Sample records for outer spore coat

  1. Protozoal Digestion of Coat-Defective Bacillus subtilis Spores Produces “Rinds” Composed of Insoluble Coat Protein▿

    PubMed Central

    Carroll, Alicia Monroe; Plomp, Marco; Malkin, Alexander J.; Setlow, Peter

    2008-01-01

    The Bacillus subtilis spore coat is a multilayer, proteinaceous structure that consists of more than 50 proteins. Located on the surface of the spore, the coat provides resistance to potentially toxic molecules as well as to predation by the protozoan Tetrahymena thermophila. When coat-defective spores are fed to Tetrahymena, the spores are readily digested. However, a residue termed a “rind” that looks like coat material remains. As observed with a phase-contrast microscope, the rinds are spherical or hemispherical structures that appear to be devoid of internal contents. Atomic force microscopy and chemical analyses showed that (i) the rinds are composed of insoluble protein largely derived from both outer and inner spore coat layers, (ii) the amorphous layer of the outer coat is largely responsible for providing spore resistance to protozoal digestion, and (iii) the rinds and intact spores do not contain significant levels of silicon. PMID:18689521

  2. Exploring the interaction network of the Bacillus subtilis outer coat and crust proteins.

    PubMed

    Krajčíková, Daniela; Forgáč, Vladimír; Szabo, Adam; Barák, Imrich

    2017-11-01

    Bacillus subtilis spores, representatives of an exceptionally resistant dormant cell type, are encircled by a thick proteinaceous layer called the spore coat. More than 80 proteins assemble into four distinct coat layers: a basement layer, an inner coat, an outer coat and a crust. As the spore develops inside the mother cell, spore coat proteins synthesized in the cytoplasm are gradually deposited onto the prespore surface. A small set of morphogenetic proteins necessary for spore coat morphogenesis are thought to form a scaffold to which the rest of the coat proteins are attached. Extensive localization and proteomic studies using wild type and mutant spores have revealed the arrangement of individual proteins within the spore coat layers. In this study we examined the interactions between the proteins localized to the outer coat and crust using a bacterial two hybrid system. These two layers are composed of at least 25 components. Self-interactions were observed for most proteins and numerous novel interactions were identified. The most interesting contacts are those made with the morphogenetic proteins CotE, CotY and CotZ; these could serve as a basis for understanding the specific roles of particular proteins in spore coat morphogenesis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition

    PubMed Central

    Müller, Frank D.; Schink, Christian W.; Hoiczyk, Egbert; Cserti, Emöke; Higgs, Penelope I.

    2011-01-01

    Summary Myxococcus xanthus is a Gram-negative bacterium that differentiates into environmentally resistant spores. Spore differentiation involves septation-independent remodelling of the rod-shaped vegetative cell into a spherical spore and deposition of a thick and compact spore coat outside of the outer membrane. Our analyses suggest that spore coat polysaccharides are exported to the cell surface by the Exo outer membrane polysaccharide export/polysaccharide co-polymerase 2a (OPX/PCP-2a) machinery. Conversion of the capsule-like polysaccharide layer into a compact spore coat layer requires the Nfs proteins which likely form a complex in the cell envelope. Mutants in either nfs, exo, or two other genetic loci encoding homologs of polysaccharide synthesis enzymes, fail to complete morphogenesis from rods to spherical spores and instead produce a transient state of deformed cell morphology before reversion into typical rods. We additionally provide evidence that the cell cytoskeletal protein, MreB, plays an important role in rod to spore morphogenesis and for spore outgrowth. These studies provide evidence that this novel gram-negative differentiation process is tied to cytoskeleton functions and polysaccharide spore coat deposition. PMID:22188356

  4. Understanding of the importance of the spore coat structure and pigmentation in the Bacillus subtilis spore resistance to low-pressure plasma sterilization

    NASA Astrophysics Data System (ADS)

    Raguse, Marina; Fiebrandt, Marcel; Denis, Benjamin; Stapelmann, Katharina; Eichenberger, Patrick; Driks, Adam; Eaton, Peter; Awakowicz, Peter; Moeller, Ralf

    2016-07-01

    Low-pressure plasmas have been evaluated for their potential in biomedical and defense purposes. The sterilizing effect of plasma can be attributed to several active agents, including (V)UV radiation, charged particles, radical species, neutral and excited atoms and molecules, and the electric field. Spores of Bacillus subtilis were used as a bioindicator and a genetic model system to study the sporicidal effects of low-pressure plasma decontamination. Wild-type spores, spores lacking the major protective coat layers (inner, outer, and crust), pigmentation-deficient spores or spore impaired in encasement (a late step in coat assembly) were systematically tested for their resistance to low-pressure argon, hydrogen, and oxygen plasmas with and without admixtures. We demonstrate that low-pressure plasma discharges of argon and oxygen discharges cause significant physical damage to spore surface structures as visualized by atomic force microscopy. Spore resistance to low-pressure plasma was primarily dependent on the presence of the inner, and outer spore coat layers as well as spore encasement, with minor or less importance of the crust and spore pigmentation, whereas spore inactivation itself was strongly influenced by the gas composition and operational settings.

  5. Formation of the outer layer of the Dictyostelium spore coat depends on the inner-layer protein SP85/PsB.

    PubMed

    Metcalf, Talibah; Kelley, Karen; Erdos, Gregory W; Kaplan, Lee; West, Christopher M

    2003-02-01

    The Dictyostelium spore is surrounded by a 220 microm thick trilaminar coat that consists of inner and outer electron-dense layers surrounding a central region of cellulose microfibrils. In previous studies, a mutant strain (TL56) lacking three proteins associated with the outer layer exhibited increased permeability to macromolecular tracers, suggesting that this layer contributes to the coat permeability barrier. Electron microscopy now shows that the outer layer is incomplete in the coats of this mutant and consists of a residual regular array of punctate electron densities. The outer layer is also incomplete in a mutant lacking a cellulose-binding protein associated with the inner layer, and these coats are deficient in an outer-layer protein and another coat protein. To examine the mechanism by which this inner-layer protein, SP85, contributes to outer-layer formation, various domain fragments were overexpressed in forming spores. Most of these exert dominant negative effects similar to the deletion of outer-layer proteins, but one construct, consisting of a fusion of the N-terminal and Cys-rich C1 domain, induces a dense mat of novel filaments at the surface of the outer layer. Biochemical studies show that the C1 domain binds cellulose, and a combination of site-directed mutations that inhibits its cellulose-binding activity suppresses outer-layer filament induction. The results suggest that, in addition to a previously described early role in regulating cellulose synthesis, SP85 subsequently contributes a cross-bridging function between cellulose and other coat proteins to organize previously unrecognized structural elements in the outer layer of the coat.

  6. Involvement of Superoxide Dismutase in Spore Coat Assembly in Bacillus subtilis

    PubMed Central

    Henriques, Adriano O.; Melsen, Lawrence R.; Moran, Charles P.

    1998-01-01

    Endospores of Bacillus subtilis are enclosed in a proteinaceous coat which can be differentiated into a thick, striated outer layer and a thinner, lamellar inner layer. We found that the N-terminal sequence of a 25-kDa protein present in a preparation of spore coat proteins matched that of the Mn-dependent superoxide dismutase (SOD) encoded by the sodA locus. sodA is transcribed throughout the growth and sporulation of a wild-type strain and is responsible for the SOD activity detected in total cell extracts prepared from B. subtilis. Disruption of the sodA locus produced a mutant that lacked any detectable SOD activity during vegetative growth and sporulation. The sodA mutant was not impaired in the ability to form heat- or lysozyme-resistant spores. However, examination of the coat layers of sodA mutant spores revealed increased extractability of the tyrosine-rich outer coat protein CotG. We showed that this condition was not accompanied by augmented transcription of the cotG gene in sporulating cells of the sodA mutant. We conclude that SodA is required for the assembly of CotG into the insoluble matrix of the spore and suggest that CotG is covalently cross-linked into the insoluble matrix by an oxidative reaction dependent on SodA. Ultrastructural analysis revealed that the inner coat formed by a sodA mutant was incomplete. Moreover, the outer coat lacked the characteristic striated appearance of wild-type spores, a pattern that was accentuated in a cotG mutant. These observations suggest that the SodA-dependent formation of the insoluble matrix containing CotG is largely responsible for the striated appearance of this coat layer. PMID:9573176

  7. Bacillus spore-based oral carriers loading curcumin for the therapy of colon cancer.

    PubMed

    Yin, Liang; Meng, Zhan; Zhang, Yuxiao; Hu, Kaikai; Chen, Wuya; Han, Kaibin; Wu, Bao-Yan; You, Rong; Li, Chu-Hua; Jin, Ying; Guan, Yan-Qing

    2018-02-10

    Oral drug delivery has attracted substantial attention due to its advantages over other administration routes. Bacillus spores, as oral probiotic agents, are applied widely. In this paper, a novel Bacillus spore-based oral colon targeted carrier loading curcumin was developed for colon cancer treatment. Curcumin was linked covalently with the outer coat of Bacillus spore and folate, respectively (SPORE-CUR-FA). Bacillus spores are capable of delivering drugs to the colon area through gastric barrier, taking the advantage of its tolerance to the harsh conditions and disintegration of the outer coat of spores after germination in the colon. The drug release in vitro and in vivo of SPORE-CUR-FA was investigated. Results showed that SPORE-CUR-FA had the characteristics of colon-targeted drug release. Pharmacokinetic studies confirmed that Bacillus spore-based carriers could efficiently improve the oral bioavailability of curcumin. In vitro and in vivo anti-tumor studies showed that SPORE-CUR-FA had substantial ability for inhibiting colon cancer cells. These findings suggest that this Bacillus spore-based oral drug delivery system has a great potential for the treatment of colon cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Architecture and High-Resolution Structure of Bacillus thuringiensis and Bacillus cereus Spore Coat Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plomp, M; Leighton, T; Wheeler, K

    2005-02-18

    We have utilized atomic force microscopy (AFM) to visualize the native surface topology and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereusmore » was {approx}8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to {approx}200 nm. The lattice constant of the honeycomb structures was {approx}9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing ''fingerprints'' of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.« less

  9. Modeling Radiation Effectiveness for Inactivation of Bacillus Spores

    DTIC Science & Technology

    2015-09-17

    are the exosporium, the spore coat, the outer membrane, the cortex, the germ cell wall, the inner membrane, and the core. These are illustrated in...small amounts of carbohydrates and lipids. The 6 coat acts as the spore’s first line of defense against some chemical infiltration such as lytic enzymes...the spore as water makes up 48-57 percent of the cortex [2]. Immediately interior to the cortex is the germ cell wall which is also a peptidoglycan

  10. Architecture and assembly of the Bacillus subtilis spore coat.

    PubMed

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of "nanodot" particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization pattern in a biological organism.

  11. Architecture and Assembly of the Bacillus subtilis Spore Coat

    PubMed Central

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J.

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of “nanodot” particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization pattern in a biological organism. PMID:25259857

  12. Characterization of the yrbA Gene of Bacillus subtilis, Involved in Resistance and Germination of Spores

    PubMed Central

    Takamatsu, Hiromu; Kodama, Takeko; Nakayama, Tatsuo; Watabe, Kazuhito

    1999-01-01

    Insertional inactivation of the yrbA gene of Bacillus subtilis reduced the resistance of the mutant spores to lysozyme. The yrbA mutant spores lost their optical density at the same rate as the wild-type spores upon incubation with l-alanine but became only phase gray and did not swell. The response of the mutant spores to a combination of asparagine, glucose, fructose, and KCl was also extremely poor; in this medium yrbA spores exhibited only a small loss in optical density and gave a mixture of phase-bright, -gray, and -dark spores. Northern blot analysis of yrbA transcripts in various sig mutants indicated that yrbA was transcribed by RNA polymerase with ςE beginning at 2 h after the start of sporulation. The yrbA promoter was localized by primer extension analysis, and the sequences of the −35 (TCATAAC) and −10 (CATATGT) regions were similar to the consensus sequences of genes recognized by ςE. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of proteins solubilized from intact yrbA mutant spores showed an alteration in the protein profile, as 31- and 36-kDa proteins, identified as YrbA and CotG, respectively, were absent, along with some other minor changes. Electron microscopic examination of yrbA spores revealed changes in the spore coat, including a reduction in the density and thickness of the outer layer and the appearance of an inner coat layer-like structure around the outside of the coat. This abnormal coat structure was also observed on the outside of the developing forespores of the yrbA mutant. These results suggest that YrbA is involved in assembly of some coat proteins which have roles in both spore lysozyme resistance and germination. PMID:10438771

  13. A Bacillus subtilis Secreted Protein with a Role in Endospore Coat Assembly and Function

    PubMed Central

    Serrano, Mónica; Zilhão, Rita; Ricca, Ezio; Ozin, Amanda J.; Moran, Charles P.; Henriques, Adriano O.

    1999-01-01

    Bacterial endospores are encased in a complex protein coat, which confers protection against noxious chemicals and influences the germination response. In Bacillus subtilis, over 20 polypeptides are organized into an amorphous undercoat, a lamellar lightly staining inner structure, and an electron-dense outer coat. Here we report on the identification of a polypeptide of about 30 kDa required for proper coat assembly, which was extracted from spores of a gerE mutant. The N-terminal sequence of this polypeptide matched the deduced product of the tasA gene, after removal of a putative 27-residue signal peptide, and TasA was immunologically detected in material extracted from purified spores. Remarkably, deletion of tasA results in the production of asymmetric spores that accumulate misassembled material in one pole and have a greatly expanded undercoat and an altered outer coat structure. Moreover, we found that tasA and gerE mutations act synergistically to decrease the efficiency of spore germination. We show that tasA is the most distal member of a three-gene operon, which also encodes the type I signal peptidase SipW. Expression of the tasA operon is enhanced 2 h after the onset of sporulation, under the control of ςH. When tasA transcription is uncoupled from sipW expression, a presumptive TasA precursor accumulates, suggesting that its maturation depends on SipW. Mature TasA is found in supernatants of sporulating cultures and intracellularly from 2 h of sporulation onward. We suggest that, at an early stage of sporulation, TasA is secreted to the septal compartment. Later, after engulfment of the prespore by the mother cell, TasA acts from the septal-proximal pole of the spore membranes to nucleate the organization of the undercoat region. TasA is the first example of a polypeptide involved in coat assembly whose production is not mother cell specific but rather precedes its formation. Our results implicate secretion as a mechanism to target individual proteins to specific cellular locations during the assembly of the bacterial endospore coat. PMID:10368135

  14. Atomic force microscopy imaging and single molecule recognition force spectroscopy of coat proteins on the surface of Bacillus subtilis spore.

    PubMed

    Tang, Jilin; Krajcikova, Daniela; Zhu, Rong; Ebner, Andreas; Cutting, Simon; Gruber, Hermann J; Barak, Imrich; Hinterdorfer, Peter

    2007-01-01

    Coat assembly in Bacillus subtilis serves as a tractable model for the study of the self-assembly process of biological structures and has a significant potential for use in nano-biotechnological applications. In the present study, the morphology of B. subtilis spores was investigated by magnetically driven dynamic force microscopy (MAC mode atomic force microscopy) under physiological conditions. B. subtilis spores appeared as prolate structures, with a length of 0.6-3 microm and a width of about 0.5-2 microm. The spore surface was mainly covered with bump-like structures with diameters ranging from 8 to 70 nm. Besides topographical explorations, single molecule recognition force spectroscopy (SMRFS) was used to characterize the spore coat protein CotA. This protein was specifically recognized by a polyclonal antibody directed against CotA (anti-CotA), the antibody being covalently tethered to the AFM tip via a polyethylene glycol linker. The unbinding force between CotA and anti-CotA was determined as 55 +/- 2 pN. From the high-binding probability of more than 20% in force-distance cycles it is concluded that CotA locates in the outer surface of B. subtilis spores. Copyright (c) 2007 John Wiley & Sons, Ltd.

  15. Resistant Bacterial Spore Coats and Their Breakdown During Germination

    DTIC Science & Technology

    2010-01-01

    proteins are released into the outer layers of the spore (SspA, B) or released into the supernatant ( SspE ). 4. Two major proteases of broad...40 30 20 15 10 3.5 N o ve x Sh ar p cw lD ge rm in at io n e xu d at e N o ve x Sh ar p cw lD ge rm in at io n e xu d at e CotA CotQ SodA SspE ...Finally, and unexpectedly, SspE , the major gamma-type SASP (small acid soluble protein) present in the inner cellular compartment of dormant spores, and

  16. VUV absorption spectroscopy of bacterial spores and DNA components

    NASA Astrophysics Data System (ADS)

    Fiebrandt, Marcel; Lackmann, Jan-Wilm; Raguse, Marina; Moeller, Ralf; Awakowicz, Peter; Stapelmann, Katharina

    2017-01-01

    Low-pressure plasmas can be used to inactivate bacterial spores and sterilize goods for medical and pharmaceutical applications. A crucial factor are damages induced by UV and VUV radiation emitted by the plasma. To analyze inactivation processes and protection strategies of spores, absorption spectra of two B. subtilis strains are measured. The results indicate, that the inner and outer coat of the spore significantly contribute to the absorption of UV-C and also of the VUV, protecting the spore against radiation based damages. As the sample preparation can significantly influence the absorption spectra due to salt residues, the cleaning procedure and sample deposition is tested for its reproducibility by measuring DNA oligomers and pUC18 plasmid DNA. The measurements are compared and discussed with results from the literature, showing a strong decrease of the salt content enabling the detection of absorption structures in the samples.

  17. Spore coat protein of Bacillus subtilis. Structure and precursor synthesis.

    PubMed

    Munoz, L; Sadaie, Y; Doi, R H

    1978-10-10

    The coat protein of Bacillus subtilis spores comprises about 10% of the total dry weight of spores and 25% of the total spore protein. One protein with a molecular weight of 13,000 to 15,000 comprises a major portion of the spore coat. This mature spore coat protein has histidine at its NH2 terminus and is relatively rich in hydrophobic amino acids. Netropsin, and antibiotic which binds to A-T-rich regions of DNA and inhibits sporulation, but not growth, decreased the synthesis of this spore coat protein by 75%. A precursor spore coat protein with a molecular weight of 25,000 is made initially at t1 of sporulation and is converted to the mature spore coat protein with a molecular weight of 13,500 at t2 - t3. These data indicate that the spore coat protein gene is expressed very early in sporulation prior to the modifications of RNA polymerase which have been noted.

  18. The cellulose-binding activity of the PsB multiprotein complex is required for proper assembly of the spore coat and spore viability in Dictyostelium discoideum.

    PubMed

    Srinivasan, S; Griffiths, K R; McGuire, V; Champion, A; Williams, K L; Alexander, S

    2000-08-01

    The terminal event of spore differentiation in the cellular slime mould Dictyostelium discoideum is the assembly of the spore coat, which surrounds the dormant amoeba and allows the organism to survive during extended periods of environmental stress. The spore coat is a polarized extracellular matrix composed of glycoproteins and cellulose. The process of spore coat formation begins by the regulated secretion of spore coat proteins from the prespore vesicles (PSVs). Four of the major spore coat proteins (SP96, PsB/SP85, SP70 and SP60) exist as a preassembled multiprotein complex within the PSVs. This complete complex has an endogenous cellulose-binding activity. Mutant strains lacking either the SP96 or SP70 proteins produce partial complexes that do not have cellulose-binding activity, while mutants lacking SP60 produce a partial complex that retains this activity. Using a combination of immunofluorescence microscopy and biochemical methods we now show that the lack of cellulose-binding activity in the SP96 and SP70 mutants results in abnormally assembled spore coats and spores with greatly reduced viability. In contrast, the SP60 mutant, in which the PsB complex retains its cellulose-binding activity, produces spores with apparently unaltered structure and viability. Thus, it is the loss of the cellulose-binding activity of the PsB complex, rather than the mere loss of individual spore coat proteins, that results in compromised spore coat structure. These results support the idea that the cellulose-binding activity associated with the complete PsB complex plays an active role in the assembly of the spore coat.

  19. Spore coat protein synthesis in cell-free systems from sporulating cells of Bacillus subtilis.

    PubMed

    Nakayama, T; Munoz, L E; Sadaie, Y; Doi, R H

    1978-09-01

    Cell-free systems for protein synthesis were prepared from Bacillus subtilis 168 cells at several stages of sporulation. Immunological methods were used to determine whether spore coat protein could be synthesized in the cell-free systems prepared from sporulating cells. Spore coat protein synthesis first occurred in extracts from stage t2 cells. The proportion of spore coat protein to total proteins synthesized in the cell-free systems was 2.4 and 3.9% at stages t2 and t4, respectively. The sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis patterns of immunoprecipitates from the cell-free systems showed the complete synthesis of an apparent spore coat protein precursor (molecular weight, 25,000). A polypeptide of this weight was previously identified in studies in vivo (L.E. Munoz, Y. Sadaie, and R.H. Doi, J. Biol. Chem., in press). The synthesis in vitro of polysome-associated nascent spore coat polypeptides with varying molecular weights up to 23,000 was also detected. These results indicate that the spore coat protein may be synthesized as a precursor protein. The removal of proteases in the crude extracts by treatment with hemoglobin-Sepharose affinity techniques may be preventing the conversion of the large 25,000-dalton precursor to the 12,500-dalton mature spore coat protein.

  20. The coat morphogenetic protein SpoVID is necessary for spore encasement in Bacillus subtilis.

    PubMed

    Wang, Katherine H; Isidro, Anabela L; Domingues, Lia; Eskandarian, Haig A; McKenney, Peter T; Drew, Kevin; Grabowski, Paul; Chua, Ming-Hsiu; Barry, Samantha N; Guan, Michelle; Bonneau, Richard; Henriques, Adriano O; Eichenberger, Patrick

    2009-11-01

    Endospores formed by Bacillus subtilis are encased in a tough protein shell known as the coat, which consists of at least 70 different proteins. We investigated the process of spore coat morphogenesis using a library of 40 coat proteins fused to green fluorescent protein and demonstrate that two successive steps can be distinguished in coat assembly. The first step, initial localization of proteins to the spore surface, is dependent on the coat morphogenetic proteins SpoIVA and SpoVM. The second step, spore encasement, requires a third protein, SpoVID. We show that in spoVID mutant cells, most coat proteins assembled into a cap at one side of the developing spore but failed to migrate around and encase it. We also found that SpoIVA directly interacts with SpoVID. A domain analysis revealed that the N-terminus of SpoVID is required for encasement and is a structural homologue of a virion protein, whereas the C-terminus is necessary for the interaction with SpoIVA. Thus, SpoVM, SpoIVA and SpoVID are recruited to the spore surface in a concerted manner and form a tripartite machine that drives coat formation and spore encasement.

  1. The coat morphogenetic protein SpoVID is necessary for spore encasement in Bacillus subtilis

    PubMed Central

    Wang, Katherine H.; Isidro, Anabela L.; Domingues, Lia; Eskandarian, Haig A.; McKenney, Peter T.; Drew, Kevin; Grabowski, Paul; Chua, Ming-Hsiu; Barry, Samantha N.; Guan, Michelle; Bonneau, Richard; Henriques, Adriano O.; Eichenberger, Patrick

    2009-01-01

    SUMMARY Endospores formed by Bacillus subtilis are encased in a tough protein shell known as the coat, which consists of at least 70 different proteins. We investigated the process of spore coat morphogenesis using a library of 40 coat proteins fused to GFP and demonstrate that two successive steps can be distinguished in coat assembly. The first step, initial localization of proteins to the spore surface, is dependent on the coat morphogenetic proteins SpoIVA and SpoVM. The second step, spore encasement, requires a third protein, SpoVID. We show that in spoVID mutant cells, most coat proteins assembled into a cap at one side of the developing spore but failed to migrate around and encase it. We also found that SpoIVA directly interacts with SpoVID. A domain analysis revealed that the N-terminus of SpoVID is required for encasement and is a structural homolog of a virion protein, whereas the C-terminus is necessary for the interaction with SpoIVA. Thus, SpoVM, SpoIVA and SpoVID are recruited to the spore surface in a concerted manner and form a tripartite machine that drives coat formation and spore encasement. PMID:19775244

  2. Proteins encoded by the gerP operon are localised to the inner coat in Bacilluscereus spores and are dependent on GerPA and SafA for assembly.

    PubMed

    Ghosh, Abhinaba; Manton, James D; Mustafa, Amin R; Gupta, Mudit; Ayuso-Garcia, Alejandro; Rees, Eric J; Christie, Graham

    2018-05-04

    Germination of Bacillus spores is triggered by certain amino acids and sugar molecules, which permeate through the outermost layers of the spore to interact with receptor complexes that reside in the inner membrane. Previous studies have shown that mutations in the hexacistronic gerP locus reduce the rate of spore germination, with experimental evidence indicating that the defect stems from reduced permeability of the spore coat to germinant molecules. Here we use the ellipsoid localisation microscopy technique to reveal that all six Bacillus cereus GerP proteins share proximity with cortex lytic enzymes within the inner coat. We reveal also that the GerPA protein alone can localise in the absence of all other GerP proteins, and that it has an essential role for the localisation of all other GerP proteins within the spore. The latter is also demonstrated to be SafA - but not CotE - dependent for localisation, which is consistent with an inner coat location. GerP null spores are shown also to have reduced permeability to fluorescently labelled dextran molecules compared to wild type spores. Overall, the results support the hypothesis that the GerP proteins have a structural role within the spore associated with coat permeability. Importance The bacterial spore coat comprises a multi-layered proteinaceous structure that influences the distribution, survival and germination properties of spores in the environment. Results from the current study are significant since they increase our understanding of coat assembly and architecture while adding detail to existing models of germination. We demonstrate also that the ELM image analysis technique can be used as a novel tool to provide direct quantitative measurements of spore coat permeability. Progress in all of these areas should ultimately facilitate improved methods of spore control in a range of industrial, healthcare and environmental sectors. Copyright © 2018 American Society for Microbiology.

  3. The Conserved Spore Coat Protein SpoVM Is Largely Dispensable in Clostridium difficile Spore Formation.

    PubMed

    Ribis, John W; Ravichandran, Priyanka; Putnam, Emily E; Pishdadian, Keyan; Shen, Aimee

    2017-01-01

    The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health care-associated infections in the United States. In order for this obligate anaerobe to transmit infection, it must form metabolically dormant spores prior to exiting the host. A key step during this process is the assembly of a protective, multilayered proteinaceous coat around the spore. Coat assembly depends on coat morphogenetic proteins recruiting distinct subsets of coat proteins to the developing spore. While 10 coat morphogenetic proteins have been identified in Bacillus subtilis , only two of these morphogenetic proteins have homologs in the Clostridia : SpoIVA and SpoVM. C. difficile SpoIVA is critical for proper coat assembly and functional spore formation, but the requirement for SpoVM during this process was unknown. Here, we show that SpoVM is largely dispensable for C. difficile spore formation, in contrast with B. subtilis . Loss of C. difficile SpoVM resulted in modest decreases (~3-fold) in heat- and chloroform-resistant spore formation, while morphological defects such as coat detachment from the forespore and abnormal cortex thickness were observed in ~30% of spoVM mutant cells. Biochemical analyses revealed that C. difficile SpoIVA and SpoVM directly interact, similarly to their B. subtilis counterparts. However, in contrast with B. subtilis , C. difficile SpoVM was not essential for SpoIVA to encase the forespore. Since C. difficile coat morphogenesis requires SpoIVA-interacting protein L (SipL), which is conserved exclusively in the Clostridia , but not the more broadly conserved SpoVM, our results reveal another key difference between C. difficile and B. subtilis spore assembly pathways. IMPORTANCE The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and transform into vegetative, toxin-secreting cells. During infection, C. difficile must also induce spore formation to survive exit from the host. Since spore formation is essential for transmission, understanding the basic mechanisms underlying sporulation in C. difficile could inform the development of therapeutic strategies targeting spores. In this study, we determine the requirement of the C. difficile homolog of SpoVM, a protein that is essential for spore formation in Bacillus subtilis due to its regulation of coat and cortex formation. We observed that SpoVM plays a minor role in C. difficile spore formation, in contrast with B. subtilis , indicating that this protein would not be a good target for inhibiting spore formation.

  4. The Conserved Spore Coat Protein SpoVM Is Largely Dispensable in Clostridium difficile Spore Formation

    PubMed Central

    Ribis, John W.; Ravichandran, Priyanka; Putnam, Emily E.; Pishdadian, Keyan

    2017-01-01

    ABSTRACT The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health care-associated infections in the United States. In order for this obligate anaerobe to transmit infection, it must form metabolically dormant spores prior to exiting the host. A key step during this process is the assembly of a protective, multilayered proteinaceous coat around the spore. Coat assembly depends on coat morphogenetic proteins recruiting distinct subsets of coat proteins to the developing spore. While 10 coat morphogenetic proteins have been identified in Bacillus subtilis, only two of these morphogenetic proteins have homologs in the Clostridia: SpoIVA and SpoVM. C. difficile SpoIVA is critical for proper coat assembly and functional spore formation, but the requirement for SpoVM during this process was unknown. Here, we show that SpoVM is largely dispensable for C. difficile spore formation, in contrast with B. subtilis. Loss of C. difficile SpoVM resulted in modest decreases (~3-fold) in heat- and chloroform-resistant spore formation, while morphological defects such as coat detachment from the forespore and abnormal cortex thickness were observed in ~30% of spoVM mutant cells. Biochemical analyses revealed that C. difficile SpoIVA and SpoVM directly interact, similarly to their B. subtilis counterparts. However, in contrast with B. subtilis, C. difficile SpoVM was not essential for SpoIVA to encase the forespore. Since C. difficile coat morphogenesis requires SpoIVA-interacting protein L (SipL), which is conserved exclusively in the Clostridia, but not the more broadly conserved SpoVM, our results reveal another key difference between C. difficile and B. subtilis spore assembly pathways. IMPORTANCE The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and transform into vegetative, toxin-secreting cells. During infection, C. difficile must also induce spore formation to survive exit from the host. Since spore formation is essential for transmission, understanding the basic mechanisms underlying sporulation in C. difficile could inform the development of therapeutic strategies targeting spores. In this study, we determine the requirement of the C. difficile homolog of SpoVM, a protein that is essential for spore formation in Bacillus subtilis due to its regulation of coat and cortex formation. We observed that SpoVM plays a minor role in C. difficile spore formation, in contrast with B. subtilis, indicating that this protein would not be a good target for inhibiting spore formation. PMID:28959733

  5. Fungal Spores Viability on the International Space Station

    NASA Astrophysics Data System (ADS)

    Gomoiu, I.; Chatzitheodoridis, E.; Vadrucci, S.; Walther, I.; Cojoc, R.

    2016-11-01

    In this study we investigated the security of a spaceflight experiment from two points of view: spreading of dried fungal spores placed on the different wafers and their viability during short and long term missions on the International Space Station (ISS). Microscopic characteristics of spores from dried spores samples were investigated, as well as the morphology of the colonies obtained from spores that survived during mission. The selected fungal species were: Aspergillus niger, Cladosporium herbarum, Ulocladium chartarum, and Basipetospora halophila. They have been chosen mainly based on their involvement in the biodeterioration of different substrate in the ISS as well as their presence as possible contaminants of the ISS. From biological point of view, three of the selected species are black fungi, with high melanin content and therefore highly resistant to space radiation. The visual inspection and analysis of the images taken before and after the short and the long term experiments have shown that all biocontainers were returned to Earth without damages. Microscope images of the lids of the culture plates revealed that the spores of all species were actually not detached from the surface of the wafers and did not contaminate the lids. From the adhesion point of view all types of wafers can be used in space experiments, with a special comment on the viability in the particular case of iron wafers when used for spores that belong to B. halophila (halophilic strain). This is encouraging in performing experiments with fungi without risking contamination. The spore viability was lower in the experiment for long time to ISS conditions than that of the short experiment. From the observations, it is suggested that the environment of the enclosed biocontainer, as well as the species'specific behaviour have an important effect, reducing the viability in time. Even the spores were not detached from the surface of the wafers, it was observed that spores used in the long term experiment lost the outer layer of their coat without affecting the viability since they were still protected by the middle and the inner layer of the coating. This research highlights a new protocol to perform spaceflight experiments inside the ISS with fungal spores in microgravity conditions, under the additional effect of possible cosmic radiation. According to this protocol the results are expressed in terms of viability, microscopic and morphological changes.

  6. Fungal Spores Viability on the International Space Station.

    PubMed

    Gomoiu, I; Chatzitheodoridis, E; Vadrucci, S; Walther, I; Cojoc, R

    2016-11-01

    In this study we investigated the security of a spaceflight experiment from two points of view: spreading of dried fungal spores placed on the different wafers and their viability during short and long term missions on the International Space Station (ISS). Microscopic characteristics of spores from dried spores samples were investigated, as well as the morphology of the colonies obtained from spores that survived during mission. The selected fungal species were: Aspergillus niger, Cladosporium herbarum, Ulocladium chartarum, and Basipetospora halophila. They have been chosen mainly based on their involvement in the biodeterioration of different substrate in the ISS as well as their presence as possible contaminants of the ISS. From biological point of view, three of the selected species are black fungi, with high melanin content and therefore highly resistant to space radiation. The visual inspection and analysis of the images taken before and after the short and the long term experiments have shown that all biocontainers were returned to Earth without damages. Microscope images of the lids of the culture plates revealed that the spores of all species were actually not detached from the surface of the wafers and did not contaminate the lids. From the adhesion point of view all types of wafers can be used in space experiments, with a special comment on the viability in the particular case of iron wafers when used for spores that belong to B. halophila (halophilic strain). This is encouraging in performing experiments with fungi without risking contamination. The spore viability was lower in the experiment for long time to ISS conditions than that of the short experiment. From the observations, it is suggested that the environment of the enclosed biocontainer, as well as the species'specific behaviour have an important effect, reducing the viability in time. Even the spores were not detached from the surface of the wafers, it was observed that spores used in the long term experiment lost the outer layer of their coat without affecting the viability since they were still protected by the middle and the inner layer of the coating. This research highlights a new protocol to perform spaceflight experiments inside the ISS with fungal spores in microgravity conditions, under the additional effect of possible cosmic radiation. According to this protocol the results are expressed in terms of viability, microscopic and morphological changes.

  7. Interaction of Bacillus subtilis spores with sodium hypochlorite, sodium dichloroisocyanurate and chloramine-T.

    PubMed

    Bloomfield, S F; Arthur, M

    1992-02-01

    Solutions of chlorine-releasing agents (CRAs) show varying activity against Bacillus subtilis spores; sodium hypochlorite (NaOCl) shows higher activity than sodium dichloroisocyanurate (NaDCC) which is more active than chloramine-T. Investigations with coat- and cortex-extracted spores indicate that resistance to CRAs depends not only on the spore coat but also the cortex. Whereas extraction of alkali-soluble coat protein increased sensitivity to NaOCl and NaDCC, degradation of coat and cortex material was required to achieve significant activity with chloramine-T. NaOCl (in the presence and absence of NaOH) and NaDCC (in the presence of NaOH only) produced degradation of spore coat and cortex material which may be related to their rapid sporicidal action at low concentrations under these conditions. By contrast, chloramine-T produced no degradation of cortex peptidoglycan and was only effective against normal and alkali-treated spores at high concentrations, requiring extraction of peptidoglycan with urea/dithiothreitol/sodium lauryl sulphate (UDS) or UDS/lysozyme to achieve significant activity at low concentrations. Results suggest that the sporicidal action of CRAs is associated with spore coat and cortex degradation causing rehydration of the protoplast allowing diffusion to the site of action on the underlying protoplast.

  8. Sporulation Temperature Reveals a Requirement for CotE in the Assembly of both the Coat and Exosporium Layers of Bacillus cereus Spores.

    PubMed

    Bressuire-Isoard, Christelle; Bornard, Isabelle; Henriques, Adriano O; Carlin, Frédéric; Broussolle, Véronique

    2016-01-01

    The Bacillus cereus spore surface layers consist of a coat surrounded by an exosporium. We investigated the interplay between the sporulation temperature and the CotE morphogenetic protein in the assembly of the surface layers of B. cereus ATCC 14579 spores and on the resulting spore properties. The cotE deletion affects the coat and exosporium composition of the spores formed both at the suboptimal temperature of 20°C and at the optimal growth temperature of 37°C. Transmission electron microscopy revealed that ΔcotE spores had a fragmented and detached exosporium when formed at 37°C. However, when produced at 20°C, ΔcotE spores showed defects in both coat and exosporium attachment and were susceptible to lysozyme and mutanolysin. Thus, CotE has a role in the assembly of both the coat and exosporium, which is more important during sporulation at 20°C. CotE was more represented in extracts from spores formed at 20°C than at 37°C, suggesting that increased synthesis of the protein is required to maintain proper assembly of spore surface layers at the former temperature. ΔcotE spores formed at either sporulation temperature were impaired in inosine-triggered germination and resistance to UV-C and H2O2 and were less hydrophobic than wild-type (WT) spores but had a higher resistance to wet heat. While underscoring the role of CotE in the assembly of B. cereus spore surface layers, our study also suggests a contribution of the protein to functional properties of additional spore structures. Moreover, it also suggests a complex relationship between the function of a spore morphogenetic protein and environmental factors such as the temperature during spore formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. A Spore Coat Protein, CotS, of Bacillus subtilis Is Synthesized under the Regulation of ςK and GerE during Development and Is Located in the Inner Coat Layer of Spores

    PubMed Central

    Takamatsu, Hiromu; Chikahiro, Yukari; Kodama, Takeko; Koide, Hidekatsu; Kozuka, Satoshi; Tochikubo, Kunio; Watabe, Kazuhito

    1998-01-01

    The spore coat of Bacillus subtilis has a unique morphology and consists of polypeptides of different sizes, whose synthesis and assembly are precisely regulated by a cascade of transcription factors and regulatory proteins. We examined the factors that regulate cotS gene expression and CotS assembly into the coat layer of B. subtilis by Northern blot and Western blot analysis. Transcription of cotS mRNA was not detected in sporulating cells of ςK and gerE mutants by Northern blot analysis. By Western blot analysis using anti-CotS antibody, CotS was first detected in protein samples solubilized from wild-type cells at 5 h after the start of sporulation. CotS was not detected in the vegetative cells and spores of a gerE mutant or in the spores of mutants deficient in ςE, ςF, ςG, or ςK. CotS was detected in the sporangium but not in the spores of a cotE mutant. The sequence of the promoter region of cotS was similar to the consensus sequences for binding of ςK and GerE. These results demonstrate that ςK and GerE are required for cotS expression and that CotE is essential for the assembly of CotS in the coat. Immunoelectron microscopic observation using anti-CotS antibody revealed that CotS is located within the spore coat, in particular in the inner coats of dormant spores. PMID:9603889

  10. Requirements for the Development of Bacillus Anthracis Spore Reference Materials Used to Test Detection Systems

    DTIC Science & Technology

    2006-01-01

    the sporangium) contributes the com- plex layers of the spore coats that encase the spore DNA. The mother cell dies and begins to fall apart at the end...spores. Bacillus spores contain a number of coat layers and some species posses an additional outermost layer called the exosporium. BA, B. cereus, and B...exosporium is the outermost layer of the BA spores, it likely contains important protein and carbohydrate markers that are recognized by antibodies

  11. The PsB glycoprotein complex is secreted as a preassembled precursor of the spore coat in Dictyostelium discoideum.

    PubMed

    Watson, N; McGuire, V; Alexander, S

    1994-09-01

    The PsB glycoprotein in Dictyostelium discoideum is one of a diverse group of developmentally regulated, prespore-cell-specific proteins, that contain a common O-linked oligosaccharide. This post-translational modification is dependent on the wild-type modB allele. The PsB protein exists as part of a multiprotein complex of six different proteins, which have different post-translational modifications and are held together by both covalent and non-covalent interactions (Watson et al. (1993). J. Biol. Chem. 268, 22634-22641). In this study we have used microscopic and biochemical analyses to examine the cellular localization and function of the PsB complex during development. We found that the PsB complex first accumulates in prespore vesicles in slug cells and is secreted later during culmination and becomes localized to both the extracellular matrix of the apical spore mass of mature fruiting bodies and to the inner layer of the spore coat. The PsB associated with the spore coat is covalently bound by disulfide bridges. The PsB protein always exists in a multiprotein complex, but the composition of the PsB complex changes during secretion and spore maturation. Some of the PsB complex proteins have been identified as spore coat proteins. These data demonstrate that some of the proteins that form the spore coat exist as a preassembled precursor complex. The PsB complex is secreted in a developmentally regulated manner during the process of spore differentiation, at which time proteins of the complex, as well as additional spore coat proteins, become covalently associated in at least two forms of extracellular matrix: the interspore matrix and the spore coat. These and other studies show that proteins with modB dependent O-linked oligosaccharides are involved in a wide variety of processes underlying morphogenesis in this organism. These developmental processes are the direct result of cellular mechanisms regulating protein targeting, assembly and secretion, and the assembly of specific extracellular matrices.

  12. Electron Microscopy of Ultrathin Sections of Sporosarcina ureae

    PubMed Central

    Mazanec, K.; Kocur, M.; Martinec, T.

    1965-01-01

    Mazanec, K. (J. E. Purkyně University, Brno, Czechoslovakia), M. Kocur, and T. Martinec. Electron microscopy of ultrathin sections of Sporosarcina ureae. J. Bacteriol. 90:808–816. 1965.—Ultrathin sections of Sporosarcina ureae cells were studied by means of electron microscopy. The cell wall consists of several layers and is 340 A thick. The cytoplasm is of globular structure and includes ribosomelike structures, occasional mesosomes, and inclusions not precisely identifiable. The nuclear area has various shapes and is formed by filaments 10 to 20 A thick which proceed in various directions. Cell division occurs similarly to that of sarcinate. Both synchronic and asynchronic cell division was observed. The spores of S. ureae consist of an outer coat having several layers, a cortex, a spore wall, and cytoplasm. The results of the present investigation substantiate our previous suggestion that S. ureae should be transferred from the family Micrococcaceae to the family Bacillaceae. Images PMID:16562085

  13. Spore coat architecture of Clostridium novyi NT spores.

    PubMed

    Plomp, Marco; McCaffery, J Michael; Cheong, Ian; Huang, Xin; Bettegowda, Chetan; Kinzler, Kenneth W; Zhou, Shibin; Vogelstein, Bert; Malkin, Alexander J

    2007-09-01

    Spores of the anaerobic bacterium Clostridium novyi NT are able to germinate in and destroy hypoxic regions of tumors in experimental animals. Future progress in this area will benefit from a better understanding of the germination and outgrowth processes that are essential for the tumorilytic properties of these spores. Toward this end, we have used both transmission electron microscopy and atomic force microscopy to determine the structure of both dormant and germinating spores. We found that the spores are surrounded by an amorphous layer intertwined with honeycomb parasporal layers. Moreover, the spore coat layers had apparently self-assembled, and this assembly was likely to be governed by crystal growth principles. During germination and outgrowth, the honeycomb layers, as well as the underlying spore coat and undercoat layers, sequentially dissolved until the vegetative cell was released. In addition to their implications for understanding the biology of C. novyi NT, these studies document the presence of proteinaceous growth spirals in a biological organism.

  14. Destruction of Bacillus cereus spores in a thick soy bean paste (doenjang) by continuous ohmic heating with five sequential electrodes.

    PubMed

    Ryang, J H; Kim, N H; Lee, B S; Kim, C T; Rhee, M S

    2016-07-01

    This study selected spores from Bacillus cereus FSP-2 strain (the isolate from a commercial doenjang processing line) as the test strain which showed significantly higher thermal resistance (P < 0·05) than B. cereus reference strain (ATCC 27348). The spores in doenjang were subjected to ohmic heating (OH) at 95, 105, 115 and 125°C for 30, 60 or 90 s using a five sequential electrode system (electrical field: 26·7 V cm(-1) ; alternating current frequency: 25 kHz). OH at 105°C for 30-90 s reduced the B. cereus spore count in doenjang samples to <4 log CFU g(-1) . Since OH treatment at 115 and 125°C caused a perceivable colour change in the product (>1·5 National Bureau of Standards units), treatment at 105°C for 60 s was selected and applied on a large scale (500 kg of product). Reliable and reproducible destruction of B. cereus spores occurred; the reductions achieved (to < 4 log CFU g(-1) ) met the Korean national standards. Scanning electron microscopy revealed microstructural alterations in the spores (shrinkage and a distorted outer spore coat). OH is an effective method for destroying B. cereus spores to ensure the microbiological quality and safety of a thick, highly viscous sauce. This study shows that an ohmic heating (OH) using a five sequential electrode system can effectively destroy highly heat-resistant Bacillus cereus spores which have been frequently found in a commercial doenjang processing line without perceivable quality change in the product. In addition, it may demonstrate high potential of the unique OH system used in this study that will further contribute to ensure microbiological quality and safety of crude sauces containing high levels of electrolyte other than doenjang as well. © 2016 The Society for Applied Microbiology.

  15. Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores.

    PubMed

    Hinc, Krzysztof; Isticato, Rachele; Dembek, Marcin; Karczewska, Joanna; Iwanicki, Adam; Peszyńska-Sularz, Grazyna; De Felice, Maurilio; Obuchowski, Michał; Ricca, Ezio

    2010-01-18

    The bacterial endospore (spore) has recently been proposed as a new surface display system. Antigens and enzymes have been successfully exposed on the surface layers of the Bacillus subtilis spore, but only in a few cases the efficiency of expression and the effective surface display and have been determined. We used this heterologous expression system to produce the A subunit of the urease of the animal pathogen Helicobater acinonychis. Ureases are multi-subunit enzymes with a central role in the virulence of various bacterial pathogens and necessary for colonization of the gastric mucosa by the human pathogen H. pylori. The urease subunit UreA has been recognized as a major antigen, able to induce high levels of protection against challenge infections. We expressed UreA from H. acinonychis on the B. subtilis spore coat by using three different spore coat proteins as carriers and compared the efficiency of surface expression and surface display obtained with the three carriers. A combination of western-, dot-blot and immunofluorescence microscopy allowed us to conclude that, when fused to CotB, UreA is displayed on the spore surface (ca. 1 x 10(3) recombinant molecules per spore), whereas when fused to CotC, although most efficiently expressed (7-15 x 10(3) recombinant molecules per spore) and located in the coat layer, it is not displayed on the surface. Experiments with CotG gave results similar to those with CotC, but the CotG-UreA recombinant protein appeared to be partially processed. UreA was efficiently expressed on the spore coat of B. subtilis when fused to CotB, CotC or CotG. Of these three coat proteins CotC allows the highest efficiency of expression, whereas CotB is the most appropriate for the display of heterologous proteins on the spore surface.

  16. Use of yeast spores for microencapsulation of enzymes.

    PubMed

    Shi, Libing; Li, Zijie; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2014-08-01

    Here, we report a novel method to produce microencapsulated enzymes using Saccharomyces cerevisiae spores. In sporulating cells, soluble secreted proteins are transported to the spore wall. Previous work has shown that the spore wall is capable of retaining soluble proteins because its outer layers work as a diffusion barrier. Accordingly, a red fluorescent protein (RFP) fusion of the α-galactosidase, Mel1, expressed in spores was observed in the spore wall even after spores were subjected to a high-salt wash in the presence of detergent. In vegetative cells, however, the cell wall cannot retain the RFP fusion. Although the spore wall prevents diffusion of proteins, it is likely that smaller molecules, such as sugars, pass through it. In fact, spores can contain much higher α-galactosidase activity to digest melibiose than vegetative cells. When present in the spore wall, the enzyme acquires resistance to environmental stresses including enzymatic digestion and high temperatures. The outer layers of the spore wall are required to retain enzymes but also decrease accessibility of the substrates. However, mutants with mild spore wall defects can retain and stabilize the enzyme while still permitting access to the substrate. In addition to Mel1, we also show that spores can retain the invertase. Interestingly the encapsulated invertase has significantly lower activity toward raffinose than toward sucrose.This suggests that substrate selectivity could be altered by the encapsulation.

  17. Temporal Formation and Immunolocalization of an Endospore Surface Epitope During Pasteuria penetrans Sporogenesis.

    PubMed

    Brito, J A; Preston, J F; Dickson, D W; Giblin-Davis, R M; Williams, D S; Aldrich, H C; Rice, J D

    2003-09-01

    The synthesis and localization of an endospore surface epitope associated with the development of Pasteuria penetrans was determined using a monoclonal antibody (MAb) as a probe. Nematodes, uninfected or infected with P. penetrans, were harvested at 12, 16, 24, and 38 days after inoculation (DAI) and then examined to determine the developmental stage of the bacterium. Vegetative growth of P. penetrans was observed only in infected nematodes harvested at 12 and 16 DAI, whereas cells at different stages of sporulation and mature endospores were observed at 24 and 38 DAI. ELISA and immunoblot analysis revealed that the adhesin-associated epitope was first detected at 24 DAI, and increased in the later stages of sporogenesis. These results indicate that the synthesis of adhesin-related proteins occurred at a certain developmental stage relative to the sporulation process, and was associated with endospore maturation. Immunofluorescence microscopy indicated that the distribution of the epitope is nearly uniform on the periphery of each spore, as defined by parasporal fibers. Immunocytochemistry at the ultrastructural level indicated a distribution of the epitope over the parasporal fibers. The epitope also was detected over other structures such as sporangium and exosporium during the sporogenesis process, but it was not observed over the cortex, inner-spore coat, outer-spore coat, or protoplasm. The appearance of the adhesin epitope first at stage III of sporogenesis and its presence on the parasporal fibers are consistent with an adhesin-related role in the attachment of the mature endospore to the cuticle of the nematode host.

  18. PsB multiprotein complex of Dictyostelium discoideum. Demonstration of cellulose binding activity and order of protein subunit assembly.

    PubMed

    McGuire, V; Alexander, S

    1996-06-14

    The differentiated spores of Dictyostelium are surrounded by an extracellular matrix, the spore coat, which protects them from environmental factors allowing them to remain viable for extended periods of time. This presumably is a major evolutionary advantage. This unique extracellular matrix is composed of cellulose and glycoproteins. Previous work has shown that some of these spore coat glycoproteins exist as a preassembled multiprotein complex (the PsB multiprotein complex) which is stored in the prespore vesicles (Watson, N., McGuire, V., and Alexander, S (1994) J. Cell Sci. 107, 2567-2579). Later in development, the complex is synchronously secreted from the prespore vesicles and incorporated into the spore coat. We now have shown that the PsB complex has a specific in vitro cellulose binding activity. The analysis of mutants lacking individual subunits of the PsB complex revealed the relative order of assembly of the subunit proteins and demonstrated that the protein subunits must be assembled for cellulose binding activity. These results provide a biochemical explanation for the localization of this multiprotein complex in the spore coat.

  19. Study of the effects of the outer space environment on dormant forms of microorganisms, fungi and plants in the `Expose-R' experiment

    NASA Astrophysics Data System (ADS)

    Novikova, N.; Deshevaya, E.; Levinskikh, M.; Polikarpov, N.; Poddubko, S.; Gusev, O.

    2015-01-01

    Investigations of the effects of solar radiation combined with the spaceflight factors on biological objects were performed in the «EXPOSE-R» experiment on the outer surface of ISS. After more than 1 year of outer space exposure, the spores of microorganisms and fungi, as well as two species of plant seeds were analysed for viability and the set of biological properties. The experiment provided evidence that not only bacterial and fungal spores but also dormant forms of plants had the capability to survive a long-term exposure to outer space.

  20. Synthetic Spores Give Insight into the Real Thing and Reveal Functional Applications | Center for Cancer Research

    Cancer.gov

    Spores from bacteria, such as Bacillus subtilis, are produced to allow the bacterium’s genetic material to survive harsh environments. When the bacterium senses nutrient depletion, it divides asymmetrically into a forespore and a mother cell. The mother cell engulfs the forespore, and coat proteins synthesized by the mother cell localize to the surface of the forespore. The mother cell eventually ruptures, releasing the mature spore, which is surrounded by a thick shell of approximately 70 different proteins. This protein coat is one of the most durable static biological structures, but, because of its complexity, detailed studies of how the coat forms have been lacking. Kumaran Ramamurthi, Ph.D., of CCR’s Laboratory of Molecular Biology, and his colleagues including postdoctoral fellow and lead author of the study I-Lin Wu, Ph.D., decided to investigate the assembly of the basement layer of the spore coat by decorating spherical membranes supported by silica beads with SpoIVA and SpoVM, proteins which are known to be required for coat assembly.

  1. Resistance to and killing by the sporicidal microbicide peracetic acid.

    PubMed

    Leggett, Mark J; Schwarz, J Spencer; Burke, Peter A; Mcdonnell, Gerald; Denyer, Stephen P; Maillard, Jean-Yves

    2015-03-01

    To elucidate the mechanisms of spore resistance to and killing by the oxidizing microbicide peracetic acid (PAA). Mutants of Bacillus subtilis lacking specific spore structures were used to identify resistance properties in spores and to understand the mechanism of action of PAA. We also assessed the effect of PAA treatment on a number of spore properties including heat tolerance, membrane integrity and germination. The spore coat is essential for spore PAA resistance as spores with defective coats were greatly sensitized to PAA treatment. Small acid-soluble spore proteins apparently provide no protection against PAA. Defects in spore germination, specifically in germination via the GerB and GerK but not the GerA germination receptors, as well as leakage of internal components suggest that PAA is active at the spore inner membrane. It is therefore likely that the inner membrane is the major site of PAA's sporicidal activity. PAA treatment targets the spore membrane, with some of its activity directed specifically against the GerB and GerK germination receptors. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Identifying and Inactivating Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Newcombe, David; Dekas, Anne; Venkateswaran, Kasthuri

    2009-01-01

    Problems associated with, and new strategies for, inactivating resistant organisms like Bacillus canaveralius (found at Kennedy Space Center during a survey of three NASA cleanrooms) have been defined. Identifying the particular component of the spore that allows its heightened resistance can guide the development of sterilization procedures that are targeted to the specific molecules responsible for resistance, while avoiding using unduly harsh methods that jeopardize equipment. The key element of spore resistance is a multilayered protein shell that encases the spore called the spore coat. The coat of the best-studied spore-forming microbe, B. subtilis, consists of at least 45 proteins, most of which are poorly characterized. Several protective roles for the coat are well characterized including resistance to desiccation, large toxic molecules, ortho-phthalaldehyde, and ultraviolet (UV) radiation. One important long-term specific goal is an improved sterilization procedure that will enable NASA to meet planetary protection requirements without a terminal heat sterilization step. This would support the implementation of planetary protection policies for life-detection missions. Typically, hospitals and government agencies use biological indicators to ensure the quality control of sterilization processes. The spores of B. canaveralius that are more resistant to osmotic stress would serve as a better biological indicator for potential survival than those in use currently.

  3. Sporicidal efficacy of thermal-sprayed copper alloy coating.

    PubMed

    Shafaghi, Romina; Mostaghimi, Javad; Pershin, Valerian; Ringuette, Maurice

    2017-05-01

    Approximately 200 000 Canadians acquire healthcare-associated bacterial infections each year and several-fold more acquire food-borne bacterial illnesses. Bacterial spores are particularly problematic because they can survive on surfaces for several months. Owing to its sporicidal activity, copper alloy sheet metal is sometimes used in hospital settings, but its widespread use is limited by cost and incompatibility with complex furniture and instrument designs and topographies. A potential alternative is the use of thermal spray technology to coat surfaces with copper alloys. We compared the sporicidal activity of thermally sprayed copper alloy on stainless steel with that of copper alloy sheet metal against Bacillus subtilis spores. Spores remained intact for at least 1 week on uncoated stainless steel, whereas spore fragmentation was initiated within 2 h of exposure to either copper surface. Less than 15% of spores were viable 2 h after exposure to either copper surface, as compared with stainless steel. By day 7, only degraded spores and petal-like nanoflowers were present on the copper surfaces. Nanoflowers, which are laminar arrangements of thin crystal sheets composed of carbon - copper phosphate, appeared to be derived from the degraded spores. Altogether, these results indicate that a thermal-sprayed copper alloy coating on stainless steel provides sporicidal activity similar to that afforded by copper alloy sheet metal.

  4. Survival of Spores of Trichoderma longibrachiatum in Space: data from the Space Experiment SPORES on EXPOSE-R

    NASA Astrophysics Data System (ADS)

    Neuberger, Katja; Lux-Endrich, Astrid; Panitz, Corinna

    2015-01-01

    In the space experiment `Spores in artificial meteorites' (SPORES), spores of the fungus Trichoderma longibrachiatum were exposed to low-Earth orbit for nearly 2 years on board the EXPOSE-R facility outside of the International Space Station. The environmental conditions tested in space were: space vacuum at 10-7-10-4 Pa or argon atmosphere at 105 Pa as inert gas atmosphere, solar extraterrestrial ultraviolet (UV) radiation at λ > 110 nm or λ > 200 nm with fluences up to 5.8 × 108 J m-2, cosmic radiation of a total dose range from 225 to 320 mGy, and temperature fluctuations from -25 to +50°C, applied isolated or in combination. Comparable control experiments were performed on ground. After retrieval, viability of spores was analysed by two methods: (i) ethidium bromide staining and (ii) test of germination capability. About 30% of the spores in vacuum survived the space travel, if shielded against insolation. However, in most cases no significant decrease was observed for spores exposed in addition to the full spectrum of solar UV irradiation. As the spores were exposed in clusters, the outer layers of spores may have shielded the inner part. The results give some information about the likelihood of lithopanspermia, the natural transfer of micro-organisms between planets. In addition to the parameters of outer space, sojourn time in space seems to be one of the limiting parameters.

  5. Mechanism of Bacillus subtilis spore inactivation by and resistance to supercritical CO2 plus peracetic acid.

    PubMed

    Setlow, B; Korza, G; Blatt, K M S; Fey, J P; Setlow, P

    2016-01-01

    Determine how supercritical CO2 (scCO2 ) plus peracetic acid (PAA) inactivates Bacillus subtilis spores, factors important in spore resistance to scCO2 -PAA, and if spores inactivated by scCO2 -PAA are truly dead. Spores of wild-type B. subtilis and isogenic mutants lacking spore protective proteins were treated with scCO2 -PAA in liquid or dry at 35°C. Wild-type wet spores (aqueous suspension) were more susceptible than dry spores. Treated spores were examined for viability (and were truly dead), dipicolinic acid (DPA), mutations, permeability to nucleic acid stains, germination under different conditions, energy metabolism and outgrowth. ScCO2 -PAA-inactivated spores retained DPA, and survivors had no notable DNA damage. However, DPA was released from inactivated spores at a normally innocuous temperature (85°C), and colony formation from treated spores was salt sensitive. The inactivated spores germinated but did not outgrow, and these germinated spores had altered plasma membrane permeability and defective energy metabolism. Wet or dry coat-defective spores had increased scCO2 -PAA sensitivity, and dry spores but not wet spores lacking DNA protective proteins were more scCO2 -PAA sensitive. These findings suggest that scCO2 -PAA inactivates spores by damaging spores' inner membrane. The spore coat provided scCO2 -PAA resistance for both wet and dry spores. DNA protective proteins provided scCO2 -PAA resistance only for dry spores. These results provide information on mechanisms of spore inactivation of and resistance to scCO2 -PAA, an agent with increasing use in sterilization applications. © 2015 The Society for Applied Microbiology.

  6. Endotrophic Calcium, Strontium, and Barium Spores of Bacillus megaterium and Bacillus cereus1

    PubMed Central

    Foerster, Harold F.; Foster, J. W.

    1966-01-01

    Foerster, Harold F. (The University of Texas, Austin), and J. W. Foster. Endotrophic calcium, strontium, and barium spores of Bacillus megaterium and Bacillus cereus. J. Bacteriol. 91:1333–1345. 1966.—Spores were produced by washed vegetative cells suspended in deionized water supplemented with CaCl2, SrCl2, or BaCl2. Normal, refractile spores were produced in each case; a portion of the barium spores lost refractility and darkened. Thin-section electron micrographs revealed no apparent anatomical differences among the three types of spores. Analyses revealed that the different spore types were enriched specifically in the metal to which they were exposed during sporogenesis. The calcium content of the strontium and the barium spores was very small. From binary equimolar mixtures of the metal salts, endotrophic spores accumulated both metals to nearly the same extent. Viability of the barium spores was considerably less than that of the other two types. Strontium and barium spores were heat-resistant; however, calcium was essential for maximal heat resistance. Significant differences existed in the rates of germination; calcium spores germinated fastest, strontium spores were slower, and barium spores were slowest. Calcium-barium and calcium-strontium spores germinated readily. Endotrophic calcium and strontium spores germinated without the prior heat activation essential for growth spores. Chemical germination of the different metal-type spores with n-dodecylamine took place at the same relative rates as physiological germination. Heat-induced release of dipicolinic acid occurred much faster with barium and strontium spores than with calcium spores. The washed “coat fraction” from disrupted spores contained little of the spore calcium but most of the spore barium. The metal in this fraction was released by dilute acid. The demineralized coats reabsorbed calcium and barium at neutral pH. Images PMID:4956334

  7. Antibacterial polymer coatings.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores onmore » its surface.« less

  8. Mechanism of Bacillus subtilis Spore Inactivation by and Resistance to Supercritical CO2 plus Peracetic Acid

    PubMed Central

    Setlow, Barbara; Korza, George; Blatt, Kelly M.S.; Fey, Julien P.; Setlow, Peter

    2015-01-01

    Aims Determine how supercritical CO2 (scCO2) plus peracetic acid (PAA) inactivates Bacillus subtilis spores, factors important in spore resistance to scCO2-PAA, and if spores inactivated by scCO2-PAA are truly dead. Methods and Results Spores of wild-type B. subtilis and isogenic mutants lacking spore protective proteins were treated with scCO2-PAA in liquid or dry at 35°C. Wild-type wet spores (aqueous suspension) were more susceptible than dry spores. Treated spores were examined for viability (and were truly dead), dipicolinic acid (DPA), mutations, permeability to nucleic acid stains, germination under different conditions, energy metabolism and outgrowth. ScCO2-PAA-inactivated spores retained DPA, and survivors had no notable DNA damage. However, DPA was released from inactivated spores at a normally innocuous temperature (85°C), and colony formation from treated spores was salt sensitive. The inactivated spores germinated but did not outgrow, and these germinated spores had altered plasma membrane permeability and defective energy metabolism. Wet or dry coat-defective spores had increased scCO2-PAA sensitivity, and dry spores but not wet spores lacking DNA protective proteins were more scCO2-PAA sensitive. Conclusions These findings suggest that scCO2-PAA inactivates spores by damaging spores’ inner membrane. The spore coat provided scCO2-PAA resistance for both wet and dry spores. DNA protective proteins provided scCO2-PAA resistance only for dry spores. Significance and Impact of Study These results provide information on mechanisms of spore inactivation of and resistance to scCO2-PAA, an agent with increasing use in sterilization applications. PMID:26535794

  9. Recovery of Phakopsora pachyrhizi urediniospores from Passive Spore Trap Slides and Extraction of Their DNA for Quantitative PCR

    USDA-ARS?s Scientific Manuscript database

    Enumeration of rust spores from passive spore traps utilizing white petrolatum-coated slides by traditional microscopic evaluation can represent a serious challenge. Many fungal spores look alike, and clear visualization on the adhesive can be obscured by particulate debris or nonuniformities within...

