may be applied as cartilage substitute. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit
2014-01-01
We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts. PMID:24818158
Duda, Sven; Dreyer, Lutz; Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit; Haastert-Talini, Kirsten
2014-01-01
We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts.
Ultrasonic isolation of the outer membrane of Escherichia coli with autodisplayed Z-domains.
Bong, Ji-Hong; Yoo, Gu; Park, Min; Kang, Min-Jung; Jose, Joachim; Pyun, Jae-Chul
2014-11-01
The outer membrane of Escherichia coli was previously isolated as a liposome-like outer membrane particle using an enzymatic treatment for lysozymes; for immunoassays, the particles were subsequently layered on solid supports via hydrophobic interactions. This work presents an enzyme-free isolation method for the E. coli outer membrane with autodisplayed Z-domains using ultrasonication. First, the properties of the outer membrane particle, such as the particle size, zeta potential, and total protein, were compared with the properties of particles obtained using the previous preparation methods. Compared with the conventional isolation method using an enzyme treatment, the ultrasonic method exhibited a higher efficiency at isolating the outer membrane and less contamination by cytosolic proteins. The isolated outer membrane particles were layered on a gold surface, and the roughness and thickness of the layered outer membrane layers were subsequently analyzed using AFM analysis. Finally, the antibody-binding activity of two outer membrane layers with autodisplayed Z-domains created from particles that were isolated using the enzymatic and ultrasonic isolation methods was measured using fluorescein-labeled antibody as a model analyte, and the activity of the outer membrane layer that was isolated from the ultrasonic method was estimated to be more than 20% higher than that from the conventional enzymatic method. Copyright © 2014 Elsevier Inc. All rights reserved.
Polyakov, Pavel D; Duval, Jérôme F L
2014-02-07
We report a comprehensive theory to evaluate the kinetics of complex formation between metal ions and charged spherical nanoparticles. The latter consist of an ion-impermeable core surrounded by a soft shell layer characterized by a discrete axisymmetric 2D distribution of charged sites that bind metal ions. The theory explicitly integrates the conductive diffusion of metal ions from bulk solution toward the respective locations of the reactive sites within the particle shell volume. The kinetic constant k for outer-sphere nanoparticle-metal association is obtained from the sum of the contributions stemming from all reactive sites, each evaluated from the corresponding incoming flux of metal ions derived from steady-state Poisson-Nernst-Planck equations. Illustrations are provided to capture the basic intertwined impacts of particle size, overall particle charge, spatial heterogeneity in site distribution, type of particle (hard, core-shell or porous) and concentration of the background electrolyte on k. As a limit, k converges with predictions from previously reported analytical expressions derived for porous particles with low and high charge density, cases that correspond to coulombic and mean-field (smeared-out) electrostatic treatments, respectively. The conditions underlying the applicability of these latter approaches are rigorously identified in terms of (i) the extent of overlap between electric double layers around charged neighbouring sites, and (ii) the magnitude of the intraparticulate metal concentration gradient. For the first time, the proposed theory integrates the differentiated impact of the local potential around the charged binding sites amidst the overall particle field, together with that of the so-far discarded intraparticulate flux of metal ions.
The jump-off velocity of an impulsively loaded spherical shell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chabaud, Brandon M.; Brock, Jerry S.
2012-04-13
We consider a constant temperature spherical shell of isotropic, homogeneous, linearly elastic material with density {rho} and Lame coefficients {lambda} and {mu}. The inner and outer radii of the shell are r{sub i} and r{sub o}, respectively. We assume that the inside of the shell is a void. On the outside of the shell, we apply a uniform, time-varying pressure p(t). We also assume that the shell is initially at rest. We want to compute the jump-off time and velocity of the pressure wave, which are the first time after t = 0 at which the pressure wave from themore » outer surface reaches the inner surface. This analysis computes the jump-off velocity and time for both compressible and incompressible materials. This differs substantially from [3], where only incompressible materials are considered. We will consider the behavior of an impulsively loaded, exponentially decaying pressure wave p(t) = P{sub 0{sup e}}{sup -{alpha}t}, where {alpha} {ge} 0. We notice that a constant pressure wave P(t) = P{sub 0} is a special case ({alpha} = 0) of a decaying pressure wave. Both of these boundary conditions are considered in [3].« less
Zhang, Xinghao; Guo, Ruiying; Li, Xianglong; Zhi, Linjie
2018-06-01
Building stable and efficient electron and ion transport pathways are critically important for energy storage electrode materials and systems. Herein, a scallop-inspired shell engineering strategy is proposed and demonstrated to confine high volume change silicon microparticles toward the construction of stable and high volumetric capacity binder-free lithium battery anodes. As for each silicon microparticle, the methodology involves an inner sealed but adaptable overlapped graphene shell, and an outer open hollow shell consisting of interconnected reduced graphene oxide, mimicking the scallop structure. The inner closed shell enables simultaneous stabilization of the interfaces of silicon with both carbon and electrolyte, substantially facilitates efficient and rapid transport of both electrons and lithium ions from/to silicon, the outer open hollow shell creates stable and robust transport paths of both electrons and lithium ions throughout the electrode without any sophisticated additives. The resultant self-supported electrode has achieved stable cycling with rapidly increased coulombic efficiency in the early stage, superior rate capability, and remarkably high volumetric capacity upon a facile pressing process. The rational design and engineering of graphene shells of the silicon microparticles developed can provide guidance for the development of a wide range of other high capacity but large volume change electrochemically active materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liang, Yuan-Chang; Lo, Ya-Ru; Wang, Chein-Chung; Xu, Nian-Cih
2018-01-01
ZnO-ZnS core-shell nanorods are synthesized by combining the hydrothermal method and vacuum sputtering. The core-shell nanorods with variable ZnS shell thickness (7–46 nm) are synthesized by varying ZnS sputtering duration. Structural analyses demonstrated that the as-grown ZnS shell layers are well crystallized with preferring growth direction of ZnS (002). The sputtering-assisted synthesized ZnO-ZnS core-shell nanorods are in a wurtzite structure. Moreover, photoluminance spectral analysis indicated that the introduction of a ZnS shell layer improved the photoexcited electron and hole separation efficiency of the ZnO nanorods. A strong correlation between effective charge separation and the shell thickness aids the photocatalytic behavior of the nanorods and improves their photoresponsive nature. The results of comparative degradation efficiency toward methylene blue showed that the ZnO-ZnS nanorods with the shell thickness of approximately 17 nm have the highest photocatalytic performance than the ZnO-ZnS nanorods with other shell layer thicknesses. The highly reusable catalytic efficiency and superior photocatalytic performance of the ZnO-ZnS nanorods with 17 nm-thick ZnS shell layer supports their potential for environmental applications. PMID:29316671
Layer-by-layer-based silica encapsulation of individual yeast with thickness control.
Lee, Hojae; Hong, Daewha; Choi, Ji Yu; Kim, Ji Yup; Lee, Sang Hee; Kim, Ho Min; Yang, Sung Ho; Choi, Insung S
2015-01-01
In the area of cell-surface engineering with nanomaterials, the metabolic and functional activities of the encapsulated cells are manipulated and controlled by various parameters of the artificial shells that encase the cells, such as stiffness and elasticity, thickness, and porosity. The mechanical durability and physicochemical stability of inorganic shells prove superior to layer-by-layer-based organic shells with regard to cytoprotection, but it has been difficult to vary the parameters of inorganic shells including their thickness. In this work, we combine the layer-by-layer technique with a process of bioinspired silicification to control the thickness of the silica shells that encapsulate yeast Saccharomyces cerevisiae cells individually, and investigate the thickness-dependent microbial growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts
Jansen, Kai W.; Maley, Nagi
2000-01-01
High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.
Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts
Jansen, Kai W.; Maley, Nagi
2001-01-01
High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.
Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.
2014-07-15
Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.
Geometrically nonlinear analysis of layered composite plates and shells
NASA Technical Reports Server (NTRS)
Chao, W. C.; Reddy, J. N.
1983-01-01
A degenerated three dimensional finite element, based on the incremental total Lagrangian formulation of a three dimensional layered anisotropic medium was developed. Its use in the geometrically nonlinear, static and dynamic, analysis of layered composite plates and shells is demonstrated. A two dimenisonal finite element based on the Sanders shell theory with the von Karman (nonlinear) strains was developed. It is shown that the deflections obtained by the 2D shell element deviate from those obtained by the more accurate 3D element for deep shells. The 3D degenerated element can be used to model general shells that are not necessarily doubly curved. The 3D degenerated element is computationally more demanding than the 2D shell theory element for a given problem. It is found that the 3D element is an efficient element for the analysis of layered composite plates and shells undergoing large displacements and transient motion.
From Cool to Hot F-stars: The Influence of Two Ionization Regions in the Acoustic Oscillations
NASA Astrophysics Data System (ADS)
Brito, Ana; Lopes, Ilídio
2018-02-01
The high-precision data available from the Kepler satellite allows us to study the complex outer convective envelopes of solar-type stars. We use a seismic diagnostic, specialized for investigating the outer layers of solar-type stars, to infer the impact of the ionization processes on the oscillation spectrum, for a sample of Kepler stars. These stars, of spectral type F, cover all of the observational seismic domain of the acoustic oscillation spectrum in solar-type stars. They also cover the range between a cool F-dwarf (∼6000 K) and a hotter F-star (∼6400 K). Our study reveals the existence of two relevant ionization regions. One of these regions, which is located closer to the surface of the star, is commonly associated with the second ionization of helium, although other chemical species also contribute to ionization. The second region, located deeper in the envelope, is linked with the ionization of heavy elements. Specifically, in this study, we analyze the elements carbon, nitrogen, oxygen, neon, and iron. Both regions can be related to the K electronic shell. We show that, while for cooler stars like the Sun, the influence of this second region on the oscillation frequencies is small; in hotter stars, its influence becomes comparable to the influence of the region of the second ionization of helium. This can guide us in the study of the outer layers of F-stars, specifically with the understanding of phenomena related to rotation and magnetic activity in these stars.
Nitride based quantum well light-emitting devices having improved current injection efficiency
Tansu, Nelson; Zhao, Hongping; Liu, Guangyu; Arif, Ronald
2014-12-09
A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 .ANG. and 24 .ANG. thick, respectively.
Dynamics of deformation and pinch-off of a migrating compound droplet in a tube
NASA Astrophysics Data System (ADS)
Borthakur, Manash Pratim; Biswas, Gautam; Bandyopadhyay, Dipankar
2018-04-01
A computational fluid dynamic investigation has been carried out to study the dynamics of a moving compound droplet inside a tube. The motions associated with such a droplet is uncovered by solving the axisymmetric Navier-Stokes equations in which the spatiotemporal evolution of a pair of twin-deformable interfaces has been tracked employing the volume-of-fluid approach. The deformations at the interfaces and their subsequent dynamics are found to be stimulated by the subtle interplay between the capillary and viscous forces. The simulations uncover that when a compound drop composed of concentric inner and outer interfaces migrates inside a tube, initially in the unsteady domain of evolution, the inner drop shifts away from the concentric position to reach a morphology of constant eccentricity at the steady state. The coupled motions of the droplets in the unsteady regime causes a continuous deformation of the inner and outer interfaces to obtain a configuration with a (an) prolate (oblate) shaped outer (inner) interface. The magnitudes of capillary number and viscosity ratio are found to have significant influence on the temporal evolution of the interfacial deformations as well as the eccentricity of the droplets. Further, the simulations uncover that, following the asymmetric deformation of the interfaces, the migrating compound droplet can undergo an uncommon breakup stimulated by a rather irregular pinch-off of the outer shell. The breakup is found to initiate with the thinning of the outer shell followed by the pinch-off. Interestingly, the kinetics of the thinning of outer shell is found to follow two distinct power-law regimes—a swiftly thinning stage at the onset followed by a rate limiting stage before pinch-off, which eventually leads to the uncommon breakup of the migrating compound droplets.
NASA Astrophysics Data System (ADS)
Zhu, Jian; Xu, Zai-jie; Weng, Guo-jun; Zhao, Jing; Li, Jian-jun; Zhao, Jun-wu
2018-07-01
In this report, Ag-dielectric-Au three-layered nanoshells with controlled inner core size were synthesized. The fluorescence emission of the rhodamine 6G (R6G) could be quenched by the three-layered nanoshells distinctly. What's more, the fluorescence quenching efficiency could be further improved by tuning the etching of inner Ag nanosphere. The maximum fluorescence quenching efficiency is obtained when the separate layer just appears between the inner Ag core and the outer Au shell. Whereas the fluorescence quenching efficiency is weakened when no gaps take place around the inner Ag core or the separate layer is too thick and greater than 13 nm. The fluorescence quenching properties of the Ag-dielectric-Au three-layered nanoshells with different initial sizes of the Ag nanoparticles are also studied. The maximum fluorescence quenching efficiency is obtained when the three-layered nanoshells are synthesized based on the Ag nanoparticles with 60 nm, which is better than others two sizes (42 and 79 nm). Thus we believe that the size of initial Ag nanospheres also greatly affects the optimized fluorescence quenching efficiency. These results about fluorescence quenching properties of Ag-dielectric-Au three-layered nanoshells present a potential for design and fabrication of fluorescence nanosensors based on tuning the geometry of the inner core and the separate layer.
Jang, Se Gyu; Kramer, Edward J; Hawker, Craig J
2011-10-26
We report a facile strategy to synthesize amphiphilic gold (Au) nanoparticles functionalized with a multilayer, micelle-like structure consisting of a Au core, an inner hydroxylated polyisoprene (PIOH) layer, and an outer polystyrene shell (PS). Careful control of enthalpic interactions via a systematic variation of structural parameters, such as number of hydroxyl groups per ligand (N(OH)) and styrene repeating units (N(PS)) as well as areal chain density of ligands on the Au-core surface (Σ), enables precise control of the spatial distribution of these nanoparticles. This control was demonstrated in a lamellae-forming poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) diblock copolymer matrix, where the favorable hydrogen-bonding interaction between hydroxyl groups in the PIOH inner shell and P2VP chains in the PS-b-P2VP diblock copolymer matrix, driving the nanoparticles to be segregated in P2VP domains, could be counter balanced by the enthalphic penalty of mixing of the PS outer brush with the P2VP domains. By varying N(OH), N(PS), and Σ, the nanoparticles could be positioned in the PS or P2VP domains or at the PS/P2VP interface. In addition, the effect of additives interfering with the hydrogen-bond formation between hydroxyl groups on Au nanoparticles and P2VP chains in a diblock copolymer matrix was investigated, and an interesting pea-pod-like segregation of Au nanoparticles in PS domains was observed.
Levitated Duct Fan (LDF) Aircraft Auxiliary Generator
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Emerson, Dawn C.; Gallo, Christopher A.; Thompson, William K.
2011-01-01
This generator concept includes a novel stator and rotor architecture made from composite material with blades attached to the outer rotating shell of a ducted fan drum rotor, a non-contact support system between the stator and rotor using magnetic fields to provide levitation, and an integrated electromagnetic generation system. The magnetic suspension between the rotor and the stator suspends and supports the rotor within the stator housing using permanent magnets attached to the outer circumference of the drum rotor and passive levitation coils in the stator shell. The magnets are arranged in a Halbach array configuration.
NASA Astrophysics Data System (ADS)
Matsumoto, Tadafumi; Sekiguchi, Jun'ichi; Asai, Tomohiko
In the formation of magnetized plasmoid by a magnetized coaxial plasma gun (MCPG), the magnetic helicity content of the generated plasmoid is one of the critical parameters. Typically, the bias coil to generate a poloidal flux is mounted either on the outer electrode or inside the inner electrode. However, most of the flux generated in the conventional method spreads even radially outside of the formation region. Thus, only a fraction of the total magnetic flux is actually exploited for helicity generation in the plasmoid. In the proposed system, the plasma gun incorporates a copper shell mounted on the outer electrode. By changing the rise time of the discharge bias coil current and the geometrical structure of the shell, the magnetic field structure and its time evolution can be controlled. The effect of the copper shell has been numerically simulated for the actual gun structure, and experimentally confirmed. This may increase the magnetic helicity content results, through increased poloidal magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preece, G.E.; Bell, F.R.
1963-06-26
A protective arrangement is designed for shielding the environment and for preventing the leakage of radioactive gases from a ship nuclear power plant. In this arrangement, the core has inner and outer pressure vessels and a biological shielding around the outer pressure vessel. The shielding comprises a series of steel cylindrical shells immersed in water, and its inner wall may comprise part of the outer pressure vessel. (D.L.C.)
Larger sized wire arrays on 1.5 MA Z-pinch generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safronova, A. S., E-mail: alla@unr.edu; Kantsyrev, V. L., E-mail: alla@unr.edu; Weller, M. E., E-mail: alla@unr.edu
Experiments on the UNR Zebra generator with Load Current Multiplier (LCM) allow for implosions of larger sized wire array loads than at standard current of 1 MA. Advantages of larger sized planar wire array implosions include enhanced energy coupling to plasmas, better diagnostic access to observable plasma regions, and more complex geometries of the wire loads. The experiments with larger sized wire arrays were performed on 1.5 MA Zebra with LCM (the anode-cathode gap was 1 cm, which is half the gap used in the standard mode). In particular, larger sized multi-planar wire arrays had two outer wire planes frommore » mid-atomic-number wires to create a global magnetic field (gmf) and plasma flow between them. A modified central plane with a few Al wires at the edges was put in the middle between outer planes to influence gmf and to create Al plasma flow in the perpendicular direction (to the outer arrays plasma flow). Such modified plane has different number of empty slots: it was increased from 6 up to 10, hence increasing the gap inside the middle plane from 4.9 to 7.7 mm, respectively. Such load configuration allows for more independent study of the flows of L-shell mid-atomic-number plasma (between the outer planes) and K-shell Al plasma (which first fills the gap between the edge wires along the middle plane) and their radiation in space and time. We demonstrate that such configuration produces higher linear radiation yield and electron temperatures as well as advantages of better diagnostics access to observable plasma regions and how the load geometry (size of the gap in the middle plane) influences K-shell Al radiation. In particular, K-shell Al radiation was delayed compared to L-shell mid-atomic-number radiation when the gap in the middle plane was large enough (when the number of empty slots was increased up to ten)« less
Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure
Campbell,; Christian X. , Morrison; Jay, A [Oviedo, FL
2011-12-20
A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a compliant structure. The compliant structure may be configured such that the outer layer may thermally expand without limitation by the inner layer. The compliant structure may be formed from a plurality of pedestals positioned generally parallel with each other. The pedestals may include a first foot attached to a first end of the pedestal and extending in a first direction aligned with the outer layer, and may include a second foot attached to a second end of the pedestal and extending in a second direction aligned with the inner layer.
Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Smeltzer, Stanley S., III
2000-01-01
A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.
Lid design for low level waste container
Holbrook, R.H.; Keener, W.E.
1995-02-28
A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame. 6 figs.
Lid design for low level waste container
Holbrook, Richard H.; Keener, Wendell E.
1995-01-01
A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame.
Foam shell cryogenic ICF target
Darling, Dale H.
1987-01-01
A uniform cryogenic layer of DT fuel is maintained in a fusion target having a low density, small pore size, low Z rigid foam shell saturated with liquid DT fuel. Capillary action prevents gravitational slumping of the fuel layer. The saturated shell may be cooled to produce a solid fuel layer.
Ackermann, Philipp; Brachert, Maike; Albrecht, Philipp; Ringelstein, Marius; Finis, David; Geerling, Gerd; Aktas, Orhan; Guthoff, Rainer
2017-07-01
A characteristic disease pattern may be reflected by retinal layer thickness changes in non-arteritic anterior ischaemic optic neuropathy measured using spectraldomain optical coherence tomography. Retinal layer segmentation is enabled by advanced software. In this study, retinal layer thicknesses in acute and chronic non-arteritic anterior ischaemic optic neuropathy were compared. A single-centre cross-sectional analysis was used. A total of 27 patients (20 age-matched healthy eyes) were included: 14 with acute (<7 days) and 13 patients with chronic non-arteritic anterior ischaemic optic neuropathy. Macular volume and 12° peripapillary ring optical coherence tomography scans were used. The peripapillary thicknesses of the following layers were determined by manual segmentation: retinal nerve fibres, ganglion cells + inner plexiform layer, inner nuclear layer + outer plexiform layer, outer nuclear layer + inner segments of the photoreceptors and outer segments of the photoreceptors to Bruch's membrane. Macular retinal layer thicknesses were automatically determined in volume cubes centred on the fovea. Peripapillary retinal swelling in acute nonarteritic anterior ischaemic optic neuropathy was attributable to retinal nerve fibre layer, ganglion cell layer/inner plexiform layer and outer nuclear layer/segments of the photoreceptors thickening. In chronic cases, peripapillary retinal nerve fibre layer, macular ganglion cell layer and inner plexiform layer thinning were observed. In acute non-arteritic anterior ischaemic optic neuropathy, the inner and outer peripapillary retinal layers are affected by thickness changes. In chronic cases, atrophy of the ganglion cells and their axons and dendrites is evident by inner retinal layer thinning. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
Modeling Tidal Stresses on Planetary Bodies Using an Enhanced SatStress GUI
NASA Astrophysics Data System (ADS)
Patthoff, D. A.; Pappalardo, R. T.; Tang, L.; Kay, J.; Kattenhorn, S. A.
2014-12-01
Icy and rocky satellites of our solar system display a wide range of structural deformation on their surfaces. Some surfaces are old and heavily cratered showing little evidence for recent tectonism while other surfaces are sparsely cratered and young, with some moons showing geologically very recent or present-day activity. The young deformation can take the form of small cracks in the surface, large double ridges that can extend for thousands of km, and mountain ranges that can reach heights of several kilometers. Many of the potential sources of stress that can deform the surfaces are likely tied to the diurnal tidal deformation of the moons as they orbit their parent planets. Other secular sources of global-scale stress include: volume change induced by the melting or freezing of a subsurface liquid layer, change in the orbital parameters of the moon, or rotation of the outer shell of the satellite relative to the rest of the body (nonsynchronous rotation or true polar wander). We turn to computer modeling to correlate observed structural features to the possible stresses that created them. A variety of modeling programs exist and generally assume a thin ice shell and/or a multi-layered viscoelastic satellite. The program SatStress, which was developed by Zane Crawford and documented by Wahr et al. (2009), computes tidal and nonsynchronous rotation stresses on a satellite. It was later modified into a more user-friendly version with a graphical user interface (SatStress GUI) by Kay and Kattenhorn (2010). This implementation assumes a 4-layer viscoelastic body and is able to calculate stresses resulting from diurnal tides, nonsynchronous rotation, and ice shell thickening. Here we illustrate our recent enhancements to SatStress GUI and compare modeled stresses to example features observed on the surfaces of Ganymede, Europa, and Enceladus. Kay and Kattenhorn (2010) 41st LPSC, abs # 2046. Wahr et al. (2009) Icarus, 200, 188-206.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, L. S.; Clark, F. O.; Lynch, D. K., E-mail: larry@spectral.com, E-mail: dave@thulescientific.com
2013-05-01
We suggest that the diffuse interstellar bands (DIBs) arise from absorption lines of electronic transitions in molecular clusters primarily composed of a single molecule, atom, or ion ({sup s}eed{sup )}, embedded in a single-layer shell of H{sub 2} molecules. Less abundant variants of the cluster, including two seed molecules and/or a two-layer shell of H{sub 2} molecules, may also occur. The lines are broadened, blended, and wavelength-shifted by interactions between the seed and surrounding H{sub 2} shell. We refer to these clusters as contaminated H{sub 2} clusters (CHCs). We show that CHC spectroscopy matches the diversity of observed DIB spectralmore » profiles and provides good fits to several DIB profiles based on a rotational temperature of 10 K. CHCs arise from {approx}centimeter-sized, dirty H{sub 2} ice balls, called contaminated H{sub 2} ice macro-particles (CHIMPs), formed in cold, dense, giant molecular clouds (GMCs), and later released into the interstellar medium (ISM) upon GMC disruption. Attractive interactions, arising from Van der Waals and ion-induced dipole potentials, between the seeds and H{sub 2} molecules enable CHIMPs to attain centimeter-sized dimensions. When an ultraviolet (UV) photon is absorbed in the outer layer of a CHIMP, it heats the icy matrix and expels CHCs into the ISM. While CHCs are quickly destroyed by absorbing UV photons, they are replenished by the slowly eroding CHIMPs. Since CHCs require UV photons for their release, they are most abundant at, but not limited to, the edges of UV-opaque molecular clouds, consistent with the observed, preferred location of DIBs. An inherent property of CHCs, which can be characterized as nanometer size, spinning, dipolar dust grains, is that they emit in the radio-frequency region. We also show that the CHCs offer a natural explanation for the anomalous microwave emission feature in the {approx}10-100 GHz spectral region.« less
Hypersonic research engine project. Phase 2: Aerothermodynamic integration model development
NASA Technical Reports Server (NTRS)
Jilly, L. F. (Editor)
1971-01-01
The fabrication of the various components of the HRE AIM was completed. The purge system necessary for the cavity bounded by the outer shell assembly and the outer cowl body was studied. Preparations were begun for establishing a format for test data acquisition and reduction.
Thermal insulating conformal blanket
NASA Technical Reports Server (NTRS)
Barney, Andrea (Inventor); Whittington, Charles A (Inventor); Eilertson, Bryan (Inventor); Siminski, Zenon (Inventor)
2003-01-01
The conformal thermal insulating blanket may have generally rigid batting material covered by an outer insulating layer formed of a high temperature resistant woven ceramic material and an inner insulating layer formed of a woven ceramic fiber material. The batting and insulating layers may be fastened together by sewing or stitching using an outer mold layer thread fabricated of a high temperature resistant material and an inner mold layer thread of a ceramic fiber material. The batting may be formed to a composite structure that may have a firmness factor sufficient to inhibit a pillowing effect after the stitching to not more than 0.03 inch. The outer insulating layer and an upper portion of the batting adjacent the outer insulating layer may be impregnated with a ceramic coating material.
Ripoll, J. -F.; Reeves, Geoffrey D.; Cunningham, Gregory Scott; ...
2016-06-11
Here, we present dynamic simulations of energy-dependent losses in the radiation belt “slot region” and the formation of the two-belt structure for the quiet days after the 1 March storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally resolved whistler-mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L shells (2–6) including (a) the strong energy dependence to the radiation belt dynamics (b) an energy-dependent outer boundary to the inner zone that extends to higher L shells at lower energies andmore » (c) an “S-shaped” energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial transport and losses. We find that the characteristic energy-dependent structure of the radiation belts and slot region is dynamic and can be formed gradually in ~15 days, although the “S shape” can also be reproduced by assuming equilibrium conditions. The highest-energy electrons (E > 300 keV) of the inner region of the outer belt (L ~ 4–5) also constantly decay, demonstrating that hiss wave scattering affects the outer belt during times of extended plasmasphere. Through these simulations, we explain the full structure in energy and L shell of the belts and the slot formation by hiss scattering during storm recovery. We show the power and complexity of looking dynamically at the effects over all energies and L shells and the need for using data-driven and event-specific conditions.« less
A surface crack in shells under mixed-mode loading conditions
NASA Technical Reports Server (NTRS)
Joseph, P. F.; Erdogan, F.
1988-01-01
The present consideration of a shallow shell's surface crack under general loading conditions notes that while the mode I state can be separated, modes II and III remain coupled. A line spring model is developed to formulate the part-through crack problem under mixed-mode conditions, and then to consider a shallow shell of arbitrary curvature having a part-through crack located on the outer or the inner surface of the shell; Reissner's transverse shear theory is used to formulate the problem under the assumption that the shell is subjected to all five moment and stress resultants.
Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic
NASA Technical Reports Server (NTRS)
Grant, S. W.; Knoll, A. H. (Principal Investigator)
1990-01-01
Cloudina-bearing biosparites and biomicrites in the lower part of the Nama Group, Namibia, contain a wide morphological diversity of shell fragments that can all be attributed to the two named species C. hartmannae and C. riemkeae. The curved to sinuous tubular shells of Cloudina were multi-layered. Each shell layer was 8 to 50 micrometers thick and in the form of a slightly flaring tube with one end open and the other closed. Growth appears to have been periodic with successive shell layers forming within older layers. Each added layer was slightly elevated from the previous layer at the proximal end and was asymmetrically placed within the older layer so that only a portion of the new shell layer was fused to the previous layer. This type of growth left a relatively large unminerialized area between the shell layers which was often partially or fully occluded by early marine cements. The thin shell layers exhibit both plastic and brittle deformation and were likely formed of a rigid CaCO3-impregnated organic-rich material. Often the shell layers are preferentially dolomitized suggesting an original mineralogy of high-magnesian calcite. Both species in the Nama Group formed thickets, or perhaps bioherms, and this sedentary and gregarious habit suggests that Cloudina was probably a filter-feeding metazoan of at least a cnidarian grade of organization. The unusual shell structure of Cloudina gives rise to a characteristic suite of taphonomic and diagenetic features that can be used to identify Cloudina-bearing deposits within the Nama Group and in other terminal Proterozoic deposits around the world. Species of Cloudina occur in limestones from Brazil, Spain, China, and Oman in sequences consistent with a latest Proterozoic age assignment. In addition, supposed lower Cambrian, pre-trilobitic, shelly fossils from northwest Mexico and the White-Inyo Mountains in California and Nevada, including Sinotubulites, Nevadatubulus, and Wyattia, are all either closely related to or con-generic with Cloudina. Hence, it is probable that these outcrops are latest Proterozoic in age, and that Cloudina or Cloudina-like organisms were widely distributed at that time. It is possible, moreover, to suggest that metazoan biomineralization occurred on a global scale by the latest Proterozoic, at the same time that evidence for complex multicellularity and locomotion in animals appears in siliciclastic "Ediacaran" rocks in the form of body and trace fossils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves, Geoffrey D.; Friedel, Reiner H. W.; Larsen, Brian A.
Here, we present observations of the radiation belts from the Helium Oxygen Proton Electron and Magnetic Electron Ion Spectrometer particle detectors on the Van Allen Probes satellites that illustrate the energy dependence and L shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on 1 March in more detail. The observations show the following: (a) at all L shells, lower energy electrons are enhanced more often than higher energies; (b) events that fill the slot region are more common at lower energies; (c) enhancements of electrons in the inner zone are moremore » common at lower energies; and (d) even when events do not fully fill the slot region, enhancements at lower energies tend to extend to lower L shells than higher energies. During enhancement events the outer zone extends to lower L shells at lower energies while being confined to higher L shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L shells for lower energies. Both boundaries are nearly straight in log(energy) versus L shell space. At energies below a few 100 keV, radiation belt electron penetration through the slot region into the inner zone is commonplace, but the number and frequency of “slot filling” events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy- and L shell-dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions.« less
Suzuki, Michio; Kameda, Jun; Sasaki, Takenori; Saruwatari, Kazuko; Nagasawa, Hiromichi; Kogure, Toshihiro
2010-08-01
The microstructure and its crystallographic aspect of the shell of a limpet, Lottiakogamogai, have been investigated, as the first step to clarify the mechanism of shell formation in limpet. The shell consists of five distinct layers stacked along the shell thickness direction. Transmission electron microscopy (TEM) with the focused ion beam (FIB) sample preparation technique was primarily adopted, as well as scanning electron microscopy (SEM) with electron back-scattered diffraction (EBSD). The five layers were termed as M+3, M+2, M+1, M, M-1 from the outside to the inside in previous works, where M means myostracum. The outmost M+3 layer consists of calcite with a "mosaic" structure; granular submicron sub-grains with small-angle grain boundaries often accompanying dislocation arrays. M+2 layer consists of flat prismatic aragonite crystals with a leaf-like cross section, stacked obliquely to the shell surface. It looks that the prismatic crystals are surrounded by organic sheets, forming a compartment structure. M+1 and M-1 layers adopt a crossed lamellar structure consisting of aragonite flat prisms with rectangular cross section. M layer has a prismatic structure of aragonite perpendicular to the shell surface and with irregular shaped cross sections. Distinct organic sheets were not observed between the crystals in M+1, M and M-1 layers. The {110} twins are common in all aragonite M+2, M+1, M and M-1 layers, with the twin boundaries parallel to the prisms. These results for the microstructure of each layer should be considered in the discussion of the formation mechanism of the limpet shell structure. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Bingang; Liu, Chunliang; Song, Zhongxiao; Liu, Liu; Fan, Yufeng; Xia, Xing; Fan, Duowang
2005-08-01
Mg-Zr-O protective layers for alternating current plasma display panels were deposited by e-beam evaporation. The effect of the ZrO2 addition on both the discharge properties [firing voltage Vf, minimum sustaining voltage Vs, and memory coefficient (MC)] and the microstructure of deposited Mg-Zr-O films were investigated. The results show that the film microstructure changes and the electron emission enhancement due to the ZrO2 addition are the main reasons for the improvements of the discharge properties of Mg-Zr-O films. A small amount of Zr solution in MgO under its solid solubility can effectively increase the outer-shell valence electron emission yield so as to decrease Vf and Vs compared with using a pure MgO protective layer. The ZrO2/(MgO +ZrO2) ratio has a great effect on the film surface conditions. Proper surface morphologies make a good contribution to obtain large MC in accordance with lower firing voltage.
Wang, Jingtao; Liu, Jinxia; Han, Junjie; Guan, Jing
2013-02-08
A boundary integral method is developed to investigate the effects of inner droplets and asymmetry of internal structures on rheology of two-dimensional multiple emulsion particles with arbitrary numbers of layers and droplets within each layer. Under a modest extensional flow, the number increment of layers and inner droplets, and the collision among inner droplets subject the particle to stronger shears. In addition, the coalescence or release of inner droplets changes the internal structure of the multiple emulsion particles. Since the rheology of such particles is sensitive to internal structures and their change, modeling them as the core-shell particles to obtain the viscosity equation of a single particle should be modified by introducing the time-dependable volume fraction Φ(t) of the core instead of the fixed Φ. An asymmetric internal structure induces an oriented contact and merging of the outer and inner interface. The start time of the interface merging is controlled by adjusting the viscosity ratio and enhancing the asymmetry, which is promising in the controlled release of inner droplets through hydrodynamics for targeted drug delivery.
NASA Astrophysics Data System (ADS)
Langer, G.; Nehrke, G.; Baggini, C.; Rodolfo-Metalpa, R.; Hall-Spencer, J.; Bijma, J.
2014-08-01
Specimens of the patellogastropod limpet Patella caerulea were collected within (pHlow-shells) and outside (pHn-shells) a CO2 vent site at Ischia, Italy. Four pHlow-shells and four pHn-shells were sectioned transversally and scanned for polymorph distribution by means of confocal Raman microscopy. The pHlow-shells displayed a twofold increase in aragonite area fraction and size normalised aragonite area. Size normalised calcite area was halved in pHlow-shells. Taken together with the increased apical and the decreased flank size normalised thickness of the pHlow-shells, these data led us to conclude that low pH exposed P. caerulea specimens counteract shell dissolution by enhanced shell production. The latter is different from normal elongation growth and proceeds through addition of aragonitic layers only, while the production of calcitic layers is confined to elongation growth. Therefore aragonite cannot be regarded as a per se disadvantageous polymorph under ocean acidification conditions.
Hydrogen-isotope permeation barrier
Maroni, Victor A.; Van Deventer, Erven H.
1977-01-01
A composite including a plurality of metal layers has a Cu-Al-Fe bronze layer and at least one outer layer of a heat and corrosion resistant metal alloy. The bronze layer is ordinarily intermediate two outer layers of metal such as austenitic stainless steel, nickel alloys or alloys of the refractory metals. The composite provides a barrier to hydrogen isotopes, particularly tritium that can reduce permeation by at least about 30 fold and possibly more below permeation through equal thicknesses of the outer layer material.
Effective electromagnetic properties of microheterogeneous materials with surface phenomena
NASA Astrophysics Data System (ADS)
Levin, Valery; Markov, Mikhail; Mousatov, Aleksandr; Kazatchenko, Elena; Pervago, Evgeny
2017-10-01
In this paper, we present an approach to calculate the complex dielectric permittivity of a micro-heterogeneous medium composed of non-conductive solid inclusions embedded into the conductive liquid continuous host. To take into account the surface effects, we approximate the inclusion by a layered ellipsoid consisting of a dielectric core and an infinitesimally thin outer shell corresponding to an electrical double layer (EDL). To predict the effective complex dielectric permittivity of materials with a high concentration of inclusions, we have modified the Effective Field Method (EFM) for the layered ellipsoidal particles with complex electrical properties. We present the results of complex permittivity calculations for the composites with randomly and parallel oriented ellipsoidal inclusions. To analyze the influence of surface polarization, we have accomplished modeling in a wide frequency range for different existing physic-chemical models of double electrical layer. The results obtained show that the tensor of effective complex permittivity of a micro-heterogeneous medium with surface effects has complicate dependences on the component electrical properties, spatial material texture, and the inclusion shape (ellipsoid aspect ratio) and size. The dispersion of dielectric permittivity corresponds to the frequency dependence for individual inclusion of given size, and does not depend on the inclusion concentration.
Observations on ichnology, taphonomy and epibiota in the freshwater realm
NASA Astrophysics Data System (ADS)
Lawfield, Andrew Martin William
Ichnology concerns the study of interactions between organisms and both soft and hard substrates. Actualistic observation of a modern day river channel molluscan assemblage including unionid and sphaeriid bivalves and gastropods within the Saint John River, Fredericton, New Brunswick, Canada reveals their production of almond shaped Lockeia like resting traces, together with varied, horizontally aligned furrowed, meandering, looping and spiral plan view locomotion/grazing traces. These traces occur within a shifting sand softground substrate. An emersion event associated with a low water level allowed collection of unionid samples, amongst which Elliptio complanata predominates, alongside Lampsilis radiata and Anodonta implicata. Detailed analysis of shell material, with methodologies including scanning electron microscopy (SEM) reveals microboring, various taphonomic signatures and the development of biofilm and extracellular polymeric substances (EPS). These are often associated with one another and their location closely influenced by the shell structure. Taphonomic decay of the shells was noted, with the external periostracum and prismatic aragonite layers decaying, particularly in the umbonal region. Physical puncturing and tearing penetrate the periostracum. Exposed regions of nacreous aragonite are smoothed by a combination of chemical interaction with the water column and physical abrasion from agitated silt and sand sediments. Surface pitting and circular to ovoid penetrations with morphologies comparable to Oichnus borings are noted and their formation is tentatively attributed to bacterial decay processes. In marine settings, the outer protective periostracum of molluscs often possesses physical and chemical defence mechanisms intended to inhibit the attachment of epibiota. Our observations suggest their absence from unionids, with final instar larval or pupal stage Trichoptera, including Goera, Neophylax and Helicopsyche selectively attached to regions of intact periostracum in preference to exposed aragonite on dead shells. In addition, live unionids can display thick growths of cyanobacterial or cyanophyte dominated microbial mat. Biofilm and extracellular polymeric substances, with bacterial, diatomaceous and filamentous components are also observed, often displaying a close association with both microboring and the shells conchiolin layers. Several styles of microboring are noted, with predominantly surficial and both simple tubular and complex network penetrative styles observed. Microborings may be attributed to cyanobacterial, cyanophyte and fungal activity.
Durable metallized polymer mirror
Schissel, Paul O.; Kennedy, Cheryl E.; Jorgensen, Gary J.; Shinton, Yvonne D.; Goggin, Rita M.
1994-01-01
A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.
Evaluation of the Mechanical Properties and Effectiveness of Countermine Boots.
1998-03-01
regarding comfort except that the 60 shanks overall length of approximately 5.7 in should allow normal flexure of the forefoot . Weight, however, is...When the electron beam strikes an element in the sample, electrons are ejected from inner atomic shells to outer shells resulting in ions in the
Nacre tablet thickness records formation temperature in modern and fossil shells
Gilbert, Pupa U. P. A.; Bergmann, Kristin D.; Myers, Corinne E.; ...
2016-12-15
Nacre, the iridescent outer lining of pearls and inner lining of many mollusk shells, is made of periodic, parallel, organic sheets alternating with aragonite (CaCO 3) tablet layers. Nacre tablet thickness (TT) generates both nacre's iridescence and its remarkable resistance to fracture. Despite extensive studies on how nacre forms, the mechanisms controlling TT remain unknown, even though they determine the most conspicuous of nacre's characteristics, visible even to the naked eye.Thermodynamics predicts that temperature (T) will affect both physical and chemical components of biomineralized skeletons. The chemical composition of biominerals is well-established to record environmental parameters, and has therefore beenmore » extensively used in paleoclimate studies. The physical structure, however, has been hypothesized but never directly demonstrated to depend on the environment. Here we observe that the physical TT in nacre from modern and fossil shallow-water shells of the bivalves Pinna and Atrina correlates with T as measured by the carbonate clumped isotope thermometer. Based on the observed TT vs. T correlation, we anticipate that TT will be used as a paleothermometer, useful to estimate paleotemperature in shallow-water paleoenvironments. Here we successfully test the proposed new nacre TT thermometer on two Jurassic Pinna shells. The increase of TT with T is consistent with greater aragonite growth rate at higher T, and with greater metabolic rate at higher T. Thus, it reveals a complex, T-dependent biophysical mechanism for nacre formation.« less
Nacre tablet thickness records formation temperature in modern and fossil shells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Pupa U. P. A.; Bergmann, Kristin D.; Myers, Corinne E.
Nacre, the iridescent outer lining of pearls and inner lining of many mollusk shells, is made of periodic, parallel, organic sheets alternating with aragonite (CaCO 3) tablet layers. Nacre tablet thickness (TT) generates both nacre's iridescence and its remarkable resistance to fracture. Despite extensive studies on how nacre forms, the mechanisms controlling TT remain unknown, even though they determine the most conspicuous of nacre's characteristics, visible even to the naked eye.Thermodynamics predicts that temperature (T) will affect both physical and chemical components of biomineralized skeletons. The chemical composition of biominerals is well-established to record environmental parameters, and has therefore beenmore » extensively used in paleoclimate studies. The physical structure, however, has been hypothesized but never directly demonstrated to depend on the environment. Here we observe that the physical TT in nacre from modern and fossil shallow-water shells of the bivalves Pinna and Atrina correlates with T as measured by the carbonate clumped isotope thermometer. Based on the observed TT vs. T correlation, we anticipate that TT will be used as a paleothermometer, useful to estimate paleotemperature in shallow-water paleoenvironments. Here we successfully test the proposed new nacre TT thermometer on two Jurassic Pinna shells. The increase of TT with T is consistent with greater aragonite growth rate at higher T, and with greater metabolic rate at higher T. Thus, it reveals a complex, T-dependent biophysical mechanism for nacre formation.« less
Angelescu, Daniel G; Caragheorgheopol, Dan
2015-10-14
The mean-force and the potential of the mean force between two like-charged spherical shells were investigated in the salt-free limit using the primitive model and Monte Carlo simulations. Apart from an angular homogeneous distribution, a discrete charge distribution where point charges localized on the shell outer surface followed an icosahedral arrangement was considered. The electrostatic coupling of the model system was altered by the presence of mono-, trivalent counterions or small dendrimers, each one bearing a net charge of 9 e. We analyzed in detail how the shell thickness and the radial and angular distribution of the shell charges influenced the effective interaction between the shells. We found a sequence of the potential of the mean force similar to the like-charged filled spheres, ranging from long-range purely repulsive to short-range purely attractive as the electrostatic coupling increased. Both types of potentials were attenuated and an attractive-to-repulsive transition occurred in the presence of trivalent counterions as a result of (i) thinning the shell or (ii) shifting the shell charge from the outer towards the inner surface. The potential of the mean force became more attractive with the icosahedrally symmetric charge model, and additionally, at least one shell tended to line up with 5-fold symmetry axis along the longest axis of the simulation box at the maximum attraction. The results provided a basic framework of understanding the non-specific electrostatic origin of the agglomeration and long-range assembly of the viral nanoparticles.
Dying star creates sculpture of gas and dust
NASA Astrophysics Data System (ADS)
2004-09-01
Sculpture of gas and dust hi-res Size hi-res: 125 Kb Credits: ESA, NASA, HEIC and The Hubble Heritage Team (STScI/AURA) Dying star creates sculpture of gas and dust The so-called Cat's Eye Nebula, formally catalogued NGC 6543 and seen here in this detailed view from the NASA/ESA Hubble Space Telescope, is one of the most complex planetary nebulae ever seen in space. A planetary nebula forms when Sun-like stars gently eject their outer gaseous layers to form bright nebulae with amazing twisted shapes. Hubble first revealed NGC 6543's surprisingly intricate structures including concentric gas shells, jets of high-speed gas and unusual shock-induced knots of gas in 1994. This new image, taken with Hubble's Advanced Camera for Surveys (ACS), reveals the full beauty of a bull's-eye pattern of eleven or more concentric rings, or shells, around the Cat’s Eye. Each ‘ring’ is actually the edge of a spherical bubble seen projected onto the sky - which is why it appears bright along its outer edge. High resolution version (JPG format) 125 Kb High resolution version (TIFF format) 2569 Kb Acknowledgment: R. Corradi (Isaac Newton Group of Telescopes, Spain) and Z. Tsvetanov (NASA). Sculpture of gas and dust hi-res Size hi-res: 287 Kb Credits: Nordic Optical Telescope and Romano Corradi (Isaac Newton Group of Telescopes, Spain) Dying star creates sculpture of gas and dust An enormous but extremely faint halo of gaseous material surrounds the Cat’s Eye Nebula and is over three light-years across. Some planetary nebulae been found to have halos like this one, likely formed of material ejected during earlier active episodes in the star's evolution - most likely some 50 000 to 90 000 years ago. This image was taken by Romano Corradi with the Nordic Optical Telescope on La Palma in the Canary Islands. The image is constructed from two narrow-band exposures showing oxygen atoms (1800 seconds, in blue) and nitrogen atoms (1800 seconds, in red). High resolution version (JPG format) 287 Kb High resolution version (TIFF format) 4674 Kb Although the rings may be the key to explaining the final ‘gasp’ of the dying central star, the mystery behind the Cat’s Eye Nebula’s nested ‘Russian doll’ structure remains largely unsolved. The so-called Cat's Eye Nebula, formally catalogued NGC 6543 and seen here in this detailed view from the NASA/ESA Hubble Space Telescope, is one of the most complex planetary nebulae ever seen in space. A planetary nebula forms when Sun-like stars gently eject their outer gaseous layers to form bright nebulae with amazing twisted shapes. Hubble first revealed NGC 6543's surprisingly intricate structures including concentric gas shells, jets of high-speed gas and unusual shock-induced knots of gas in 1994. This new image, taken with Hubble's Advanced Camera for Surveys (ACS), reveals the full beauty of a bull's-eye pattern of eleven or more concentric rings, or shells, around the Cat’s Eye. Each ‘ring’ is actually the edge of a spherical bubble seen projected onto the sky - which is why it appears bright along its outer edge. Observations suggest that the star ejected its mass in a series of pulses at 1500-year intervals. These convulsions created dust shells that each contains as much mass as all of the planets in our Solar System combined (but still only one-percent of the Sun's mass). These concentric shells make a layered onion-skin structure around the dying star. The view from Hubble is like seeing an onion cut in half, where each layer of skin is discernible. Until recently, it was thought that shells around planetary nebulae were a rare phenomenon. However, Romano Corradi (Isaac Newton Group of Telescopes, Spain) and collaborators, in a paper published in the European journal Astronomy & Astrophysics in April 2004, have instead shown that the formation of these rings is likely to be the rule rather than the exception. The bull's-eye patterns seen around planetary nebulae come as a surprise to astronomers because they had no expectation of episodes of mass loss at the end of stellar lives that repeat every 1500 years or so. Several explanations have been proposed, including cycles of magnetic activity somewhat similar to our own Sun's sunspot cycle, the action of companion stars orbiting around the dying star, and stellar pulsations. Another school of thought is that the material is ejected smoothly from the star, and the rings are created later on due to formation of waves in the outflowing material. It will take further observations and more theoretical studies to decide between these and other possible explanations. Approximately 1000 years ago the pattern of mass loss suddenly changed, and the Cat's Eye Nebula itself started forming inside the dusty shells. It has been expanding ever since, as can be seen by comparing Hubble images taken in 1994, 1997, 2000 and 2002. But what has caused this dramatic change? Many aspects of the process that leads a star to lose its gaseous envelope are poorly known, and the study of planetary nebulae is one of the few ways to recover information about the last few thousand years in the life of a Sun-like star. Notes for editors: The group of astronomers involved in the April 2004, Astronomy & Astrophysics paper are: R.L.M. Corradi (Isaac Newton Group of Telescopes, Spain), P. Sanchez-Blazquez (Universidad Complutense, Spain), G. Mellema (Foundation for Research in Astronomy, The Netherlands), C. Giammanco (Instituto de Astrofisica de Canarias, Spain) and H.E. Schwarz (Cerro Tololo Inter-American Observatory, Chile). The Hubble Space Telescope is a project of international co-operation between ESA and NASA.
Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Smeltzer, Stanley S., III
2000-01-01
An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.
Dynamics and fragmentation of thick-shelled microbubbles.
May, Donovan J; Allen, John S; Ferrara, Katherine W
2002-10-01
Localized delivery could decrease the systemic side effects of toxic chemotherapy drugs. The unique delivery agents we examine consist of microbubbles with an outer lipid coating, an oil layer, and a perfluorobutane gas core. These structures are 0.5-12 microm in radius at rest. Oil layers of these acoustically active lipospheres (AALs) range from 0.3-1.5 microm in thickness and thus the agents can carry a large payload compared to nano-scale drug delivery systems. We show that triacetin-based drug-delivery vehicles can be fragmented using ultrasound. Compared with a lipid-shelled contrast agent, the expansion of the drug-delivery vehicle within the first cycle is similar, and a subharmonic component is demonstrated at an equivalent radius, frequency, and driving pressure. For the experimental conditions explored here, the pulse length required for destruction of the drug-delivery vehicle is significantly greater, with at least five cycles required, compared with one cycle for the contrast agent. For the drug-delivery vehicle, the observed destruction mechanism varies with the initial radius, with microbubbles smaller than resonance size undergoing a symmetric collapse and producing a set of small, equal-sized fragments. Between resonance size and twice resonance size, surface waves become visible, and the oscillations become asymmetrical. For agents larger than twice the resonance radius, the destruction mechanism changes to a pinch-off, with one fragment containing a large fraction of the original volume.
Durable metallized polymer mirror
Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.
1994-11-01
A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.
Hot gas path component cooling system
Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael
2014-02-18
A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.
Hybrid Composite Cryogenic Tank Structure
NASA Technical Reports Server (NTRS)
DeLay, Thomas
2011-01-01
A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic temperatures, and will not crack or produce leaks. The outer layer serves as more of a high-performance structural unit for the inner layer, and can handle external environments.
POE/PLGA composite microspheres: formation and in vitro behavior of double walled microspheres.
Yang, Yi-Yan; Shi, Meng; Goh, Suat-Hong; Moochhala, Shabbir M; Ng, Steve; Heller, Jorge
2003-03-07
The poly(ortho ester) (POE) and poly(D,L-lactide-co-glycolide) 50:50 (PLGA) composite microspheres were fabricated by a water-in-oil-in-water (w/o/w) double emulsion process. The morphology of the composite microspheres varied depending on POE content. When the POE content was 50, 60 or 70% in weight, the double walled microspheres with a dense core of POE and a porous shell of PLGA were formed. The formation of the double walled POE/PLGA microspheres was analysed. Their in vitro degradation behavior was characterized by scanning electron microscopy, gel permeation chromatography, Fourier-transform infrared microscopy and nuclear magnetic resonance spectroscopy (NMR). It was found that compared to the neat POE or PLGA microspheres, distinct degradation mechanism was achieved in the double walled POE/PLGA microspheres system. The degradation of the POE core was accelerated due to the acidic microenvironment produced by the hydrolysis of the outer PLGA layer. The formation of hollow microspheres became pronounced after the first week in vitro. 1H NMR spectra showed that the POE core was completely degraded after 4 weeks. On the other hand, the outer PLGA layer experienced slightly retarded degradation after the POE core disappeared. PLGA in the double walled microspheres kept more than 32% of its initial molecular weight over a period of 7 weeks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moraes, Manoel; Diaz, Marcos
2009-12-15
The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in H{alpha}, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman and O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structuremore » seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10{sup -4} M {sub sun} is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.« less
Scherz, Ruth; Shinder, Vera; Engelberg, David
2001-01-01
Recently we reported an unusual multicellular organization in yeast that we termed stalk-like structures. These structures are tall (0.5 to 3 cm long) and narrow (1 to 3 mm in diameter). They are formed in response to UV radiation of cultures spread on high agar concentrations. Here we present an anatomical analysis of the stalks. Microscopic inspection of cross sections taken from stalks revealed that stalks are composed of an inner core in which cells are dense and vital and a layer of cells (four to six rows) that surrounds the core. This outer layer is physically separated from the core and contains many dead cells. The outer layer may form a protective shell for the core cells. Through electron microscopy analysis we observed three types of cells within the stalk population: (i) cells containing many unusual vesicles, which might be undergoing some kind of cell death; (ii) cells containing spores (usually one or two spores only); and (iii) familiar rounded cells. We suggest that stalk cells are not only spatially organized but may undergo processes that induce a certain degree of cell specialization. We also show that high agar concentration alone, although not sufficient to induce stalk formation, induces dramatic changes in a colony's morphology. Most striking among the agar effects is the induction of growth into the agar, forming peg-like structures. Colonies grown on 4% agar or higher are reminiscent of stalks in some aspects. The agar concentration effects are mediated in part by the Ras pathway and are related to the invasive-growth phenomenon. PMID:11514526
Visualizing density perturbations in the capsule shell in NIF implosions near peak velocity
NASA Astrophysics Data System (ADS)
Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; Macphee, A.; Scott, H. A.; Robey, H. F.; Field, J.; Barrios, M.; Regan, S. P.
2016-10-01
Engineering features on the capsule (surface roughness, support structures, etc.) can introduce outer surface perturbations that are ultimately detrimental to the performance of the capsule. Recent experiments have assessed minimal support structures and alternate pulse shapes using a re-entrant cone and back lighter that is perturbing to the implosion below radii of 500 μ m. Emission from the hot core, after shock-stagnation and prior to peak velocity (PV), has been used as a self-backlighter, providing a means to sample one side of the capsule at smaller radii. Adding high-Z gas ( 1 % Ar) to the capsule fill in Symcaps (4He), has produced a continuum backlighter with significant increase in emission at hv 8 keV over nominal fills. High-resolution imaging diagnostics with photon energy selectivity form 2D images of the transmitted self-emission, above and below the K-edge of an internally doped Cu layer. We can infer from these images the growth at PV of outer surface perturbations. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-697620.
Oxygen Isotope Variability within Nautilus Shell Growth Bands
2016-01-01
Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis of oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. To create the observed range of δ18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands. PMID:27100183
Oxygen isotope variability within Nautilus shell growth bands
Linzmeier, Benjamin J.; Kozdon, Reinhard; Peters, Shanan E.; ...