  10. Anthrax Spores under a microscope

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Anthrax spores are inactive forms of Bacillus anthracis. They can survive for decades inside a spore's tough protective coating; they become active when inhaled by humans. A result of NASA- and industry-sponsored research to develop small greenhouses for space research is the unique AiroCide TiO2 system that kills anthrax spores and other pathogens.

  11. Formation of Protoplasts from Resting Spores

    PubMed Central

    Fitz-James, Philip C.

    1971-01-01

    Coat-stripped spores suspended in hypertonic solutions and supplied with two essential cations can be converted into viable protoplasts by lysozyme digestion of both cortex and germ cell wall. Calcium ions are necessary to prevent membrane rupture, and magnesium ions are necessary for changes indicative of hydration of the core, particularily the nuclear mass. Since remnant spore coat covered such protoplasts of Bacillus subtilis and the germ cell wall of B. cereus spores is not lysozyme digestible, coatless spores of B. megaterium KM were more useful for these studies. Lysozyme digestion in cation-free environment produced a peculiar semi-refractile spore core free of a cortex but prone to rapid hydration and lytic changes on the addition of cations. Strontium could replace Ca2+ but Mn2+ could not replace Mg2+ in these digestions. When added to the spores, dipicolinic acid and other chelates appeared to compete with the membrane for the calcium needed for stabilization during lysozyme conversion to protoplasts. It is argued that calcium could function to stabilize the inner membrane anionic groups over the anhydrous dipicolinic acid-containing core of resting spores. Images PMID:4995380

  12. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis;more » however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.« less

  13. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    DOE PAGES

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.; ...

    2016-05-16

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis;more » however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.« less

  14. Resistance of bacterial endospores to outer space for planetary protection purposes--experiment PROTECT of the EXPOSE-E mission.

    PubMed

    Horneck, Gerda; Moeller, Ralf; Cadet, Jean; Douki, Thierry; Mancinelli, Rocco L; Nicholson, Wayne L; Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Spry, Andrew; Stackebrandt, Erko; Vaishampayan, Parag; Venkateswaran, Kasthuri J

    2012-05-01

    Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the "trip to Mars" spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the "stay on Mars" spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the "trip to Mars" or "stay on Mars" spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations.

  15. The immunological characteristics and probiotic function of recombinant Bacillus subtilis spore expressing Clonorchis sinensis cysteine protease.

    PubMed

    Tang, Zeli; Shang, Mei; Chen, Tingjin; Ren, Pengli; Sun, Hengchang; Qu, Hongling; Lin, Zhipeng; Zhou, Lina; Yu, Jinyun; Jiang, Hongye; Zhou, Xinyi; Li, Xuerong; Huang, Yan; Xu, Jin; Yu, Xinbing

    2016-12-19

    Clonorchiasis, a food-borne zoonosis, is caused by Clonorchis sinensis. The intestinal tract and bile ducts are crucial places for C. sinensis metacercariae to develop into adult worms. The endospore of Bacillus subtilis is an ideal oral immunization vehicle for delivery of heterologous antigens to intestine. Cysteine protease of C. sinensis (CsCP) is an endogenous key component in the excystment of metacercariae and other physiological or pathological processes. We constructed a fusion gene of CotC (a coat protein)-CsCP and obtained B. subtilis spores with recombinant plasmid of pEB03-CotC-CsCP (B.s-CotC-CsCP). CotC-CsCP expressed on spores' surface was detected by Western blotting and immunofluorescence. Immunological characteristics of recombinant spore coat protein were evaluated in a mouse model. The levels of CsCP-specific antibodies were detected by ELISA. Effects of recombinant spores on mouse intestine were evaluated by histological staining. The activities of biochemical enzymes in serum were assayed by microplate. Liver sections of infected mice were evaluated by Ishak score after Masson's trichrome. The B.s-CotC-CsCP spores displayed CsCP on their coat. Specific IgG and isotypes were significantly induced by coat proteins of B.s-CotC-CsCP spores after subcutaneous immunization. IgA levels in intestinal mucus and bile of B.s-CotC-CsCP orally treated mice significantly increased. Additionally, more IgA-secreting cells were observed in enteraden and lamina propria regions of the mouse jejunum, and an increased amount of acidic mucins in intestines were also observed. There were no significant differences in enzyme levels of serum among groups. No inflammatory injury was observed in the intestinal tissues of each group. The degree of liver fibrosis was significantly reduced after oral immunization with B.s-CotC-CsCP spores. Bacillus subtilis spores maintained the original excellent immunogenicity of CsCP expressed on their surface. Both local and systemic specific immune responses were elicited by oral administration of B.s-CotC-CsCP spores. The spores effectively promoted intestinal health by inducing secretion of acidic mucins, with no other side effects to the liver or intestine. Oral administration of spores expressing CsCP could provide effective protection against C. sinensis. This study may be a cornerstone for development of antiparasitic agents or vaccines against clonorchiasis based on B. subtilis spore expressing CsCP on the surface.

  16. Resistance of Bacterial Endospores to Outer Space for Planetary Protection Purposes—Experiment PROTECT of the EXPOSE-E Mission

    PubMed Central

    Moeller, Ralf; Cadet, Jean; Douki, Thierry; Mancinelli, Rocco L.; Nicholson, Wayne L.; Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Spry, Andrew; Stackebrandt, Erko; Vaishampayan, Parag; Venkateswaran, Kasthuri J.

    2012-01-01

    Abstract Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the “trip to Mars” spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the “stay on Mars” spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the “trip to Mars” or “stay on Mars” spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations. Key Words: Planetary protection—Bacterial spores—Space experiment—Simulated Mars mission. Astrobiology 12, 445–456. PMID:22680691

  17. Architecture and Assembly of the Bacillus subtilis Spore Coat

    DTIC Science & Technology

    2014-09-26

    with chromosomal DNA was as described [32]. Table 1. 8. subtifis strains used in this study. Stra in Genotype Phenotype• PS832 wild type PS3394...of the morphology of fully hydrated and air dried spores demonstrate that surface ridges on dehydrated spores mostly disappear or decrease in size

  18. Biotechnology

    NASA Image and Video Library

    2003-01-22

    Anthrax spores are inactive forms of Bacillus anthracis. They can survive for decades inside a spore's tough protective coating; they become active when inhaled by humans. A result of NASA- and industry-sponsored research to develop small greenhouses for space research is the unique AiroCide TiO2 system that kills anthrax spores and other pathogens.

  19. Multifactorial Resistance of Bacillus subtilis Spores to High-Energy Proton Radiation: Role of Spore Structural Components and the Homologous Recombination and Non-Homologous End Joining DNA Repair Pathways

    PubMed Central

    Reitz, Günther; Li, Zuofeng; Klein, Stuart; Nicholson, Wayne L.

    2012-01-01

    Abstract The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiation on spore survival. Spores of the wild-type B. subtilis strain [mutants deficient in the homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways and mutants deficient in various spore structural components such as dipicolinic acid (DPA), α/β-type small, acid-soluble spore protein (SASP) formation, spore coats, pigmentation, or spore core water content] were irradiated as air-dried multilayers on spacecraft-qualified aluminum coupons with 218 MeV protons [with a linear energy transfer (LET) of 0.4 keV/μm] to various final doses up to 2500 Gy. Spores deficient in NHEJ- and HR-mediated DNA repair were significantly more sensitive to proton radiation than wild-type spores, indicating that both HR and NHEJ DNA repair pathways are needed for spore survival. Spores lacking DPA, α/β-type SASP, or with increased core water content were also significantly more sensitive to proton radiation, whereas the resistance of spores lacking pigmentation or spore coats was essentially identical to that of the wild-type spores. Our results indicate that α/β-type SASP, core water content, and DPA play an important role in spore resistance to high-energy proton irradiation, suggesting their essential function as radioprotectants of the spore interior. Key Words: Bacillus—Spores—DNA repair—Protection—High-energy proton radiation. Astrobiology 12, 1069–1077. PMID:23088412

  20. Results of studies on long-term exposition of dormant forms of various organisms in outer space environment

    NASA Astrophysics Data System (ADS)

    Novikova, Nataliya; Gusev, Oleg; Sugimoto, Manabu; Deshevaya, Elena; Levinskikh, Margarita; Sychev, Vladimir; Okuda, Takashi; Orlov, Oleg; Alekseev, Victor; Poddubko, Svetlana; Polikarpov, Nikolay

    The planetary quarantine is one of the key problems of deep space exploration. Risks of the possible transfer of biological objects across interplanetary space should be necessarily assessed during space exploration. The risks associated with a possible transfer of biological objects and primarily microorganisms in interplanetary space is a priority for space studies We can assume, that on the exterior side of both unmanned and manned space stations there can be millions of microbial cells, many of which are in spore forms, the stability of which towards the unfavorable factors is extremely high. However, direct evidence to support this assumption, obtained only in recent years. “Biorisk” is an apparatus designed for conduction of space experiments focused on long-term exposition of latent stages of different forms of organism on the outer side of Russian Segment of International Space Station was developed and used in SSC RF - Institute for Biomedical Problems RAS. The purpose of this experiment is to determine the principle capability of preservation of life capacity in test-cultures of microorganisms during long-term exposure (comparable with the term of interplanetary flight) in space. The first experiment was performed using spores of bacteria (Bacillus) and fungi (Penicillium, Aspergillus and Cladosporium) housed in 3 boxes that were exposed to outer space for 7, 12 or 18 months. It was for the first time demonstrated that bacterial and fungal spores could survive an exposure to outer space during the time period comparable with the duration of a return mission to Mars. Moreover, the microbial strains proved viable and highly active. The second experiment was expanded by flying, in addition to the above spores, dormant forms of higher plants, insects, lower crustaceans and vertebrates. The 31-month experiment showed that, in spite of harsher than in the first study temperatures, some specimens remained viable and capable of further multiplication. In summary, our experiments provided evidence that not only bacterial and fungal spores but also dormant forms of organisms that reached higher levels of evolutionary development had the capability to survive a long-term exposure to outer space. This observation suggests that they can be transferred on outer walls of space platforms during interplanetary missions. Our findings are of scientific interest as well as of importance for the development of planetary quarantine concepts related to future space flight.

  1. Assessment of Resistance of Bacillus Horneckiae Endospores to UV Radiation and Function of Their Extraneous Layer in Resistance

    NASA Technical Reports Server (NTRS)

    Zachariah, Malcolm M.; Vaishampayan, Parag

    2011-01-01

    Spore-forming microbes are highly resistant to various physical and chemical conditions, which include ionizing and UV radiation, desiccation and oxidative stress, and the harsh environment of outer space or planetary surfaces. The spore's resistance might be due to their metabolically dormant state, and/or by the presence of a series of protective structures that encase the interior-most compartment, the core, which houses the spore chromosome. These spores have multiple layers surrounding the cell that are not found in vegetative cells, and some species have an outer layer of proteins and glycoproteins termed the "exosporium" or a fibrous "extraneous layer" (EL). Bacillus horneckiae is an EL-producing novel sporeformer isolated from a Phoenix spacecraft assembly clean room, and it has previously demonstrated resistance to UV radiation up to 1000 J/m(sup 2). The EL appears to bind B. horneckiae spores into large aggregations, or biofilms, and may confer some UV resistance to the spores. Multiple culturing and purification schemes were tried to achieve high purity spores because vegetative cells would skew UV resistance results. An ethanol-based purification scheme produced high purity spores. Selective removal of the EL from spores was attempted with two schemes: a chemical extraction method and physical extraction (sonication). Results from survival rates in the presence and absence of the external layer will provide a new understanding of the role of biofilms and passive resistance that may favor survival of biological systems in aggressive extra-terrestrial environments. The chemical extraction method decreased viable counts of spores and lead to an inconclusive change UV resistance relative to non-extracted spores. The physical extraction method lead to non-aggregated spores and did not alter viability; however, it produced UV resistance profiles similar to non-extracted spores. In addition to the EL-removal study, samples of B. horneckiae spores dried on aluminum coupons and exposed to increasing UV (200-400 nm range) levels (0 to 8.0 x 105 kJ/m(sup 2)) were tested for viability, which indicated that the maximum UV exposure level that still resulted in viable spores was 5.0 x 10? kJ/m(sup 2).

  2. [Sporogenesis, sporoderm and mature spore ornamentation in Lycopodiaceae].

    PubMed

    Rincon Baron, Edgar Javier; Rolleri, Cristina Hilda; Passarelli, Lilian M; Espinosa Matías, Silvia; Torres, Alba Marina

    2014-09-01

    Studies on reproductive aspects, spore morphology and ultrastructure of Lycopodiaceae are not very common in the scientific literature, and constitute essential information to support taxonomic and systematic relationships among the group. In order to complete existing information, adding new and broader contributions on these topics, a comparative analysis of the sporogenesis ultrastructure, with emphasis on cytological aspects of the sporocyte coat development, tapetum, monoplastidic and polyplastidic meiosis, sporoderm ontogeny and ornamentation of the mature spores, was carried out in 43 taxa of eight genera of the Lycopodiaceae: Austrolycopodium, Diphasium, Diphasiastrum, Huperzia (including Phlegmariurus), Lycopodium, Lycopodiella, Palhinhaea and Pseudolycopodiella growing in the Andes of Colombia and the Neotropics. For this study, the transmission elec- tron microscopy (TEM) samples were collected in Cauca and Valle del Cauca Departments, while most of the spores for scanning electron microscopy (SEM) analysis were obtained from herbarium samples. We followed standard preparation procedures for spore observation by TEM and SEM. Results showed that the sporocyte coat is largely composed by primary wall components; the sporocyte develop much of their metabolic activity in the production of their coat, which is retained until the spores release; protective functions for the diploid cells undergoing meiosis is postulated here for this layer. The abundance of dictyosomes in the sporocyte cytoplasm was related to the formation and development of the sporocyte coat. Besides microtubule activity, the membrane of sporocyte folds, associated with electrodense material, and would early determine the final patterns of spore ornamentation. Monoplastidic condition is common in Lycopodium s.l., whereas polyplastidic condition was observed in species of Huperzia and Lycopodiella s. l. In monoplastidic species, the tapetum presents abun- dant multivesicular bodies, while in polyplastidic species, the secretory activity of the tapetum is less intense. Sporoderm development is centripetal, exospore is the first formed layer, then the endospore and, if present, perispore is the final deposited layer. Adult spores of the Lycopodiaceae showed two patterns of ornamentation: negative or caviform (foveolate spores) and positive or muriform ornamentation, the latter with two subtypes (rugate and reticulate spores). The spores of Huperzia are characteristically foveolate, the rugate spores were found in a few species of Huperzia and in all of the Lycopodiella s. l. taxa studied, while Lycopodium s.l. spores bear reticulate ornamentation. Numerous ornamentation traits are diagnostic at the specific level. The types of ornamentation found do not support the recent extreme fragmentation of the family in several genera, but could match, a priori, with the idea of three subfamilies. The findings of sporogenesis, extremely similar in all taxa studied, point more to consider fewer genera, more comprehensive, than the recent, marked splitting of the family.

  3. Method of Fabricating Protective Coating for a Crucible with the Coating Having Channels Formed Therein

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N. (Inventor)

    2004-01-01

    A method is provided for the fabrication of a protective coating for a crucible with channels being formed in the coating. A material is adhered to the outer wall of the crucible to form a pattern thereon. The outer wall of the crucible along with the pattern of material adhered thereto is next coated with another material. The material used to form the pattern should extend through the outer material coating to define at least one port therein. Next, the crucible with its pattern of material and outer coating material is heated to a temperature of transformation at which the pattern of material is transformed to a fluidic state while the crucible and outer coating material maintain their solid integrity. Such transformation could also be accomplished by using a solvent that causes the pattern of material to dissolve. Finally, the material in its fluidic state is removed via the at least one port formed in the outer material coating thereby leaving channels defined in the coating adjacent the outer wall of the crucible.

  4. Terahertz vibrational signature of bacterial spores arising from nanostructure decorated endospore surface.

    PubMed

    Datta, Debopam; Stroscio, Michael A; Dutta, Mitra; Zhang, Weidong; Brown, Elliott R

    2018-05-03

    This theoretical effort is the first to explore the possible hypothesis that terahertz optical activity of Bacillus spores arises from normal vibrational modes of spore coat subcomponents in the terahertz frequency range. Bacterial strains like Bacillus and Clostridium form spores with a hardened coating made of peptidoglycan to protect its genetic material in harsh conditions. In recent years, electron microscopy and atomic force microscopy has revealed that bacterial spore surfaces are decorated with nanocylinders and honeycomb nanostructures. In this article, a simple elastic continuum model is used to describe the vibration of these nanocylinders mainly in Bacillus subtilis, which also leads to the conclusion that the terahertz signature of these spores arises from the vibration of these nanostructures. Three vibrating modes: radial/longitudinal, torsional and flexural, have been identified and discussed for the nanocylinders. The effect of bound water, which shifts the vibration frequency, is also discussed. The peptidoglycan molecule consists of polar and charged amino acids; hence, the sporal surface local vibrations interact strongly with the terahertz radiation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Investigation of spore coat display of Bacillus subtilis β-galactosidase for developing of whole cell biocatalyst.

    PubMed

    Tavassoli, Setareh; Hinc, Krzysztof; Iwanicki, Adam; Obuchowski, Michal; Ahmadian, Gholamreza

    2013-03-01

    The production of highly efficient, recyclable and cost-effective enzymes is one of the most important goals in industrial biotechnology. Bacterial spores are highly resistant to harsh environmental conditions, easy to produce and are suitable for manipulation of genetic materials. These features make them a very efficient tool for biotechnology. Here, we show the use bacterial spores for presentation of functional enzyme. Spore coat display was used to produce a biocatalyst, which expresses β-galactiosidase (LacA). This enzyme is commonly used to produce lactose-free milk for lactose intolerant individuals. The lacA gene from Bacillus subtilis strain 168 was expressed on the surface of B. subtilis RH101(ΔcotC) spores using CotC as protein carrier. Presence of LacA protein is verified by western blotting. Results of β-galactiosidase assay show that the expressed enzyme retained its activity in condition of freezing and drying, as well as after recovery from the reaction's mixture.

  6. Rapid Determination of Endospore Viability by Hyperspectral Reflectance Following Surface Decontamination

    DTIC Science & Technology

    2008-12-01

    Alexandria, VA ABSTRACT Bacterial spores , or endospores, such as those of Bacillus anthracis, are an asymmetrical threat. Decontamination... Bacillus subtilis spores by hypochlorite and chlorine dioxide, J. Appl Microbiol., 95(1), 54-67. ...have the ability to distinguish viable from non-viable endospores. In the laboratory, we have exploited the oxidative alteration of the spore coat

  7. Screening and formulation of chemoattractant coatings for artificial reef structures.

    PubMed

    Lee, Han Seong; Sidharthan, M; Shim, Cheol Soo; Kim, Young Do; Lim, Chi Young; Ko, J W; Han, Man Deuk; Rang, Maeng Joo; Bim, Lee Sae; Cho, Hwan Sung; Shin, H W

    2008-07-01

    This study was carried out to augment the colonization of marine benthic communities on artificial reef structure. Increasing marine pollution along with various natural hazards cause severe damages to marine algae and associated fauna. In recent years, artificial reefs have been deployed in coastal regions of several parts of the world in order to increase the marine productivity. They are mainly built with concrete materials, however their leachates have considerable impacts on algae. Therefore to increase the algal colonization five chemoattractants such as ferrous sulfate, zinc oxide, ammonium nitrate, sodium phosphate and ferrous lactate were screened against spores of a fouling alga, Ulva pertusa. FeSO4 / ZnO (8:2) and ferrous lactate coatings showed the highest spore attachment with 52 +/- 5.2 cm2 and 79.5 +/- 10.2 cm2 spores respectively (p<0.01). Furthermore using these chemoattractants, coating formulations were made and their performances were investigated at East coast (Ayajin harbor) and South coast (Meejo harbor) of Korea. A maximum fouling coverage (with green algae 25%, red algae 11.3% and brown algae 63.7%) was estimated from ferrous lactate coatings (p<0.01). Different composition of coating formulations and their chemoattractive properties were evaluated.

  8. Bacterial spore inactivation induced by cold plasma.

    PubMed

    Liao, Xinyu; Muhammad, Aliyu Idris; Chen, Shiguo; Hu, Yaqin; Ye, Xingqian; Liu, Donghong; Ding, Tian

    2018-04-05

    Cold plasma has emerged as a non-thermal technology for microbial inactivation in the food industry over the last decade. Spore-forming microorganisms pose challenges for microbiological safety and for the prevention of food spoilage. Inactivation of spores induced by cold plasma has been reported by several studies. However, the exact mechanism of spore deactivation by cold plasma is poorly understood; therefore, it is difficult to control this process and to optimize cold plasma processing for efficient spore inactivation. In this review, we summarize the factors that affect the resistance of spores to cold plasma, including processing parameters, environmental elements, and spore properties. We then describe possible inactivation targets in spore cells (e.g., outer structure, DNA, and metabolic proteins) that associated with inactivation by cold plasma according to previous studies. Kinetic models of the sporicidal activity of cold plasma have also been described here. A better understanding of the interaction between spores and cold plasma is essential for the development and optimization of cold plasma technology in food the industry.

  9. New detection targets for amyloid-reactive probes: spectroscopic recognition of bacterial spores

    NASA Astrophysics Data System (ADS)

    Jones, Guilford, II; Landsman, Pavel

    2005-05-01

    We report characteristic changes in fluorescence of amyloid-binding dyes Thioflavin T (TfT), pinacyanol (PIN) and related dyes, caused by their interaction with suspended Bacillus spore cultures (B. subtilis, B thuringiensis). The gain in TfT emission in the presence of spores allowed their immediate detection in aqueous suspensions, with a sensitivity limit of < 105 spores per ml. The spectroscopic signatures are consistent with a large number of binding sites for the two dyes on spore coats. The possible structural relationship of these dye binding loci with characteristic motifs (β-stacks) of amyloid deposits and other misfolded protein formations suggests new designs for probing biocontamination and also for clinical studies of non-microbial human pathogens (e.g., amyloid-related protein aggregates in prion-related transmissible encephalopathies or in Alzheimer's disease). Also reported is a special screening technique that was designed and used herein for calibration of new detection probes and assays for spore detection. It employed spectroscopic interactions between the candidate amyloid stains and poly(vinylpyrrolidone)-coated colloid silica (Percoll) nanoparticles that also display remarkable parallelism with the corresponding dye-amyloid and dye-spore reactivities. Percoll may thus find new applications as a convenient non-biological structural model mimicking the putative probe-targeted motifs in both classes of bioanalytes. These findings are important in the design of new probes and assays for important human pathogens (i.e. bacterial spores and amyloidogenic protein aggregates).

  10. A combination of a SEM technique and X-ray microanalysis for studying the spore germination process of Clostridium tyrobutyricum.

    PubMed

    Bassi, Daniela; Cappa, Fabrizio; Cocconcelli, Pier Sandro

    2009-06-01

    Clostridium tyrobutyricum is an anaerobic bacterium responsible for late blowing defects during cheese ripening and it is of scientific interest for biological hydrogen production. A scanning electron microscopy (SEM) coating technique and X-ray microanalysis were developed to analyze the architecture and chemical composition of spores upon germination in response to environmental changes. In addition, we investigated the effects of different compounds on this process. Agents and environmental conditions inducing germination were characterized monitoring changes in optical density (OD). Among all tested conditions, the greatest drop in OD(625) (57.4%) was obtained when spores were incubated in l-alanine/l-lactate buffer, pH 4.6. In addition, a carbon-coating SEM technique and X-ray microanalysis were used to observe the architecture of spores and to examine calcium dipicolinate release. Conditions inducing C. tyrobutyricum spore germination were identified and SEM X-ray microanalysis clearly distinguished germinating from dormant spores. We confirmed that calcium dipicolinate release is one of the first events occurring. These microscopy methods could be considered sensitive tools for evaluating morphological and chemical changes in spores of C. tyrobutyricum during the initial phase of germination. Information gathered from this work may provide new data for further research on germination.

  11. Evaluation of the viability of Lactobacillus spp. after the production of different solid dosage forms.

    PubMed

    Brachkova, Mariya I; Duarte, Aida; Pinto, João F

    2009-09-01

    The work aims to provide evidence on the viability of Lactobacillus spp. and a spore form of Bacillus subtilis from nonprocessed bacteria to coated dosage forms (i.e., mini-tablets, pellets, and their coated forms). Lactobacillus spp. were cultivated overnight in MRS broth (10(9) cfu/mL) and B. subtilis spores were produced on plate count agar (10(7) cfu/mL) for 2 weeks. Bacteria and spores were freeze-dried in skim milk enriched with glycerol. The cakes were further processed into tablets (2.5 mm diameter) by direct compression with or without microcrystalline cellulose and inulin. Pellets (1-1.4 mm diameter) were produced by extrusion-spheronization of bacterial and spore suspensions with microcrystalline cellulose, lactose, inulin, and skim milk. Both tablets and pellets were film coated. The properties of the dosage forms, particularly the bacterial viability, were evaluated immediately after production and throughout storage for 6 months at 4 degrees C. The study has shown that for an adequate stabilization of the bacteria a protective matrix (e.g., skim milk) and cryoprotectors (e.g., glycerol) must be present at early stages of bacterial de-hydration. Tabletting had a less deleterious effect (<2 log units) on bacteria when compared to pelletization (in some cases 3 log units). Enteric coating (15%, w/w) of either tablets or pellets did not affect the viability of the bacteria.

  12. Trichoderma sp. spores and Kluyveromyces marxianus cells magnetic separation: Immobilization on chitosan-coated magnetic nanoparticles.

    PubMed

    Palacios-Ponce, Sócrates; Ramos-González, Rodolfo; Ruiz, Héctor A; Aguilar, Miguel A; Martínez-Hernández, José L; Segura-Ceniceros, Elda P; Aguilar, Cristóbal N; Michelena, Georgina; Ilyina, Anna

    2017-07-03

    In the present study, the interactions between chitosan-coated magnetic nanoparticles (C-MNP) and Trichoderma sp. spores as well as Kluyveromyces marxianus cells were studied. By Plackett-Burman design, it was demonstrated that factors which directly influenced on yeast cell immobilization and magnetic separation were inoculum and C-MNP quantity, stirring speed, interaction time, and volume of medium, while in the case of fungal spores, the temperature also was disclosed as an influencing factor. Langmuir and Freundlich models were applied for the mathematical analysis of adsorption isotherms at 30°C. For Trichoderma sp. spore adsorption isotherm, the highest correlation coefficient was observed for lineal function of Langmuir model with a maximum adsorption capacity at 5.00E + 09 spores (C-MNP g -1 ). Adsorption isotherm of K. marxianus cells was better adjusted to Freundlich model with a constant (K f ) estimated as 2.05E + 08 cells (C-MNP g -1 ). Both systems may have a novel application in fermentation processes assisted with magnetic separation of biomass.

  13. Morphological and Chemical Studies of the Spores and Parasporal Bodies of Bacillus laterosporus

    PubMed Central

    Fitz-James, Philip C.; Young, I. Elizabeth

    1958-01-01

    Spores of Bacillus laterosporus were studied to determine the chemical and morphological nature of their basophilic canoe-shaped parasporal bodies. An unusually high phosphorus content of these spores compared to other Bacillus species appeared to be associated with the parasporal body. Preparations of these "canoes" still attached to the spore coats were indeed high in phosphorus, but also in nitrogen. They were free of lipide-soluble and nucleic acid phosphorus and stained for protein. Some 50 per cent of the total nitrogen, but only 6 to 10 per cent of the total P were liberated by extraction with alkali-thioglycollate (pH 11.5) or alkali alone (pH 12.2–12.5). Proteinaceous material was recovered from these alkaline extracts and electron microscopy indicated that there had been a marked loss of "canoe" substance. Extraction with acid, removed some 80 per cent of the phosphorus associated with the "canoes" as orthophosphate. Chromatographic analyses for amino acids indicated some 14 ninhydrin-positive spots in the canoe-coat preparations whereas the whole spores contained at least 16. PMID:13587561

  14. Mechanism of Sporicidal Activity for the Synergistic Combination of Peracetic Acid and Hydrogen Peroxide.

    PubMed

    Leggett, Mark J; Schwarz, J Spencer; Burke, Peter A; McDonnell, Gerald; Denyer, Stephen P; Maillard, Jean-Yves

    2016-02-15

    There is still great interest in controlling bacterial endospores. The use of chemical disinfectants and, notably, oxidizing agents to sterilize medical devices is increasing. With this in mind, hydrogen peroxide (H2O2) and peracetic acid (PAA) have been used in combination, but until now there has been no explanation for the observed increase in sporicidal activity. This study provides information on the mechanism of synergistic interaction of PAA and H2O2 against bacterial spores. We performed investigations of the efficacies of different combinations, including pretreatments with the two oxidizers, against wild-type spores and a range of spore mutants deficient in the spore coat or small acid-soluble spore proteins. The concentrations of the two biocides were also measured in the reaction vessels, enabling the assessment of any shift from H2O2 to PAA formation. This study confirmed the synergistic activity of the combination of H2O2 and PAA. However, we observed that the sporicidal activity of the combination is largely due to PAA and not H2O2. Furthermore, we observed that the synergistic combination was based on H2O2 compromising the spore coat, which was the main spore resistance factor, likely allowing better penetration of PAA and resulting in the increased sporicidal activity. Copyright © 2016 Leggett et al.

  15. Mechanism of Sporicidal Activity for the Synergistic Combination of Peracetic Acid and Hydrogen Peroxide

    PubMed Central

    Leggett, Mark J.; Schwarz, J. Spencer; Burke, Peter A.; McDonnell, Gerald; Denyer, Stephen P.

    2015-01-01

    There is still great interest in controlling bacterial endospores. The use of chemical disinfectants and, notably, oxidizing agents to sterilize medical devices is increasing. With this in mind, hydrogen peroxide (H2O2) and peracetic acid (PAA) have been used in combination, but until now there has been no explanation for the observed increase in sporicidal activity. This study provides information on the mechanism of synergistic interaction of PAA and H2O2 against bacterial spores. We performed investigations of the efficacies of different combinations, including pretreatments with the two oxidizers, against wild-type spores and a range of spore mutants deficient in the spore coat or small acid-soluble spore proteins. The concentrations of the two biocides were also measured in the reaction vessels, enabling the assessment of any shift from H2O2 to PAA formation. This study confirmed the synergistic activity of the combination of H2O2 and PAA. However, we observed that the sporicidal activity of the combination is largely due to PAA and not H2O2. Furthermore, we observed that the synergistic combination was based on H2O2 compromising the spore coat, which was the main spore resistance factor, likely allowing better penetration of PAA and resulting in the increased sporicidal activity. PMID:26637595

  16. Protection of Penaeus monodon against white spot syndrome by continuous oral administration of a low concentration of Bacillus subtilis spores expressing the VP28 antigen.

    PubMed

    Pham, K-C; Tran, H T T; Van Doan, C; Le, P H; Van Nguyen, A T; Nguyen, H A; Hong, H A; Cutting, S M; Phan, T-N

    2017-03-01

    In this study, Bacillus subtilis spores expressing a chimeric protein, CotB-VP28, were used as a probiotic vaccine to protect black tiger shrimps (Penaeus monodon) against white spot syndrome virus (WSSV) infection. Oral administration of pellets coated with CotB-VP28 spores (at ≥1 × 10 9  CFU per g pellet) to shrimps induced immune-relating phenoloxydase activity (PO) in shrimps after 14 days of feeding (prior challenge) and at day 3 post challenge (1·26 and 1·70 fold increase respectively). A 75% protection rate was obtained by continuous feeding of the spore-coated pellets at ≥1 × 10 9  CFU per g for 14 days prior to WSSV challenge and during all the postchallenge period. Even when the amount of CotB-VP28 spores in feed pellets was reduced down to ≥5 × 10 7  CFU per g and ≥1 × 10 6  CFU per g, relatively high protection rates of 70 and 67·5%, respectively, were still obtained. By contrast, feeding pellets without spores (untreated group) and with naked spores (PY79 group) at ≥1 × 10 9  CFU per g could not protect shrimps against WSSV. These data suggest that supplementation of CotB-VP28 spores at low dose of ≥1 × 10 6  CFU per g could be effective as a prophylactic treatment of WSS for black tiger shrimps. This study reports the protective efficacy of Bacillus subtilis CotB-VP28 spores on black tiger shrimps (Penaeus monodon) against white spot syndrome virus infection. Oral administration of pellets coated with CotB-VP28 spores (≥1 × 10 9  CFU per g) conferred 75% protection after white spot syndrome virus challenge. Even after reducing CotB-VP28 spores in feed pellets to ≥1 × 10 6  CFU per g, 67·5% protections was still obtained. These data indicate that supplementation of CotB-VP28 spores at a low dose of ≥1 × 10 6  CFU per g could be effective in prophylaxis against white spot syndrome in black tiger shrimps. © 2016 The Society for Applied Microbiology.

  17. CotA of Bacillus subtilis Is a Copper-Dependent Laccase

    PubMed Central

    Hullo, Marie-Françoise; Moszer, Ivan; Danchin, Antoine; Martin-Verstraete, Isabelle

    2001-01-01

    The spore coat protein CotA of Bacillus subtilis displays similarities with multicopper oxidases, including manganese oxidases and laccases. B. subtilis is able to oxidize manganese, but neither CotA nor other sporulation proteins are involved. We demonstrate that CotA is a laccase. Syringaldazine, a specific substrate of laccases, reacted with wild-type spores but not with ΔcotA spores. CotA may participate in the biosynthesis of the brown spore pigment, which appears to be a melanin-like product and to protect against UV light. PMID:11514528

  18. Article having an improved platinum-aluminum-hafnium protective coating

    NASA Technical Reports Server (NTRS)

    Nagaraj, Bangalore Aswatha (Inventor); Williams, Jeffrey Lawrence (Inventor)

    2005-01-01

    An article protected by a protective coating has a substrate and a protective coating having an outer layer deposited upon the substrate surface and a diffusion zone formed by interdiffusion of the outer layer and the substrate. The protective coating includes platinum, aluminum, no more than about 2 weight percent hafnium, and substantially no silicon. The outer layer is substantially a single phase.

  19. Influence of Root Exudates and Soil on Attachment of Pasteuria penetrans to Meloidogyne arenaria

    PubMed Central

    Liu, Chang; Ji, Pingsheng; Mekete, Tesfamariam; Joseph, Soumi

    2017-01-01

    The bacterium Pasteuria penetrans is a parasite of root-knot nematodes (Meloidogyne spp.). Endospores of P. penetrans attach to the cuticle of second-stage juveniles (J2) and subsequently sterilize infected females. When encumbered by large numbers of spores, juveniles are less mobile and their ability to infect roots is reduced. This study looked at different factors that influence spore attachment of P. penetrans to the root-knot nematode Meloidogyne arenaria. Pretreatment of J2 with root exudates of eggplant (Solanum melongena cv. Black beauty) reduced spore attachment compared with pretreatment with phosphate-buffered saline (PBS), suggesting that the nematode surface coat was altered or the spore recognition domains on the nematode surface were blocked. Spore attachment was equally reduced following exposure to root exudates from both host and nonhost plants for M. arenaria, indicating a common signal that affects spore attachment. Although phytohormones have been shown to influence the lipophilicity of the nematode surface coat, auxins and kinetins did not affect spore attachment compared with PBS. Root exudates reduced spore attachment more in sterilized soil than in natural soil. Sterilization may have eliminated microbes that consume root exudates, or altered the chemical components of the soil solution or root exudates. Root exudates caused a greater decrease in spore attachment in loamy sand than in a sandy loam soil. The sandy loam had higher clay content than the loamy sand, which may have resulted in more adsorption of compounds in the root exudates that affect spore attachment. The components of the root exudates could have also been modified by soil type. The results of this study demonstrate that root exudates can decrease the attachment of P. penetrans endospores to root-knot nematodes, indicating that when these nematodes enter the root zone their susceptibility to spore attachment may decrease. PMID:29062153

  20. Influence of Root Exudates and Soil on Attachment of Pasteuria penetrans to Meloidogyne arenaria.

    PubMed

    Liu, Chang; Timper, Patricia; Ji, Pingsheng; Mekete, Tesfamariam; Joseph, Soumi

    2017-09-01

    The bacterium Pasteuria penetrans is a parasite of root-knot nematodes ( Meloidogyne spp.). Endospores of P. penetrans attach to the cuticle of second-stage juveniles (J2) and subsequently sterilize infected females. When encumbered by large numbers of spores, juveniles are less mobile and their ability to infect roots is reduced. This study looked at different factors that influence spore attachment of P. penetrans to the root-knot nematode Meloidogyne arenaria . Pretreatment of J2 with root exudates of eggplant ( Solanum melongena cv. Black beauty) reduced spore attachment compared with pretreatment with phosphate-buffered saline (PBS), suggesting that the nematode surface coat was altered or the spore recognition domains on the nematode surface were blocked. Spore attachment was equally reduced following exposure to root exudates from both host and nonhost plants for M. arenaria , indicating a common signal that affects spore attachment. Although phytohormones have been shown to influence the lipophilicity of the nematode surface coat, auxins and kinetins did not affect spore attachment compared with PBS. Root exudates reduced spore attachment more in sterilized soil than in natural soil. Sterilization may have eliminated microbes that consume root exudates, or altered the chemical components of the soil solution or root exudates. Root exudates caused a greater decrease in spore attachment in loamy sand than in a sandy loam soil. The sandy loam had higher clay content than the loamy sand, which may have resulted in more adsorption of compounds in the root exudates that affect spore attachment. The components of the root exudates could have also been modified by soil type. The results of this study demonstrate that root exudates can decrease the attachment of P. penetrans endospores to root-knot nematodes, indicating that when these nematodes enter the root zone their susceptibility to spore attachment may decrease.

  1. A two-step transport pathway allows the mother cell to nurture the developing spore in Bacillus subtilis.

    PubMed

    Ramírez-Guadiana, Fernando H; Meeske, Alexander J; Rodrigues, Christopher D A; Barajas-Ornelas, Rocío Del Carmen; Kruse, Andrew C; Rudner, David Z

    2017-09-01

    One of the hallmarks of bacterial endospore formation is the accumulation of high concentrations of pyridine-2,6-dicarboxylic acid (dipicolinic acid or DPA) in the developing spore. This small molecule comprises 5-15% of the dry weight of dormant spores and plays a central role in resistance to both wet heat and desiccation. DPA is synthesized in the mother cell at a late stage in sporulation and must be translocated across two membranes (the inner and outer forespore membranes) that separate the mother cell and forespore. The enzymes that synthesize DPA and the proteins required to translocate it across the inner forespore membrane were identified over two decades ago but the factors that transport DPA across the outer forespore membrane have remained mysterious. Here, we report that SpoVV (formerly YlbJ) is the missing DPA transporter. SpoVV is produced in the mother cell during the morphological process of engulfment and specifically localizes in the outer forespore membrane. Sporulating cells lacking SpoVV produce spores with low levels of DPA and cells engineered to express SpoVV and the DPA synthase during vegetative growth accumulate high levels of DPA in the culture medium. SpoVV resembles concentrative nucleoside transporters and mutagenesis of residues predicted to form the substrate-binding pocket supports the idea that SpoVV has a similar structure and could therefore function similarly. These findings provide a simple two-step transport mechanism by which the mother cell nurtures the developing spore. DPA produced in the mother cell is first translocated into the intermembrane space by SpoVV and is then imported into the forespore by the SpoVA complex. This pathway is likely to be broadly conserved as DPA synthase, SpoVV, and SpoVA proteins can be found in virtually all endospore forming bacteria.

  2. Biological indicators for steam sterilization: characterization of a rapid biological indicator utilizing Bacillus stearothermophilus spore-associated alpha-glucosidase enzyme.

    PubMed

    Albert, H; Davies, D J; Woodson, L P; Soper, C J

    1998-11-01

    The alpha-glucosidase enzyme was isolated from vegetative cells and spores of Bacillus stearothermophilus, ATCC 7953. Spore-associated enzyme had a molecular weight of approximately 92,700, a temperature optimum of 60 degrees C, and a pH optimum of 7.0-7.5. The enzyme in crude aqueous spore extract was stable for 30 min up to a temperature of 65 degrees C, above which the enzyme was rapidly denatured. The optimal pH for stability of the enzyme was approximately 7.2. The alpha-glucosidase in crude vegetative cell extract had similar characteristics to the spore-associated enzyme but its molecular weight was 86,700. The vegetative cell and spore-associated enzymes were cross-reactive. The enzymes are postulated to derive from a single gene product, which undergoes modification to produce the spore-associated form. The location of alpha-glucosidase in the spore coats (outside the spore protoplast) is consistent with the location of most enzymes involved in activation, germination and outgrowth.

  3. Method for adhering a coating to a substrate structure

    DOEpatents

    Taxacher, Glenn Curtis; Crespo, Andres Garcia; Roberts, III, Herbert Chidsey

    2015-02-17

    A method for adhering a coating to a substrate structure comprises selecting a substrate structure having an outer surface oriented substantially parallel to a direction of radial stress, modifying the outer surface to provide a textured region having steps to adhere a coating thereto, and applying a coating to extend over at least a portion of the textured region, wherein the steps are oriented substantially perpendicular to the direction of radial stress to resist deformation of the coating relative to the substrate structure. A rotating component comprises a substrate structure having an outer surface oriented substantially parallel to a direction of radial stress. The outer surface defines a textured region having steps to adhere a coating thereto, and a coating extends over at least a portion of the textured region. The steps are oriented substantially perpendicular to the direction of radial stress to resist creep.

  4. Spore formation and toxin production in Clostridium difficile biofilms.

    PubMed

    Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  5. Spore Formation and Toxin Production in Clostridium difficile Biofilms

    PubMed Central

    Semenyuk, Ekaterina G.; Laning, Michelle L.; Foley, Jennifer; Johnston, Pehga F.; Knight, Katherine L.; Gerding, Dale N.; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection. PMID:24498186

  6. Effects of L-Alanine and Inosine Germinants on the Elasticity of Bacillus anthracis Spores

    DTIC Science & Technology

    2010-01-22

    there was some scanner hysteresis and drift in the detection system, we often observed that the deflection of the free cantilever was not equal to zero...of waste products.5,35 The degradation of the spore coat resulted in a cell that could bemore easily indented by the AFMprobe, as was observed on...changes in the mechanical properties of the spore. In this work, we use atomic force microscopy (AFM) to characterize the mechanical properties of the

  7. Photometric immersion refractometry of bacterial spores.

    PubMed Central

    Gerhardt, P; Beaman, T C; Corner, T R; Greenamyre, J T; Tisa, L S

    1982-01-01

    Photometric immersion refractometry was used to determine the average apparent refractive index (n) of five types of dormant Bacillus spores representing a 600-fold range in moist-heat resistance determined as a D100 value. The n of a spore type increased as the molecular size of various immersion solutes decreased. For comparison of the spore types, the n of the entire spore and of the isolated integument was determined by use of bovine serum albumin, which is excluded from permeating into them. The n of the sporoplast (the structures bounded by the outer pericortex membrane) was determined by use of glucose, which was shown to permeate into the spore only as deeply as the pericortex membrane. Among the various spore types, an exponential increase in the heat resistance correlated with the n of the entire spore and of the sporoplast, but not of the isolated perisporoplast integument. Correlation of the n with the solids content of the entire spore provided a method of experimentally obtaining the refractive index increment (dn/dc), which was constant for the various spore types and enables the calculation of solids and water content from an n. Altogether, the results showed that the total water content is distributed unequally within the dormant spore, with less water in the sporoplast than in the perisporoplast integument, and that the sporoplast becomes more refractile and therefore more dehydrated as the heat resistance becomes greater among the various spore types. PMID:6802796

  8. Surface sterilization of hybrid poplar cuttings

    Treesearch

    Alma M. Waterman

    1954-01-01

    Fungus diseases of hybrid poplars may be spread by spores that lodge in the resinous coating of buds of dormant cuttings, and in the lenticels. Surface sterilization by dipping the cuttings in fungicides was tested to determine whether such treatment would prevent the germination of spores of the canker-producing fungi Septoria musiva and Dothichiza populea and the...

  9. Decontamination of materials contaminated with Bacillus anthracis and Bacillus thuringiensis Al Hakam spores using PES-Solid, a solid source of peracetic acid.

    PubMed

    Buhr, T L; Wells, C M; Young, A A; Minter, Z A; Johnson, C A; Payne, A N; McPherson, D C

    2013-08-01

    To develop test methods and evaluate survival of Bacillus anthracis Ames, B. anthracis ∆Sterne and B. thuringiensis Al Hakam spores after exposure to PES-Solid (a solid source of peracetic acid), including PES-Solid formulations with bacteriostatic surfactants. Spores (≥ 7 logs) were dried on seven different test materials and treated with three different PES-Solid formulations (or preneutralized controls) at room temperature for 15 min. There was either no spore survival or less than 1 log (<10 spores) of spore survival in 56 of 63 test combinations (strain, formulation and substrate). Less than 2.7 logs (<180 spores) survived in the remaining seven test combinations. The highest spore survival rates were seen on water-dispersible chemical agent resistant coating (CARC-W) and Naval ship topcoat (NTC). Electron microscopy and Coulter analysis showed that all spore structures were intact after spore inactivation with PES-Solid. Three PES-Solid formulations inactivated Bacillus spores that were dried on seven different materials. A test method was developed to show that PES-Solid formulations effectively inactivate Bacillus spores on different materials. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  10. Assessment of Bacterial Spores in Solid Materials: Curriculum Improvements Partnership Award for the Integration of Research (CIPAIR)

    NASA Technical Reports Server (NTRS)

    Lavallee, Richard J.

    2012-01-01

    This summer, we quantified the release, by cryogenic grinding at liquid nitrogen temperatures, of microbes present in 4 different spacecraft solids: epoxy 9309, epoxy 9394, epoxy 9396, and a silicone coating. Three different samples of each material were prepared: aseptically prepared solid material, powdered material inoculated with a known spore count of Bacillus atrophaeus, and solid material artificially embedded with a known spore count of Bacillus atrophaeus. Samples were cryogenically ground as needed, and the powders were directly cultured to determine the number of microbial survivors per gram of material. Recovery rates were found to be highly material-dependent, varying from 0.2 to 50% for inoculated material surfaces and 0.002 to 0.5% for embedded spores. A study of the spore survival rate versus total grinding time was also performed, with results indicating that longer grinding time decreases recovery rates of viable spores.

  11. Testing and comparison of the coating materials for immunosensors on QCM

    NASA Astrophysics Data System (ADS)

    Oztuna, Ali; Nazir, Hasan

    2012-06-01

    In immunoassay based biosensors development studies polymers, as a matrix, and thiol, amine and aldehyde derivative compounds, as a antibody linker, are to be experimented. Aim of this study is to test amine and acetate functional group containing derivatives in liquid phase in order to develop an antibody immobilization strategy for Quartz Crystal Microbalance (QCM) system. In our study, 4-aminothiophenol (4-AT), carboxylated-PVC (PVC-COOH) and aminated- PVC (PVC-NH2) compared with each other as a coating material. Surface of the coated AT-cut gold crystals were characterized with Fourier Transform Infrared spectrometry (FTIR) and Scanning Electron Microscobe (SEM) and tested in a Bacillus anthracis (GenBank: GQ375871) spores immunoassay model system. Subsequently, a series of SEM micrographs were taken again in order to investigate surface morphology and show the presence of the B. anthracis spores on the sensor surface. When experimental results and SEM images were evaluated together, it was suggested that with the synthesis of PVC like open-chained polymers, containing -NH2 and -SH functional groups, B. anthracis spore detection can be accomplished on QCM without requiring complicated immobilization procedures and expensive preliminary preparations.

  12. Protective coating for ceramic materials

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A. (Inventor); Churchward, Rex A. (Inventor); Lowe, David M. (Inventor)

    1994-01-01

    A protective coating for ceramic materials such as those made of silicon carbide, aluminum oxide, zirconium oxide, aluminoborosilicate and silicon dioxide, and a thermal control structure comprising a ceramic material having coated thereon the protective coating. The protective coating contains, in admixture, silicon dioxide powder, colloidal silicon dioxide, water, and one or more emittance agents selected from silicon tetraboride, silicon hexaboride, silicon carbide, molybdenum disilicide, tungsten disilicide and zirconium diboride. In another aspect, the protective coating is coated on a flexible ceramic fabric which is the outer cover of a composite insulation. In yet another aspect, a metallic foil is bonded to the outer surface of a ceramic fabric outer cover of a composite insulation via the protective coating. A primary application of this invention is as a protective coating for ceramic materials used in a heat shield for space vehicles subjected to very high aero-convective heating environments.

  13. Location and stoichiometry of the protease CspB and the cortex-lytic enzyme SleC in Clostridium perfringens spores.

    PubMed

    Banawas, Saeed; Korza, George; Paredes-Sabja, Daniel; Li, Yunfeng; Hao, Bing; Setlow, Peter; Sarker, Mahfuzur R

    2015-09-01

    The protease CspB and the cortex-lytic enzyme SleC are essential for peptoglycan cortex hydrolysis during germination of spores of the Clostridium perfringens food poisoning isolate SM101. In this study, Western blot analyses were used to demonstrate that CspB and SleC are present exclusively in the C. perfringens SM101 spore coat layer fraction and absent in the lysate from decoated spores and from the purified inner spore membrane. These results indicate why decoating treatments greatly reduce both germination and apparent viability of C. perfringens spores in the absence of an exogenous lytic enzyme. In addition, quantitative Western blot analyses showed that there are approximately 2000 and 130,000 molecules of CspB and pro-SleC, respectively, per C. perfringens SM101 spore, consistent with CspB's role in acting catalytically on pro-SleC to convert this zymogen to the active enzyme. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Spore Coat Protein CotE Facilitates Host Colonization by Clostridium difficile

    PubMed Central

    Hong, Huynh A; Ferreira, William T; Hosseini, Siamand; Anwar, Saba; Hitri, Krisztina; Wilkinson, Anthony J; Vahjen, Wilfried; Zentek, Jürgen; Soloviev, Mikhail; Cutting, Simon M

    2017-01-01

    Abstract Clostridium difficile infection (CDI) is an important hospital-acquired infection resulting from the germination of spores in the intestine as a consequence of antibiotic-mediated dysbiosis of the gut microbiota. Key to this is CotE, a protein displayed on the spore surface and carrying 2 functional elements, an N-terminal peroxiredoxin and a C-terminal chitinase domain. Using isogenic mutants, we show in vitro and ex vivo that CotE enables binding of spores to mucus by direct interaction with mucin and contributes to its degradation. In animal models of CDI, we show that when CotE is absent, both colonization and virulence were markedly reduced. We demonstrate here that the attachment of spores to the intestine is essential in the development of CDI. Spores are usually regarded as biochemically dormant, but our findings demonstrate that rather than being simply agents of transmission and dissemination, spores directly contribute to the establishment and promotion of disease. PMID:28968845

  15. Study of sporadical properties of crosslinked polyelectrolyte multilayers

    NASA Astrophysics Data System (ADS)

    Balu, Deebika

    Polyelectrolyte multilayers (PEM) have become a highly studied class of materials due to the range of their applicability in many areas of research, including biology, chemistry and materials science. Recent advances in surface coatings have enabled modification of PEM surfaces to provide desirable properties such as controlled release, super-hydrophobicity, biocompatibility, antifouling and antibacterial properties. In the past decade, antimicrobial PEM coatings have been investigated as a safer alternative to the traditional disinfection methods that usually involve application of hazardous chemicals onto the surface to be cleaned. These antimicrobial coatings could be applied to common surfaces prone to colonization of bacteria (such as bench tops, faucet handles, etc) to supplement routine sanitization protocols by providing sustained antimicrobial activity. Vegetative bacteria (such as Escherichia coli) are more susceptible to antimicrobial agents than bacterial species that form spores. Hence, the antimicrobial activity of PEM coatings fabricated using Layer by Layer (LbL) technique were assayed using Bacillus anthracis spores (Sterne strain). In this thesis, the sporicidal effect of various polyelectrolyte multilayer coatings containing cross-linked polymers immersed in bleach have been evaluated as potential augmentation to existing disinfection methods.

  16. Function of the SpoVAEa and SpoVAF Proteins of Bacillus subtilis Spores

    DTIC Science & Technology

    2014-06-01

    outer surface of the spore’s inner membrane, as SpoVAEa was accessible to an external biotinylation agent in spores and SpoVAEa disappeared in parallel...codon was PCR amplified from PS832 chromosomal DNA with primers that inserted BamHI and PstI restriction sites upstream and downstream, respectively... chromosomal structure, and this strain was termed PS4348 (spoVAEa mutant). A B. subtilis strain with a deletion of the spoVF gene was constructed by a two

  17. The sps Gene Products Affect the Germination, Hydrophobicity, and Protein Adsorption of Bacillus subtilis Spores

    PubMed Central

    Cangiano, Giuseppina; Sirec, Teja; Panarella, Cristina; Isticato, Rachele; Baccigalupi, Loredana; De Felice, Maurilio

    2014-01-01

    The multilayered surface of the Bacillus subtilis spore is composed of proteins and glycans. While over 70 different proteins have been identified as surface components, carbohydrates associated with the spore surface have not been characterized in detail yet. Bioinformatic data suggest that the 11 products of the sps operon are involved in the synthesis of polysaccharides present on the spore surface, but an experimental validation is available only for the four distal genes of the operon. Here, we report a transcriptional analysis of the sps operon and a functional study performed by constructing and analyzing two null mutants lacking either all or only the promoter-proximal gene of the operon. Our results show that both sps mutant spores apparently have normal coat and crust but have a small germination defect and are more hydrophobic than wild-type spores. We also show that spores lacking all Sps proteins are highly adhesive and form extensive clumps. In addition, sps mutant spores have an increased efficiency in adsorbing a heterologous enzyme, suggesting that hydrophobic force is a major determinant of spore adsorption and indicating that a deep understanding of the surface properties of the spore is essential for its full development as a surface display platform. PMID:25239894

  18. Myositis associated with a newly described microsporidian, Trachipleistophora hominis, in a patient with AIDS.

    PubMed Central

    Field, A S; Marriott, D J; Milliken, S T; Brew, B J; Canning, E U; Kench, J G; Darveniza, P; Harkness, J L

    1996-01-01

    Microsporidia are zoonotic protozoa which were rare human pathogens prior to 1985, when Enterocytozoon bieneusi was described in human immunodeficiency virus-infected patients with chronic diarrhea. Another species, Encephalitozoon (Septata) intestinalis, is associated with diarrhea and chronic sinusitis, and approximately 25 cases have been reported in the literature. However, other microsporidial infections in human immunodeficiency virus-infected patients remain extremely rare. We report the first case of a Pleistophora sp.-like microsporidian infection presenting as a progressive severe myosotis associated with fever and weight loss. The organism was demonstrated by light microscopy and electron microscopy in corneal scrapings, skeletal muscle, and nasal discharge. Electron microscopy showed an electron-dense surface coat with "sunflare"-like projections surrounding all stages of development of meronts (two to four nuclei, dividing by binary fission), sporonts, and sporoblasts. Division of sporonts, in which sporonts separate from the thick outer coat, creating a sporophorous vesicle, is by binary fission, differentiating this organism from Pleistophora sp. The spore measures 4.0 by 2.5 microns and has a rugose exospore. A new genus and species, Trachipleistophora hominis, has been established for this parasite. The patient was treated with albendazole, sulfadiazine, and pyrimethamine, and the clinical symptoms resolved. PMID:8897186

  19. Coupling Spore Traps and Quantitative PCR Assays for Detection of Cercospora sojina, the Causal Agent of Soybean Frogeye Leaf Spot

    USDA-ARS?s Scientific Manuscript database

    Frogeye leaf spot (FLS), caused by Cercospora sojina Hara, is a common disease of soybean. Significant yield losses (10–60%) have been attributed to FLS. We present a novel trapping approach using Vaseline coated slides placed at a 45° angle within a passive, wind-vane spore trap used in combination...

  20. Synthetic Spores Give Insight into the Real Thing and Reveal Functional Applications | Center for Cancer Research

    Cancer.gov

    Spores from bacteria, such as Bacillus subtilis, are produced to allow the bacterium’s genetic material to survive harsh environments. When the bacterium senses nutrient depletion, it divides asymmetrically into a forespore and a mother cell. The mother cell engulfs the forespore, and coat proteins synthesized by the mother cell localize to the surface of the forespore. The

  1. Coated woven materials and method of preparation

    DOEpatents

    McCreary, W.J.; Carroll, D.W.

    Coating of woven materials so that not only the outer surfaces are coated has been a problem. Now, a solution to that problem is by coating with materials, with metals or with pyrolytic carbon. Materials are deposited in Chemical Vapor Deposition (CND) reactions using a fluidized bed so that the porosity of the woven materials is retained and the tiny filaments which make up the strands which are woven (including inner as well as outer filaments) are substantially uniformly coated.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amidan, Brett G.; Hutchison, Janine R.

    There are many sources of variability that exist in the sample collection and analysis process. This paper addresses many, but not all, sources of variability. The main focus of this paper was to better understand and estimate variability due to differences between samplers. Variability between days was also studied, as well as random variability within each sampler. Experiments were performed using multiple surface materials (ceramic and stainless steel), multiple contaminant concentrations (10 spores and 100 spores), and with and without the presence of interfering material. All testing was done with sponge sticks using 10-inch by 10-inch coupons. Bacillus atrophaeus wasmore » used as the BA surrogate. Spores were deposited using wet deposition. Grime was coated on the coupons which were planned to include the interfering material (Section 3.3). Samples were prepared and analyzed at PNNL using CDC protocol (Section 3.4) and then cultured and counted. Five samplers were trained so that samples were taken using the same protocol. Each sampler randomly sampled eight coupons each day, four coupons with 10 spores deposited and four coupons with 100 spores deposited. Each day consisted of one material being tested. The clean samples (no interfering materials) were run first, followed by the dirty samples (coated with interfering material). There was a significant difference in recovery efficiency between the coupons with 10 spores deposited (mean of 48.9%) and those with 100 spores deposited (mean of 59.8%). There was no general significant difference between the clean and dirty (containing interfering material) coupons or between the two surface materials; however, there was a significant interaction between concentration amount and presence of interfering material. The recovery efficiency was close to the same for coupons with 10 spores deposited, but for the coupons with 100 spores deposited, the recovery efficiency for the dirty samples was significantly larger (65.9% - dirty vs. 53.6% - clean) (see Figure 4.1). Variance component analysis was used to estimate the amount of variability for each source of variability. There wasn’t much difference in variability for dirty and clean samples, as well as between materials, so these results were pooled together. There was a significant difference in amount of concentration deposited, so results were separated for the 10 spore and 100 spore deposited tests. In each case the within sampler variability was the largest with variances of 426.2 for 10 spores and 173.1 for 100 spores. The within sampler variability constitutes the variability between the four samples of similar material, interfering material, and concentration taken by each sampler. The between sampler variance was estimated to be 0 for 10 spores and 1.2 for 100 spores. The between day variance was estimated to be 42.1 for 10 spores and 78.9 for 100 spores. Standard deviations can be calculated in each case by taking the square root of the variance.« less

  3. Near-infrared surface-enhanced-Raman-scattering (SERS) mediated identification of single optically trapped, bacterial spores

    NASA Astrophysics Data System (ADS)

    Alexander, Troy A.; Gillespie, James B.; Pellegrino, Paul M.; Fell, Nicholas F., Jr.; Wood, Gary L.; Salamo, Gregory J.

    2003-03-01

    A novel methodology has been developed for the investigation of bacterial spores. Specifically, this method has been used to probe the spore coat composition of several Bacillus species. This technique may be useful in many applications; most notably, development of novel detection schemes toward potentially harmful biological agents. This method would also be useful as an ancillary environmental monitoring system where sterility is of importance (i.e., food preparation areas as well as invasive and minimally invasive medical applications). This unique detection scheme is based on the near-infrared (NIR) Surface-Enhanced-Raman-Scattering (SERS) from single, optically trapped, bacterial spores. The SERS spectra of several bacterial spores in aqueous media have been measured using SERS substrates based on 60-nm diameter gold colloids bound to 3-Aminopropyltriethoxysilane derivatized glass. The light from a 785-nm laser diode was used to capture/manipulate as well as simultaneously excite the SERS of an individual bacterial spore. The collected SERS spectra were examined for uniqueness and the applicability of this technique for the species identification of bacterial spores.