2016-04-21
Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis ofmore » oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ 18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ 18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. In addition, to create the observed range of δ 18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands.« less
Developmental patterning of sub-epidermal cells in the outer integument of Arabidopsis seeds
Fiume, Elisa; Coen, Olivier; Xu, Wenjia; Lepiniec, Loïc
2017-01-01
The seed, the reproductive unit of angiosperms, is generally protected by the seed coat. The seed coat is made of one or two integuments, each comprising two epidermal cells layers and, in some cases, extra sub-epidermal cell layers. The thickness of the seed-coat affects several aspects of seed biology such as dormancy, germination and mortality. In Arabidopsis, the inner integument displays one or two sub-epidermal cell layers that originate from periclinal cell divisions of the innermost epidermal cell layer. By contrast, the outer integument was considered to be two-cell layered. Here, we show that sub-epidermal chalazal cells grow in between the epidermal outer integument cell layers to create an incomplete three-cell layered outer integument. We found that the MADS box transcription factor TRANSPARENT TESTA 16 represses growth of the chalaza and formation of sub-epidermal outer integument cells. Finally, we demonstrate that sub-epidermal cells of the outer and inner integument respond differently to the repressive mechanism mediated by FERTILIZATION INDEPENDENT SEED Polycomb group proteins and to fertilization signals. Our data suggest that integument cell origin rather than sub-epidermal cell position underlies different responses to fertilization. PMID:29141031
Forced vibrations of a two-layered shell in the case of viscous resistance
NASA Astrophysics Data System (ADS)
Aghalovyan, L. A.; Ghulghazaryan, L. G.
2018-04-01
Forced vibrations of a two-layered orthotropic shell are studied in the case of viscous resistance in the lower layer of the shell. Two versions of spatial boundary conditions on the upper surface of the shell are posed, and the displacement vector is given on the lower surface. An asymptotic method is used to solve the corresponding dynamic equations and relations of the three-dimensional problem of elasticity. The amplitudes of the forced vibrations are determined, and the resonance conditions are established.
Turbine blade with spar and shell
Davies, Daniel O [Palm City, FL; Peterson, Ross H [Loxahatchee, FL
2012-04-24
A turbine blade with a spar and shell construction in which the spar and the shell are both secured within two platform halves. The spar and the shell each include outward extending ledges on the bottom ends that fit within grooves formed on the inner sides of the platform halves to secure the spar and the shell against radial movement when the two platform halves are joined. The shell is also secured to the spar by hooks extending from the shell that slide into grooves formed on the outer surface of the spar. The hooks form a serpentine flow cooling passage between the shell and the spar. The spar includes cooling holes on the lower end in the leading edge region to discharge cooling air supplied through the platform root and into the leading edge cooling channel.
Hosono, Eiji; Wang, Yonggang; Kida, Noriyuki; Enomoto, Masaya; Kojima, Norimichi; Okubo, Masashi; Matsuda, Hirofumi; Saito, Yoshiyasu; Kudo, Tetsuichi; Honma, Itaru; Zhou, Haoshen
2010-01-01
A triaxial LiFePO4 nanowire with a multi wall carbon nanotube (VGCF:Vapor-grown carbon fiber) core column and an outer shell of amorphous carbon was successfully synthesized through the electrospinning method. The carbon nanotube core oriented in the direction of the wire played an important role in the conduction of electrons during the charge-discharge process, whereas the outer amorphous carbon shell suppressed the oxidation of Fe2+. An electrode with uniformly dispersed carbon and active materials was easily fabricated via a single process by heating after the electrospinning method is applied. Mossbauer spectroscopy for the nanowire showed a broadening of the line width, indicating a disordered coordination environment of the Fe ion near the surface. The electrospinning method was proven to be suitable for the fabrication of a triaxial nanostructure.
Modeling of rapid shutdown in the DIII-D tokamak by core deposition of high-Z material
Izzo, Valerie A.; Parks, Paul B.
2017-06-22
MHD modeling of shell-pellet injection for disruption mitigation is carried out under the assumption of idealized delivery of the radiating payload to the core, neglecting the physics of shell ablation. The shell pellet method is designed to produce an inside-out thermal quench in which core thermal heat is radiated while outer flux surfaces remain intact, protecting the divertor from large conducted heat loads. In the simulation, good outer surfaces remain until the thermal quench is nearly complete, and a high radiated energy fraction is achieved. As a result, when the outermost surfaces are destroyed, runaway electron test orbits indicate thatmore » the rate of runaway electron loss is very fast compared with prior massive gas injection simulations, which is attributed to the very different current profile evolution that occurs with central cooling.« less
System for rapid biohydrogen phenotypic screening of microorganisms using a chemochromic sensor
Seibert, Michael; Benson, David K.; Flynn, Timothy Michael
2002-01-01
Provided is a system for identifying a hydrogen gas producing organism. The system includes a sensor film having a first layer comprising a transition metal oxide or oxysalt and a second layer comprising a hydrogen-dissociative catalyst metal, the first and second layers having an inner and an outer surface wherein the inner surface of the second layer is deposited on the outer surface of the first layer, and a substrate adjacent to the outer surface of the second layer, the organism isolated on the substrate.
Seibert, Michael; Benson, David K.; Flynn, Timothy Michael
2001-01-01
The invention provides an assay system for identifying a hydrogen-gas-producing organism, including a sensor film having a first layer comprising a transition metal oxide or oxysalt and a second layer comprising hydrogen-dissociative catalyst metal, the first and second layers having an inner and an outer surface wherein the inner surface of the second layer is deposited on the outer surface of the first layer, and a substrate disposed proximally to the outer surface of the second layer, the organism being isolated on the substrate.
Method of Fault Detection and Rerouting
NASA Technical Reports Server (NTRS)
Gibson, Tracy L. (Inventor); Medelius, Pedro J. (Inventor); Lewis, Mark E. (Inventor)
2013-01-01
A system and method for detecting damage in an electrical wire, including delivering at least one test electrical signal to an outer electrically conductive material in a continuous or non-continuous layer covering an electrically insulative material layer that covers an electrically conductive wire core. Detecting the test electrical signals in the outer conductive material layer to obtain data that is processed to identify damage in the outer electrically conductive material layer.
Gravity darkening in late-type stars. I. The Coriolis effect
NASA Astrophysics Data System (ADS)
Raynaud, R.; Rieutord, M.; Petitdemange, L.; Gastine, T.; Putigny, B.
2018-02-01
Context. Recent interferometric data have been used to constrain the brightness distribution at the surface of nearby stars, in particular the so-called gravity darkening that makes fast rotating stars brighter at their poles than at their equator. However, good models of gravity darkening are missing for stars that posses a convective envelope. Aim. In order to better understand how rotation affects the heat transfer in stellar convective envelopes, we focus on the heat flux distribution in latitude at the outer surface of numerical models. Methods: We carry out a systematic parameter study of three-dimensional, direct numerical simulations of anelastic convection in rotating spherical shells. As a first step, we neglect the centrifugal acceleration and retain only the Coriolis force. The fluid instability is driven by a fixed entropy drop between the inner and outer boundaries where stress-free boundary conditions are applied for the velocity field. Restricting our investigations to hydrodynamical models with a thermal Prandtl number fixed to unity, we consider both thick and thin (solar-like) shells, and vary the stratification over three orders of magnitude. We measure the heat transfer efficiency in terms of the Nusselt number, defined as the output luminosity normalised by the conductive state luminosity. Results: We report diverse Nusselt number profiles in latitude, ranging from brighter (usually at the onset of convection) to darker equator and uniform profiles. We find that the variations of the surface brightness are mainly controlled by the surface value of the local Rossby number: when the Coriolis force dominates the dynamics, the heat flux is weakened in the equatorial region by the zonal wind and enhanced at the poles by convective motions inside the tangent cylinder. In the presence of a strong background density stratification however, as expected in real stars, the increase of the local Rossby number in the outer layers leads to uniformisation of the surface heat flux distribution.
NASA Astrophysics Data System (ADS)
Díaz-Alvarado, Juan; Rodríguez, Natalia; Rodríguez, Carmen; Fernández, Carlos; Constanzo, Ítalo
2017-07-01
The orbicular granitoid of Caldera, located at the northern part of the Chilean Coastal Range, is a spectacular example of radial textures in orbicular structures. The orbicular body crops out as a 375 m2 tabular to lensoidal intrusive sheet emplaced in the Lower Jurassic Relincho pluton. The orbicular structures are 3-7 cm in diameter ellipsoids hosted in a porphyritic matrix. The orbicules are comprised by a Qtz-dioritic core (3-5 cm in diameter) composed by Pl + Hbl + Qtz + Bt ± Kfs with equiaxial textures and a gabbroic shell (2-3 cm in diameter) characterized by feathery and radiate textures with a plagioclase + hornblende paragenesis. The radial shell crystals are rooted and orthogonally disposed in the irregular contact with the core. The radial shell, called here inner shell, is in contact with the granodioritic equiaxial interorbicular matrix through a 2-3 mm wide poikilitic band around the orbicule (outer shell). The outer shell and the matrix surrounding the orbicules are characterized by the presence of large hornblende and biotite oikocrystals that include fine-grained rounded plagioclase and magnetite. The oikocrystals of both the outer shell and the matrix have a circumferential arrangement around the orbicule, i.e. orthogonal to the radial inner shell. The coarse-grained granodioritic interorbicular matrix present pegmatitic domains with large acicular hornblende and K-feldspar megacrysts. This work presents a review of the textural characteristics of the orbicules and a complete new mineral and whole-rock geochemical study of the different parts of the orbicular granitoid, together with thermobarometric and crystallographic data, and theoretical modeling of the crystallization and element partitioning processes. We propose a model for the formation of the orbicular radial textures consisting of several processes that are suggested to occur fast and consecutively: superheating, volatile exsolution, undercooling, geochemical fractionation and columnar and equiaxial crystallization. According to the obtained results, the formation of the orbicular granitoid of Caldera may have initiated 1) during the generation of a magmatic fracture in the crystallization front of the Relincho pluton, where the water released by the host crystal mush was dissolved in the new batch of dioritic magma. 2) The high influx of water-rich liquids induced superheating conditions in the newly intruding magma that became a depolymerized liquid, where the only solid particules were the small irregular fragments of the host mush dragged from the fracture walls. 3) Volatile exsolution promoted crystallization under undercooling conditions. 4) Undercooling and nucleation around the core (cold germs) involved the physical and geochemical fractionation between two sub-systems: a gabbroic sub-system that comprises the solid paragénesis with a residual water-rich liquid and a granodioritic sub-system. 5) The orbicules, including core and inner shell, behaved as viscous bodies (crystals + residual liquid) floating in the granodioritic magma. 6) Higher undercooling rates occurred at the starting stage, close to the liquidus, promoting columnar crystallization around the cores and formation of the shells. Conversely, in the granodioritic matrix sub-system, equiaxial crystallization was promoted by low relative crystallization rates. 7) The rest of the crystallization process evolved later in the outer shell and the matrix, as suggested by the poikilitic textures observed in both sides of the orbicule contact, and under conditions close to the solidus of both sub-systems (shell and matrix). The water-rich residual liquid expelled during the orbicular shell crystallization was mingled with the partially crystallized matrix magma, generating the pegmatitic domains with large Kfs megacrysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Minqiang, E-mail: jbmwgkc@126.com; Li, Di; Jiang, Deli
2012-08-15
Novel visible-light-induced {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite photocatalysts capable of magnetic separation have been synthesized by a facile sol-gel and after-annealing process. The as-obtained core-shell nanocomposite is composed of a central {gamma}-Fe{sub 2}O{sub 3} core with a strong response to external fields, an interlayer of SiO{sub 2}, and an outer layer of Ce-doped TiO{sub 2} nanocrystals. UV-vis spectra analysis indicates that Ce doping in the compound results in a red-shift of the absorption edge, thus offering increased visible light absorption. We show that such a {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite with appreciated Ce doping amount exhibitsmore » much higher visible-light photocatalytic activity than bare TiO{sub 2} and undoped {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-TiO{sub 2} core-shell nanocomposite toward the degradation of rhodamine B (RhB). Moreover, the {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite photocatalysts could be easily separated and reused from the treated water under application of an external magnetic field. - Graphical abstract: Novel {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core/shell nanocomposite photocatalysts with enhanced photocatalytic activity and fast magnetic separability were prepared. Highlights: Black-Right-Pointing-Pointer Novel {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped TiO{sub 2} core/shell composite photocatalysts were prepared. Black-Right-Pointing-Pointer The resulting core/shell composite show high visible light photocatalytic activity. Black-Right-Pointing-Pointer The nanocomposite photocatalysts can be easily recycled with excellent durability.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-24
... Drilling Programs in the Chukchi and Beaufort Seas, AK AGENCY: National Marine Fisheries Service (NMFS... harassment, by Shell Offshore Inc. (Shell) incidental to offshore exploration drilling on Outer Continental... drilling programs in 2010. ADDRESSES: The applications related to this action are available by writing to...
Trends in Ionization Energy of Transition-Metal Elements
ERIC Educational Resources Information Center
Matsumoto, Paul S.
2005-01-01
A rationale for the difference in the periodic trends in the ionization energy of the transition-metal elements versus the main-group elements is presented. The difference is that in the transition-metal elements, the electrons enter an inner-shell electron orbital, while in the main-group elements, the electrons enter an outer-shell electron…
Checa, Antonio G.; Macías-Sánchez, Elena; Ramírez-Rico, Joaquín
2016-01-01
The Cavolinioidea are planktonic gastropods which construct their shells with the so-called aragonitic helical fibrous microstructure, consisting of a highly ordered arrangement of helically coiled interlocking continuous crystalline aragonite fibres. Our study reveals that, despite the high and continuous degree of interlocking between fibres, every fibre has a differentiated organic-rich thin external band, which is never invaded by neighbouring fibres. In this way, fibres avoid extinction. These intra-fibre organic-rich bands appear on the growth surface of the shell as minuscule elevations, which have to be secreted differentially by the outer mantle cells. We propose that, as the shell thickens during mineralization, fibre secretion proceeds by a mechanism of contact recognition and displacement of the tips along circular trajectories by the cells of the outer mantle surface. Given the sizes of the tips, this mechanism has to operate at the subcellular level. Accordingly, the fabrication of the helical microstructure is under strict biological control. This mechanism of fibre-by-fibre fabrication by the mantle cells is unlike that any other shell microstructure. PMID:27181457
Liang, Yuan-Chang; Chung, Cheng-Chia; Lo, Ya-Ju; Wang, Chein-Chung
2016-01-01
The ZnO-CdS core-shell composite nanorods with CdS shell layer thicknesses of 5 and 20 nm were synthesized by combining the hydrothermal growth of ZnO nanorods with the sputtering thin-film deposition of CdS crystallites. The microstructures and optical properties of the ZnO-CdS nanorods were associated with the CdS shell layer thickness. A thicker CdS shell layer resulted in a rougher surface morphology, more crystal defects, and a broader optical absorbance edge in the ZnO-CdS rods. The ZnO-CdS (20 nm) nanorods thus engaged in more photoactivity in this study. When they were further subjected to a postannealing procedure in ambient Ar/H2, this resulted in the layer-like CdS shell layers being converted into the serrated CdS shell layers. By contrast, the ZnO-CdS nanorods conducted with the postannealing procedure exhibited superior photoactivity and photoelectrochemical performance; the substantial changes in the microstructures and optical properties of the composite nanorods following postannealing in this study might account for the observed results. PMID:28774134
NASA Technical Reports Server (NTRS)
Woods, Jody L.
2015-01-01
This paper describes work accomplished to predict the service life of a flexure joint design which is a component of a diffuser duct in the A3 Test Stand, an altitude simulation rocket engine test facility at NASA's Stennis Space Center. The duct has two pressure shells separated by cooling water passages and connected by stiffening ribs and flexure joints. Rocket exhaust flows within the duct and heats the inner pressure shell while the outer pressure shell remains at ambient temperature. The flexure joints allow for differential thermal expansion of the inner and outer pressure shells and are subject to in-service loading by this thermal expansion along with water pressure in the cooling water passage, atmospheric pressure outside the duct, near vacuum conditions within the duct, and vibrational loads from operation of the facility and rocket engine. Figure 1 shows a schematic axisymmetric cross section of the diffuser pressure shells and flexure joints with a zoomed in view of the flexure joint. The flexure joints are expected to eventually fail by fatigue cracking leading to leaks from the cooling water passages to the outside. The zoomed in view in Figure 1 indicates where cracking is expected to occur, namely through a weld bead between two plates of SA-516 Grade 70 steel. This weld bead acts as the fulcrum of the flexure joint and it is clear from inspection of the geometry and loading represented in the zoomed in portion of Figure 1 that inherent in the design there is a severe notch formed between the flexure plate, weld bead, and stiffening ring that will be the site of crack initiation and location from which the crack grows to the outer surface of the weld bead.
Surface Structure Formation in Direct Chill (DC) Casting of Al Alloys
NASA Astrophysics Data System (ADS)
Bayat, Nazlin; Carlberg, Torbjörn
2014-05-01
The aim of this study is to increase the understanding of the surface zone formation during direct chill (DC) casting of aluminum billets produced by the air slip technology. The depth of the shell zone, with compositions deviating from the bulk, is of large importance for the subsequent extrusion productivity and quality of final products. The surface microstructures of 6060 and 6005 aluminum alloys in three different surface appearances—defect free, wavy surface, and spot defects—were studied. The surface microstructures and outer appearance, segregation depth, and phase formation were investigated for the mentioned cases. The results were discussed and explained based on the exudation of liquid metal through the mushy zone and the fact that the exudated liquid is contained within a surface oxide skin. Outward solidification in the surface layer was quantitatively analyzed, and the oxide skin movements explained meniscus line formation. Phases forming at different positions in the segregation zone were analyzed and coupled to a cellular solidification in the exudated layer.
Development of a 15 T Nb 3Sn accelerator dipole demonstrator at Fermilab
Novitski, I.; Andreev, N.; Barzi, E.; ...
2016-06-01
Here, a 100 TeV scale Hadron Collider (HC) with a nominal operation field of at least 15 T is being considered for the post-LHC era, which requires using the Nb 3Sn technology. Practical demonstration of this field level in an accelerator-quality magnet and substantial reduction of the magnet costs are the key conditions for realization of such a machine. FNAL has started the development of a 15 T Nb 3Sn dipole demonstrator for a 100 TeV scale HC. The magnet design is based on 4-layer shell type coils, graded between the inner and outer layers to maximize the performance andmore » reduce the cost. The experience gained during the Nb 3Sn magnet R&D is applied to different aspects of the magnet design. This paper describes the magnetic and structural designs and parameters of the 15 T Nb 3Sn dipole and the steps towards the demonstration model fabrication.« less
NASA Astrophysics Data System (ADS)
Bykovskii, N. E.; Senatskii, Yu. V.
2018-02-01
The dynamics of Newton interference rings appearing in the ablation area on the surface of various condensed media under irradiation with femtosecond laser pulses is analyzed (according to published data on fs ablation). The data on the refractive index evolution in the expanding material cloud from the metal, semiconductor, and dielectric surface, obtained by interference pattern processing. The mechanism of the concentration of the energy absorbed by a medium from the laser beam in the thin layer under the irradiated sample surface is considered. The appearance of the inner layer with increased energy release explains why the ablation process from the metal, semiconductor, and dielectric surface, despite the differences in their compositions and radiation absorption mechanisms, occurs similarly, i.e., with the formation of a thin shell at the outer ablation cloud boundary, which consists of a condensed medium reflecting radiation and, together with the target surface, forms a structure necessary for interference formation.
Altitude Wind Tunnel at the NACA’s Aircraft Engine Research Laboratory
1945-06-21
Two men on top of the Altitude Wind Tunnel (AWT) at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory. The tunnel was a massive rectangular structure, which for years provided one of the highest vantage points on the laboratory. The tunnel was 263 feet long on the north and south legs and 121 feet long on the east and west sides. The larger west end of the tunnel, seen here, was 51 feet in diameter. The east side of the tunnel was 31 feet in diameter at the southeast corner and 27 feet in diameter at the northeast. The throat section, which connected the northwest corner to the test section, narrowed sharply from 51 to 20 feet in diameter. The AWT’s altitude simulation required temperature and pressure fluctuations that made the design of the shell more difficult than other tunnels. The simultaneous decrease in both pressure and temperature inside the facility produced uneven stress loads, particularly on the support rings. The steel used in the primary tunnel structure was one inch thick to ensure that the shell did not collapse as the internal air pressure was dropped to simulate high altitudes. It was a massive amount of steel considering the World War II shortages. The shell was covered with several inches of fiberglass insulation to retain the refrigerated air and a thinner outer steel layer to protect the insulation against the weather. A unique system of rollers was used between the shell and its support piers. These rollers allowed for movement as the shell expanded or contracted during the altitude simulations. Certain sections would move as much as five inches during operation.
Study of the microstructure and mechanical properties of white clam shell.
Liang, Yunhong; Zhao, Qian; Li, Xiujuan; Zhang, Zhihui; Ren, Luquan
2016-08-01
The microstructure and mechanical properties of white clam shell were investigated, respectively. It can be divided into horny layer, prismatic layer and nacreous layer. Crossed-lamellar structure was the microstructural characteristic. The extension direction of lamellae in prismatic layer was different from that in nacreous layer, which formed an angle on the interface between prismatic layer and nacreous layer. The phase component of three layers was CaCO3 with crystallization morphology of aragonite, which confirmed the crossed-lamellar structural characteristic. White calm shell exhibited perfect mechanical properties. The microhardness values of three layers were 273HV, 240HV and 300HV, respectively. The average values of flexure and compression strength were 110.2MPa and 80.1MPa, respectively. The macroscopical cracks crossed the lamellae and finally terminated within the length range of about 80μm. It was the microstructure characteristics, the angle on the interface between prismatic and nacreous layer and the hardness diversity among the different layers that enhanced mechanical properties of white calm shell. Copyright © 2016 Elsevier Ltd. All rights reserved.
Outer layer effects in wind-farm boundary layers: Coriolis forces and boundary layer height
NASA Astrophysics Data System (ADS)
Allaerts, Dries; Meyers, Johan
2015-11-01
In LES studies of wind-farm boundary layers, scale separation between the inner and outer region of the atmospheric boundary layer (ABL) is frequently assumed, i.e., wind turbines are presumed to fall within the inner layer and are not affected by outer layer effects. However, modern wind turbine and wind farm design tends towards larger rotor diameters and farm sizes, which means that outer layer effects will become more important. In a prior study, it was already shown for fully-developed wind farms that the ABL height influences the power performance. In this study, we use the in-house LES code SP-Wind to investigate the importance of outer layer effects on wind-farm boundary layers. In a suite of LES cases, the ABL height is varied by imposing a capping inversion with varying inversion strengths. Results indicate the growth of an internal boundary layer (IBL), which is limited in cases with low inversion layers. We further find that flow deceleration combined with Coriolis effects causes a change in wind direction throughout the farm. This effect increases with decreasing boundary layer height, and can result in considerable turbine wake deflection near the end of the farm. The authors are supported by the ERC (ActiveWindFarms, grant no: 306471). Computations were performed on VSC infrastructiure (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI.
Family of spherical models with special gravitational properties
NASA Astrophysics Data System (ADS)
Kondratyev, B. P.
2015-03-01
A new method for studying the structural and gravitational properties of spherical systems based on an analysis of the ratio of the potentials for their subsystems and shells has been developed. It has been proven for the first time that the gravitational virial Z( r) of the subsystem without allowance for the influence of the outer shell is equal to twice the work done to disperce the subsystem's matter to infinity. A new class of spherical models has been constructed in which: (1) the ratio of the contribution to the potential at point r from the spherical subsystem to the contribution from the outer shell does not depend on radius and is equal to a constant γ; (2) the ratio of the gravitational energy W( r) to Z( r) for the spherical subsystem does not depend on r; and (3) the models are described by a power law of the density ρ = cr - κ and potential . Expressions for the gravitational energy W( r) and virial Z( r) have been found for the subsystem. The limiting case of ρ( r) ∝ r -5/2, where the subsystem's potential at any sampling point is exactly equal to the potential from the outer shell and Z( r) is equivalent to its gravitational energy W( r), is considered in detail. The results supplement the classical potential theory. The question about the application of the models to the superdense nuclear star cluster in the center of the Milky Way is discussed.
Duncker, Tobias; Lee, Winston; Jiang, Fan; Ramachandran, Rithambara; Hood, Donald C; Tsang, Stephen H; Sparrow, Janet R; Greenstein, Vivienne C
2018-01-01
To assess structure and function across the transition zone (TZ) between relatively healthy and diseased retina in acute zonal occult outer retinopathy. Six patients (6 eyes; age 22-71 years) with acute zonal occult outer retinopathy were studied. Spectral-domain optical coherence tomography, fundus autofluorescence, near-infrared reflectance, color fundus photography, and fundus perimetry were performed and images were registered to each other. The retinal layers of the spectral-domain optical coherence tomography scans were segmented and the thicknesses of two outer retinal layers, that is, the total receptor and outer segment plus layers, and the retinal nerve fiber layer were measured. All eyes showed a TZ on multimodal imaging. On spectral-domain optical coherence tomography, the TZ was in the nasal retina at varying distances from the fovea. For all eyes, it was associated with loss of the ellipsoid zone band, significant thinning of the two outer retinal layers, and in three eyes with thickening of the retinal nerve fiber layer. On fundus autofluorescence, all eyes had a clearly demarcated peripapillary area of abnormal fundus autofluorescence delimited by a border of high autofluorescence; the latter was associated with loss of the ellipsoid zone band and with a change from relatively normal to markedly decreased or nonrecordable visual sensitivity on fundus perimetry. The results of multimodal imaging clarified the TZ in acute zonal occult outer retinopathy. The TZ was outlined by a distinct high autofluorescence border that correlated with loss of the ellipsoid zone band on spectral-domain optical coherence tomography. However, in fundus areas that seemed healthy on fundus autofluorescence, thinning of the outer retinal layers and thickening of the retinal nerve fiber layer were observed near the TZ. The TZ was also characterized by a decrease in visual sensitivity.
Protecting peroxidase activity of multilayer enzyme-polyion films using outer catalase layers.
Lu, Haiyun; Rusling, James F; Hu, Naifei
2007-12-27
Films constructed layer-by-layer on electrodes with architecture {protein/hyaluronic acid (HA)}n containing myoglobin (Mb) or horseradish peroxidase (HRP) were protected against protein damage by H2O2 by using outer catalase layers. Peroxidase activity for substrate oxidation requires activation by H2O2, but {protein/HA}n films without outer catalase layers are damaged slowly and irreversibly by H2O2. The rate and extent of damage were decreased dramatically by adding outer catalase layers to decompose H2O2. Comparative studies suggest that protection results from catalase decomposing a fraction of the H2O2 as it enters the film, rather than by an in-film diffusion barrier. The outer catalase layers controlled the rate of H2O2 entry into inner regions of the film, and they biased the system to favor electrocatalytic peroxide reduction over enzyme damage. Catalase-protected {protein/HA}n films had an increased linear concentration range for H2O2 detection. This approach offers an effective way to protect biosensors from damage by H2O2.