  4. Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plomp, M; Malkin, A J

    2008-06-02

    Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneouslymore » acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.« less

  5. Uptake of and Resistance to the Antibiotic Berberine by Individual Dormant, Germinating and Outgrowing Bacillus Spores as Monitored by Laser Tweezers Raman Spectroscopy

    PubMed Central

    Wang, Shiwei; Yu, Jing; Suvira, Milomir; Setlow, Peter; Li, Yong-qing

    2015-01-01

    Berberine, an alkaloid originally extracted from the plant Coptis chinensis and other herb plants, has been used as a pharmacological substance for many years. The therapeutic effect of berberine has been attributed to its interaction with nucleic acids and blocking cell division. However, levels of berberine entering individual microbial cells minimal for growth inhibition and its effects on bacterial spores have not been determined. In this work the kinetics and levels of berberine accumulation by individual dormant and germinated spores were measured by laser tweezers Raman spectroscopy and differential interference and fluorescence microscopy, and effects of berberine on spore germination and outgrowth and spore and growing cell viability were determined. The major conclusions from this work are that: (1) colony formation from B. subtilis spores was blocked ~ 99% by 25 μg/mL berberine plus 20 μg/mL INF55 (a multidrug resistance pump inhibitor); (2) 200 μg/mL berberine had no effect on B. subtilis spore germination with L-valine, but spore outgrowth was completely blocked; (3) berberine levels accumulated in single spores germinating with ≥ 25 μg/mL berberine were > 10 mg/mL; (4) fluorescence microscopy showed that germinated spores accumulated high-levels of berberine primarily in the spore core, while dormant spores accumulated very low berberine levels primarily in spore coats; and (5) during germination, uptake of berberine began at the time of commitment (T1) and reached a maximum after the completion of CaDPA release (Trelease) and spore cortex lysis (Tlysis). PMID:26636757

  6. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes

    PubMed Central

    Galperin, Michael Y; Mekhedov, Sergei L; Puigbo, Pere; Smirnov, Sergey; Wolf, Yuri I; Rigden, Daniel J

    2012-01-01

    Three classes of low-G+C Gram-positive bacteria (Firmicutes), Bacilli, Clostridia and Negativicutes, include numerous members that are capable of producing heat-resistant endospores. Spore-forming firmicutes include many environmentally important organisms, such as insect pathogens and cellulose-degrading industrial strains, as well as human pathogens responsible for such diseases as anthrax, botulism, gas gangrene and tetanus. In the best-studied model organism Bacillus subtilis, sporulation involves over 500 genes, many of which are conserved among other bacilli and clostridia. This work aimed to define the genomic requirements for sporulation through an analysis of the presence of sporulation genes in various firmicutes, including those with smaller genomes than B. subtilis. Cultivable spore-formers were found to have genomes larger than 2300 kb and encompass over 2150 protein-coding genes of which 60 are orthologues of genes that are apparently essential for sporulation in B. subtilis. Clostridial spore-formers lack, among others, spoIIB, sda, spoVID and safA genes and have non-orthologous displacements of spoIIQ and spoIVFA, suggesting substantial differences between bacilli and clostridia in the engulfment and spore coat formation steps. Many B. subtilis sporulation genes, particularly those encoding small acid-soluble spore proteins and spore coat proteins, were found only in the family Bacillaceae, or even in a subset of Bacillus spp. Phylogenetic profiles of sporulation genes, compiled in this work, confirm the presence of a common sporulation gene core, but also illuminate the diversity of the sporulation processes within various lineages. These profiles should help further experimental studies of uncharacterized widespread sporulation genes, which would ultimately allow delineation of the minimal set(s) of sporulation-specific genes in Bacilli and Clostridia. PMID:22882546

  7. Effectiveness of Vaporous Hydrogen Peroxide for the Decontamination of Representative Military Materials

    DTIC Science & Technology

    2004-11-16

    Agent Resistant Coating (CARC) Geobacillus stearothermophilus ATCC 7953 Flott Glass Galvanized aluminum Polyimid (Kapton) Nylon Webbing Runway...spores were harvested from 7-10 day –old cultures plated upon Lemko Agar. The spores were washed thrice in sterile distilled water (dH2O), and...NEGATIVE SURROGATE Inocula of log-phase Y. ruckeri were prepared immediately before application to sterile coupons. Cells were grown in nutrient

  8. New configuration for efficient and durable copper coating on the outer surface of a tube

    DOE PAGES

    Ahmad, Irfan; Chapman, Steven F.; Velas, Katherine M.; ...

    2017-03-27

    A well-adhered copper coating on stainless steel power coupler parts is required in superconducting radio frequency (SRF) accelerators. Radio frequency power coupler parts are complex, tubelike stainless steel structures, which require copper coating on their outer and inner surfaces. Conventional copper electroplating sometimes produces films with inadequate adhesion strength for SRF applications. Electroplating also requires a thin nickel strike layer under the copper coating, whose magnetic properties can be detrimental to SRF applications. Coaxial energetic deposition (CED) and sputtering methods have demonstrated efficient conformal coating on the inner surfaces of tubes but coating the outer surface of a tube ismore » challenging because these coating methods are line of sight. When the substrate is off axis and the plasma source is on axis, only a small section of the substrate’s outer surface is exposed to the source cathode. The conventional approach is to rotate the tube to achieve uniformity across the outer surface. This method results in poor film thickness uniformity and wastes most of the source plasma. Alameda Applied Sciences Corporation (AASC) has developed a novel configuration called hollow external cathode CED (HEC-CED) to overcome these issues. HEC-CED produces a film with uniform thickness and efficiently uses all eroded source material. Furthermore, the Cu film deposited on the outside of a stainless steel tube using the new HEC-CED configuration survived a high pressure water rinse adhesion test. HEC-CED can be used to coat the outside of any cylindrical structure.« less

  9. New configuration for efficient and durable copper coating on the outer surface of a tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Irfan; Chapman, Steven F.; Velas, Katherine M.

    A well-adhered copper coating on stainless steel power coupler parts is required in superconducting radio frequency (SRF) accelerators. Radio frequency power coupler parts are complex, tubelike stainless steel structures, which require copper coating on their outer and inner surfaces. Conventional copper electroplating sometimes produces films with inadequate adhesion strength for SRF applications. Electroplating also requires a thin nickel strike layer under the copper coating, whose magnetic properties can be detrimental to SRF applications. Coaxial energetic deposition (CED) and sputtering methods have demonstrated efficient conformal coating on the inner surfaces of tubes but coating the outer surface of a tube ismore » challenging because these coating methods are line of sight. When the substrate is off axis and the plasma source is on axis, only a small section of the substrate’s outer surface is exposed to the source cathode. The conventional approach is to rotate the tube to achieve uniformity across the outer surface. This method results in poor film thickness uniformity and wastes most of the source plasma. Alameda Applied Sciences Corporation (AASC) has developed a novel configuration called hollow external cathode CED (HEC-CED) to overcome these issues. HEC-CED produces a film with uniform thickness and efficiently uses all eroded source material. Furthermore, the Cu film deposited on the outside of a stainless steel tube using the new HEC-CED configuration survived a high pressure water rinse adhesion test. HEC-CED can be used to coat the outside of any cylindrical structure.« less

  10. Comparison of Fe(VI) (FeO4(2-)) and ozone in inactivating Bacillus subtilis spores.

    PubMed

    Makky, Essam A; Park, Gui-Su; Choi, Ik-Won; Cho, Sung-Il; Kim, Hyunook

    2011-05-01

    The protozoan parasites such as Cryptosporidiumparvum and Giardialamblia have been recognized as a frequent cause of recent waterborne disease outbreaks because of their strong resistance against chlorine disinfection. In this study, ozone and Fe(VI) (i.e., FeO(4)(2-)) were compared in terms of inactivation efficiency for Bacillus subtilis spores which are commonly utilized as an indicator of protozoan pathogens. Both oxidants highly depended on water pH and temperature in the spore inactivation. Since redox potential of Fe(VI) is almost the same as that of ozone, spore inactivation efficiency of Fe(VI) was expected to be similar with that of ozone. However, it was found that ozone was definitely superior over Fe(VI): at pH 7 and 20°C, ozone with the product of concentration×contact time (C¯T) of 10mgL(-1)min inactivate the spores more than 99.9% within 10min, while Fe(VI) with C¯T of 30mgL(-1) min could inactivate 90% spores. The large difference between ozone and Fe(VI) in spore inactivation was attributed mainly to Fe(III) produced from Fe(VI) decomposition at the spore coat layer which might coagulate spores and make it difficult for free Fe(VI) to attack live spores. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  11. Patterned structures of graphene and graphitic carbon and methods for their manufacture

    DOEpatents

    Polsky, Ronen; Xiao, Xiaoyin; Burckel, David Bruce; Wheeler, David R.; Brozik, Susan M.; Beechem, Thomas Edwin

    2017-01-03

    A patterned graphene or graphitic body is produced by providing a three-dimensionally patterned carbonaceous body; coating the body with a catalytic metal whereby is formed a coating having an inner surface proximal the body and an outer surface distal the body; and annealing the coated body under time and temperature conditions effective to form a graphene or graphitic layer on the outer surface of the catalytic metal coating.

  12. Patterned structures of graphene and graphitic carbon and methods for their manufacture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polsky, Ronen; Xiao, Xiaoyin; Burckel, David Bruce

    A patterned graphene or graphitic body is produced by providing a three-dimensionally patterned carbonaceous body; coating the body with a catalytic metal whereby is formed a coating having an inner surface proximal the body and an outer surface distal the body; and annealing the coated body under time and temperature conditions effective to form a graphene or graphitic layer on the outer surface of the catalytic metal coating.

  13. Operation and postirradiation examination of ORR capsule OF-2: accelerated testing of HTGR fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiegs, T.N.; Thoms, K.R.

    1979-03-01

    Irradiation capsule OF-2 was a test of High-Temperature Gas-Cooled Reactor fuel types under accelerated irradiation conditions in the Oak Ridge Research Reactor. The results showed good irradiation performance of Triso-coated weak-acid-resin fissile particles and Biso-coated fertile particles. These particles had been coated by a fritted gas distributor in the 0.13-m-diam furnace. Fast-neutron damage (E > 0.18 MeV) and matrix-particle interaction caused the outer pyrocarbon coating on the Triso-coated particles to fail. Such failure depended on the optical anisotropy, density, and open porosity of the outer pyrocarbon coating, as well as on the coke yield of the matrix. Irradiation of specimensmore » with values outside prescribed limits for these properties increased the failure rate of their outer pyrocarbon coating. Good irradiation performance was observed for weak-acid-resin particles with conversions in the range from 15 to 75% UC/sub 2/.« less

  14. Coated woven materials and method of preparation

    DOEpatents

    McCreary, William J.; Carroll, David W.

    1981-01-01

    Coating of woven materials so that not only the outer surfaces are coated has been a problem. Now, a solution to that problem is the following: Woven materials are coated with materials, for example with metals or with pyrolytic carbon, which materials are deposited in Chemical Vapor Deposition (CVD) reactions using a fluidized bed so that the porosity of the woven material is retained and so that the tiny filaments which make up the strands which are woven (including inner as well as outer filaments) are substantially uniformly coated.

  15. Roles of the Bacillus anthracis Spore Protein ExsK in Exosporium Maturation and Germination

    DTIC Science & Technology

    2009-12-01

    exosporium maturation and assembly and suggest a novel role for the exosporium in germination. During starvation, bacteria of the genus Bacillus...Bacillus subtilis, the outermost struc- ture is a protective layer called the coat, which guards the spore against reactive small molecules, degradative ...analysis. Generation of anti-ExsK antibodies. Recombinant ExsK was generated and purified using the pET expression system (Novagen) according to the

  16. Species specific identification of spore-producing microbes using the gene sequence of small acid-soluble spore coat proteins for amplification based diagnostics

    DOEpatents

    McKinney, Nancy

    2002-01-01

    PCR (polymerase chain reaction) primers for the detection of certain Bacillus species, such as Bacillus anthracis. The primers specifically amplify only DNA found in the target species and can distinguish closely related species. Species-specific PCR primers for Bacillus anthracis, Bacillus globigii and Clostridium perfringens are disclosed. The primers are directed to unique sequences within sasp (small acid soluble protein) genes.

  17. Inactivation of Clostridium perfringens spores adhered onto stainless steel surface by agents used in a clean-in-place procedure.

    PubMed

    Alzubeidi, Yasmeen S; Udompijitkul, Pathima; Talukdar, Prabhat K; Sarker, Mahfuzur R

    2018-07-20

    Enterotoxigenic Clostridium perfringens, a leading foodborne pathogen can be cross-contaminated from food processing stainless steel (SS) surfaces to the finished food products. This is mostly due to the high resistance of C. perfringens spores adhered onto SS surfaces to various disinfectants commonly used in food industries. In this study, we aimed to investigate the survivability and adherence of C. perfringens spores onto SS surfaces and then validate the effectiveness of a simulated Clean-in-Place (CIP) regime on inactivation of spores adhered onto SS surfaces. Our results demonstrated that, 1) C. perfringens spores adhered firmly onto SS surfaces and survived for at-least 48 h, unlike their vegetative cells who died within 30 min, after aerobic incubation at refrigerated and ambient temperatures; 2) Spores exhibited higher levels of hydrophobicity than vegetative cells, suggesting a correlation between cell surface hydrophobicity and adhesion to solid surfaces; 3) Intact spores were more hydrophobic than the decoated spores, suggesting a positive role of spore coat components on spores' hydrophobicity and thus adhesion onto SS surfaces; and finally 4) The CIP regime (NaOH + HNO 3 ) successfully inactivated C. perfringens spores adhered onto SS surfaces, and most of the effect of CIP regime appeared to be due to the NaOH. Collectively, our current findings may well contribute towards developing a strategy to control cross-contamination of C. perfringens spores into food products, which should help reducing the risk of C. perfringens-associated food poisoning outbreaks. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Stable gastric pentadecapeptide BPC 157 in honeybee (Apis mellifera) therapy, to control Nosema ceranae invasions in apiary conditions.

    PubMed

    Tlak Gajger, I; Ribarić, J; Smodiš Škerl, M; Vlainić, J; Sikirić, P

    2018-04-23

    Nosema ceranae can cause major problems, such as immune suppression, gut epithelial cell degeneration, reduced honeybee lifespan, or suddenly colony collapse. As a novel approach in therapy, we hypothesize the stable gastric pentadecapeptide BPC 157 in honeybee therapy, to control N. ceranae invasions in apiary conditions: BPC 157 treated sugar syrup (0.25 L sugar syrup supplemented with 0.1 μg/ml BPC 157), as well as the pure sugar syrup (0.25 L sugar syrup; control), was administered to honeybee colonies in feeders situated under the roof of the hives, during 21 consecutive days, at the end of beekeeping season. The strength of honeybee colonies was increased 20 and 30 days after initial feeding with BPC 157 supplement (Day 1, 36.100 ± 698; Day 20, 64.860 ± 468; Day 30, 53.214 ± 312 estimated number of honeybees), in field conditions. The similar successful outcome occurs with the N. ceranae spore loads counted in the homogenates of sampled adult honeybees (Day 1, 6.286 ± 2.336; Day 20, 3.753 ± 1.835; Day 30, 2.005 ± 1.534 million spores/bee). Accordingly, with the noted increased strength of the colonies fed with sugar syrup supplemented with BPC 157, the number of N. ceranae spores per honeybee gradually decreased as well. Besides, honeybees infected with N. ceranae fed with sugar syrup exhibited severe damage of midgut wall layers and epithelial cells. By contrast, in honeybees infected with N. ceranae fed with sugar syrup supplemented with BPC 157, all damages were markedly attenuated, damages of the outer muscular coat, in particular. In conclusion, the results of the first field trial on diseased honeybee colonies with BPC 157 indicate significant therapeutic effects with the used oral therapy with BPC 157 supplementation. © 2018 John Wiley & Sons Ltd.

  19. Image Cytometric Analysis of Algal Spores for Evaluation of Antifouling Activities of Biocidal Agents.

    PubMed

    Il Koo, Bon; Lee, Yun-Soo; Seo, Mintae; Seok Choi, Hyung; Leng Seah, Geok; Nam, Taegu; Nam, Yoon Sung

    2017-07-31

    Chemical biocides have been widely used as marine antifouling agents, but their environmental toxicity impose regulatory restriction on their use. Although various surrogate antifouling biocides have been introduced, their comparative effectiveness has not been well investigated partly due to the difficulty of quantitative evaluation of their antifouling activity. Here we report an image cytometric method to quantitatively analyze the antifouling activities of seven commercial biocides using Ulva prolifera as a target organism, which is known to be a dominant marine species causing soft fouling. The number of spores settled on a substrate is determined through image analysis using the intrinsic fluorescence of chlorophylls in the spores. Pre-determined sets of size and shape of spores allow for the precise determination of the number of settled spores. The effects of biocide concentration and combination of different biocides on the spore settlement are examined. No significant morphological changes of Ulva spores are observed, but the amount of adhesive pad materials is appreciably decreased in the presence of biocides. It is revealed that the growth rate of Ulva is not directly correlated with the antifouling activities against the settlement of Ulva spores. This work suggests that image cytometric analysis is a very convenient, fast-processable method to directly analyze the antifouling effects of biocides and coating materials.

  20. Development of an immunomagnetic separation-polymerase chain reaction (IMS-PCR) assay specific for Enterocytozoon bieneusi in water samples.

    PubMed

    Sorel, N; Guillot, E; Thellier, M; Accoceberry, I; Datry, A; Mesnard-Rouiller, L; Miégeville, M

    2003-01-01

    Microsporidia have become widely recognized as important human pathogens. Among Microsporidia, Enterocytozoon bieneusi is responsible for severe gastrointestinal disease. To date, no current therapy has been proven effective. Their mode of transmission and environmental occurrence are poorly documented because of the lack of detection methods that are both species-specific and sensitive. In this study, we developed a sensitive and specific molecular method to detect E. bieneusi spores in water samples. The molecular assay combined immunomagnetic separation (IMS) and polymerase chain reaction (PCR) amplification to detect E. bieneusi spores. A comparison was made of IMS magnetic beads coated with two different monoclonal antibodies, one specific for the Encephalitozoon genus that cross-reacts with E. bieneusi and the other specific only for the E. bieneusi species itself. Immunotech beads coated with the antibody specific for E. bieneusi were found to be the most effective combination. The highly specific IMS-PCR assay developed in this study provides a rapid and sensitive means of screening water samples for the presence of E. bieneusi spores.

  1. Hydrophilic excipients modulate the time lag of time-controlled disintegrating press-coated tablets.

    PubMed

    Lin, Shan-Yang; Li, Mei-Jane; Lin, Kung-Hsu

    2004-08-16

    An oral press-coated tablet was developed by means of direct compression to achieve the time-controlled disintegrating or rupturing function with a distinct predetermined lag time. This press-coated tablet containing sodium diclofenac in the inner core was formulated with an outer shell by different weight ratios of hydrophobic polymer of micronized ethylcellulose (EC) powder and hydrophilic excipients such as spray-dried lactose (SDL) or hydroxypropyl methylcellulose (HPMC). The effect of the formulation of an outer shell comprising both hydrophobic polymer and hydrophilic excipients on the time lag of drug release was investigated. The release profile of the press-coated tablet exhibited a time period without drug release (time lag) followed by a rapid and complete release phase, in which the outer shell ruptured or broke into 2 halves. The lag phase was markedly dependent on the weight ratios of EC/SDL or EC/HPMC in the outer shell. Different time lags of the press-coated tablets from 1.0 to 16.3 hours could be modulated by changing the type and amount of the excipients. A semilogarithmic plot of the time lag of the tablet against the weight ratios of EC/SDL or EC/HPMC in the outer shell demonstrated a good linear relationship, with r = 0.976 and r = 0.982, respectively. The predetermined time lag prior to the drug release from a press-coated tablet prepared by using a micronized EC as a retarding coating shell can be adequately scheduled with the addition of hydrophilic excipients according to the time or site requirements.

  2. Assembly of the outermost spore layer: pieces of the puzzle are coming together.

    PubMed

    Stewart, George C

    2017-05-01

    Certain endospore-forming soil dwelling bacteria are important human, animal or insect pathogens. These organisms produce spores containing an outer layer, the exosporium. The exosporium is the site of interactions between the spore and the soil environment and between the spore and the infected host during the initial stages of infection. The composition and assembly process of the exosporium are poorly understood. This is partly due to the extreme stability of the exosporium that has proven to be refractive to existing methods to deconstruct the intact structure into its component parts. Although more than 20 proteins have been identified as exosporium-associated, their abundance, relationship to other proteins and the processes by which they are assembled to create the exosporium are largely unknown. In this issue of Molecular Microbiology, Terry, Jiang, and colleagues in Per Bullough's laboratory show that the ExsY protein is a major structural protein of the exosporium basal layer of B. cereus family spores and that it can self-assemble into complex structures that possess many of the structural features characteristic of the exosporium basal layer. The authors refined a model for exosporium assembly. Their findings may have implications for exosporium formation in other spore forming bacteria, including Clostridium species. © 2017 John Wiley & Sons Ltd.

  3. Early development of fern gametophytes in microgravity

    NASA Technical Reports Server (NTRS)

    Roux, Stanley J.; Chatterjee, Ani; Hillier, Sheila; Cannon, Tom

    2003-01-01

    Dormant spores of the fern Ceratopteris richardii were flown on Shuttle mission STS-93 to evaluate the effects of micro-g on their development and on their pattern of gene expression. Prior to flight the spores were sterilized and sown into one of two environments: (1) Microscope slides in a video-microscopy module; and (2) Petri dishes. All spores were then stored in darkness until use. Spore germination was initiated on orbit after exposure to light. For the spores on microscope slides, cell level changes were recorded through the clear spore coat of the spores by video microscopy. After their exposure to light, spores in petri dishes were frozen in orbit at four different time points during which on earth gravity fixes the polarity of their development. Spores were then stored frozen in Biological Research in Canister units until recovery on earth. The RNAs from these cells and from 1-g control cells were extracted and analyzed on earth after flight to assay changes in gene expression. Video microscopy results revealed that the germinated spores developed normally in microgravity, although the polarity of their development, which is guided by gravity on earth, was random in space. Differential Display-PCR analyses of RNA extracted from space-flown cells showed that there was about a 5% change in the pattern of gene expression between cells developing in micro-g compared to those developing on earth. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  4. Formulation and evaluation of press coated tablets for pulsatile drug delivery using hydrophilic and hydrophobic polymers.

    PubMed

    Rane, Ashish Babulal; Gattani, Surendra Ganeshlal; Kadam, Vinayak Dinkar; Tekade, Avinash Ramrao

    2009-11-01

    The aim of present investigation was to develop press coated tablet for pulsatile drug delivery of ketoprofen using hydrophilic and hydrophobic polymers. The drug delivery system was designed to deliver the drug at such a time when it could be most needful to patient of rheumatoid arthritis. The press coated tablets containing ketoprofen in the inner core was formulated with an outer shell by different weight ratio of hydrophobic polymer (micronized ethyl cellulose powder) and hydrophilic polymers (glycinemax husk or sodium alginate). The release profile of press coated tablet exhibited a lag time followed by burst release, in which outer shell ruptured into two halves. Authors also investigated factors influencing on lag time such as particle size and viscosity of ethyl cellulose, outer coating weight and paddle rpm. The surface morphology of the tablet was examined by a scanning electron microscopy. Differential scanning calorimeter and Fourier transformed infrared spectroscopy study showed compatibility between ketoprofen and coating material.

  5. Pollen and spores of terrestrial plants

    USGS Publications Warehouse

    Bernhardt, Christopher E.; Willard, Debra A.; Shennan, Ian; Long, Antony J.; Horton, Benjamin P.

    2015-01-01

    Pollen and spores are valuable tools in reconstructing past sea level and climate because of their ubiquity, abundance, and durability as well as their reciprocity with source vegetation to environmental change (Cronin, 1999; Traverse, 2007; Willard and Bernhardt, 2011). Pollan is found in many sedimentary environments, from freshwater to saltwater, terrestrial to marine. It can be abundant in a minimal amount of sample material, for example half a gram, as concentrations can be as high as four million grains per gram (Traverse, 2007). The abundance of pollen in a sample lends it to robust statistical analysis for the quantitative reconstruction of environments. The outer cell wall is resistant to decay in sediments and allows palynomorphs (pollen and spores) to record changes in plant communities and sea level over millions of years. These characteristics make pollen and spores a powerful tool to use in sea-level research.This chapter describes the biology of pollen and spores and how they are transported and preserved in sediments. We present a methodology for isolating pollen from sediments and a general language and framework to identify pollen as well as light micrographs of a selection of common pollen grains, We then discuss their utility in sea-level research.

  6. Near-infrared surface-enhanced-Raman-scattering (SERS) mediated detection of single optically trapped bacterial spores

    NASA Astrophysics Data System (ADS)

    Alexander, Troy A.; Pellegrino, Paul M.; Gillespie, James B.

    2003-08-01

    A novel methodology has been developed for the investigation of bacterial spores. Specifically, this method has been used to probe the spore coat composition of two different Bacillus stearothermophilus variants. This technique may be useful in many applications; most notably, development of novel detection schemes toward potentially harmful bacteria. This method would also be useful as an ancillary environmental monitoring system where sterility is of importance (i.e., food preparation areas as well as invasive and minimally invasive medical applications). This unique detection scheme is based on the near-infrared (NIR) Surface-Enhanced-Raman-Scattering (SERS) from single, optically trapped, bacterial spores. The SERS spectra of bacterial spores in aqueous media have been measured using SERS substrates based on ~60-nm diameter gold colloids bound to 3-Aminopropyltriethoxysilane derivatized glass. The light from a 787-nm laser diode was used to trap/manipulate as well as simultaneously excite the SERS of an individual bacterial spore. The collected SERS spectra were examined for uniqueness and the applicability of this technique for the strain discrimination of Bacillus stearothermophilus spores. Comparison of normal Raman and SERS spectra reveal not only an enhancement of the normal Raman spectral features but also the appearance of spectral features absent in the normal Raman spectrum.

  7. Near-infrared Surface-Enhanced-Raman-Scattering (SERS) mediated discrimination of single optically trapped bacterial spores

    NASA Astrophysics Data System (ADS)

    Alexander, Troy A.; Pellegrino, Paul M.; Gillespie, James B.

    2004-03-01

    A novel methodology has been developed for the investigation of bacterial spores. Specifically, this method has been used to probe the spore coat composition of two different Bacillus stearothermophilus variants. This technique may be useful in many applications; most notably, development of novel detection schemes toward potentially harmful bacteria. This method would also be useful as an ancillary environmental monitoring system where sterility is of importance (i.e., food preparation areas as well as invasive and minimally invasive medical applications). This unique detection scheme is based on the near-infrared (NIR) Surface-Enhanced-Raman- Scattering (SERS) from single, optically trapped, bacterial spores. The SERS spectra of bacterial spores in aqueous media have been measured using SERS substrates based on ~60-nm diameter gold colloids bound to 3-Aminopropyltriethoxysilane derivatized glass. The light from a 787-nm laser diode was used to trap/manipulate as well as simultaneously excite the SERS of an individual bacterial spore. The collected SERS spectra were examined for uniqueness and the applicability of this technique for the strain discrimination of Bacillus stearothermophilus spores. Comparison of normal Raman and SERS spectra reveal not only an enhancement of the normal Raman spectral features but also the appearance of spectral features absent in the normal Raman spectrum.

  8. Identification of microorganisms using superconducting tunnel junctions and time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ullom, J. N.; Frank, M.; Horn, J. M.; Labov, S. E.; Langry, K.; Benner, W. H.

    2000-04-01

    We present time-of-flight measurements of biological material ejected from bacterial spores following laser irradiation. Ion impacts are registered on a microchannel plate detector and on a Superconducting Tunnel Junction (STJ) detector. We compare mass spectra obtained with the two detectors. The STJ has better sensitivity to massive ions and also measures the energy of each ion. We show evidence that spores of different bacillus species produce distinctive mass spectra and associate the observed mass peaks with coat proteins.

  9. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes.

    PubMed

    Galperin, Michael Y; Mekhedov, Sergei L; Puigbo, Pere; Smirnov, Sergey; Wolf, Yuri I; Rigden, Daniel J

    2012-11-01

    Three classes of low-G+C Gram-positive bacteria (Firmicutes), Bacilli, Clostridia and Negativicutes, include numerous members that are capable of producing heat-resistant endospores. Spore-forming firmicutes include many environmentally important organisms, such as insect pathogens and cellulose-degrading industrial strains, as well as human pathogens responsible for such diseases as anthrax, botulism, gas gangrene and tetanus. In the best-studied model organism Bacillus subtilis, sporulation involves over 500 genes, many of which are conserved among other bacilli and clostridia. This work aimed to define the genomic requirements for sporulation through an analysis of the presence of sporulation genes in various firmicutes, including those with smaller genomes than B. subtilis. Cultivable spore-formers were found to have genomes larger than 2300 kb and encompass over 2150 protein-coding genes of which 60 are orthologues of genes that are apparently essential for sporulation in B. subtilis. Clostridial spore-formers lack, among others, spoIIB, sda, spoVID and safA genes and have non-orthologous displacements of spoIIQ and spoIVFA, suggesting substantial differences between bacilli and clostridia in the engulfment and spore coat formation steps. Many B. subtilis sporulation genes, particularly those encoding small acid-soluble spore proteins and spore coat proteins, were found only in the family Bacillaceae, or even in a subset of Bacillus spp. Phylogenetic profiles of sporulation genes, compiled in this work, confirm the presence of a common sporulation gene core, but also illuminate the diversity of the sporulation processes within various lineages. These profiles should help further experimental studies of uncharacterized widespread sporulation genes, which would ultimately allow delineation of the minimal set(s) of sporulation-specific genes in Bacilli and Clostridia. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  10. The Bacillus subtilis yabG Gene Is Transcribed by SigK RNA Polymerase during Sporulation, and yabG Mutant Spores Have Altered Coat Protein Composition

    PubMed Central

    Takamatsu, Hiromu; Kodama, Takeko; Imamura, Atsuo; Asai, Kei; Kobayashi, Kazuo; Nakayama, Tatsuo; Ogasawara, Naotake; Watabe, Kazuhito

    2000-01-01

    The expression of six novel genes located in the region from abrB to spoVC of the Bacillus subtilis chromosome was analyzed, and one of the genes, yabG, had a predicted promoter sequence conserved among SigK-dependent genes. Northern blot analysis revealed that yabG mRNA was first detected from 4 h after the cessation of logarithmic growth (T4) in wild-type cells and in a gerE36 (GerE−) mutant but not in spoIIAC (SigF−), spoIIGAB (SigE−), spoIIIG (SigG−), and spoIVCB (SigK−) mutants. The transcription start point was determined by primer extension analysis; the −10 and −35 regions are very similar to the consensus sequences recognized by SigK-containing RNA polymerase. Inactivation of the yabG gene by insertion of an erythromycin resistance gene did not affect vegetative growth or spore resistance to heat, chloroform, and lysozyme. The germination of yabG spores in l-alanine and in a mixture of l-asparagine, d-glucose, d-fructose, and potassium chloride was also the same as that of wild-type spores. On the other hand, the protein preparation from yabG spores included 15-, 18-, 21-, 23-, 31-, 45-, and 55-kDa polypeptides which were low in or not extracted from wild-type spores under the same conditions. We determined their N-terminal amino acid sequence and found that these polypeptides were CotT, YeeK, YxeE, CotF, YrbA (31 and 45 kDa), and SpoIVA, respectively. The fluorescence of YabG-green fluorescent protein fusion produced in sporulating cells was detectable in the forespores but not in the mother cell compartment under fluorescence microscopy. These results indicate that yabG encodes a sporulation-specific protein which is involved in coat protein composition in B. subtilis. PMID:10714992

  11. The effects of nitric oxide in settlement and adhesion of zoospores of the green alga Ulva.

    PubMed

    Thompson, Stephanie E M; Callow, Maureen E; Callow, James A

    2010-01-01

    Previous studies have shown that elevated nitric oxide (NO) reduces adhesion in diatom, bacterial and animal cells. This article reports experiments designed to investigate whether elevated NO reduces the adhesion of zoospores of the green alga Ulva, an important fouling species. Surface-normalised values of NO were measured using the fluorescent indicator DAF-FM DA and parallel hydrodynamic measurements of adhesion strength were made. Elevated levels of NO caused by the addition of the exogenous NO donor SNAP reduced spore settlement by 20% and resulted in lower adhesion strength. Addition of the NO scavenger cPTIO abolished the effects of SNAP on adhesion. The strength of attachment and NO production by spores in response to four coatings (Silastic T2; Intersleek 700; Intersleek 900 and polyurethane) shows that reduced adhesion is correlated with an increase in NO production. It is proposed that in spores of Ulva, NO is used as an intracellular signalling molecule to detect how conducive a surface is for settlement and adhesion. The effect of NO on the adhesion of a range of organisms suggests that NO-releasing coatings could have the potential to control fouling.

  12. Effects of post-harvest treatment using chitosan from Mucor circinelloides on fungal pathogenicity and quality of table grapes during storage.

    PubMed

    de Oliveira, Carlos Eduardo Vasconcelos; Magnani, Marciane; de Sales, Camila Veríssimo; Pontes, Alline Lima de Souza; Campos-Takaki, Galba Maria; Stamford, Thayza Christina Montenegro; de Souza, Evandro Leite

    2014-12-01

    The aim of this study was to extract chitosan (CHI) from Mucor circinelloides UCP 050 grown in a corn steep liquor (CSL)-based medium under optimized conditions and to assess the efficacy of the obtained CHI to inhibit the post-harvest pathogenic fungi Aspergillus niger URM 5162 and Rhizopus stolonifer URM 3482 in laboratory media and as a coating on table grapes (Vitis labrusca L.). The effect of CHI coating on some physical, physicochemical and sensory characteristics of the fruits during storage was assessed. The greatest amount of CHI was extracted from M. circinelloides UCP 050 grown in medium containing 7 g of CSL per 100 mL at pH 5.5 with rotation at 180 rpm. CHI from M. circinelloides UCP 050 caused morphological changes in the spores of the fungal strains tested and inhibited mycelial growth and spore germination. CHI coating delayed the growth of the assayed fungal strains in artificially infected grapes, as well as autochthonous mycoflora during storage. CHI coating preserved the quality of grapes during storage, as measured by their physical, physicochemical and sensory attributes. These results demonstrate that edible coatings derived from M. circinelloides CHI could be a useful alternative for controlling pathogenic fungi and maintaining the post-harvest quality of table grapes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Enhancing acoustic signal response and absorption of an underwater coated plate by embedding periodical inhomogeneities.

    PubMed

    Zhang, Yanni; Pan, Jie

    2017-12-01

    An underwater structure is proposed for simultaneous detection and stealth purposes by embedding periodic signal conditioning plates (SCPs) at the interface of two elastic coatings attached to an elastic plate. Results show that the embedded SCPs can enhance sound absorption at frequencies below the coincidence frequency of the plate (f c ). Significantly enhanced absorption occurs at five peaks, of which the peak due to excited localized bending resonance in the outer coating between SCPs is the most significant. When the dilatational velocity of the outer coating equals that of the inner coating, nearly total absorption occurs in a wideband, owing to strong coupling between the localized waveguide resonance in the outer coating and that in the inner coating, and the diffraction waves by the SCPs. Meanwhile, an amplified acoustic signal of over 14 dB is observed at most frequencies within 0 ∼ f c at the coatings' interface close to the SCPs' edges, owing to focused stress formed there. Peaks in the signal response at maximal 30 dB are also observed. These peak frequencies are coincident with or close to the peak frequencies of absorption, demonstrating that significantly enhanced acoustic signal and absorption can be achieved simultaneously through the use of embedded periodic SCPs.

  14. Developmental patterning of sub-epidermal cells in the outer integument of Arabidopsis seeds

    PubMed Central

    Fiume, Elisa; Coen, Olivier; Xu, Wenjia; Lepiniec, Loïc

    2017-01-01

    The seed, the reproductive unit of angiosperms, is generally protected by the seed coat. The seed coat is made of one or two integuments, each comprising two epidermal cells layers and, in some cases, extra sub-epidermal cell layers. The thickness of the seed-coat affects several aspects of seed biology such as dormancy, germination and mortality. In Arabidopsis, the inner integument displays one or two sub-epidermal cell layers that originate from periclinal cell divisions of the innermost epidermal cell layer. By contrast, the outer integument was considered to be two-cell layered. Here, we show that sub-epidermal chalazal cells grow in between the epidermal outer integument cell layers to create an incomplete three-cell layered outer integument. We found that the MADS box transcription factor TRANSPARENT TESTA 16 represses growth of the chalaza and formation of sub-epidermal outer integument cells. Finally, we demonstrate that sub-epidermal cells of the outer and inner integument respond differently to the repressive mechanism mediated by FERTILIZATION INDEPENDENT SEED Polycomb group proteins and to fertilization signals. Our data suggest that integument cell origin rather than sub-epidermal cell position underlies different responses to fertilization. PMID:29141031

  15. ALLOY COATINGS AND METHOD OF APPLYING

    DOEpatents

    Eubank, L.D.; Boller, E.R.

    1958-08-26

    A method for providing uranium articles with a pro tective coating by a single dip coating process is presented. The uranium article is dipped into a molten zinc bath containing a small percentage of aluminum. The resultant product is a uranium article covered with a thin undercoat consisting of a uranium-aluminum alloy with a small amount of zinc, and an outer layer consisting of zinc and aluminum. The article may be used as is, or aluminum sheathing may then be bonded to the aluminum zinc outer layer.

  16. In vitro and in vivo analyses of the Bacillus anthracis spore cortex lytic protein SleL

    PubMed Central

    Lambert, Emily A.; Sherry, Nora

    2012-01-01

    The bacterial endospore is the most resilient biological structure known. Multiple protective integument layers shield the spore core and promote spore dehydration and dormancy. Dormancy is broken when a spore germinates and becomes a metabolically active vegetative cell. Germination requires the breakdown of a modified layer of peptidoglycan (PG) known as the spore cortex. This study reports in vitro and in vivo analyses of the Bacillus anthracis SleL protein. SleL is a spore cortex lytic enzyme composed of three conserved domains: two N-terminal LysM domains and a C-terminal glycosyl hydrolase family 18 domain. Derivatives of SleL containing both, one or no LysM domains were purified and characterized. SleL is incapable of digesting intact cortical PG of either decoated spores or purified spore sacculi. However, SleL derivatives can hydrolyse fragmented PG substrates containing muramic-δ-lactam recognition determinants. The muropeptides that result from SleL hydrolysis are the products of N-acetylglucosaminidase activity. These muropeptide products are small and readily released from the cortex matrix. Loss of the LysM domain(s) decreases both PG binding and hydrolysis activity but these domains do not appear to determine specificity for muramic-δ-lactam. When the SleL derivatives are expressed in vivo, those proteins lacking one or both LysM domains do not associate with the spore. Instead, these proteins remain in the mother cell and are apparently degraded. SleL with both LysM domains localizes to the coat or cortex of the endospore. The information revealed by elucidating the role of SleL and its domains in B. anthracis sporulation and germination is important in designing new spore decontamination methods. By exploiting germination-specific lytic enzymes, eradication techniques may be greatly simplified. PMID:22343356

  17. Early quantitative method for measuring germination in non-green spores of Dryopteris paleacea using an epifluorescence-microscope technique

    NASA Technical Reports Server (NTRS)

    Scheuerlein, R.; Wayne, R.; Roux, S. J.

    1988-01-01

    A method is described to determine germination by blue-light excited red fluorescence in the positively photoblastic spores of Dryopteris paleacea Sw. This fluorescence is due to chlorophyll as evidenced from 1) a fluorescence-emission spectrum in vivo, where a bright fluorescence around 675 nm is obtained only in red light (R)-irradiated spores and 2) in vitro measurements with acetone extracts prepared from homogenized spores. Significant amounts of chlorophyll can be found only in R-treated spores; this chlorophyll exhibits an emission band around 668 nm, when irradiated with 430 nm light at 21 degrees C. Compared to other criteria for germination, such as swelling of the cell, coat splitting, greening, and rhizoid formation, which require longer periods after induction for their expression, chlorophyll fluorescence can be used to quantify germination after two days. This result is confirmed by fluence-response curves for R-induced spore germination; the same relationship between applied R and germination is obtained by the evaluation with the epifluorescence method 2 days after the light treatment as compared with the evaluation with bright-field microscopy 5 days after the inducing R. Using this technique we show for the first time that Ca2+ contributes to the signal-transduction chain in phytochrome-mediated chlorophyll synthesis in spores of Dryopteris paleacea.

  18. Investigating effects of hydroxypropyl methylcellulose (HPMC) molecular weight grades on lag time of press-coated ethylcellulose tablets.

    PubMed

    Patadia, Riddhish; Vora, Chintan; Mittal, Karan; Mashru, Rajashree

    2016-11-01

    The research undertaken exemplifies the effects of hydroxypropyl methylcellulose (HPMC) molecular weight (MW) grades of on lag time of press-coated ethylcellulose (EC) tablets. The formulation comprised an immediate release core (containing prednisone as a model drug) surrounded by compression coating with variegated EC-HPMC blends. Five selected HPMC grades (E5, E15, E50, K100LV and K4M) were explored at three different concentrations (10% w/w, 20% w/w and 30% w/w in outer coat) to understand their effects on lag time and drug release. In vitro drug release testing demonstrated that, with increase in concentration of E5 and E15, up to 30% w/w, the mean lag time decreased progressively; whereas with remaining grades, the mean lag time initially decreased up to 20% w/w level and thereafter increased for 30% w/w level. Importantly, with increase in HPMC concentration in the outer coat, the variability in lag time (%RSD; n = 6) was decreased for each of E5, E15 and E50, whereas increased for K100LV and K4M. In general, the variability in lag time was increased with increase in HPMC MW at studied concentration levels. Markedly, tablets with 30% w/w K4M in outer coat exhibited slight premature release (before the rupture of outer coat) along with high variability in lag time. Overall, the study concluded that low MW HPMCs (E5, E15 and E50) were found rather efficient than higher MW HPMCs for developing robust EC-based press-coated pulsatile release formulations where precise lag time followed by sharp burst release is desired.

  19. Enzymatic Manganese(II) Oxidation by Metabolically Dormant Spores of Diverse Bacillus Species

    PubMed Central

    Francis, Chris A.; Tebo, Bradley M.

    2002-01-01

    Bacterial spores are renowned for their longevity, ubiquity, and resistance to environmental insults, but virtually nothing is known regarding whether these metabolically dormant structures impact their surrounding chemical environments. In the present study, a number of spore-forming bacteria that produce dormant spores which enzymatically oxidize soluble Mn(II) to insoluble Mn(IV) oxides were isolated from coastal marine sediments. The highly charged and reactive surfaces of biogenic metal oxides dramatically influence the oxidation and sorption of both trace metals and organics in the environment. Prior to this study, the only known Mn(II)-oxidizing sporeformer was the marine Bacillus sp. strain SG-1, an extensively studied bacterium in which Mn(II) oxidation is believed to be catalyzed by a multicopper oxidase, MnxG. Phylogenetic analysis based on 16S rRNA and mnxG sequences obtained from 15 different Mn(II)-oxidizing sporeformers (including SG-1) revealed extensive diversity within the genus Bacillus, with organisms falling into several distinct clusters and lineages. In addition, active Mn(II)-oxidizing proteins of various sizes, as observed in sodium dodecyl sulfate-polyacrylamide electrophoresis gels, were recovered from the outer layers of purified dormant spores of the isolates. These are the first active Mn(II)-oxidizing enzymes identified in spores or gram-positive bacteria. Although extremely resistant to denaturation, the activities of these enzymes were inhibited by azide and o-phenanthroline, consistent with the involvement of multicopper oxidases. Overall, these studies suggest that the commonly held view that bacterial spores are merely inactive structures in the environment should be revised. PMID:11823231

  20. Mucosal Vaccination against Tuberculosis Using Inert Bioparticles

    PubMed Central

    Reljic, Rajko; Sibley, Laura; Huang, Jen-Min; Pepponi, Ilaria; Hoppe, Andreas; Hong, Huynh A.

    2013-01-01

    Needle-free, mucosal immunization is a highly desirable strategy for vaccination against many pathogens, especially those entering through the respiratory mucosa, such as Mycobacterium tuberculosis. Unfortunately, mucosal vaccination against tuberculosis (TB) is impeded by a lack of suitable adjuvants and/or delivery platforms that could induce a protective immune response in humans. Here, we report on a novel biotechnological approach for mucosal vaccination against TB that overcomes some of the current limitations. This is achieved by coating protective TB antigens onto the surface of inert bacterial spores, which are then delivered to the respiratory tract. Our data showed that mice immunized nasally with coated spores developed humoral and cellular immune responses and multifunctional T cells and, most importantly, presented significantly reduced bacterial loads in their lungs and spleens following pathogenic challenge. We conclude that this new vaccine delivery platform merits further development as a mucosal vaccine for TB and possibly also other respiratory pathogens. PMID:23959722

  1. Corrosion resistance of Zn-Al layered double hydroxide/poly(lactic acid) composite coating on magnesium alloy AZ31

    NASA Astrophysics Data System (ADS)

    Zeng, Rong-Chang; Li, Xiao-Ting; Liu, Zhen-Guo; Zhang, Fen; Li, Shuo-Qi; Cui, Hong-Zhi

    2015-12-01

    A Zn-Al layered double hydroxide (ZnAl-LDH) coating consisted of uniform hexagonal nano-plates was firstly synthesized by co-precipitation and hydrothermal treatment on the AZ31 alloy, and then a poly(lactic acid) (PLA) coating was sealed on the top layer of the ZnAl-LDH coating using vacuum freeze-drying. The characteristics of the ZnAl-LDH/PLA composite coatings were investigated by means of XRD, SEM, FTIR and EDS. The corrosion resistance of the coatings was assessed by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the ZnAl-LDH coating contained a compact inner layer and a porous outer layer, and the PLA coating with a strong adhesion to the porous outer layer can prolong the service life of the ZnAl-LDH coating. The excellent corrosion resistance of this composite coating can be attributable to its barrier function, ion-exchange and self-healing ability.

  2. NanoSIMS analysis of Bacillus spores for forensics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, P K; Davisson, M L; Velsko, S P

    2010-02-23

    The threat associated with the potential use of radiological, nuclear, chemical and biological materials in terrorist acts has resulted in new fields of forensic science requiring the application of state-of-the-science analytical techniques. Since the anthrax letter attacks in the United States in the fall of 2001, there has been increased interest in physical and chemical characterization of bacterial spores. While molecular methods are powerful tools for identifying genetic differences, other methods may be able to differentiate genetically identical samples based on physical and chemical properties, as well as provide complimentary information, such as methods of production and approximate date ofmore » production. Microanalysis has the potential to contribute significantly to microbial forensics. Bacillus spores are highly structured, consisting of a core, cortex, coat, and in some species, an exosporium. This structure provides a template for constraining elemental abundance differences at the nanometer scale. The primary controls on the distribution of major elements in spores are likely structural and physiological. For example, P and Ca are known to be abundant in the spore core because that is where P-rich nucleic acids and Cadipicolinic acid are located, respectively. Trace elements are known to bind to the spore coat but the controls on these elements are less well understood. Elemental distributions and abundances may be directly related to spore production, purification and stabilization methodologies, which are of particular interest for forensic investigation. To this end, we are developing a high-resolution secondary ion mass spectrometry method using a Cameca NanoSIMS 50 to study the distribution and abundance of trace elements in bacterial spores. In this presentation we will review and compare methods for preparing and analyzing samples, as well as review results on the distribution and abundance of elements in bacterial spores. We use NanoSIMS to directly image samples as well as depth profile samples. The directly imaged samples are sectioned to present a flat surface for analysis. We use focused ion beam (FIB) milling to top-cut individual spores to create flat surfaces for NanoSIMS analysis. Depth profiling can be used on whole spores, which are consumed in the process of analysis. The two methods generate comparable results, with the expected distribution of P and Ca. Ca-compatible elements, such as Mg and Mn, are found to follow the distribution of Ca. The distribution of other elements will be discussed. We envision the first application of this methodology will be to sample matching for trace samples. Towards this end, we are generating a baseline data set for samples produced by multiple laboratories. Preliminary results suggest that this method provides significant probative value for identifying samples produced by the same method in the same laboratory, as well as coming from the same initial production run. The results of this study will be presented.« less

  3. Test methods and response surface models for hot, humid air decontamination of materials contaminated with dirty spores of Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam.

    PubMed

    Buhr, T L; Young, A A; Barnette, H K; Minter, Z A; Kennihan, N L; Johnson, C A; Bohmke, M D; DePaola, M; Cora-Laó, M; Page, M A

    2015-11-01

    To develop test methods and evaluate survival of Bacillus anthracis ∆Sterne or Bacillus thuringiensis Al Hakam on materials contaminated with dirty spore preparations after exposure to hot, humid air using response surface modelling. Spores (>7 log10 ) were mixed with humic acid + spent sporulation medium (organic debris) or kaolin (dirt debris). Spore samples were then dried on five different test materials (wiring insulation, aircraft performance coating, anti-skid, polypropylene, and nylon). Inoculated materials were tested with 19 test combinations of temperature (55, 65, 75°C), relative humidity (70, 80, 90%) and time (1, 2, 3 days). The slowest spore inactivation kinetics was on nylon webbing and/or after addition of organic debris. Hot, humid air effectively decontaminates materials contaminated with dirty Bacillus spore preparations; debris and material interactions create complex decontamination kinetic patterns; and B. thuringiensis Al Hakam is a realistic surrogate for B. anthracis. Response surface models of hot, humid air decontamination were developed which may be used to select decontamination parameters for contamination scenarios including aircraft. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  4. Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Satomi, Masataka; Venkateswaran, Kasthuri

    2004-01-01

    A round-spore-forming Bacillus species that produces an exosporium was isolated from the surface of the Mars Odyssey spacecraft. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and is a Gram-positive, aerobic, rod-shaped, endospore-forming eubacterium. Ultrathin sections of the spores showed the presence of an exosporium, spore coat, cortex and core. 16S rDNA sequence similarities between this strain, Bacillus fusiformis and Bacillus silvestris were approximately 96% and DNA-DNA reassociation values with these two bacilli were 23 and 17%, respectively. Spores of the novel species were resistant to desiccation, H2O2 and UV and gamma radiation. Of all strains tested, the spores of this strain were the most consistently resistant and survived all of the challenges posed, i.e. exposure to conditions of desiccation (100% survival), H2O2 (26% survival), UV radiation (10% survival at 660 J m(-2)) and gamma radiation (0.4% survival). The name proposed for this novel bacterium is Bacillus odysseyi sp. nov.; the type strain is 34hs-1T (=ATCC PTA-4993T=NRRL B-30641T=NBRC 100172T).

  5. Impact of an oil-based lubricant on the effectiveness of the sterilization processes .

    PubMed

    Rutala, William A; Gergen, Maria F; Weber, David J

    2008-01-01

    Surgical instruments, including hinged instruments, were inoculated with test microorganisms (ie, methicillin-resistant Staphylococcus aureus, approximately 2 x 10(6) colony-forming units [cfu]; Pseudomonas aeruginosa, approximately 3 x 10(6) cfu; Escherichia coli, approximately 2 x 10(5) cfu; vancomycin-resistant enterococci, 1 x 10(5) cfu; Geobacillus stearothermophilus spores, 2 x 10(5) cfu or more; or Bacillus atrophaeus spores, 9 x 10(4) cfu or more), coated with an oil-based lubricant (hydraulic fluid), subjected to a sterilization process, and then samples from the instruments were cultured. We found that the oil-based lubricant did not alter the effectiveness of the sterilization process because high numbers of clinically relevant bacteria and standard test spores (which are relatively resistant to the sterilization process) were inactivated.

  6. Functionally graded alumina-based thin film systems

    DOEpatents

    Moore, John J.; Zhong, Dalong

    2006-08-29

    The present invention provides coating systems that minimize thermal and residual stresses to create a fatigue- and soldering-resistant coating for aluminum die casting dies. The coating systems include at least three layers. The outer layer is an alumina- or boro-carbide-based outer layer that has superior non-wettability characteristics with molten aluminum coupled with oxidation and wear resistance. A functionally-graded intermediate layer or "interlayer" enhances the erosive wear, toughness, and corrosion resistance of the die. A thin adhesion layer of reactive metal is used between the die substrate and the interlayer to increase adhesion of the coating system to the die surface.

  7. Influence of polydimethylsiloxane outer coating and packing material on analyte recovery in dual-phase headspace sorptive extraction.

    PubMed

    Bicchi, Carlo; Cordero, Chiara; Liberto, Erica; Sgorbini, Barbara; David, Frank; Sandra, Pat; Rubiolo, Patrizia

    2007-09-14

    Dual phase twisters (DP twisters), consisting of a polydimethylsiloxane (PDMS) outer coating and a second complementary (ad)sorbent as inner packing, have recently been shown to extend the applicability of headspace sorptive extraction (HSSE). In comparison to HSSE using PDMS only, the recovery of analytes from the headspace of a solid or liquid matrix is increased by combining the concentration capabilities of two sampling materials operating on different mechanisms (sorption and adsorption). This study compares the performance of DP twisters consisting of different PDMS outer coatings and different packing materials, including Tenax GC, a bisphenol-PDMS copolymer, Carbopack coated with 5% of Carbowax and beta-cyclodextrin, for the analysis of the headspace of roasted Arabica coffee, dried sage leaves and an aqueous test mixture containing compounds with different water solubility, acidity, polarity and volatility as test samples. In general, DP twisters showed a higher concentration capability than the corresponding conventional PDMS twisters for the analytes considered. The highest recoveries were obtained with DP twisters consisting of 0.2mm thick PDMS coating combined with Tenax GC, a bisphenol-PDMS copolymer and Carbopack coated with 5% of Carbowax as inner adsorption phase.

  8. Unlocking the Sporicidal Potential of Ethanol: Induced Sporicidal Activity of Ethanol against Clostridium difficile and Bacillus Spores under Altered Physical and Chemical Conditions

    PubMed Central

    Nerandzic, Michelle M.; Sunkesula, Venkata C. K.; C., Thriveen Sankar; Setlow, Peter; Donskey, Curtis J.

    2015-01-01

    Background Due to their efficacy and convenience, alcohol-based hand sanitizers have been widely adopted as the primary method of hand hygiene in healthcare settings. However, alcohols lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We hypothesized that sporicidal activity could be induced in alcohols through alteration of physical or chemical conditions that have been shown to degrade or allow penetration of spore coats. Principal Findings Acidification, alkalinization, and heating of ethanol induced rapid sporicidal activity against C. difficile, and to a lesser extent Bacillus thuringiensis and Bacillus subtilis. The sporicidal activity of acidified ethanol was enhanced by increasing ionic strength and mild elevations in temperature. On skin, sporicidal ethanol formulations were as effective as soap and water hand washing in reducing levels of C. difficile spores. Conclusions These findings demonstrate that novel ethanol-based sporicidal hand hygiene formulations can be developed through alteration of physical and chemical conditions. PMID:26177038

  9. Space Microbiology

    PubMed Central

    Horneck, Gerda; Klaus, David M.; Mancinelli, Rocco L.

    2010-01-01

    Summary: The responses of microorganisms (viruses, bacterial cells, bacterial and fungal spores, and lichens) to selected factors of space (microgravity, galactic cosmic radiation, solar UV radiation, and space vacuum) were determined in space and laboratory simulation experiments. In general, microorganisms tend to thrive in the space flight environment in terms of enhanced growth parameters and a demonstrated ability to proliferate in the presence of normally inhibitory levels of antibiotics. The mechanisms responsible for the observed biological responses, however, are not yet fully understood. A hypothesized interaction of microgravity with radiation-induced DNA repair processes was experimentally refuted. The survival of microorganisms in outer space was investigated to tackle questions on the upper boundary of the biosphere and on the likelihood of interplanetary transport of microorganisms. It was found that extraterrestrial solar UV radiation was the most deleterious factor of space. Among all organisms tested, only lichens (Rhizocarpon geographicum and Xanthoria elegans) maintained full viability after 2 weeks in outer space, whereas all other test systems were inactivated by orders of magnitude. Using optical filters and spores of Bacillus subtilis as a biological UV dosimeter, it was found that the current ozone layer reduces the biological effectiveness of solar UV by 3 orders of magnitude. If shielded against solar UV, spores of B. subtilis were capable of surviving in space for up to 6 years, especially if embedded in clay or meteorite powder (artificial meteorites). The data support the likelihood of interplanetary transfer of microorganisms within meteorites, the so-called lithopanspermia hypothesis. PMID:20197502

  10. Diverse microbial species survive high ammonia concentrations

    NASA Astrophysics Data System (ADS)

    Kelly, Laura C.; Cockell, Charles S.; Summers, Stephen

    2012-04-01

    Planetary protection regulations are in place to control the contamination of planets and moons with terrestrial micro-organisms in order to avoid jeopardizing future scientific investigations relating to the search for life. One environmental chemical factor of relevance in extraterrestrial environments, specifically in the moons of the outer solar system, is ammonia (NH3). Ammonia is known to be highly toxic to micro-organisms and may disrupt proton motive force, interfere with cellular redox reactions or cause an increase of cell pH. To test the survival potential of terrestrial micro-organisms exposed to such cold, ammonia-rich environments, and to judge whether current planetary protection regulations are sufficient, soil samples were exposed to concentrations of NH3 from 5 to 35% (v/v) at -80°C and room temperature for periods up to 11 months. Following exposure to 35% NH3, diverse spore-forming taxa survived, including representatives of the Firmicutes (Bacillus, Sporosarcina, Viridibacillus, Paenibacillus, Staphylococcus and Brevibacillus) and Actinobacteria (Streptomyces). Non-spore forming organisms also survived, including Proteobacteria (Pseudomonas) and Actinobacteria (Arthrobacter) that are known to have environmentally resistant resting states. Clostridium spp. were isolated from the exposed soil under anaerobic culture. High NH3 was shown to cause a reduction in viability of spores over time, but spore morphology was not visibly altered. In addition to its implications for planetary protection, these data show that a large number of bacteria, potentially including spore-forming pathogens, but also environmentally resistant non-spore-formers, can survive high ammonia concentrations.

  11. Space Biology in Russia Today

    NASA Astrophysics Data System (ADS)

    Grigoriev, Anatoly; Sychev, Vladimir; Ilyin, Eugene

    At present space biology research in Russia is making significant progress in several areas of high priority. Gravitational biology. In April-May 2013, a successful 30-day flight of the biological satellite (biosatellite) Bion-M1 was conducted, which carried rodents (mice and gerbils), geckos, fish, mollusks, crustaceans, microorganisms, insects, lower and higher plants, seeds, etc. The investigations were performed by Russian scientists as well as by researchers from NASA, CNES, DLR and South Korea. Foton-M4 carrying various biological specimens is scheduled to launch in 2014. Work has begun to develop science research programs to be implemented onboard Bion-M2 and Bion-M3 as well as on high apogee recoverable spacecraft. Study of the effects of microgravity on the growth and development of higher plants cultivated over several generations on the International Space Station (ISS) has been recently completed. Space radiobiology. Regular experiments aimed at investigating the effects of high-energy galactic cosmic rays on the animal central nervous system and behavior are being carried out using the Particle Accelerator in the town of Dubna. Biological (environmental) life support systems. In recent years, experiments have been performed on the ISS to upgrade technologies of plant cultivation in microgravity. Advanced greenhouse mockups have been built and are currentlyundergoing bioengineering tests. Technologies of waste utilization in space are being developed. Astrobiology experiments in orbital missions. In 2010, the Biorisk experiment on bacterial and fungal spores, seeds and dormant forms of organisms was completed. The payload containing the specimens was installed on the exterior wall of the ISS and was exposed to outer space for 31 months. In addition, Bion-M1 also carried seeds, bacterial spores and microbes that were exposed to outer space effects. The survival rate of bacterial spores incorporated into man-made meteorites, that were attached to the biosatellite outer wall, was examined to determine the effect of high temperatures produced by aerodynamic heating during reentry.

  12. Sterility Testing of Prototype Plastic Aseptic Docking Tubes

    DTIC Science & Technology

    1982-09-01

    Bacillus stearothermophilus CL21. AmerRACT (Coat~e- aeids uIf 8" niev teIi by block n"Unbee) Fifty-nine pairs of sterile docking tabs, manufactured...of Bacillus stearothermophilus , _J sealed, and flushed with sterile culture medium. Twenty five percent of the LA_.. seals failed because of...were similarly attached to sterile tubes of Becton Dickenson supplemented peptone broth. A 25 ul aliquot of Bacillus stearothermophilus spores (Ix]O

  13. Mucosal Antibodies to the C Terminus of Toxin A Prevent Colonization of Clostridium difficile

    PubMed Central

    Hong, Huynh A.; Hitri, Krisztina; Hosseini, Siamand; Kotowicz, Natalia; Bryan, Donna; Mawas, Fatme; Wilkinson, Anthony J.; van Broekhoven, Annie; Kearsey, Jonathan

    2017-01-01

    ABSTRACT Mucosal immunity is considered important for protection against Clostridium difficile infection (CDI). We show that in hamsters immunized with Bacillus subtilis spores expressing a carboxy-terminal segment (TcdA26–39) of C. difficile toxin A, no colonization occurs in protected animals when challenged with C. difficile strain 630. In contrast, animals immunized with toxoids showed no protection and remained fully colonized. Along with neutralizing toxins, antibodies to TcdA26–39 (but not to toxoids), whether raised to the recombinant protein or to TcdA26–39 expressed on the B. subtilis spore surface, cross-react with a number of seemingly unrelated proteins expressed on the vegetative cell surface or spore coat of C. difficile. These include two dehydrogenases, AdhE1 and LdhA, as well as the CdeC protein that is present on the spore. Anti-TcdA26–39 mucosal antibodies obtained following immunization with recombinant B. subtilis spores were able to reduce the adhesion of C. difficile to mucus-producing intestinal cells. This cross-reaction is intriguing yet important since it illustrates the importance of mucosal immunity for complete protection against CDI. PMID:28167669

  14. Glomus perpusillum, a new arbuscular mycorrhizal fungus.

    PubMed

    Błaszkowski, Janusz; Kovács, Gábor M; Balázs, Tímea

    2009-01-01

    A new arbuscular mycorrhizal fungal species of genus Glomus, G. perpusillum (Glomeromycota), forming small, hyaline spores is described and illustrated. Spores of G. perpusillum were formed in hypogeous aggregates and occasionally inside roots. They are globose to subglobose, (10-)24(-30) microm diam, rarely egg-shaped, oblong to irregular, 18-25 x 25-63 microm. The single spore wall of G. perpusillum consists of two permanent layers: a finely laminate, semiflexible to rigid outer layer and a flexible to semiflexible inner layer. The inner layer becomes plastic and frequently contracts in spores crushed in PVLG-based mountants and stains reddish white to grayish red in Melzer's reagent. Glomus perpusillum was associated with roots of Ammophila arenaria colonizing sand dunes of the Mediterranean Sea adjacent to Calambrone, Italy, and this is the only site of its occurrence known to date. In single-species cultures with Plantago lanceolata as host plant, G. perpusillum formed vesicular-arbuscular mycorrhiza. Phylogenetic analyses of partial SSU sequences of nrDNA placed the species in Glomus group A with no affinity to its subgroups. The sequences of G. perpusillum unambiguously separated from the sequences of described Glomus species and formed a distinct clade together with in planta arbuscular mycorrhizal fungal sequences found in alpine plants.