Hashimoto, Yuki; Saito, Wataru; Fujiya, Akio; Yoshizawa, Chikako; Hirooka, Kiriko; Mori, Shohei; Noda, Kousuke; Ishida, Susumu
2015-01-01
Purpose To investigate sequential post-operative thickness changes in inner and outer retinal layers in eyes with an idiopathic macular hole (MH). Methods Retrospective case series. Twenty-four eyes of 23 patients who had received pars plana vitrectomy (PPV) for the closure of MH were included in the study. Spectral domain optical coherence tomography C-scan was used to automatically measure the mean thickness of the inner and outer retinal layers pre-operatively and up to 6 months following surgery. The photoreceptor outer segment (PROS) length was measured manually and was used to assess its relationship with best-corrected visual acuity (BCVA). Results Compared with the pre-operative thickness, the inner layers significantly thinned during follow-up (P = 0.02), particularly in the parafoveal (P = 0.01), but not perifoveal, area. The post-operative inner layer thinning ranged from the ganglion cell layer to the inner plexiform layer (P = 0.002), whereas the nerve fiber layer was unaltered. Outer layer thickness was significantly greater post-operatively (P = 0.002), and especially the PROS lengthened not only in the fovea but also in the parafovea (P < 0.001). Six months after surgery, BCVA was significantly correlated exclusively with the elongated foveal PROS (R = 0.42, P = 0.03), but not with any of the other thickness parameters examined. Conclusions Following PPV for MH, retinal inner layers other than the nerve fiber layer thinned, suggestive of subclinical thickening in the inner layers where no cyst was evident pre-operatively. In contrast, retinal outer layer thickness significantly increased, potentially as a result of PROS elongation linking tightly with favorable visual prognosis in MH eyes. PMID:26291526
Foveomacular schisis in juvenile X-linked retinoschisis: an optical coherence tomography study.
Yu, Jia; Ni, Yingqin; Keane, Pearse A; Jiang, Chunhui; Wang, Wenji; Xu, Gezhi
2010-06-01
To explore the structural features of juvenile X-linked retinoschisis using spectral-domain optical coherence tomography (OCT). Retrospective, observational cross-sectional study. Eighteen male patients (34 eyes) who were diagnosed with juvenile X-linked retinoschisis at the Eye & ENT Hospital of Fudan University over an 18-month period were included. Their OCT images, which were obtained using spectral-domain OCT (Cirrus HD-OCT; Carl Zeiss Meditec), were analyzed. The anatomic location of the schisis cavity in juvenile X-linked retinoschisis was characterized by direct inspection of OCT images. On OCT, the schisis cavity was visible at the fovea in all 34 eyes, and it was associated with increased retinal thickness. Schisis was present at the retinal nerve fiber layer in 4 eyes, at the inner nuclear layer in 29 eyes, and at the outer nuclear layer/outer plexiform layer in 22 eyes. In most cases, widespread foveomacular schisis was detected using OCT; however, in 9 eyes (6 patients), the schisis was confined to the fovea. Schisis of the inner nuclear layer and outer nuclear layer/outer plexiform layer almost always involved the foveal center, but retinal nerve fiber layer schisis was seen only in the parafoveal area. Despite conventional wisdom, in patients with X-linked retinoschisis, the schisis cavity can occur in a number of different layers of the neurosensory retina (retinal nerve fiber layer, inner nuclear layer, and outer nuclear layer/outer plexiform layer). In addition, different forms of schisis may affect different locations in the macula (foveal vs parafoveal), and, in most eyes, the schisis involves the entire foveomacular region. Copyright 2010 Elsevier Inc. All rights reserved.
Milne, Jacqueline L. S.; Wu, Xiongwu; Borgnia, Mario J.; Lengyel, Jeffrey S.; Brooks, Bernard R.; Shi, Dan; Perham, Richard N.; Subramaniam, Sriram
2006-01-01
The pyruvate dehydrogenase multienzyme complexes are among the largest multifunctional catalytic machines in cells, catalyzing the production of acetyl CoA from pyruvate. We have previously reported the molecular architecture of an 11-MDa subcomplex comprising the 60-mer icosahedral dihydrolipoyl acetyltransferase (E2) decorated with 60 copies of the heterotetrameric (α2β2) 153-kDa pyruvate decarboxylase (E1) from Bacillus stearothermophilus (Milne, J. L. S., Shi, D., Rosenthal, P. B., Sunshine, J. S., Domingo, G. J., Wu, X., Brooks, B. R., Perham, R. N., Henderson, R., and Subramaniam, S. (2002) EMBO J. 21, 5587–5598). An annular gap of ~90 Å separates the acetyltransferase catalytic domains of the E2 from an outer shell formed of E1 tetramers. Using cryoelectron microscopy, we present here a three-dimensional reconstruction of the E2 core decorated with 60 copies of the homodimeric 100-kDa dihydrolipoyl dehydrogenase (E3). The E2E3 complex has a similar annular gap of ~75 Å between the inner icosahedral assembly of acetyltransferase domains and the outer shell of E3 homodimers. Automated fitting of the E3 coordinates into the map suggests excellent correspondence between the density of the outer shell map and the positions of the two best fitting orientations of E3. As in the case of E1 in the E1E2 complex, the central 2-fold axis of the E3 homodimer is roughly oriented along the periphery of the shell, making the active sites of the enzyme accessible from the annular gap between the E2 core and the outer shell. The similarities in architecture of the E1E2 and E2E3 complexes indicate fundamental similarities in the mechanism of active site coupling involved in the two key stages requiring motion of the swinging lipoyl domain across the annular gap, namely the synthesis of acetyl CoA and regeneration of the dithiolane ring of the lipoyl domain. PMID:16308322
Monte Carlo simulations of nematic and chiral nematic shells
NASA Astrophysics Data System (ADS)
Wand, Charlie R.; Bates, Martin A.
2015-01-01
We present a systematic Monte Carlo simulation study of thin nematic and cholesteric shells with planar anchoring using an off-lattice model. The results obtained using the simple model correspond with previously published results for lattice-based systems, with the number, type, and position of defects observed dependent on the shell thickness with four half-strength defects in a tetrahedral arrangement found in very thin shells and a pair of defects in a bipolar (boojum) configuration observed in thicker shells. A third intermediate defect configuration is occasionally observed for intermediate thickness shells, which is stabilized in noncentrosymmetric shells of nonuniform thickness. Chiral nematic (cholesteric) shells are investigated by including a chiral term in the potential. Decreasing the pitch of the chiral nematic leads to a twisted bipolar (chiral boojum) configuration with the director twist increasing from the inner to the outer surface.
NASA Astrophysics Data System (ADS)
Turner, Drew; Mann, Ian; Usanova, Maria; Rodriguez, Juan; Henderson, Mike; Angelopoulos, Vassilis; Morley, Steven; Claudepierre, Seth; Li, Wen; Kellerman, Adam; Boyd, Alexander; Kim, Kyung-Chan
Earth’s outer electron radiation belt is a region of extreme variability, with relativistic electron intensities changing by orders of magnitude over time scales ranging from minutes to years. Extreme variations of outer belt electrons ultimately result from the relative impacts of various competing source (and acceleration), loss, and transport processes. Most of these processes involve wave-particle interactions between outer belt electrons and different types of plasma waves in the inner magnetosphere, and in turn, the activity of these waves depends on different solar wind and magnetospheric driving conditions and thus can vary drastically from event to event. Using multipoint analysis with data from NASA’s Van Allen Probes, THEMIS, and SAMPEX missions, NOAA’s GOES and POES constellations, and ground-based observatories, we present results from case studies revealing how different source/acceleration and loss mechanisms compete during active periods to result in drastically different distributions of outer belt electrons. By using a combination of low-Earth orbiting and high-altitude-equatorial orbiting satellites, we briefly review how it is possible to get a much more complete picture of certain wave activity and electron losses over the full range of MLTs and L-shells throughout the radiation belt. We then show example cases highlighting the importance of particular mechanisms, including: substorm injections and whistler-mode chorus waves for the source and acceleration of relativistic electrons; magnetopause shadowing and wave-particle interactions with EMIC waves for sudden losses; and ULF wave activity for driving radial transport, a process which is important for redistributing relativistic electrons, contributing both to acceleration and loss processes. We show how relativistic electron enhancement events involve local acceleration that is consistent with wave-particle interactions between a seed population of 10s to 100s of keV electrons, with a source in the plasma sheet, and chorus waves. We show how sudden losses during outer belt dropout events are dominated at higher L-shells (L>~4) by magnetopause shadowing and outward radial transport, which is effective over the full ranges of energy and equatorial pitch angle of outer belt electrons, but at lower L-shells near the plasmapause, energy and pitch angle dependent losses can also occur and are consistent with rapid scattering by interactions between relativistic electrons and EMIC waves. We show cases demonstrating how these different processes occur simultaneously during active periods, with relative effects that vary as a function of L-shell and electron energy and pitch angle. Ultimately, our results highlight the complexity of competing source/acceleration, loss, and transport processes in Earth’s outer radiation belt and the necessity of using multipoint observations to disambiguate between them for future studies.
Study on River Snail Shells Unearthed from Laoniupo Shang Dynasty Site.
Zhang, Rui; Yue, Lianjian; Yang, Junchang
2016-03-01
The samples of river snail shell pieces, unearthed from Laoniupo Shang dynasty site, were observed and characterized by SEM, Raman and IR to obtain the information about their chemical component and crystal structure. The uneven surface of the cuticle was covered with nanoparticles, which formed rough surface of the shells. The surface of pearl layer was combined with nano-sized flakes and kept smooth on the whole. The insection of shell was composed of three layers: the cuticle (100-120 μm in thickness), the prismatic layer (-130-140 μm in thickness), and the thickest pearl layer (280-300 μm in thickness). All layers had the component of calcium carbonate with aragonite structure and they were different in nanostructures because of different biomineralization processes.
NASA Astrophysics Data System (ADS)
Afzal, Bushra; Noor Afzal Team; Bushra Afzal Team
2014-11-01
The momentum and thermal turbulent boundary layers over a continuous moving sheet subjected to a free stream have been analyzed in two layers (inner wall and outer wake) theory at large Reynolds number. The present work is based on open Reynolds equations of momentum and heat transfer without any closure model say, like eddy viscosity or mixing length etc. The matching of inner and outer layers has been carried out by Izakson-Millikan-Kolmogorov hypothesis. The matching for velocity and temperature profiles yields the logarithmic laws and power laws in overlap region of inner and outer layers, along with friction factor and heat transfer laws. The uniformly valid solution for velocity, Reynolds shear stress, temperature and thermal Reynolds heat flux have been proposed by introducing the outer wake functions due to momentum and thermal boundary layers. The comparison with experimental data for velocity profile, temperature profile, skin friction and heat transfer are presented. In outer non-linear layers, the lowest order momentum and thermal boundary layer equations have also been analyses by using eddy viscosity closure model, and results are compared with experimental data. Retired Professor, Embassy Hotel, Rasal Ganj, Aligarh 202001 India.
Multilayer article having stabilized zirconia outer layer and chemical barrier layer
NASA Technical Reports Server (NTRS)
Bansal, Narottam P. (Inventor); Lee, Kang N. (Inventor)
2004-01-01
A multilayer article includes a substrate that includes at least one of a ceramic compound and a Si-containing metal alloy. An outer layer includes stabilized zirconia. Intermediate layers are located between the outer layer and the substrate and include a mullite-containing layer and a chemical barrier layer. The mullite-containing layer includes 1) mullite or 2) mullite and an alkaline earth metal aluminosilicate. The chemical barrier layer is located between the mullite-containing layer and the outer layer. The chemical barrier layer includes at least one of mullite, hafnia, hafnium silicate and rare earth silicate (e.g., at least one of RE.sub.2 SiO.sub.5 and RE.sub.2 Si.sub.2 O.sub.7 where RE is Sc or Yb). The multilayer article is characterized by the combination of the chemical barrier layer and by its lack of a layer consisting essentially of barium strontium aluminosilicate between the mullite-containing layer and the chemical barrier layer. Such a barium strontium aluminosilicate layer may undesirably lead to the formation of a low melting glass or unnecessarily increase the layer thickness with concomitant reduced durability of the multilayer article. In particular, the chemical barrier layer may include at least one of hafnia, hafnium silicate and rare earth silicate.
Global optimization of additive potential energy functions: Predicting binary Lennard-Jones clusters
NASA Astrophysics Data System (ADS)
Kolossváry, István; Bowers, Kevin J.
2010-11-01
We present a method for minimizing additive potential-energy functions. Our hidden-force algorithm can be described as an intricate multiplayer tug-of-war game in which teams try to break an impasse by randomly assigning some players to drop their ropes while the others are still tugging until a partial impasse is reached, then, instructing the dropouts to resume tugging, for all teams to come to a new overall impasse. Utilizing our algorithm in a non-Markovian parallel Monte Carlo search, we found 17 new putative global minima for binary Lennard-Jones clusters in the size range of 90-100 particles. The method is efficient enough that an unbiased search was possible; no potential-energy surface symmetries were exploited. All new minima are comprised of three nested polyicosahedral or polytetrahedral shells when viewed as a nested set of Connolly surfaces (though the shell structure has previously gone unscrutinized, known minima are often qualitatively similar). Unlike known minima, in which the outer and inner shells are comprised of the larger and smaller atoms, respectively, in 13 of the new minima, the atoms are not as clearly separated by size. Furthermore, while some known minima have inner shells stabilized by larger atoms, four of the new minima have outer shells stabilized by smaller atoms.
Energetic-particle drift motions in the outer dayside magnetosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buck, R.C.
1987-01-01
Models of the geomagnetic field predict that within a distance of approximately one earth radius inside the dayside magnetopause, magnetic fields produced by the Chapman-Ferraro magnetopause currents create high-latitude minimum-B pockets in the geomagnetic field. These pockets are theoretically capable of temporarily trapping azimuthally-drifting electrons and modifying electron directional distributions. The Lawrence Livermore National Laboratory's scanning electron spectrometer aboard the OGO-5 satellite provided detailed energetic (E > 70 keV) electron pitch-angle distributions throughout the magnetosphere. Distributions obtained in the outer dayside magnetosphere over a wide range of longitudes show unusual flux features. This study analyzes drift-shell branching caused by themore » minimum-B pockets, and interprets the observed flux features in terms of an adiabatic-shell branching and rejoining process. The author examines the shell-branching process for a static field in detail, using the Choe-Beard 1974 magnetospheric magnetic field mode. He finds that shell branching and rejoining conserves the particle mirror field B/sub M/, the fieldline integral invariant I, and the directional electron flux j. He also finds a good correlation between the itch angles that mark the transition from branched to unbranched shells in the model and the distinctive features of the OGO-5 distributions.« less
Stability of generic thin shells in conformally flat spacetimes
NASA Astrophysics Data System (ADS)
Amirabi, Z.
2017-07-01
Some important spacetimes are conformally flat; examples are the Robertson-Walker cosmological metric, the Einstein-de Sitter spacetime, and the Levi-Civita-Bertotti-Robinson and Mannheim metrics. In this paper we construct generic thin shells in conformally flat spacetime supported by a perfect fluid with a linear equation of state, i.e., p=ω σ . It is shown that, for the physical domain of ω , i.e., 0<ω ≤ 1, such thin shells are not dynamically stable. The stability of the timelike thin shells with the Mannheim spacetime as the outer region is also investigated.
Constituency and origins of cyclic growth layers in pelecypod shells, part 1
NASA Technical Reports Server (NTRS)
Berry, W. B. N.
1972-01-01
Growth layers occurring in shells of 98 species of pelecypods were examined microscopically in thin section and as natural and etched surfaces. Study began with shells of eleven species known from life history investigations to have annual cycles of growth. Internal microstructural features of the annual layers in these shells provided criteria for recognition of similar, apparently annual shell increments in eighty-six of eighty-seven other species. All of the specimens feature growth laminae, commonly on the order of 50 microns in thickness. The specimens from shallow marine environments show either a clustering of growth laminae related to the formation of concentric ridges or minor growth bands on the external shell surface. Based on observations of the number of growth laminae and clusters per annual-growth layer, it was hypothesised that the subannual increments may be related to daily and fortnightly (and in some cases monthly) cycles in the environment. Possible applications of the paleogrowth method in the fields of paleoecology and paleoclimatology are discussed.
Item Description: ISS TransHab Restraint Sample and Photo Documentation
NASA Technical Reports Server (NTRS)
Adams, Constance
2000-01-01
The yellow strap seen in the display is a piece of the main restraint layer of a test article for the ISS TransHab spacecraft, First conceived as a technology which is capable of supporting a [human] crew of six on an extended space journey such as the six-month trip to Mars, TransHab (short for "Transit habitat") is the first space inflatable module ever designed. As this text is written it is being considered as a replacement for the Habitation module on the International Space Station (ISS). It constitutes a major breakthrough both in technology and in tectonics: capable of tight packaging at light weight for efficient launch, the vehicle can then be inflated to its full size on orbit via its own inflation tanks. This is made possible by the separation of its main structural elements from its pressure-shell. In other words, all spacecraft flown to date have been of an exoskeletal type---i.e., its hard outer shell acts both as a pressure container and as its main channel for structural loading This includes the ISS, which is currently under construction in Low Earth Orbit [275 miles above the Earth]. By contrast TransHab is the first endoskeletal space Habitat, consisting of a dual system: a light, reconfigurable central structure of graphite composite and a multilayered, deployable pressure shell.
Ko, Young-Jin; Cho, Jung-Min; Kim, Inho; Jeong, Doo Seok; Lee, Kyeong-Seok; Park, Jong-Keuk; Baik, Young-Joon; Choi, Heon-Jin; Lee, Seung-Cheol; Lee, Wook-Seong
2016-01-01
We analyzed the nanodiamond-derived onion-like carbon (OLC) as function of synthesis temperature (1000~1400 °C), by high-resolution electron microscopy, electron energy loss spectroscopy, visible-Raman spectroscopy, ultraviolet photoemission spectroscopy, impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry. The temperature dependences of the obtained properties (averaged particle size, tensile strain, defect density, density of states, electron transfer kinetics, and electrochemical oxidation current) unanimously coincided: they initially increased and saturated at 1200 °C. It was attributed to the inherent tensile strains arising from (1) the volume expansion associated with the layer-wise diamond-to-graphite transformation of the core, which caused forced dilation of the outer shells during their thermal synthesis; (2) the extreme curvature of the shells. The former origin was dominant over the latter at the outermost shell, of which the relevant evolution in defect density, DOS and electron transfer kinetics determined the electrochemical performances. In detection of dopamine (DA), uric acid (UA) and ascorbic acid (AA) using the OLC as electrode, their oxidation peak currents were enhanced by factors of 15~60 with annealing temperature. Their limit of detection and the linear range of detection, in the post-treatment-free condition, were as excellent as those of the nano-carbon electrodes post-treated by Pt-decoration, N-doping, plasma, or polymer. PMID:27032957
NASA Astrophysics Data System (ADS)
Abrosimov, N. A.; Novosel'tseva, N. A.
2017-05-01
A technique for numerically analyzing the dynamic strength of two-layer metal-plastic cylindrical shells under an axisymmetric internal explosive loading is developed. The kinematic deformation model of the layered package is based on a nonclassical theory of shells. The geometric relations are constructed using relations of the simplest quadratic version of the nonlinear elasticity theory. The stress and strain tensors in the composite macrolayer are related by Hooke's law for an orthotropic body with account of degradation of the stiffness characteristics of the multilayer package due to local failure of some its elementary layers. The physical relations in the metal layer are formulated in terms of a differential theory of plasticity. An energy-correlated resolving system of dynamic equations for the metal-plastic cylindrical shells is derived by minimizing the functional of total energy of the shells as three-dimensional bodies. The numerical method for solving the initial boundary-value problem formulated is based on an explicit variational-difference scheme. The reliability of the technique considered is verified by comparing numerical results with experimental data. An analysis of the ultimate strains and strength of one-layer basalt-and glass-fiber-reinforced plastic and two-layer metalplastic cylindrical shells is carried out.
2014-05-10
based on modified fullerenes , carbon nanotubes and gold nanoparticles (including nanocages and nanorods) were very recently reported.4 Nevertheless, this...ratios of 1:1.6 and 1:16, in order to form an onion- like core-shell structure, containing TiN core and shells of TPP (inner shell) and chitosan (outer...These results nicely correlate with the cells viability results and the formation of the ROS is most likely the cause of the cells death (Figure 24
Shell Inspection History and Current CMM Inspection Efforts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montano, Joshua Daniel
The following report provides a review of past and current CMM Shell Inspection efforts. Calibration of the Sheffield rotary contour gauge has expired and the primary inspector, Matthew Naranjo, has retired. Efforts within the Inspection team are transitioning from maintaining and training new inspectors on Sheffield to off-the-shelf CMM technology. Although inspection of a shell has many requirements, the scope of the data presented in this report focuses on the inner contour, outer contour, radial wall thickness and mass comparisons.
Article having an improved platinum-aluminum-hafnium protective coating
NASA Technical Reports Server (NTRS)
Nagaraj, Bangalore Aswatha (Inventor); Williams, Jeffrey Lawrence (Inventor)
2005-01-01
An article protected by a protective coating has a substrate and a protective coating having an outer layer deposited upon the substrate surface and a diffusion zone formed by interdiffusion of the outer layer and the substrate. The protective coating includes platinum, aluminum, no more than about 2 weight percent hafnium, and substantially no silicon. The outer layer is substantially a single phase.
Boldt, Klaus; Jander, Sebastian; Hoppe, Kathrin; Weller, Horst
2011-10-25
We present the characterization of the organic ligand shell of CdSe/Cd(x)Zn(1-x)S/ZnS nanoparticles by means of fluorescence quenching experiments. Both electron scavengers and acceptors for resonance energy transfer were employed as probes. Different quenching behavior for short and long chain thiol ligands in water was found. It could be shown that poly(ethylene oxide) (PEO)-capping of the particles comprises a densely packed inner shell and a loosely packed outer shell in which ions and small molecules diffuse unhindered. A quantitative uptake of quencher molecules into the PEO shell was observed, through which the particle volume including the ligand sphere could be determined.
Complementary high performance sensing of gases and liquids using silver nanotube
NASA Astrophysics Data System (ADS)
Isro, Suhandoko D.; Iskandar, Alexander A.; Tjia, May-On
2017-11-01
A study on refractive index sensing using a silver nanotube is carried out to investigate the relative advantages of sensing gaseous and liquid samples outside the tube (outer sensing) and inside the core (inner sensing). The geometrical and material parameters of the nanotube are varied to explore the favorable sensing performances covering the range of refractive indices between 1.1 and 1.5. It is shown that the performances at the three sensing points considered are consistently improved with decreased shell thickness and core radius in both sensing modes. While the performance is also monotonously and drastically enhanced with decreased counter permittivity in inner sensing, the similarly large variations in the outer sensing mode are less than strictly consistent. The study further shows that the most favorable FOM values are attained by both sensing modes with 2.5 nm Ag shell thickness and 27.5 nm core radius of the nanotube, whereas the most favorable counter permittivities are different for the two modes. Remarkably, the trend of increasing FOM for samples of lower refractive indices in outer sensing is entirely reversed in inner sensing with roughly the same level of performances. Thus, the core/shell structure of the silver nanotube offers the complementary high performance sensing of gases and liquids using the two sensing modes with appropriately chosen system parameters.
Analysis of flexible layered shallow shells on elastic foundation
NASA Astrophysics Data System (ADS)
Stupishin, L.; Kolesnikov, A.; Tolmacheva, T.
2017-05-01
This paper contains numerical analysis of a layered geometric nonlinear flexible shallow shell based on an elastic foundation. Rise of arch in the center of the shell, width, length and type of support are given. The design variable is taken to be the thickness of the shallow shell, the form of the middle surface forming and the characteristic of elastic foundations. Critical force coefficient and stress of shells are calculated by Bubnov-Galerkin. Stress, characteristic of elastic foundations - thickness dependence are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillman, Y.; Prialnik, D.; Kovetz, A.
Can a white dwarf (WD), accreting hydrogen-rich matter from a non-degenerate companion star, ever exceed the Chandrasekhar mass and explode as a SN Ia? We explore the range of accretion rates that allow a WD to secularly grow in mass, and derive limits on the accretion rate and on the initial mass that will allow it to reach 1.4M{sub ⊙}—the Chandrasekhar mass. We follow the evolution through a long series of hydrogen flashes, during which a thick helium shell accumulates. This determines the effective helium mass accretion rate for long-term, self-consistent evolutionary runs with helium flashes. We find that netmore » mass accumulation always occurs despite helium flashes. Although the amount of mass lost during the first few helium shell flashes is a significant fraction of that accumulated prior to the flash, that fraction decreases with repeated helium shell flashes. Eventually no mass is ejected at all during subsequent flashes. This unexpected result occurs because of continual heating of the WD interior by the helium shell flashes near its surface. The effect of heating is to lower the electron degeneracy throughout the WD, especially in the outer layers. This key result yields helium burning that is quasi-steady state, instead of explosive. We thus find a remarkably large parameter space within which long-term, self-consistent simulations show that a WD can grow in mass and reach the Chandrasekhar limit, despite its helium flashes.« less
Some thoughts on the origin of lunar ANT-KREEP and mare basalts
NASA Technical Reports Server (NTRS)
Wakita, H.; Laul, J. C.; Schmitt, R. A.
1975-01-01
It is suggested that a series of ANT (anorthosite-norite-troctolite)-KREEP type rocks and the source material for mare basalts sampled by Apollo 11, 12, 15, and 17 may have been derived from a common magmatic differentiation. This differentiation is studied on the basis of a model which proposes that, in the early history of the moon, extensive melting occurred in the outer lunar shell and a magma layer of 100-200 km was formed. The presence of a residual liquid which has not yet been sampled is suspected between high-K KREEP and the Apollo 11 basalt materials. This residual liquid would have a FeO/MgO ratio greater than one and would be significantly enriched in apatite, zircon, K-feldspar, and ilmenite minerals.
Numerical Simulation of the Layer-Bylayer Destruction of Cylindrical Shells Under Explosive Loading
NASA Astrophysics Data System (ADS)
Abrosimov, N. A.; Novoseltseva, N. A.
2015-09-01
A technique of numerical analysis of the influence of reinforcement structure on the nature of the dynamic response and the process of layer-by-layer destruction of layered fiberglass cylindrical shells under an axisymmetric internal explosive loading is elaborated. The kinematic model of deformation of the laminate package is based on a nonclassical theory of shells. The geometric dependences are based on simple quadratic relations of the nonlinear theory of elasticity. The relationship between the stress and strain tensors are established by using Hooke's law for orthotropic bodies with account of degradation of stiffness characteristics of the multilayer composite due to the local destruction of some its elementary layers. An energetically consistent system of dynamic equations for composite cylindrical shells is obtained by minimizing the functional of total energy of the shell as a three-dimensional body. The numerical method for solving the formulated initial boundary-value problem is based on an explicit variational-difference scheme. Results confirming the reliability of the method used to analyze the influence of reinforcement structure on the character of destruction and the bearing capacity of pulse-loaded cylindrical shells are presented.
NASA Astrophysics Data System (ADS)
Tangri, V.; Harvey-Thompson, A. J.; Giuliani, J. L.; Thornhill, J. W.; Velikovich, A. L.; Apruzese, J. P.; Ouart, N. D.; Dasgupta, A.; Jones, B.; Jennings, C. A.
2016-10-01
Radiation-magnetohydrodynamic simulations using the non-local thermodynamic equilibrium Mach2-Tabular Collisional-Radiative Equilibrium code in (r, z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1. In each pair, one of the shots had a central jet. The experimental trends in the Ar K-shell yield and power are reproduced in the calculations. However, the K-shell yield and power are significantly lower than the other three shots for the case of a double-shell puff of 1:1 mass ratio and no central jet configuration. Further simulations of a hypothetical experiment with the same relative density profile of this configuration, but higher total mass, show that the coupled energy from the generator and the K-shell yield can be increased to levels achieved in the other three configurations, but not the K-shell power. Based on various measures of effective plasma radius, the compression in the 1:1 mass ratio and no central jet case is found to be less because the plasma inside the magnetic piston is hotter and of lower density. Because of the reduced density, and the reduced radiation cooling (which is proportional to the square of the density), the core plasma is hotter. Consequently, for the 1:1 outer-to-inner shell mass ratio, the load mass controls the yield and the center jet controls the power.
Rupture of poly implant prothèse silicone breast implants: an implant retrieval study.
Swarts, Eric; Kop, Alan M; Nilasaroya, Anastasia; Keogh, Catherine V; Cooper, Timothy
2013-04-01
Poly Implant Prothèse implants were recalled in Australia in April of 2010 following concerns of higher than expected rupture rates and the use of unauthorized industrial grade silicone as a filler material. Although subsequent investigations found that the gel filler material does not pose a threat to human health, the important question of what caused a relatively modern breast implant to have such a poor outcome compared with contemporary silicone breast implants is yet to be addressed. From a cohort of 27 patients, 19 ruptured Poly Implant Prothèse breast implants were subjected to a range of mechanical tests and microscopic/macroscopic investigations to evaluate possible changes in properties as a result of implantation. New Poly Implant Prothèse implants were used as controls. All samples, explanted and controls, complied with the requirements for shell integrity as specified in the International Organization for Standardization 14607. Compression testing revealed rupture rates similar to those reported in the literature. Shell thickness was highly variable, with most shells having regions below the minimum thickness of 0.57 mm that was specified by the manufacturer. Potential regions of stress concentration were observed on the smooth inner surfaces and outer textured surfaces. The high incidence of Poly Implant Prothèse shell rupture is most likely a result of inadequate quality control, with contributory factors being shell thickness variation and manufacturing defects on both inner and outer surfaces of the shell. No evidence of shell degradation with implantation time was determined.
Liu, Xiaojun; Zeng, Shimei; Dong, Shaojian; Jin, Can; Li, Jiale
2015-01-01
In this study, we clone and characterize a novel matrix protein, hic31, from the mantle of Hyriopsis cumingii. The amino acid composition of hic31 consists of a high proportion of Glycine residues (26.67%). Tissue expression detection by RT-PCR indicates that hic31 is expressed specifically at the mantle edge. In situ hybridization results reveals strong signals from the dorsal epithelial cells of the outer fold at the mantle edge, and weak signals from inner epithelial cells of the same fold, indicating that hic31 is a prismatic-layer matrix protein. Although BLASTP results identify no shared homology with other shell-matrix proteins or any other known proteins, the hic31 tertiary structure is similar to that of collagen I, alpha 1 and alpha 2. It has been well proved that collagen forms the basic organic frameworks in way of collagen fibrils and minerals present within or outside of these fibrils. Therefore, hic31 might be a framework-matrix protein involved in the prismatic-layer biomineralization. Besides, the gene expression of hic31 increase in the early stages of pearl sac development, indicating that hic31 may play important roles in biomineralization of the pearl prismatic layer.
Surface Evolution from Orbital Decay on Phobos
NASA Astrophysics Data System (ADS)
Hurford, Terry; Asphaug, Erik; Spitale, Joseph; Hemingway, Douglas; Rhoden, Alyssa; Henning, Wade; Bills, Bruce; Kattenhorn, Simon; Walker, Matthew
2015-11-01
Phobos, the innermost satellite of Mars, displays an extensive system of grooves that are mostly symmetric about its sub-Mars point. Phobos is steadily spiraling inward due to the tides it raises, and will suffer tidal disruption before colliding with Mars. We calculate the surface stress field of the de-orbiting satellite and show that the first signs of tidal disruption are already present on its surface. Most of Phobos’ prominent grooves have an excellent correlation with computed stress orientations. The model predicts an interior that has very low strength on the tidal evolution timescale, overlain by a ~10-100 m exterior shell that has elastic properties similar to lunar regolith.Shortly after the Viking spacecraft obtained the first geomorphic images of Phobos, it was proposed that stresses from orbital decay cause grooves. But, assuming a homogeneous Phobos, it proved impossible to account for the build-up of failure stress in the exterior regardless of the value assumed for Phobos’ rigidity. Hence, the tidal model languished. Here, we revisit the tidal origin of surface fractures with a more detailed treatment that shows the production of significant stress in a surface layer, with a very strong correlation to the geometry of grooves.Our model results applied to surface observations imply that Phobos has a rubble pile interior that is nearly strengthless. A lunar-like cohesive regolith outer layer overlays the rubble pile interior. This outer layer behaves elastically and can experience significant tidal stress at levels able to drive tensile failure. Fissures can develop as the global body deforms due to increasing tides related to orbital decay. Phobos may have an active and evolving surface; an exciting target for further exploration. The interior predictions of this model can be evaluated by future detailed studies performed by an orbiter or lander.
Liu, Quanbing; Ji, Shan; Yang, Juan; Wang, Hui; Pollet, Bruno G; Wang, Rongfang
2017-08-24
An allomorph MnO₂@MnO₂ core-shell nanostructure was developed via a two-step aqueous reaction method. The data analysis of Scanning Electron Microscopy, Transmission Electron Microscopy, X-Ray Diffraction and N₂ adsorption-desorption isotherms experiments indicated that this unique architecture consisted of a porous layer of amorphous-MnO₂ nano-sheets which were well grown onto the surface of α-MnO₂ nano-needles. Cyclic voltammetry experiments revealed that the double-layer charging and Faradaic pseudo -capacity of the MnO₂@MnO₂ capacitor electrode contributed to a specific capacitance of 150.3 F·g -1 at a current density of 0.1 A·g -1 . Long cycle life experiments on the as-prepared MnO₂@MnO₂ sample showed nearly a 99.3% retention after 5000 cycles at a current density of 2 A·g -1 . This retention value was found to be significantly higher than those reported for amorphous MnO₂-based capacitor electrodes. It was also found that the remarkable cycleability of the MnO₂@MnO₂ was due to the supporting role of α-MnO₂ nano-needle core and the outer amorphous MnO₂ layer.
Epitaxial Growth of Lattice-Mismatched Core-Shell TiO2 @MoS2 for Enhanced Lithium-Ion Storage.
Dai, Rui; Zhang, Anqi; Pan, Zhichang; Al-Enizi, Abdullah M; Elzatahry, Ahmed A; Hu, Linfeng; Zheng, Gengfeng
2016-05-01
Core-shell structured nanohybrids are currently of significant interest due to their synergetic properties and enhanced performances. However, the restriction of lattice mismatch remains a severe obstacle for heterogrowth of various core-shells with two distinct crystal structures. Herein, a controlled synthesis of lattice-mismatched core-shell TiO2 @MoS2 nano-onion heterostructures is successfully developed, using unilamellar Ti0.87 O2 nanosheets as the starting material and the subsequent epitaxial growth of MoS2 on TiO2 . The formation of these core-shell nano-onions is attributed to an amorphous layer-induced heterogrowth mechanism. The number of MoS2 layers can be well tuned from few to over ten layers, enabling layer-dependent synergistic effects. The core-shell TiO2 @MoS2 nano-onion heterostructures exhibit significantly enhanced energy storage performance as lithium-ion battery anodes. The approach has also been extended to other lattice-mismatched systems such as TiO2 @MoSe2 , thus suggesting a new strategy for the growth of well-designed lattice-mismatched core-shell structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei
2016-01-01
Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2–3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm−2 and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs. PMID:27125309
Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei
2016-04-29
Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2-3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm(-2) and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs.
Laying performance and egg quality of blue-shelled layers as affected by different housing systems.
Wang, X L; Zheng, J X; Ning, Z H; Qu, L J; Xu, G Y; Yang, N
2009-07-01
Blue-shelled eggs are gaining popularity as the consumption demand diversifies in some countries. This study was carried out to investigate the laying performance and egg quality of the blue-shelled egg layers as well as the effects of different housing systems on egg production and quality traits. One thousand pullets from Dongxiang blue-shelled layers were divided into 2 even groups and kept in different housing systems (outdoor vs. cage). Daily laying performance was recorded from 20 to 60 wk of age. External and internal egg quality traits were examined at 26, 34, 42, and 50 wk. Yolk cholesterol concentration and whole egg cholesterol content were measured at 40 wk of age. Average laying rate from 20 to 60 wk for the cage (54.7%) was significantly higher than that of outdoor layers (39.3%). Among all of the egg quality traits, only eggshell color was affected by housing system. Interaction between housing system and layer age was found in egg weight, eggshell color, eggshell ratio, yolk color, and yolk weight. Meanwhile, cholesterol concentration in yolk was 8.64 +/- 0.40 mg/g in the outdoor eggs, which was significantly lower than that of eggs from the cage birds (10.32 +/- 0.48 mg/g; P < 0.05). Whole egg cholesterol content in the outdoor eggs (125.23 +/- 6.32 mg/egg) was also significantly lower than that of eggs from the caged layers (158.01 +/- 8.62 mg/egg). The results demonstrated that blue-shelled layers have lower productivity in the outdoor system than in the cage system. Blue-shelled layers have lower egg weight, larger yolk proportion, and lower cholesterol content compared with commercial layers. In a proper marketing system, lower productivity could be balanced by a higher price for the better quality of blue-shelled eggs.
Lei, Yu; Huang, Zheng-Hong; Yang, Ying; Shen, Wanci; Zheng, Yongping; Sun, Hongyu; Kang, Feiyu
2013-01-01
Li4Ti5O12/activated carbon hybrid supercapacitor can combine the advantages of both lithium-ion battery and supercapacitor, which may meet the requirements for developing high-performance hybrid electric vehicles. Here we proposed a novel “core-shell” porous graphitic carbon (PGC) to replace conventional activated carbon for achieving excellent cell performance. In this PGC structure made from mesocarbon microbead (MCMB), the inner core is composed of porous amorphous carbon, while the outer shell is graphitic carbon. The abundant porosity and the high surface area not only offer sufficient reaction sites to store electrical charge physically, but also can accelerate the liquid electrolyte to penetrate the electrode and the ions to reach the reacting sites. Meanwhile, the outer graphitic shells of the porous carbon microbeads contribute to a conductive network which will remarkably facilitate the electron transportation, and thus can be used to construct a high-rate, high-capacity cathode for hybrid supercapacitor, especially at high current densities. PMID:23963328
Large-deformation and high-strength amorphous porous carbon nanospheres
NASA Astrophysics Data System (ADS)
Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing
2016-04-01
Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.
Polymer micromold and fabrication process
Lee, A.P.; Northrup, M.A.; Ahre, P.E.; Dupuy, P.C.
1997-08-19
A mold assembly is disclosed with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10`s of micros ({micro}m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 {micro}m in length up to 150 {micro}m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly. 6 figs.
Polymer micromold and fabrication process
Lee, Abraham P.; Northrup, M. Allen; Ahre, Paul E.; Dupuy, Peter C.
1997-01-01
A mold assembly with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10's of micros (.mu.m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 .mu.m in length up to 150 .mu.m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly.
Rane, Ashish Babulal; Gattani, Surendra Ganeshlal; Kadam, Vinayak Dinkar; Tekade, Avinash Ramrao
2009-11-01
The aim of present investigation was to develop press coated tablet for pulsatile drug delivery of ketoprofen using hydrophilic and hydrophobic polymers. The drug delivery system was designed to deliver the drug at such a time when it could be most needful to patient of rheumatoid arthritis. The press coated tablets containing ketoprofen in the inner core was formulated with an outer shell by different weight ratio of hydrophobic polymer (micronized ethyl cellulose powder) and hydrophilic polymers (glycinemax husk or sodium alginate). The release profile of press coated tablet exhibited a lag time followed by burst release, in which outer shell ruptured into two halves. Authors also investigated factors influencing on lag time such as particle size and viscosity of ethyl cellulose, outer coating weight and paddle rpm. The surface morphology of the tablet was examined by a scanning electron microscopy. Differential scanning calorimeter and Fourier transformed infrared spectroscopy study showed compatibility between ketoprofen and coating material.
Outer brain barriers in rat and human development
Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld
2015-01-01
Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456
Outer brain barriers in rat and human development.
Brøchner, Christian B; Holst, Camilla B; Møllgård, Kjeld
2015-01-01
Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer.
A kinematic determination of the structure of the double ring planetary nebula NGC 2392, the Eskimo
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'dell, C.R.; Weiner, L.D.; Chu, Yoyhua
Slit spectra and existing velocity cube data have been used to determine the structure of the double ring PN NGC 2392. The inner shell is a stellar wind-sculpted prolate spheroid with a ratio of axes of 2:1 and the approaching end of the long axis pointed 20 deg from the line of sight in P.A. = 200 deg. The outer ring is caused by an outer disk with density dropping off with distance from the central star and with distance from its plane, which is the same as the equatorial band of high density in the inner shell. The outermore » disk contains a ring of higher density knots at a distance of 16 arcsec and is losing material through free expansion, forming an outer envelope of increasing velocity. Forbidden S II spectra are used to determine the densities in all of the major regions of the nebula. It is argued that the filamentary cores at the centers of the knots seen in the outer ring originate in the sublimation of bodies formed at the same time as the parent star. 26 refs.« less
Controlling the Growth of Staphylococcus epidermidis by Layer-By-Layer Encapsulation.
Jonas, Alain M; Glinel, Karine; Behrens, Adam; Anselmo, Aaron C; Langer, Robert S; Jaklenec, Ana
2018-05-16
Commensal skin bacteria such as Staphylococcus epidermidis are currently being considered as possible components in skin-care and skin-health products. However, considering the potentially adverse effects of commensal skin bacteria if left free to proliferate, it is crucial to develop methodologies that are capable of maintaining bacteria viability while controlling their proliferation. Here, we encapsulate S. epidermidis in shells of increasing thickness using layer-by-layer assembly, with either a pair of synthetic polyelectrolytes or a pair of oppositely charged polysaccharides. We study the viability of the cells and their delay of growth depending on the composition of the shell, its thickness, the charge of the last deposited layer, and the degree of aggregation of the bacteria which is varied using different coating procedures-among which is a new scalable process that easily leads to large amounts of nonaggregated bacteria. We demonstrate that the growth of bacteria is not controlled by the mechanical properties of the shell but by the bacteriostatic effect of the polyelectrolyte complex, which depends on the shell thickness and charge of its outmost layer, and involves the diffusion of unpaired amine sites through the shell. The lag times of growth are sufficient to prevent proliferation for daily topical applications.
Outer-layer manipulators for turbulent drag reduction
NASA Technical Reports Server (NTRS)
Anders, J. B., Jr.
1990-01-01
The last ten years have yielded intriguing research results on aerodynamic boundary outer-layer manipulators as local skin friction reduction devices at low Reynolds numbers; net drag reduction device systems for entire aerodynamic configurations are nevertheless noted to remain elusive. Evidence has emerged for dramatic alterations of the structure of a turbulent boundary layer which persist for long distances downstream and reduce wall shear as a results of any one of several theoretically possible mechanisms. Reduced effectiveness at high Reynolds numbers may, however, limit the applicability of outer-layer manipulators to practical aircraft drag reduction.
Numerical simulations of the stratified oceanic bottom boundary layer
NASA Astrophysics Data System (ADS)
Taylor, John R.
Numerical simulations are used to consider several problems relevant to the turbulent oceanic bottom boundary layer. In the first study, stratified open channel flow is considered with thermal boundary conditions chosen to approximate a shallow sea. Specifically, a constant heat flux is applied at the free surface and the lower wall is assumed to be adiabatic. When the surface heat flux is strong, turbulent upwellings of low speed fluid from near the lower wall are inhibited by the stable stratification. Subsequent studies consider a stratified bottom Ekman layer over a non-sloping lower wall. The influence of the free surface is removed by using an open boundary condition at the top of the computational domain. Particular attention is paid to the influence of the outer layer stratification on the boundary layer structure. When the density field is initialized with a linear profile, a turbulent mixed layer forms near the wall, which is separated from the outer layer by a strongly stable pycnocline. It is found that the bottom stress is not strongly affected by the outer layer stratification. However, stratification reduces turbulent transport to the outer layer and strongly limits the boundary layer height. The mean shear at the top of the boundary layer is enhanced when the outer layer is stratified, and this shear is strong enough to cause intermittent instabilities above the pycnocline. Turbulence-generated internal gravity waves are observed in the outer layer with a relatively narrow frequency range. An explanation for frequency content of these waves is proposed, starting with an observed broad-banded turbulent spectrum and invoking linear viscous decay to explain the preferential damping of low and high frequency waves. During the course of this work, an open-source computational fluid dynamics code has been developed with a number of advanced features including scalar advection, subgrid-scale models for large-eddy simulation, and distributed memory parallelism.
Photoprotective substance occurs primarily in outer layers of fish skin
Fabacher, D.L.; Little, E.E.
1998-01-01
Methanol extracts of dorsal skin layers, eyes, gills, and livers from ultraviolet-B (UVB) radiation-sensitive and UVB-tolerant species of freshwater fish were examined for a substance that appears to be photoprotective. Significantly larger amounts of this substance were found in extracts of outer dorsal skin layers from both UVB-sensitive and UVB-tolerant fish when compared with extracts of inner dorsal skin layers. This substance occurred in minor amounts or was not detected in eye, gill, and liver extracts. The apparent primary function of this substance in fish is to protect the cells in outer dorsal skin layers from harmful levels of UVB radiation.
Photoprotective substance occurs primarily in outer layers of fish skin.
Fabacher, D L; Little, E E
1998-01-01
Methanol extracts of dorsal skin layers, eyes, gills, and livers from ultraviolet-B (UVB) radiation-sensitive and UVB-tolerant species of freshwater fish were examined for a substance that appears to be photoprotective. Significantly larger amounts of this substance were found in extracts of outer dorsal skin layers from both UVB-sensitive and UVB-tolerant fish when compared with extracts of inner dorsal skin layers. This substance occurred in minor amounts or was not detected in eye, gill, and liver extracts. The apparent primary function of this substance in fish is to protect the cells in outer dorsal skin layers from harmful levels of UVB radiation.
Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions
NASA Astrophysics Data System (ADS)
Wu, Yao; Yan, Xin; Wei, Wei; Zhang, Jinnan; Zhang, Xia; Ren, Xiaomin
2018-04-01
We optimized the performance of GaAs nanowire pin junction array solar cells by introducing AlGaAs/GaAs heterejunctions. AlGaAs is used for the p type top segment for axial junctions and the p type outer shell for radial junctions. The AlGaAs not only serves as passivation layers for GaAs nanowires but also confines the optical generation in the active regions, reducing the recombination loss in heavily doped regions and the minority carrier recombination at the top contact. The results show that the conversion efficiency of GaAs nanowires can be greatly enhanced by using AlGaAs for the p segment instead of GaAs. A maximum efficiency enhancement of 8.42% has been achieved in this study. And for axial nanowire, by using AlGaAs for the top p segment, a relatively long top segment can be employed without degenerating device performance, which could facilitate the fabrication and contacting of nanowire array solar cells. While for radial nanowires, AlGaAs/GaAs nanowires show better tolerance to p-shell thickness and surface condition.
Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions.
Wu, Yao; Yan, Xin; Wei, Wei; Zhang, Jinnan; Zhang, Xia; Ren, Xiaomin
2018-04-25
We optimized the performance of GaAs nanowire pin junction array solar cells by introducing AlGaAs/GaAs heterejunctions. AlGaAs is used for the p type top segment for axial junctions and the p type outer shell for radial junctions. The AlGaAs not only serves as passivation layers for GaAs nanowires but also confines the optical generation in the active regions, reducing the recombination loss in heavily doped regions and the minority carrier recombination at the top contact. The results show that the conversion efficiency of GaAs nanowires can be greatly enhanced by using AlGaAs for the p segment instead of GaAs. A maximum efficiency enhancement of 8.42% has been achieved in this study. And for axial nanowire, by using AlGaAs for the top p segment, a relatively long top segment can be employed without degenerating device performance, which could facilitate the fabrication and contacting of nanowire array solar cells. While for radial nanowires, AlGaAs/GaAs nanowires show better tolerance to p-shell thickness and surface condition.
Dynamical onset of superconductivity and retention of magnetic fields in cooling neutron stars
NASA Astrophysics Data System (ADS)
Ho, Wynn C. G.; Andersson, Nils; Graber, Vanessa
2017-12-01
A superconductor of paired protons is thought to form in the core of neutron stars soon after their birth. Minimum energy conditions suggest magnetic flux is expelled from the superconducting region due to the Meissner effect, such that the neutron star core is largely devoid of magnetic fields for some nuclear equation of state and proton pairing models. We show via neutron star cooling simulations that the superconducting region expands faster than flux is expected to be expelled because cooling timescales are much shorter than timescales of magnetic field diffusion. Thus magnetic fields remain in the bulk of the neutron star core for at least 106-107yr . We estimate the size of flux free regions at 107yr to be ≲100 m for a magnetic field of 1011G and possibly smaller for stronger field strengths. For proton pairing models that are narrow, magnetic flux may be completely expelled from a thin shell of approximately the above size after 105yr . This shell may insulate lower conductivity outer layers, where magnetic fields can diffuse and decay faster, from fields maintained in the highly conducting deep core.
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.
1996-01-01
Mechanics for the analysis of laminated composite shells with piezoelectric actuators and sensors are presented. A new mixed-field laminate theory for piezoelectric shells is formulated in curvilinear coordinates which combines single-layer assumptions for the displacements and a layerwise representation for the electric potential. The resultant coupled governing equations for curvilinear piezoelectric laminates are described. Structural mechanics are subsequently developed and an 8-node finite-element is formulated for the static and dynamic analysis of adaptive composite structures of general laminations containing piezoelectric layers. Evaluations of the method and comparisons with reported results are presented for laminated piezoelectric-composite plates, a closed cylindrical shell with a continuous piezoceramic layer and a laminated composite semi-circular cantilever shell with discrete cylindrical piezoelectric actuators and/or sensors.
Some preliminary calculations of whole atom Compton scattering of unpolarized photons
NASA Astrophysics Data System (ADS)
Bergstrom, P. M.; Surić, T.; Pisk, K.; Pratt, R. H.
1992-07-01
This paper represents a preliminary attempt to develop a practical prescription for calculating whole atom cross sections for the Compton scattering of unpolarized photons from the bound electrons of an atom for the entire spectrum of scattered photon energies. We initially study the scattering of 2.94 keV photons from carbon. We make use of our new second order S-matrix computer code in this case to verify that, when our recently developed criterion for the validity of the relativistic impulse approximation (which concerns the average momentum contributing to the photon spectrum ( pav)) is satisfied, the spectrum is adequately described by the impulse approximation. This criterion is generally satisfied in the peak intensity region for scattering by the outer shells, which dominate at these scattered photon energies. For soft scattered photons, however, the spectrum, dominated by K shell contributions, is given by terms corresponding to the contribution of the " p· A" term in the nonrelativistic interaction Hamiltonian, not included in the impulse approximation. Here, the spectrum is adequately reproduced by the K shell contribution. We then consider scattering of 17.4 keV photons from aluminum and 279.1 keV photons from lead. In these cases we use the S-matrix for the K shell and the impulse approximation for the outer shells, and find good agreement with experiment.
High ink absorption performance of inkjet printing based on SiO2@Al13 core-shell composites
NASA Astrophysics Data System (ADS)
Chen, YiFan; Jiang, Bo; Liu, Li; Du, Yunzhe; Zhang, Tong; Zhao, LiWei; Huang, YuDong
2018-04-01
The increasing growth of the inkjet market makes the inkjet printing more necessary. A composite material based on core-shell structure has been developed and applied to prepare inkjet printing layer. In this contribution, the ink printing record layers based on SiO2@Al13 core-shell composite was elaborated. The prepared core-shell composite materials were characterized by X-ray photoelectron spectroscopy (XPS), zeta potential, X-ray diffraction (XRD), scanning electron microscopy (SEM). The results proved the presence of electrostatic adsorption between SiO2 molecules and Al13 molecules with the formation of the well-dispersed system. In addition, based on the adsorption and the liquid permeability analysis, SiO2@Al13 ink printing record layer achieved a relatively high ink uptake (2.5 gmm-1) and permeability (87%), respectively. The smoothness and glossiness of SiO2@Al13 record layers were higher than SiO2 record layers. The core-shell structure facilitated the dispersion of the silica, thereby improved its ink absorption performance and made the clear printed image. Thus, the proposed procedure based on SiO2@Al13 core-shell structure of dye particles could be applied as a promising strategy for inkjet printing.
NASA Astrophysics Data System (ADS)
Hartono, R.; Sucipto, T.
2018-02-01
Characteristic of laminated board from oil palm trunk (OPT) is very low in quality. The effort to improved it’s quality done by using the outer layer from high density wood. The purpose of this experiment was to analyzed the effects of the outer layer on physical and mechanical properties of OPT and to obtain optimum treatment to fulfills JAS 234:2003. All of laminated board was made of 3 layers, and for the middle layer was made by densified-OPT. Then for the outer layer was made of sengon and meranti wood. The sample size was 5 cm (width) × 3 cm (thick) × 45 cm (length). The various outer layer of laminated board were A (OPT/densified OPT/OPT); B (Sengon/densified OPT/OPT); C (Sengon/densified OPT/sengon); D (Meranti/densified OPT/OPT) and E (Meranti/densified OPT/meranti). The results showed that the moisture content, density, thickness swelling, delamination, MOR and MOE were 6.10-8.48%; 0.40-0.63 g/cm3; 6.43-13.20%; 0%; 168.79-438.29 kg/cm2 and 30115-100454 kg/cm2, respectively. The moisture content and delamination fulfills JAS 234:2003, while density and thickness swelling did not fulfill standard. Whereas for MOR and MOE value, only type D and E that fulfill standard. There are strongth relationship between density and mechanical properties, such as MOR and MOE value. The optimum treatment in this reseach to made laminated board made from OPT was type D that using the meranti as outer layer.
Effects of long-range interactions on curvature energies of viral shells
NASA Astrophysics Data System (ADS)
Shojaei, Hamid R.; Božič, Anže Lošdorfer; Muthukumar, Murugappan; Podgornik, Rudolf
2016-05-01
We formulate a theory of the effects of long-range interactions on the surface tension and spontaneous curvature of proteinaceous shells based on the general Deryaguin-Landau-Verwey-Overbeek mesoscale approach to colloid stability. We derive the full renormalization formulas for the elastic properties of the shell and consider in detail the renormalization of the spontaneous curvature as a function of the corresponding Hamaker coefficient, inner and outer capsid charges, and bathing solution properties. The renormalized spontaneous curvature is found to be a nonmonotonic function of several parameters describing the system.
Solar-thermal reaction processing
Weimer, Alan W; Dahl, Jaimee K; Lewandowski, Allan A; Bingham, Carl; Raska Buechler, Karen J; Grothe, Willy
2014-03-18
In an embodiment, a method of conducting a high temperature chemical reaction that produces hydrogen or synthesis gas is described. The high temperature chemical reaction is conducted in a reactor having at least two reactor shells, including an inner shell and an outer shell. Heat absorbing particles are included in a gas stream flowing in the inner shell. The reactor is heated at least in part by a source of concentrated sunlight. The inner shell is heated by the concentrated sunlight. The inner shell re-radiates from the inner wall and heats the heat absorbing particles in the gas stream flowing through the inner shell, and heat transfers from the heat absorbing particles to the first gas stream, thereby heating the reactants in the gas stream to a sufficiently high temperature so that the first gas stream undergoes the desired reaction(s), thereby producing hydrogen or synthesis gas in the gas stream.
Pressurized electrolysis stack with thermal expansion capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourgeois, Richard Scott
The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, themore » electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.« less
Lindl, J.D.; Bangerter, R.O.
1975-10-31
Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.
NASA Astrophysics Data System (ADS)
Moya, Pablo S.; Pinto, Víctor A.; Sibeck, David G.; Kanekal, Shrikanth G.; Baker, Daniel N.