  15. 16 CFR 1610.34 - Only uncovered or exposed parts of wearing apparel to be tested.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... procedures set forth in § 1610.6. (b) If the outer layer of plastic film or plastic-coated fabric of a...—Standard for the Flammability of Vinyl Plastic Film. If the outer layer adheres to all or a portion of one... characteristics of the film or coating, the uncovered or exposed layer shall be tested in accordance with part...

  16. 16 CFR 1610.34 - Only uncovered or exposed parts of wearing apparel to be tested.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... procedures set forth in § 1610.6. (b) If the outer layer of plastic film or plastic-coated fabric of a...—Standard for the Flammability of Vinyl Plastic Film. If the outer layer adheres to all or a portion of one... characteristics of the film or coating, the uncovered or exposed layer shall be tested in accordance with part...

  17. 16 CFR § 1610.34 - Only uncovered or exposed parts of wearing apparel to be tested.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... applicable procedures set forth in § 1610.6. (b) If the outer layer of plastic film or plastic-coated fabric... part 1611—Standard for the Flammability of Vinyl Plastic Film. If the outer layer adheres to all or a... characteristics of the film or coating, the uncovered or exposed layer shall be tested in accordance with part...

  18. 16 CFR 1610.34 - Only uncovered or exposed parts of wearing apparel to be tested.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... procedures set forth in § 1610.6. (b) If the outer layer of plastic film or plastic-coated fabric of a...—Standard for the Flammability of Vinyl Plastic Film. If the outer layer adheres to all or a portion of one... characteristics of the film or coating, the uncovered or exposed layer shall be tested in accordance with part...

  19. 16 CFR 1610.34 - Only uncovered or exposed parts of wearing apparel to be tested.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... procedures set forth in § 1610.6. (b) If the outer layer of plastic film or plastic-coated fabric of a...—Standard for the Flammability of Vinyl Plastic Film. If the outer layer adheres to all or a portion of one... characteristics of the film or coating, the uncovered or exposed layer shall be tested in accordance with part...

  20. Development of a heat-stable and orally delivered recombinant M2e-expressing B. subtilis spore-based influenza vaccine.

    PubMed

    Zhao, Guangyu; Miao, Yu; Guo, Yan; Qiu, Hongjie; Sun, Shihui; Kou, Zhihua; Yu, Hong; Li, Junfeng; Chen, Yue; Jiang, Shibo; Du, Lanying; Zhou, Yusen

    2014-01-01

    Highly conserved ectodomain of influenza virus M2 protein (M2e) is an important target for the development of universal influenza vaccines. Today, the use of chemical or genetic fusion constructs have been undertaken to overcome the low immunogenicity of M2e in vaccine formulation. However, current M2e vaccines are neither orally delivered nor heat-stable. In this study, we evaluated the immune efficacy of an orally delivered recombinant M2e vaccine containing 3 molcules of M2e consensus sequence of influenza A viruses, termed RSM2e3. To accomplish this, CotB, a spore coat of Bacillus subtilis (B. subtilis), was used as a fusion partner, and heat-stable nonpathogenic B. subtilis spores were used as the carrier. Our results showed that CotB-M2e3 fusion had no effect on spore structure or function in the resultant recombinant RSM2e3 strain and that heterologous influenza virus M2e protein was successfully displayed on the surface of the recombinant RSM2e3 spore. Importantly, recombinant RSM2e3 spores elicited strong and long-term M2e-specific systemic and mucosal immune responses, completely protecting immunized mice from lethal challenge of A/PR/8/34(H1N1) influenza virus. Taken together, our study forms a solid basis for the development of a novel orally delivered and heat-stable influenza vaccine based on B. subtilis spore surface display.

  1. Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to low-earth orbit and simulated martian conditions: data from the space experiment ADAPT on EXPOSE-E.

    PubMed

    Wassmann, Marko; Moeller, Ralf; Rabbow, Elke; Panitz, Corinna; Horneck, Gerda; Reitz, Günther; Douki, Thierry; Cadet, Jean; Stan-Lotter, Helga; Cockell, Charles S; Rettberg, Petra

    2012-05-01

    In the space experiment "Molecular adaptation strategies of microorganisms to different space and planetary UV climate conditions" (ADAPT), bacterial endospores of the highly UV-resistant Bacillus subtilis strain MW01 were exposed to low-Earth orbit (LEO) and simulated martian surface conditions for 559 days on board the European Space Agency's exposure facility EXPOSE-E, mounted outside the International Space Station. The survival of B. subtilis MW01 spores from both assays (LEO and simulated martian conditions) was determined by a colony-formation assay after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few spore survivors were recovered from B. subtilis MW01 spores exposed in monolayers. However, if shielded from solar irradiation, about 8% of MW01 spores survived in LEO conditions, and 100% survived in simulated martian conditions, compared to the laboratory controls. The results demonstrate the effect of shielding against the high inactivation potential of extraterrestrial solar UV radiation, which limits the chances of survival of even the highly UV-resistant strain of B. subtilis MW01 in the harsh environments of outer space and the martian surface.

  2. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, V.K.

    1990-08-21

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  3. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, Vinod K.

    1990-01-01

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al.sub.x N.sub.y O.sub.z layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al.sub.x N.sub.y O.sub.z layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  4. High pressure thermal inactivation of Clostridium botulinum type E endospores – kinetic modeling and mechanistic insights

    PubMed Central

    Lenz, Christian A.; Reineke, Kai; Knorr, Dietrich; Vogel, Rudi F.

    2015-01-01

    Cold-tolerant, neurotoxigenic, endospore forming Clostridium (C.) botulinum type E belongs to the non-proteolytic physiological C. botulinum group II, is primarily associated with aquatic environments, and presents a safety risk for seafood. High pressure thermal (HPT) processing exploiting the synergistic effect of pressure and temperature can be used to inactivate bacterial endospores. We investigated the inactivation of C. botulinum type E spores by (near) isothermal HPT treatments at 300–1200 MPa at 30–75°C for 1 s to 10 min. The occurrence of heat and lysozyme susceptible spore fractions after such treatments was determined. The experimental data were modeled to obtain kinetic parameters and represented graphically by isoeffect lines. In contrast to findings for spores of other species and within the range of treatment parameters applied, zones of spore stabilization (lower inactivation than heat treatments alone), large heat susceptible (HPT-induced germinated) or lysozyme-dependently germinable (damaged coat layer) spore fractions were not detected. Inactivation followed first order kinetics. Dipicolinic acid release kinetics allowed for insights into possible inactivation mechanisms suggesting a (poorly effective) physiologic-like (similar to nutrient-induced) germination at ≤450 MPa/≤45°C and non-physiological germination at >500 MPa/>60–70°C. Results of this study support the existence of some commonalities in the HPT inactivation mechanism of C. botulinum type E spores and Bacillus spores although both organisms have significantly different HPT resistance properties. The information presented here contributes to closing the gap in knowledge regarding the HPT inactivation of spore formers relevant to food safety and may help industrial implementation of HPT processing. The markedly lower HPT resistance of C. botulinum type E spores compared with the resistance of spores from other C. botulinum types could allow for the implementation of milder processes without endangering food safety. PMID:26191048

  5. Temporal and non-permanent division of labor during sorocarp formation in the social amoeba Acytostelium subglobosum.

    PubMed

    Mohri, Kurato; Kiyota, Yu; Kuwayama, Hidekazu; Urushihara, Hideko

    2013-03-15

    Somatic cell differentiation is crucial for the development of multicellular organisms. While the development of a fruiting body in Dictyostelium discoideum represents a simple model of this process with separation of stalk cells from the spore lineage, that of Acytostelium subglobosum is not accompanied by cell type separation. This species produces acellular stalks and, seemingly, all aggregated amoebae become spores; however, it possesses homologs for the stalk-cell marker genes of D. discoideum. In this study, we analyzed the spatio-temporal expression of A. subglobosum orthologs for D. discoideum stalk- or spore-lineage markers to clarify the developmental process of A. subglobosum. We first found that the prespore vesicles, which contained spore coat proteins, started to accumulate in the tip region and were observed in the entire sorogen throughout later development, confirming that all A. subglobosum cells became spores. The expression of a stalk-lineage gene ortholog, As-ecmA, started at the mound stage and was prominent in the protruding sorogen. Although two spore-lineage gene orthologs, As-cotD1 and -cotD2, were likewise detected shortly after cell aggregation and increased in intensity until tip formation, their expression diminished in the protruding sorogen. Double-fluorescence staining of these prestalk and prespore marker genes revealed that the expression of these marker genes was mutually exclusive and that expression switching occurred in the early tip. Our results indicate that A. subglobosum cells become committed to the spore lineage first, and then, while keeping this commitment intact, participate in stalk formation. Instead of the permanent division of labor observed in D. discoideum, A. subglobosum produces fruiting bodies by all cells contributing to the formation of the stalk as well as forming spores. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. New Approach of Beauveria bassiana to Control the Red Palm Weevil (Coleoptera: Curculionidae) by Trapping Technique.

    PubMed

    Hajjar, M J; Ajlan, A M; Al-Ahmad, M H

    2015-04-01

    This work is the first study to investigate the efficacy of the commercial formulation of Beauveria bassiana (Broadband) to control adults of red palm weevil (Rhynchophorus ferrugineus (Olivier)). This fungus could be applied as one of the biological tactics in controlling red palm weevil. Bioassay experiments for medium lethal concentrate and medium time to cause death of 50% of red palm weevil adults were carried out. The result showed that the LC50 of B. bassiana (Broadband) was 2.19×10(7) and 2.76×10(6) spores/ml at 9 and 23 d of treatment, respectively. The LT50 was 13.95 and 4.15 d for concentration of 1×10(7) and 1×10(8) spores/ml, respectively, whereas 1×10(9) spores/ml caused 100% mortality after 24 h. Additionally, a red palm weevil pheromone trap was designed to attract the adults to be contaminated with spores of Broadband, which was applied to the sackcloth fabric that coated the internal surfaces of the bucket trap. The mating behavior was studied to determine direct and indirect infection of the spores from male to female and vice versa. The results showed a high efficacy of Broadband suspension at 1×10(9) spores/ml; 40 ml of suspension at this concentration treated to cloth in a trap caused death of contaminated adults with B. bassiana spores directly and indirectly. The 100% mortality was obtained even after 13 d of traps treatment with 40 ml of the suspension at 1×10(9) spores/ml. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Resistance of spacecraft isolates to outer space for planetary protection purposes -first results of the experiment PROTECT of the EXPOSE-E mission.

    NASA Astrophysics Data System (ADS)

    Horneck, Gerda; Moeller, Ralf

    Spore-forming microbes are of particular concern in the context of planetary protection, be-cause their endospores are highly resistant to a variety of environmental extremes, including certain sterilization procedures and the harsh environment of outer space or planetary sur-faces (Nicholson et al., 2000; Horneck et al. 2009). Furthermore, isolates from space craft and space craft assembly facilities have been identified that form spores of an elevated resistance to various physical and chemical conditions, such as ionizing and UV radiation, desiccation and oxidative stress (La Duc et al., 2007). This observation led to the supposition that the spe-cial conditions of ultraclean spacecraft assembly facilities and the applied spacecraft cleaning and decontamination measures cause a selection of the most resistant organisms as survivors. To test this hypothesis, spores of B. pumilus SAFR-032 isolated from these environments as well as spores of the laboratory strain B. subtilis 168 were subjected to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission (February 7, 2008 -September 12, 2009), attached to the EuTEF platform outside of the Columbus module of the International Space Station. The spores were mounted as dry layers onto spacecraft-qualified material (aluminum coupons) and exposed to the following parameters of space, applied sep-arately or in selected combinations: (i) space vacuum, (ii) solar extraterrestrial UV radiation including vacuum-UV, (iii) simulated Mars atmosphere and UV radiation climate, and (iv) galactic cosmic radiation. After recovery, visual inspection showed color changes of the sun-exposed spore samples from white to brownish demonstrating photochemical damage caused by solar extraterrestrial UV radiation. On-going analyses include studies of viability and capabil-ity of repair of damage, mutagenic spectrum, e.g. trp-revertants, rifampicin-resistant mutants, DNA lesion, global gene expression, and genomic and proteomic characterizations using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). First viability studies gave the following survival rates: 20 -30 References: Horneck,G., D.M. Klaus, R.L. Mancinelli (2010) Space microbiology, Microb. Mol. Biol. Rev. (in press) La Duc MT, Dekas A, Osman S, Moissl C, Newcombe D, Venkateswaran K. (2007) Isolation and character-ization of bacteria capable of tolerating the extreme conditions of clean room environments. Appl Environ Microbiol. 73, 2600-11. Nicholson WL, Munakata N, Horneck G, Melosh HJ, and Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments, Microb. Mol. Biol. Rev. 64, 548-572.

  8. A Versatile Class of Cell Surface Directional Motors Gives Rise to Gliding Motility and Sporulation in Myxococcus xanthus

    PubMed Central

    Wartel, Morgane; Czerwinski, Fabian; Le Gall, Anne-Valérie; Mauriello, Emilia M. F.; Bergam, Ptissam; Brun, Yves V.; Shaevitz, Joshua; Mignot, Tâm

    2013-01-01

    Eukaryotic cells utilize an arsenal of processive transport systems to deliver macromolecules to specific subcellular sites. In prokaryotes, such transport mechanisms have only been shown to mediate gliding motility, a form of microbial surface translocation. Here, we show that the motility function of the Myxococcus xanthus Agl-Glt machinery results from the recent specialization of a versatile class of bacterial transporters. Specifically, we demonstrate that the Agl motility motor is modular and dissociates from the rest of the gliding machinery (the Glt complex) to bind the newly expressed Nfs complex, a close Glt paralogue, during sporulation. Following this association, the Agl system transports Nfs proteins directionally around the spore surface. Since the main spore coat polymer is secreted at discrete sites around the spore surface, its transport by Agl-Nfs ensures its distribution around the spore. Thus, the Agl-Glt/Nfs machineries may constitute a novel class of directional bacterial surface transporters that can be diversified to specific tasks depending on the cognate cargo and machinery-specific accessories. PMID:24339744

  9. Development of probiotic-loaded microcapsules for local delivery: Physical properties, cell release and growth.

    PubMed

    Mirtič, Janja; Rijavec, Tomaž; Zupančič, Špela; Pobirk, Alenka Zvonar; Lapanje, Aleš; Kristl, Julijana

    2018-05-24

    The delivery of probiotics to different sites of action within the human body might help to prevent and treat several diseases. Here, we describe a microcapsule-based system for delivery of probiotic bacteria, as vegetative cells or spores, which promotes their prolonged survival and efficient revival, and successful colonisation of the target surface. This system is proposed for local delivery into periodontal pockets. Encapsulation of the probiotic bacteria was based on alginate crosslinking with calcium ions. This was performed by prilling the polymer dispersion supplemented with the probiotic using membrane vibration technology, followed by chitosan coating by polyelectrolyte complexation. The microcapsules were 120-150 μm in diameter, and were dried by lyophilisation. The chitosan coating increased the specific surface area and improved the bioadhesion potential, with no negative impact on viability and growth kinetics of the probiotic bacteria. Chitosan represents a barrier, which promotes sustained release of the probiotic bacteria. Vegetative bacteria were encapsulated at 2 × 10 8  CFU/g dry microcapsules, which represented ~5% of the prepared microcapsules, with stable viability for at least 2 months. Encapsulation of bacterial spores was greater, at 2 × 10 10  CFU/g dry microcapsules, achieving 100% of microcapsules with incorporated revivable spores. Copyright © 2017. Published by Elsevier B.V.

  10. [Preparation and evaluation of press-coated aminophylline tablet using crystalline cellulose and polyethylene glycol in the outer shell for timed-release dosage forms].

    PubMed

    Watanabe, Yoshiteru; Mukai, Baku; Kawamura, Ken-ichi; Ishikawa, Tatsuya; Namiki, Michihiro; Utoguchi, Naoki; Fujii, Makiko

    2002-02-01

    In an attempt to achieve chronopharmacotherapy for asthma, press-coated tablets (250 mg), which contained aminophylline in the core tablet in the form of low-substituted hydroxypropylcellulose (L-HPC) and coated with crystalline cellulose (PH-102) and polyethylene glycol (PEG) at various molecular weights and mixing ratios in the amounts of PH-102 and PEG as the outer shell (press-coating material), were prepared (chronopharmaceutics). Their applicability as timed-release (delayed-release) tablets with a lag time of disintegration and a subsequent rapid drug release phase was investigated. Various types of press-coated tablets were prepared using a tableting machine, and their aminophylline dissolution profiles were evaluated by the JP paddle method. Tablets with the timed-release characteristics could be prepared, and the lag time of disintegration was prolonged as the molecular weight and the amount of PEG, for example PEG 500,000, in the outer shell were increased. The lag time of disintegration could be controlled by the above-mentioned method, however, the pH of the medium had no effect on disintegration of the tablet and dissolution behavior of theophylline. The press-coated tablet (core tablet:aminophylline 50 mg, L-HPC and PEG 6000; outer shell:PH-102:PEG = 8:2 200 mg) with the timed-release characteristics was administered orally to rabbits for an in vivo test. Theophylline was first detected in plasma more than 2 h after administration; thus, this tablet showed a timed-release characteristics in the gastrointestinal tract. The time (tmax) required to reach the maximum plasma theophylline concentration (Cmax) observed after administration of the press-coated tablet was significantly (p < 0.05) delayed compared with that observed after administration of aminophylline solution in the control experiment. However, there was no difference in Cmax and area under the plasma theophylline concentration-time curve (AUC0-->24) between the press-coated tablet and aminophylline solution. These results suggest that the press-coated aminophylline tablet (with the timed-release characteristic) offers a promising forms of theophylline chronotherapy for asthma.

  11. Silicone Coating on Polyimide Sheet

    NASA Technical Reports Server (NTRS)

    Park, J. J.

    1985-01-01

    Silicone coatings applied to polyimide sheeting for variety of space-related applications. Coatings intended to protect flexible substrates of solar-cell blankets from degradation by oxygen atoms, electrons, plasmas, and ultraviolet light in low Earth orbit and outer space. Since coatings are flexible, generally useful in forming flexible laminates or protective layers on polyimide-sheet products.

  12. Reduction of acrylamide content in bread crust by starch coating.

    PubMed

    Liu, Jie; Liu, Xiaojie; Man, Yong; Liu, Yawei

    2018-01-01

    A technique of starch coating to reduce acrylamide content in bread crust was proposed. Bread was prepared in accordance with a conventional procedure and corn or potato starch coating was brushed on the surface of the fermented dough prior to baking. Corn starch coating caused a decrease in acrylamide of 66.7% and 77.1% for the outer and inner crust, respectively. The decrease caused by the potato starch coating was 68.4% and 77.4%, respectively. Starch coating reduced asparagine content significantly (43.4-82.9%; P < 0.01)in both the outer and inner crust. A lower temperature (difference of 10-20 °C) in combination with a higher moisture content (maximum difference of 8%) of bread crust were a result of starch coating, which effectively shortened the time span (4-8 min) over which acrylamide could form and accumulate. The present study demonstrates that starch coating could be a simple, effective and practical application for reducing acrylamide levels in bread crust without changing the texture and crust color of bread. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Micro-Etched Platforms for Thermal Inactivation of Bacillus Anthracis and Bacillus Thuringiensis Spores

    DTIC Science & Technology

    2008-03-01

    slips was first coated with a detergent wash. Commercially available Ivory soap shavings were diluted with sterile Millipore® water in a...environments. This removed controllable variability between the Bacillus species and increased the confidence in continued use of such surrogacy

  14. Symbiotic interaction of endophytic bacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Ganoderma boninense.

    PubMed

    Sundram, Shamala; Meon, Sariah; Seman, Idris Abu; Othman, Radziah

    2011-08-01

    Endophytic bacteria (Pseudomonas aeruginosa UPMP3 and Burkholderia cepacia UMPB3), isolated from within roots of oil palm (Elaeis guineensis Jacq.) were tested for their presymbiotic effects on two arbuscular mcorrhizal fungi, Glomus intraradices UT126 and Glomus clarum BR152B). These endophytic bacteria were also tested for antagonistic effects on Ganoderma boninense PER 71, a white wood rot fungal pathogen that causes a serious disease in oil palm. Spore germination and hyphal length of each arbuscular mycorrhizal fungal (AMF) pairing with endophytic bacteria was found to be significantly higher than spores plated in the absence of bacteria. Scanning electron microscopy (SEM) showed that the endophytic bacteria were scattered, resting or embedded on the surface hyaline layer or on the degraded walls of AMF spores, possibly feeding on the outer hyaline spore wall. The antagonistic effect of the endophytic bacteria was expressed as severe morphological abnormalities in the hyphal structures of G. boninense PER 71. The effects of the endophytic bacteria on G. boninense PER 71 hyphal structures were observed clearly under SEM. Severe inter-twisting, distortion, lysis and shriveling of the hyphal structures were observed. This study found that the effect of endophytic bacteria on G. intraradices UT126 and G. clarum BR152B resembled that of a mycorrhiza helper bacteria (MHB) association because the association significantly promoted AMF spore germination and hyphal length. However, the endophytic bacteria were extremely damaging to G. boninense PER 71.

  15. Oxidation behaviour and electrical properties of cobalt/cerium oxide composite coatings for solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Harthøj, Anders; Holt, Tobias; Møller, Per

    2015-05-01

    This work evaluates the performance of cobalt/cerium oxide (Co/CeO2) composite coatings and pure Co coatings to be used for solid oxide fuel cell (SOFC) interconnects. The coatings are electroplated on the ferritic stainless steels Crofer 22 APU and Crofer 22H. Coated and uncoated samples are exposed in air at 800 °C for 3000 h and oxidation rates are measured and oxide scale microstructures are investigated. Area-specific resistances (ASR) in air at 850 °C of coated and uncoated samples are also measured. A dual layered oxide scale formed on all coated samples. The outer layer consisted of Co, Mn, Fe and Cr oxide and the inner layer consisted of Cr oxide. The CeO2 was present as discrete particles in the outer oxide layer after exposure. The Cr oxide layer thicknesses and oxidations rates were significantly reduced for Co/CeO2 coated samples compared to for Co coated and uncoated samples. The ASR of all Crofer 22H samples increased significantly faster than of Crofer 22 APU samples which was likely due to the presence of SiO2 in the oxide/metal interface of Crofer 22H.

  16. Characterization of the Alumina Scale formed on Coated and Uncoated Doped Superalloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unocic, Kinga A; Parish, Chad M; Pint, Bruce A

    2011-01-01

    To investigate the mechanisms by which Y and La dopants affect the oxidation behavior of Ni base single crystal superalloys, the oxide scales formed on two variants of a commercial X4 alloy, each with and without a MCrAlYHfSi coating were characterized. The alloy systems were oxidized for 100h at 1100 C and then examined using analytical transmission electron microscopy. Without a coating, a duplex scale was formed on the superalloy surface comprised of an outer Ni rich spinel type layer and an inner columnar Al2O3 layer. In this case, Hf and Ti were found segregated to the alumina grain boundariesmore » in the outer part of the scale on both alloys but only Hf was detected near the metal alumina interface. There was no evidence of Ta, Y or La segregation to the scale grain boundaries after this exposure. The scale formed on the alloys with the thermally sprayed coating was primarily alumina, and Y and Hf segregated to the alumina grain boundaries for both alloys. There was evidence of Ti rich oxides in the outer part of the scale indicating that Ti had diffused through the coating into the thermally grown oxide but La was not found.« less

  17. Spore cells from BPA degrading bacteria Bacillus sp. GZB displaying high laccase activity and stability for BPA degradation.

    PubMed

    Das, Ranjit; Li, Guiying; Mai, Bixian; An, Taicheng

    2018-06-04

    Laccase has been applied extensively as a biocatalyst to remove different organic pollutants. This study characterized a spore-laccase from the bisphenol A (BPA)-degrading strain Bacillus sp. GZB. The spore-laccase was encoded with 513 amino acids, containing spore coat protein A (CotA). It showed optimal activity at 70 °C and pH = 7.2 in presence of 2, 6-dimethoxyphenol. At 60 °C, optimal activity was also seen at pH = 3.0 and pH = 6.8 with 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate) and syringaldazine, respectively. The spore-laccase was stable at high temperature, at acidic to alkaline pH values, and in the presence of different organic solvents. Spore-laccase activity was increased by introducing Cu 2+ , Mg 2+ , and Na + , but was strongly inhibited by Fe 2+ , Ag + , l-cysteine, dithiothreitol, and NaN 3 . The cotA gene was cloned and expressed in E. coli BL21 (DE3); the purified protein was estimated as having a molecular weight of ~63 kDa. Different synthetic dyes and BPA were effectively decolorized or degraded both by the spore laccase and recombinant laccase. When BPA oxidation was catalyzed using laccase, there was an initial formation of phenoxy radicals and further oxidation or CC bond cleavage of the radicals produced different organic acids. Detailed reaction pathways were developed based on nine identified intermediates. The acute toxicity decreased gradually during BPA degradation by laccase. This study is the first report about a genus of Bacillus that can produce a highly active and stable laccase to degrade BPA. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Probing biomolecular interaction forces using an anharmonic acoustic technique for selective detection of bacterial spores.

    PubMed

    Ghosh, Sourav K; Ostanin, Victor P; Johnson, Christian L; Lowe, Christopher R; Seshia, Ashwin A

    2011-11-15

    Receptor-based detection of pathogens often suffers from non-specific interactions, and as most detection techniques cannot distinguish between affinities of interactions, false positive responses remain a plaguing reality. Here, we report an anharmonic acoustic based method of detection that addresses the inherent weakness of current ligand dependant assays. Spores of Bacillus subtilis (Bacillus anthracis simulant) were immobilized on a thickness-shear mode AT-cut quartz crystal functionalized with anti-spore antibody and the sensor was driven by a pure sinusoidal oscillation at increasing amplitude. Biomolecular interaction forces between the coupled spores and the accelerating surface caused a nonlinear modulation of the acoustic response of the crystal. In particular, the deviation in the third harmonic of the transduced electrical response versus oscillation amplitude of the sensor (signal) was found to be significant. Signals from the specifically-bound spores were clearly distinguishable in shape from those of the physisorbed streptavidin-coated polystyrene microbeads. The analytical model presented here enables estimation of the biomolecular interaction forces from the measured response. Thus, probing biomolecular interaction forces using the described technique can quantitatively detect pathogens and distinguish specific from non-specific interactions, with potential applicability to rapid point-of-care detection. This also serves as a potential tool for rapid force-spectroscopy, affinity-based biomolecular screening and mapping of molecular interaction networks. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Panspermia Revisited

    NASA Astrophysics Data System (ADS)

    Horneck, Gerda

    2012-05-01

    "Panspermia", coined by S. Arrhenius in 1903, suggests that microscopic forms of life, e.g., bacterial spores, can be dispersed in space by the radiation pressure from the Sun thereby seeding life from one planet to another or even beyond our Solar System. Being ignored for almost the rest of the century, the scenario of interplanetary transfer of life has received increased support from recent discoveries, such as the detection of Martian meteorites and the high resistance of microorganisms to outer space conditions. With the aid of space technology and adequate laboratory devices the following decisive step required for viable transfer from one planet to another have been tested: (i) the escape process, i.e. impact ejection into space; (ii) the journey through space over extended periods of time; and (iii) the landing process, i.e. non-destructive deposition of the biological material on another planet. In systematic shock recovery experiments within a pressure range observed in Martian meteorites (5-50 GPa) a vital launch window of 5-40 GPa has been determined for spores of Bacillus subtilis and the lichen Xanthoria elegans, whereas this window was restricted to 5-10 GPa for the endolithic cyanobaterium Chroococcidiopsis. Traveling through space implies exposure to high vacuum, an intense radiation regime of cosmic and solar origin and high temperature fluctuations. In several space experiments the biological efficiency of these different space parameters has been tested: extraterrestrial solar UV radiation has exerted the most deleterious effects to viruses, as well as to bacterial and fungal spores; however shielding against this intense insolation resulted in 70 % survival of B. subtilis spores after spending 6 years in outer space. Lichens survived 2 weeks in space, even without any shielding. Long-term exposure to space (up to 2 years) of a variety of resistant organisms was recently provided by ESA's EXPOSE missions onboard of the International Space Station. The entry process of microorganisms has been tested in the STONE facility attached to the heat shield of a reentry capsule. The data provide experimental information to the scenario of "Lithopanspermia", which assumes that impact-expelled rocks serve as interplanetary transfer vehicles for microorganisms colonizing those rocks.

  20. A Novel Immunogenic Spore Coat-Associated Protein in Bacillus Anthracis: Characterization via Proteomics Approaches and a Vector-Based Vaccine System

    PubMed Central

    Liu, Yu-Tsueng; Lin, Shwu-Bin; Huang, Cheng-Po; Huang, Chun-Ming

    2007-01-01

    New generation anthrax vaccines have been actively explored with the aim of enhancing efficacies and decreasing undesirable side effects that could be caused by licensed vaccines. Targeting novel antigens and/or eliminating the requirements for multiple needle injections and adjuvants are major objectives in the development of new anthrax vaccines. Using proteomics approaches, we identified a spore coat-associated protein (SCAP) in Bacillus anthracis. An E. coli vector-based vaccine system was used to determine the immunogenicity of SCAP. Mice generated detectable SCAP antibodies three weeks after intranasal immunization with an intact particle of ultraviolet (UV)-irradiated E. coli vector overproducing SCAP. The production of SCAP antibodies was detected via western blotting and SCAP-spotted antigen-arrays. The adjuvant effect of a UV-irradiated E. coli vector eliminates the necessity of boosting and the use of other immunomodulators which will foster the screening and manufacturing of new generation anthrax vaccines. More importantly, the immunogenic SCAP may potentially be a new candidate for the development of anthrax vaccines. PMID:18029197

  1. Characterization and corrosion property of nano-rod-like HA on fluoride coating supported on Mg-Zn-Ca alloy.

    PubMed

    Feng, Yashan; Zhu, Shijie; Wang, Liguo; Chang, Lei; Yan, Bingbing; Song, Xiaozhe; Guan, Shaokang

    2017-06-01

    The poor corrosion resistance of biodegradable magnesium alloys is the dominant factor that limits their clinical application. In this study, to deal with this challenge, fluoride coating was prepared on Mg-Zn-Ca alloy as the inner coating and then hydroxyapatite (HA) coating as the outer coating was deposited on fluoride coating by pulse reverse current electrodeposition (PRC-HA/MgF 2 ). As a comparative study, the microstructure and corrosion properties of the composite coating with the outer coating fabricated by traditional constant current electrodeposition (TED-HA/MgF 2 ) were also investigated. Scanning electron microscopy (SEM) images of the coatings show that the morphology of PRC-HA/MgF 2 coating is dense and uniform, and presents nano-rod-like structure. Compared with that of TED-HA/MgF 2 , the corrosion current density of Mg alloy coated with PRC-HA/MgF 2 coatings decreases from 5.72 × 10 -5 A/cm 2 to 4.32 × 10 -7 A/cm 2 , and the corrosion resistance increases by almost two orders of magnitude. In immersion tests, samples coated with PRC-HA/MgF 2 coating always show the lowest hydrogen evolution amount, and could induce deposition of the hexagonal structure-apatite on the surface rapidly. The results show that the corrosion resistance and the bioactivity of the coatings have been improved by adopting double-pulse current mode in the process of preparing HA on fluoride coating, and the PRC-HA/MgF 2 coating is worth of further investigation.

  2. Proteins in the Cocoon of Silkworm Inhibit the Growth of Beauveria bassiana

    PubMed Central

    Zhang, Yan; Li, Youshan; Liu, Huawei; Xia, Qingyou; Zhao, Ping

    2016-01-01

    Silk cocoons are composed of fiber proteins (fibroins) and adhesive glue proteins (sericins), which provide a physical barrier to protect the inside pupa. Moreover, other proteins were identified in the cocoon silk, many of which are immune related proteins. In this study, we extracted proteins from the silkworm cocoon by Tris-HCl buffer (pH7.5), and found that they had a strong inhibitory activity against fungal proteases and they had higher abundance in the outer cocoon layers than in the inner cocoon layers. Moreover, we found that extracted cocoon proteins can inhibit the germination of Beauveria bassiana spores. Consistent with the distribution of protease inhibitors, we found that proteins from the outer cocoon layers showed better inhibitory effects against B. bassiana spores than proteins from the inner layers. Liquid chromatography-tandem mass spectrometry was used to reveal the extracted components in the scaffold silk, the outermost cocoon layer. A total of 129 proteins were identified, 30 of which were annotated as protease inhibitors. Protease inhibitors accounted for 89.1% in abundance among extracted proteins. These protease inhibitors have many intramolecular disulfide bonds to maintain their stable structure, and remained active after being boiled. This study added a new understanding to the antimicrobial function of the cocoon. PMID:27032085

  3. Theoretical analysis of the performance of glucose sensors with layer-by-layer assembled outer membranes.

    PubMed

    Croce, Robert A; Vaddiraju, Santhisagar; Papadimitrakopoulos, Fotios; Jain, Faquir C

    2012-10-01

    The performance of implantable electrochemical glucose sensors is highly dependent on the flux-limiting (glucose, H(2)O(2), O(2)) properties of their outer membranes. A careful understanding of the diffusion profiles of the participating species throughout the sensor architecture (enzyme and membrane layer) plays a crucial role in designing a robust sensor for both in vitro and in vivo operation. This paper reports the results from the mathematical modeling of Clark's first generation amperometric glucose sensor coated with layer-by-layer assembled outer membranes in order to obtain and compare the diffusion profiles of various participating species and their effect on sensor performance. Devices coated with highly glucose permeable (HAs/Fe(3+)) membranes were compared with devices coated with PSS/PDDA membranes, which have an order of magnitude lower permeability. The simulation showed that the low glucose permeable membrane (PSS/PDDA) sensors exhibited a 27% higher amperometric response than the high glucose permeable (HAs/Fe(3+)) sensors. Upon closer inspection of H(2)O(2)diffusion profiles, this non-typical higher response from PSS/PDDA is not due to either a larger glucose flux or comparatively larger O(2) concentrations within the sensor geometry, but rather is attributed to a 48% higher H(2)O(2) concentration in the glucose oxidase enzyme layer of PSS/PDDA coated sensors as compared to HAs/Fe(3+) coated ones. These simulated results corroborate our experimental findings reported previously. The high concentration of H(2)O(2) in the PSS/PDDA coated sensors is due to the low permeability of H(2)O(2) through the PSS/PDDA membrane, which also led to an undesired increase in sensor response time. Additionally, it was found that this phenomenon occurs for all enzyme thicknesses investigated (15, 20 and 25 nm), signifying the need for a holistic approach in designing outer membranes for amperometric biosensors.

  4. Presenting Influenza A M2e Antigen on Recombinant Spores of Bacillus subtilis

    PubMed Central

    Obuchowski, Michał; Nidzworski, Dawid

    2016-01-01

    Effective vaccination against influenza virus infection is a serious problem mainly due to antigenic variability of the virus. Among many of investigated antigens, the extracellular domain of the M2 protein (M2e) features high homology in all strains of influenza A viruses and antibodies against M2e and is protective in animal models; this makes it a potential candidate for generation of a universal influenza vaccine. However, due to the low immunogenicity of the M2e, formulation of a vaccine based on this antigen requires some modification to induce effective immune responses. In this work we evaluated the possible use of Bacillus subtilis spores as a carrier of the Influenza A M2e antigen in mucosal vaccination. A tandem repeat of 4 consensus sequences coding for human—avian—swine—human M2e (M2eH-A-S-H) peptide was fused to spore coat proteins and stably exposed on the spore surface, as demonstrated by the immunostaining of intact, recombinant spores. Oral immunization of mice with recombinant endospores carrying M2eH-A-S-H elicited specific antibody production without the addition of adjuvants. Bacillus subtilis endospores can serve as influenza antigen carriers. Recombinant spores constructed in this work showed low immunogenicity although were able to induce antibody production. The System of influenza antigen administration presented in this work is attractive mainly due to the omitting time-consuming and cost-intensive immunogen production and purification. Therefore modification should be made to increase the immunogenicity of the presented system. PMID:27902762

  5. A new diffusion-inhibited oxidation-resistant coating for superalloys

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.; Glasgow, T. K.; Levine, S. R.

    1981-01-01

    A concept for enhanced protection of superalloys consists of adding an oxidation- and diffusion-resistant cermet layer between the superalloy and the outer oxidation-resistant metallic alloy coating. Such a duplex coating was compared with a physical-vapor-deposited (PVD) NiCrAlY coating in cyclic oxidation at 1150 C. The substrate alloy was MA 754 - an oxide-dispersion-strengthened superalloy that is difficult to coat. The duplex coating, applied by plasma spraying, outperformed the PVD coating on the basis of weight change and both macroscopic and metallographic observations.

  6. Lead-free precussion primer mixes based on metastable interstitial composite (MIC) technology

    DOEpatents

    Dixon, George P.; Martin, Joe A.; Thompson, Don

    1998-01-01

    A lead-free percussion primer composition and a percussion cup containing e composition. The lead-free percussion primer composition is comprised of a mixture of about 45 wt % aluminum powder having an outer coating of aluminum oxide and molybdenum trioxide powder or a mixture of about 50 wt % aluminum powder having an outer coating of aluminum oxide and polytetrafluoroethylene powder. The aluminum powder, molybdenum trioxide powder and polytetrafluoroethylene powder has a particle size of 0.1 .mu.m or less, more preferably a particle size of from about 200-500 angstroms.

  7. The Effect of Temperature on the Survival of Microorganisms in a Deep Space Vacuum

    NASA Technical Reports Server (NTRS)

    Hagen, C. A.; Godfrey, J. F.; Green, R. H.

    1971-01-01

    A space molecular sink research facility (Molsink) was used to evaluate the ability of microorganisms to survive the vacuum of outer space. This facility could be programmed to simulate flight spacecraft vacuum environments at pressures in the .1 nanotorr range and thermal gradients (30 to 60 C) closely associated to surface temperatures of inflight spacecraft. Initial populations of Staphylococcus epidermidis and a Micrococcus sp. were reduced approximately 1 log while exposed to -105 and 34 C, and approximately 2 logs while exposed to 59 C for 14 days in the vacuum environment. Spores of Bacillus subtilis var. niger were less affected by the environment. Initial spore populations were reduced 0.2, 0.3, and 0.8 log during the 14-day vacuum exposure at -124, 34, and 59 C, respectively.

  8. Investigation into spore coat properties for the rapid identification of endospores in marine sediments

    NASA Astrophysics Data System (ADS)

    Rattray, J. E.; Chakraborty, A.; Bernard, B. B.; Brooks, J.; Hubert, C. R.

    2017-12-01

    Understanding the sediment biogeography of dormant marine thermophilic bacterial endospores (thermospores) has the potential to assist locating and characterising working petroleum systems. The presence of thermospores in cold ocean environments suggests that distribution occurs via hydrocarbon seepage from thermally active reservoirs. Low abundance and endospore coat physiology mean nucleic acid based techniques have limited success for in situ detection of thermospores. Alternative rapid analytical methods are needed so we investigated using the Schaeffer-Fulton (malachite green and safranin) and DAPI (4',6-diamidino-2-phenylindole) staining techniques on thermospores from cultures and marine sediments. Sediment samples from 111 locations in the Eastern Gulf of Mexico (100 to 3300 m water depth; 6 to 600 km apart) were incubated at high temperature, followed by construction of 16S rRNA gene amplicon libraries (V3-V4 region; Illumina MiSeq) revealing enrichment of species-level thermospore OTUs. A sulfate reducing bacterium from site EGM080 was purified and classified based on its rRNA gene sequence as Desulfotomaculum geothermicum. Prior to thermospore staining the culture was kept in the death/ decline phase for 16 weeks to promote sporulation. Samples of D. geothermicum and the source marine sediment were fixed, stained then analysed using brightfield, phase contrast or fluorescence microscopy. Thermospores in pure culture were identified using phase contrast but were difficult to observe in the sediment sample due to particle aggregation. The Schaeffer-Fulton technique aided thermospore identification in a complex sediment sample matrix as thermospores were stained bright green, and also revealed that there were only spores and no (red stained) vegetative cells in the culture. Treatment with DAPI gave dull fluorescing cells but also provided insight into the behaviour of thermospores in sediment suspensions. Spores in the culture medium were free floating but in the sediment suspension they were only attached to aggregated fluorescing material. Further investigation into thermospore association with bioparticles could further our understanding of the passive dispersal of spores in marine environments.

  9. Silicide Coating Fabricated by HAPC/SAPS Combination to Protect Niobium Alloy from Oxidation.

    PubMed

    Sun, Jia; Fu, Qian-Gang; Guo, Li-Ping; Wang, Lu

    2016-06-22

    A combined silicide coating, including inner NbSi2 layer and outer MoSi2 layer, was fabricated through a two-step method. The NbSi2 was deposited on niobium alloy by halide activated pack cementation (HAPC) in the first step. Then, supersonic atmospheric plasma spray (SAPS) was applied to obtain the outer MoSi2 layer, forming a combined silicide coating. Results show that the combined coating possessed a compact structure. The phase constitution of the combined coating prepared by HAPC and SAPS was NbSi2 and MoSi2, respectively. The adhesion strength of the combined coating increased nearly two times than that for single sprayed coating, attributing to the rougher surface of the HAPC-bond layer whose roughness increased about three times than that of the grit-blast substrate. After exposure at 1200 °C in air, the mass increasing rate for single HAPC-silicide coating was 3.5 mg/cm(2) because of the pest oxidation of niobium alloy, whereas the combined coating displayed better oxidation resistance with a mass gain of only 1.2 mg/cm(2). Even more, the combined coating could significantly improve the antioxidation ability of niobium based alloy at 1500 °C. The good oxidation resistance of the combined silicide coating was attributed to the integrity of the combined coating and the continuous SiO2 protective scale provided by the oxidation of MoSi2.

  10. Preparation and properties of a double-coated slow-release and water-retention urea fertilizer.

    PubMed

    Liang, Rui; Liu, Mingzhu

    2006-02-22

    A double-coated, slow-release, and water-retention urea fertilizer (DSWU) was prepared by cross-linked poly(acrylic acid)-containing urea (PAAU) (the outer coating), polystyrene (PS) (the inner coating), and urea granule (the core). Elemental analysis results showed that the nitrogen content of the product was 33.6 wt %. The outer coating (PAAU) regulated the nitrogen release rate and protected the inner coating from damage. The slow-release property of the product was investigated in water and in soil. The possible mechanism of nitrogen release was proposed. The influences of PS coating percentage, temperature, water absorbency, and pH on the release of nitrogen were also investigated. It was found that PS coating percentage, temperature, and water absorbency had a significant influence on the release of nitrogen. However, the pH had no effect. The water-retention property of the product was also investigated. The results showed that the product not only had a good slow-release property but also excellent water-retention capacity, which could effectively improve the utilization of fertilizer and water resources. The results of the present work indicated that the DSWU would find good application in agriculture and horticulture, especially in drought-prone areas where the availability of water is insufficient.

  11. Decontamination Of Bacterial Spores by a Peptide-Mimic

    DTIC Science & Technology

    2006-11-01

    consisting of a thin cell wall and the outer cortex. The cell wall guarantees the maintenance of cellular integrity after germination. Lytic- enzymes ...percent of the water content of the vegetative cell. The enzymes contained in the core become active on germination. All minerals (mainly Ca2+, Mn2+ and...such as amino acids and sugars, by enzymes , by high hydrostatic pressure and by some non-nutrient chemicals such as dodecylamine (see next section

  12. Surface Bacterial-Spore Assay Using Tb3+/DPA Luminescence

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian

    2007-01-01

    Equipment and a method for rapidly assaying solid surfaces for contamination by bacterial spores are undergoing development. The method would yield a total (nonviable plus viable) spore count of a surface within minutes and a viable-spore count in about one hour. In this method, spores would be collected from a surface by use of a transparent polymeric tape coated on one side with a polymeric adhesive that would be permeated with one or more reagent(s) for detection of spores by use of visible luminescence. The sticky side of the tape would be pressed against a surface to be assayed, then the tape with captured spores would be placed in a reader that illuminates the sample with ultraviolet light and counts the green luminescence spots under a microscope to quantify the number of bacterial spores per unit area. The visible luminescence spots seen through the microscope would be counted to determine the concentration of spores on the surface. This method is based on the chemical and physical principles of methods described in several prior NASA Tech Briefs articles, including Live/Dead Spore Assay Using DPA-Triggered Tb Luminescence (NPO-30444), Vol. 27, No. 3 (March 2003), page 7a. To recapitulate: The basic idea is to exploit the observations that (1) dipicolinic acid (DPA) is present naturally only in bacterial spores; and (2) when bound to Tb3+ ions, DPA triggers intense green luminescence of the ions under ultraviolet excitation; (3) DPA can be released from the viable spores by using L-alanine to make them germinate; and (4) by autoclaving, microwaving, or sonicating the sample, one can cause all the spores (non-viable as well as viable) to release their DPA. One candidate material for use as the adhesive in the present method is polydimethysiloxane (PDMS). In one variant of the method for obtaining counts of all (viable and nonviable) spores the PDMS would be doped with TbCl3. After collection of a sample, the spores immobilized on the sticky tape surface would be lysed by heating or microwaving to release their DPA. Tb3+ ions from the TbCl3 would become bound to the released DPA. The tape would then be irradiated with ultraviolet and examined as described above. In another variant of the method - for obtaining counts of viable spores only - the PDMS would be doped with L-alanine in addition to TbCl3. As now envisioned, a fully developed apparatus for implementing this method would include a pulsed source of ultraviolet light and a time-gated electronic camera to record the images seen through the microscope during a prescribed exposure interval at a prescribed short time after an ultraviolet pulse. As in the method of the second-mentioned prior article, the pulsing and time-gating would be used to discriminate between the longer-lived Tb3+/DPA luminescence and the shorter-lived background luminescence in the same wavelength range. In a time-gated image, the bright luminescence from bacterial spores could easily be seen against a dark background.

  13. Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dongming

    2006-01-01

    Doped pyrochlore oxides of a type described below are under consideration as alternative materials for high-temperature thermal-barrier coatings (TBCs). In comparison with partially-yttria-stabilized zirconia (YSZ), which is the state-of-the-art TBC material now in commercial use, these doped pyrochlore oxides exhibit lower thermal conductivities, which could be exploited to obtain the following advantages: For a given difference in temperature between an outer coating surface and the coating/substrate interface, the coating could be thinner. Reductions in coating thicknesses could translate to reductions in weight of hot-section components of turbine engines (e.g., combustor liners, blades, and vanes) to which TBCs are typically applied. For a given coating thickness, the difference in temperature between the outer coating surface and the coating/substrate interface could be greater. For turbine engines, this could translate to higher operating temperatures, with consequent increases in efficiency and reductions in polluting emissions. TBCs are needed because the temperatures in some turbine-engine hot sections exceed the maximum temperatures that the substrate materials (superalloys, Si-based ceramics, and others) can withstand. YSZ TBCs are applied to engine components as thin layers by plasma spraying or electron-beam physical vapor deposition. During operation at higher temperatures, YSZ layers undergo sintering, which increases their thermal conductivities and thereby renders them less effective as TBCs. Moreover, the sintered YSZ TBCs are less tolerant of stress and strain and, hence, are less durable.

  14. Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography.

    PubMed

    Li, Chen; Zeitler, J Axel; Dong, Yue; Shen, Yao-Chun

    2014-01-01

    Full-field optical coherence tomography (FF-OCT) using a conventional light-emitting diode and a complementary metal-oxide semiconductor camera has been developed for characterising coatings on small pellet samples. A set of en-face images covering an area of 700 × 700 μm(2) was taken over a depth range of 166 μm. The three-dimensional structural information, such as the coating thickness and uniformity, was subsequently obtained by analysis of the recorded en-face images. Drug-loaded pharmaceutical sustained-release pellets with two coating layers and of a sub-millimetre diameter were studied to demonstrate the usefulness of the developed system. We have shown that both coatings can be clearly resolved and the thickness was determined to be 40 and 50 μm for the outer and inner coating layers, respectively. It was also found that the outer coating layer is relatively uniform, whereas the inner coating layer has many particle-like features. X-ray computed microtomography measurements carried out on the same pellet sample confirmed all these findings. The presented FF-OCT approach is inexpensive and has better spatial resolution compared with other non-destructive analysis techniques such as terahertz pulsed imaging, and is thus considered advantageous for the quantitative analysis of thin coatings on small pellet samples. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. A cryptic pigment biosynthetic pathway uncovered by heterologous expression is essential for conidial development in Pestalotiopsis fici.

    PubMed

    Zhang, Peng; Wang, Xiuna; Fan, Aili; Zheng, Yanjing; Liu, Xingzhong; Wang, Shihua; Zou, Huixi; Oakley, Berl R; Keller, Nancy P; Yin, Wen-Bing

    2017-08-01

    Spore pigmentation is very common in the fungal kingdom. The best studied pigment in fungi is melanin which coats the surface of single cell spores. What and how pigments function in a fungal species with multiple cell conidia is poorly understood. Here, we identified and deleted a polyketide synthase (PKS) gene PfmaE and showed that it is essential for multicellular conidial pigmentation and development in a plant endophytic fungus, Pestalotiopsis fici. To further characterize the melanin pathway, we utilized an advanced Aspergillus nidulans heterologous system for the expression of the PKS PfmaE and the Pfma gene cluster. By structural elucidation of the pathway metabolite scytalone in A. nidulans, we provided chemical evidence that the Pfma cluster synthesizes DHN melanin. Combining genetic deletion and combinatorial gene expression of Pfma cluster genes, we determined that the putative reductase PfmaG and the PKS are sufficient for the synthesis of scytalone. Feeding scytalone back to the P. fici ΔPfmaE mutant restored pigmentation and multicellular adherence of the conidia. These results cement a growing understanding that pigments are essential not simply for protection of spores from biotic and abiotic stresses but also for spore structural development. © 2017 John Wiley & Sons Ltd.

  16. Alternative Sigma Factors SigF, SigE, and SigG Are Essential for Sporulation in Clostridium botulinum ATCC 3502

    PubMed Central

    Kirk, David G.; Zhang, Zhen; Korkeala, Hannu

    2014-01-01

    Clostridium botulinum produces heat-resistant endospores that may germinate and outgrow into neurotoxic cultures in foods. Sporulation is regulated by the transcription factor Spo0A and the alternative sigma factors SigF, SigE, SigG, and SigK in most spore formers studied to date. We constructed mutants of sigF, sigE, and sigG in C. botulinum ATCC 3502 and used quantitative reverse transcriptase PCR and electron microscopy to assess their expression of the sporulation pathway on transcriptional and morphological levels. In all three mutants the expression of spo0A was disrupted. The sigF and sigE mutants failed to induce sigG and sigK beyond exponential-phase levels and halted sporulation during asymmetric cell division. In the sigG mutant, peak transcription of sigE was delayed and sigK levels remained lower than that in the parent strain. The sigG mutant forespore was engulfed by the mother cell and possessed a spore coat but no peptidoglycan cortex. The findings suggest that SigF and SigE of C. botulinum ATCC 3502 are essential for early sporulation and late-stage induction of sigK, whereas SigG is essential for spore cortex formation but not for coat formation, as opposed to previous observations in B. subtilis sigG mutants. Our findings add to a growing body of evidence that regulation of sporulation in C. botulinum ATCC 3502, and among the clostridia, differs from the B. subtilis model. PMID:24928875

  17. Bacillus Endospores - an ideal exobiological Tool

    NASA Astrophysics Data System (ADS)

    Moeller, R.; Horneck, G.

    Exobiology investigations have one overall goal -- finding the answer to the question if Earth is the only possible place in our universe where life was created. For tackling this question a good approach is to use a simple and ubiquitous system like bacteria as used in BIOPAN and EXPOSE. Many of these microorganisms have the ability to form metabolic inactive continuous forms such as Bacillus endospores. These spores are highly resistant against a variety of environmental stresses, such as toxic chemical agents, desiccation, high and low pressure, high doses of ionising and UV radiation and temperature extremes such as heat or permafrost. They are ubiquitous, inhabit soils and rocks and are easily disseminated by wind and water. Therefore they are suitable test systems for studying several questions of astrobiology, such as the theory of Panspermia, planetary protection issues in connection with missions to Mars or Europa, or chances for life on past or present Mars. The strategies Bacillus sp. endospores have developed to survive harsh conditions include a desiccated spore core, an altered conformation of their DNA (A-form), high concentration of small acid-soluble proteins (SASPs) stabilising the DNA, dipicolinic acid (DPA) for stabilisation and protective spore coating layers. We have investigated the role of endogenous and exogenous pigments in the UV-resistance of Bacillus endospores by using spores of different degree and kind of pigmentation, i.e. white, grey or red spores (DSMZ culture collection). The spectral ranges of UV radiation represented those of the early or present UV radiation climate of Earth or Mars. It was found, that endogenous carotenoids, identified by spectrophotometrical analysis from a spore extract as well as in-situ by Raman spectroscopy, efficiently protect against UV-A radiation, whereas melanin was also protective against UV-C radiation. From these studied follows, that highly pigmented spores might survive even in an intense UV radiation climate, such as that on Mars or early Earth.

  18. Strain-tolerant ceramic coated seal

    DOEpatents

    Schienle, James L.; Strangman, Thomas E.

    1994-01-01

    A metallic regenerator seal is provided having multi-layer coating comprising a NiCrAlY bond layer, a yttria stabilized zirconia (YSZ) intermediate layer, and a ceramic high temperature solid lubricant surface layer comprising zinc oxide, calcium fluoride, and tin oxide. An array of discontinuous grooves is laser machined into the outer surface of the solid lubricant surface layer making the coating strain tolerant.

  19. Characterization of corrosion resistant on NiCoCr coating layer exposed to 5%NaCl

    NASA Astrophysics Data System (ADS)

    Sugiarti, E.; Sundawa, R.; Desiati, R. D.; Zaini, K. A.

    2018-03-01

    Highly corrosion resistant of carbon steel coated NiCoCr was applied in corrosive of marine environtment. Carbon steel coated NiCoCr was prepared by a two step technique of NiCo electro-deposition and Cr pack cementation. The samples were exposed to 5 wt.% NaCl for 48 and 168 hours. The microstructure and corrosion product were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The corrosion resistance of carbon steel coated NiCoCr was found to be better than that of carbon steel substrate without coating. The results showed the microstructure of 48 h corroded sample has duplex layer composed of inner α-(Ni,Co), α-Cr and outer Cr2O3, while a quite thin and continues protective oxide of Cr2O3 was observed in outer layer of 168 h corroded sample. The formation of oxide scale rich in Cr2O3 has contributed for the better corrosion resistance of carbon steel coated NiCoCr, whereas the formation of non protective oxide of iron might caused low corrosion resistance of carbon steel substrate.

  20. Overlay metallic-cermet alloy coating systems

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  1. Evaluation of standardized sample collection, packaging, and ...

    EPA Pesticide Factsheets

    Journal Sample collection procedures and primary receptacle (sample container and bag) decontamination methods should prevent contaminant transfer between contaminated and non-contaminated surfaces and areas during bio-incident operations. Cross-contamination of personnel, equipment, or sample containers may result in the exfiltration of biological agent from the exclusion (hot) zone and have unintended negative consequences on response resources, activities and outcomes. The current study was designed to: (1) evaluate currently recommended sample collection and packaging procedures to identify procedural steps that may increase the likelihood of spore exfiltration or contaminant transfer; (2) evaluate the efficacy of currently recommended primary receptacle decontamination procedures; and (3) evaluate the efficacy of outer packaging decontamination methods. Wet- and dry-deposited fluorescent tracer powder was used in contaminant transfer tests to qualitatively evaluate the currently-recommended sample collection procedures. Bacillus atrophaeus spores, a surrogate for Bacillus anthracis, were used to evaluate the efficacy of spray- and wipe-based decontamination procedures.

  2. Formation of ZrO{sub 2} in coating on Mg–3 wt.%Al–1 wt.%Zn alloy via plasma electrolytic oxidation: Phase and structure of zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kang Min; Kim, Yeon Sung; Yang, Hae Woong

    2015-01-15

    An investigation of the coating structure formed on Mg–3 wt.%Al–1 wt.%Zn alloy sample subjected to plasma electrolytic oxidation was examined by field-emission transmission electron microscopy. The plasma electrolytic oxidation process was conducted in a phosphoric acid electrolyte containing K{sub 2}ZrF{sub 6} for 600 s. Microstructural observations showed that the coating consisting of MgO, MgF{sub 2}, and ZrO{sub 2} phases was divided into three distinctive parts, the barrier, intermediate, and outer layers. Nanocrystalline MgO and MgF{sub 2} compounds were observed mainly in the barrier layer of ~ 1 μm thick near to the substrate. From the intermediate to outer layers, variousmore » ZrO{sub 2} polymorphs appeared due to the effects of the plasma arcing temperature on the phase transition of ZrO{sub 2} compounds during the plasma electrolytic oxidation process. In the outer layer, MgO compound grew in the form of a dendrite-like structure surrounded by cubic ZrO{sub 2}. - Highlights: • The barrier layer containing MgO and MgF{sub 2} was observed near to the Mg substrate. • In the intermediate layer, m-, t-, and o-ZrO{sub 2} compounds were additionally detected. • The outer layer contained MgO with the dendrite-like structure surrounded by c-ZrO{sub 2}. • The grain sizes of compounds in oxide layer increased from barrier to outer layer.« less

  3. Molecular microbial diversity of a spacecraft assembly facility

    NASA Technical Reports Server (NTRS)

    Venkateswaran, K.; Satomi, M.; Chung, S.; Kern, R.; Koukol, R.; Basic, C.; White, D.

    2001-01-01

    In ongoing investigations to map and archive the microbial footprints in various components of the spacecraft and its accessories, we have examined the microbial populations of the Jet Propulsion Laboratory's Spacecraft Assembly Facility (JPL-SAF). Witness plates made up of spacecraft materials, some painted with spacecraft qualified paints, were exposed for approximately 7 to 9 months at JPL-SAF and examined the particulate materials collected for the incidence of total cultivable aerobic heterotrophs and heat-tolerant (80 degrees C for 15-min.) spore-formers. The results showed that the witness plates coated with spacecraft qualified paints attracted more dust particles than the non-coated stainless steel witness plates. Among the four paints tested, witness plates coated with NS43G accumulated the highest number of particles, and hence attracted more cultivable microbes. The conventional microbiological examination revealed that the JPL-SAF harbors mainly Gram-positive microbes and mostly spore-forming Bacillus species. Most of the isolated microbes were heat resistant to 80 degrees C and proliferate at 60 degrees C. The phylogenetic relationships among 23 cultivable heat-tolerant microbes were examined using a battery of morphological, physiological, molecular and chemotaxonomic characterizations. By 16S rDNA sequence analysis, the isolates fell into seven clades: Bacillus licheniformis, B. pumilus, B. cereus, B. circulans, Staphylococcus capitis, Planococcus sp. and Micrococcus lylae. In contrast to the cultivable approach, direct DNA isolation, cloning and 16S rDNA sequencing analysis revealed equal representation of both Gram-positive and Gram-negative microorganisms.

  4. Resistively heated shape memory polymer device

    DOEpatents

    Marion, III, John E.; Bearinger, Jane P.; Wilson, Thomas S.; Maitland, Duncan J.

    2017-09-05

    A resistively heated shape memory polymer device is made by providing a rod, sheet or substrate that includes a resistive medium. The rod, sheet or substrate is coated with a first shape memory polymer providing a coated intermediate unit. The coated intermediate unit is in turn coated with a conductive material providing a second intermediate unit. The second coated intermediate unit is in turn coated with an outer shape memory polymer. The rod, sheet or substrate is exposed and an electrical lead is attached to the rod, sheet or substrate. The conductive material is exposed and an electrical lead is attached to the conductive material.

  5. Resistively heated shape memory polymer device

    DOEpatents

    Marion, III, John E.; Bearinger, Jane P.; Wilson, Thomas S.; Maitland, Duncan J.

    2016-10-25

    A resistively heated shape memory polymer device is made by providing a rod, sheet or substrate that includes a resistive medium. The rod, sheet or substrate is coated with a first shape memory polymer providing a coated intermediate unit. The coated intermediate unit is in turn coated with a conductive material providing a second intermediate unit. The second coated intermediate unit is in turn coated with an outer shape memory polymer. The rod, sheet or substrate is exposed and an electrical lead is attached to the rod, sheet or substrate. The conductive material is exposed and an electrical lead is attached to the conductive material.