2017-11-01
Using Van Allen Probes Energetic Particle, Composition, and Thermal Plasma-Relativistic Electron-Proton Telescope (ECT-REPT) observations, we performed a statistical study on the effect of geomagnetic storms on relativistic electrons fluxes in the outer radiation belt for 78 storms between September 2012 and June 2016. We found that the probability of enhancement, depletion, and no change in flux values depends strongly on L and energy. Enhancement events are more common for ˜2 MeV electrons at L ˜ 5, and the number of enhancement events decreases with increasing energy at any given L shell. However, considering the percentage of occurrence of each kind of event, enhancements are more probable at higher energies, and the probability of enhancement tends to increases with increasing L shell. Depletion are more probable for 4-5 MeV electrons at the heart of the outer radiation belt, and no-change events are more frequent at L < 3.5 for E ˜ 3 MeV particles. Moreover, for L > 4.5 the probability of enhancement, depletion, or no-change response presents little variation for all energies. Because these probabilities remain relatively constant as a function of radial distance in the outer radiation belt, measurements obtained at geosynchronous orbit may be used as a proxy to monitor E≥1.8 MeV electrons in the outer belt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mardenfeld, Michael
A major facility upgrade to the National Spherical Torus eXperiment (NSTX-U) is currently underway at Princeton Plasma Physics Laboratory (PPPL). A key component of NSTX-U is the fabrication of a new, higher field centerstack (CS). In order to simultaneously provide robust joints between the inner and outer legs of the Toroidal Field Coils (TF) and minimize radial build, the NSTX-U CS design requires that the Ohmic Heating solenoid (OH) be wound directly on the inner TF bundle. To protect the OH against thermal expansion stress during scenarios where the inner TF bundle is hot but the OH is relatively cool,more » the completed CS will have a 0.100 inch annular gap between the outer diameter of the TF bundle and the inner diameter of the OH solenoid. "Aquapour", a proprietary material produced by the Advanced Ceramics Manufacturing Company will be used during manufacture to produce this gap. After the TF bundle is vacuum pressure impregnated and cured, a cylindrical "clam shell" mold will be assembled around it, and a slurry of powdered Aquapour and water will be pumped into the annular space between the mold and TF bundle. Subsequent baking will turn the Aquapour solid, and a protective layer of wet lay-up fiberglass and resin will be added. The OH solenoid will be wound directly on this wet lay-up shell. After vacuum pressure impregnation of the OH, the water soluble Aquapour will be washed away, leaving the required radial clearance between the TF and OH. This paper will describe prototyping and testing of this process, and plans for use on the actual CS fabrication.« less
Thermal evolution and differentiation of planetesimals and planetary embryos
NASA Astrophysics Data System (ADS)
Šrámek, Ondřej; Milelli, Laura; Ricard, Yanick; Labrosse, Stéphane
2012-01-01
In early Solar System during the runaway growth stage of planetary formation, the distribution of planetary bodies progressively evolved from a large number of planetesimals to a smaller number of objects with a few dominant embryos. Here, we study the possible thermal and compositional evolution of these planetesimals and planetary embryos in a series of models with increasing complexities. We show that the heating stages of planetesimals by the radioactive decay of now extinct isotopes (in particular 26Al) and by impact heating can occur in two stages or simultaneously. Depending on the accretion rate, melting occurs from the center outward, in a shallow outer shell progressing inward, or in the two locations. We discuss the regime domains of these situations and show that the exponent β that controls the planetary growth rate R˙∝Rβ of planetesimals plays a crucial role. For a given terminal radius and accretion duration, the increase of β maintains the planetesimals very small until the end of accretion, and therefore allows radioactive heating to be radiated away before a large mass can be accreted. To melt the center of ˜500 km planetesimal during its runaway growth stage, with the value β = 2 predicted by astrophysicists, it needs to be formed within a couple of million years after condensation of the first solids. We then develop a multiphase model where the phase changes and phase separations by compaction are taken into account in 1-D spherical geometry. Our model handles simultaneously metal and silicates in both solid and liquid states. The segregation of the protocore decreases the efficiency of radiogenic heating by confining the 26Al in the outer silicate shell. Various types of planetesimals partly differentiated and sometimes differentiated in multiple metal-silicate layers can be obtained.
Equipment for Subpicosecond Extreme Ultraviolet Facility.
1986-02-05
Excitation Induced by...................... 36 Coherent Motion of Outer-Shell Electrons" E. "A Theoretical Model of Inner-Shell...efficient production of x-rays are feasible. Our work involves a program of activities, involving both experimental -nd theoretical components, to...in addition to a theoretical effort con- itrating on the character of high order multiquantum coupling in the inten- I regime above 10 1 7 W cm2 . In
Origin of coronas in metagabbros of the Adirondack mts., N. Y
Whitney, P.R.; McLelland, J.M.
1973-01-01
Metagabbros from two widely separated areas in the Adirondacks show development of coronas. In the Southern Adirondacks, these are cored by olivine which is enclosed in a shell of orthopyroxene that is partially, or completely, rimmed by symplectites consisting of clinopyroxene and spinel. Compositions of the corona phases have been determined by electron probe and are consistent with a mechanism involving three partial reactions, thus: (a) Olivine=Orthopyroxene+(Mg, Fe)++. (b) Plagioclase+(Mg, Fe)+++Ca++=Clinopyroxene+Spinel+Na+. (c) Plagioclase+(Mg, Fe)+++Na+=Spinel+more sodic plagioclase+Ca++. Reaction (a) occurs in the inner shell of the corona adjacent to olivine; reaction (b) in the outer shell; and (c) in the surrounding plagioclase, giving rise to the spinel clouding which is characteristic of the plagioclase in these rocks. Alumina and silica remain relatively immobile. These reactions, when balanced, can be generalized to account for the aluminous nature of the pyroxenes and for changing plagioclase composition. Summed together, the partial reactions are equivalent to: (d) Olivine + Anorthite = Aluminous orthopyroxene + Aluminous Clinopyroxene + Spinel (Kushiro and Yoder, 1966). In the Adirondack Highlands, coronas between olivine and plagioclase commonly have an outer shell of garnet replacing the clinopyroxene/spinel shell. The origin of the garnet can also be explained in terms of three partial reactions: (e) Orthopyroxene+Ca++=Clinopyroxene+(Mg, Fe)++. (f) Clinopyroxene+Spinel+Plagioclase+(Mg, Fe)++=Garnet+Ca+++Na+. (g) Plagioclase+(Mg, Fe)+++Na+=Spinel + more sodic plagioclase+Ca++. These occur in the inner and outer corona shell and the surrounding plagioclase, respectively, and involve the products of reactions (a)-(d). Alumina and silica are again relatively immobile. Balanced, and generalized to account for aluminous pyroxenes and variable An content of plagioclase, they are equivalent to: (h) Orthopyroxene+Anorthite+Spinel=Garnet (Green and Ringwood, 1967). Amphibole coronas about opaque oxides in rocks of both areas are the result of oxide/plagioclase reactions with addition of magnesium from coexisting olivine. Based on published experimental data, pressure and temperature at the time of corona formation were on the order of 8 kb and 800?? C for the garnet bearing coronas, with somewhat lower pressures indicated for the clinopyroxene/spinel coronas. ?? 1973 Springer-Verlag.
Polarimetry of Pinctada fucata nacre indicates myostracal layer interrupts nacre structure.
Metzler, Rebecca A; Jones, Joshua A; D'Addario, Anthony J; Galvez, Enrique J
2017-02-01
The inner layer of many bivalve and gastropod molluscs consists of iridescent nacre, a material that is structured like a brick wall with bricks consisting of crystalline aragonite and mortar of organic molecules. Myostracal layers formed during shell growth at the point of muscle attachment to the shell can be found interspersed within the nacre structure. Little has been done to examine the effect the myostracal layer has on subsequent nacre structure. Here we present data on the structure of the myostracal and nacre layers from a bivalve mollusc, Pinctada fucata . Scanning electron microscope imaging shows the myostracal layer consists of regular crystalline blocks. The nacre before the layer consists of tablets approximately 400 nm thick, while after the myostracal layer the tablets are approximately 500 nm thick. A new technique, imaging polarimetry, indicates that the aragonite crystals within the nacre following the myostracal layer have greater orientation uniformity than before the myostracal layer. The results presented here suggest a possible interaction between the myostracal layer and subsequent shell growth.
Polarimetry of Pinctada fucata nacre indicates myostracal layer interrupts nacre structure
NASA Astrophysics Data System (ADS)
Metzler, Rebecca A.; Jones, Joshua A.; D'Addario, Anthony J.; Galvez, Enrique J.
2017-02-01
The inner layer of many bivalve and gastropod molluscs consists of iridescent nacre, a material that is structured like a brick wall with bricks consisting of crystalline aragonite and mortar of organic molecules. Myostracal layers formed during shell growth at the point of muscle attachment to the shell can be found interspersed within the nacre structure. Little has been done to examine the effect the myostracal layer has on subsequent nacre structure. Here we present data on the structure of the myostracal and nacre layers from a bivalve mollusc, Pinctada fucata. Scanning electron microscope imaging shows the myostracal layer consists of regular crystalline blocks. The nacre before the layer consists of tablets approximately 400 nm thick, while after the myostracal layer the tablets are approximately 500 nm thick. A new technique, imaging polarimetry, indicates that the aragonite crystals within the nacre following the myostracal layer have greater orientation uniformity than before the myostracal layer. The results presented here suggest a possible interaction between the myostracal layer and subsequent shell growth.
Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; ...
2014-09-09
Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T₂-gas filled CH-shell implosions equipped with 4 μm thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within themore » CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 μm have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly-radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.« less
CORNER OF SUBPILE ROOM: NORTH AND EAST SIDES. STEEL OUTER ...
CORNER OF SUBPILE ROOM: NORTH AND EAST SIDES. STEEL OUTER SHELL HAS BEEN AFFIXED. SIGN SAYS "HERRICK IRON WORKS STEEL, OAKLAND, CALIFORNIA." NOTE CONDUIT FOR FUTURE INSTRUMENTATION. TOP OF STEEL CASE WILL BE LEVEL WITH BASEMENT CEILING. CAMERA FACES SOUTHEAST. INL NEGATIVE NO. 734. Unknown Photographer, 10/6/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Wong, Chee Wai; Wong, Doric; Mathur, Ranjana
2014-01-01
A 37-year-old Bangladeshi male presented with an inferotemporal optic disk pit and serous macular detachment in the left eye. Imaging with spectral domain optical coherence tomography (OCT) revealed a multilayer macular schisis pattern with a small subfoveal outer retinal dehiscence. This case illustrates a rare phenotype of optic disk maculopathy with macular schisis and a small outer retinal layer dehiscence. Spectral domain OCT was a useful adjunct in delineating the retinal layers in optic disk pit maculopathy, and revealed a small area of outer retinal layer dehiscence that could only have been detected on high-resolution OCT. PMID:25349471
First-principles calculation of the geometric and electronic structure of the Be(0001) surface
NASA Astrophysics Data System (ADS)
Feibelman, Peter J.
1992-07-01
Linearized-augmented-plane-wave calculations for a nine-layer Be(0001) slab agree with the unusual experimental finding of a substantial outer-layer expansion relative to the truncated bulk lattice. They imply that the separation between the outer two layers should be 3.9% larger than in the bulk, while the second- to third-layer separation should be 2.2% larger. The surface expansion is accompanied by demotion of pσ to s electrons on outer-layer Be's. The surface Be's loss of three neighbors makes the energy cost of s- to pσ-electron promotion, which is necessary for the formation of strong bonds to the next layer down, less profitable than in the bulk.
Evolution of Initial Atmospheric Corrosion of Carbon Steel in an Industrial Atmosphere
NASA Astrophysics Data System (ADS)
Pan, Chen; Han, Wei; Wang, Zhenyao; Wang, Chuan; Yu, Guocai
2016-12-01
The evolution of initial corrosion of carbon steel exposed to an industrial atmosphere in Shenyang, China, has been investigated by gravimetric, XRD, SEM/EDS and electrochemical techniques. The kinetics of the corrosion process including the acceleration and deceleration processes followed the empirical equation D = At n . The rust formed on the steel surface was bi-layered, comprised of an inner and outer layer. The outer layer was formed within the first 245 days and had lower iron content compared to the inner layer. However, the outer layer disappeared after 307 days of exposure, which is considered to be associated with the depletion of Fe3O4. The evolution of the rust layer formed on the carbon steel has also been discussed.
Kikuchi, Shinsuke; Kenagy, Richard D; Gao, Lu; Wight, Thomas N; Azuma, Nobuyoshi; Sobel, Michael; Clowes, Alexander W
2014-01-01
Objective Markers containing dyes such as crystal violet (CAS 548-62-9) are routinely used on the adventitia of vein bypass grafts to avoid twisting during placement. Since little is known about how these dyes affect vein graft healing and function, we determined the effect of crystal violet on cell migration and proliferation, which are responses to injury after grafting. Methods Fresh human saphenous veins were obtained as residual specimens from leg bypass surgeries. Portions of the vein that had been surgically marked with crystal violet were analyzed separately from those that had no dye marking. In the laboratory, they were split into easily dissected inner and outer layers after removal of endothelium. This f cleavage plane was within the circular muscle layer of the media. Cell migration from explants was measured daily as either 1) % migration positive explants, which exclusively measures migration, or 2) the number of cells on the plastic surrounding each explant, which measures migration plus proliferation. Cell proliferation and apoptosis (Ki67 and TUNEL staining, respectively) were determined in dye-marked and unmarked areas of cultured vein rings. The dose-dependent effects of crystal violet were measured for cell migration from explants as well as proliferation, migration, and death of cultured outer layer cells. Dye was extracted from explants with ethanol and quantified by spectrophotometry. Results There was significantly less cell migration from visibly blue, compared to unstained, outer layer explants by both methods. There was no significant difference in migration from inner layer explants adjacent to blue-stained or unstained sections of vein, because dye did not penetrate to the inner layer. Ki67 staining of vein in organ culture, which is a measure of proliferation, progressively increased up to 6 days in non-blue outer layer and was abolished in the blue outer layer. Evidence of apoptosis (TUNEL staining) was present throughout the wall and not different in blue-stained and unstained vein wall segments. Blue outer layer explants had 65.9±8.0 ng dye/explant compared to 2.1±1.3 for non-blue outer layer explants. Dye applied in vitro to either outer or inner layer explants dose-dependently inhibited migration (IC50=8.5 ng/explant). The IC50s of crystal violet for outer layer cell proliferation and migration were 0.1 and 1.2 μg/ml, while the EC50 for death was between 1 and 10 μg/ml. Conclusion Crystal violet inhibits venous cell migration and proliferation indicating that alternative methods should be considered for marking vein grafts. PMID:25935273
A New View on Origin, Role and Manipulation of Large Scales in Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Corke, T. C.; Nagib, H. M.; Guezennec, Y. G.
1982-01-01
The potential of passive 'manipulators' for altering the large scale turbulent structures in boundary layers was investigated. Utilizing smoke wire visualization and multisensor probes, the experiment verified that the outer scales could be suppressed by simple arrangements of parallel plates. As a result of suppressing the outer scales in turbulent layers, a decrease in the streamwise growth of the boundary layer thickness was achieved and was coupled with a 30 percent decrease in the local wall friction coefficient. After accounting for the drag on the manipulator plates, the net drag reduction reached a value of 20 percent within 55 boundary layer thicknesses downstream of the device. No evidence for the reoccurrence of the outer scales was present at this streamwise distance thereby suggesting that further reductions in the net drag are attainable. The frequency of occurrence of the wall events is simultaneously dependent on the two parameters, Re2 delta sub 2 and Re sub x. As a result of being able to independently control the inner and outer boundary layer characteristics with these manipulators, a different view of these layers emerged.
NASA Astrophysics Data System (ADS)
Mehner, A.; Steffen, W.; Groh, J. H.; Vogt, F. P. A.; Baade, D.; Boffin, H. M. J.; Davidson, K.; de Wit, W. J.; Humphreys, R. M.; Martayan, C.; Oudmaijer, R. D.; Rivinius, T.; Selman, F.
2016-11-01
Aims: The role of episodic mass loss is one of the outstanding questions in massive star evolution. The structural inhomogeneities and kinematics of their nebulae are tracers of their mass-loss history. We conduct a three-dimensional morpho-kinematic analysis of the ejecta of η Car outside its famous Homunculus nebula. Methods: We carried out the first large-scale integral field unit observations of η Car in the optical, covering a field of view of 1'× 1' centered on the star. Observations with the Multi Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope (VLT) reveal the detailed three-dimensional structure of η Car's outer ejecta. Morpho-kinematic modeling of these ejecta is conducted with the code SHAPE. Results: The largest coherent structure in η Car's outer ejecta can be described as a bent cylinder with roughly the same symmetry axis as the Homunculus nebula. This large outer shell is interacting with the surrounding medium, creating soft X-ray emission. Doppler velocities of up to 3000 km s-1 are observed. We establish the shape and extent of the ghost shell in front of the southern Homunculus lobe and confirm that the NN condensation can best be modeled as a bowshock in the orbital/equatorial plane. Conclusions: The SHAPE modeling of the MUSE observations provides a significant gain in the study of the three-dimensional structure of η Car's outer ejecta. Our SHAPE modeling indicates that the kinematics of the outer ejecta measured with MUSE can be described by a spatially coherent structure, and that this structure also correlates with the extended soft X-ray emission associated with the outer debris field. The ghost shell immediately outside the southern Homunculus lobe hints at a sequence of eruptions within the time frame of the Great Eruption from 1837-1858 or possibly a later shock/reverse shock velocity separation. Our 3D morpho-kinematic modeling and the MUSE observations constitute an invaluable dataset to be confronted with future radiation-hydrodynamics simulations. Such a comparison may shed light on the yet elusive physical mechanism responsible for η Car-like eruptions. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 094.D-0215(A).
Method and apparatus for an inflatable shell
NASA Technical Reports Server (NTRS)
Johnson, Christopher J. (Inventor)
2012-01-01
A method of assembling an inflatable shell of a structure comprises folding a plurality of shell sections about a set of fold lines and integrating the plurality of shell sections together with one another to form the shell. In another embodiment, an inflatable shell comprises a plurality of shell sections, each shell section having two pairs of fold lines for folding into stowage comprising a first gore section having a plurality of first gore panels layered and collectively folded about at a first set of fold lines. Each layer of the first gore panels and second gore panels are configured such that, once the first gore panel and second gore panel are attached to one another at the respective side edges of each panel, the lines of attachment forming a second set of fold lines for the shell section. A system and method for fabricating gore panels is also disclosed.
Compact neutron imaging system using axisymmetric mirrors
Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E
2014-05-27
A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.
Free vibrations of a multilayered non-circular cylindrical shell
NASA Astrophysics Data System (ADS)
Zelinskaya, Anna V.
2018-05-01
Free vibrations of an elastic non-circular cylindrical shell of intermediate length are considered. The shell is assumed heterogeneous in the thickness direction, in its part it may be multilayered. In order to derive the equations of stability, we use the Timoshenko-Reissner model. According to it, a shell that is heterogeneous can be replaced by a homogeneous shell with the equivalent bending and transversal shear stiffness. We obtain the approximate asymptotic formula for a frequency that takes into account an influence of a transversal shear and a variability of a directrix curvature. As an example, a three-layer elliptical shell with hinged edges and a soft middle layer is analyzed.
Pit chains on Enceladus signal the recent tectonic dissection of the ancient cratered terrains
NASA Astrophysics Data System (ADS)
Martin, Emily S.; Kattenhorn, Simon A.; Collins, Geoffrey C.; Michaud, Robert L.; Pappalardo, Robert T.; Wyrick, Danielle Y.
2017-09-01
Enceladus is the first outer solar system body on which pit chains have been positively identified. We map the global distribution of pit chains and show that pit chains are among the youngest tectonic features on Enceladus's surface, concentrated in the cratered plains centered on Enceladus's Saturnian and anti-Saturnian hemispheres. Pit chains on Enceladus are interpreted as the surface expressions of subsurface dilational fractures underlying a cover of unconsolidated material, which we infer to be a geologically young cover of loose regolith that mantles the surface of Enceladus. A widespread layer of regolith may act to insulate the surface, which has implications for the thermal state of Enceladus's ice shell. The widespread distribution of pit chains across the cratered plains indicates that this ancient surface has recently been tectonically active.
NASA Technical Reports Server (NTRS)
2001-01-01
This video gives an overview of planetary nebulae through a computerized animation, images from the Hubble Space Telescope (HST), and interviews with Space Telescope Science Institute Theorist Dr. Mario Livio. A computerized animation simulates a giant star as it swallows its smaller companion. HST images display various planetary nebulae, such as M2-9 Twinjet Nebula, NGC 3568, NGC 3918, NGC 5307, NGC 6826, NGC 7009, and Hubble 5. An artist's concept shows what our solar system might look like in a billion years when the Sun has burned out and cast off its outer layers in a shell of glowing gas. Dr. Livio describes the shapes of the planetary nebulae, gives three reasons to study planetary nebulae, and what the observations made by HST have meant to him. A succession of 17 HST images of planetary nebulae are accompanied by music by John Serrie.
The earth and the moon /Harold Jeffreys Lecture/.
NASA Technical Reports Server (NTRS)
Press, F.
1971-01-01
The internal structures of the earth and the moon are compared in the light of the latest extensive data on the earth structure, mobility of the earth outer layers, and the properties of lunar crust. The Monte Carlo method is applied to develop an earth model by a stepwise process beginning with a random distribution of two elastic velocities and the density as a function of de pth. Lunar seismic, magnetic, and rock analysis data are used to infer the properties of the moon. The marked planetological contrast between the earth and the moon is shown to consist in that the earth is highly differentiated and still undergoes a large-scale differentiation, while the moon has lost its volatiles in its early history and has a cold dynamically inactive shell which has been without basic changes for three billion years.
Shi, Run; Summers, Danny; Ni, Binbin; ...
2016-12-30
A statistical survey of electron pitch angle distributions (PADs) is performed based on the pitch angle-resolved flux observations from the Magnetic Electron Ion Spectrometer (MagEIS) instrument on board the Van Allen Probes during the period from 1 October 2012 to 1 May 2015. By fitting the measured PADs to a sin nα form, where α is the local pitch angle and n is the power law index, we investigate the dependence of PADs on electron kinetic energy, magnetic local time (MLT), the geomagnetic Kp index, and L shell. The difference in electron PADs between the inner and outer belt ismore » distinct. In the outer belt, the common averaged n values are less than 1.5, except for large values of the Kp index and high electron energies. The averaged n values vary considerably with MLT, with a peak in the afternoon sector and an increase with increasing L shell. In the inner belt, the averaged n values are much larger, with a common value greater than 2. The PADs show a slight dependence on MLT, with a weak maximum at noon. A distinct region with steep PADs lies in the outer edge of the inner belt where the electron flux is relatively low. The distance between the inner and outer belt and the intensity of the geomagnetic activity together determine the variation of PADs in the inner belt. Finally, besides being dependent on electron energy, magnetic activity, and L shell, the results show a clear dependence on MLT, with higher n values on the dayside.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Run; Summers, Danny; Ni, Binbin
A statistical survey of electron pitch angle distributions (PADs) is performed based on the pitch angle-resolved flux observations from the Magnetic Electron Ion Spectrometer (MagEIS) instrument on board the Van Allen Probes during the period from 1 October 2012 to 1 May 2015. By fitting the measured PADs to a sin nα form, where α is the local pitch angle and n is the power law index, we investigate the dependence of PADs on electron kinetic energy, magnetic local time (MLT), the geomagnetic Kp index, and L shell. The difference in electron PADs between the inner and outer belt ismore » distinct. In the outer belt, the common averaged n values are less than 1.5, except for large values of the Kp index and high electron energies. The averaged n values vary considerably with MLT, with a peak in the afternoon sector and an increase with increasing L shell. In the inner belt, the averaged n values are much larger, with a common value greater than 2. The PADs show a slight dependence on MLT, with a weak maximum at noon. A distinct region with steep PADs lies in the outer edge of the inner belt where the electron flux is relatively low. The distance between the inner and outer belt and the intensity of the geomagnetic activity together determine the variation of PADs in the inner belt. Finally, besides being dependent on electron energy, magnetic activity, and L shell, the results show a clear dependence on MLT, with higher n values on the dayside.« less
Mahmoud, Mahmoud A
2013-05-28
Enhancements of the Raman signal by the newly prepared gold-palladium and gold-platinum double-shell hollow nanoparticles were examined and compared with those using gold nanocages (AuNCs). The surface-enhanced Raman spectra (SERS) of thiophenol adsorbed on the surface of AuNCs assembled into a Langmuir-Blodgett monolayer were 10-fold stronger than AuNCs with an inner Pt or Pd shell. The chemical and electromagnetic enhancement mechanisms for these hollow nanoparticles were further proved by comparing the Raman enhancement of nitrothiophenol and nitrotoulene. Nitrothiophenol binds to the surface of the nanoparticles by covalent interaction, and Raman enhancement by both the two mechanisms is possible, while nitrotoulene does not form any chemical bond with the surface of the nanoparticles and hence no chemical enhancement is expected. Based on discrete dipole approximation (DDA) calculations and the experimental SERS results, AuNCs introduced a high electromagnetic enhancement, while the nanocages with inner Pt or Pd shell have a strong chemical enhancement. The optical measurements of the localized surface plasmon resonance (LSPR) of the nanocages with an outer Au shell and an inner Pt or Pd shell were found, experimentally and theoretically, to be broad compared with AuNCs. The possible reason could be due to the decrease of the coherence time of Au oscillated free electrons and fast damping of the plasmon energy. This agreed well with the fact that a Pt or Pd inner nanoshell decreases the electromagnetic field of the outer Au nanoshell while increasing the SERS chemical enhancement.
NASA Astrophysics Data System (ADS)
Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cherdizov, R. K.; Cikhardt, J.; Cikhardtova, B.; Dudkin, G. N.; Fursov, F. I.; Garapatsky, A. A.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Orcikova, H.; Padalko, V. N.; Ratakhin, N. A.; Sila, O.; Turek, K.; Varlachev, V. A.
2015-04-01
Z-pinch experiments with deuterium gas puffs have been carried out on the GIT-12 generator at 3 MA currents. Recently, a novel configuration of a deuterium gas-puff z-pinch was used to accelerate deuterons and to generate fast neutrons. In order to form a homogeneous, uniformly conducting layer at a large initial radius, an inner deuterium gas puff was surrounded by an outer hollow cylindrical plasma shell. The plasma shell consisting of hydrogen and carbon ions was formed at the diameter of 350 mm by 48 plasma guns. A linear mass of the plasma shell was about 5 µg cm-1 whereas a total linear mass of deuterium gas in single or double shell gas puffs was about 100 µg cm-1. The implosion lasted 700 ns and seemed to be stable up to a 5 mm radius. During stagnation, m = 0 instabilities became more pronounced. When a disruption of necks occurred, the plasma impedance reached 0.4 Ω and high energy (>2 MeV) bremsstrahlung radiation together with high energy deuterons were produced. Maximum neutron energies of 33 MeV were observed by axial time-of-flight detectors. The observed neutron spectra could be explained by a suprathermal distribution of deuterons with a high energy tail f≤ft({{E}\\text{d}}\\right)\\propto E\\text{d}-(1.8+/- 0.2) . Neutron yields reached 3.6 × 1012 at a 2.7 MA current. A high neutron production efficiency of 6 × 107 neutrons per one joule of plasma energy resulted from the generation of high energy deuterons and from their magnetization inside plasmas.
Controlled Synthesis of Pd/Pt Core Shell Nanoparticles Using Area-selective Atomic Layer Deposition
Cao, Kun; Zhu, Qianqian; Shan, Bin; Chen, Rong
2015-01-01
We report an atomic scale controllable synthesis of Pd/Pt core shell nanoparticles (NPs) via area-selective atomic layer deposition (ALD) on a modified surface. The method involves utilizing octadecyltrichlorosilane (ODTS) self-assembled monolayers (SAMs) to modify the surface. Take the usage of pinholes on SAMs as active sites for the initial core nucleation, and subsequent selective deposition of the second metal as the shell layer. Since new nucleation sites can be effectively blocked by surface ODTS SAMs in the second deposition stage, we demonstrate the successful growth of Pd/Pt and Pt/Pd NPs with uniform core shell structures and narrow size distribution. The size, shell thickness and composition of the NPs can be controlled precisely by varying the ALD cycles. Such core shell structures can be realized by using regular ALD recipes without special adjustment. This SAMs assisted area-selective ALD method of core shell structure fabrication greatly expands the applicability of ALD in fabricating novel structures and can be readily applied to the growth of NPs with other compositions. PMID:25683469
Balani, Kantesh; Patel, Riken R; Keshri, Anup K; Lahiri, Debrupa; Agarwal, Arvind
2011-10-01
Carapace, the protective shell of a freshwater snapping turtle, Chelydra serpentina, shields them from ferocious attacks of their predators while maintaining light-weight and agility for a swim. The microstructure and mechanical properties of the turtle shell are very appealing to materials scientists and engineers for bio-mimicking, to obtain a multi-functional surface. In this study, we have elucidated the complex microstructure of a dry Chelydra serpentina's shell which is very similar to a multi-layered composite structure. The microstructure of a turtle shell's carapace elicits a sandwich structure of waxy top surface with a harder sub-surface layer serving as a shielding structure, followed by a lamellar carbonaceous layer serving as shock absorber, and the inner porous matrix serves as a load-bearing scaffold while acting as reservoir of retaining water and nutrients. The mechanical properties (elastic modulus and hardness) of various layers obtained via nanoindentation corroborate well with the functionality of each layer. Elastic modulus ranged between 0.47 and 22.15 GPa whereas hardness varied between 53.7 and 522.2 MPa depending on the microstructure of the carapace layer. Consequently, the modulus of each layer was represented into object oriented finite element (OOF2) modeling towards extracting the overall effective modulus of elasticity (~4.75 GPa) of a turtle's carapace. Stress distribution of complex layered structure was elicited with an applied strain of 1% in order to understand the load sharing of various composite layers in the turtle's carapace. Copyright © 2011 Elsevier Ltd. All rights reserved.
Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits
NASA Technical Reports Server (NTRS)
Mitchell, Kathryn
2009-01-01
During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.
Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits
NASA Technical Reports Server (NTRS)
Mitchell, Kathryn C.
2010-01-01
During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.
Lightweight device to stimulate and monitor human vestibulo-ocular reflex
NASA Technical Reports Server (NTRS)
McStravick, M. Catherine (Inventor); Proctor, David R. (Inventor); Wood, Scott J. (Inventor)
1989-01-01
A helmet formed of a rigid shell is disclosed. The shell is lined with several air filled bladders to contact firmly the head of a user. The shell has a rigid chin bar supporting a bite bar connected fixedly to a mouthpiece bearing against the teeth and hard palate to firmly anchor the helmet without movement. The outer shell surface supports various air pumping bulbs and accelerometers. Separate left and right visor pivot on the side guided in a central tongue and groove track to move optical lens mounts into the user's field of vision. The chin bar is connected to the shell by a pair of releasable clasps. A safety lanyard connects to the clasps to quickly pull pins from the clasps to enable quick release in case of motion sickness.
Wittrock, D D; Bruce, C S; Johnson, A D
1991-06-01
Cysts of Uvulifer ambloplitis from green sunfish, Lepomis cyanellus, and Neascus pyriformis from red shiners, Notropis lutrensis, were studied with light-level histochemistry and scanning and transmission electron microscopy. Cysts of both species are bilayered, consisting of an outer host capsule and an inner parasite cyst; the space between these layers is filled with a viscous material. The outer portion of the host capsule of both species is composed of fibrocytes, melanin granules, and collagen fibrils, and the inner portion of layers of flattened fibrocytes. The parasite cyst of U. ambloplitis is formed of 2 layers, an outer dense layer and an inner light layer, whereas the parasite cyst of N. pyriformis is made of 3 layers. A thin outer light-staining layer is present in addition to the 2 layers observed in U. ambloplitis. Results of histochemical staining were the same for both species. The host capsule stained positively for proteins and neutral and acid mucopolysaccharides. The viscous material was positive for neutral and acid mucopolysaccharides but not for proteins. The parasite cyst gave a strong positive reaction for neutral mucopolysaccharides but was negative for acid mucopolysaccharides and proteins.
Laminate armor and related methods
Chu, Henry S; Lillo, Thomas M; Zagula, Thomas M
2013-02-26
Laminate armor and methods of manufacturing laminate armor. Specifically, laminate armor plates comprising a commercially pure titanium layer and a titanium alloy layer bonded to the commercially pure titanium outer layer are disclosed, wherein an average thickness of the titanium alloy inner layer is about four times an average thickness of the commercially pure titanium outer layer. In use, the titanium alloy layer is positioned facing an area to be protected. Additionally, roll-bonding methods for manufacturing laminate armor plates are disclosed.
A Mixed Multi-Field Finite Element Formulation for Thermopiezoelectric Composite Shells
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun; Saravanos, Dimitris A.
1999-01-01
Analytical formulations are presented which account for the coupled mechanical, electrical, and thermal response of piezoelectric composite shell structures. A new mixed multi-field laminate theory is developed which combines "single layer" assumptions for the displacements along with layerwise fields for the electric potential and temperature. This laminate theory is formulated using curvilinear coordinates and is based on the principles of linear thermopiezoelectricity. The mechanics have the inherent capability to explicitly model both the active and sensory responses of piezoelectric composite shells in thermal environment. Finite element equations are derived and implemented for an eight-noded shell element. Numerical studies are conducted to investigate both the sensory and active responses of piezoelectric composite shell structures subjected to thermal loads. Results for a cantilevered plate with an attached piezoelectric layer are com- pared with corresponding results from a commercial finite element code and a previously developed program. Additional studies are conducted on a cylindrical shell with an attached piezoelectric layer to demonstrate capabilities to achieve thermal shape control on curved piezoelectric structures.
NASA Astrophysics Data System (ADS)
Zhou, Jie; Bhaskar, Atul; Zhang, Xin
2015-11-01
This paper investigates sound transmission through double-walled cylindrical shell lined with poroelastic material in the core, excited by pressure fluctuations due to the exterior turbulent boundary layer (TBL). Biot's model is used to describe the sound wave propagating in the porous material. Three types of constructions, bonded-bonded, bonded-unbonded and unbonded-unbonded, are considered in this study. The power spectral density (PSD) of the inner shell kinetic energy is predicted for two turbulent boundary layer models, different air gap depths and three types of polyimide foams, respectively. The peaks of the inner shell kinetic energy due to shell resonance, hydrodynamic coincidence and acoustic coincidence are discussed. The results show that if the frequency band over the ring frequency is of interest, an air gap, even if very thin, should exist between the two elastic shells for better sound insulation. And if small density foam has a high flow resistance, a superior sound insulation can still be maintained.
Magnetic spherical cores partly coated with periodic mesoporous organosilica single crystals.
Li, Jing; Wei, Yong; Li, Wei; Deng, Yonghui; Zhao, Dongyuan
2012-03-07
Core-shell structured materials are of special significance in various applications. Until now, most reported core-shell structures have polycrystalline or amorphous coatings as their shell layers, with popular morphologies of microspheres or quasi-spheres. However, the single crystals, either mesoscale or atomic ones, are still rarely reported as shell layers. If single crystals can be coated on core materials, it would result in a range of new type core-shell structures with various morphologies, and probably more potential applications. In this work, we demonstrate that periodic mesoporous organosilica (PMO) single crystals can partly grow on magnetic microspheres to form incomplete Fe(3)O(4)@nSiO(2)@PMO core-shell materials in aqueous solution, which indeed is the first illustration that mesoporous single-crystal materials can be used as shell layers for preparation of core-shell materials. The achieved materials have advantages of high specific surface areas, good magnetic responses, embedded functional groups and cubic mesopore channels, which might provide them with various application conveniences. We suppose the partial growth is largely decided by the competition between growing tendency of single crystals and the resistances to this tendency. In principle, other single crystals, including a range of atomic single crystals, such as zeolites, are able to be developed into such core-shell structures.
Oh, Pilgun; Oh, Seung -Min; Li, Wangda; ...
2016-05-30
The Ni-rich layered oxides with a Ni content of >0.5 are drawing much attention recently to increase the energy density of lithium-ion batteries. However, the Ni-rich layered oxides suffer from aggressive reaction of the cathode surface with the organic electrolyte at the higher operating voltages, resulting in consequent impedance rise and capacity fade. To overcome this difficulty, we present here a heterostructure composed of a Ni-rich LiNi 0.7Co 0.15Mn 0.15O 2 core and a Li-rich Li 1.2-xNi 0.2Mn 0.6O 2 shell, incorporating the advantageous features of the structural stability of the core and chemical stability of the shell. With amore » unique chemical treatment for the activation of the Li 2MnO 3 phase of the shell, a high capacity is realized with the Li-rich shell material. Aberration-corrected scanning transmission electron microscopy (STEM) provides direct evidence for the formation of surface Li-rich shell layer. Finally, the heterostructure exhibits a high capacity retention of 98% and a discharge- voltage retention of 97% during 100 cycles with a discharge capacity of 190 mA h g -1 (at 2.0–4.5 V under C/3 rate, 1C = 200 mA g -1).« less
Late Pleistocene and Holocene sedimentary facies on the Ebro continental shelf
Diaz, J.; Nelson, C.H.; Barber, J.H.; Giro, S.
1990-01-01
Late Pleistocene-Holocene history of the Ebro continental shelf of northeastern Spain is recorded in two main sedimentary units: (1) a lower, transgressive unit that covers the shelf and is exposed on the outer shelf south of 40??40???N, and (2) an upper, progradational, prodeltaic unit that borders the Ebro Delta and extends southward along the inner shelf. The lower transgressive unit includes a large linear shoal found at a water depth of 90 m and hardground mounds at water depths of 70-80 m. Some patches of earlier Pleistocene prodelta mud remain also, exposed or covered by a thin veneer of transgressive sand on the northern outer shelf. This relict sand sheet is 2-3 m thick and contains 9000-12,500 yr old oyster and other shells at water depths of 78-88 m. The upper prodelta unit covers most of the inner shelf from water depths of 20-80 m and extends from the present Ebro River Delta to an area to the southwest where the unit progressively thins and narrows. Interpretation of high-resolution seismic reflection data shows the following facies occurring progressively offshore: (1) a thick stratified facies with thin progradational "foresets beds", (2) a faintly laminated facies with sparse reflectors of low continuity, and (3) a thin transparent bottomset facies underlain by a prominent flat-lying reflector. Deposition in the northern half of the prodelta began as soon as the shoreline transgressed over the mid-shelf, but progradation of the southern half did not begin until about 1000-3000 yrs after the transgression. A classic deltaic progradational sequence is shown in the Ebro prodelta mud by (1) gradation of seismic facies away from the delta, (2) coarsening-upward sequences near the delta and fining-upward sequences in the distal mud belt deposits, and (3) thin storm-sand layers and shell lags in the nearshore stratified facies. The boundaries of the prodeltaic unit are controlled by increased current speeds on the outer shelf (where the shelf narrows) and by development of the shoreface sand body resulting from shoaling waves on the inner shelf. ?? 1990.
NASA Astrophysics Data System (ADS)
Lewis, C. F. M.; Anderson, T. W.
2017-10-01
South Bay on the southern coast of Manitoulin Island is a fjord-like embayment connected to Lake Huron by a natural narrow gap in the bay's outer sill 6.5-14 m above the lake. A seismic profile, pollen, plant macrofossil, grain size analyses, and other sediment properties of two piston cores from a shallow outer basin of the bay document a 9 m-thick sediment section comprising rhythmically laminated clay under silty clay containing zones with small molluscan shells and marsh detritus. A sandy pebbly layer under soft silty clay mud overlies these sediments. This stratigraphy represents inundation by deep glacial Lake Algonquin followed by the shallowing Post Algonquin series of lakes, and exposure in the early Holocene by 5 Lake Stanley lowstands in the Lake Huron basin separated by 4 Lake Mattawa highstands. Overflow from South Bay in the first lowstand is thought to have eroded the outer sill gap. Marsh environments are inferred to have formed in the bay during subsequent lowstands. The Lake Mattawa highstands are attributed to outburst floods mainly from glacial Lake Agassiz. Palynological evidence of increased spruce occurrence, an apparent regional climate reversal, during the dry pine period is attributed to cold northwest winds from the Lake Superior basin and a lake effect from the Mattawa highstands in the Lake Huron basin. Lake waters transgressed South Bay following the pine period to form the Nipissing shore on Manitoulin Island. Transfer of Lake Huron basin drainage to southern outlets and continued glacioisostatic uplift of the region led to the present configuration of South Bay and Lake Huron.
NASA Astrophysics Data System (ADS)
Liu, Yadong; Fang, Zhen; Kuai, Long; Geng, Baoyou
2014-07-01
In this work, a general, facile, successive and eco-friendly method for multilayer nanostructures has been established for the first time. We take full advantage of the structural and compositional character of M1@M2 (M1 = Co, Ni, M2 = Pt/Pd, Pt, Pd and Au) core-shell nanostructures to prepare a series of reusable tremella-like M1@M2@M1(OH)2 three layer core-shell or yolk-shell nanocomposites with a magnetic core, a porous noble metal shell, and an ultrathin cobalt or nickel hydroxide shell. We evaluated their catalytic performance using a model reaction based on the reduction of 4-nitrophenol. These novel M1@M2@M1(OH)2 nanomaterials with a unique internal micro environment promoted the efficiency of the catalytic reaction, prolonged the service life of the catalyst and enhanced the overall activity of the catalyst in the catalytic process. The novel three layer core-shell nanocomposites can be extended to other applications such as biomedical detection, energy conversion and storage systems.In this work, a general, facile, successive and eco-friendly method for multilayer nanostructures has been established for the first time. We take full advantage of the structural and compositional character of M1@M2 (M1 = Co, Ni, M2 = Pt/Pd, Pt, Pd and Au) core-shell nanostructures to prepare a series of reusable tremella-like M1@M2@M1(OH)2 three layer core-shell or yolk-shell nanocomposites with a magnetic core, a porous noble metal shell, and an ultrathin cobalt or nickel hydroxide shell. We evaluated their catalytic performance using a model reaction based on the reduction of 4-nitrophenol. These novel M1@M2@M1(OH)2 nanomaterials with a unique internal micro environment promoted the efficiency of the catalytic reaction, prolonged the service life of the catalyst and enhanced the overall activity of the catalyst in the catalytic process. The novel three layer core-shell nanocomposites can be extended to other applications such as biomedical detection, energy conversion and storage systems. Electronic supplementary information (ESI) available: Fig. S1-S6. See DOI: 10.1039/c4nr01470g
Cooling of weapons with graphite foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klett, James W.; Trammell, Michael P.
Disclosed are examples of an apparatus for cooling a barrel 12 of a firearm 10 and examples of a cooled barrel assembly 32 for installation into an existing firearm 10. When assembled with the barrel 12, a contact surface 16 of a shell 14 is proximate to, and in thermal communication with, the outer surface of the barrel 18. The shell 14 is formed of commercially available or modified graphite foam.
49 CFR 178.358-2 - Materials of construction and other requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... any joint in the shell. (e) Vent holes 5 mm (0.2-inch) diameter must be drilled in the outer shell to... Society Codes B-3.0 and D-1.0 (IBR, see § 171.7 of this subchapter). Body seams and joints for the liner... 14 cm (5.5-inch) minimum thickness of foam must be provided over the entire liner except where: (1...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipkin, Don Mark; Johnson, Curtis Alan; Meschter, Peter Joel
An article includes a silicon-containing region; at least one outer layer overlying a surface of the silicon-containing region; and a constituent layer on the surface of the silicon-containing region and between and contacting the silicon-containing region and the at least one outer layer, the constituent layer being formed by constituents of the silicon-containing region and being susceptible to creep within an operating environment of the article, wherein the silicon-containing region defines a plurality of channels and a plurality of ridges that interlock within the plurality of channels are formed in the silicon-containing region to physically interlock the at least onemore » outer layer with the silicon-containing region through the constituent layer.« less
Chateigner-Boutin, Anne-Laure; Suliman, Muhtadi; Bouchet, Brigitte; Alvarado, Camille; Lollier, Virginie; Rogniaux, Hélène; Guillon, Fabienne; Larré, Colette
2015-01-01
Cereal grain outer layers fulfil essential functions for the developing seed such as supplying energy and providing protection. In the food industry, the grain outer layers called ‘the bran’ is valuable since it is rich in dietary fibre and other beneficial nutriments. The outer layers comprise several tissues with a high content in cell wall material. The cell wall composition of the grain peripheral tissues was investigated with specific probes at a stage of active cell wall synthesis. Considerable wall diversity between cell types was revealed. To identify the cellular machinery involved in cell wall synthesis, a subcellular proteomic approach was used targeting the Golgi apparatus where most cell wall polysaccharides are synthesized. The tissues were dissected into outer pericarp and intermediate layers where 822 and 1304 proteins were identified respectively. Many carbohydrate-active enzymes were revealed: some in the two peripheral grain fractions, others only in one tissue. Several protein families specific to one fraction and with characterized homologs in other species might be related to the specific detection of a polysaccharide in a particular cell layer. This report provides new information on grain cell walls and its biosynthesis in the valuable outer tissues, which are poorly studied so far. A better understanding of the mechanisms controlling cell wall composition could help to improve several quality traits of cereal products (e.g. dietary fibre content, biomass conversion to biofuel). PMID:25769308
NASA Astrophysics Data System (ADS)
Yuan, Li-Yun; Xiang, Yu; Lu, Jing; Jiang, Hong-Hua
2015-12-01
Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping (i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic. Project supported by the National Natural Science Foundation of China (Grant Nos. 11162001, 11502056, and 51105083), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2012GXNSFAA053207), the Doctor Foundation of Guangxi University of Science and Technology, China (Grant No. 12Z09), and the Development Project of the Key Laboratory of Guangxi Zhuang Autonomous Region, China (Grant No. 1404544).
Superficial Macromolecular Arrays on the Cell Wall of Spirillum putridiconchylium
Beveridge, T. J.; Murray, R. G. E.
1974-01-01
Electron microscopy of the cell envelope of Spirillum putridiconchylium, using negatively stained, thin-sectioned, and replicated freeze-etched preparations, showed two superficial wall layers forming a complex macromolecular pattern on the external surface. The outer structured layer was a linear array of particles overlying an inner tetragonal array of larger subunits. They were associated in a very regular fashion, and the complex was bonded to the outer, pitted surface of the lipopolysaccharide tripartite layer of the cell wall. The relationship of the components of the two structured layers was resolved with the aid of optical diffraction, combined with image filtering and reconstruction and linear and rotary integration techniques. The outer structural layer consisted of spherical 1.5-nm units set in double lines determined by the size and arrangement of 6- by 3-nm inner structural layer subunits, which bore one outer structural layer unit on each outer corner. The total effect of this arrangement was a double-ridged linear structure that was evident in surface replicas and negatively stained fragments of the whole wall. The packing of these units was not square but skewed by 2° off the perpendicular so that the “unit array” described by optical diffraction and linear integration appeared to be a deformed tetragon. The verity of the model was checked by using a photographically reduced image to produce an optical diffraction pattern for comparison with that of the actual layers. The correspondence was nearly perfect. Images PMID:4137219
Ignition of deuterium-trtium fuel targets
Musinski, Donald L.; Mruzek, Michael T.
1991-01-01
A method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom.
Ignition of deuterium-tritium fuel targets
Musinski, D.L.; Mruzek, M.T.
1991-08-27
Disclosed is a method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom. 5 figures.
Inner-shell chemistry under high pressure
NASA Astrophysics Data System (ADS)
Miao, Maosheng; Botana, Jorge; Pravica, Michael; Sneed, Daniel; Park, Changyong
2017-05-01
Chemistry at ambient conditions has implicit boundaries rooted in the atomic shell structure: the inner-shell electrons and the unoccupied outer-shell orbitals do not contribute as the major component to chemical reactions and in chemical bonds. These general rules govern our understanding of chemical structures and reactions. We review the recent progresses in high-pressure chemistry demonstrating that the above rules can be violated under extreme conditions. Using a first principles computation method and crystal structure search algorithm, we demonstrate that stable compounds involving inner shell electrons such as CsF3, CsF5, HgF3, and HgF4 can form under high external pressure and may present exotic properties. We also discuss experimental studies that have sought to confirm these predictions. Employing our recently developed hard X-ray photochemistry methods in a diamond anvil cell, we show promising early results toward realizing inner shell chemistry experimentally.
Low temperature storage container for transporting perishables to space station
NASA Technical Reports Server (NTRS)
Dean, William G (Inventor); Owen, James W. (Inventor)
1988-01-01
This invention is directed to the long term storage of frozen and refrigerated food and biological samples by the space shuttle to the space station. A storage container is utilized which has a passive system so that fluid/thermal and electrical interfaces with the logistics module is not required. The container for storage comprises two units, each having an inner storage shell and an outer shell receiving the inner shell and spaced about it. The novelty appears to lie in the integration of thermally efficient cryogenic storage techniques with phase change materials, including the multilayer metalized surface thin plastic film insulation and the vacuum between the shells. Additionally the fiberglass constructed shells having fiberglass honeycomb portions, and the lining of the space between the shells with foil combine to form a storage container which may keep food and biological samples at very low temperatures for very long periods of time utilizing a passive system.
Assuring Life in Composite Systems
NASA Technical Reports Server (NTRS)
Chamis, Christos c.
2008-01-01
A computational simulation method is presented to assure life in composite systems by using dynamic buckling of smart composite shells as an example. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 9% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load. The uncertainties in the electric field strength and smart material volume fraction have moderate effects and thereby in the assured life of the shell.
Hybrid Cryogenic Tank Construction and Method of Manufacture Therefor
NASA Technical Reports Server (NTRS)
DeLay, Thomas K. (Inventor)
2011-01-01
A lightweight, high-pressure cryogenic tank construction includes an inner layer comprising a matrix of fiber and resin suitable for cryogenic use. An outer layer in intimate contact with the inner layer provides support of the inner layer, and is made of resin composite. The tank is made by placing a fiber preform on a mandrel and infusing the preform with the resin. The infused preform is then encapsulated within the outer layer.
Thiolate-Capped CdSe/ZnS Core-Shell Quantum Dots for the Sensitive Detection of Glucose.
Abd Rahman, Samsulida; Ariffin, Nurhayati; Yusof, Nor Azah; Abdullah, Jaafar; Mohammad, Faruq; Ahmad Zubir, Zuhana; Nik Abd Aziz, Nik Mohd Azmi
2017-07-01
A semiconducting water-soluble core-shell quantum dots (QDs) system capped with thiolated ligand was used in this study for the sensitive detection of glucose in aqueous samples. The QDs selected are of CdSe-coated ZnS and were prepared in house based on a hot injection technique. The formation of ZnS shell at the outer surface of CdSe core was made via a specific process namely, SILAR (successive ionic layer adsorption and reaction). The distribution, morphology, and optical characteristics of the prepared core-shell QDs were assessed by transmission electron microscopy (TEM) and spectrofluorescence, respectively. From the analysis, the results show that the mean particle size of prepared QDs is in the range of 10-12 nm and that the optimum emission condition was displayed at 620 nm. Further, the prepared CdSe/ZnS core shell QDs were modified by means of a room temperature ligand-exchange method that involves six organic ligands, L -cysteine, L -histidine, thio-glycolic acid (TGA or mercapto-acetic acid, MAA), mercapto-propionic acid (MPA), mercapto-succinic acid (MSA), and mercapto-undecanoic acid (MUA). This process was chosen in order to maintain a very dense water solubilizing environment around the QDs surface. From the analysis, the results show that the CdSe/ZnS capped with TGA (CdSe/ZnS-TGA) exhibited the strongest fluorescence emission as compared to others; hence, it was tested further for the glucose detection after their treatment with glucose oxidase (GOx) and horseradish peroxidase (HRP) enzymes. Here in this study, the glucose detection is based on the fluorescence quenching effect of the QDs, which is correlated to the oxidative reactions occurred between the conjugated enzymes and glucose. From the analysis of results, it can be inferred that the resultant GOx:HRP/CdSe/ZnS-TGA QDs system can be a suitable platform for the fluorescence-based determination of glucose in the real samples.
NASA Astrophysics Data System (ADS)
Wang, Weiping; He, Jialun; Cao, Yiyan; Kong, Lijing; Zheng, Xuanli; Wu, Yaping; Chen, Xiaohong; Li, Shuping; Wu, Zhiming; Kang, Junyong
2017-03-01
Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH3NH3PbI3). Results show that the CSE rapidly decreases along the radial direction in the shell, and the value at the outer side becomes extremely low for the thick shell. Besides, the position of the main light absorption gradually moves to the outer side with the increase of the shell thickness. As a result, the external quantum efficiency shows a positional dependence with a maximal value close to the border of the nanowire. Eventually, in our case, it is found that the maximal power conversion efficiency of the solar cells reduces from 19.5 to 17.9% under the effect of the nonuniformity of CSE and light absorption. This work provides a basis for the design of high-efficiency solar cells, especially type-II nanowire solar cells.
Wang, Weiping; He, Jialun; Cao, Yiyan; Kong, Lijing; Zheng, Xuanli; Wu, Yaping; Chen, Xiaohong; Li, Shuping; Wu, Zhiming; Kang, Junyong
2017-12-01
Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH 3 NH 3 PbI 3 ). Results show that the CSE rapidly decreases along the radial direction in the shell, and the value at the outer side becomes extremely low for the thick shell. Besides, the position of the main light absorption gradually moves to the outer side with the increase of the shell thickness. As a result, the external quantum efficiency shows a positional dependence with a maximal value close to the border of the nanowire. Eventually, in our case, it is found that the maximal power conversion efficiency of the solar cells reduces from 19.5 to 17.9% under the effect of the nonuniformity of CSE and light absorption. This work provides a basis for the design of high-efficiency solar cells, especially type-II nanowire solar cells.
Watanabe, Yoshiteru; Mukai, Baku; Kawamura, Ken-ichi; Ishikawa, Tatsuya; Namiki, Michihiro; Utoguchi, Naoki; Fujii, Makiko
2002-02-01
In an attempt to achieve chronopharmacotherapy for asthma, press-coated tablets (250 mg), which contained aminophylline in the core tablet in the form of low-substituted hydroxypropylcellulose (L-HPC) and coated with crystalline cellulose (PH-102) and polyethylene glycol (PEG) at various molecular weights and mixing ratios in the amounts of PH-102 and PEG as the outer shell (press-coating material), were prepared (chronopharmaceutics). Their applicability as timed-release (delayed-release) tablets with a lag time of disintegration and a subsequent rapid drug release phase was investigated. Various types of press-coated tablets were prepared using a tableting machine, and their aminophylline dissolution profiles were evaluated by the JP paddle method. Tablets with the timed-release characteristics could be prepared, and the lag time of disintegration was prolonged as the molecular weight and the amount of PEG, for example PEG 500,000, in the outer shell were increased. The lag time of disintegration could be controlled by the above-mentioned method, however, the pH of the medium had no effect on disintegration of the tablet and dissolution behavior of theophylline. The press-coated tablet (core tablet:aminophylline 50 mg, L-HPC and PEG 6000; outer shell:PH-102:PEG = 8:2 200 mg) with the timed-release characteristics was administered orally to rabbits for an in vivo test. Theophylline was first detected in plasma more than 2 h after administration; thus, this tablet showed a timed-release characteristics in the gastrointestinal tract. The time (tmax) required to reach the maximum plasma theophylline concentration (Cmax) observed after administration of the press-coated tablet was significantly (p < 0.05) delayed compared with that observed after administration of aminophylline solution in the control experiment. However, there was no difference in Cmax and area under the plasma theophylline concentration-time curve (AUC0-->24) between the press-coated tablet and aminophylline solution. These results suggest that the press-coated aminophylline tablet (with the timed-release characteristic) offers a promising forms of theophylline chronotherapy for asthma.