  6. Demonstration Of A Nanomaterial-Modified Primer For Use In Corrosion-Inhibiting Coating Systems

    DTIC Science & Technology

    2011-11-01

    abrasive blasting or other means. This report documents the materials and methodologies used for testing and application of the new coating systems on the...method with improved corrosion resistant coatings will provide the DoD with a means to cost effectively rehabilitate the outer metal surfaces of...contained with environmental controls in place. ........................................ 9 Figure 6. Abrasive blast-cleaned tank surface

  7. Survival of B. Horneckiae Spores Under Ground-simulated Space Conditions

    NASA Technical Reports Server (NTRS)

    Schanche, Bradley

    2012-01-01

    To prevent forward contamination and maintain the scientific integrity of future life detection missions, it is important to characterize and attempt to eliminate terrestrial microorganisms associated with exploratory spacecraft and landing vehicles. Among the organisms isolated from spacecraft-associated habitats, spore-forming microbes are highly resistant to various physical and chemical conditions, which include ionizing and UV radiation, desiccation and oxidative stress, and the harsh environment of outer space or planetary surfaces. Recently a radiation resistant, spore forming bacterial isolate, Bacillus horneckiae, was isolated from a clean room of the Kennedy Space Center where the Phoenix spacecraft was assembled. The exceptionally high tolerance of extreme conditions demonstrated by sporeforming bacteria highlighted the need to assess the viability of these microbes in situ (in real) space. The proposed BOSS (Biofilm Organisms Surfing Space) project aims to understand the mechanisms by which biofilm forming organisms, such as B. horneckiae, will potentially be able to withstand harsh space conditions. As previously stated, the spore producing ability of these species gives them increased survivability to harsh conditions. Some of the spores will have the protective exosporium layer artificially removed before the test to determine if the existence of this layer significantly changes the survivability during the mission. In preparation for that experiment, we analyzed spores which were exposed during a ground simulation, the EXPOSE R2 Biofilm Organisms Surfing Space (BOSS). Previous to exposure, spores were deposited onto spacecraft grade aluminum coupons in a spore suspension calculated to contain between 10(exp 7) and 10(exp 8) spores. This precursor series will be used to establish a baseline survivability function for comparison with the future flight tests during EXPOSE-R. For each coupon, a 10% polyvinyl alcohol (PVA) film was applied and peeled from the coupon to recover the spores. One hundred µl of sterile 10% PVA was applied to the surface of the coupon and allowed to dry for 1 hour at 37 C. The films were then removed using sterile scalpel and forceps and placed into a glass test tube containing 2 milliliters of sterile deionized water. The PVA film process was then repeated on each coupon one additional time to ensure recovery of the majority of spores. The second PVA film was added in the same glass tube as in the previous round. If the spores remained 100% viable, the test tubes should now contain between 5 X 10(exp 6) and 5 X 10(exp 7) spores per millimeter; however, it is expected that some loss of viability has occurred. In order to assess this loss, the number of colony forming, viable spores was counted. To count the colony forming units (CFUs), the spore containing solution was diluted in a process of 10-fold serial dilution by mixing successive solutions in a 100 microliter spore suspension to 900 microliter deionized H2O ratio. A sample dilution series revealed that 10(exp -3) and 10(exp -4) concentrations would be necessary for an accurate CFU count to be taken. For those two concentrations, a spread on a TSA plate was prepared and incubated at 32 C. For the samples exposed to UV radiation, the cell survivability was too low to establish a count from 100 microliter spread plating. Instead, no dilutions were performed and the entire 2 milliliter spore suspension was plated and incubated at 32 C. The plate's CFU counts were taken at 24 hours and 48 hours from the time of plating. At the end of the CFU counting the total surviving spores in each sample were calculated based on the number of CFUs that were observed per 100 microliters, or per 2 milliliters for the UV irradiated samples. The results of these calculations are shown in Figures 1 and 2.

  8. Optical fiber cable chemical stripping fixture

    NASA Technical Reports Server (NTRS)

    Kolasinski, John R. (Inventor); Coleman, Alexander M. (Inventor)

    1995-01-01

    An elongated fixture handle member is connected to a fixture body member with both members having interconnecting longitudinal central axial bores for the passage of an optical cable therethrough. The axial bore of the fixture body member, however, terminates in a shoulder stop for the outer end of a jacket of the optical cable covering both an optical fiber and a coating therefor, with an axial bore of reduced diameter continuing from the shoulder stop forward for a predetermined desired length to the outer end of the fixture body member. A subsequent insertion of the fixture body member including the above optical fiber elements into a chemical stripping solution results in a softening of the exposed external coating thereat which permits easy removal thereof from the optical fiber while leaving a desired length coated fiber intact within the fixture body member.

  9. Applications of Functional Amyloids from Fungi: Surface Modification by Class I Hydrophobins.

    PubMed

    Piscitelli, Alessandra; Cicatiello, Paola; Gravagnuolo, Alfredo Maria; Sorrentino, Ilaria; Pezzella, Cinzia; Giardina, Paola

    2017-06-26

    Class I hydrophobins produced from fungi are amongst the first proteins recognized as functional amyloids. They are amphiphilic proteins involved in the formation of aerial structures such as spores or fruiting bodies. They form chemically robust layers which can only be dissolved in strong acids. These layers adhere to different surfaces, changing their wettability, and allow the binding of other proteins. Herein, the modification of diverse types of surfaces with Class I hydrophobins is reported, highlighting the applications of the coated surfaces. Indeed, these coatings can be exploited in several fields, spanning from biomedical to industrial applications, which include biosensing and textile manufacturing.

  10. Encapsulation of high temperature molten salts

    DOEpatents

    Oxley, James D.; Mathur, Anoop Kumar

    2017-05-16

    The present disclosure relates to a method of encapsulating microcapsules containing relatively high temperature phase change materials and the microcapsules so produced. The microcapsules are coated with an inorganic binder, film former and an inorganic filler. The microcapsules may include a sacrificial layer that is disposed between the particle and the coating. The microcapsules may also include an inner coating layer, sacrificial layer and outer coating layer. The microcapsules are particularly useful for thermal energy storage in connection with, e.g., heat collected from concentrating solar collectors.

  11. Feasibility studies of concomitant administration of optimized formulation of probiotic-loaded Vancomycin hydrochloride pellets for colon delivery.

    PubMed

    Avachat, Amelia M; Shinde, Amol S

    2016-01-01

    Objective of this study was to develop Vancomycin HCl pellets loaded with Saccharomyces boulardii (S.b.) for pH-dependent system and CODES™ for augmenting the efficacy of Vancomycin HCl in the treatment of colitis. Pellets were prepared by extrusion-spheronization. In the pH-dependent system, the pellets were coated with Eudragit FS 30D. These pellets exhibited spherical form and a uniform surface coating. The CODES™ system consisted of three components: core containing mannitol, drug and probiotic, an inner acid-soluble coating layer, and an outer layer of enteric coating material. Statistical factorial design was used to optimize both formulations. Scanning electron micrographs of coated pellets revealed uniform coating. In vitro drug release of these coated pellets was studied sequentially in various buffers with (2%) and without rat cecal content for a period of 12 h. From the optimized pH-dependent formulation, F6 (20% w/w coating level and 15% w/v concentration of polymer), higher amount of probiotic was released in earlier time phase (first 5 h) as compared to the CODES™ and so R5 [containing acid-soluble inner coating layer (15% w/w coating level and 12% w/v concentration of Eudragit E100), and an outer layer of enteric coating material (12% w/w coating level and 10% w/v concentration of Eudragit L100)] was considered as the best formulation after confirming in vivo X-ray studies conducted on rabbits, suggesting that Vancomycin HCl and S.b. may be co-administered as pellets [CODES™] to enhance the effectiveness of Vancomycin HCl in the treatment of colitis without its associated side effects, which can only be confirmed after clinical trials.

  12. Fungal decay and shelf life of oranges coated with chitosan and bergamot, thyme, and tea tree essential oils.

    PubMed

    Cháfer, M; Sánchez-González, L; González-Martínez, Ch; Chiralt, A

    2012-08-01

    Chitosan coatings, containing or not essential oils (bergamot, thyme and tea tree oil), were applied to oranges (cv. Navel Powell). Antifungal effect was evaluated by applying coatings before and after inoculating the fruit with Penicillium italicum CECT 2294 (10(5) spores/mL), preventive and curative treatments, respectively. The effect of coatings on the quality parameters (acidity, pH, soluble solids, juice percentage, weight loss, firmness, color parameters, and respiration rate) was controlled for the different oranges samples throughout the cold storage time. Preventive antimicrobial treatments with coatings containing tea tree oil were the most effective with a reduction of the microbial growth (expressed as the percentage of infected samples) of 50%, as compared to the uncoated samples. The coatings did not lead to any relevant changes in the development of the sample quality parameters throughout the cold storage, except for a slightly reduced loss of both weight and firmness when the coatings contained bergamot oil. Results of this study are a useful tool for the development of new environmental friendly and healthier commercial applications in the control of the main postharvest fungal decay of citrus fruits. © 2012 Institute of Food Technologists®

  13. A monoclonal antibody that tracks endospore formation in the microsporidium Nosema bombycis.

    PubMed

    Li, Yanhong; Tao, Meiling; Ma, Fuping; Pan, Guoqing; Zhou, Zeyang; Wu, Zhengli

    2015-01-01

    Nosema bombycis, the first identified microsporidium, is a destructive pathogen of the silkworm Bombyx mori and causes severe worldwide economic losses in sericulture. Major microsporidian structural proteins, such as the spore wall protein (SWP), are known to be involved in host invasion. In this study, the reactivity of the monoclonal antibody 2B10 was tested against an endospore protein of N. bombycis with a molecular weight size at 50-kDa, using Western blotting. The antigen was purified after immunoprecipitation and was further identified as EOB13320 according to MALDI-TOF MS assay. We found that EOB13320 locates to the surface of the different developmental stages of the parasite, mostly the sporoblast stage and the mature spore after immunoelectron microscopy examination. EOB13320 was also widely distributed in the developing endospore, especially at the sporoblast stage. This endospore protein also accumulated in the cytoplasm of both the merogony and sporoblast stages. These results imply that EOB13320 detected by monoclonal antibody 2B10 is expressed throughout the life cycle of the parasite, notably during the stage when the endospore is formed, and that this protein is important for spore-coat formation and parasite maintenance. Our study could be instrumental in the understanding of spore wall formation and will help to gain greater insight into the biology of this parasite.

  14. Crystal structure of CotA laccase complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) at a novel binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhongchuan; Xie, Tian; Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of

    2016-03-24

    The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) in a hole motif has been solved; this novel binding site could be a potential structure-based target for protein engineering of CotA laccase. The CotA laccase from Bacillus subtilis is an abundant component of the spore outer coat and has been characterized as a typical laccase. The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) in a hole motif has been solved. The novel binding site was about 26 Å away from the T1 binding pocket. Comparison with known structures of other laccases revealed that the hole is a specific feature ofmore » CotA. The key residues Arg476 and Ser360 were directly bound to ABTS. Site-directed mutagenesis studies revealed that the residues Arg146, Arg429 and Arg476, which are located at the bottom of the novel binding site, are essential for the oxidation of ABTS and syringaldazine. Specially, a Thr480Phe variant was identified to be almost 3.5 times more specific for ABTS than for syringaldazine compared with the wild type. These results suggest this novel binding site for ABTS could be a potential target for protein engineering of CotA laccases.« less

  15. Hollow Pollen Shells to Enhance Drug Delivery

    PubMed Central

    Diego-Taboada, Alberto; Beckett, Stephen T.; Atkin, Stephen L.; Mackenzie, Grahame

    2014-01-01

    Pollen grain and spore shells are natural microcapsules designed to protect the genetic material of the plant from external damage. The shell is made up of two layers, the inner layer (intine), made largely of cellulose, and the outer layer (exine), composed mainly of sporopollenin. The relative proportion of each varies according to the plant species. The structure of sporopollenin has not been fully characterised but different studies suggest the presence of conjugated phenols, which provide antioxidant properties to the microcapsule and UV (ultraviolet) protection to the material inside it. These microcapsule shells have many advantageous properties, such as homogeneity in size, resilience to both alkalis and acids, and the ability to withstand temperatures up to 250 °C. These hollow microcapsules have the ability to encapsulate and release actives in a controlled manner. Their mucoadhesion to intestinal tissues may contribute to the extended contact of the sporopollenin with the intestinal mucosa leading to an increased efficiency of delivery of nutraceuticals and drugs. The hollow microcapsules can be filled with a solution of the active or active in a liquid form by simply mixing both together, and in some cases operating a vacuum. The active payload can be released in the human body depending on pressure on the microcapsule, solubility and/or pH factors. Active release can be controlled by adding a coating on the shell, or co-encapsulation with the active inside the shell. PMID:24638098

  16. Nature and origin of mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain, and Kane Springs, Wash volcanic centers, Southern Nevada

    NASA Technical Reports Server (NTRS)

    Taranik, James V.; Noble, Donald C.; Hsu, Liang C.; Spatz, David M.

    1987-01-01

    LANDSAT Thematic Mapper imagery was evaluated over 3 Tertiary calderas in southern Nevada. Each volcanic center derived from a highly evolved silici magmatic system represented today by well exposed diverse lithologies. Distinctive imagery contrast between some of the late ash flows and earlier units follows from the high relative reflectance in longer wavelength bands (bands 5 and 7) of the former. Enhancement techniques provide color composite images which highlight some of the units in remarkable color contrast. Inasmuch as coatings on the tuffs are incompletely developed and apparently largely dependent spectrally on rock properties independent of petrochemistry, it is felt that the distinctive imagery characteristics are more a function of primary lithologic or petrochemical properties. Any given outcrop is backdrop for a variety of cover types, of which coatings, at various stages of maturity, are one. Petrographic and X-ray diffraction analysis of the outer air-interface zone of coatings reveal they are composed chiefly of amorphous compounds, probably with varying proportions of iron and manganese. Observations support an origin for some outer (air-interface) coating constituents exogenous to the underlying host.

  17. Design and evaluation of hydrophobic coated buoyant core as floating drug delivery system for sustained release of cisapride

    PubMed Central

    Jacob, Shery; Nair, Anroop B; Patil, Pandurang N

    2010-01-01

    An inert hydrophobic buoyant coated–core was developed as floating drug delivery system (FDDS) for sustained release of cisapride using direct compression technology. Core contained low density, porous ethyl cellulose, which was coated with an impermeable, insoluble hydrophobic coating polymer such as rosin. It was further seal coated with low viscosity hydroxypropyl methyl cellulose (HPMC E15) to minimize moisture permeation and better adhesion with an outer drug layer. It was found that stable buoyant core was sufficient to float the tablet more than 8 h without the aid of sodium bicarbonate and citric acid. Sustained release of cisapride was achieved with HPMC K4M in the outer drug layer. The floating lag time required for these novel FDDS was found to be zero, however it is likely that the porosity or density of the core is critical for floatability of these tablets. The in vitro release pattern of these tablets in simulated gastric fluid showed the constant and controlled release for prolonged time. It can be concluded that the hydrophobic coated buoyant core could be used as FDDS for gastroretentive delivery system of cisapride or other suitable drugs. PMID:24825997

  18. Spore associated bacteria regulates maize root K+/Na+ ion homeostasis to promote salinity tolerance during arbuscular mycorrhizal symbiosis.

    PubMed

    Selvakumar, Gopal; Shagol, Charlotte C; Kim, Kiyoon; Han, Seunggab; Sa, Tongmin

    2018-06-05

    The interaction between arbuscular mycorrhizal fungi (AMF) and AMF spore associated bacteria (SAB) were previously found to improve mycorrhizal symbiotic efficiency under saline stress, however, the information about the molecular basis of this interaction remain unknown. Therefore, the present study aimed to investigate the response of maize plants to co-inoculation of AMF and SAB under salinity stress. The co-inoculation of AMF and SAB significantly improved plant dry weight, nutrient content of shoot and root tissues under 25 or 50 mM NaCl. Importantly, co-inoculation significantly reduced the accumulation of proline in shoots and Na + in roots. Co-inoculated maize plants also exhibited high K + /Na + ratios in roots at 25 mM NaCl concentration. Mycorrhizal colonization significantly positively altered the expression of ZmAKT2, ZmSOS1, and ZmSKOR genes, to maintain K + and Na + ion homeostasis. Confocal laser scanning microscope (CLSM) view showed that SAB were able to move and localize into inter- and intracellular spaces of maize roots and were closely associated with the spore outer hyaline layer. These new findings indicate that co-inoculation of AMF and SAB effectively alleviates the detrimental effects of salinity through regulation of SOS pathway gene expression and K + /Na + homeostasis to improve maize plant growth.

  19. Investigation of Oral Preparation That Is Expected to Improve Medication Administration: Preparation and Evaluation of Oral Gelling Tablet Using Sodium Alginate.

    PubMed

    Ito, Ikumi; Ito, Akihiko; Unezaki, Sakae

    2017-01-01

    We investigated the preparation of a gelling tablet that swells and forms a gel upon absorbing water, and hence would be easy for patients to swallow. We prepared naked tablets and compressed coated tablets by the direct tableting or wet granule-compression methods, using the commonly prescribed drug acetaminophen (AA) and sodium alginate (AG) as a thickening agent. The tablets quickly absorbed water, had favorable gelling properties, low adhesiveness, appropriate drug dissolution profile, and at the same time, were easy to swallow. In the case of naked tablets, water absorption increased upon granulation, but gelling of AG interfere when AA and AG were present together. There was no change in the adhesiveness, and more than 30 min were required to achieve a 25% dissolution ratio. Compressed coated tablets that were made with AA in the inner layer and granulated AG in the outer layer showed improved dissolution behavior, it was about 90% dissolution ratio in 30 min, owing to the water absorption property of AG, and decreased adhesiveness. In this case, there was a difference in the outer layer thickness. As the outer layer amount increased, dissolution slowed, but it did not depend on the compression pressure. Our gelling tablet can be prepared by using AA (main drug) in the inner layer and an appropriate thickness of granulated AG in the outer layer of compressed coated tablets.

  20. Coated armor system and process for making the same

    DOEpatents

    Chu, Henry S.; Lillo, Thomas M.; McHugh, Kevin M.

    2010-11-23

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  1. Armor systems including coated core materials

    DOEpatents

    Chu, Henry S [Idaho Falls, ID; Lillo, Thomas M [Idaho Falls, ID; McHugh, Kevin M [Idaho Falls, ID

    2012-07-31

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  2. Armor systems including coated core materials

    DOEpatents

    Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M

    2013-10-08

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  3. Optimization of Time Controlled 6-mercaptopurine Delivery for Site- Specific Targeting to Colon Diseases.

    PubMed

    Hude, Rahul U; Jagdale, Swati C

    2016-01-01

    6-MP has short elimination time (<2 h) and low bioavailability (~ 50%). Present study was aimed to develop time controlled and site targeted delivery of 6-Mercaptopurine (6-MP) for treatment of colon diseases. Compression coating technique was used. 32 full factorial design was designed for optimization of the outer coat for the core tablet. For outer coat amount of Eudragit RS 100 and hydroxypropyl methylcellulose (HPMC K100) were employed as independent variables each at three levels while responses evaluated were swelling index and bursting time. Direct compression method was used for tablets formulation. 80% w/w of microcrystalline cellulose and 20% w/w of croscarmellose sodium were found to be optimum concentration for the core tablet. The outer coat of optimized batch (ED) contains 21.05% w/w Eudragit RS 100 and 78.95% w/w HPMC K100 of total polymer weight. In-vitro dissolution study indicated that combination of polymer retards the drug release in gastric region and releases ≥95% of drug in colonic region after ≥7 h. Whereas in case of in-vivo placebo x-ray imaging study had shown that the tablet reaches colonic part after 5±0.5 h providing the proof of arrival in the colon. Stability study indicated that the optimized formulation were physically and chemically stable. Present research work concluded that compression coating by Eudragit RS 100 and HPMC K100 to 6-MP core provides potential colon targeted system with advantages of reduced gastric exposure and enhanced bioavailability. Formulation can be considered as potential and promising candidate for the treatment of colon diseases.

  4. Studies on applicability of press-coated tablets using hydroxypropylcellulose (HPC) in the outer shell for timed-release preparations.

    PubMed

    Fukui, E; Uemura, K; Kobayashi, M

    2000-08-10

    Press-coated tablets, containing diltiazem hydrochloride (DIL) in the core tablet and coated with hydroxypropylcellulose (HPC) as the outer shell, were examined for applicability as timed-release tablets with a predetermined lag time and subsequent rapid drug release phase. Various types of press-coated tablets were prepared using a rotary tabletting machine and their DIL dissolution behavior was evaluated by the JP paddle method. The results indicated that tablets with the timed-release function could be prepared, and that the lag times were prolonged as the viscosity of HPC and the amount of the outer shell were increased. The lag times could be controlled widely by the above method, however, the compression load had little effect. Two different kinds of timed-release press-coated tablets that showed lag times of 3 and 6 h in the in vitro test (denoted PCT(L3) and PCT(L6), respectively) were administered to beagle dogs. DIL was first detected in the plasma more than 3 h after administration, and both tablets showed timed-release. The lag times showed a good agreement between the in vivo and in vitro tests in PCT(L3). However, the in vivo lag times were about 4 h in PCT(L6) and were much shorter than the in vitro lag time. The dissolution test was performed at different paddle rotation speeds, and good agreement was obtained between the in vivo and in vitro lag times at 150 rpm. This suggested that the effects of gastrointestinal peristalsis and contraction should also be taken into consideration for the further development of drug delivery systems.

  5. Delivery of fluorophores by calcium phosphate-coated nanoliposomes and interaction with Staphylococcus aureus biofilms.

    PubMed

    Rivero Berti, Ignacio; Dell' Arciprete, María Laura; Dittler, María Laura; Miñan, Alejandro; Fernández Lorenzo de Mele, Mónica; Gonzalez, Mónica

    2016-06-01

    The delivery capacity and mechanical stability of calcium phosphate (CaP) coated 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) liposomes free and adsorbed on bacterial surface was investigated introducing either acridine orange (AO) or 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin (TMP) in the aqueous core of the liposomes. The obtained nanomaterials were thoroughly characterized by electron and optical microscopy and by fluorescence techniques. Distribution of the AO and TMP molecules between the aqueous liposomes core and the outer solution was demonstrated by the band shifts and broadening of the excitation-emission matrices and the modified Stern-Volmer model for fluorescence quenching. In aqueous suspensions, c.a. 40% of AO was released to the outer solution while only a small percentage of TMP was observed to reach the outer liposome surface. The nanoliposomes adhesion capacity and the leaking of fluorophore molecules to Staphylococcus aureus (S. aureus) biofilms were further evaluated. A close interaction between liposomes and S. aureus biofilm was evidenced by TEM and SEM imaging. Epifluorescence experiments demonstrated that CaP-coated liposomes have good biofilm staining capability after two hours incubation of the biofilms with the liposomes, thus supporting an important release of the fluorophores when in contact with the biofilm. Altogether, the obtained results strongly suggest that CaP-coated liposomes are capable of activating drug release when in presence of S. aureus biofilms and smears. The studies herein presented, indicate that CaP-coated liposomes are potential vehicles for the selective delivery of drugs to S. aureus biofilms, as is the case of the singlet oxygen photosensitizer TMP, a well known photodynamic antibacterial agent. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. 16 CFR 1611.36 - Application of act to particular types of products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.36...) Multilayer fabric and wearing apparel with a film or coating on the uncovered or exposed surface. Plastic film or plastic-coated fabric used, or intended for use, as the outer layer of disposable diapers is...

  7. 16 CFR 1611.36 - Application of act to particular types of products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.36...) Multilayer fabric and wearing apparel with a film or coating on the uncovered or exposed surface. Plastic film or plastic-coated fabric used, or intended for use, as the outer layer of disposable diapers is...

  8. 16 CFR 1611.36 - Application of act to particular types of products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.36...) Multilayer fabric and wearing apparel with a film or coating on the uncovered or exposed surface. Plastic film or plastic-coated fabric used, or intended for use, as the outer layer of disposable diapers is...

  9. Antibacterial inorganic-organic hybrid coatings on stainless steel via consecutive surface-initiated atom transfer radical polymerization for biocorrosion prevention.

    PubMed

    Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2010-05-04

    To enhance the corrosion resistance of stainless steel (SS) and to impart its surface with antibacterial functionality for inhibiting biofilm formation and biocorrosion, well-defined inorganic-organic hybrid coatings, consisting of a polysilsesquioxane inner layer and quaternized poly(2-(dimethyamino)ethyl methacrylate) (P(DMAEMA)) outer blocks, were prepared via successive surface-initiated atom transfer radical polymerization (ATRP) of 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). The cross-linked P(TMASPMA), or polysilsesquioxane, inner layer provided a durable and resistant coating to electrolytes. The pendant tertiary amino groups of the P(DMAEMA) outer block were quaternized with alkyl halide to produce a high concentration of quaternary ammonium groups with biocidal functionality. The so-synthesized inorganic-organic hybrid coatings on the SS substrates exhibited good anticorrosion and antibacterial effects and inhibited biocorrosion induced by sulfate-reducing bacteria (SRB) in seawater media, as revealed by antibacterial assay and electrochemical analyses, and they are potentially useful to steel-based equipment under harsh industrial and marine environments.

  10. Pulsed excitation system to measure the resonant frequency of magnetoelastic biosensors

    NASA Astrophysics Data System (ADS)

    Xie, Hong; Chai, Yating; Horikawa, Shin; Wikle, Howard C.; Chin, Bryan A.

    2014-05-01

    An electrical circuit was designed and tested to measure the resonant frequency of micron-scale magnetoelastic (ME) biosensors using a pulsed wave excitation technique. In this circuit, a square pulse current is applied to an excitation coil to excite the vibration of ME biosensors and a pick-up coil is used to sense the ME biosensor's mechanical vibration and convert it to an electrical output signal. The output signal is filtered and amplified by a custom designed circuit to allow the measurement of the resonant frequency of the ME biosensor from which the detection of specific pathogens can be made. As a proof-in-concept experiment, JRB7 phage-coated ME biosensors were used to detect different concentrations of Bacillus anthracis Sterne strain spores. A statistically significant difference was observed for concentrations of 5 × 102 spore/ml and above.

  11. Thermal barrier coating experience in the gas turbine engine

    NASA Technical Reports Server (NTRS)

    Bose, S.; Demasi-Marcin, J.

    1995-01-01

    Thermal Barrier Coatings (TBC), provide thermal insulation and oxidation resistance in an environment consisting of hot combustion gases. TBC's consist of a two layer system. The outer ceramic layer provides good thermal insulation due to the low thermal conductivity of the ceramic coatings used, while the inner metallic bond coat layer provides needed oxidation resistance to the underlying superalloy. Pratt & Whitney has over a decade of experience with several generations of TBC systems on turbine airfoils. This paper will focus on the latest TBC field experience along with a proposed durability model.

  12. Microstructure-property relationships of chemically vapor deposited zirconia fiber coating for environmentally durable silicon carbide/silicon carbide composites

    NASA Astrophysics Data System (ADS)

    Li, Hao

    In SiC/SiC ceramic matrix composites, toughness is obtained by adding a fiber coating, which provides a weak interface for crack deflection and debonding between the fiber and the matrix. However, the most commonly used fiber coatings, carbon and boron nitride, are unstable in oxidative environments. In the present study, the feasibility of using a chemically vapor deposited zirconia (CVD-ZrO2) fiber coating as an oxidation-resistant interphase for SiC/SiC composites was investigated. A study of morphological evolution in the CVD-ZrO2 coating suggested that a size-controlled displacive phase transformation from tetragonal ZrO2 ( t-ZrO2) to monoclinic ZrO2 (m-ZrO 2) was the key mechanism responsible for the weak interface behavior exhibited by the ZrO2 coating. It appeared that a low oxygen partial pressure in the CVD reactor chamber was essential for the nucleation of t-ZrO2 and therefore was responsible for the delamination behavior. With this understanding of the weak interface mechanism, minicomposite specimens containing various ZrO2 fiber coating morphologies were fabricated and tested. A fractographic analysis showed that in-situ fiber strength and minicomposite failure loads were strongly dependent on the phase contents and microstructure of the ZrO2 coating. We determined that an optimum microstructure of the ZrO2 coating should contain a predelaminated interface surrounded by a dense outer layer. The outer layer was needed to protect the fiber from degradation during the subsequent SiC matrix infiltration procedure. A preliminary tensile stress-rupture study indicated that the ZrO2 coating exhibited promising performance in terms of providing the weak interface behavior and maintaining the thermal and oxidative stability at elevated temperatures.

  13. Anastomosis behavior differs between asymbiotic and symbiotic hyphae of Rhizophagus clarus.

    PubMed

    Purin, Sonia; Morton, Joseph B

    2013-01-01

    The life history of arbuscular mycorrhizal fungi (AMF, Glomeromycota) consists of a short asymbiotic phase when spores germinate and a longer symbiotic phase where hyphae form a network within roots and subsequently in the rhizosphere. Hyphal anastomosis contributes to colony formation, yet this process has been studied mostly in the asymbiotic phase rather than in mycorrhizal plants because of methodological limitations. We sought to compare patterns of anastomosis during each phase of fungal growth by measuring hyphal fusions in genetically identical and different single spore isolates of Rhizophagus clarus from different environments and geographic locations. These isolates were genotyped with two anonymous markers of microsatellite-flanking regions. Anastomosis of hyphae from germinating spores was examined in axenic Petri dishes. A rhizohyphatron consisting of agar-coated glass slides bridging single or paired mycorrhizal sorghum plants allowed evaluation of anastomosis of symbiotic hyphae. Anastomosis of hyphae within a colony, defined here as a mycelium from an individual germinating spore or from mycorrhizal roots of one plant, occurred with similar frequencies (8-38%). However, anastomosis between paired colonies was observed in germinating spores from either genetically identical or different isolates, but it was never detected in symbiotic hyphae. The frequency of anastomosis in asymbiotic hyphae from paired interactions was low, occurring in fewer than 6% of hyphal contacts. These data suggest that anastomosis is relatively unconstrained when interactions occur within a colony but is confined to asymbiotic hyphae when interactions occur between paired colonies. This pattern of behavior suggests that asymbiotic and symbiotic phases of mycelium development by R. clarus may differ in function. Anastomosis in the asymbiotic phase may provide brief opportunities for gene flow between populations of this and possibly other AMF species.

  14. NEUTRON COUNTER

    DOEpatents

    Curtis, C.D.; Carlson, R.L.; Tubinis, M.P.

    1958-07-29

    An ionization chamber instrument is described for cylindrical electrodes with an ionizing gag filling the channber. The inner electrode is held in place by a hermetic insulating seal at one end of the outer electrode, the other end of the outer electrode being closed by a gas filling tube. The outer surface of the inner electrode is coated with an active material which is responsive to neutron bombardment, such as uranium235 or boron-10, to produce ionizing radiations in the gas. The transverse cross sectional area of the inner electrode is small in relation to that of the channber whereby substantially all of the radiations are directed toward the outer electrode.

  15. 16 CFR 1611.34 - Only uncovered or exposed parts of wearing apparel to be tested.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations... procedures set forth in section 4(a) of the act. Note: If the outer layer of plastic film or plastic-coated... under part 1611—Standard for the Flammability of Vinyl Plastic Film. If the outer layer adheres to all...

  16. 16 CFR 1611.34 - Only uncovered or exposed parts of wearing apparel to be tested.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations... procedures set forth in section 4(a) of the act. Note: If the outer layer of plastic film or plastic-coated... under part 1611—Standard for the Flammability of Vinyl Plastic Film. If the outer layer adheres to all...

  17. 16 CFR 1611.34 - Only uncovered or exposed parts of wearing apparel to be tested.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations... procedures set forth in section 4(a) of the act. Note: If the outer layer of plastic film or plastic-coated... under part 1611—Standard for the Flammability of Vinyl Plastic Film. If the outer layer adheres to all...

  18. 16 CFR 1611.34 - Only uncovered or exposed parts of wearing apparel to be tested.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations... procedures set forth in section 4(a) of the act. Note: If the outer layer of plastic film or plastic-coated... under part 1611—Standard for the Flammability of Vinyl Plastic Film. If the outer layer adheres to all...

  19. Microminiature coaxial cable and methods manufacture

    DOEpatents

    Bongianni, Wayne L.

    1986-01-01

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 .mu.m thick and from 150 to 200 .mu.m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microballoons to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion.

  20. Microminiature coaxial cable and method of manufacture

    DOEpatents

    Bongianni, W.L.

    1989-03-28

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 [mu]m thick and from 150 to 200 [mu]m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately, the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microspheres to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion. 2 figs.

  1. Microminiature coaxial cable and method of manufacture

    DOEpatents

    Bongianni, Wayne L.

    1989-01-01

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 .mu.m thick and from 150 to 200 .mu.m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately, the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microspheres to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion.

  2. Microminiature coaxial cable and methods of manufacture

    DOEpatents

    Bongianni, W.L.

    1983-12-29

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 ..mu..m thick and from 150 to 200 ..mu..m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dieleectric. Alternately the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microballoons to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion.

  3. Microminiature coaxial cable and methods manufacture

    DOEpatents

    Bongianni, W.L.

    1986-04-08

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 [mu]m thick and from 150 to 200 [mu]m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microballoons to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion. 2 figs.

  4. 16 CFR § 1611.36 - Application of act to particular types of products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611... inner side. (f) Multilayer fabric and wearing apparel with a film or coating on the uncovered or exposed surface. Plastic film or plastic-coated fabric used, or intended for use, as the outer layer of disposable...

  5. Experiences with tungsten coatings in high heat flux tests and under plasma load in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Herrmann, A.; Greuner, H.; Fuchs, J. C.; de Marné, P.; Neu, R.; ASDEX Upgrade Team

    2009-12-01

    ASDEX Upgrade was operated with about 6400 s plasma discharge during the scientific program in 2007/2008 exploring tungsten as a first wall material in tokamaks. In the first phase, the heating power was restricted to 10 MW. It was increased to 15 MW in the second phase. During this operational period, a delamination of the 200 μm W-VPS coating happened at 2 out of 128 tiles of the outer divertor and an unscheduled opening was required. In the third phase, ASDEX Upgrade was operated with partly predamaged tiles and up to 15 MW heating power. The target load was actively controlled by N2-seeding. This paper presents the screening test of target tiles in the high heat flux test facility GLADIS, experiences with operation and detected damages of the outer divertor as well as the heat load to the outer divertor and the reasons for the toroidal asymmetry of the divertor load.

  6. Biomimicry 1: PC.

    PubMed

    Cumberland, D C; Gunn, J; Malik, N; Holt, C M

    1998-01-01

    The surface properties of stents can be modified by coating them, for example with a polymer. Phosphorylcoline (PC) is the major component of the outer layer of the cell membrane. The haemo- and biocompatibility of a PC-containing polymer is thus based on biomimicry, and has been confirmed by several experiments showing much reduced thrombogenicity of PC-coated surfaces, and porcine coronary artery implants showing no sign of adverse effect. Clinical experience with the PC-coated BiodivYsio appears favourable. The PC coating can be tailored for take up and controlled elution of various drugs for stent-based local delivery, a property which is being actively explored.

  7. Surface modified aerogel monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas (Inventor); Johnston, James C. (Inventor); Kuczmarski, Maria A. (Inventor); Meador, Mary Ann B. (Inventor)

    2013-01-01

    This invention comprises reinforced aerogel monoliths such as silica aerogels having a polymer coating on its outer geometric surface boundary, and to the method of preparing said aerogel monoliths. The polymer coatings on the aerogel monoliths are derived from polymer precursors selected from the group consisting of isocyanates as a precursor, precursors of epoxies, and precursors of polyimides. The coated aerogel monoliths can be modified further by encapsulating the aerogel with the polymer precursor reinforced with fibers such as carbon or glass fibers to obtain mechanically reinforced composite encapsulated aerogel monoliths.

  8. Multishell inertial confinement fusion target

    DOEpatents

    Holland, James R.; Del Vecchio, Robert M.

    1984-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reaction accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  9. Multishell inertial confinement fusion target

    DOEpatents

    Holland, James R.; Del Vecchio, Robert M.

    1987-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reactions accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  10. Fabrication of sub-micrometer-sized jingle bell-shaped hollow spheres from multilayered core-shell particles.

    PubMed

    Gu, Shunchao; Kondo, Tomohiro; Mine, Eiichi; Nagao, Daisuke; Kobayashi, Yoshio; Konno, Mikio

    2004-11-01

    Jingle bell-shaped hollow spheres were fabricated starting from multilayered particles composed of a silica core, a polystyrene inner shell, and a titania outer shell. Composite particles of silica core-polystyrene shell, synthesized by coating a 339-nm-sized silica core with a polystyrene shell of thickness 238 nm in emulsion polymerization, were used as core particles for a succeeding titania-coating. A sol-gel method was employed to form the titania outer shell with a thickness of 37 nm. The inner polystyrene shell in the multilayered particles was removed by immersing them in tetrahydrofuran. These successive procedures could produce jingle bell-shaped hollow spheres that contained a silica core in the titania shell.

  11. Thermal insulated glazing unit

    DOEpatents

    Selkowitz, Stephen E.; Arasteh, Dariush K.; Hartmann, John L.

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  12. High Pressure Water Stripping Using Multi-Orifice Nozzles

    NASA Technical Reports Server (NTRS)

    Hoppe, David

    1999-01-01

    The use of multi-orifice rotary nozzles greatly increases the speed and stripping effectiveness of high pressure water blasting systems, but also greatly increases the complexity of selecting and optimizing the operating parameters. The rotational speed of the nozzle must be coupled with its transverse velocity as it passes across the surface of the substrate being stripped. The radial and angular positions of each orifice must be included in the analysis of the nozzle configuration. Orifices at the outer edge of the nozzle head move at a faster rate than the orifices located near the center. The energy transmitted to the surface from the impact force of the water stream from an outer orifice is therefore spread over a larger area than energy from an inner orifice. Utilizing a larger diameter orifice in the outer radial positions increases the total energy transmitted from the outer orifice to compensate for the wider distribution of energy. The total flow rate from the combination of all orifices must be monitored and should be kept below the pump capacity while choosing orifice to insert in each position. The energy distribution from the orifice pattern is further complicated since the rotary path of all the orifices in the nozzle head pass through the center section. All orifices contribute to the stripping in the center of the path while only the outer most orifice contributes to the stripping at the edge of the nozzle. Additional orifices contribute to the stripping from the outer edge toward the center section. With all these parameters to configure and each parameter change affecting the others, a computer model was developed to track and coordinate these parameters. The computer simulation graphically indicates the cumulative affect from each parameter selected. The result from the proper choices in parameters is a well designed, highly efficient stripping system. A poorly chosen set of parameters will cause the nozzle to strip aggressively in some areas while leaving the coating untouched in adjacent sections. The high pressure water stripping system can be set to extremely aggressive conditions allowing stripping of hard to remove adhesives, paint systems, and even cladding and chromate conversion coatings. The energy force can also be reduced to strip coatings from thin aluminum substrates without causing any damage or deterioration to the substrate's surface. High pressure water stripping of aerospace components has thus proven to be an efficient and cost effective method for cleaning and removing coatings.

  13. Benefit from NASA

    NASA Image and Video Library

    2002-02-01

    AiroCide Ti02, an anthrax-killing air scrubber manufactured by KES Science and Technology Inc., in Kernesaw, Georgia, looks like a square metal box when it is installed on an office wall. Its fans draw in airborne spores and airflow forces them through a maze of tubes. Inside, hydroxyl radicals (OH-) attack and kill pathogens. Most remaining spores are destroyed by high-energy ultraviolet photons. Building miniature greenhouses for experiments on the International Space Station (ISS) has led to the invention of this device that annihilates anthrax-a bacteria that can be deadly when inhaled. The research enabling the invention started at the University of Wisconsin (Madison) Center for Space Automation and Robotics (WCSAR), one of 17 NASA Commercial Space Centers. A special coating technology used in the anthrax-killing invention is also being used inside WCSAR-built plant growth units on the ISS. This commercial research is managed by the Space Product Development Program at the Marshall Space Flight Center.

  14. Kinetics and Mechanisms of Chemical and Biological Agents Release from Biopolymeric Microcapsules.

    PubMed

    Vinceković, Marko; Jurić, Slaven; Đermić, Edyta; Topolovec-Pintarić, Snježana

    2017-11-08

    Kinetics and mechanisms of copper cations and Trichoderma viride spores release from uncoated and chitosan coated alginate microcapsules were investigated. The gelation of a fixed amount of sodium alginate at different concentrations of copper ion solutions resulted in distinct kinetics and release mechanisms. The increase in copper cation concentration promoted, but the presence of the chitosan layer on the microcapsule surface and the increase in microcapsule size reduced the rate of active agent release. Fitting to simple Korsmeyer-Peppas empirical model revealed that the underlying release mechanism (Fickian diffusion or a combination of the diffusion and erosion mechanisms) depends on the copper cation concentration and presence of T. viride spores. The investigation pointed out that the proper selection of formulation variables helps in designing microcapsules with the desirable release of copper ions and T. viride for plant protection and nutrition.

  15. Methods of producing armor systems, and armor systems produced using such methods

    DOEpatents

    Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M

    2013-02-19

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  16. Ice nucleation of bioaerosols - a resumee

    NASA Astrophysics Data System (ADS)

    Pummer, Bernhard G.; Atanasova, Lea; Bauer, Heidi; Bernardi, Johannes; Chazallon, Bertrand; Druzhinina, Irina S.; Grothe, Hinrich

    2013-04-01

    The role of biological particles for ice nucleation (IN) is still debated. Here, we present a summary of investigation and comparison of different ice nuclei. Apart from the bacterial ice nucleation proteins in Snomax, we further investigated a broad spectrum of pollen and fungal spores in the search for ice nucleation activity. Apart from Snomax, only few samples showed vital IN activity, like Fusarium avenaceum spores and Betula pendula pollen. Chemical characterization accentuated the differences between bacterial and pollen ice nuclei. Exposure to natural stresses, like UV and NOx, led to a significant decrease in IN activity. Furthermore, the releasable fraction of the pollen material, which includes the ice nuclei, was extracted with water and dried up. These residues were investigated with Raman spectroscopy and compared with the spectra of whole pollen grains. Measurements clearly demonstrated that the aqueous fraction contained mainly saccharides, lipids and proteins, but no sporopollenin, which is the bulk material of the outer pollen wall. Fungal spores of ecologically, economically or otherwise relevant species were also investigated. Most species showed no significant IN activity at all. A few species showed a slight increase in freezing temperature, but still significantly below the activity of the most active pollen or mineral dusts. Only Fusarium avenaceum showed strong IN activity. Cultivation of Fusarium and Trichoderma (close relatives of Fusarium) at different temperatures showed changes in total protein expression, but no impact on the IN activity.

  17. The impact of oxidation on spore and pollen chemistry: an experimental study

    NASA Astrophysics Data System (ADS)

    Jardine, Phillip; Fraser, Wesley; Lomax, Barry; Gosling, William

    2016-04-01

    Sporomorphs (pollen and spores) form a major component of the land plant fossil record. Sporomorphs have an outer wall composed of sporopollenin, a highly durable biopolymer, the chemistry of which contains both a signature of ambient ultraviolet-B flux and taxonomic information. Despite the high preservation potential of sporopollenin in the geological record, it is currently unknown how sensitive its chemical signature is to standard palynological processing techniques. Oxidation in particular is known to cause physical degradation to sporomorphs, and it is expected that this should have a concordant impact on sporopollenin chemistry. Here, we test this by experimentally oxidizing Lycopodium (clubmoss) spores using two common oxidation techniques: acetolysis and nitric acid. We also carry out acetolysis on eight angiosperm (flowering plant) taxa to test the generality of our results. Using Fourier Transform infrared (FTIR) spectroscopy, we find that acetolysis removes labile, non-fossilizable components of sporomorphs, but has a limited impact upon the chemistry of sporopollenin under normal processing durations. Nitric acid is more aggressive and does break down sporopollenin and reorganize its chemical structure, but when limited to short treatments (i.e. ≤10 min) at room temperature sporomorphs still contain most of the original chemical signal. These findings suggest that when used carefully oxidation does not adversely affect sporopollenin chemistry, and that palaeoclimatic and taxonomic signatures contained within the sporomorph wall are recoverable from standard palynological preparations.

  18. Anatomical Analysis of Saccharomyces cerevisiae Stalk-Like Structures Reveals Spatial Organization and Cell Specialization

    PubMed Central

    Scherz, Ruth; Shinder, Vera; Engelberg, David

    2001-01-01

    Recently we reported an unusual multicellular organization in yeast that we termed stalk-like structures. These structures are tall (0.5 to 3 cm long) and narrow (1 to 3 mm in diameter). They are formed in response to UV radiation of cultures spread on high agar concentrations. Here we present an anatomical analysis of the stalks. Microscopic inspection of cross sections taken from stalks revealed that stalks are composed of an inner core in which cells are dense and vital and a layer of cells (four to six rows) that surrounds the core. This outer layer is physically separated from the core and contains many dead cells. The outer layer may form a protective shell for the core cells. Through electron microscopy analysis we observed three types of cells within the stalk population: (i) cells containing many unusual vesicles, which might be undergoing some kind of cell death; (ii) cells containing spores (usually one or two spores only); and (iii) familiar rounded cells. We suggest that stalk cells are not only spatially organized but may undergo processes that induce a certain degree of cell specialization. We also show that high agar concentration alone, although not sufficient to induce stalk formation, induces dramatic changes in a colony's morphology. Most striking among the agar effects is the induction of growth into the agar, forming peg-like structures. Colonies grown on 4% agar or higher are reminiscent of stalks in some aspects. The agar concentration effects are mediated in part by the Ras pathway and are related to the invasive-growth phenomenon. PMID:11514526

  19. Silica Nanoparticles Functionalized with Zwitterionic Sulfobetaine Siloxane for Application as a Versatile Antifouling Coating System.

    PubMed

    Knowles, Brianna R; Wagner, Pawel; Maclaughlin, Shane; Higgins, Michael J; Molino, Paul J

    2017-06-07

    The growing need to develop surfaces able to effectively resist biological fouling has resulted in the widespread investigation of nanomaterials with potential antifouling properties. However, the preparation of effective antifouling coatings is limited by the availability of reactive surface functional groups and our ability to carefully control and organize chemistries at a materials' interface. Here, we present two methods of preparing hydrophilic low-fouling surface coatings through reaction of silica-nanoparticle suspensions and predeposited silica-nanoparticle films with zwitterionic sulfobetaine (SB). Silica-nanoparticle suspensions were functionalized with SB across three pH conditions and deposited as thin films via a simple spin-coating process to generate hydrophilic antifouling coatings. In addition, coatings of predeposited silica nanoparticles were surface functionalized via exposure to zwitterionic solutions. Quartz crystal microgravimetry with dissipation monitoring was employed as a high throughput technique for monitoring and optimizing reaction to the silica-nanoparticle surfaces. Functionalization of nanoparticle films was rapid and could be achieved over a wide pH range and at low zwitterion concentrations. All functionalized particle surfaces presented a high degree of wettability and resulted in large reductions in adsorption of bovine serum albumin protein. Particle coatings also showed a reduction in adhesion of fungal spores (Epicoccum nigrum) and bacteria (Escherichia coli) by up to 87 and 96%, respectively. These results indicate the potential for functionalized nanosilicas to be further developed as versatile fouling-resistant coatings for widespread coating applications.

  20. Microwave vector radiative transfer equation of a sea foam layer by the second-order Rayleigh approximation

    NASA Astrophysics Data System (ADS)

    Wei, En-Bo

    2011-10-01

    The microwave vector radiative transfer (VRT) equation of a coated spherical bubble layer is derived by means of the second-order Rayleigh approximation field when the microwave wavelength is larger than the coated spherical particle diameter. Meanwhile, the perturbation method is developed to solve the second-order Rayleigh VRT equation for the small ratio of the volume scattering coefficient to the extinction coefficient. As an example, the emissive properties of a sea surface foam layer, which consists of seawater coated bubbles, are investigated. The extinction, absorption, and scattering coefficients of sea foam are obtained by the second-order Rayleigh approximation fields and discussed for the different microwave frequencies and the ratio of inner radius to outer radius of a coated bubble. Our results show that in the dilute limit, the volume scattering coefficient decreases with increasing the ratio of inner radius to outer radius and decreasing the frequencies. It is also found that the microwave emissivity and the extinction coefficient have a peak at very thin seawater coating and its peak value decreases with frequency decrease. Furthermore, with the VRT equation and effective medium approximation of densely coated bubbles, the mechanism of sea foam enhancing the emissivity of a sea surface is disclosed. In addition, excellent agreement is obtained by comparing our VRT results with the experimental data of microwave emissivities of sea surface covered by a sea foam layer at L-band (1.4 GHz) and the Camps' model.

  1. Biodegradability of regenerated cellulose films coated with polyurethane/natural polymers interpenetrating polymer networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; Zhou, J.; Huang, J.

    1999-11-01

    Interpenetrating polymer network (IPN) coatings synthesized from castor-oil-based polyurethane (PU) with chitosan, nitrocellulose, or elaeostearin were coated on regenerated cellulose (RC) film for curing at 80--100 C for 2--5 min, providing biodegradable, water-resistant cellulose films coded, respectively, as RCCH, RCNC, and RCEs. The coated films were buried in natural soil for decaying and inoculated with a spore suspension of fungi on the agar medium, respectively, to test biodegradability. The viscosity-average molecular weight, M{sub {eta}}, and the weight of the degraded films decreased sharply with the progress of degradation. The degradation half-lifes, t{sub 1/2}, of the films in soil at 30more » C were found to be 19 days for RC, 25 days for RCNC, 32 days for RCCH, and 45 days for the RCEs films. Scanning electron microscopy (SEM) showed that the extent of decay followed in the order RC {gt} RCNC {gt} RCCH {gt} RCEs. SEM, infrared (IR), high-performance liquid chromatography (HPLC), and CO{sub 2} evolution results indicated that the microorganisms directly attacked the water-resistant coating layer and then penetrated into the cellulose to speedily metabolize, while accompanying with producing CO{sub 2}, H{sub 2}O, glucose cleaved from cellulose, and small molecules decomposed from the coatings.« less

  2. Oral delivery of Bacillus subtilis spores expressing cysteine protease of Clonorchis sinensis to grass carp (Ctenopharyngodon idellus): Induces immune responses and has no damage on liver and intestine function.

    PubMed

    Tang, Zeli; Sun, Hengchang; Chen, TingJin; Lin, Zhipeng; Jiang, Hongye; Zhou, Xinyi; Shi, Cunbin; Pan, Houjun; Chang, Ouqin; Ren, Pengli; Yu, Jinyun; Li, Xuerong; Xu, Jin; Huang, Yan; Yu, Xinbing

    2017-05-01

    Clonorchis sinensis (C. sinensis) is a fish-borne trematode. Human can be infected by ingestion of C. sinensis metacercariae parasitized in grass carp (Ctenopharyngodon idella). For induction of effective oral immune responses, spores of Bacillus subtilis (B. subtilis) WB600 were utilized as vehicle to delivery CsCP (cysteine protease of C. sinensis) cooperated with CotC (B.s-CotC-CP), one of coat proteins, to the gastrointestinal tract. After routine culture of 8-12 h in LB medium, B. subtilis containing CotC-CsCP was transferred into the sporulation culture medium. SDS-PAGE, western blotting and the growth curve indicated that the best sporulation time of recombinant WB600 was 24-30 h at 37 °C with continuous shaking (250 rpm). Grass carp were fed with three levels of B.s-CotC-CP (1 × 10 6 , 1 × 10 7 , and 1 × 10 8  CFU g -1 ) incorporated in the basal pellets diet. The commercial pellets or supplemented with spores just expressing CotC (1 × 10 7  CFU g -1 ) were served as control diet. Our results showed that grass carp orally immunized with the feed-based B.s-CotC-CP developed a strong specific immune response with significantly (P < 0.05) higher levels of IgM in samples of serum, bile, mucus of surface and intestinal compared to the control groups. Abundant colonization spores expressing CsCP were found in hindgut that is conducive to absorption and presentation of antigen. Moreover, B. subtilis spores appeared to show no sign of toxicity or damage in grass carp. Our cercariae challenge experiments suggested that oral administration of spores expressing CsCP could develop an effective protection against C. sinensis in fish body. Therefore, this study demonstrated that the feed-based recombinant spores could trigger high levels of mucosal and humoral immunity, and would be a promising candidate vaccine against C. sinensis metacercariae formation in freshwater fish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Hybrid particle traps and conditioning procedure for gas insulated transmission lines

    DOEpatents

    Dale, Steinar J.; Cookson, Alan H.

    1982-01-01

    A gas insulated transmission line includes an outer sheath, an inner condor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping ring is disposed within the outer sheath, and the trapping ring has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the trapping ring along an arc. A support sheet having an adhesive coating thereon is secured to the trapping ring and disposed on the outer sheath within the low field region formed between the trapping ring and the outer sheath. A conditioning method used to condition the transmission line prior to activation in service comprises applying an AC voltage to the inner conductor in a plurality of voltage-time steps, with the voltage-time steps increasing in voltage magnitude while decreasing in time duration.

  4. Manufacturing and coating of optical components for the EnMAP hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Schürmann, M.; Gäbler, D.; Schlegel, R.; Schwinde, S.; Peschel, T.; Damm, C.; Jende, R.; Kinast, J.; Müller, S.; Beier, M.; Risse, S.; Sang, B.; Glier, M.; Bittner, H.; Erhard, M.

    2016-07-01

    The optical system of the hyperspectral imager of the Environmental Mapping and Analysis Program (EnMAP) consists of a three-mirror anastigmat (TMA) and two independent spectrometers working in the VNIR and SWIR spectral range, respectively. The VNIR spectrometer includes a spherical NiP coated Al6061 mirror that has been ultra-precisely diamond turned and finally coated with protected silver as well as four curved fused silica (FS) and flint glass (SF6) prisms, respectively, each with broadband antireflection (AR) coating, while the backs of the two outer prisms are coated with a high-reflective coating. For AR coating, plasma ion assisted deposition (PIAD) has been used; the high-reflective enhanced Ag-coating on the backside has been deposited by magnetron sputtering. The SWIR spectrometer contains four plane and spherical gold-coated mirrors, respectively, and two curved FS prisms with a broadband antireflection coating. Details about the ultra-precise manufacturing of metal mirrors and prisms as well as their coating are presented in this work.

  5. Evaluating Composite Sampling Methods of Bacillus spores at Low Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.

    Restoring facility operations after the 2001 Amerithrax attacks took over three months to complete, highlighting the need to reduce remediation time. The most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite: a single cellulose sponge samples multiple coupons; 2) single medium multi-pass composite: a single cellulose sponge is used to sample multiple coupons; and 3) multi-medium post-samplemore » composite: a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155CFU/cm2, respectively). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p-value < 0.0001) and coupon material (p-value = 0.0008). Recovery efficiency (RE) was higher overall using the post-sample composite (PSC) method compared to single medium composite from both clean and grime coated materials. RE with the PSC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, painted wall board, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but significantly lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.« less

  6. Enteric-coated sustained-release nanoparticles by coaxial electrospray: preparation, characterization, and in vitro evaluation

    NASA Astrophysics Data System (ADS)

    Hao, Shilei; Wang, Bochu; Wang, Yazhou; Xu, Yingqian

    2014-02-01

    Enteric-coated formulations can delay the release of drugs until they have passed through the stomach. However, high concentration of drugs caused by rapidly released in the small intestine leads to the intestinal damage, and frequent administration would increase the probability of missing medication and reduce the patient compliance. To solve the above-mentioned problems, aspirin-loaded enteric-coated sustained-release nanoparticles with core-shell structure were prepared via one-step method using coaxial electrospray in this study. Eudragit L100-55 as pH-sensitive polymer and Eudragit RS as sustained-release polymer were used for the outer coating and inner core of the nanoparticles, respectively. The maximum loading capacity of nanoparticles was 23.66 % by changing the flow rate ratio of outer/inner solutions, and the entrapment efficiency was nearly 100 %. Nanoparticles with core-shell structure were observed via fluorescence microscope and transmission electron microscope. And pH-sensitive and sustained drug release profiles were observed in the media with different pH values (1.2 and 6.8). In addition, mild cytotoxicity in vitro was detected, and the nanoparticles could be taken up by Caco-2 cells within 1.0 h in cellular uptake study. These results indicate that prepared enteric-coated sustained-release nanoparticles would be a more safety and effective carrier for oral drug delivery.

  7. Assessing the anti-fungal efficiency of filters coated with zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Decelis, Stephen; Sardella, Davide; Triganza, Thomas; Brincat, Jean-Pierre; Gatt, Ruben; Valdramidis, Vasilis P.

    2017-05-01

    Air filters support fungal growth, leading to generation of conidia and volatile organic compounds, causing allergies, infections and food spoilage. Filters that inhibit fungi are therefore necessary. Zinc oxide (ZnO) nanoparticles have anti-fungal properties and therefore are good candidates for inhibiting growth. Two concentrations (0.012 M and 0.12 M) were used to coat two types of filters (melt-blown and needle-punched) for three different periods (0.5, 5 and 50 min). Rhizopus stolonifer and Penicillium expansum isolated from spoiled pears were used as test organisms. Conidial suspensions of 105 to 103 spores ml-1 were prepared in Sabouraud dextrose agar at 50°C, and a modified slide-culture technique was used to test the anti-fungal properties of the filters. Penicillium expansum was the more sensitive organism, with inhibition at 0.012 M at only 0.5 min coating time on the needle-punched filter. The longer the coating time, the more effective inhibition was for both organisms. Furthermore, it was also determined that the coating process had only a slight effect on the Young's Moduli of the needle-punched filters, while the Young's Moduli of the melt-blown filters is more susceptible to the coating method. This work contributes to the assessment of the efficacy of filter coating with ZnO nanopaticles aimed at inhibiting fungal growth.

  8. Characteristics of coated copper wire specimens using high frequency ultrasonic complex vibration welding equipments.

    PubMed

    Tsujino, J; Ihara, S; Harada, Y; Kasahara, K; Sakamaki, N

    2004-04-01

    Welding characteristic of thin coated copper wires were studied using 40, 60, 100 kHz ultrasonic complex vibration welding equipments with elliptical to circular vibration locus. The complex vibration systems consisted of a longitudinal-torsional vibration converter and a driving longitudinal vibration system. Polyurethane coated copper wires of 0.036 mm outer diameter and copper plates of 0.3 mm thickness and the other dimension wires were used as welding specimens. The copper wire part is completely welded on the copper substrate and the insulated coating material is driven from welded area to outsides of the wire specimens by high frequency complex vibration.

  9. Thermal insulated glazing unit

    DOEpatents

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  10. Transient desorption of water vapor - A potential source of error in upper atmosphere rocket experiments

    NASA Technical Reports Server (NTRS)

    Kendall, B. R. F.; Weeks, J. O.

    1974-01-01

    Results of measurements of the outgassing rates of samples of materials and surface finishes used on the outer skins of rocket-borne experiment packages in simulated rocket ascents. The results showed outgassing rates for anodized aluminum in the second minute of flight which are two to three orders of magnitude higher than those given in typical tables of outgassing rates. The measured rates for aluminum with chromate conversion surface coatings were also abnormally high. These abnormally high initial rates fell quickly after about five to ten minutes to values comparable with those in the published literature. It is concluded that anodized and chromate conversion coatings on the aluminum outer surfaces of a sounding rocket experiment package will cause gross distortion of the true water vapor environment.

  11. Method for sputtering with low frequency alternating current

    DOEpatents

    Timberlake, John R.

    1996-01-01

    Low frequency alternating current sputtering is provided by connecting a low frequency alternating current source to a high voltage transformer having outer taps and a center tap for stepping up the voltage of the alternating current. The center tap of the transformer is connected to a vacuum vessel containing argon or helium gas. Target electrodes, in close proximity to each other, and containing material with which the substrates will be coated, are connected to the outer taps of the transformer. With an applied potential, the gas will ionize and sputtering from the target electrodes onto the substrate will then result. The target electrodes can be copper or boron, and the substrate can be stainless steel, aluminum, or titanium. Copper coatings produced are used in place of nickel and/or copper striking.

  12. Method for sputtering with low frequency alternating current

    DOEpatents

    Timberlake, J.R.

    1996-04-30

    Low frequency alternating current sputtering is provided by connecting a low frequency alternating current source to a high voltage transformer having outer taps and a center tap for stepping up the voltage of the alternating current. The center tap of the transformer is connected to a vacuum vessel containing argon or helium gas. Target electrodes, in close proximity to each other, and containing material with which the substrates will be coated, are connected to the outer taps of the transformer. With an applied potential, the gas will ionize and sputtering from the target electrodes onto the substrate will then result. The target electrodes can be copper or boron, and the substrate can be stainless steel, aluminum, or titanium. Copper coatings produced are used in place of nickel and/or copper striking. 6 figs.