Site specific atomic polarizabilities in endohedral fullerenes and carbon onions
NASA Astrophysics Data System (ADS)
Zope, Rajendra R.; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar
2015-08-01
We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.
Site specific atomic polarizabilities in endohedral fullerenes and carbon onions.
Zope, Rajendra R; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar
2015-08-28
We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.
Site specific atomic polarizabilities in endohedral fullerenes and carbon onions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zope, Rajendra R., E-mail: rzope@utep.edu; Baruah, Tunna; Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79958
2015-08-28
We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C{sub 60}@C{sub 240} and C{sub 60}@C{sub 180} onions shows that, compared to the polarizability of isolatedmore » C{sub 60} fullerene, the encapsulation of the C{sub 60} in C{sub 240} and C{sub 180} fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C{sub 60} in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kang Min; Kim, Yeon Sung; Yang, Hae Woong
2015-01-15
An investigation of the coating structure formed on Mg–3 wt.%Al–1 wt.%Zn alloy sample subjected to plasma electrolytic oxidation was examined by field-emission transmission electron microscopy. The plasma electrolytic oxidation process was conducted in a phosphoric acid electrolyte containing K{sub 2}ZrF{sub 6} for 600 s. Microstructural observations showed that the coating consisting of MgO, MgF{sub 2}, and ZrO{sub 2} phases was divided into three distinctive parts, the barrier, intermediate, and outer layers. Nanocrystalline MgO and MgF{sub 2} compounds were observed mainly in the barrier layer of ~ 1 μm thick near to the substrate. From the intermediate to outer layers, variousmore » ZrO{sub 2} polymorphs appeared due to the effects of the plasma arcing temperature on the phase transition of ZrO{sub 2} compounds during the plasma electrolytic oxidation process. In the outer layer, MgO compound grew in the form of a dendrite-like structure surrounded by cubic ZrO{sub 2}. - Highlights: • The barrier layer containing MgO and MgF{sub 2} was observed near to the Mg substrate. • In the intermediate layer, m-, t-, and o-ZrO{sub 2} compounds were additionally detected. • The outer layer contained MgO with the dendrite-like structure surrounded by c-ZrO{sub 2}. • The grain sizes of compounds in oxide layer increased from barrier to outer layer.« less
EMIC waves covering wide L shells: MMS and Van Allen Probes observations
NASA Astrophysics Data System (ADS)
Yu, Xiongdong; Yuan, Zhigang; Huang, Shiyong; Wang, Dedong; Li, Haimeng; Qiao, Zheng; Yao, Fei
2017-07-01
During 04:45:00-08:15:00 UT on 13 September in 2015, a case of Electromagnetic ion cyclotron (EMIC) waves covering wide L shells (L = 3.6-9.4), observed by the Magnotospheric Multiscale 1 (MMS1) are reported. During the same time interval, EMIC waves observed by Van Allen Probes A (VAP-A) only occurred just outside the plasmapause. As the Van Allen Probes moved outside into a more tenuous plasma region, no intense waves were observed. Combined observations of MMS1 and VAP-A suggest that in the terrestrial magnetosphere, an appropriately dense background plasma would make contributions to the growth of EMIC waves in lower L shells, while the ion anisotropy, driven by magnetospheric compression, might play an important role in the excitation of EMIC waves in higher L shells. These EMIC waves are observed over wide L shells after three continuous magnetic storms, which suggests that these waves might obtain their free energy from those energetic ions injected during storm times. These EMIC waves should be included in radiation belt modeling, especially during continuous magnetic storms. Moreover, two-band structures separated in frequencies by local He2+ gyrofrequencies were observed in large L shells (L > 6), implying sufficiently rich solar wind origin He2+ likely in the outer ring current. It is suggested that multiband-structured EMIC waves can be used to trace the coupling between solar wind and the magnetosphere.tract type="synopsis">le type="main">Plain Language SummaryThe spatial distribution of EMIC waves is an opening question. With combined observations of MMS and Van Allen Probes, this paper has reported EMIC waves covering wide L shells. Moreover, two-band structures separated in frequencies by local He2+ gyrofrequencies were observed in large L shells (L > 6), implying sufficiently rich solar wind origin He2+ likely in the outer ring current. The result is helpful to revealing the spatial distribution and role of He2+ in excitation of EMIC waves.
NASA Astrophysics Data System (ADS)
van Hout, René; Eisma, Jerke; Elsinga, Gerrit E.; Westerweel, Jerry
2018-02-01
In many applications, finite-sized particles are immersed in a turbulent boundary layer (TBL) and it is of interest to study wall effects on the instantaneous shedding of turbulence structures and associated mean velocity and Reynolds stress distributions. Here, 3D flow field dynamics in the wake of a prototypical, small sphere (D+=50 , 692
NASA Astrophysics Data System (ADS)
Deng, Yun-Liang; Xu, Dang-Dang; Pang, Dai-Wen; Tang, Hong-Wu
2017-02-01
A three-layer core-shell nanostructure consisting of a silver core, a silica spacer, and a fluorescent dye RuBpy-doped outer silica layer was fabricated, and the optimal metal-enhanced fluorescence (MEF) distance was explored through adjusting the thickness of the silica spacer. The results show that the optimal distance is ˜10.4 nm with the maximum fluorescence enhancement factor 2.12. Then a new target-triggered MEF ‘turn-on’ strategy based on the optimized composite nanoparticles was successfully constructed for quantitative detection of prostate specific antigen (PSA), by using RuBpy as the energy donor and BHQ-2 as the acceptor. The hybridization of the complementary DNA of PSA-aptamer immobilized on the surface of the MEF nanoparticles with PSA-aptamer modified with BHQ-2, brought BHQ-2 in close proximity to RuBpy-doped silica shell and resulted in the decrease of fluorescence. In the presence of target PSA molecules, the BHQ-PSA aptamer is dissociated from the surface of the nanoparticles with the fluorescence switched on. Therefore, the assay of PSA was achieved by measuring the varying fluorescence intensity. The results show that PSA can be detected in the range of 1-100 ng ml-1 with a detection limit of 0.20 ng ml-1 (6.1 pM), which is 6.7-fold increase of that using hollow RuBpy-doped silica nanoparticles. Moreover, satisfactory results were obtained when PSA was detected in 1% serum.
Polarimetry of Pinctada fucata nacre indicates myostracal layer interrupts nacre structure
Jones, Joshua A.; D'Addario, Anthony J.; Galvez, Enrique J.
2017-01-01
The inner layer of many bivalve and gastropod molluscs consists of iridescent nacre, a material that is structured like a brick wall with bricks consisting of crystalline aragonite and mortar of organic molecules. Myostracal layers formed during shell growth at the point of muscle attachment to the shell can be found interspersed within the nacre structure. Little has been done to examine the effect the myostracal layer has on subsequent nacre structure. Here we present data on the structure of the myostracal and nacre layers from a bivalve mollusc, Pinctada fucata. Scanning electron microscope imaging shows the myostracal layer consists of regular crystalline blocks. The nacre before the layer consists of tablets approximately 400 nm thick, while after the myostracal layer the tablets are approximately 500 nm thick. A new technique, imaging polarimetry, indicates that the aragonite crystals within the nacre following the myostracal layer have greater orientation uniformity than before the myostracal layer. The results presented here suggest a possible interaction between the myostracal layer and subsequent shell growth. PMID:28386442
Multi-modality nanoparticles having optically responsive shape
Chen, Fanqing; Bouchard, Louis-Serge
2015-05-19
In certain embodiments novel nanoparticles (nanowontons) are provided that are suitable for multimodal imaging and/or therapy. In one embodiment, the nanoparticles include a first biocompatible (e.g., gold) layer, an inner core layer (e.g., a non-biocompatible material), and a biocompatible (e.g., gold) layer. The first gold layer includes a concave surface that forms a first outer surface of the layered nanoparticle. The second gold layer includes a convex surface that forms a second outer surface of the layered nanoparticle. The first and second gold layers encapsulate the inner core material layer. Methods of fabricating such nanoparticles are also provided.
Coaxial Carbon/MnO2 Hollow Nanofibers as Sulfur Hosts for High-Performance Lithium-Sulfur Batteries.
Ni, Lubin; Zhao, Gangjin; Wang, Yanting; Wu, Zhen; Wang, Wei; Liao, Yunyun; Yang, Guang; Diao, Guowang
2017-12-14
Lithium-sulfur (Li-S) batteries have recently attracted a large amount of attention as promising candidates for next-generation high-power energy storage devices because of their high theoretical capacity and energy density. However, the shuttle effect of polysulfides and poor conductivity of sulfur are still vital issues that constrain their specific capacity and cyclic stability. Here, we design coaxial MnO 2 -graphitic carbon hollow nanofibers as sulfur hosts for high-performance lithium-sulfur batteries. The hollow C/MnO 2 coaxial nanofibers are synthesized via electrospinning and carbonization of the carbon nanofibers (CNFs), followed by an in situ redox reaction to grow MnO 2 nanosheets on the surface of CNFs. The inner graphitic carbon layer not only maintains intimate contact with sulfur and outer MnO 2 shell to significantly increase the overall electrical conductivity but also acts as a protective layer to prevent dissolution of polysulfides. The outer MnO 2 nanosheets restrain the shuttle effect greatly through chemisorption and redox reaction. Therefore, the robust S@C/MnO 2 nanofiber cathode delivers an extraordinary rate capability and excellent cycling stability with a capacity decay rate of 0.044 and 0.051 % per cycle after 1000 cycles at 1.0 C and 2.0 C, respectively. Our present work brings forward a new facile and efficient strategy for the functionalization of inorganic metal oxide on graphitic carbons as sulfur hosts for high performance Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhao, Xinna; Ma, Kai; Jiao, Tifeng; Xing, Ruirui; Ma, Xilong; Hu, Jie; Huang, Hao; Zhang, Lexin; Yan, Xuehai
2017-03-01
The effective chemical modification and self-assembly of diamond-based hierarchical composite materials are of key importance for a broad range of diamond applications. Herein, we report the preparation of novel core-shell diamond-based nanocomposites for dye adsorption toward wastewater treatment through a layer-by-layer (LbL) assembled strategy. The synthesis of the reported composites began with the carboxyl functionalization of microdiamond by the chemical modification of diamond@graphene oxide composite through the oxidation of diamond@graphite. The carboxyl-terminated microdiamond was then alternatively immersed in the aqueous solution of amine-containing polyethylenimine and carboxyl-containing poly acrylic acid, which led to the formation of adsorption layer on diamond surface. Alternating (self-limiting) immersions in the solutions of the amine-containing and carboxyl-containing polymers were continued until the desired number of shell layers were formed around the microdiamond. The obtained core-shell nanocomposites were successfully synthesized and characterized by morphological and spectral techniques, demonstrating higher surface areas and mesoporous structures for good dye adsorption capacities than nonporous solid diamond particles. The LbL-assembled core-shell nanocomposites thus obtained demonstrated great adsorption capacity by using two model dyes as pollutants for wastewater treatment. Therefore, the present work on LbL-assembled diamond-based composites provides new alternatives for developing diamond hybrids as well as nanomaterials towards wastewater treatment applications.
Spherical-shell boundaries for two-dimensional compressible convection in a star
NASA Astrophysics Data System (ADS)
Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.
2016-10-01
Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so-called 321D link. We find that the inclusion in the spherical shell of the boundary between the radiative and convection zones decreases the amplitude of convective velocities in the convection zone. The inclusion of near-surface layers in the spherical shell can increase the amplitude of convective velocities, although the radial structure of the velocity profile established by deep convection is unchanged. The impact of including the near-surface layers depends on the speed and structure of small-scale convection in the near-surface layers. Larger convective velocities in the convection zone result in a commensurate increase in the overshooting layer width and a decrease in the convective turnover time. These results provide support for non-local aspects of convection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang Yazhuo; Hu Jun; Liu Honglai, E-mail: yazhuoshang@ecust.edu.c
Novel large-scale hollow ZnO spherical shells were synthesized by ionic liquids assisted hydrothermal oxidization of pure zinc powder without any catalyst at a relatively low temperature of 160 deg. C. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) patterns show that the shells are composed of ZnO and the structure of the shells is very unique. Textured flower-like ZnO consisting of ZnO rods is grown on the outer surfaces of shells forming a triple assembly. Room-temperature photoluminescence spectra of the oxidized material show a sharp peak at 379 nm and a wider broad peak centeredmore » at 498 nm. The possible growth mechanism of the triple assembly of ZnO is discussed in detail. - Graphical abstract: A proposed growth mechanism of large scale hollow ZnO. Bubbles provide the aggregation center for ionic liquids that leads to the formation of hollow Zn particle-dotted shells, buoyancy promotes shells to go upward, the breach occurs when shells are subjected to overpressure.« less
Shell-corona microgels from double interpenetrating networks.
Rudyak, Vladimir Yu; Gavrilov, Alexey A; Kozhunova, Elena Yu; Chertovich, Alexander V
2018-04-18
Polymer microgels with a dense outer shell offer outstanding features as universal carriers for different guest molecules. In this paper, microgels formed by an interpenetrating network comprised of collapsed and swollen subnetworks are investigated using dissipative particle dynamics (DPD) computer simulations, and it is found that such systems can form classical core-corona structures, shell-corona structures, and core-shell-corona structures, depending on the subchain length and molecular mass of the system. The core-corona structures consisting of a dense core and soft corona are formed at small microgel sizes when the subnetworks are able to effectively separate in space. The most interesting shell-corona structures consist of a soft cavity in a dense shell surrounded with a loose corona, and are found at intermediate gel sizes; the area of their existence depends on the subchain length and the corresponding mesh size. At larger molecular masses the collapsing network forms additional cores inside the soft cavity, leading to the core-shell-corona structure.
Chen, Zhang; Xu, Yi-Jun
2013-12-26
Development of various strategies for controllable fabrication of core-shell nanocomposites (CSNs) with highly active photocatalytic performance has been attracting ever-increasing research attention. In particular, control of the ultrathin layer TiO2 shell in constructing CSNs in an aqueous phase is a significant but technologically challenging issue. Here, this paper demonstrates the interface assembly synthesis of CdS nanospheres@TiO2 core-shell photocatalyst via the electrostatic interaction of negatively charged water-stable titania precursor with positively charged CdS nanospheres (CdS NSPs), followed by the formation of the ultrathin-layer TiO2 shell through a facile refluxing process in aqueous phase. The as-formed CdS NSPs@TiO2 core-shell nanohybrid exhibits a high visible-light-driven photoactivity for selective transformation and reduction of heavy metal ions. The ultrathin TiO2 layer coated on CdS NSPs results in excellent light transmission property, enhanced adsorption capacity, and improved transfer of charge carriers and lifespan of photoinduced electron-hole pairs, which would prominently contribute to the significant photoactivity enhancement. It is anticipated that this facile aqueous-phase synthesis strategy could be extended to design a variety of more efficient CSN photocatalysts with controllable morphology toward target applications in diverse photoredox processes.
Liu, Quanbing; Yang, Juan; Wang, Hui; Pollet, Bruno G.; Wang, Rongfang
2017-01-01
An allomorph MnO2@MnO2 core-shell nanostructure was developed via a two-step aqueous reaction method. The data analysis of Scanning Electron Microscopy, Transmission Electron Microscopy, X-Ray Diffraction and N2 adsorption-desorption isotherms experiments indicated that this unique architecture consisted of a porous layer of amorphous-MnO2 nano-sheets which were well grown onto the surface of α-MnO2 nano-needles. Cyclic voltammetry experiments revealed that the double-layer charging and Faradaic pseudo-capacity of the MnO2@MnO2 capacitor electrode contributed to a specific capacitance of 150.3 F·g−1 at a current density of 0.1 A·g−1. Long cycle life experiments on the as-prepared MnO2@MnO2 sample showed nearly a 99.3% retention after 5000 cycles at a current density of 2 A·g−1. This retention value was found to be significantly higher than those reported for amorphous MnO2-based capacitor electrodes. It was also found that the remarkable cycleability of the MnO2@MnO2 was due to the supporting role of α-MnO2 nano-needle core and the outer amorphous MnO2 layer. PMID:28837099
Camacho, Morgana; Pessanha, Thaíla; Leles, Daniela; Dutra, Juliana MF; Silva, Rosângela; de Souza, Sheila Mendonça; Araujo, Adauto
2013-01-01
Parasite findings in sambaquis (shell mounds) are scarce. Although the 121 shell mound samples were previously analysed in our laboratory, we only recently obtained the first positive results. In the sambaqui of Guapi, Rio de Janeiro, Brazil, paleoparasitological analysis was performed on sediment samples collected from various archaeological layers, including the superficial layer as a control. Eggs of Acanthocephala, Ascaridoidea and Heterakoidea were found in the archaeological layers. We applied various techniques and concluded that Lutz's spontaneous sedimentation technique is effective for concentrating parasite eggs in sambaqui soil for microscopic analysis. PMID:23579793
Camacho, Morgana; Pessanha, Thaíla; Leles, Daniela; Dutra, Juliana M F; Silva, Rosângela; Souza, Sheila Mendonça de; Araujo, Adauto
2013-04-01
Parasite findings in sambaquis (shell mounds) are scarce. Although the 121 shell mound samples were previously analysed in our laboratory, we only recently obtained the first positive results. In the sambaqui of Guapi, Rio de Janeiro, Brazil, paleoparasitological analysis was performed on sediment samples collected from various archaeological layers, including the superficial layer as a control. Eggs of Acanthocephala, Ascaridoidea and Heterakoidea were found in the archaeological layers. We applied various techniques and concluded that Lutz's spontaneous sedimentation technique is effective for concentrating parasite eggs in sambaqui soil for microscopic analysis.
Electric current distribution of a multiwall carbon nanotube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Li-Ying; Chang, Chia-Seng, E-mail: jasonc@phys.sinica.edu.tw; Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
2016-07-15
The electric current distribution in a multiwall carbon nanotube (MWCNT) was studied by in situ measuring the electric potential along an individual MWCNT in the ultra-high vacuum transmission electron microscope (TEM). The current induced voltage drop along each section of a side-bonded MWCNT was measured by a potentiometric probe in TEM. We have quantitatively derived that the current on the outermost shell depends on the applied current and the shell diameter. More proportion of the total electronic carriers hop into the inner shells when the applied current is increased. The larger a MWCNT’s diameter is, the easier the electronic carriersmore » can hop into the inner shells. We observed that, for an 8 nm MWCNT with 10 μA current applied, 99% of the total current was distributed on the outer two shells.« less
Modeling Thermal Transport and Surface Deformation on Europa using Realistic Rheologies
NASA Astrophysics Data System (ADS)
Linneman, D.; Lavier, L.; Becker, T. W.; Soderlund, K. M.
2017-12-01
Most existing studies of Europa's icy shell model the ice as a Maxwell visco-elastic solid or viscous fluid. However, these approaches do not allow for modeling of localized deformation of the brittle part of the ice shell, which is important for understanding the satellite's evolution and unique geology. Here, we model the shell as a visco-elasto-plastic material, with a brittle Mohr-Coulomb elasto-plastic layer on top of a convective Maxwell viscoelastic layer, to investigate how thermal transport processes relate to the observed deformation and topography on Europa's surface. We use Fast Lagrangian Analysis of Continua (FLAC) code, which employs an explicit time-stepping algorithm to simulate deformation processes in Europa's icy shell. Heat transfer drives surface deformation within the icy shell through convection and tidal dissipation due to its elliptical orbit around Jupiter. We first analyze the visco-elastic behavior of a convecting ice layer and the parameters that govern this behavior. The regime of deformation depends on the magnitude of the stress (diffusion creep at low stresses, grain-size-sensitive creep at intermediate stresses, dislocation creep at high stresses), so we calculate effective viscosity each time step using the constitutive stress-strain equation and a combined flow law that accounts for all types of deformation. Tidal dissipation rate is calculated as a function of the temperature-dependent Maxwell relaxation time and the square of the second invariant of the strain rate averaged over each orbital period. After we initiate convection in the viscoelastic layer by instituting an initial temperature perturbation, we then add an elastoplastic layer on top of the convecting layer and analyze how the brittle ice reacts to stresses from below and any resulting topography. We also take into account shear heating along fractures in the brittle layer. We vary factors such as total shell thickness and minimum viscosity, as these parameters are not well constrained, and determine how this affects the thickness and deformation of the brittle layer.
Ring Beholds a Delicate Flower
2005-02-11
NASA Spitzer Space Telescope finds a delicate flower in the Ring Nebula, as shown in this image. The outer shell of this planetary nebula looks surprisingly similar to the delicate petals of a camellia blossom.
Erosion resistant elbow for solids conveyance
Everett, J.W.
1984-10-23
An elbow and process for fabrication for use in particulate material conveyancing comprises a curved outer pipe, a curved inner pipe having the same radius of curvature as the outer pipe, concentric with and internal to the outer pipe, comprising an outer layer comprised of a first material and an inner layer comprised of a second material wherein said first material is characterized by high erosion resistance when impinged by particulate material and wherein said second material is characterized by high tensile strength and flexibility, and an inner pipe supporting means for providing support to said inner pipe, disposed between said inner pipe and said outer pipe. 4 figs.
Erosion resistant elbow for solids conveyance
Everett, James W.
1984-10-23
An elbow and process for fabrication for use in particulate material conveyancing comprising a curved outer pipe, a curved inner pipe having the same radius of curvature as the outer pipe, concentric with and internal to the outer pipe, comprising an outer layer comprised of a first material and an inner layer comprised of a second material wherein said first material is characterized by high erosion resistance when impinged by particulate material and wherein said second material is characterized by high tensile strength and flexibility, and an inner pipe supporting means for providing support to said inner pipe, disposed between said inner pipe and said outer pipe.
Erosion resistant elbow for solids conveyance
Not Available
An elvow and process for fabrication for use in particulate material conveying comprising a curved outer pipe, a curved inner pipe having the same radius of curvature as the outer pipe, concentric with and internal to the outer pipe, comprising an outer layer comprised of a first material and an inner layer comprised of a second material wherein said first material is characterized by high erosion resistance when impinged by particulate material and wherein said second material is characterized by high tensile strength and flexibility, and an inner pipe supporting means for providing support to said inner pipe, disposed between said inner pipe and said outer pipe. 4 figures.
Reducing the effects of X-ray pre-heat in double shell NIF capsules by over-coating the high Z shell
NASA Astrophysics Data System (ADS)
Wilson, Douglas; Milovich, J. L.; Daughton, W. S.; Loomis, E. N.; Sauppe, J. P.; Dodd, E. S.; Merritt, E. C.; Montgomery, D. S.; Renner, D. B.; Haines, B. M.; Cardenas, T.; Desjardins, T.; Palaniyappan, S.; Batha, S. H.
2017-10-01
Hohlraum generated X-rays will penetrate the ablator of a double shell capsule and be absorbed in the outer surface of the inner capsule. The ablative pressure this generates drives a shock into the central fuel, and a reflected shock that reaches the inner high-Z shell surface before the main shock even enters the fuel. With a beryllium over-coat preheat X-rays deposit just inside the beryllium/high z interface. The beryllium tamps the preheat expansion, eliminating ablation, and dramatically reducing pressure. The slow shock or pressure wave it generates is then overtaken by the main shock, avoiding an early shock in the fuel and increasing capsule yield.
NASA Astrophysics Data System (ADS)
Drexler, Wolfgang; Hermann, Boris; Unterhuber, Angelika; Sattmann, Harald; Wirtitsch, Matthias; Stur, Michael; Scholda, Christoph; Ergun, Erdem; Anger, Elisabeth; Ko, Tony H.; Schubert, Christian; Ahnelt, Peter K.; Fujimoto, James G.; Fercher, Adolf F.
2004-07-01
In vivo ultrahigh resolution ophthalmic OCT has been performed in more than 300 eyes of 200 patients with several retinal pathologies, demonstrating unprecedented visualization of all major intraretinal layers, in particular the photoreceptor layer. Visualization as well as quantification of the inner and outer segment of the photoreceptor layer especially in the foveal region has been acvhieved. In normal subjects the photoreceptor layer thickness in the center of the fovea is about of 90 μm, approximately equally distributed to the inner and the outer photoreceptor segment. In the parafoveal region this thickness is reduced to ~50 μm (~30 μm for the inner and ~20 μm for the outer segment). This is in good agreement with well known increase of cone outer segments in the central foveal region. Photoreceptor layer impairment in different macular pathologies like macular hole, central serous chorioretinopathy, age related macular degeneration, foveomacular dystrophies, Stargardt dystrophy as well as retinitis pigmentosa has been investigated. Photoreceptor layer loss significantly correlated with visual acuity (R2 = 0.6, p < 0.001) and microperimetry findings for the first time in 22 eyes with Stargardt dystrophy. Visualization and quantification of photoreceptor inner and outer segment using ultrahigh resolution OCT has the potential to improve early ophthalmic diagnosis, contributes to a better understanding of pathogenesis of retinal diseases as well as might have impact in the development and monitoring of novel therapy approaches.
Structure and photoluminescence properties of TeO2-core/TiO2-shell nanowires
NASA Astrophysics Data System (ADS)
Park, Sunghoon; An, Soyeon; Lee, Chongmu
2013-12-01
TeO2-core/TiO2-shell nanowires were fabricated by thermal evaporation of Te powders and MOCVD of TiO2. The as-synthesized TeO2 nanowires showed a weak broad violet band centered at approximately 430 nm. The emission peak was shifted to a bluish violet region (∼455 nm) by the encapsulation of the nanowires with a TiO2 thin film. The intensity of the major emission from the core-shell nanowires showed strong dependence on the shell layer thickness. The strongest emission was obtained for the shell layer thickness of ∼15 nm and its intensity was approximately 80 times higher than that of the violet emission from the as-synthesized TeO2 nanowires. This enhancement in emission intensity is attributed to the subwavelength optical resonant cavity formation in the shell layer. The major emission intensity was enhanced further and blue-shifted by annealing, which might be attributed to the increase in the Ti interstitial and O vacancy concentrations in the TeO2 cores during annealing.
NASA Astrophysics Data System (ADS)
Miao, Zongcheng; Yang, Fengxia; Luan, Yi; Shu, Xin; Ramella, Daniele
2017-12-01
In this work, a core-shell magnetic composite Fe3O4@P4VP@ZIF-8 microspheres were successfully designed and synthesized. A polymerization approach on the surface of pre-made Fe3O4 microspheres was employed for the synthesis of Fe3O4@P4VP. The zinc-derived Zeolite Imidazolate Framework (ZIF) shell was introduced through a layer-by-layer strategy. The obtained Fe3O4@P4VP@ZIF-8 core-shell structure was employed as an efficient Knoevenagel condensation catalyst for a variety of aldehydes. Furthermore, the inner P4VP layer also served as a basic additive in the condensation reaction process, while much less homogeneous basic additive was used. High catalytic reaction efficiency was achieved when the P4VP layer was utilized in combination with a Lewis acidity bearing ZIF-8 layer. The Fe3O4@P4VP@ZIF-8 catalyst was tested for recyclability and no drop in the catalytic activity was observed after more than five cycles.