  13. Manufacturing Precise, Lightweight Paraboloidal Mirrors

    NASA Technical Reports Server (NTRS)

    Hermann, Frederick Thomas

    2006-01-01

    A process for fabricating a precise, diffraction- limited, ultra-lightweight, composite- material (matrix/fiber) paraboloidal telescope mirror has been devised. Unlike the traditional process of fabrication of heavier glass-based mirrors, this process involves a minimum of manual steps and subjective judgment. Instead, this process involves objectively controllable, repeatable steps; hence, this process is better suited for mass production. Other processes that have been investigated for fabrication of precise composite-material lightweight mirrors have resulted in print-through of fiber patterns onto reflecting surfaces, and have not provided adequate structural support for maintenance of stable, diffraction-limited surface figures. In contrast, this process does not result in print-through of the fiber pattern onto the reflecting surface and does provide a lightweight, rigid structure capable of maintaining a diffraction-limited surface figure in the face of changing temperature, humidity, and air pressure. The process consists mainly of the following steps: 1. A precise glass mandrel is fabricated by conventional optical grinding and polishing. 2. The mandrel is coated with a release agent and covered with layers of a carbon- fiber composite material. 3. The outer surface of the outer layer of the carbon-fiber composite material is coated with a surfactant chosen to provide for the proper flow of an epoxy resin to be applied subsequently. 4. The mandrel as thus covered is mounted on a temperature-controlled spin table. 5. The table is heated to a suitable temperature and spun at a suitable speed as the epoxy resin is poured onto the coated carbon-fiber composite material. 6. The surface figure of the optic is monitored and adjusted by use of traditional Ronchi, Focault, and interferometric optical measurement techniques while the speed of rotation and the temperature are adjusted to obtain the desired figure. The proper selection of surfactant, speed or rotation, viscosity of the epoxy, and temperature make it possible to obtain the desired diffraction-limited, smooth (1/50th wave) parabolic outer surface, suitable for reflective coating. 7. A reflective coat is applied by use of conventional coating techniques. 8. Once the final figure is set, a lightweight structural foam is applied to the rear of the optic to ensure stability of the figure.

  14. Effects of copper-plasma deposition on weathering properties of wood surfaces

    NASA Astrophysics Data System (ADS)

    Gascón-Garrido, P.; Mainusch, N.; Militz, H.; Viöl, W.; Mai, C.

    2016-03-01

    Thin layers of copper micro-particles were deposited on the surfaces of Scots pine (Pinus sylvestris L.) micro-veneers using atmospheric pressure plasma to improve the resistance of the surfaces to weathering. Three different loadings of copper were established. Micro-veneers were exposed to artificial weathering in a QUV weathering tester for 0, 24, 48, 96 and 144 h following the standard EN 927-6 [1]. Mass losses after each exposure showed significant differences between copper coated and untreated micro-veneers. Tensile strength was assessed at zero span (z-strength) and finite span (f-strength) under dry conditions (20 °C, 65% RH). During 48 h, micro-veneers lost their z-strength progressively. In contrast, copper coating at highest loading imparts a photo-protective effect to wood micro-veneers during 144 h exhibiting z-strength retention of 95%. F-strength losses were similar in all copper treated and untreated micro-veneers up to 96 h. However, after 144 h, copper coated micro-veneers at highest loading showed significantly greater strength retention of 56%, while untreated micro-veneers exhibited only 38%. Infrared spectroscopy suggested that copper coating does not stabilize lignin. Inductively Coupled Plasma revealed that micro-veneers coated with the highest loading exhibited the lowest percentage of copper loss. Blue stain resistance of copper coated Scots pine following the guidelines of EN 152 [2] was performed. Additional test with different position of the coated surface was also assessed. Copper coating reduced fungal growth when coated surface is exposed in contact with vermiculite. Spores of Aureobasidium pullulans were not able to germinate on the copper coated surface positioned uppermost.

  15. Thermal insulating conformal blanket

    NASA Technical Reports Server (NTRS)

    Barney, Andrea (Inventor); Whittington, Charles A (Inventor); Eilertson, Bryan (Inventor); Siminski, Zenon (Inventor)

    2003-01-01

    The conformal thermal insulating blanket may have generally rigid batting material covered by an outer insulating layer formed of a high temperature resistant woven ceramic material and an inner insulating layer formed of a woven ceramic fiber material. The batting and insulating layers may be fastened together by sewing or stitching using an outer mold layer thread fabricated of a high temperature resistant material and an inner mold layer thread of a ceramic fiber material. The batting may be formed to a composite structure that may have a firmness factor sufficient to inhibit a pillowing effect after the stitching to not more than 0.03 inch. The outer insulating layer and an upper portion of the batting adjacent the outer insulating layer may be impregnated with a ceramic coating material.

  16. Preparation of enteric coated timed-release press-coated tablets and evaluation of their function by in vitro and in vivo tests for colon targeting.

    PubMed

    Fukui, E; Miyamura, N; Uemura, K; Kobayashi, M

    2000-08-25

    As a new oral drug delivery system for colon targeting, enteric coated timed-release press-coated tablets (ETP tablets) were developed by coating enteric polymer on timed-release press-coated tablets composed of an outer shell of hydroxypropylcellulose and core tablet containing diltiazem hydrochloride (DIL) as a model drug. The results of the in vitro dissolution tests in JP 1st fluid (pH 1.2) and JP 2nd fluid (pH 6.8) indicated that these tablets showed both acid resistance and timed-release. To clarify whether ETP tablets could have been of use in the gastrointestinal tract, ETP tablets with a layer of phenylpropanolamine hydrochloride (PPA) (a marker of gastric emptying) between the enteric coating layer and outer shell were prepared, and were administered to beagle dogs. The gastric emptying time and lag time after gastric emptying were evaluated by determining the times at which PPA and DIL first appeared in the plasma (TFA(PPA) and TFA(DIL), respectively). TFA(PPA) and TFA(DIL) were about 4 and 7 h, respectively. This value of TFA(PPA) indicated that ETP tablets displayed acid resistance in the stomach as well as in JP Ist fluid. Subtraction of TFA(PPA) from TFA(DIL) gave a value of about 3 h which agreed well with the lag time determined by in vitro dissolution test in JP 2nd fluid. Also, the results seemed to be in accordance with the time at which the tablets reached the colon after gastric emptying. Therefore, ETP tablets seemed to be an effective tool for oral site-specific delivery including targeting of the colon.

  17. Effect of thickness of insulation coating on temperature of electrically exploded tungsten wires in vacuum

    NASA Astrophysics Data System (ADS)

    Shi, Huantong; Zou, Xiaobing; Wang, Xinxin

    2017-07-01

    This paper reports an interesting observation of great differences in the temperature of exploded wires with insulation coating of different thicknesses. Two kinds of polyimide-coated tungsten wires were used with the same conductive diameter 12.5 μm but a different thickness of coating, 0.75-2.25 μm and 2.25-4.25 μm, respectively. The specific energy reconstructed from the current and voltage signals was quite close for the tested wires. However, the exploding scenario, obtained from Mach-Zehnder interferograms, showed great differences: a neutral outer-layer was observed around the thick-coated wire, which was absent for the thin-coated wire; and the calculated electron density and local thermal equilibrium temperature were much higher for thick-coated wires. The heat-preserving neutral layer formed by the decomposition of the insulation was supposed to be the cause of this phenomenon.

  18. Multi-coated spheres: recommended electrorheological particles

    NASA Astrophysics Data System (ADS)

    Wu, C. W.; Conrad, H.

    1998-11-01

    This paper considers the design of electrorheological (ER) particles. Multi-coated particles suspended in insulating (very weakly conducting) oil are recommended for obtaining high-performance ER suspensions. Only the outer two coatings determine the ER strength. The outermost coating should be a material with high dielectric constant, high electrical breakdown strength and a reasonable level of conductivity. The coating immediately below should be a highly conducting material. The inner coatings, including the core (which can be void), can be of any material having such a density that the composite particle has substantially the same density as the host liquid. Our analysis gives that multi-coated particles can have an ER shear strength as high as 29 kPa when the volume fraction of particles is 0.4 and the applied field is 5 kV 0022-3727/31/22/021/img5. Results in the literature provide support for the concept and analysis.

  19. Beam Technologies for Integrated Processing

    DTIC Science & Technology

    1992-03-01

    Ohki et al., 1988). Initially, they were used in ion Table 3-3 Ceramic Materials Produced by CVD Coating Chemical Mixture Deposition Temp. (* C ) Method...inner coating , deposited from tungsten hexafluoride, providing strength and creep resistance , and the outer layer, deposited from the chloride, has a (110...1971. Structure and Mechanical Properties of Co - deposited Pyrolytic C -SiC Alloys. Journal of the American Ceramic Society 54:605. Kashu, S., M. Nagase

  20. Hazards protection for space suits and spacecraft

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J. (Inventor); Dawn, Frederic S. (Inventor)

    1990-01-01

    A flexible multi-layered covering article for protection against the hazards of exposure to the environment of outer space is disclosed. The covering includes an outer layer section comprising an outermost lamina of woven expanded tetrafluoroethylene yarns (Gore Tex) for protecting against abrasion and tearing, an underlying weave of meta-aramid yarns (Nomex) and para-aramid yarns (Kevlar) for particle impart protection, and electrostatic charge dissipation and control system incorporated therein, and a chemical contaminants control barrier applied as a coating. A middle section includes a succession of thermal insulating layers of polymeric thermoplastic or thermoforming material, each of which is coated with a metal deposit of high infra-red emissivity and low solar radiation absorption characteristics and separated from adjacent insulating layers by a low thermal conductance material. The covering further includes a radiation attenuating layer of a tungsten-loaded polymeric elastomer binder for protecting against bremsstrahlung radiation and an inner layer of rip-stop polyester material for abrasion protection. A chloroprene coating may be supplied the polyester-material for added micrometeroid protection. Securing means of low heat conductance material secures the multi-layers together as a laminar composite.

  1. Loss of surface coat by Strongyloides ratti infective larvae during skin penetration: evidence using larvae radiolabelled with /sup 67/gallium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grove, D.I.; Northern, C.; Warwick, A.

    1984-10-01

    The optimal conditions for labelling infective larvae of Strongyloides ratti with /sup 67/Ga citrate were determined. Radiolabelled larvae were injected s.c. into normal and previously infected rats. The distribution of radioactivity in these animals was compared with that in rats infected subcutaneously with a similar dose of free /sup 67/Ga by using a gamma camera linked to a computer system. Whereas free /sup 67/Ga was distributed throughout the body and excreted via the hepatobiliary system, the bulk of radioactivity in rats injected with radiolabelled larvae remained at the injection sites. Direct microscopical examination of these sites, however, revealed only minimalmore » numbers of worms. When rats were infected percutaneously with radiolabelled larvae, it was found that most radioactivity remained at the surface, despite penetration of worms. When infective larvae were exposed to CO/sub 2/ in vitro and examined carefully by light microscopy, loss of an outer coat was observed. It was concluded that infective larvae lose an outer coat on skin penetration.« less

  2. Inner- and outer-wall sorting of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  3. Inner- and outer-wall sorting of double-walled carbon nanotubes.

    PubMed

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  4. Autofluorescence from the outer retina and subretinal space: hypothesis and review.

    PubMed

    Spaide, Richard

    2008-01-01

    To review the pathophysiologic principles underlying increased autofluorescence from the outer retina and subretinal space using selected diseases as examples. The ocular imaging information and histopathologic features, when known, were integrated for diseases causing increased autofluorescence from the outer retina and subretinal space. Inferences were taken from this information and used to create a classification scheme. These diseases are principally those that cause separation of the outer retina from the retinal pigment epithelium, thereby preventing proper phagocytosis of photoreceptor outer segments. The separation can arise from increased exudation into the subretinal space or inadequate removal of fluid from the subretinal space. Lack of normal outer segment processing initially leads to increased accumulation of outer segments on the outer retina and subretinal space. Over time, this material is visible as an increasingly thick coating on the outer retina, is yellow, and is autofluorescent. Over time, atrophy develops with thinning of the deposited material and decreasing autofluorescence. The accumulated material is ultimately capable of inducing damage to the retinal pigment epithelium. Diseases causing accumulation of the material include central serous chorioretinopathy, vitelliform macular dystrophy, acute exudative polymorphous vitelliform maculopathy, choroidal tumors, and vitreomacular traction syndrome. The physical separation of the retinal outer segments from the retinal pigment epithelium hinders proper phagocytosis of the outer segments. Accumulation of the shed but not phagocytized outer segments plays a role in disease manifestations for a number of macular diseases.

  5. Space Technology to Device That Destroys Pathogens Such as Anthrax

    NASA Technical Reports Server (NTRS)

    2002-01-01

    AiroCide Ti02, an anthrax-killing air scrubber manufactured by KES Science and Technology Inc., in Kernesaw, Georgia, looks like a square metal box when it is installed on an office wall. Its fans draw in airborne spores and airflow forces them through a maze of tubes. Inside, hydroxyl radicals (OH-) attack and kill pathogens. Most remaining spores are destroyed by high-energy ultraviolet photons. Building miniature greenhouses for experiments on the International Space Station (ISS) has led to the invention of this device that annihilates anthrax-a bacteria that can be deadly when inhaled. The research enabling the invention started at the University of Wisconsin (Madison) Center for Space Automation and Robotics (WCSAR), one of 17 NASA Commercial Space Centers. A special coating technology used in the anthrax-killing invention is also being used inside WCSAR-built plant growth units on the ISS. This commercial research is managed by the Space Product Development Program at the Marshall Space Flight Center.

  6. Bacterial parasite of a plant nematode: morphology and ultrastructure.

    PubMed Central

    Sayre, R M; Wergin, W P

    1977-01-01

    The life cycle of a bacterial endoparasite of the plant-parasitic nematode Meloidogyne incognita was examined by scanning and transmission electron microscopy. The infective stage begins with the attachment of an endospore to the surface of the nematode. A germ tube then penetrates the cuticle, and mycelil colonies form in the pseudocoelom. Sporulation is initiated when terminal cells of the mycelium enlarge to form sporangia. A septum within each sporangium divides the forespore from the basal or parasporal portion of the cell. The forespore becomes enclosed by several laminar coats. The parasporal cell remains attached to the forespore and forms the parasporal microfibers. After the newly formed spores are released into the soil, these microfibers apparently enable a mature spore to attach to the nematode. These results indicate that the endoparasite is a procaryotic organism having structural features that are more common to members of Actinomycetales and to the bacterium Pasteuria ramosa than to the sporozoans or to the family Bacillaceae, as previous investigatios have concluded. Images PMID:838678

  7. High Pressure Water Stripping Using Multi-Orifice Nozzles

    NASA Technical Reports Server (NTRS)

    Hoppe, David T.

    1998-01-01

    The use of multi-orifice rotary nozzles not only increases the speed and stripping effectiveness of high pressure water blasting systems, but also greatly increases the complexity of selecting and optimizing the operating parameters. The rotational speed of the nozzle must be coupled with the transverse velocity of the nozzle as it passes across the surface of the substrate being stripped. The radial and angular positions of each orifice must be included in the analysis of the nozzle configuration. Since orifices at the outer edge of the nozzle head move at a faster rate than the orifice located near the center, the energy impact force of the water stream from the outer orifice is spread over a larger area than the water streams from the inner orifice. Utilizing a larger diameter orifice in the outer radial positions increases the energy impact to compensate for its wider force distribution. The total flow rate from the combination of orifices must be monitored and kept below the pump capacity while choosing an orifice to insert in each position. The energy distribution from the orifice pattern is further complicated since the rotary path of all orifices in the nozzle head pass through the center section, contributing to the stripping in this area while only the outer most orifice contributes to the stripping in the shell area at the extreme outside edge of the nozzle. From t he outer most shell to the center section, more orifices contribute to the stripping in each progressively reduced diameter shell. With all these parameters to configure and each parameter change affecting the others, a computer model was developed to track and coordinate these parameters. The computer simulation responds by graphically indicating the cumulative affect from each parameter selected. The results from the proper choices in parameters is a well designed, highly efficient stripping system. A poorly chosen set of parameters will cause the nozzle to strip aggressively in some areas while leaving the coating untouched in adjacent sections. The high pressure water stripping system can be set to extremely aggressive conditions allowing stripping of hard to remove adhesives, paint systems, cladding and chromate conversion coatings. The energy force can be reduced to strip coatings from thin aluminum substrates without causing damage or deterioration to the substrate's surface. High pressure water stripping of aerospace components have thus proven to be an efficient and cost effective method for cleaning and removing coatings.

  8. Pressure Vessel with Impact and Fire Resistant Coating and Method of Making Same

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2005-01-01

    An impact and fire resistant coating laminate is provided which serves as an outer protective coating for a pressure vessel such as a composite overwrapped vessel with a metal lining. The laminate comprises a plurality of fibers (e.g., jute twine or other, stronger fibers) which are wound around the pressure vessel and an epoxy matrix resin for the fibers. The epoxy matrix resin including a plurality of microspheres containing a temperature responsive phase change material which changes phase in response to exposure thereof to a predetermined temperature increase so as to afford increased insulation and hear absorption.

  9. Pressure vessel with impact and fire resistant coating and method of making same

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2005-01-01

    An impact and fire resistant coating laminate is provided which serves as an outer protective coating for a pressure vessel such as a composite overwrapped vessel with a metal lining. The laminate comprises a plurality of fibers (e.g., jute twine or other, stronger fibers) which are wound around the pressure vessel and an epoxy matrix resin for the fibers. The epoxy matrix resin including a plurality of microspheres containing a temperature responsive phase change material which changes phase in response to exposure thereof to a predetermined temperature increase so as to afford increased insulation and heat absorption.

  10. Preservation Mechanism of Chitosan-Based Coating with Cinnamon Oil for Fruits Storage Based on Sensor Data

    PubMed Central

    Xing, Yage; Xu, Qinglian; Yang, Simon X.; Chen, Cunkun; Tang, Yong; Sun, Shumin; Zhang, Liang; Che, Zhenming; Li, Xihong

    2016-01-01

    The chitosan-based coating with antimicrobial agent has been developed recently to control the decay of fruits. However, its fresh keeping and antimicrobial mechanism is still not very clear. The preservation mechanism of chitosan coating with cinnamon oil for fruits storage is investigated in this paper. Results in the atomic force microscopy sensor images show that many micropores exist in the chitosan coating film. The roughness of coating film is affected by the concentration of chitosan. The antifungal activity of cinnamon oil should be mainly due to its main consistent trans-cinnamaldehyde, which is proportional to the trans-cinnamaldehyde concentration and improves with increasing the attachment time of oil. The exosmosis ratios of Penicillium citrinum and Aspergillus flavus could be enhanced by increasing the concentration of cinnamon oil. Morphological observation indicates that, compared to the normal cell, the wizened mycelium of A. flavus is observed around the inhibition zone, and the growth of spores is also inhibited. Moreover, the analysis of gas sensors indicate that the chitosan-oil coating could decrease the level of O2 and increase the level of CO2 in the package of cherry fruits, which also control the fruit decay. These results indicate that its preservation mechanism might be partly due to the micropores structure of coating film as a barrier for gas and a carrier for oil, and partly due to the activity of cinnamon oil on the cell disruption. PMID:27438841

  11. Preservation Mechanism of Chitosan-Based Coating with Cinnamon Oil for Fruits Storage Based on Sensor Data.

    PubMed

    Xing, Yage; Xu, Qinglian; Yang, Simon X; Chen, Cunkun; Tang, Yong; Sun, Shumin; Zhang, Liang; Che, Zhenming; Li, Xihong

    2016-07-18

    The chitosan-based coating with antimicrobial agent has been developed recently to control the decay of fruits. However, its fresh keeping and antimicrobial mechanism is still not very clear. The preservation mechanism of chitosan coating with cinnamon oil for fruits storage is investigated in this paper. Results in the atomic force microscopy sensor images show that many micropores exist in the chitosan coating film. The roughness of coating film is affected by the concentration of chitosan. The antifungal activity of cinnamon oil should be mainly due to its main consistent trans-cinnamaldehyde, which is proportional to the trans-cinnamaldehyde concentration and improves with increasing the attachment time of oil. The exosmosis ratios of Penicillium citrinum and Aspergillus flavus could be enhanced by increasing the concentration of cinnamon oil. Morphological observation indicates that, compared to the normal cell, the wizened mycelium of A. flavus is observed around the inhibition zone, and the growth of spores is also inhibited. Moreover, the analysis of gas sensors indicate that the chitosan-oil coating could decrease the level of O₂ and increase the level of CO₂ in the package of cherry fruits, which also control the fruit decay. These results indicate that its preservation mechanism might be partly due to the micropores structure of coating film as a barrier for gas and a carrier for oil, and partly due to the activity of cinnamon oil on the cell disruption.

  12. Fatty Acid Oxidation Is Required for Myxococcus xanthus Development.

    PubMed

    Bullock, Hannah A; Shen, Huifeng; Boynton, Tye O; Shimkets, Lawrence J

    2018-05-15

    Myxococcus xanthus cells produce lipid bodies containing triacylglycerides during fruiting body development. Fatty acid β-oxidation is the most energy-efficient pathway for lipid body catabolism. In this study, we used mutants in fadJ (MXAN_5371 and MXAN_6987) and fadI (MXAN_5372) homologs to examine whether β-oxidation serves an essential developmental function. These mutants contained more lipid bodies than the wild-type strain DK1622 and 2-fold more flavin adenine dinucleotide (FAD), consistent with the reduced consumption of fatty acids by β-oxidation. The β-oxidation pathway mutants exhibited differences in fruiting body morphogenesis and produced spores with thinner coats and a greater susceptibility to thermal stress and UV radiation. The MXAN_5372/5371 operon is upregulated in sporulating cells, and its expression could not be detected in csgA , fruA , or mrpC mutants. Lipid bodies were found to persist in mature spores of DK1622 and wild strain DK851, suggesting that the roles of lipid bodies and β-oxidation may extend to spore germination. IMPORTANCE Lipid bodies act as a reserve of triacylglycerides for use when other sources of carbon and energy become scarce. β-Oxidation is essential for the efficient metabolism of fatty acids associated with triacylglycerides. Indeed, the disruption of genes in this pathway has been associated with severe disorders in animals and plants. Myxococcus xanthus , a model organism for the study of development, is ideal for investigating the complex effects of altered lipid metabolism on cell physiology. Here, we show that β-oxidation is used to consume fatty acids associated with lipid bodies and that the disruption of the β-oxidation pathway is detrimental to multicellular morphogenesis and spore formation. Copyright © 2018 American Society for Microbiology.

  13. Degradation of a two-layer thermal barrier coating under thermal cycling. [for superalloys of aircraft turbine engine blades

    NASA Technical Reports Server (NTRS)

    Maier, R. D.; Scheuermann, C. M.; Andrews, C. W.

    1981-01-01

    A two-layer plasma-sprayed thermal barrier coating on a directionally solidified nickel-base eutectic alloy substrate was characterized prior to and after thermal cycling to 1095 C in an accelerated furnace test. The coating was comprised of an inner layer of Ni-16.4Cr-5.1Al-0.15Y (wt%) bond coat and an outer layer of ZrO2-7.9Y2O3 (wt%) thermal barrier. Characterization of the bond coat revealed that substantial amounts of yttrium and aluminum were oxidized during plasma-spraying in air. The oxidation of these elements reduced the protective capacity of the bond coat so that, on thermal exposure, severe degradation of the bond coat resulted and large amounts of nickel oxide formed. This nickel oxide was demonstrated to grow outward into the thermal barrier, which appears to have increased the stresses in the thermal barrier and contributed to its failure near the thermal barrier-bond coat interface.

  14. Method of forming a continuous polymeric skin on a cellular foam material

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1985-01-01

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the outer surface of the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tensin of the polymer solution used to coat are all very important to the coating.

  15. Development of test models to quantify encapsulated bioburden in spacecraft polymer materials by cultivation-dependent and molecular methods

    NASA Astrophysics Data System (ADS)

    Bauermeister, Anja; Moissl-Eichinger, Christine; Mahnert, Alexander; Probst, Alexander; Flier, Niwin; Auerbach, Anna; Weber, Christina; Haberer, Klaus; Boeker, Alexander

    Bioburden encapsulated in spacecraft polymers (such as adhesives and coatings) poses a potential risk to scientific exploration of other celestial bodies, but it is not easily detectable. In this study, we developed novel testing strategies to estimate the quantity of intrinsic encapsulated bioburden in polymers used frequently on spaceflight hardware. In particular Scotch-Weld (TM) 2216 B/A (Epoxy adhesive); MAP SG121FD (Silicone coating), Solithane (®) 113 (Urethane resin); ESP 495 (Silicone adhesive); and Dow Corning (®) 93-500 (Silicone encapsulant) were investigated. As extraction of bioburden from polymerized (solid) materials did not prove feasible, a method was devised to extract contaminants from uncured polymer precursors by dilution in organic solvents. Cultivation-dependent analyses showed less than 0.1-2.5 colony forming units (cfu) per cm³ polymer, whereas quantitative PCR with extracted DNA indicated considerably higher values, despite low DNA extraction efficiency. Results obtained by this method reflected the most conservative proxy for encapsulated bioburden. To observe the effect of physical and chemical stress occurring during polymerization on the viability of encapsulated contaminants, Bacillus safensis spores were embedded close to the surface in cured polymer, which facilitated access for different analytical techniques. Staining by AlexaFluor succinimidyl ester 488 (AF488), propidium monoazide (PMA), CTC (5-cyano-2,3-diotolyl tetrazolium chloride) and subsequent confocal laser scanning microscopy (CLSM) demonstrated that embedded spores retained integrity, germination and cultivation ability even after polymerization of the adhesive Scotch-Weld™ 2216 B/A.

  16. Processing of the mother-cell sigma factor, sigma K, may depend on events occurring in the forespore during Bacillus subtilis development.

    PubMed Central

    Lu, S; Halberg, R; Kroos, L

    1990-01-01

    During sporulation of the Gram-positive bacterium Bacillus subtilis, transcription of genes encoding spore coat proteins in the mother-cell compartment of the sporangium is controlled by RNA polymerase containing the sigma subunit called sigma K. Based on comparison of the N-terminal amino acid sequence of sigma K with the nucleotide sequence of the gene encoding sigma K (sigK), the primary product of sigK was inferred to be a pro-protein (pro-sigma K) with 20 extra amino acids at the N terminus. Using antibodies generated against pro-sigma K, we have detected pro-sigma K beginning at the third hour of sporulation and sigma K beginning about 1 hr later. Even when pro-sigma K is expressed artificially during growth and throughout sporulation, sigma K appears at the normal time and expression of a sigma K-controlled gene occurs normally. These results suggest that pro-sigma K is an inactive precursor that is proteolytically processed to active sigma K in a developmentally regulated fashion. Mutations that block forespore gene expression block accumulation of sigma K but not accumulation of pro-sigma K, suggesting that pro-sigma K processing is a regulatory device that couples the programs of gene expression in the two compartments of the sporangium. We propose that this regulatory device ensures completion of forespore morphogenesis prior to the synthesis in the mother-cell of spore coat proteins that will encase the forespore. Images PMID:2124700

  17. A Proposal for the Establishment of a Center for Advanced Composite Materials Research

    DTIC Science & Technology

    1992-03-01

    materials. We were able to synthesize comb-shaped self-ordering polymers in which molecular teeth were functionalized at their termini. These chemical...layers were most likely transferred with phenolic functional groups exposed on the outer surface. For the fibers coated with polymer, contact angle...cured epoxy matrix. A striking result was observed, namely, the permanent birefringence obtained with coated fibers is 1.8 times greater than the one

  18. Aerocoat 7 Replacement Coatings

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Kennedy Space Center has used Aerocoat 7 (AR-7) to protect stainless-steel flex hoses at Launch Complex (LC-39) and hydraulic lines of the Mobile Launcher Platform (MLP) because it provides excellent corrosion protection in low-temperature applications. The Sovereign Company produced AR-7 exclusively for NASA but discontinued production because the coating released high levels of volatile organic compounds (VOCs) and had a significant environmental impact. The purpose of this project was to select and evaluate potential replacement coatings for AR-7 that would be more environmentally sound. The physical and mechanical properties of commercially available coatings were investigated through the Internet. The ideal coating would be fluid enough to penetrate the outer mesh of a stainless-steel flex hose and coat the inner hose, and flexible enough to withstand the movement of the hose, as well as the expansion and contraction of its metal caused by changes in temperature.

  19. Photocathode device that replenishes photoemissive coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Nathan A.; Lizon, David C.

    2016-06-14

    A photocathode device may replenish its photoemissive coating to replace coating material that desorbs/evaporates during photoemission. A linear actuator system may regulate the release of a replenishment material vapor, such as an alkali metal, from a chamber inside the photocathode device to a porous cathode substrate. The replenishment material deposits on the inner surface of a porous membrane and effuses through the membrane to the outer surface, where it replenishes the photoemissive coating. The rate of replenishment of the photoemissive coating may be adjusted using the linear actuator system to regulate performance of the photocathode device during photoemission. Alternatively, themore » linear actuator system may adjust a plasma discharge gap between a cartridge containing replenishment material and a metal grid. A potential is applied between the cartridge and the grid, resulting in ejection of metal ions from the cartridge that similarly replenish the photoemissive coating.« less

  20. Role of Lipid Metabolism in Plant Pollen Exine Development.

    PubMed

    Zhang, Dabing; Shi, Jianxin; Yang, Xijia

    2016-01-01

    Pollen plays important roles in the life cycle of angiosperms plants. It acts as not only a biological protector of male sperms but also a communicator between the male and the female reproductive organs, facilitating pollination and fertilization. Pollen is produced within the anther, and covered by the specialized outer envelope, pollen wall. Although the morphology of pollen varies among different plant species, the pollen wall is mainly comprised of three layers: the pollen coat, the outer exine layer, and the inner intine layer. Except the intine layer, the other two layers are basically of lipidic nature. Particularly, the outer pollen wall layer, the exine, is a highly resistant biopolymer of phenylpropanoid and lipidic monomers covalently coupled by ether and ester linkages. The precise molecular mechanisms underlying pollen coat formation and exine patterning remain largely elusive. Herein, we summarize the current genetic, phenotypic and biochemical studies regarding to the pollen exine development and underlying molecular regulatory mechanisms mainly obtained from monocot rice (Oryza sativa) and dicot Arabidopsis thaliana, aiming to extend our understandings of plant male reproductive biology. Genes, enzymes/proteins and regulatory factors that appear to play conserved and diversified roles in lipid biosynthesis, transportation and modification during pollen exine formation, were highlighted.

  1. Method of controlling the side wall thickness of a turbine nozzle segment for improved cooling

    DOEpatents

    Burdgick, Steven Sebastian

    2002-01-01

    A gas turbine nozzle segment has outer and inner bands and a vane extending therebetween. Each band has a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band has an inturned flange defining with the nozzle wall an undercut region. The outer surface of the side wall is provided with a step prior to welding the cover to the side wall. A thermal barrier coating is applied in the step and, after the cover is welded to the side wall, the side wall is finally machined to a controlled thickness removing all, some or none of the coating.

  2. Star tracking reticles

    NASA Technical Reports Server (NTRS)

    Smith, W. O.; Toft, A. R. (Inventor)

    1973-01-01

    A method for the production of reticles, particularly those for use in outer space, where the product is a quartz base coated with highly adherent layers of chromium, chromium-silver, and silver vacuum deposited through a mask, and then coated with an electrodeposit of copper from a copper sulfate solution followed by an electrodeposit of black chromium is described. The masks are produced by coating a beryllium-copper alloy substrate with a positive working photoresist, developing the photoresist, according to a pattern to leave a positive mask, plating uncoated areas with gold, removing the photoresist, coating the substrate with a negative working photoresist, developing the negative working photoresist to expose the base metal of the pattern, and chemically etching the unplated side of the pattern to produce the mask.

  3. Magnetically actuated mechanical stimuli on Fe3O4/mineralized collagen coatings to enhance osteogenic differentiation of the MC3T3-E1 cells.

    PubMed

    Zhuang, Junjun; Lin, Suya; Dong, Lingqing; Cheng, Kui; Weng, Wenjian

    2018-04-15

    Mechanical stimuli at the bone-implant interface are considered to activate the mechanotransduction pathway of the cell to improve the initial osseointegration establishment and to guarantee clinical success of the implant. However, control of the mechanical stimuli at the bone-implant interface still remains a challenge. In this study, we have designed a strategy of a magnetically responsive coating on which the mechanical stimuli is controlled because of coating deformation under static magnetic field (SMF). The iron oxide nanoparticle/mineralized collagen (IOP-MC) coatings were electrochemically codeposited on titanium substrates in different quantities of IOPs and distributions; the resulting coatings were verified to possess swelling behavior with flexibility same as that of hydrogel. The relative quantity of IOP to collagen and the IOP distribution in the coatings were demonstrated to play a critical role in mediating cell behavior. The cells present on the outer layer of the distributed IOP-MC (O-IOP-MC) coating with a mass ratio of 0.67 revealed the most distinct osteogenic differentiation activity being promoted, which could be attributed to the maximized mechanical stimuli with exposure to SMF. Furthermore, the enhanced osteogenic differentiation of the stimulated MC3T3-E1 cells originated from magnetically actuated mechanotransduction signaling pathway, embodying the upregulated expression of osteogenic-related and mechanotransduction-related genes. This work therefore provides a promising strategy for implementing mechanical stimuli to activate mechanotransduction on the bone-implant interface and thus to promote osseointegration. The magnetically actuated coating is designed to produce mechanical stimuli to cells for promoting osteogenic differentiation based on the coating deformation. Iron oxide nanoparticles (IOPs) were incorporated into the mineralized collagen coatings (MC) forming the composite coatings (IOP-MC) with spatially distributed IOPs, and the IOP-MC coatings with outer distributed IOPs (O-IOPs-MC) shows the maximized mechanical stimuli to cells with enhanced osteogenic differentiation under static magnetic field. The upregulated expression of the associated genes reveals that the enabled mechanotransduction signaling pathway is responsible for the promoted cellular osteogenic differentiation. This work therefore provides a promising strategy for implementing mechanical stimuli to activate mechanotransduction on the bone-implant interface to promote osseointegration. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Performance of 40-millimeter-bore ball bearings with lead- and lead-alloy-plated retainers in liquid hydrogen at 1.2 million DN

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Wisander, D. W.; Scribbe, H. W.

    1972-01-01

    Forty-millimeter-bore ball bearings with lead- and lead-alloy-coated retainers were operated in liquid hydrogen at 30,000 rpm under a thrust load of 1780 N (400 lb.) Four different substrate materials were used for the retainer. Longer bearing run times were achieved with a lead-tin-copper alloy coating plated onto a leaded-bronze material (22.5 hr) and an aluminum-bronze alloy (19.3 hr). One bearing with a pure lead coating achieved the desired objective of 10 hr. This bearing had an aluminum - bronze substrate retainer and ran successfully for 12.4 hr. Additions of antimony to the lead provided an alloy coating with better wear resistance than pure lead; however, this coating was abrasive to the outer-race lands.

  5. Safety, reliability, and operability of cochlear implant electrode arrays coated with biocompatible polymer.

    PubMed

    Kinoshita, Makoto; Kikkawa, Yayoi S; Sakamoto, Takashi; Kondo, Kenji; Ishihara, Kazuhiko; Konno, Tomohiro; Pawsey, Nick; Yamasoba, Tatsuya

    2015-04-01

    Polymer-coated electrodes can reduce surgically-induced trauma associated with the insertion of a cochlear implant (CI) electrode array. To evaluate if insertion trauma in CI surgery can be reduced by using electrode arrays coated with 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer. We analyzed characteristics of the Contour Advance electrode arrays coated with MPC polymer. To assess surgical trauma during electrode insertion, polymer-coated or uncoated (n = 5 each) animal electrode arrays were implanted in guinea pig cochleae and operability and electrophysiological and histological changes were assessed. Under light and scanning electron microscopy, polymer-coated electrodes did not appear different from uncoated electrodes, and no change was observed after mechanical stressing of the arrays. Electrode insertion was significantly easier when polymer-coated electrodes were used. Auditory brainstem response (ABR) thresholds did not differ between groups, but p1-n1 amplitudes of the coated group were larger compared with the uncoated group at 32 kHz at 28 days after surgery. The survival of outer hair cells and spiral ganglion cells was significantly greater in the polymer-coated group.

  6. Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide

    PubMed Central

    Nickheslat, Ali; Amin, Mohammad Mehdi; Izanloo, Hassan; Fatehizadeh, Ali; Mousavi, Seyed Mohammad

    2013-01-01

    Background. The main objective of this study was to examine the photocatalytic degradation of phenol from laboratory samples and petrochemical industries wastewater under UV radiation by using nanoparticles of titanium dioxide coated on the inner and outer quartz glass tubes. Method. The first stage of this study was conducted to stabilize the titanium dioxide nanoparticles in anatase crystal phase, using dip-coating sol-gel method on the inner and outer surfaces of quartz glass tubes. The effect of important parameters including initial phenol concentration, TiO2 catalyst dose, duration of UV radiation, pH of solution, and contact time was investigated. Results. In the dip-coat lining stage, the produced nanoparticles with anatase crystalline structure have the average particle size of 30 nm and are uniformly distributed over the tube surface. The removal efficiency of phenol was increased with the descending of the solution pH and initial phenol concentration and rising of the contact time. Conclusion. Results showed that the light easily passes through four layers of coating (about 105 nm). The highest removal efficiency of phenol with photocatalytic UV/TiO2 process was 50% at initial phenol concentration of 30 mg/L, solution pH of 3, and 300 min contact time. The comparison of synthetic solution and petrochemical wastewater showed that at same conditions the phenol removal efficiency was equal. PMID:23710198

  7. Wear Resistance Enhancement of Ti-6Al-4 V Alloy by Applying Zr-Modified Silicide Coatings

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Hu, Guangzhong; Tian, Jin; Tian, Wei; Xie, Wenling; Li, Xiulan

    2018-03-01

    Zr-modified silicide coatings were prepared on Ti-6Al-4 V alloy by pack cementation process to enhance its wear resistance. The microstructure and wear properties of the substrate and the coatings were comparatively investigated using GCr15 and Al2O3 as the counterparts under different sliding loads. The obtained Zr-modified silicide coating had a multilayer structure, consisting of a thick (Ti, X)Si2 (X represents Al, Zr and V elements) outer layer, a TiSi middle layer and a Ti5Si4 + Ti5Si3 inner layer. The micro-hardness of the coating was much higher than the substrate and displayed a decrease tendency from the coating surface to the interior. Sliding against either GCr15 or Al2O3 balls, the coatings showed superior anti-friction property to the Ti-6Al-4 V alloy, as confirmed by its much lower wear rate under each employed sliding condition.

  8. Preparation and properties of chrome-free colored Ti/Zr based conversion coating on aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yi, AiHua; Li, WenFang; Du, Jun; Mu, SongLin

    2012-06-01

    A golden conversion coating on the surface of aluminum alloy was prepared by adding tannic acid and coating-forming accelerator in the treatment solution containing titanium and zirconium ions. The growth process, main component and corrosion resistance of the conversion coating were characterized by EDS, SEM, XRD, XPS, FIIR and electrochemical workstation. The results showed that the main components of the conversion coating were Na3AlF6 and the conversion coating owns a double-layer structure. The outer layer consists of metal-organic complex and the inner layer is mainly made up of Na3AlF6. The mechanism of the formation of the golden conversion coating can be deemed as nucleation, growth of Na3AlF6 crystal and formation of metal-organic complex. In potentiodynamic polarization test, the corrosion current density decreases to 0.283 μA cm-2 from 5.894 μA cm-2, which indicates an obvious improvement of corrosion resistance.

  9. An effective and practical fire-protection system. [for aircraft fuel storage and transport

    NASA Technical Reports Server (NTRS)

    Mansfield, J. A.; Riccitiello, S. R.; Fewell, L. L.

    1975-01-01

    A high-performance sandwich-type fire protection system comprising a steel outer sheath and insulation combined in various configurations is described. An inherent advantage of the sheath system over coatings is that it eliminates problems of weatherability, materials strength, adhesion, and chemical attack. An experimental comparison between the protection performance of state-of-the-art coatings and the sheath system is presented, with emphasis on the protection of certain types of steel tanks for fuel storage and transport. Sheath systems are thought to be more expensive than coatings in initial implementation, although they are less expensive per year for sufficiently long applications.

  10. Analytical investigation of thermal barrier coatings for advanced power generation combustion turbines

    NASA Technical Reports Server (NTRS)

    Amos, D. J.

    1977-01-01

    An analytical evaluation was conducted to determine quantitatively the improvement potential in cycle efficiency and cost of electricity made possible by the introduction of thermal barrier coatings to power generation combustion turbine systems. The thermal barrier system, a metallic bond coat and yttria stabilized zirconia outer layer applied by plasma spray techniques, acts as a heat insulator to provide substantial metal temperature reductions below that of the exposed thermal barrier surface. The study results show the thermal barrier to be a potentially attractive means for improving performance and reducing cost of electricity for the simple, recuperated, and combined cycles evaluated.

  11. Catalytic cartridge SO.sub.3 decomposer

    DOEpatents

    Galloway, Terry R.

    1982-01-01

    A catalytic cartridge internally heated is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube being internally heated. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and being internally heated. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.

  12. High-Q Hybrid Plasmon-Photon Modes in a Bottle Resonator Realized with a Silver-Coated Glass Fiber with a Varying Diameter

    NASA Astrophysics Data System (ADS)

    Rottler, Andreas; Harland, Malte; Bröll, Markus; Klingbeil, Matthias; Ehlermann, Jens; Mendach, Stefan

    2013-12-01

    We experimentally demonstrate that hybrid plasmon-photon modes exist in a silver-coated glass bottle resonator. The bottle resonator is realized in a glass fiber with a smoothly varying diameter, which is subsequently coated with a rhodamine 800-dye doped acryl-glass layer and a 30 nm thick silver layer. We show by means of photoluminescence experiments supported by electromagnetic simulations that the rhodamine 800 photoluminescence excites hybrid plasmon-photon modes in such a bottle resonator, which provide a plasmon-type field enhancement at the outer silver surface and exhibit quality factors as high as 1000.

  13. Fabrication of novel plasmonics-active substrates

    NASA Astrophysics Data System (ADS)

    Dhawan, Anuj; Gerhold, Michael; Du, Yan; Misra, Veena; Vo-Dinh, Tuan

    2009-02-01

    This paper describes methodologies for fabricating of highly efficient plasmonics-active SERS substrates - having metallic nanowire structures with pointed geometries and sub-5 nm gap between the metallic nanowires enabling concentration of high EM fields in these regions - on a wafer-scale by a reproducible process that is compatible with large-scale development of these substrates. Excitation of surface plasmons in these nanowire structures leads to substantial enhancement in the Raman scattering signal obtained from molecules lying in the vicinity of the nanostructure surface. The methodologies employed included metallic coating of silicon nanowires fabricated by employing deep UV lithography as well as controlled growth of silicon germanium on silicon nanostructures to form diamond-shaped nanowire structures followed by metallic coating. These SERS substrates were employed for detecting chemical and biological molecules of interest. In order to characterize the SERS substrates developed in this work, we obtained SERS signals from molecules such as p-mercaptobenzoic acid (pMBA) and cresyl fast violet (CFV) attached to or adsorbed on the metal-coated SERS substrates. It was observed that both gold-coated triangular shaped nanowire substrates as well as gold-coated diamond shaped nanowire substrates provided very high SERS signals for the nanowires having sub-15 nm gaps and that the SERS signal depends on the closest spacing between the metal-coated silicon and silicon germanium nanowires. SERS substrates developed by the different processes were also employed for detection of biological molecules such as DPA (Dipicolinic Acid), an excellent marker for spores of bacteria such as Anthrax.

  14. Preparation of ceramic coating on Ti substrate by Plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance

    NASA Astrophysics Data System (ADS)

    Shokouhfar, M.; Dehghanian, C.; Baradaran, A.

    2011-01-01

    Ceramic oxide coatings (titania) were produced on Ti by micro-arc oxidation in different aluminate and carbonate based electrolytes. This process was conducted under constant pulsed DC voltage condition. The effect of KOH and NaF in aluminate based solution was also studied. The surface morphology, growth and phase composition of coatings were investigated using scanning electron microscope and X-ray diffraction. Corrosion behavior of the coatings was also examined by potentiodynamic polarization and electrochemical impedance spectroscopy. It was found that the sparking initiation voltage (spark voltage) had a significant effect on the form and properties of coatings. Coatings obtained from potassium aluminate based solution had a lower spark voltage, higher surface homogeneity and a better corrosion resistance than the carbonate based solution. Addition of NaF instead of KOH had improper effects on the homogeneity and adhesion of coatings which in turn caused a poor corrosion protection behavior of the oxide layer. AC impedance curves showed two time constants which is an indication of the coatings with an outer porous layer and an inner compact layer.

  15. Porous electronic current collector bodies for electrochemical cell configurations

    DOEpatents

    Pollack, William; Reichner, Philip

    1989-01-01

    A high-temperature, solid electrolyte electrochemical cell configuration is made comprising a plurality of elongated electrochemical cells 1, having inner electrodes 3, outer electrodes 6 and solid electrolyte 4 therebetween, the cells being electronically connected in series and parallel by flexible, porous, fibrous strips 7, where the strips contain flexible, electronically conductive fibers bonded together and coated with a refractory oxide, and where the oxide coating is effective to prevent additional bonding of fibers during electrochemical cell operation at high temperatures.

  16. Method of evaluating the integrity of the outer carbon layer of triso-coated reactor fuel particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caputo, A.J.; Costanzo, D.A.; Lackey, W.J.

    1980-10-07

    This invention relates to a method for determining defective final layers of carbon on triso-coated fuel particles and the like. Samples of the particles are subjected to a high temperature treatment with gaseous chlorine and thereafter radiographed. The chlorine penetrates through any defective carbon layer and reacts with the underlying silicon carbide resulting in the volatilization of the silicon as sicl4 leaving carbon as a porous layer. This porous carbon layer is easily detected by the radiography.

  17. Outer skin protection of columbium Thermal Protection System (TPS) panels

    NASA Technical Reports Server (NTRS)

    Culp, J. D.

    1973-01-01

    A coated columbium alloy material system 0.04 centimeter thick was developed which provides for increased reliability to the load bearing character of the system in the event of physical damage to and loss of the exterior protective coating. The increased reliability to the load bearing columbium alloy (FS-85) was achieved by interposing an oxidation resistant columbium alloy (B-1) between the FS-85 alloy and a fused slurry silicide coating. The B-1 alloy was applied as a cladding to the FS-85 and the composite was fused slurry silicide coated. Results of material evaluation testing included cyclic oxidation testing of specimens with intentional coating defects, tensile testing of several material combinations exposed to reentry profile conditions, and emittance testing after cycling of up to 100 simulated reentries. The clad material, which was shown to provide greater reliability than unclad materials, holds significant promise for use in the thermal protection system of hypersonic reentry vehicles.

  18. Biomimetic whisker-shaped apatite coating of titanium powder.

    PubMed

    Sim, Young Uk; Kim, Jong Hee; Yang, Tae Young; Yoon, Seog Young; Park, Hong Chae

    2010-05-01

    Biomimetic apatite coatings on chemically modified titanium powder have been processed and the resulting coating layers evaluated in terms of morphology, composition and structure, using TF-XRD, XPS, SEM, TEM and FTIR analysis. After 7 days immersion in a simulated body fluid (SBF), nanometer-sized fine precipitates with an amorphous whisker-like phase and a Ca/P atomic ratio of 1.94 were obtained on the external surface of the titanium particles. When the immersion time in SBF was extended to 16 days, the coating layer consisted of the whisker-like nanostructured crystals of carbonated hydroxyapatite with a atomic ratio of 3; in such a case, a double coating layer was developed. The double layer could be divided into two regions and could be clearly distinguished: an inner dense region (approximately 200 nm in thickness) which may include hard agglomerated crystals and an outer less dense region (> 500 nm in thickness) in which crystals are loosely distributed.

  19. Wet-chemical dissolution of TRISO-coated simulated high-temperature-reactor fuel particles

    NASA Astrophysics Data System (ADS)

    Skolo, K. P.; Jacobs, P.; Venter, J. H.; Klopper, W.; Crouse, P. L.

    2012-01-01

    Chemical etching with different mixtures of acidic solutions has been investigated to disintegrate the two outermost coatings from tri-structural isotropic coated particles containing zirconia kernels, which are used in simulated particles instead of uranium dioxide. A scanning electron microscope (SEM) was used to study the morphology of the particles after the first etching step as well as at different stages of the second etching step. SEM examination shows that the outer carbon layer can be readily removed with a CrO 3-HNO 3/H 2SO 4 solution. This finding was verified by energy dispersive spectroscopy (EDS) analysis. Etching of the silicon carbide layer in a hydrofluoric-nitric solution yielded partial removal of the coating and localized attack of the underlying coating layers. The SEM results provide evidence that the etching of the silicon carbide layer is strongly influenced by its microstructure.

  20. Effect of Native Oxide Film on Commercial Magnesium Alloys Substrates and Carbonate Conversion Coating Growth and Corrosion Resistance

    PubMed Central

    Feliu, Sebastián; Samaniego, Alejandro; Bermudez, Elkin Alejandro; El-Hadad, Amir Abdelsami; Llorente, Irene; Galván, Juan Carlos

    2014-01-01

    Possible relations between the native oxide film formed spontaneously on the AZ31 and AZ61 magnesium alloy substrates with different surface finish, the chemistry of the outer surface of the conversion coatings that grows after their subsequent immersion on saturated aqueous NaHCO3 solution treatment and the enhancement of corrosion resistance have been studied. The significant increase in the amount of aluminum and carbonate compounds on the surface of the conversion coating formed on the AZ61 substrate in polished condition seems to improve the corrosion resistance in low chloride ion concentration solutions. In contrast, the conversion coatings formed on the AZ31 substrates in polished condition has little effect on their protective properties compared to the respective as-received surface. PMID:28788582

  1. Effect of Native Oxide Film on Commercial Magnesium Alloys Substrates and Carbonate Conversion Coating Growth and Corrosion Resistance.

    PubMed

    Feliu, Sebastián; Samaniego, Alejandro; Bermudez, Elkin Alejandro; El-Hadad, Amir Abdelsami; Llorente, Irene; Galván, Juan Carlos

    2014-03-28

    Possible relations between the native oxide film formed spontaneously on the AZ31 and AZ61 magnesium alloy substrates with different surface finish, the chemistry of the outer surface of the conversion coatings that grows after their subsequent immersion on saturated aqueous NaHCO₃ solution treatment and the enhancement of corrosion resistance have been studied. The significant increase in the amount of aluminum and carbonate compounds on the surface of the conversion coating formed on the AZ61 substrate in polished condition seems to improve the corrosion resistance in low chloride ion concentration solutions. In contrast, the conversion coatings formed on the AZ31 substrates in polished condition has little effect on their protective properties compared to the respective as-received surface.

  2. Recovery and recycling of uranium from rejected coated particles for compact high temperature reactors

    NASA Astrophysics Data System (ADS)

    Pai, Rajesh V.; Mollick, P. K.; Kumar, Ashok; Banerjee, J.; Radhakrishna, J.; Chakravartty, J. K.

    2016-05-01

    UO2 microspheres prepared by internal gelation technique were coated with pyrolytic carbon and silicon carbide using CVD technique. The particles which were not meeting the specifications were rejected. The rejected/failed UO2 based coated particles prepared by CVD technique was used for oxidation and recovery and recycling. The oxidation behaviour of sintered UO2 microspheres coated with different layers of carbon and SiC was studied by thermal techniques to develop a method for recycling and recovery of uranium from the failed/rejected coated particles. It was observed that the complete removal of outer carbon from the spheres is difficult. The crushing of microspheres enabled easier accessibility of oxygen and oxidation of carbon and uranium at 800-1000 °C. With the optimized process of multiple crushing using die & plunger and sieving the broken coated layers, we could recycle around fifty percent of the UO2 microspheres which could be directly recoated. The rest of the particles were recycled using a wet recycling method.

  3. Detecting immunoglobulin M antibodies against microsporidian Encephalitozoon cuniculi polar tubes in sera from healthy and human immunodeficiency virus-infected persons in Japan.

    PubMed

    Omura, Mako; Furuya, Koji; Kudo, Shinichi; Sugiura, Wataru; Azuma, Hiroshi

    2007-02-01

    Encephalitozoon cuniculi, a spore-forming obligate intracellular parasitic pathogen belonging to the phylum Microsporidia, has a unique and highly specialized organelle called the polar tube. Using an enzyme immunostaining assay in which germinated E. cuniculi spores were coated onto plastic surfaces, we tested healthy and human immunodeficiency virus (HIV)-infected individuals in Japan for anti-polar tube antibodies of each immunoglobulin (Ig) class. Anti-polar tube IgG was detected in just 4 of 380 healthy individuals; no anti-polar tube IgA was detected in any individuals; however, unexpectedly, anti-polar tube IgM antibodies were detected in 138 individuals (36%). When the healthy individuals were grouped by age, the highest rate of positivity to anti-polar tube IgM antibodies was seen in individuals aged 20 years old or younger. Fifty-nine percent (24/41) of the individuals aged 20 years or younger were anti-polar tube IgM antibody positive. This rate tended to decrease among individuals in older age groups. However, no anti-polar tube IgM antibodies were detected in 21 HIV-infected persons who were younger than 30 years of age and who had CD4 cell levels below 250/mul. These seroepidemiological results clearly indicate that circulating anti-polar tube IgM antibodies that are capable of strongly reacting with filaments extruded from geminated spores exist and suggest that such antibodies may play a part in protective immunity.

  4. Deactivating Chemical Agents Using Enzyme-Coated Nanofibers Formed by Electrospinning

    DTIC Science & Technology

    2011-11-16

    method we have previously explored the formation of specialized fibers for several applications, including tissue engineering,28 superhydrophobic fab...dissolved during the first exposure and subsequent Figure 9. Multilayer fiber mat with outer superhydrophobic fibers and inner enzyme containing fibers

  5. Alterations in Aspergillus brasiliensis (niger) ATCC 9642 membranes associated to metabolism modifications during application of low-intensity electric current.

    PubMed

    Velasco-Alvarez, Nancy; Gutiérrez-Rojas, Mariano; González, Ignacio

    2017-12-01

    The effects of electric current on membranes associated with metabolism modifications in Aspergillus brasiliensis (niger) ATCC 9642 were studied. A 450-mL electrochemical cell with titanium ruthenium-oxide coated electrodes and packed with 15g of perlite, as inert support, was inoculated with A. brasiliensis spores and incubated in a solid inert-substrate culture (12 d; 30°C). Then, 4.5days after starting the culture, a current of 0.42mAcm -2 was applied for 24h. The application of low-intensity electric current increased the molecular oxygen consumption rate in the mitochondrial respiratory chain, resulting in high concentrations of reactive oxygen species, promoting high lipoperoxidation levels, according to measured malondialdehyde, and consequent alterations in membrane permeability explained the high n-hexadecane (HXD) degradation rates observed here (4.7-fold higher than cultures without current). Finally, cell differentiation and spore production were strongly stimulated. The study contributes to the understanding of the effect of current on the cell membrane and its association with HXD metabolism. Copyright © 2017. Published by Elsevier B.V.

  6. Benefit from NASA

    NASA Image and Video Library

    2002-02-01

    This is a photo of a technician at KES Science and Technology Inc., in Kernesaw, Georgia, assembling the AiroCide Ti02, an anthrax-killing device about the size of a small coffee table. The anthrax-killing air scrubber, AiroCide Ti02, is a tabletop-size metal box that bolts to office ceilings or walls. Its fans draw in airborne spores and airflow forces them through a maze of tubes. Inside, hydroxyl radicals (OH-) attack and kill pathogens. Most remaining spores are destroyed by high-energy ultraviolet photons. Building miniature greenhouses for experiments on the International Space Station has led to the invention of this device that annihilates anthrax, a bacteria that can be deadly when inhaled. The research enabling the invention started at the University of Wisconsin's (Madison) Center for Space Automation and Robotics (WCSAR), one of 17 NASA Commercial Space Centers. A special coating technology used in this anthrax-killing invention is also being used inside WCSAR-built plant growth units on the International Space Station. This commercial research is managed by the Space Product Development Program at the Marshall Space Flight Center.

  7. Space Technology to Device that Destroys Pathogens Such As Anthrax

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a photo of a technician at KES Science and Technology Inc., in Kernesaw, Georgia, assembling the AiroCide Ti02, an anthrax-killing device about the size of a small coffee table. The anthrax-killing air scrubber, AiroCide Ti02, is a tabletop-size metal box that bolts to office ceilings or walls. Its fans draw in airborne spores and airflow forces them through a maze of tubes. Inside, hydroxyl radicals (OH-) attack and kill pathogens. Most remaining spores are destroyed by high-energy ultraviolet photons. Building miniature greenhouses for experiments on the International Space Station has led to the invention of this device that annihilates anthrax, a bacteria that can be deadly when inhaled. The research enabling the invention started at the University of Wisconsin's (Madison) Center for Space Automation and Robotics (WCSAR), one of 17 NASA Commercial Space Centers. A special coating technology used in this anthrax-killing invention is also being used inside WCSAR-built plant growth units on the International Space Station. This commercial research is managed by the Space Product Development Program at the Marshall Space Flight Center.

  8. Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium.

    PubMed

    Matykina, E; Arrabal, R; Skeldon, P; Thompson, G E

    2009-05-01

    Transmission electron microscopy and supporting film analyses are used to investigate the changes in composition, morphology and structure of coatings formed on titanium during DC plasma electrolytic oxidation in a calcium- and phosphorus-containing electrolyte. The coatings are of potential interest as bioactive surfaces. The initial barrier film, of mixed amorphous and nanocrystalline structure, formed below the sparking voltage of 180 V, incorporates small amounts of phosphorus and calcium species, with phosphorus confined to the outer approximately 63% of the coating thickness. On commencement of sparking, calcium- and phosphorus-rich amorphous material forms at the coating surface, with local heating promoting crystallization in underlying and adjacent anodic titania. The amorphous material thickens with increased treatment time, comprising almost the whole of the approximately 5.7-microm-thick coating formed at 340 V. At this stage, the coating is approximately 4.4 times thicker than the oxidized titanium, with a near-surface composition of about 12 at.% Ti, 58 at.% O, 19 at.% P and 11 at.% Ca. Further, the amount of titanium consumed in forming the coating is similar to that calculated from the anodizing charge, although there may be non-Faradaic contributions to the coating growth.

  9. The deposition of aluminide and silicide coatings on γ-TiAl using the halide-activated pack cementation method

    NASA Astrophysics Data System (ADS)

    Munro, T. C.; Gleeson, B.

    1996-12-01

    The halide-activated pack cementation method (HAPC) was utilized to deposit aluminide and silicide coatings on nominally stoichiometric γ-TiAl. The deposition temperature was 1000°C and deposition times ranged from 2 to 12 hours. The growth rates of the coatings were diffusion controlled, with the rate of aluminide growth being about a factor of 2 greater than that of silicide growth. The aluminide coating was inward growing and consisted of a thick, uniform outer layer of TiAl3 and a thin inner layer of TiAl2, with the rate-controlling step being the diffusion of aluminum from the pack into the substrate. Annealing experiments at 1100 °C showed that the interdiffusion between the aluminide coating and the γ-TiAl substrate was rapid. In contrast to the aluminide coating, the silicide coating was nonuniform and porous, consisting primarily of TiSi2, TiSi, and Ti5Si4, with the rate-controlling step for the coating growth believed to be the diffusion of aluminum into the γ-TiAl ahead of the silicide/γ-TiAl interface. The microstructural evolution of the aluminide and silicide coating structures is discussed qualitatively.

  10. Monostatic lidar/radar invisibility using coated spheres.

    PubMed

    Zhai, Peng-Wang; You, Yu; Kattawar, George W; Yang, Ping

    2008-02-04

    The Lorenz-Mie theory is revisited to explicitly include materials whose permeability is different from unity. The expansion coefficients of the scattered field are given for light scattering by both homogeneous and coated spheres. It is shown that the backscatter is exactly zero if the impedance of the spherical particles is equal to the intrinsic impedance of the surrounding medium. If spherical particles are sufficiently large, the zero backscatter can be explained as impedance matching using the asymptotic expression for the radar backscattering cross section. In the case of a coated sphere, the shell can be regarded as a cloak if the product of the thickness and the imaginary part of the refractive index of the outer shell is large.

  11. Formation of Cr-modified silicide coatings on a Ti-Nb-Si based ultrahigh-temperature alloy by pack cementation process

    NASA Astrophysics Data System (ADS)

    Qiao, Yanqiang; Guo, Xiping

    2010-10-01

    Cr-modified silicide coatings were prepared on a Ti-Nb-Si based ultrahigh temperature alloy by Si-Cr co-deposition at 1250 °C, 1350 °C and 1400 °C for 5-20 h respectively. It was found that both coating structure and phase constituents changed significantly with increase in the co-deposition temperature and holding time. The outer layers in all coatings prepared at 1250 °C for 5-20 h consisted of (Ti,X) 5Si 3 (X represents Nb, Cr and Hf elements). (Ti,X) 5Si 4 was found as the only phase constituent in the intermediate layers in both coatings prepared at 1250 °C for 5 and 10 h, but the intermediate layers in the coatings prepared at 1250 °C for 15 and 20 h were mainly composed of (Ti,X) 5Si 3 phase that was derived from the decomposition of (Ti,X) 5Si 4 phase. In the coating prepared at 1350 °C for 5 h, single (Ti,X) 5Si 3 phase was found in its outmost layer, the same as that in the outer layers in the coatings prepared at 1250 °C; but in the coatings prepared at 1350 °C for 10-20 h, (Nb 1.95Cr 1.05)Cr 2Si 3 ternary phase was found in the outmost layers besides (Ti,X) 5Si 3 phase. In the coatings prepared at 1400 °C for 5-20 h, (Nb 1.95Cr 1.05)Cr 2Si 3 ternary phase was the single phase constituent in their outmost layers. The phase transformation (Ti,X) 5Si 4 → (Ti,X) 5Si 3 + Si occurred in the intermediate layers of the coatings prepared at 1350 and 1400 °C with prolonging co-deposition time, similar to the situation in the coatings prepared at 1250 °C for 15 and 20 h, but this transformation has been speeded up by increase in the co-deposition temperature. The transitional layers were mainly composed of (Ti,X) 5Si 3 phase in all coatings. The influence of co-deposition temperature on the diffusion ability of Cr atoms was greater than that of Si atoms in the Si-Cr co-deposition processes investigated. The growth of coatings obeyed inverse logarithmic laws at all three co-deposition temperatures. The Si-Cr co-deposition coating prepared at 1350 °C for 10 h showed a good oxidation resistance due to the formation of SiO 2 and Nb, Cr-doped TiO 2 scale after oxidation at 1250 °C for 10 h.

  12. Metalworking defects in surgery screws as a possible cause of post-surgical infections

    NASA Astrophysics Data System (ADS)

    Spector, Mario; Peretti, Leandro E.; Romero, Gustavo

    2016-04-01

    In the first phase of this work, surface defects (metalworking) in stainless steel implantable prostheses and their possible relation to infections that can be generated after surgery was studied. In a second phase, the results obtained in the aforementioned stage were applied to knee cruciate ligaments surgery screws, considering the fact that a substantial number of Mucormycetes infections have been reported after arthroscopic surgery in Argentina since the year 2005. Two types of screws, transverse and interference screws, were analyzed. The Allen heads presented defects such as burrs and metalworking bending as a result of the machining process. These defects allow the accumulation of machining oil, which could be contaminated with fungal spores. When this is the case, the gaseous sterilization by ethylene oxide may be jeopardized. Cortical screws were also analyzed and were found to present serious metalworking defects inside their heads. To reduce the risk of infection in surgery, the use of screws with metalworking defects on the outer surface, analyzed with stereomicroscope and considering the inside part of the Allen as an outer surface, should be avoided altogether.

  13. A Single-Nucleotide Polymorphism in an Endo-1,4-β-Glucanase Gene Controls Seed Coat Permeability in Soybean

    PubMed Central

    Jang, Seong-Jin; Sato, Masako; Sato, Kei; Jitsuyama, Yutaka; Fujino, Kaien; Mori, Haruhide; Takahashi, Ryoji; Benitez, Eduardo R.; Liu, Baohui; Yamada, Tetsuya; Abe, Jun

    2015-01-01

    Physical dormancy, a structural feature of the seed coat known as hard seededness, is an important characteristic for adaptation of plants against unstable and unpredictable environments. To dissect the molecular basis of qHS1, a quantitative trait locus for hard seededness in soybean (Glycine max (L) Merr.), we developed a near-isogenic line (NIL) of a permeable (soft-seeded) cultivar, Tachinagaha, containing a hard-seed allele from wild soybean (G. soja) introduced by successive backcrossings. The hard-seed allele made the seed coat of Tachinagaha more rigid by increasing the amount of β-1,4-glucans in the outer layer of palisade cells of the seed coat on the dorsal side of seeds, known to be a point of entrance of water. Fine-mapping and subsequent expression and sequencing analyses revealed that qHS1 encodes an endo-1,4-β-glucanase. A single-nucleotide polymorphism (SNP) introduced an amino acid substitution in a substrate-binding cleft of the enzyme, possibly reducing or eliminating its affinity for substrates in permeable cultivars. Introduction of the genomic region of qHS1 from the impermeable (hard-seeded) NIL into the permeable cultivar Kariyutaka resulted in accumulation of β-1,4-glucan in the outer layer of palisade cells and production of hard seeds. The SNP allele found in the NIL was further associated with the occurrence of hard seeds in soybean cultivars of various origins. The findings of this and previous studies may indicate that qHS1 is involved in the accumulation of β-1,4-glucan derivatives such as xyloglucan and/or β-(1,3)(1,4)-glucan that reinforce the impermeability of seed coats in soybean. PMID:26039079

  14. Cooking utensil with improved heat retention

    DOEpatents

    Potter, Thomas F.; Benson, David K.; Burch, Steven D.

    1997-01-01

    A cooking utensil with improved heat retention includes an inner pot received within an outer pot and separated in a closely spaced-apart relationship to form a volume or chamber therebetween. The chamber is evacuated and sealed with foil leaves at the upper edges of the inner and outer pot. The vacuum created between the inner and outer pot, along with the minimum of thermal contact between the inner and outer pot, and the reduced radiative heat transfer due to low emissivity coatings on the inner and outer pot, provide for a highly insulated cooking utensil. Any combination of a plurality of mechanisms for selectively disabling and re-enabling the insulating properties of the pot are provided within the chamber. These mechanisms may include: a hydrogen gas producing and reabsorbing device such as a metal hydride, a plurality of metal contacts which can be adjusted to bridge the gap between the inner and outer pot, and a plurality of bimetallic switches which can selectively bridge the gap between the inner and outer pot. In addition, phase change materials with superior heat retention characteristics may be provided within the cooking utensil. Further, automatic and programmable control of the cooking utensil can be provided through a microprocessor and associated hardware for controlling the vacuum disable/enable mechanisms to automatically cook and save food.

  15. Cooking utensil with improved heat retention

    DOEpatents

    Potter, T.F.; Benson, D.K.; Burch, S.D.

    1997-07-01

    A cooking utensil with improved heat retention includes an inner pot received within an outer pot and separated in a closely spaced-apart relationship to form a volume or chamber there between. The chamber is evacuated and sealed with foil leaves at the upper edges of the inner and outer pot. The vacuum created between the inner and outer pot, along with the minimum of thermal contact between the inner and outer pot, and the reduced radiative heat transfer due to low emissivity coatings on the inner and outer pot, provide for a highly insulated cooking utensil. Any combination of a plurality of mechanisms for selectively disabling and re-enabling the insulating properties of the pot are provided within the chamber. These mechanisms may include: a hydrogen gas producing and reabsorbing device such as a metal hydride, a plurality of metal contacts which can be adjusted to bridge the gap between the inner and outer pot, and a plurality of bimetallic switches which can selectively bridge the gap between the inner and outer pot. In addition, phase change materials with superior heat retention characteristics may be provided within the cooking utensil. Further, automatic and programmable control of the cooking utensil can be provided through a microprocessor and associated hardware for controlling the vacuum disable/enable mechanisms to automatically cook and save food. 26 figs.

  16. Chemical and microscopic characterization of outer seed coats of fossil and extant water plants

    NASA Astrophysics Data System (ADS)

    van Bergen, P. F.; Goñi, M.; Collinson, M. E.; Barrie, P. J.; Damsté, J. S. Sinninghe; De Leeuw, J. W.

    1994-09-01

    Sclerotic outer seed coat layers (testae) of three fossil and two extant water plant species were analyzed using scanning electron and light microscopy in addition to Curie-point pyrolysis, solid state 13C NMR, and CuO oxidation. Comparison between the chemical results from the fossil and extant samples reveals that the original resistant constituents in the sclerotic testae are native lignin-celluloses which are transformed to polyphenol macromolecules recognized in the fossil samples. The combination of microscopic and chemical data provides new insights regarding the early diagenetic processes by which lignin-cellulose-containing plant remains may have been transformed. In particular, the unaltered morphology in combination with major chemical modifications is used as the basis to postulate the timing and nature of lignin transformations. The combination of pyrolysis, solid state 13C NMR, and CuO oxidation is shown to be a powerful tool to characterize the chemical structure of testae of fossil and extant water plants.

  17. Modeling curvature-dependent subcellular localization of a small sporulation protein in Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Wasnik, Vaibhav; Wingreen, Ned; Mukhopadhyay, Ranjan

    2012-02-01

    Recent experiments suggest that in the bacterium, B. subtilis, the cue for the localization of small sporulation protein, SpoVM, that plays a central role in spore coat formation, is curvature of the bacterial plasma membrane. This curvature-dependent localization is puzzling given the orders of magnitude difference in lengthscale of an individual protein and radius of curvature of the membrane. Here we develop a minimal model to study the relationship between curvature-dependent membrane absorption of SpoVM and clustering of membrane-associated SpoVM and compare our results with experiments.

  18. Long-term erosion of plasma-facing materials with different surface roughness in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Hakola, A.; Karhunen, J.; Koivuranta, S.; Likonen, J.; Balden, M.; Herrmann, A.; Mayer, M.; Müller, H. W.; Neu, R.; Rohde, V.; Sugiyama, K.; The ASDEX Upgrade Team

    2014-04-01

    The effect of surface roughness on the long-term erosion patterns of tungsten coatings was investigated in the outer strike-point region of ASDEX Upgrade during its 2010-11 plasma operations. The net erosion rates of rough coatings (Ra = 5-6 μm) were three to seven times smaller than those of smooth coatings (Ra = 0.4-0.8 μm). This is because rough surfaces are largely modified and damaged in the microscopic scale but the material is re-deposited together with boron, deuterium and carbon on the shadowed sides of the most prominent surface features. In addition, we observed that W coatings were eroded on average at a rate of 0.03 nm s-1, which was three to four times smaller than the value for Cr, simulating here steel.

  19. Lubricating system for thermal medium delivery parts in a gas turbine

    DOEpatents

    Mashey, Thomas Charles

    2002-01-01

    Cooling steam delivery tubes extend axially along the outer rim of a gas turbine rotor for supplying cooling steam to and returning spent cooling steam from the turbine buckets. Because of the high friction forces at the interface of the tubes and supporting elements due to rotor rotation, a low coefficient of friction coating is provided at the interface of the tubes and support elements. On each surface, a first coating of a cobalt-based alloy is sprayed onto the surface at high temperature. A portion of the first coating is machined off to provide a smooth, hard surface. A second ceramic-based solid film lubricant is sprayed onto the first coating. By reducing the resistance to axial displacement of the tubes relative to the supporting elements due to thermal expansion, the service life of the tubes is substantially extended.

  20. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    NASA Technical Reports Server (NTRS)

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  1. New insight into the disinfection mechanism of Fusarium monoliforme and Aspergillus niger by TiO2 photocatalyst under low intensity UVA light.

    PubMed

    Pokhum, Chonlada; Viboonratanasri, Duangamon; Chawengkijwanich, Chamorn

    2017-11-01

    Titanium dioxide (TiO 2) photocatalytic reaction has great potential for the disinfection of harmful pathogens. However, the disinfection mechanisms of TiO 2 photocatalysis are not yet well-known for fungi and protozoa. In this work, the photocatalytic disinfection mechanism of Fusarium monoliforme and Aspergillus niger under low intensity UVA light (365nm, <10W/m 2 ) was studied at the ultrastructural level. Photocatalytic treatments showed that the photocatalytic oxidation of 10% TiO 2 based paint was efficacious in the complete disinfection of F. monoliforme under low intensity UVA light. No growth of F. monoliforme was observed on agar plate in the subsequent dark. Transmission electron microscopy (TEM) of F. monoliforme exposed to TiO 2 photocatalysis treatment showed a distinct damage to electron-dense outer cell wall, but not to an underlying electron-transparent layer cell wall. The TEM image revealed that the UVA-light only did not damage cell wall, cell membrane and cellular organelles. Unlike, A. niger was more sensitive to UVA-light. Serious destructions of cell membrane and cellular organelles were shown in A. niger exposed to UVA-light only and photocatalytic treatments. However, morphological change in A. niger cell wall was only observed in photocatalytic treatment. Changes to the outermost melanin like layer and cell wall of A. niger spore due to photocatalytic treatment were greatly apparent while the intracellular organelles of A. niger spore were not affected. Therefore, regrowth of A. niger on agar plate was expected from the germination of A. niger spore in the subsequent dark. These observations give a better understanding of the photocatalytic disinfection mechanism toward fungi. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effects of steam autoclave treatment on Geobacillus stearothermophilus spores.

    PubMed

    Huesca-Espitia, L C; Suvira, M; Rosenbeck, K; Korza, G; Setlow, B; Li, W; Wang, S; Li, Y-Q; Setlow, P

    2016-11-01

    To determine the mechanism of autoclave killing of Geobacillus stearothermophilus spores used in biological indicators (BIs) for steam autoclave sterilization, and rates of loss of spore viability and a spore enzyme used in BIs. Spore viability, dipicolinic acid (DPA) release, nucleic acid staining, α-glucosidase activity, protein structure and mutagenesis were measured during autoclaving of G. stearothermophilus spores. Loss of DPA and increases in spore core nucleic acid staining were slower than loss of spore viability. Spore core α-glucosidase was also lost more slowly than spore viability, although soluble α-glucosidase in spore preparations was lost more rapidly. However, spores exposed to an effective autoclave sterilization lost all viability and α-glucosidase activity. Apparently killed autoclaved spores were not recovered by artificial germination in supportive media, much spore protein was denatured during autoclaving, and partially killed autoclave-treated spore preparations did not acquire mutations. These results indicate that autoclave-killed spores cannot be revived, spore killing by autoclaving is likely by protein damage, and spore core α-glucosidase activity is lost more slowly than spore viability. This work provides insight into the mechanism of autoclave killing of spores of an organism used in BIs, and that a spore enzyme in a BI is more stable to autoclaving than spore viability. © 2016 The Society for Applied Microbiology.

  3. Effect of layer thickness on the properties of nickel thermal sprayed steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurisna, Zuhri, E-mail: zuhri-nurisna@yahoo.co.id; Triyono,, E-mail: triyonomesin@uns.ac.id; Muhayat, Nurul, E-mail: nurulmuhayat@staff.uns.ac.id

    Thermal arc spray nickel coating is widely used for decorative and functional applications, by improving corrosion resistance, wear resistance, heat resistence or by modifying other properties of the coated materials. There are several properties have been studied. Layer thickness of nickel thermal sprayed steel may be make harder the substrate surface. In this study, the effect of layer thickness of nickel thermal sprayed steel has been investigated. The rectangular substrate specimens were coated by Ni–5 wt.% Al using wire arc spray method. The thickness of coating layers were in range from 0.4 to 1.0 mm. Different thickness of coating layers weremore » conducted to investigate their effect on hardness and morphology. The coating layer was examined by using microvickers and scanning electron microscope with EDX attachment. Generally, the hardness at the interface increased with increasing thickness of coating layers for all specimens due to higher heat input during spraying process. Morphology analysis result that during spraying process aluminum would react with surrounding oxygen and form aluminum oxide at outer surface of splat. Moreover, porosity was formed in coating layers. However, presence porosity is not related to thickness of coating material. The thicker coating layer resulted highesr of hardness and bond strength.« less

  4. Method of evaluating the integrity of the outer carbon layer of triso-coated reactor fuel particles

    DOEpatents

    Caputo, Anthony J.; Costanzo, Dante A.; Lackey, Jr., Walter J.; Layton, Frank L.; Stinton, David P.

    1980-01-01

    This invention relates to a method for determining defective final layers of carbon on triso-coated fuel particles and the like. Samples of the particles are subjected to a high temperature treatment with gaseous chlorine and thereafter radiographed. The chlorine penetrates through any defective carbon layer and reacts with the underlying silicon carbide resulting in the volatilization of the silicon as SiCl.sub.4 leaving carbon as a porous layer. This porous carbon layer is easily detected by the radiography.

  5. Engineering of M13 Bacteriophage for Development of Tissue Engineering Materials.

    PubMed

    Jin, Hyo-Eon; Lee, Seung-Wuk

    2018-01-01

    M13 bacteriophages have several qualities that make them attractive candidates as building blocks for tissue regenerating scaffold materials. Through genetic engineering, a high density of functional peptides and proteins can be simultaneously displayed on the M13 bacteriophage's outer coat proteins. The resulting phage can self-assemble into nanofibrous network structures and can guide the tissue morphogenesis through proliferation, differentiation and apoptosis. In this manuscript, we will describe methods to develop major coat-engineered M13 phages as a basic building block and aligned tissue-like matrices to develop regenerative nanomaterials.

  6. The reactive element effect of yttrium and yttrium silicon on high temperature oxidation of NiCrAl coating

    NASA Astrophysics Data System (ADS)

    Ramandhany, S.; Sugiarti, E.; Desiati, R. D.; Martides, E.; Junianto, E.; Prawara, B.; Sukarto, A.; Tjahjono, A.

    2018-03-01

    The microstructure formed on the bond coat affects the oxidation resistance, particularly the formation of a protective oxide layer. The adhesion of bond coat and TGO increased significantly by addition of reactive element. In the present work, the effect of yttrium and yttrium silicon as reactive element (RE) on NiCrAl coating was investigated. The NiCrAl (without RE) and NiCrAlX (X:Y or YSi) bond coating were deposited on Hastelloy C-276 substrate by High Velocity Oxygen Fuel (HVOF) method. Isothermal oxidation was carried out at 1000 °C for 100 hours. The results showed that the addition of RE could prevent the breakaway oxidation. Therefore, the coating with reactive element were more protective against high temperature oxidation. Furthermore, the oxidation rate of NiCrAlY coating was lower than NiCrAlYSi coating with the total mass change was ±2.394 mg/cm2 after 100 hours of oxidation. The thickness of oxide scale was approximately 1.18 μm consisting of duplex oxide scale of spinel NiCr2O4 in outer scale and protective α-Al2O3 in inner scale.

  7. Life Cycle, Ultrastructure, and Host Specificity of the North American Isolate of Pasteuria that Parasitizes the Soybean Cyst Nematode, Heterodera glycines.

    PubMed

    Atibalentja, N; Jakstys, B P; Noel, G R

    2004-06-01

    Light and transmission electron microscopy were used to investigate the life cycle and ultrastructure of an undescribed isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines. Studies also were conducted to determine the host specificity of Pasteuria. The endospores that attached to the cuticle of second-stage juveniles (J2) of H. glycines in soil did not germinate until the encumbered nematodes invaded soybean roots. Thereafter, the bacterium developed and completed its life cycle only in females. The stages of endosporogenesis were typical of Pasteuria spp. The mature endospore, like that of P. nishizawae, the only other Pasteuria known to infect H. glycines, produces an epicortical layer that completely surrounds the cortex, an outer spore coat that tapers progressively from the top to the base of the central body, and a double basal adhesion layer. However, subtle differences exist between the Pasteuria from North America and P. nishizawae with regard to size of the central body, nature and function of the mesosomes observed in the earlier stages of endosporogenesis, and appearance of the fibers lining the basal adhesion layer and the exosporium of the mature endospore. Endospores of the North American Pasteuria attached to J2 of H. schachtii, H. trifolii, and H. lespedezae but not to Meloidogyne arenaria race 1, Tylenchorhynchus nudus, and Labronema sp. Results from this study indicate that the North American Pasteuria is more similar to P. nishizawae than to any other known member of the genus. Additional evidence from comparative analysis of 16S rDNA sequences is needed to clarify whether these two Pasteuria belong to the same species.

  8. Heat resistant protective hand covering

    NASA Technical Reports Server (NTRS)

    Tschirch, R. P.; Sidman, K. R.; Arons, I. J. (Inventor)

    1984-01-01

    A heat-resistant aromatic polyamide fiber is described. The outer surface of the shell is coated with a fire-resistant elastomer and liner. Generally conforming and secured to the shell and disposed inwardly of the shell, the liner is made of a felt fabric of temperature-resistant aromatic polymide fiber.

  9. Shipping container for fissile material

    DOEpatents

    Crowder, H.E.

    1984-12-17

    The present invention is directed to a shipping container for the interstate transportation of enriched uranium materials. The shipping container is comprised of a rigid, high-strength, cylindrical-shaped outer vessel lined with thermal insulation. Disposed inside the thermal insulation and spaced apart from the inner walls of the outer vessel is a rigid, high-strength, cylindrical inner vessel impervious to liquid and gaseous substances and having the inner surfaces coated with a layer of cadmium to prevent nuclear criticality. The cadmium is, in turn, lined with a protective shield of high-density urethane for corrosion and wear protection. 2 figs.

  10. Isothermal and cyclic oxidation resistance of pack siliconized Mo-Si-B alloy

    NASA Astrophysics Data System (ADS)

    Majumdar, Sanjib

    2017-08-01

    Oxidation behaviour of MoSi2 coated Mo-9Si-8B-0.75Y (at.%) alloy has been investigated at three critical temperatures including 750, 900 and 1400 °C in static air. Thermogravimetric analysis (TGA) data indicates a remarkable improvement in the oxidation resistance of the silicide coated alloy in both isothermal and cyclic oxidation tests. The cross-sectional scanning electron microscopy and energy dispersive spectroscopic analysis reveal the occurrence of internal oxidation particularly at the crack fronts formed in the outer MoSi2 layer during thermal cycling. The dominant oxidation mechanisms at 750-900 °C and 1400 °C are identified. Development of MoB inner layer further improves the oxidation resistance of the silicide coated alloy.

  11. Catalytic cartridge SO.sub.3 decomposer

    DOEpatents

    Galloway, Terry R.

    1982-01-01

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.

  12. Synthesis and electrochemical performances of amorphous carbon-coated Sn Sb particles as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Zhong; Tian, Wenhuai; Liu, Xiaohe; Yang, Rong; Li, Xingguo

    2007-12-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use.

  13. Development of a flexible nanocomposite TiO2 film as a protective coating for bioapplications of superelastic NiTi alloys

    NASA Astrophysics Data System (ADS)

    Aun, Diego Pinheiro; Houmard, Manuel; Mermoux, Michel; Latu-Romain, Laurence; Joud, Jean-Charles; Berthomé, Gregory; Buono, Vicente Tadeu Lopes

    2016-07-01

    An experimental procedure to coat superelastic NiTi alloys with flexible TiO2 protective nanocomposite films using sol-gel technology was developed in this work to improve the metal biocompatibility without deteriorating its superelastic mechanical properties. The coatings were characterized by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and glazing incidence X-ray diffraction. The elasticity of the film was tested in coated specimens submitted to three-point bending tests. A short densification by thermal treatment at 500 °C for 10 min yielded a bilayer film consisting of a 50 nm-thick crystallized TiO2 at the inner interface with another 50-nm-thick amorphous oxide film at the outer interface. This bilayer could sustain over 6.4% strain without cracking and could thus be used to coat biomedical instruments as well as other devices made with superelastic NiTi alloys.

  14. Bioinspired Antifreeze Secreting Frost-Responsive Pagophobic Coatings

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoda; Damle, Viraj; Rykaczewski, Konrad

    2014-11-01

    Prevention of ice and frost accumulation is of interest to transportation, power generation, and agriculture industries. Superhydrophobic and lubricant impregnated pagophobic coatings have been proposed, however, they both fail in frosting conditions. Inspired by functional liquid secretion in natural systems, such as toxin secretion by poison dart frost in response to predator presence, we developed frost-responsive antifreeze secreting pagophobic coatings. These are bi-layered coatings with an inner superhydrophilic ``dermis'' infused with antifreeze and an outer permeable superhydrophobic ``epidermis.'' The superhydrophobic epidermis separates the antifreeze from the environment and prevents ice accumulation by repelling impinging water droplets. In frosting conditions, the antifreeze is secreted from the dermis through pores in the epidermis either due to contact with condensed droplets or temporary switch of the epidermis wettability from hydrophobic to hydrophilic caused by surface icing. Here we demonstrate superior performance of this multifunctional coating in simulated frosting, freezing mist/fog, and freezing spray/rain conditions. KR acknowledges startup funding from ASU.

  15. Pseudoephedrine hydrochloride sustained-release pellets prepared by a combination of hot-melt subcoating and polymer coating.

    PubMed

    Yang, Zi Yi; Lu, Yan; Tang, Xing

    2008-12-01

    Pseudoephedrine hydrochloride is an active very highly water soluble substance. In order to control release of a drug with this property, we developed the application of a combination of hot-melt subcoating and polymer coating was developed. The main objective was to investigate the influence of this combination on the release of highly water soluble drug and how it works. Hot-melt subcoating was achieved by using a coating pan. Subsequently, the outer polymer coating was prepared by fluidized bed, and the drug release was determined by high-performance liquid chromatograph (HPLC) method. Hot-melt subcoating can form a barrier between the drug-loaded pellets and the polymer coating layer, which prevents migration of the drug during film application. Consequently, the level of polymer coating can be reduced significantly, and the effectiveness of the polymer coating increased. In this study, the release profile of pellets with a 10% hot-melt subcoating and 5% polymer coating weight gain met the dissolution requirement of USP29 for pseudoephedrine hydrochloride extended-release capsules. Compared with pellets only polymer coated (10% level), the polymer coating level of pellets prepared by this technology was reduced by half due to hot-melt subcoating. By means of this hot-melt subcoating and polymer coating, sustained-release pellets containing pseudoephedrine hydrochloride were successfully prepared.

  16. The survival of micro-organisms in space. Further rocket and balloon-borne exposure experiments.

    PubMed

    Hotchin, J; Lorenz, P; Markusen, A; Hemenway, C

    1967-01-01

    This report describes the results of survival studies of terrestrial micro-organisms exposed directly to the space environment on two balloons and in two rocket flights. The work is part of a program to develop techniques for the collection of micro-organisms in the size range of micrometeorite particles in space or non-terrestrial atmospheres, and their return to earth in a viable state for further study. Previous survival studies were reported (J. Hotchin, P. Lorenz and C. Hemenway, Nature 206 (1965) 442) in which a few relatively large area samples of micro-organisms were exposed on millipore filter cemented to aluminum plates. In the present series of experiments, newly developed techniques have resulted in a 25-fold miniaturization resulting in a corresponding increase in the number of experiments performed. This has enabled a statistical evaluation of the results to be made. A total of 756 separate exposure units (each approximately 5 x 5 mm in size) were flown in four experiments, and organisms used were coliphage T1, penicillium roqueforti (THOM) mold spores, poliovirus type I (Pfizer attenuated Sabin vaccine strain), and bacillus subtilis spores. The organisms were deposited either by spraying directly upon the vinyl-coated metal units, or by droplet seeding into shallow depressions in the millipore filter membrane-coated units. Groups of units were prepared comprising fully exposed, inverted (screened by 2 mm of Al), and filter-protected organisms. All of these were included in the flight set, the back up set, and a laboratory control set. The altitude of the exposures varied from 35 km in the balloon experiments to 150 km in the rocket experiments. Times of exposures at altitude were approximately 6 hours for the balloon flights and about 3 minutes for the rocket experiments.

  17. Electrospun Fibro-porous Polyurethane Coatings for Implantable Glucose Biosensors

    PubMed Central

    Wang, Ning; Burugapalli, Krishna; Song, Wenhui; Halls, Justin; Moussy, Francis; Ray, Asim; Zheng, Yudong

    2012-01-01

    This study reports methods for coating miniature implantable glucose biosensors with electrospun polyurethane (PU) membranes, their effects on sensor function and efficacy as mass-transport limiting membranes. For electrospinning fibres directly on sensor surface, both static and dynamic collector systems, were designed and tested. Optimum collector configurations were first ascertained by FEA modelling. Both static and dynamic collectors allowed complete covering of sensors, but it was the dynamic collector that produced uniform fibro-porous PU coatings around miniature ellipsoid biosensors. The coatings had random fibre orientation and their uniform thickness increased linearly with increasing electrospinning time. The effects of coatings having an even spread of submicron fibre diameters and sub-100μm thicknesses on glucose biosensor function were investigated. Increasing thickness and fibre diameters caused a statistically insignificant decrease in sensor sensitivity for the tested electrospun coatings. The sensors’ linearity for the glucose detection range of 2 to 30mM remained unaffected. The electrospun coatings also functioned as mass-transport limiting membranes by significantly increasing the linearity, replacing traditional epoxy-PU outer coating. To conclude, electrospun coatings, having controllable fibro-porous structure and thicknesses, on miniature ellipsoid glucose biosensors were demonstrated to have minimal effect on pre-implantation sensitivity and also to have mass-transport limiting ability. PMID:23146433

  18. Chromium and reactive element modified aluminide diffusion coatings on superalloys - Environmental testing

    NASA Technical Reports Server (NTRS)

    Bianco, Robert; Rapp, Robert A.; Smialek, James L.

    1993-01-01

    The high temperature performance of reactive element (RE)-doped and Cr/RE-modified aluminide diffusion coatings on commercial Ni-base alloy substrates was determined. In isothermal oxidation at 1100 C in air, RE-doped aluminide coatings on IN 713LC substrates formed a continuous slow-growing n-Al2O3 scale after 44 hrs of exposure. The coatings were protected by either an outer ridge Al2O3 scale with an inner compact Al2O3 scale rich in RE or by a continuous compact scale without any noticeable cracks or flaws. The cyclic oxidation behavior of Cr/RE-modified aluminide coatings on Rene 80 and IN 713LC alloys and of RE-doped aluminide coatings on IN 713LC alloys at 1100 C in static air was determined. Pack powder entrapment from the powder contacting (PC) process detracted significantly from the overall cyclic oxidation performance. Type I hot corrosion behavior of Cr/RE-modified aluminide coatings on Rene 80 and Mar-M247 alloy substrates at 900 C in a catalyzed 0.1 percent SO3/O3 gas mixture was determined. The modified coatings produced from the PC arrangement provided significantly better resistance to hot corrosion attack than commercial low-activity aluminide coatings produced by the above pack arrangement.

  19. Thought for Food

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Key to the integral heating system's efficiency is the "dish-oven", which doubles as a heating unit and serving plate. The dish-oven consists of a sealing frame (top) a plastic outer shell (center) and the ceramic inner dish. A special coating on the bottom of the inner dish transforms electrical impulses into heat

  20. Processing of alkaline phosphatase precursor to the mature enzyme by an Escherichia coli inner membrane preparation.

    PubMed Central

    Chang, C N; Inouye, H; Model, P; Beckwith, J

    1980-01-01

    An inner membrane preparation co-translationally cleaved both the alkaline phosphatase and bacteriophage f1 coat protein precursors to the mature proteins. Post-translational outer membrane proteolysis of pre-alkaline phosphatase generated a protein smaller than the authentic monomer. Images PMID:6991486

  1. Experimental Analysis of Exhaust Manifold with Ceramic Coating for Reduction of Heat Dissipation

    NASA Astrophysics Data System (ADS)

    Saravanan, J.; Valarmathi, T. N.; Nathc, Rajdeep; Kumar, Prasanth

    2017-05-01

    Exhaust manifold plays an important role in the exhaust system, the manifold delivers the waste toxic gases to a safe distance and it is used to reduce the sound pollution and air pollution. Exhaust manifold suffers with lot of thermal stress, due to this blow holes occurs in the surface of the exhaust manifold and also more noise is developed. The waste toxic gases from the multiple cylinders are collected into a single pipe by the exhaust manifold. The waste toxic gases can damage the material of the manifold. In this study, to prevent the damage zirconia powder has been coated in the inner surface and alumina (60%) combined with titania (40%) has been used for coating the outer surface of the exhaust manifold. After coating experiments have been performed using a multiple-cylinder four stroke stationary petrol engine. The test results of hardness, emission, corrosion and temperature of the coated and uncoated manifolds have been compared. The result shows that the performance is improved and also emission is reduced in the coated exhaust manifold.

  2. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    NASA Astrophysics Data System (ADS)

    Tang, Hui; Yu, Dezhen; Luo, Yan; Wang, Fuping

    2013-01-01

    Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  3. Improving the Corrosion Resistance of Biodegradable Magnesium Alloys by Diffusion Coating Process

    NASA Astrophysics Data System (ADS)

    Levy, Galit Katarivas; Aghion, Eli

    Magnesium alloys suffer from accelerated corrosion in physiological environment and hence their use as a structural material for biodegradable implants is limited. The present study focuses on a diffusion coating treatment that amplifies the beneficial effect of Neodymium on the corrosion resistance of magnesium alloys. The diffusion coating layer was obtained by applying 1 µm Nd coating on EW10X04 magnesium alloy using Electron-gun evaporator and PVD process. The coated alloy was heat treated at 350°C for 3 hours in a protective atmosphere of N2+0.2%SF6. The micro structure characteristics were evaluated by SEM, XRD, and XPS; the corrosion resistance was examined by potentiodynamic polarization and EIS analysis. The corrosion resistance of the diffusion coated alloy was significantly improved compared to the uncoated material. This was related to: (i) formation of Nd2O3 in the outer scale, (ii) integration of Nd in the MgO oxide layer, and (iii) formation of secondary phase Mg41Nd5 along the grain boundaries of α-Mg.

  4. Structure and Properties of the Aluminide Coatings on the Inconel 625 Superalloy

    NASA Astrophysics Data System (ADS)

    Adamiak, Stanisław; Bochnowski, Wojciech; Dziedzic, Andrzej; Filip, Ryszard; Szeregij, Eugeniusz

    2016-01-01

    The research samples used in this study were based on the Inconel 625 alloy; the examined samples were coated with aluminide films deposited in a low-activity chemical vapor deposition (CVD) process. The samples' microstructure was investigated with optical and electron microscopy and energy dispersive X-ray spectroscopy analysis. Hardness measurements were performed using Vickers and Berkovich test methods. The adhesion of the aluminide coating was determined by fractography. It was shown that the fracture mechanism was different for the respective zones of the aluminide coating and the substrate material. The outer zone of the aluminide coating is characterized by an intercrystalline fracture, with a small contribution of transcrystalline fracture within individual grains (large crystallites in the bottom of the zone, composed of smaller crystallites, also show an intercrystalline fracture). The substrate material exhibited a ductile intercrystalline fracture. Based on this investigation, an increase of the microhardness of the material occurring at loads below 0.2 N was observed. When determining microhardness of aluminide coating it is necessary to take into account the optimal choice of the indentation tip.

  5. Vacuum-insulated catalytic converter

    DOEpatents

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  6. The effect of 150μm expandable graphite on char expansion of intumescent fire retardant coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullah, Sami, E-mail: samichemist1@gmail.com; Shariff, A. M., E-mail: azmish@petronas.com.my, E-mail: azmibustam@petronas.com.my; Bustam, M. A., E-mail: azmish@petronas.com.my, E-mail: azmibustam@petronas.com.my

    2014-10-24

    Intumescent is defined as the swelling of certain substances to insulate the underlying substrate when they are heated. In this research work the effect of 150μm expandable graphite (EG) was studied on char expansion, char morphology and char composition of intumescent coating formulations (ICFs). To study the expansion and thermal properties of the coating, nine different formulations were prepared. The coatings were tested at 500 °C for one hour and physically were found very stable and well bound with the steel substrate. The morphology was studied by Scanning Electron Microscopy (SEM). The char composition was analysed by X-ray Diffraction (XRD)more » and Fourier transform infrared spectroscopy (FTIR) techniques. EG above than 10.8wt% expands the char abruptly with uniform network structure and affect the outer surface of the char.« less

  7. Preventing Protein Adsorption and Macrophage Uptake of Gold Nanoparticles via a Hydrophobic Shield

    PubMed Central

    Larson, Timothy A.; Joshi, Pratixa P.; Sokolov, Konstantin

    2012-01-01

    Polyethylene glycol (PEG) surface coatings are widely used to render stealth properties to nanoparticles in biological applications. There is abundant literature on benefits of PEG coatings and their ability to reduce protein adsorption, to diminish non-specific interactions with cells, and to improve pharmacokinetics, but very little discussion of the limitations of PEG coatings. Here, we show that physiological concentrations of cysteine and cystine can displace methoxy-PEG-thiol molecules from the gold nanoparticle (GNP) surface that leads to protein adsorption and cell uptake in macrophages within 24 hours. Furthermore, we address this problem by incorporating an alkyl linker between the PEG and the thiol moieties that provides a hydrophobic shield layer between the gold surface and the hydrophilic outer PEG layer. The mPEG-alkyl-thiol coating greatly reduces protein adsorption on GNPs and their macrophage uptake. This has important implications for the design of GNP for biological systems. PMID:23009596

  8. Size matters for violent discharge height and settling speed of Sphagnum spores: important attributes for dispersal potential.

    PubMed

    Sundberg, Sebastian

    2010-02-01

    Initial release height and settling speed of diaspores are biologically controlled components which are key to modelling wind dispersal. Most Sphagnum (peat moss) species have explosive spore liberation. In this study, how capsule and spore sizes affect the height to which spores are propelled were measured, and how spore size and spore number of discharged particles relate to settling speed in the aspherical Sphagnum spores. Spore discharge and spore cloud development were filmed in a closed chamber (nine species). Measurements were taken from snapshots at three stages of cloud development. Settling speed of spores (14 species) and clusters were timed in a glass tube. The maximum discharge speed measured was 3.6 m s(-1). Spores reached a maximum height of 20 cm (average: 15 cm) above the capsule. The cloud dimensions at all stages were related positively to capsule size (R(2) = 0.58-0.65). Thus species with large shoots (because they have large capsules) have a dispersal advantage. Half of the spores were released as singles and the rest as clusters (usually two to four spores). Single spores settled at 0.84-1.86 cm s(-1), about 52 % slower than expected for spherical spores with the same diameters. Settling speed displayed a positive curvilinear relationship with spore size, close to predictions by Stokes' law for spherical spores with 68 % of the actual diameters. Light-coloured spores settled slower than dark spores. Settling speed of spore clusters agrees with earlier studies. Effective spore discharge and small, slowly settling spores appear particularly important for species in forested habitats. The spore discharge heights in Sphagnum are among the greatest for small, wind-dispersed propagules. The discharge heights and the slow settling of spores affect dispersal distances positively and may help to explain the wide distribution of most boreal Sphagnum species.

  9. Size matters for violent discharge height and settling speed of Sphagnum spores: important attributes for dispersal potential

    PubMed Central

    Sundberg, Sebastian

    2010-01-01

    Background and Aims Initial release height and settling speed of diaspores are biologically controlled components which are key to modelling wind dispersal. Most Sphagnum (peat moss) species have explosive spore liberation. In this study, how capsule and spore sizes affect the height to which spores are propelled were measured, and how spore size and spore number of discharged particles relate to settling speed in the aspherical Sphagnum spores. Methods Spore discharge and spore cloud development were filmed in a closed chamber (nine species). Measurements were taken from snapshots at three stages of cloud development. Settling speed of spores (14 species) and clusters were timed in a glass tube. Key Results The maximum discharge speed measured was 3·6 m s−1. Spores reached a maximum height of 20 cm (average: 15 cm) above the capsule. The cloud dimensions at all stages were related positively to capsule size (R2 = 0·58–0·65). Thus species with large shoots (because they have large capsules) have a dispersal advantage. Half of the spores were released as singles and the rest as clusters (usually two to four spores). Single spores settled at 0·84–1·86 cm s−1, about 52 % slower than expected for spherical spores with the same diameters. Settling speed displayed a positive curvilinear relationship with spore size, close to predictions by Stokes' law for spherical spores with 68 % of the actual diameters. Light-coloured spores settled slower than dark spores. Settling speed of spore clusters agrees with earlier studies. Effective spore discharge and small, slowly settling spores appear particularly important for species in forested habitats. Conclusions The spore discharge heights in Sphagnum are among the greatest for small, wind-dispersed propagules. The discharge heights and the slow settling of spores affect dispersal distances positively and may help to explain the wide distribution of most boreal Sphagnum species. PMID:20123930

  10. A model of cell-wall dynamics during sporulation in Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Yap, Li-Wei; Endres, Robert G.

    To survive starvation, Bacillus subtilis forms durable spores. After asymmetric cell division, the septum grows around the forespore in a process called engulfment, but the mechanism of force generation is unknown. Here, we derived a novel biophysical model for the dynamics of cell-wall remodeling during engulfment based on a balancing of dissipative, active, and mechanical forces. By plotting phase diagrams, we predict that sporulation is promoted by a line tension from the attachment of the septum to the outer cell wall, as well as by an imbalance in turgor pressures in the mother-cell and forespore compartments. We also predict that significant mother-cell growth hinders engulfment. Hence, relatively simple physical principles may guide this complex biological process.

  11. Modulation of a pulsatile release drug delivery system using different swellable/rupturable materials.

    PubMed

    El-Maradny, Hoda A

    2007-11-01

    Diclofenac sodium tablets consisting of core coated with two layers of swelling and rupturable coatings were prepared and evaluated as a pulsatile drug delivery system. Cores containing the drug were prepared by direct compression using microcrystalline cellulose and Ludipress as hydrophilic excipients with the ratio of 1:1. Cores were then coated sequentially with an inner swelling layer of different swellable materials; either Explotab, Croscarmellose sodium, or Starch RX 1500, and an outer rupturable layer of different levels of ethylcellulose. The effect of the nature of the swelling layer and the level of the rupturable coating on the lag time and the water uptake were investigated. Drug release rate studies were performed using USP paddle method. Results showed the dependence of the lag time and water uptake prior to tablet rupture on the nature of the swelling layer and the coating levels. Explotab showed a significant decrease in the lag time, followed by Croscarmellose sodium and finally by Starch RX 1500. Increasing the level of ethylcellulose coating retarded the diffusion of the release medium to the swelling layer and the rupture of the coat, thus prolonging the lag time.

  12. Structure, composition and morphology of bioactive titanate layer on porous titanium surfaces

    NASA Astrophysics Data System (ADS)

    Li, Jinshan; Wang, Xiaohua; Hu, Rui; Kou, Hongchao

    2014-07-01

    A bioactive coating was produced on pore surfaces of porous titanium samples by an amendatory alkali-heat treatment method. Porous titanium was prepared by powder metallurgy and its porosity and average size were 45% and 135 μm, respectively. Coating morphology, coating structure and phase constituents were examined by SEM, XPS and XRD. It was found that a micro-network structure with sizes of <200 nm mainly composed of bioactive sodium titanate and rutile phases of TiO2 covered the interior and exterior of porous titanium cells, and redundant Ca ion was detected in the titanate layer. The concentration distribution of Ti, O, Ca and Na in the coating showed a compositional gradient from the intermediate layer toward the outer surface. These compositional gradients indicate that the coating bonded to Ti substrate without a distinct interface. After immersion into the SBF solution for 3 days, a bone-like carbonate-hydroxylapatite showing a good biocompatibility was detected on the coating surface. And the redundant Ca advanced the bioactivity of the coating. Thus, the present modification is expected to allow the use of the bioactive porous titanium as artificial bones even under load-bearing conditions.

  13. Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition.

    PubMed

    Qiu, Xun; Wan, Peng; Tan, Lili; Fan, Xinmin; Yang, Ke

    2014-03-01

    A silicon doped calcium phosphate coating was obtained successfully on AZ31 alloy substrate via pulse electrodeposition. A novel dual-layer structure was observed with a porous lamellar-like and outer block-like apatite layer. In vitro immersion tests were adopted in simulated body fluid within 28 days of immersion. Slow degradation rate obtained from weight loss was observed for the Si-doped Ca-P coating, which was also consistent with the results of electrochemical experiments showing an enhanced corrosion resistance for the coating. Further formation of an apatite-like layer on the surface after immersion proved better integrity and biomineralization performance of the coating. Biological characterization was carried out for viability, proliferation and differentiation of MG63 osteoblast-like cells. The coating showed a good cell growth and an enhanced cell proliferation. Moreover, an increased activity of osteogenic marker ALP was found. All the results demonstrated that the Si-doped calcium phosphate was perspective to be used as a coating for magnesium alloy implants to control the degradation rate and enhance the bioactivity, which would facilitate the rapidity of bone tissue repair. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Relation of indoor and outdoor airborne fungal spore levels in the Kansas City metropolitan area.

    PubMed

    Jara, David; Portnoy, Jay; Dhar, Minati; Barnes, Charles

    2017-03-01

    Environmental control is an important component of asthma management for persons with asthma. A damp indoor environment and elevated airborne spore levels are factors in housing environmental control. We investigated if indoor airborne fungal spore levels correlated with outdoor ground-level airborne fungal spores or outdoor centrally collected spore levels as to types and abundance. Air collections were taken from home interiors, outdoor areas adjacent to the homes, and at a central location in the metropolitan area at the approximate same time. All air collections were examined and enumerated microscopically, and airborne spore estimates per cubic meter of air were reported for total fungal spores and for 11 identifiable spore groups. The 244 homes in the study were typical of the North American Midwest. The overall mean total spore counts in spores per cubic meter of air was indoors (4076 spores/m3), outdoors at ground level (8899 spores/m3), and outdoor metropolitan area (8342 spores/m3). All of the major indoor taxa were strongly correlated with the mean total spores present in the home. Total outdoor ground spore levels were highly correlated with levels of major outdoor taxa, such as ascospores and Cladosporium. Correlations of indoor spore levels with outdoor spore levels are strong for most major outdoor taxa. Indoor Aspergillus-Penicillium and Chaetomium are significantly correlated between indoor and local ground-level outdoor air. Although conditions may exist where indoor or outdoor spore levels were not well aligned, in most circumstances, the outdoor airborne spore community was reflected in the indoor airborne spore community.

  15. On the neutralization of bacterial spores in post-detonation flows

    NASA Astrophysics Data System (ADS)

    Gottiparthi, K. C.; Schulz, J. C.; Menon, S.

    2014-09-01

    In multiple operational scenarios, explosive charges are used to neutralize confined or unconfined stores of bacterial spores. The spore destruction is achieved by post-detonation combustion and mixing of hot detonation product gases with the ambient flow and spore clouds. In this work, blast wave interaction with bacterial spore clouds and the effect of post-detonation combustion on spore neutralization are investigated using numerical simulations. Spherical explosive charges (radius, = 5.9 cm) comprising of nitromethane are modeled in the vicinity of a spore cloud, and the spore kill in the post-detonation flow is quantified. The effect of the mass of the spores and the initial distance, , of the spore cloud from the explosive charge on the percentage of spores neutralized is investigated. When the spores are initially placed within a distance of 3.0, within 0.1 ms after detonation of the charge, all the spores are neutralized by the blast wave and the hot detonation product gases. In contrast, almost all the spores survived the explosion when is greater than 8.0. The percentage of intact spores varied from 0 to 100 for 3.0 8.0 with spore neutralization dependent on time spent by the spores in the post-detonation mixing/combustion zone.

  16. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm-1. For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification.

  17. Characterization and Properties of Micro-arc Composite Ceramic Coatings on Magnesium Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Long; Jiang, Bailing; Ge, Yanfeng

    2013-05-21

    Magnesium alloys are of growing interest for many industrial applications due to their favorable strength-to-weight ratio and excellent cast ability. However, one of the limiting factors in the use of magnesium on production vehicles is its poor corrosion resistance. Micro-arc Composite Ceramic (MCC) coatings on AZ91D magnesium alloys were prepared in combination with Micro-arc Oxidation (MAO) and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance, thermal shock resistance and adhesion of MCC coating were studied, respectively. The surface and cross-section morphologies of MAO and MCC coating showed that the outer organic coating filled the holes on themore » surface of the MAO coating. It acted as a shelter on the MAO coating surface when the MCC coatings were exposed to corrosive environments. The corrosion resistance of the MCC coating was characterized by a copper-accelerated acetic acid salt spray test. The testing results showed that the creep back from scribe lines was less than 1mm and completely fit the evaluation standard. The composite structure of the MCC coating vastly improved the corrosion resistance of Mg alloys. According to testing standards, the resistance to abrasion, stone impact resistance, thermal shock resistance and adhesion of MCC coatings completely met the evaluation standard requirements. The MCC coated AZ91D magnesium alloys possessed excellent properties; this is a promising corrosion and wear resistance surface treatment technology on magnesium alloys for production vehicles.« less

  18. No positive effect of Acid etching or plasma cleaning on osseointegration of titanium implants in a canine femoral condyle press-fit model.

    PubMed

    Saksø, H; Jakobsen, T; Saksø, M; Baas, J; Jakobsen, Ss; Soballe, K

    2013-01-01

    Implant surface treatments that improve early osseointegration may prove useful in long-term survival of uncemented implants. We investigated Acid Etching and Plasma Cleaning on titanium implants. In a randomized, paired animal study, four porous coated Ti implants were inserted into the femurs of each of ten dogs. PC (Porous Coating; control)PC+PSHA (Plasma Sprayed Hydroxyapatite; positive control)PC+ET (Acid Etch)PC+ET+PLCN (Plasma Cleaning) After four weeks mechanical fixation was evaluated by push-out test and osseointegration by histomorphometry. The PSHA-coated implants were better osseointegrated than the three other groups on outer surface implant porosity (p<0.05) while there was no statistical difference in deep surface implant porosity when compared with nontreated implant. Within the deep surface implant porosity, there was more newly formed bone in the control group compared to the ET and ET+PCLN groups (p<0.05). In all compared groups, there was no statistical difference in any biomechanical parameter. In terms of osseointegration on outer surface implant porosity PC+PSHA was superior to the other three groups. Neither the acid etching nor the plasma cleaning offered any advantage in terms of implant osseointegration. There was no statistical difference in any of the biomechanical parameters among all groups in the press-fit model at 4 weeks of evaluation time.

  19. The quantitative assessment of peri-implant bone responses using histomorphometry and micro-computed tomography.

    PubMed

    Schouten, Corinne; Meijer, Gert J; van den Beucken, Jeroen J J P; Spauwen, Paul H M; Jansen, John A

    2009-09-01

    In the present study, the effects of implant design and surface properties on peri-implant bone response were evaluated with both conventional histomorphometry and micro-computed tomography (micro-CT), using two geometrically different dental implants (Screw type, St; Push-in, Pi) either or not surface-modified (non-coated, CaP-coated, or CaP-coated+TGF-beta1). After 12 weeks of implantation in a goat femoral condyle model, peri-implant bone response was evaluated in three different zones (inner: 0-500 microm; middle: 500-1000 microm; and outer: 1000-1500 microm) around the implant. Results indicated superiority of conventional histomorphometry over micro-CT, as the latter is hampered by deficits in the discrimination at the implant/tissue interface. Beyond this interface, both analysis techniques can be regarded as complementary. Histomorphometrical analysis showed an overall higher bone volume around St compared to Pi implants, but no effects of surface modification were observed. St implants showed lowest bone volumes in the outer zone, whereas inner zones were lowest for Pi implants. These results implicate that for Pi implants bone formation started from two different directions (contact- and distance osteogenesis). For St implants it was concluded that undersized implantation technique and loosening of bone fragments compress the zones for contact and distant osteogenesis, thereby improving bone volume at the interface significantly.

  20. Microbead-based immunoassay using the outer membrane layer of Escherichia coli combined with autodisplayed Z-domains

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hoon; Bong, Ji-Hong; Yoo, Gu; Chang, Seo-Yoon; Park, Min; Chang, Young Wook; Kang, Min-Jung; Jose, Joachim; Pyun, Jae-Chul

    2016-01-01

    The Z-domain has the potential to control the orientation of immobilized antibodies because of its binding affinity to the Fc regions of antibodies (IgGs). In this work, Z-domains were autodisplayed on the outer membrane (OM) of Escherichia coli. OM particles were isolated and coated onto microbeads with positive, neutral, or negative surface charges. Other conditions such as incubation time and initial OM concentration were also optimized for the OM coating to obtain maximum antibody-binding. Using three kinds of model proteins with different isoelectric points (pI), streptavidin (pI = 5, negative charge at pH 7), horseradish peroxidase (pI = 7, neutral charge at pH 7), and avidin (pI = 10, positive charge at pH 7), protein immobilization onto the microbeads was carried out through physical adsorption and electrostatic interactions. Using fluorescently labeled antibodies and fluorescence-activated cell sorting, it was determined that the neutral and the positively charged microbeads effectively bound antibodies while minimizing non-specific protein binding. The OM-coated microbeads with autodisplayed Z-domains were applied to C-reactive protein immunoassay. This immunoassay achieved 5-fold improved sensitivity compared to conventional immunoassay based on physical adsorption of antibodies at the cutoff concentration of medical diagnosis of inflammatory diseases (1000 ng/ml) and cardiovascular diseases (200 ng/ml).

  1. Phosphatic precipitates associated with actinomycetes in speleothems from Grand Cayman, British West Indies

    NASA Astrophysics Data System (ADS)

    Jones, Brian

    2009-07-01

    Calcitic speleothems from a cave located on the north central coast of Grand Cayman commonly include corrosion surfaces that developed when calcite precipitation ceased and corrosion mediated by condensates became the operative process. Dissolution features associated with these surfaces, including etched crystal surfaces, microcavities, and solution-widened boundaries between crystals, are commonly occupied by microbes and microbial mats that have been replaced by calcium phosphate and/or coated with calcium phosphate. No mineralized microbes were found in the calcite crystals that form the speleothems. The morphology of the mineralized hyphae (eight morphotypes) and spores (nine morphotypes) are indicative of actinomycetes, a group of microbes that are ideally adapted to life in oligotrophic cave environs. Superb preservation of the delicate hyphae, aerial hyphae, and delicate ornamentation on the hyphae and spores indicate that the microbes underwent rapid mineralized while close to their original life positions. Although these actinomycetes were extremely susceptible to replacement by calcium phosphate, there is no evidence that they directly or indirectly controlled precipitation. Nevertheless, the association between the P-rich precipitates and microbes shows that the use of phosphorus as a proxy for seasonal climate changes in paleoclimate analyses must be treated with caution.

  2. Inhibiting Inosine Hydrolase and Alanine Racemase to Enhance the Germination of Bacillus anthracis Sterne Spores: Potential Spore Decontamination Strategies

    DTIC Science & Technology

    2015-06-19

    animal waste an~ decompositiOn DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. UNCLASSIFIED PR-15-306 Anthrax...influx of water. Ungerminated spore Germination Germinated spore Spore hydratation ~ Non-refractile spore Refractile spore • Fluorescence

  3. Effects of meteorological conditions on spore plumes

    NASA Astrophysics Data System (ADS)

    Burch, M.; Levetin, E.

    2002-05-01

    Fungal spores are an ever-present component of the atmosphere, and have long been known to trigger asthma and hay fever symptoms in sensitive individuals. The atmosphere around Tulsa has been monitored for airborne spores and pollen with Burkard spore traps at several sampling stations. This study involved the examination of the hourly spore concentrations on days that had average daily concentrations near 50,000 spores/m3 or greater. Hourly concentrations of Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, other, and total spores were determined on 4 days at three sites and then correlated with hourly meteorological data including temperature, rainfall, wind speed, dew point, air pressure, and wind direction. On each of these days there was a spore plume, a phenomenon in which spore concentrations increased dramatically over a very short period of time. Spore plumes generally occurred near midday, and concentrations were seen to increase from lows around 20,000 total spores/m3 to highs over 170,000 total spores/m3 in 2 h. Multiple regression analysis of the data indicated that increases in temperature, dew point, and air pressure correlated with the increase in spore concentrations, but no single weather variable predicted the appearance of a spore plume. The proper combination of changes in these meteorological parameters that result in a spore plume may be due to the changing weather conditions associated with thunderstorms, as on 3 of the 4 days when spore plumes occurred there were thunderstorms later that evening. The occurrence of spore plumes may have clinical significance, because other studies have shown that sensitization to certain spore types can occur during exposure to high spore concentrations.

  4. Development and properties of duplex MgF2/PCL coatings on biodegradable magnesium alloy for biomedical applications.

    PubMed

    Makkar, Preeti; Kang, Hoe Jin; Padalhin, Andrew R; Park, Ihho; Moon, Byoung-Gi; Lee, Byong Taek

    2018-01-01

    The present work addresses the performance of polycaprolactone (PCL) coating on fluoride treated (MgF2) biodegradable ZK60 magnesium alloy (Mg) for biomedical application. MgF2 conversion layer was first produced by immersing Mg alloy substrate in hydrofluoric acid solution. The outer PCL coating was then prepared using dip coating technique. Morphology, elements profile, phase structure, roughness, mechanical properties, invitro corrosion, and biocompatibility of duplex MgF2/PCL coating were then characterized and compared to those of fluoride coated and uncoated Mg samples. The invivo degradation behavior and biocompatibility of duplex MgF2/PCL coating with respect to ZK60 Mg alloy were also studied using rabbit model for 2 weeks. SEM and TEM analysis showed that the duplex coating was uniform and comprised of porous PCL film (~3.3 μm) as upper layer with compact MgF2 (~2.2 μm) as inner layer. No significant change in microhardness was found on duplex coating compared with uncoated ZK60 Mg alloy. The duplex coating showed improved invitro corrosion resistance than single layered MgF2 or uncoated alloy samples. The duplex coating also resulted in better cell viability, cell adhesion, and cell proliferation compared to fluoride coated or uncoated alloy. Preliminary invivo studies indicated that duplex MgF2/PCL coating reduced the degradation rate of ZK60 Mg alloy and exhibited good biocompatibility. These results suggested that duplex MgF2/PCL coating on magnesium alloy might have great potential for orthopedic applications.

  5. Development and properties of duplex MgF2/PCL coatings on biodegradable magnesium alloy for biomedical applications

    PubMed Central

    Makkar, Preeti; Kang, Hoe Jin; Padalhin, Andrew R.; Park, Ihho; Moon, Byoung-Gi

    2018-01-01

    The present work addresses the performance of polycaprolactone (PCL) coating on fluoride treated (MgF2) biodegradable ZK60 magnesium alloy (Mg) for biomedical application. MgF2 conversion layer was first produced by immersing Mg alloy substrate in hydrofluoric acid solution. The outer PCL coating was then prepared using dip coating technique. Morphology, elements profile, phase structure, roughness, mechanical properties, invitro corrosion, and biocompatibility of duplex MgF2/PCL coating were then characterized and compared to those of fluoride coated and uncoated Mg samples. The invivo degradation behavior and biocompatibility of duplex MgF2/PCL coating with respect to ZK60 Mg alloy were also studied using rabbit model for 2 weeks. SEM and TEM analysis showed that the duplex coating was uniform and comprised of porous PCL film (~3.3 μm) as upper layer with compact MgF2 (~2.2 μm) as inner layer. No significant change in microhardness was found on duplex coating compared with uncoated ZK60 Mg alloy. The duplex coating showed improved invitro corrosion resistance than single layered MgF2 or uncoated alloy samples. The duplex coating also resulted in better cell viability, cell adhesion, and cell proliferation compared to fluoride coated or uncoated alloy. Preliminary invivo studies indicated that duplex MgF2/PCL coating reduced the degradation rate of ZK60 Mg alloy and exhibited good biocompatibility. These results suggested that duplex MgF2/PCL coating on magnesium alloy might have great potential for orthopedic applications. PMID:29608572

  6. Spore collection and elimination apparatus and method

    DOEpatents

    Czajkowski, Carl [South Jamesport, NY; Warren, Barbara Panessa [Port Jefferson, NY

    2007-04-03

    The present invention is for a spore collection apparatus and its method of use. The portable spore collection apparatus includes a suction source, a nebulizer, an ionization chamber and a filter canister. The suction source collects the spores from a surface. The spores are activated by heating whereby spore dormancy is broken. Moisture is then applied to the spores to begin germination. The spores are then exposed to alpha particles causing extinction.

  7. 16 CFR 305.3 - Description of covered products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... operation. Some models may require user intervention to initiate these different segments of the cycle after... inner reflective coating on the outer bulb to direct the light, an R, PAR, or similar bulb shapes... bulb to direct the light, an R, PAR, ER, BR, BPAR, or similar bulb shapes with E26 medium screw bases...

  8. Molting Mania

    ERIC Educational Resources Information Center

    Arce, Christina

    2006-01-01

    Most children are unaware of the process of molting, the periodic shedding and replacement of part or all of a coat or an outer covering of an animal, but it is an animal characteristic they are sure to be interested in and should have the opportunity to observe. In this article, the author shares how she and her students observed various…

  9. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy.

    PubMed

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm(-1). For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Measurement of AC Losses in a Racetrack Superconducting Coil Made from YBCO Coated Conductor

    NASA Astrophysics Data System (ADS)

    Seiler, Eugen; Abrahamsen, Asger B.; Kováč, Ján; Wichmann, Mike; Træholt, Chresten

    We present the results of transport measurements of AC losses in a racetrack shaped superconducting coil made from coated conductor tape. The outer dimensions of the coil are approximately 24 cm × 12 cm and it has 57 turns. The coil is impregnated with epoxy resin and fiberglass tape is used to insulate the individual turns and to improve the mechanical properties of the epoxy when exposed to thermal cycling. The coil is manufactured as a part of the field winding of a small synchronous generator; therefore stainless steel frames are installed on the inner and outer side of the winding to reinforce it. The AC loss is measured versus the transport current Ia with the coil immersed in liquid nitrogen. Measurements at frequencies 21 Hz, 36 Hz and 72 Hz are compared. The AC losses follow Ia2 dependence at low current amplitudes and Ia3 at high amplitudes. After cutting the inner steel frame the low amplitude losses are decreased, their frequency dependence is reduced but their dependence on the current remains unchanged.

  11. Analytical study of graphite-epoxy tube response to thermal loads

    NASA Technical Reports Server (NTRS)

    Knott, Tamara W.; Hyer, M. W.

    1988-01-01

    The thermally-induced stresses and deformations in graphite-epoxy tubes with aluminum foil bonded to both inner and outer surfaces, and to the outer surface only are computed. Tubes fabricated from three material systems, T300/934, P75s/934, and P75s/BP907, and having a 1 inch inner radius and a lamination sequence of (+15/0 + or - 10/0)sub s are studied. Radial, axial, and circumferential stresses in the various layers of the tube, in the foil, and in the adhesive bonding the foil to the tubes are computed using an elasticity solution. The results indicate that the coatings have no detrimental effect on the stress state in the tube, particularly those stresses that lead to microcracking. The addition of the aluminum foil does, however, significantly influence the axial expansion of the T300/934 tube, the tube with the softer graphite fibers. The addition of foil can change the sign of the axial coefficient of thermal expansion. Twist tendencies of the tubes are only slightly affected by the addition of the coatings, but are of second order compared to the axial response.

  12. Catalytic cartridge SO/sub 3/ decomposer

    DOEpatents

    Galloway, T.R.

    1980-11-18

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO/sub 3/ decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO/sub 3/ gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO/sub 3/ gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety. A fusion reactor may be used as the heat source.

  13. Apparatus and method for pulsed laser deposition of materials on wires and pipes

    DOEpatents

    Fernandez, Felix E.

    2003-01-01

    Methods and apparatuses are disclosed which allow uniform coatings to be applied by pulsed laser deposition (PLD) on inner and outer surfaces of cylindrical objects, such as rods, pipes, tubes, and wires. The use of PLD makes this technique particularly suitable for complex multicomponent materials, such as superconducting ceramics. Rigid objects of any length, i.e., pipes up to a few meters, and with diameters from less than 1 centimeter to over 10 centimeters can be coated using this technique. Further, deposition is effected simultaneously onto an annular region of the pipe wall. This particular arrangement simplifies the apparatus, reduces film uniformity control difficulties, and can result in faster operation cycles. In addition, flexible wires of any length can be continuously coated using the disclosed invention.

  14. Method of making a sodium sulfur battery

    DOEpatents

    Elkins, Perry E.

    1981-01-01

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another.

  15. Monitoring Rates and Heterogeneity of High-Pressure Germination of Bacillus Spores by Phase-Contrast Microscopy of Individual Spores

    DTIC Science & Technology

    2014-01-01

    wild-type spores but ~15-fold higher deltaTrelease values; v ) germination kinetics of wild-type spores given a ? 30 sec 140 MPa HP pulse followed by...15-fold longer than those for wild-type spores, but the two types of spores exhibited similar average Tlag values; and ( v ) the germination of wild-type...committed spores, as it does for nutrient-committed spores (14)? ( v ) Can these HP-com- mitted spores be isolated under conditions that do not allow

  16. Arbuscular mycorrhizal fungi spore propagation using single spore as starter inoculum and a plant host.

    PubMed

    Selvakumar, G; Shagol, C C; Kang, Y; Chung, B N; Han, S G; Sa, T M

    2018-06-01

    The propagation of pure cultures of arbuscular mycorrhizal fungal (AMF) is an essential requirement for their large-scale agricultural application and commercialization as biofertilizers. The present study aimed to propagate AMF using the single-spore inoculation technique and compare their propagation ability with the known reference spores. Arbuscular mycorrhizal fungal spores were collected from salt-affected Saemangeum reclaimed soil in South Korea. The technique involved inoculation of sorghum-sudangrass (Sorghum bicolor L.) seedlings with single, healthy spores on filter paper followed by the transfer of successfully colonized seedlings to 1-kg capacity pots containing sterilized soil. After the first plant cycle, the contents were transferred to 2·5-kg capacity pots containing sterilized soil. Among the 150 inoculated seedlings, only 27 seedlings were colonized by AMF spores. After 240 days, among the 27 seedlings, five inoculants resulted in the production of over 500 spores. The 18S rDNA sequencing of spores revealed that the spores produced through single-spore inoculation method belonged to Gigaspora margarita, Claroideoglomus lamellosum and Funneliformis mosseae. Furthermore, indigenous spore F. mosseae M-1 reported a higher spore count than the reference spores. The AMF spores produced using the single-spore inoculation technique may serve as potential bio-inoculants with an advantage of being more readily adopted by farmers due to the lack of requirement of a skilled technique in spore propagation. The results of the current study describe the feasible and cost-effective method to mass produce AMF spores for large-scale application. The AMF spores obtained from this method can effectively colonize plant roots and may be easily introduced to the new environment. © 2018 The Society for Applied Microbiology.

  17. Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene glycol) networks: towards high-performance antifouling coatings.

    PubMed

    Wang, Yapei; Pitet, Louis M; Finlay, John A; Brewer, Lenora H; Cone, Gemma; Betts, Douglas E; Callow, Maureen E; Callow, James A; Wendt, Dean E; Hillmyer, Marc A; DeSimonea, Joseph M

    2011-01-01

    The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M(w) = 1500 g mol(-1)) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M(w) = 300, 475, 1100 g mol(-1)), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.

  18. Methods for Integrated Air Sampling and DNA Analysis for Detection of Airborne Fungal Spores

    PubMed Central

    Williams, Roger H.; Ward, Elaine; McCartney, H. Alastair

    2001-01-01

    Integrated air sampling and PCR-based methods for detecting airborne fungal spores, using Penicillium roqueforti as a model fungus, are described. P. roqueforti spores were collected directly into Eppendorf tubes using a miniature cyclone-type air sampler. They were then suspended in 0.1% Nonidet P-40, and counted using microscopy. Serial dilutions of the spores were made. Three methods were used to produce DNA for PCR tests: adding untreated spores to PCRs, disrupting spores (fracturing of spore walls to release the contents) using Ballotini beads, and disrupting spores followed by DNA purification. Three P. roqueforti-specific assays were tested: single-step PCR, nested PCR, and PCR followed by Southern blotting and probing. Disrupting the spores was found to be essential for achieving maximum sensitivity of the assay. Adding untreated spores to the PCR did allow the detection of P. roqueforti, but this was never achieved when fewer than 1,000 spores were added to the PCR. By disrupting the spores, with or without subsequent DNA purification, it was possible to detect DNA from a single spore. When known quantities of P. roqueforti spores were added to air samples consisting of high concentrations of unidentified fungal spores, pollen, and dust, detection sensitivity was reduced. P. roqueforti DNA could not be detected using untreated or disrupted spore suspensions added to the PCRs. However, using purified DNA, it was possible to detect 10 P. roqueforti spores in a background of 4,500 other spores. For all DNA extraction methods, nested PCR was more sensitive than single-step PCR or PCR followed by Southern blotting. PMID:11375150

  19. Microsphere erosion in outer hydrogel membranes creating macroscopic porosity to counter biofouling-induced sensor degradation.

    PubMed

    Vaddiraju, S; Wang, Y; Qiang, L; Burgess, D J; Papadimitrakopoulos, F

    2012-10-16

    Biofouling and tissue inflammation present major challenges toward the realization of long-term implantable glucose sensors. Following sensor implantation, proteins and cells adsorb on sensor surfaces to not only inhibit glucose flux but also signal a cascade of inflammatory events that eventually lead to permeability-reducing fibrotic encapsulation. The use of drug-eluting hydrogels as outer sensor coatings has shown considerable promise to mitigate these problems via the localized delivery of tissue response modifiers to suppress inflammation and fibrosis, along with reducing protein and cell absorption. Biodegradable poly (lactic-co-glycolic) acid (PLGA) microspheres, encapsulated within a poly (vinyl alcohol) (PVA) hydrogel matrix, present a model coating where the localized delivery of the potent anti-inflammatory drug dexamethasone has been shown to suppress inflammation over a period of 1-3 months. Here, it is shown that the degradation of the PLGA microspheres provides an auxiliary venue to offset the negative effects of protein adsorption. This was realized by: (1) the creation of fresh porosity within the PVA hydrogel following microsphere degradation (which is sustained until the complete microsphere degradation) and (2) rigidification of the PVA hydrogel to prevent its complete collapse onto the newly created void space. Incubation of the coated sensors in phosphate buffered saline (PBS) led to a monotonic increase in glucose permeability (50%), with a corresponding enhancement in sensor sensitivity over a 1 month period. Incubation in serum resulted in biofouling and consequent clogging of the hydrogel microporosity. This, however, was partially offset by the generated macroscopic porosity following microsphere degradation. As a result of this, a 2-fold recovery in sensor sensitivity for devices with microsphere/hydrogel composite coatings was observed as opposed to similar devices with blank hydrogel coatings. These findings suggest that the use of macroscopic porosity can reduce sensitivity drifts resulting from biofouling, and this can be achieved synergistically with current efforts to mitigate negative tissue responses through localized and sustained drug delivery.

  20. Helmet of a laminate construction of polycarbonate and polysulfone polymeric material

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J. (Inventor); Dawn, Frederic S. (Inventor)

    1991-01-01

    An article of laminate construction is disclosed which is comprised of an underlayer of polycarbonate polymer material to which is applied a chemically resistant outer layer of polysulfone. The layers which are joined by compression-heat molding, are molded to form the shape of a body protective shell such as a space helmet comprising a shell of polycarbonate, polysulfone laminate construction attached at its open end to a sealing ring adapted for connection to a space suit. The front portion of the shell provides a transparent visor for the helmet. An outer visor of polycarbonate polysulfone laminate construction is pivotally mounted to the sealing ring for covering the transparent visor portion of the shell during extravehicular activities. The polycarbonate under layer of the outer visor is coated on its inner surface with a vacuum deposit of gold to provide additional thermal radiation resistance.

  1. Protective Skins for Aerogel Monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Johnston, James C.; Kuczmarski, Maria A.; Meador, Ann B.

    2007-01-01

    A method of imparting relatively hard protective outer skins to aerogel monoliths has been developed. Even more than aerogel beads, aerogel monoliths are attractive as thermal-insulation materials, but the commercial utilization of aerogel monoliths in thermal-insulation panels has been inhibited by their fragility and the consequent difficulty of handling them. Therefore, there is a need to afford sufficient protection to aerogel monoliths to facilitate handling, without compromising the attractive bulk properties (low density, high porosity, low thermal conductivity, high surface area, and low permittivity) of aerogel materials. The present method was devised to satisfy this need. The essence of the present method is to coat an aerogel monolith with an outer polymeric skin, by painting or spraying. Apparently, the reason spraying and painting were not attempted until now is that it is well known in the aerogel industry that aerogels collapse in contact with liquids. In the present method, one prevents such collapse through the proper choice of coating liquid and process conditions: In particular, one uses a viscous polymer precursor liquid and (a) carefully controls the amount of liquid applied and/or (b) causes the liquid to become cured to the desired hard polymeric layer rapidly enough that there is not sufficient time for the liquid to percolate into the aerogel bulk. The method has been demonstrated by use of isocyanates, which, upon exposure to atmospheric moisture, become cured to polyurethane/polyurea-type coats. The method has also been demonstrated by use of commercial epoxy resins. The method could also be implemented by use of a variety of other resins, including polyimide precursors (for forming high-temperature-resistant protective skins) or perfluorinated monomers (for forming coats that impart hydrophobicity and some increase in strength).

  2. Characterization of fungal spores in ambient particulate matter: A study from the Himalayan region

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Attri, Arun K.

    2016-10-01

    Fungal spores as a constituent of ambient particulate matter (PM) is of concern; they not only display the physical traits of a particle, but are also potential allergens and health risk. An investigation over fourteen month was undertaken at a rural site located in the Western Himalayan region, to evaluate the PM associated fungal spores' concentration and diversity. The season-wise change in the fungal spores concentration in the Coarse Particulate Matter (CPM) fraction (aerodynamic diameter > 10 μm) varied from 500 to 3899 spores m-3. Their average concentration over 14 months was 1517 spores m-3. Significant diversity of fungal spores in the CPM samples was observed; 27 individual genera of fungal spores were identified, of which many were known allergens. Presence of Ascomycota and Basidiomycota fungal spores was dominant in the samples; ∼20% of the spores were un-characterized. The season-wise variability in fungal spores showed a statistically significant high correlation with CPM load. Maximum number concentration of the spores in CPM was recorded in the summer, while minimum in the winter. The high diversity of spores occurred during monsoon and post monsoon months. The meteorological factors played an important role in the fungal spores' distribution profile. The temporal profile of the spores showed significant correlation with the ambient temperature (T), relative humidity (RH), wind speed (WS) and planetary boundary layer (PBL) height. Strong correlation of WS with fungal spores and CPM, and wind back trajectories suggest that re-suspension and wind assisted transport of PM contributes to ambient CPM associated fungal spores.

  3. Viability and infectivity of fresh and cryopreserved Nosema ceranae spores.

    PubMed

    McGowan, Janine; De la Mora, Alvaro; Goodwin, Paul H; Habash, Marc; Hamiduzzaman, Mollah Md; Kelly, Paul G; Guzman-Novoa, Ernesto

    2016-12-01

    The microsporidium fungus Nosema ceranae is an intracellular parasite that infects the midgut of the honey bee, Apis mellifera. A major limitation of research on N. ceranae is that the fungus is non-culturable and thus studying it depends on the seasonal availability of Nosema spores. Also, spore viability and infectivity can vary considerably, and thus there is a need for reliable methods for determining those traits. This study examined different conditions for N. ceranae spore cryopreservation at -70°C, assessing spore viability and infectivity. Viability was determined by a staining procedure counting total spores numbers with bright field microscopy and un-viable spore numbers with the fluorescent dye, propidium iodide. Spore infectivity was determined with a dilution inoculation assay. Infectivity was dependent on the inoculum dose for the proportion of bees with detectable Nosema infections based on the number of spores per bee at 18days after inoculation; 4000 spores per bee or higher were needed to get approx. 100% of the inoculated bees infected. The median infective dose (ID 50 ) was 149 spores per bee, and the minimum dose capable of causing a detectable infection was 1.28 spores. The proportion of N. ceranae infected bees correlated significantly with the number of spores per bee (r=0.98, P<0.0001). N. ceranae spores cryopreserved in water or 10% glycerol did not differ in viability compared to fresh spores, but lost infectivity when inoculated into bees. This study shows that while cryopreservation of N. ceranae spores can preserve viability, the spores can have reduced infectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Tuning the Outward to Inward Swelling in Lithiated Silicon Nanotubes via Surface Oxide Coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiangwei; Luo, Hao; Liu, Yang

    2016-09-14

    The electrochemically-induced mechanical degradation hinders the application of Si anodes in advanced lithium-ion batteries. Hollow structures and surface coatings have been often used to mitigate the degradation of Si-based anodes. However, the structural change and degradation mechanism during lithiation/delithiation of hollow Si structures with coatings remain unclear. Here, we combine in situ TEM experiment and chemomechanical modeling to study the electrochemically induced swelling of amorphous-Si (a-Si) nanotubes with different thicknesses of surface SiOx layers. Surprisingly, we find that no inward expansion occurs at the inner surface during lithiation of a-Si nanotubes with native oxides. In contrast, inward expansion can bemore » induced by increasing the thickness of SiOx on the outer surface. Moreover, both the sandwich lithiation mechanism and two-stage lithiation process in a-Si nanotubes remain unchanged with the increasing thickness of surface coatings. Our chemomechanical modeling reveals the mechanical confinement effects in lithiated a-Si nanotubes with and without SiOx coatings. This work not only provides insights into the degradation of nanotube anodes with surface coatings, but also sheds light onto the optimal design of hollow anodes for high-performance lithium-ion batteries.« less

  5. REVERSIBLE ACTIVATION FOR GERMINATION AND SUBSEQUENT CHANGES IN BACTERIAL SPORES1

    PubMed Central

    Lee, W. H.; Ordal, Z. John

    1963-01-01

    Lee, W. H. (University of Illinois, Urbana) and Z. John Ordal. Reversible activation for germination and subsequent changes in bacterial spores. J. Bacteriol. 85:207–217. 1963.—It was possible to isolate refractile spores of Bacillus megaterium, from a calcium dipicolinate germination solution, that were activated and would germinate spontaneously in distilled water. Some of the characteristics of the initial phases of bacterial spore germination were determined by studying these unstable activated spores. Activated spores of B. megaterium were resistant to stains and possessed a heat resistance intermediate between that of dormant and of germinated spores. The spontaneous germination of activated spores was inhibited by copper, iron, silver, or mercury salts, saturated o-phenanthroline, or solutions having a low pH value, but not by many common inhibitors. These inhibitions could be partially or completely reversed by the addition of sodium dipicolinate. The activated spores could be deactivated and made similar to dormant spores by treatment with acid. Analyses of the exudates from the variously treated spore suspensions revealed that whatever inhibited the germination of activated spores also inhibited the release of spore material. The composition of the germination exudates was different than that of extracts of dormant spores. Although heavy suspensions of activated spores gradually became swollen and dark when suspended in solutions of o-phenanthroline or at pH 4, the materials released resembled those found in extracts of dormant spores rather than those of normal germination exudates. Images PMID:16561987

  6. In vitro dissolution and in vivo gamma scintigraphic evaluation of press-coated salbutamol sulfate tablets.

    PubMed

    Li, Wei; Shi, Cai-Hong; Sheng, Yi-Ling; Cui, Ping; Zhao, Yu-Qing; Zhang, Xiang-Rong

    2013-12-01

    The aim of this study was to investigate the in vitro and in vivo performance of salbutamol sulfate press-coated tablets for delayed release. The in vitro release behavior of press-coated tablets with the outer layer of PEG 6000/ Eudragit S100 blends (2:1) in pH 1.2 (0.1 mol L-1 HCl) and then pH 6.8 buffer solution was examined. Morphological change of the press-coated tablet during in vitro release was recorded with a digital camera. Release of salbutamol sulfate from press-coated tablets was less than 5 % before 3 h and was completed after 8 h in pH 6.8 phosphate buffer solution. In vivo gamma scintigraphy study carried out on healthy men indicated that the designed system released the drug in lower parts of the GI tract after a lag time of 5 hours. The results showed the capability of the system of achieving delayed release of the drug in both in vitro and in vivo gamma scintigraphy studies.

  7. The MYB107 Transcription Factor Positively Regulates Suberin Biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, Mingyue; Hou, Guichuan; Yang, Huijun

    Suberin, a lipophilic polymer deposited in the outer integument of the Arabidopsis ( Arabidopsis thaliana) seed coat, represents an essential sealing component controlling water and solute movement and protecting seed from pathogenic infection. Although many genes responsible for suberin synthesis are identified, the regulatory components controlling its biosynthesis have not been definitively determined. Here, we show that the Arabidopsis MYB107 transcription factor acts as a positive regulator controlling suberin biosynthetic gene expression in the seed coat. MYB107 coexpresses with suberin biosynthetic genes in a temporal manner during seed development. Disrupting MYB107 particularly suppresses the expression of genes involved in suberinmore » but not cutin biosynthesis, lowers seed coat suberin accumulation, alters suberin lamellar structure, and consequently renders higher seed coat permeability and susceptibility to abiotic stresses. Furthermore, MYB107 directly binds to the promoters of suberin biosynthetic genes, verifying its primary role in regulating their expression. Identifying MYB107 as a positive regulator for seed coat suberin synthesis offers a basis for discovering the potential transcriptional network behind one of the most abundant lipid-based polymers in nature.« less

  8. Self-healing coatings containing microcapsule

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhang, Wei; Liao, Le-ping; Wang, Si-jie; Li, Wu-jun

    2012-01-01

    Effectiveness of epoxy resin filled microcapsules was investigated for healing of cracks generated in coatings. Microcapsules were prepared by in situ polymerization of urea-formaldehyde resin to form shell over epoxy resin droplets. Characteristics of these capsules were studied by 3D measuring laser microscope, particle size analyzer, Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimeter (DSC) to investigate their surface morphology, size distribution, chemical structure and thermal stability, respectively. The results indicate that microcapsules containing epoxy resins can be synthesized successfully. The size is around 100 μm. The rough outer surface of microcapsule is composed of agglomerated urea-formaldehyde nanoparticles. The size and surface morphology of microcapsule can be controlled by selecting different processing parameters. The microcapsules basically exhibit good storage stability at room temperature, and they are chemically stable before the heating temperature is up to approximately 200 °C. The model system of self-healing coating consists of epoxy resin matrix, 10 wt% microencapsulated healing agent, 2 wt% catalyst solution. The self-healing function of this coating system is evaluated through self-healing testing of damaged and healed coated steel samples.

  9. The MYB107 Transcription Factor Positively Regulates Suberin Biosynthesis

    DOE PAGES

    Gou, Mingyue; Hou, Guichuan; Yang, Huijun; ...

    2016-12-13

    Suberin, a lipophilic polymer deposited in the outer integument of the Arabidopsis ( Arabidopsis thaliana) seed coat, represents an essential sealing component controlling water and solute movement and protecting seed from pathogenic infection. Although many genes responsible for suberin synthesis are identified, the regulatory components controlling its biosynthesis have not been definitively determined. Here, we show that the Arabidopsis MYB107 transcription factor acts as a positive regulator controlling suberin biosynthetic gene expression in the seed coat. MYB107 coexpresses with suberin biosynthetic genes in a temporal manner during seed development. Disrupting MYB107 particularly suppresses the expression of genes involved in suberinmore » but not cutin biosynthesis, lowers seed coat suberin accumulation, alters suberin lamellar structure, and consequently renders higher seed coat permeability and susceptibility to abiotic stresses. Furthermore, MYB107 directly binds to the promoters of suberin biosynthetic genes, verifying its primary role in regulating their expression. Identifying MYB107 as a positive regulator for seed coat suberin synthesis offers a basis for discovering the potential transcriptional network behind one of the most abundant lipid-based polymers in nature.« less

  10. Very Hard Corrosion-Resistant Roll-Bonded Cr Coating on Mild Steel in Presence of Graphite

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Khara, S.; Shekhar, S.; Mondal, K.

    2017-12-01

    The present work discusses the development of very hard Cr and Cr-carbide coating by roll bonding of Cr powder on a mild steel followed by annealing at 800, 1000, 1100 and 1200 °C with and without the presence of graphite powder packing in argon environment. In addition, the effect of a roll skin pass of 5% prior to the application of coating was studied. The presence of graphite allows diffusion of both carbon and Cr in the mild steel substrate, leading to the formation of Cr-carbide on the outer surface, making the surface very hard (VHN 1800). Depending on the annealing temperature and processing condition, diffusion layer thickness of Cr is found to be in the range of 10-250 μm with Cr content of 12.5-15 wt.% across the diffusion layer. Excellent stable passivity of the coated surface is observed in 0.2 N H2SO4, which is comparable to a highly passivating 304 stainless steel, and very low corrosion rate of the coating is observed as compared to the substrate mild steel.

  11. The MYB107 Transcription Factor Positively Regulates Suberin Biosynthesis1[OPEN

    PubMed Central

    Yang, Huijun; Cai, Yuanheng; Kai, Guoyin

    2017-01-01

    Suberin, a lipophilic polymer deposited in the outer integument of the Arabidopsis (Arabidopsis thaliana) seed coat, represents an essential sealing component controlling water and solute movement and protecting seed from pathogenic infection. Although many genes responsible for suberin synthesis are identified, the regulatory components controlling its biosynthesis have not been definitively determined. Here, we show that the Arabidopsis MYB107 transcription factor acts as a positive regulator controlling suberin biosynthetic gene expression in the seed coat. MYB107 coexpresses with suberin biosynthetic genes in a temporal manner during seed development. Disrupting MYB107 particularly suppresses the expression of genes involved in suberin but not cutin biosynthesis, lowers seed coat suberin accumulation, alters suberin lamellar structure, and consequently renders higher seed coat permeability and susceptibility to abiotic stresses. Furthermore, MYB107 directly binds to the promoters of suberin biosynthetic genes, verifying its primary role in regulating their expression. Identifying MYB107 as a positive regulator for seed coat suberin synthesis offers a basis for discovering the potential transcriptional network behind one of the most abundant lipid-based polymers in nature. PMID:27965303

  12. Design and Operation of a Calorimeter for Advanced Multilayer Insulation Testing

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Johnson, Wesley L.; Van Dresar, Neil

    2016-01-01

    A calorimeter has been constructed to accurately measure insulation performance with a nominal 90K outer boundary and a 20K inner boundary. Unique features of this design include use of mechanical cryocoolers instead of cryogens and measurement of the heat load with a calibrated heat conduction rod. The calorimeter is operational and has completed its first test series. The initial test series was designed to look for differences in performance between a single layer of aluminum foil and a sheet of double aluminized Mylar (DAM). Although it has been speculated that the aluminum foil would perform better, since the aluminum coating on the Mylar might not be thick enough to stop the transmission of long wave length infrared radiation, our testing showed a higher heat load for the aluminum foil than the DAM. The aluminum foil showed a heat load of 132 mW at an 87 K outer temperature and 152 mW at a 107K outer temperature, whereas the DAM showed a heat load of 66 mW at an 88 K outer temperature and 81 mW at 108 K.

  13. Design and Operation of a Calorimeter for Advanced Multilayer Insulation Testing

    NASA Technical Reports Server (NTRS)

    Chato, David; Johnson, Wesley; Dresar, Neil Van

    2016-01-01

    A calorimeter has been constructed to accurately measure insulation performance with a nominal 90K cold outer boundary and a 20K inner boundary. Unique features of this design include use of mechanical cryocoolers instead cryogens and measurement of the heat load with a calibrated rod to serve as a conduction path. The calorimeter is operational and has completed its first test series. The initial test series was designed to look for differences in performance between a single layer of aluminum foil and a sheet of double aluminized mylar (DAM). Although it has been speculated that the aluminum foil would perform better, since the mylar coating might not thick enough to stop the transmission of long wave length infrared radiation, our testing showed a higher heat load for the aluminum foil than the DAM. The aluminum foil showed a heat load of 132 mW at an 87 K outer temperature and 152 mW at a 107K outer temperature. Whereas the DAM showed a heat load of 66 mW at an 88 K outer temperature and 81 mW at 108 K.

  14. The differential effects of heat-shocking on the viability of spores from Bacillus anthracis, Bacillus subtilis, and Clostridium sporogenes after treatment with peracetic acid- and glutaraldehyde-based disinfectants

    PubMed Central

    March, Jordon K; Pratt, Michael D; Lowe, Chinn-Woan; Cohen, Marissa N; Satterfield, Benjamin A; Schaalje, Bruce; O'Neill, Kim L; Robison, Richard A

    2015-01-01

    This study investigated (1) the susceptibility of Bacillus anthracis (Ames strain), Bacillus subtilis (ATCC 19659), and Clostridium sporogenes (ATCC 3584) spores to commercially available peracetic acid (PAA)- and glutaraldehyde (GA)-based disinfectants, (2) the effects that heat-shocking spores after treatment with these disinfectants has on spore recovery, and (3) the timing of heat-shocking after disinfectant treatment that promotes the optimal recovery of spores deposited on carriers. Suspension tests were used to obtain inactivation kinetics for the disinfectants against three spore types. The effects of heat-shocking spores after disinfectant treatment were also determined. Generalized linear mixed models were used to estimate 6-log reduction times for each spore type, disinfectant, and heat treatment combination. Reduction times were compared statistically using the delta method. Carrier tests were performed according to AOAC Official Method 966.04 and a modified version that employed immediate heat-shocking after disinfectant treatment. Carrier test results were analyzed using Fisher's exact test. PAA-based disinfectants had significantly shorter 6-log reduction times than the GA-based disinfectant. Heat-shocking B. anthracis spores after PAA treatment resulted in significantly shorter 6-log reduction times. Conversely, heat-shocking B. subtilis spores after PAA treatment resulted in significantly longer 6-log reduction times. Significant interactions were also observed between spore type, disinfectant, and heat treatment combinations. Immediately heat-shocking spore carriers after disinfectant treatment produced greater spore recovery. Sporicidal activities of disinfectants were not consistent across spore species. The effects of heat-shocking spores after disinfectant treatment were dependent on both disinfectant and spore species. Caution must be used when extrapolating sporicidal data of disinfectants from one spore species to another. Heat-shocking provides a more accurate picture of spore survival for only some disinfectant/spore combinations. Collaborative studies should be conducted to further examine a revision of AOAC Official Method 966.04 relative to heat-shocking. PMID:26185111

  15. Vulnerability of Bacillus spores and of related genera to physical impaction injury with particular reference to spread-plating.

    PubMed

    Thomas, P; Sekhar, A C; Mujawar, M M

    2014-11-01

    To examine whether bacterial spores are vulnerable to impaction injury during standard spread-plating or to other modes of physical impaction. Employing heat-challenged spores of Bacillus pumilus, Bacillus subtilis, Bacillus thuringiensis, Lysinibacillus, Paenibacillus and Brevibacillus spp. from day-4 to day-10 nutrient agar (NA) plates in 50% ethanol, plating the spore suspension to the extent of just drying the agar surface on fresh NA (50-60 s; SP-B) was tested in comparison with the spreader-independent approach of spotting-and-tilt-spreading (SATS), or a brief plating (<10 s; SP-A). Spore CFU was significantly reduced with SP-B in different organisms (23-40%) over SATS independent of the spore size. Comparing 4-, 7- and 10-day-old B. pumilus spores, the former two displayed significant CFU reduction in SP-B indicating a spore age-related effect. Continuous plating for 2-5 min showed a reduction in spore CFU in all organisms depending on plating duration. CFU reduction effect with SP-B was less manifest on refrigerated plates where no friction was experienced but acute on prewarmed and surface-dried plates. Spreader movement over agar surface subsequent to the exhaustion of free moisture proved highly detrimental to spores. A simulated plating study by plating the spores over a plastic film till drying showed a significant reduction in spore CFU. DAPI staining and glass bead-vortexing studies confirmed spore disruption through physical impaction. Bacterial spores are vulnerable to injury during spread-plating or with other forms of physical impaction with variable effects on different genotypes independent of the spore size but altered by spore age. Implications during spore CFU estimations employing spread-plating and during spore surveillance, and the recommendation of SATS as an easier and safer alternative for spore CFU enumeration. © 2014 The Society for Applied Microbiology.

  16. Modulating drug release from gastric-floating microcapsules through spray-coating layers.

    PubMed

    Lee, Wei Li; Tan, Jun Wei Melvin; Tan, Chaoyang Nicholas; Loo, Say Chye Joachim

    2014-01-01

    Floating dosage forms with prolonged gastric residence time have garnered much interest in the field of oral delivery. However, studies had shown that slow and incomplete release of hydrophobic drugs during gastric residence period would reduce drug absorption and cause drug wastage. Herein, a spray-coated floating microcapsule system was developed to encapsulate fenofibrate and piroxicam, as model hydrophobic drugs, into the coating layers with the aim of enhancing and tuning drug release rates. Incorporating fenofibrate into rubbery poly(caprolactone) (PCL) coating layer resulted in a complete and sustained release for up to 8 h, with outermost non-drug-holding PCL coating layer serving as a rate-controlling membrane. To realize a multidrug-loaded system, both hydrophilic metformin HCl and hydrophobic fenofibrate were simultaneously incorporated into these spray-coated microcapsules, with metformin HCl and fenofibrate localized within the hollow cavity of the capsule and coating layer, respectively. Both drugs were observed to be completely released from these coated microcapsules in a sustained manner. Through specific tailoring of coating polymers and their configurations, piroxicam loaded in both the outer polyethylene glycol and inner PCL coating layers was released in a double-profile manner (i.e. an immediate burst release as the loading dose, followed by a sustained release as the maintenance dose). The fabricated microcapsules exhibited excellent buoyancy in simulated gastric fluid, and provided controlled and sustained release, thus revealing its potential as a rate-controlled oral drug delivery system.

  17. Sporulation environment influences spore properties in Bacillus: evidence and insights on underlying molecular and physiological mechanisms.

    PubMed

    Bressuire-Isoard, Christelle; Broussolle, Véronique; Carlin, Frédéric

    2018-05-17

    Bacterial spores are resistant to physical and chemical insults, which make them a major concern for public health and for industry. Spores help bacteria to survive extreme environmental conditions that vegetative cells cannot tolerate. Spore resistance and dormancy are important properties for applications in medicine, veterinary health, food safety, crop protection, and other domains. The resistance of bacterial spores results from a protective multilayered structure and from the unique composition of the spore core. The mechanisms of sporulation and germination, the first stage after breaking of dormancy, and organization of spore structure have been extensively studied in Bacillus species. This review aims to illustrate how far the structure, composition and properties of spores are shaped by the environmental conditions in which spores form. We look at the physiological and molecular mechanisms underpinning how sporulation media and environment deeply affect spore yield, spore properties like resistance to wet heat and physical and chemical agents, germination, and further growth. For example, spore core water content decreases as sporulation temperature increases, and resistance to wet heat increases. Controlling the fate of Bacillus spores is pivotal to controlling bacterial risks and process efficiencies in, for example, the food industry, and better control hinges on better understanding how sporulation conditions influence spore properties.

  18. Bacillus anthracis spore movement does not require a carrier cell and is not affected by lethal toxin in human lung models.

    PubMed

    Booth, J Leland; Duggan, Elizabeth S; Patel, Vineet I; Langer, Marybeth; Wu, Wenxin; Braun, Armin; Coggeshall, K Mark; Metcalf, Jordan P

    2016-10-01

    The lung is the entry site for Bacillus anthracis in inhalation anthrax, the most deadly form of the disease. Spores escape from the alveolus to regional lymph nodes, germinate and enter the circulatory system to cause disease. The roles of carrier cells and the effects of B. anthracis toxins in this process are unclear. We used a human lung organ culture model to measure spore uptake by antigen presenting cells (APC) and alveolar epithelial cells (AEC), spore partitioning between these cells, and the effects of B. anthracis lethal toxin and protective antigen. We repeated the study in a human A549 alveolar epithelial cell model. Most spores remained unassociated with cells, but the majority of cell-associated spores were in AEC, not in APC. Spore movement was not dependent on internalization, although the location of internalized spores changed in both cell types. Spores also internalized in a non-uniform pattern. Toxins affected neither transit of the spores nor the partitioning of spores into AEC and APC. Our results support a model of spore escape from the alveolus that involves spore clustering with transient passage through intact AEC. However, subsequent transport of spores by APC from the lung to the lymph nodes may occur. Published by Elsevier Masson SAS.

  19. Impact of infrared treatment on quality and fungal decontamination of mung bean (Vigna radiata L.) inoculated with Aspergillus spp.

    PubMed

    Meenu, Maninder; Guha, Paramita; Mishra, Sunita

    2018-05-01

    Mung bean is a rich source of protein, carbohydrates and fiber content. It also exhibits a high level of antioxidant activity due to the presence of phenolic compounds. Aspergillus flavus and A. niger are the two major fungal strains associated with stored mung bean that lead to post-harvest losses of grains and also cause serious health risks to human beings. Thus there is a need to explore an economical decontamination method that can be used without affecting the biochemical parameters of grains. It was observed that infrared (IR) treatment of mung bean surface up to 70 °C for 5 min at an intensity of 0.299 kW m -2 led to complete visible inhibition of fungal growth. Scanning electron microscopy revealed that surface irregularities and physical disruption of spores coat are the major reasons behind the inactivation of IR-treated fungal spores. It was also reported that IR treatment up to 70 °C for 5 min does not cause any negative impact on the biochemical and physical properties of mung bean. From the results of the present study, it was concluded that IR treatment at 70 °C for 5 min using an IR source having an intensity of 0.299 kW m -2 can be successfully used as a method of fungal decontamination. The fungal spore population was reduced (approximately 5.3 log 10 CFU g -1 reductions) without significantly altering the biochemical and physical properties of grains. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Quantification of encapsulated bioburden in spacecraft polymer materials by cultivation-dependent and molecular methods.

    PubMed

    Bauermeister, Anja; Mahnert, Alexander; Auerbach, Anna; Böker, Alexander; Flier, Niwin; Weber, Christina; Probst, Alexander J; Moissl-Eichinger, Christine; Haberer, Klaus

    2014-01-01

    Bioburden encapsulated in spacecraft polymers (such as adhesives and coatings) poses a potential risk to jeopardize scientific exploration of other celestial bodies. This is particularly critical for spacecraft components intended for hard landing. So far, it remained unclear if polymers are indeed a source of microbial contamination. In addition, data with respect to survival of microbes during the embedding/polymerization process are sparse. In this study we developed testing strategies to quantitatively examine encapsulated bioburden in five different polymers used frequently and in large quantities on spaceflight hardware. As quantitative extraction of the bioburden from polymerized (solid) materials did not prove feasible, contaminants were extracted from uncured precursors. Cultivation-based analyses revealed <0.1-2.5 colony forming units (cfu) per cm3 polymer, whereas quantitative PCR-based detection of contaminants indicated considerably higher values, despite low DNA extraction efficiency. Results obtained from this approach reflect the most conservative proxy for encapsulated bioburden, as they give the maximum bioburden of the polymers irrespective of any additional physical and chemical stress occurring during polymerization. To address the latter issue, we deployed an embedding model to elucidate and monitor the physiological status of embedded Bacillus safensis spores in a cured polymer. Staining approaches using AlexaFluor succinimidyl ester 488 (AF488), propidium monoazide (PMA), CTC (5-cyano-2,3-diotolyl tetrazolium chloride) demonstrated that embedded spores retained integrity, germination and cultivation ability even after polymerization of the adhesive Scotch-Weld 2216 B/A. Using the methods presented here, we were able to estimate the worst case contribution of encapsulated bioburden in different polymers to the bioburden of spacecraft. We demonstrated that spores were not affected by polymerization processes. Besides Planetary Protection considerations, our results could prove useful for the manufacturing of food packaging, pharmacy industry and implant technology.

  1. Preparation and Characterization of Plasma Electrolytic Oxidation Coating on 5005 Aluminum Alloy with Red Mud as an Electrolyte Additive

    NASA Astrophysics Data System (ADS)

    Liu, Shifeng; Zeng, Jianmin; Wang, Youbin

    2017-10-01

    A coating with red mud as an electrolyte additive was applied to 5005 aluminum alloy using plasma electrolytic oxidation (PEO). The phase composition of the coating was investigated using X-ray diffraction. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) was used to determine the microstructure and composition profiles of the coating. The coating/substrate adhesion was determined by scratch testing. The corrosion behaviors of the substrate and coating were evaluated using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The results indicated that the PEO coating with red mud consisted mainly of α-Al2O3 and γ-Al2O3, with small amounts of Fe2O3, CaCO3, and CaTiO3. The surface of the coating was the color of the red mud. The coating had a uniform thickness of about 80 μm and consisted of two main layers: a 6- μm porous outer layer and a 74- μm dense inner layer, which showed typical metallurgical adhesion (coating/substrate adhesion strength of 59 N). The coating hardness was about 1142 HV, much higher than that of the substrate (60 HV). The corrosion potential E corr and corrosion current density i corr of the coating were estimated to be -0.743 V and 3.85 × 10-6 A cm-2 from the PDP curve in 3.5 wt pct NaCl solution, and the maximum impedance and phase angle of the coating were 11 000 Ω and -67 deg, respectively, based on EIS. PEO coating with red mud improved the surface properties and corrosion resistance of 5005 aluminum alloy. This study also shows a potential method for reusing red mud.

  2. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores.

    PubMed

    van Bokhorst-van de Veen, Hermien; Xie, Houyu; Esveld, Erik; Abee, Tjakko; Mastwijk, Hennie; Nierop Groot, Masja

    2015-02-01

    Bacterial spores are resistant to severe conditions and form a challenge to eradicate from food or food packaging material. Cold atmospheric plasma (CAP) treatment is receiving more attention as potential sterilization method at relatively mild conditions but the exact mechanism of inactivation is still not fully understood. In this study, the biocidal effect by nitrogen CAP was determined for chemical (hypochlorite and hydrogen peroxide), physical (UV) and heat-resistant spores. The three different sporeformers used are Bacillus cereus a food-borne pathogen, and Bacillus atrophaeus and Geobacillus stearothermophilus that are used as biological indicators for validation of chemical sterilization and thermal processes, respectively. The different spores showed variation in their degree of inactivation by applied heat, hypochlorite, hydrogen peroxide, and UV treatments, whereas similar inactivation results were obtained with the different spores treated with nitrogen CAP. G. stearothermophilus spores displayed high resistance to heat, hypochlorite, hydrogen peroxide, while for UV treatment B. atrophaeus spores are most tolerant. Scanning electron microscopy analysis revealed distinct morphological changes for nitrogen CAP-treated B. cereus spores including etching effects and the appearance of rough spore surfaces, whereas morphology of spores treated with heat or disinfectants showed no such changes. Moreover, microscopy analysis revealed CAP-exposed B. cereus spores to turn phase grey conceivably because of water influx indicating damage of the spores, a phenomenon that was not observed for non-treated spores. In addition, data are supplied that exclude UV radiation as determinant of antimicrobial activity of nitrogen CAP. Overall, this study shows that nitrogen CAP treatment has a biocidal effect on selected Bacillus and Geobacillus spores associated with alterations in spore surface morphology and loss of spore integrity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Chamber for Aerosol Deposition of Bioparticles

    NASA Technical Reports Server (NTRS)

    Kern, Roger; Kirschner, Larry

    2008-01-01

    Laboratory apparatus is depicted that is a chamber for aerosol deposition of bioparticles on surfaces of test coupons. It is designed for primary use in inoculating both flat and three-dimensional objects with approximately reproducible, uniform dispersions of bacterial spores of the genus Bacillus so that the objects could be used as standards for removal of the spores by quantitative surface sampling and/or cleaning processes. The apparatus is also designed for deposition of particles other than bacterial spores, including fungal spores, viruses, bacteriophages, and standard micron-sized beads. The novelty of the apparatus lies in the combination of a controllable nebulization system with a settling chamber large enough to contain a significant number of test coupons. Several companies market other nebulizer systems, but none are known to include chambers for deposition of bioparticles to mimic the natural fallout of bioparticles. The nebulization system is an expanded and improved version of commercially available aerosol generators that include nebulizers and drying columns. In comparison with a typical commercial aerosol generator, this system includes additional, higher-resolution flowmeters and an additional pressure regulator. Also, unlike a typical commercial aerosol generator, it includes stopcocks for separately controlling flows of gases to the nebulizer and drying column. To maximize the degree of uniformity of dispersion of bioaerosol, the chamber is shaped as an axisymmetrical cylinder and the aerosol generator is positioned centrally within the chamber and aimed upward like a fountain. In order to minimize electric charge associated with the aerosol particles, the drying column is made of aluminum, the drying column is in direct contact with an aluminum base plate, and three equally spaced Po-210 antistatic strips are located at the exit end of the drying column. The sides and top of the chamber are made of an acrylic polymer; to prevent accumulation of electric charge on them, they are spray-coated with an anti-static material. During use, the base plate and the sides and top of the chamber are grounded as a further measure to minimize the buildup of electric charge.

  4. Cone outer segment and Müller microvilli pericellular matrices provide binding domains for interphotoreceptor retinoid-binding protein (IRBP).

    PubMed

    Garlipp, Mary Alice; Gonzalez-Fernandez, Federico

    2013-08-01

    The close packing of vertebrate photoreceptors presents a challenge to the exchange of molecules between the outer segments, retinal pigmented epithelium (RPE), and Müller glia. An extracellular hyaluronan scaffold separates these cells while soluble interphotoreceptor matrix (IPM) proteins traffic visual cycle retinoids, fatty acids, and other molecules between them. In the IPM, retinoids and fatty acids are carried by interphotoreceptor retinoid-binding protein (IRBP). The fact that much of the retina's IRBP can be extracted by saline wash has led to the notion that IRBP does not bind to the retina, but freely distributes itself within the subretinal space. In this study, we challenge this idea by asking if there are specialized IPM domains that bind IRBP, perhaps facilitating its ability to target delivery/uptake of its ligands. Xenopus is an ideal animal model to study the role of the IPM in RPE-photoreceptor interactions. Here, we took advantage of the large size of its photoreceptors, ability to detach the retina in light, sustainability of the retina in short term organ culture, and the availability of recombinant full-length Xenopus IRBP and antisera directed against Xenopus IRBP. We compared the distribution of wash resistant native IRBP, and that of IRBP-Alexa 647 binding in Xenopus retina. IRBP and cone opsin were localized using anti-Xenopus IRBP serum, and monoclonal COS-1 respectively. Cone matrix sheath proteoglycans were localized with wheat germ agglutinin (WGA), and diffuse IPM proteoglycans with peanut agglutinin (PNA). Wholemounts and frozen sections were compared by immunofluorescence from retinas detached under Ringer's followed by additional washes, or detached directly under 4% paraformaldehyde without Ringer's wash. Undetached Lowicryl embedded retinas were subjected to IRBP immunogold electron microscopy (EM). Immunogold labeled a diffuse network of filamentous structures, and a separate distinct flocculant material directly coating the outer segments, filling the rod periciliary ridge, and associated with Müller microvilli. By immunofluorescence, Ringer's wash removed most of the diffuse IRBP, but not that coating the outer segments. IRBP-Alexa 647 bound to the cone outer segments and Müller villi region, and comparably less to rod outer segments. Co-incubation with unlabeled IRBP markedly reduced this binding; ovalbumin-Alexa 647 and Alexa 647 dye alone showed no binding. Our data suggest that the pericellular matrix of the cone outer segments and Müller microvilli provide specialized domains that facilitate IRBP's functions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Anaerosporomusa subterranea gen. nov., sp. nov., a spore-forming anaerobe belonging to the class Negativicutes isolated from saprolite.

    PubMed

    Choi, Jessica K; Shah, Madhavi; Yee, Nathan

    2016-10-01

    A Gram-stain-negative, spore-forming, anaerobic bacterium designated strain RU4T was isolated from a saprolite core collected from Oak Ridge, Tennessee, USA. Cells were slightly curved rods and exhibited an outer membrane exterior to a thin cell wall. Strain RU4T formed heat-resistant endospores in late-log phase and stationary phase cultures. Under anaerobic conditions, strain RU4T grew by fermenting fumarate and maleate, but did not grow on glucose, glycerol, pyruvate, lactate, succinate, citrate, formate, acetate, propionate, butyrate or valerate. Strain RU4T did not reduce sulfate or ferric iron. The main cellular fatty acids were C17 : 0 cyclo, C16 : 0 and C15 : 0. The DNA G+C content was 52 mol%. Analysis of the 16S rRNA, rpoB, recA, infB, gyrB and atpD gene sequences indicated that the isolate is related to members of the family Sporomusaceae. Based on 92 % sequence similarity of the 16S rRNA gene to its closest relatives in the family Sporomusaceae and divergent physiological traits, the newly-cultivated isolate was assigned to a novel species of a new genus, Anaerosporomusa subterranea gen. nov., sp. nov. The type strain of Anaerosporomusa subterranea is RU4T (=DSM 29728T=ATCC BAA-2723T).

  6. Sporopollenin, the least known yet toughest natural biopolymer

    NASA Astrophysics Data System (ADS)

    Mackenzie, Grahame; Boa, Andrew; Taboada, Alberto; Atkin, Stephen; Sathyapalan, Thozhukat

    2015-10-01

    Sporopollenin is highly cross-linked polymer composed of carbon, hydrogen and oxygen that is extraordinarily stable and has been found chemically intact in sedimentary rocks some 500 million year old. It is the outer shell (exine) of plant spores and pollen and when extracted it is in the form of an empty exine or microcapsule. The exines resemble the spores and pollen from which they are extracted, in size and morphology. Also, from any one plant such characteristics are incredible uniform. The exines can be used is microcapsules or simply as micron-sized particles due to the variety of functional groups on their surfaces. The loading of the exine microcapsules into their cavities is via multi-directional nano-diameter sized channels. The exines can be filled with a variety of polar and non-polar materials. Such as enzymes can be encapsulated within the shells and still remain active. In vivo studies in humans have shown that an encapsulated active substance can have a substantially increased bioavailability than if it is taken alone. The sporopollenin exine surface possesses phenolic, alkane, alkene, ketone, lactone and carboxylic acid groups. Therefore it can be derivatised in a number of ways, which has given rise to its having been used for, such as, solid supported for peptide synthesis, catalysis and ion-exchange chromatography. Also, the presence of the phenolic groups on sporopollenin endows it with antioxidant activity.

  7. Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota.

    PubMed

    Polansky, Ondrej; Sekelova, Zuzana; Faldynova, Marcela; Sebkova, Alena; Sisak, Frantisek; Rychlik, Ivan

    2015-12-28

    The gut microbiota plays important roles in its host. However, how each microbiota member contributes to the behavior of the whole population is not known. In this study, we therefore determined protein expression in the cecal microbiota in chickens of selected ages and in 7-day-old chickens inoculated with different cecal extracts on the day of hatching. Campylobacter, Helicobacter, Mucispirillum, and Megamonas overgrew in the ceca of 7-day-old chickens inoculated with cecal extracts from donor hens. Firmicutes were characterized by ABC and phosphotransferase system (PTS) transporters, extensive acyl coenzyme A (acyl-CoA) metabolism, and expression of l-fucose isomerase. Anaerostipes, Anaerotruncus, Pseudoflavonifractor, Dorea, Blautia, and Subdoligranulum expressed spore proteins. Firmicutes (Faecalibacterium, Butyrivibrio, Megasphaera, Subdoligranulum, Oscillibacter, Anaerostipes, and Anaerotruncus) expressed enzymes required for butyrate production. Megamonas, Phascolarctobacterium, and Blautia (exceptions from the phylum Firmicutes) and all Bacteroidetes expressed enzymes for propionate production pathways. Representatives of Bacteroidetes also expressed xylose isomerase, enzymes required for polysaccharide degradation, and ExbBD, TonB, and outer membrane receptors likely to be involved in oligosaccharide transport. Based on our data, Anaerostipes, Anaerotruncus, and Subdoligranulum might be optimal probiotic strains, since these represent spore-forming butyrate producers. However, certain care should be taken during microbiota transplantation because the microbiota may behave differently in the intestinal tract of a recipient depending on how well the existing communities are established. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota

    PubMed Central

    Polansky, Ondrej; Sekelova, Zuzana; Faldynova, Marcela; Sebkova, Alena; Sisak, Frantisek

    2015-01-01

    The gut microbiota plays important roles in its host. However, how each microbiota member contributes to the behavior of the whole population is not known. In this study, we therefore determined protein expression in the cecal microbiota in chickens of selected ages and in 7-day-old chickens inoculated with different cecal extracts on the day of hatching. Campylobacter, Helicobacter, Mucispirillum, and Megamonas overgrew in the ceca of 7-day-old chickens inoculated with cecal extracts from donor hens. Firmicutes were characterized by ABC and phosphotransferase system (PTS) transporters, extensive acyl coenzyme A (acyl-CoA) metabolism, and expression of l-fucose isomerase. Anaerostipes, Anaerotruncus, Pseudoflavonifractor, Dorea, Blautia, and Subdoligranulum expressed spore proteins. Firmicutes (Faecalibacterium, Butyrivibrio, Megasphaera, Subdoligranulum, Oscillibacter, Anaerostipes, and Anaerotruncus) expressed enzymes required for butyrate production. Megamonas, Phascolarctobacterium, and Blautia (exceptions from the phylum Firmicutes) and all Bacteroidetes expressed enzymes for propionate production pathways. Representatives of Bacteroidetes also expressed xylose isomerase, enzymes required for polysaccharide degradation, and ExbBD, TonB, and outer membrane receptors likely to be involved in oligosaccharide transport. Based on our data, Anaerostipes, Anaerotruncus, and Subdoligranulum might be optimal probiotic strains, since these represent spore-forming butyrate producers. However, certain care should be taken during microbiota transplantation because the microbiota may behave differently in the intestinal tract of a recipient depending on how well the existing communities are established. PMID:26712550

  9. Effect on tomato plant and fruit of the application of biopolymer-oregano essential oil coatings.

    PubMed

    Perdones, Ángela; Tur, Núria; Chiralt, Amparo; Vargas, Maria

    2016-10-01

    Oregano essential oil (EO) was incorporated into film-forming dispersions (FFDs) based on biopolymers (chitosan and/or methylcellulose) at two different concentrations. The effect of the application of the FFDs was evaluated on tomato plants (cultivar Micro-Tom) at three different stages of development, and on pre-harvest and postharvest applications on tomato fruit. The application of the FFDs at '3 Leaves' stage caused phytotoxic problems, which were lethal when the EO was applied without biopolymers. Even though plant growth and development were delayed, the total biomass and the crop yield were not affected by biopolymer-EO treatments. When the FFDs were applied in the 'Fruit' stage the pre-harvest application of FFDs had no negative effects. All FFDs containing EO significantly reduced the respiration rate of tomato fruit and diminished weight loss during storage. Moreover, biopolymer-EO FFDs led to a decrease in the fungal decay of tomato fruit inoculated with Rhizopus stolonifer spores, as compared with non-treated tomato fruit and those coated with FFDs without EO. The application of biopolymer-oregano essential oil coatings has been proven to be an effective treatment to control R. stolonifer in tomato fruit. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility.

    PubMed

    Hagemann, Nikolas; Joseph, Stephen; Schmidt, Hans-Peter; Kammann, Claudia I; Harter, Johannes; Borch, Thomas; Young, Robert B; Varga, Krisztina; Taherymoosavi, Sarasadat; Elliott, K Wade; McKenna, Amy; Albu, Mihaela; Mayrhofer, Claudia; Obst, Martin; Conte, Pellegrino; Dieguez-Alonso, Alba; Orsetti, Silvia; Subdiaga, Edisson; Behrens, Sebastian; Kappler, Andreas

    2017-10-20

    Amending soil with biochar (pyrolized biomass) is suggested as a globally applicable approach to address climate change and soil degradation by carbon sequestration, reducing soil-borne greenhouse-gas emissions and increasing soil nutrient retention. Biochar was shown to promote plant growth, especially when combined with nutrient-rich organic matter, e.g., co-composted biochar. Plant growth promotion was explained by slow release of nutrients, although a mechanistic understanding of nutrient storage in biochar is missing. Here we identify a complex, nutrient-rich organic coating on co-composted biochar that covers the outer and inner (pore) surfaces of biochar particles using high-resolution spectro(micro)scopy and mass spectrometry. Fast field cycling nuclear magnetic resonance, electrochemical analysis and gas adsorption demonstrated that this coating adds hydrophilicity, redox-active moieties, and additional mesoporosity, which strengthens biochar-water interactions and thus enhances nutrient retention. This implies that the functioning of biochar in soil is determined by the formation of an organic coating, rather than biochar surface oxidation, as previously suggested.

  11. Targeting mitochondria in cancer cells using gold nanoparticle-enhanced radiotherapy: A Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkby, Charles, E-mail: charles.kirkby@albertahealthservices.ca; Ghasroddashti, Esmaeel; Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4

    2015-02-15

    Purpose: Radiation damage to mitochondria has been shown to alter cellular processes and even lead to apoptosis. Gold nanoparticles (AuNPs) may be used to enhance these effects in scenarios where they collect on the outer membranes of mitochondria. A Monte Carlo (MC) approach is used to estimate mitochondrial dose enhancement under a variety of conditions. Methods: The PENELOPE MC code was used to generate dose distributions resulting from photons striking a 13 nm diameter AuNP with various thicknesses of water-equivalent coatings. Similar dose distributions were generated with the AuNP replaced by water so as to estimate the gain in dosemore » on a microscopic scale due to the presence of AuNPs within an irradiated volume. Models of mitochondria with AuNPs affixed to their outer membrane were then generated—considering variation in mitochondrial size and shape, number of affixed AuNPs, and AuNP coating thickness—and exposed (in a dose calculation sense) to source spectra ranging from 6 MV to 90 kVp. Subsequently dose enhancement ratios (DERs), or the dose with the AuNPs present to that for no AuNPs, for the entire mitochondrion and its components were tallied under these scenarios. Results: For a representative case of a 1000 nm diameter mitochondrion affixed with 565 AuNPs, each with a 13 nm thick coating, the mean DER over the whole organelle ranged from roughly 1.1 to 1.6 for the kilovoltage sources, but was generally less than 1.01 for the megavoltage sources. The outer membrane DERs remained less than 1.01 for the megavoltage sources, but rose to 2.3 for 90 kVp. The voxel maximum DER values were as high as 8.2 for the 90 kVp source and increased further when the particles clustered together. The DER exhibited dependence on the mitochondrion dimensions, number of AuNPs, and the AuNP coating thickness. Conclusions: Substantial dose enhancement directly to the mitochondria can be achieved under the conditions modeled. If the mitochondrion dose can be directly enhanced, as these simulations show, this work suggests the potential for both a tool to study the role of mitochondria in cellular response to radiation and a novel avenue for radiation therapy in that the mitochondria may be targeted, rather than the nuclear DNA.« less

  12. Morphology of one-time coated palladium-alumina composite membrane prepared by sol-gel process and electroless plating technique

    NASA Astrophysics Data System (ADS)

    Sari, R.; Dewi, R.; Pardi; Hakim, L.; Diana, S.

    2018-03-01

    Palladium coated porous alumina ceramic membrane tube was obtained using a combination of sol-gel process and electroless plating technique. The thickness, structure and composition of palladium-alumina composite membrane were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and atomic force microscopy (AFM). Palladium particle size was 6.18 to 7.64 nm. Palladium membrane with thickness of approximately 301.5 to 815.1 nm was formed at the outer surface of the alumina layer. EDX data confirmed the formation of palladium-alumina membrane containing 45% of palladium. From this research it shows the combination of sol-gel process and electroless plating technique with one-time coating can produce a homogeneous and smoother palladium nano layer film on alumina substrate.

  13. CHF Enhancement by Vessel Coating for External Reactor Vessel Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan-Bill Cheung; Joy L. Rempe

    2004-06-01

    In-vessel retention (IVR) is a key severe accident management (SAM) strategy that has been adopted by some operating nuclear power plants and advanced light water reactors (ALWRs). One viable means for IVR is the method of external reactor vessel cooling (ERVC) by flooding of the reactor cavity during a severe accident. As part of a joint Korean – United States International Nuclear Energy Research Initiative (K-INERI), an experimental study has been conducted to investigate the viability of using an appropriate vessel coating to enhance the critical heat flux (CHF) limits during ERVC. Toward this end, transient quenching and steady-state boilingmore » experiments were performed in the SBLB (Subscale Boundary Layer Boiling) facility at Penn State using test vessels with micro-porous aluminum coatings. Local boiling curves and CHF limits were obtained in these experiments. When compared to the corresponding data without coatings, substantial enhancement in the local CHF limits for the case with surface coatings was observed. Results of the steady state boiling experiments showed that micro-porous aluminum coatings were very durable. Even after many cycles of steady state boiling, the vessel coatings remained rather intact, with no apparent changes in color or structure. Moreover, the heat transfer performance of the coatings was found to be highly desirable with an appreciable CHF enhancement in all locations on the vessel outer surface but with very little effect of aging.« less

  14. Bacteria, mould and yeast spore inactivation studies by scanning electron microscope observations.

    PubMed

    Rozali, Siti N M; Milani, Elham A; Deed, Rebecca C; Silva, Filipa V M

    2017-12-18

    Spores are the most resistant form of microbial cells, thus difficult to inactivate. The pathogenic or food spoilage effects of certain spore-forming microorganisms have been the primary basis of sterilization and pasteurization processes. Thermal sterilization is the most common method to inactivate spores present on medical equipment and foods. High pressure processing (HPP) is an emerging and commercial non-thermal food pasteurization technique. Although previous studies demonstrated the effectiveness of thermal and non-thermal spore inactivation, the in-depth mechanisms of spore inactivation are as yet unclear. Live and dead forms of two food spoilage bacteria, a mould and a yeast were examined using scanning electron microscopy before and after the inactivation treatment. Alicyclobacillus acidoterrestris and Geobacillus stearothermophilus bacteria are indicators of acidic foods pasteurization and sterilization processes, respectively. Neosartorya fischeri is a phyto-pathogenic mould attacking fruits. Saccharomyces cerevisiae is a yeast with various applications for winemaking, brewing, baking and the production of biofuel from crops (e.g. sugar cane). Spores of the four microbial species were thermally inactivated. Spores of S. cerevisiae were observed in the ascus and free form after thermal and HPP treatments. Different forms of damage and cell destruction were observed for each microbial spore. Thermal treatment inactivated bacterial spores of A. acidoterrestris and G. stearothermophilus by attacking the inner core of the spore. The heat first altered the membrane permeability allowing the release of intracellular components. Subsequently, hydration of spores, physicochemical modifications of proteins, flattening and formation of indentations occurred, with subsequent spore death. Regarding N. fischeri, thermal inactivation caused cell destruction and leakage of intracellular components. Both thermal and HPP treatments of S. cerevisiae free spores attacked the inner membrane, altering its permeability, and allowing in final stages the transfer of intracellular components to the outside. The spore destruction caused by thermal treatment was more severe than HPP, as HPP had less effect on the spore core. All injured spores have undergone irreversible volume and shape changes. While some of the leakage of spore contents is visible around the deformed but fully shaped spore, other spores exhibited large indentations and were completely deformed, apparently without any contents inside. This current study contributed to the understanding of spore inactivation by thermal and non-thermal processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Asynchronous spore germination in isogenic natural isolates of Saccharomyces paradoxus.

    PubMed

    Stelkens, Rike B; Miller, Eric L; Greig, Duncan

    2016-05-01

    Spores from wild yeast isolates often show great variation in the size of colonies they produce, for largely unknown reasons. Here we measure the colonies produced from single spores from six different wild Saccharomyces paradoxus strains. We found remarkable variation in spore colony sizes, even among spores that were genetically identical. Different strains had different amounts of variation in spore colony sizes, and variation was not affected by the number of preceding meioses, or by spore maturation time. We used time-lapse photography to show that wild strains also have high variation in spore germination timing, providing a likely mechanism for the variation in spore colony sizes. When some spores from a laboratory strain make small colonies, or no colonies, it usually indicates a genetic or meiotic fault. Here, we demonstrate that in wild strains spore colony size variation is normal. We discuss and assess potential adaptive and non-adaptive explanations for this variation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Role of Visible Light-Activated Photocatalyst on the Reduction of Anthrax Spore-Induced Mortality in Mice

    PubMed Central

    Huang, Hsin-Hsien; Wong, Ming-Show; Lin, Hung-Chi; Chang, Hsin-Hou

    2009-01-01

    Background Photocatalysis of titanium dioxide (TiO2) substrates is primarily induced by ultraviolet light irradiation. Anion-doped TiO2 substrates were shown to exhibit photocatalytic activities under visible-light illumination, relative environmentally-friendly materials. Their anti-spore activity against Bacillus anthracis, however, remains to be investigated. We evaluated these visible-light activated photocatalysts on the reduction of anthrax spore-induced pathogenesis. Methodology/Principal Findings Standard plating method was used to determine the inactivation of anthrax spore by visible light-induced photocatalysis. Mouse models were further employed to investigate the suppressive effects of the photocatalysis on anthrax toxin- and spore-mediated mortality. We found that anti-spore activities of visible light illuminated nitrogen- or carbon-doped titania thin films significantly reduced viability of anthrax spores. Even though the spore-killing efficiency is only approximately 25%, our data indicate that spores from photocatalyzed groups but not untreated groups have a less survival rate after macrophage clearance. In addition, the photocatalysis could directly inactivate lethal toxin, the major virulence factor of B. anthracis. In agreement with these results, we found that the photocatalyzed spores have tenfold less potency to induce mortality in mice. These data suggest that the photocatalysis might injury the spores through inactivating spore components. Conclusion/Significance Photocatalysis induced injuries of the spores might be more important than direct killing of spores to reduce pathogenicity in the host. PMID:19132100

  17. Optical and biological properties of plasma-treated Neurospora crassa spores as studied by absorption, circular dichroism, and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Geon Joon; Park, Gyungsoon; Choi, Eun Ha

    2017-11-01

    We studied the effect of plasma treatment on the optical, structural and biological properties of Neurospora crassa ( N. crassa) spores. An atmospheric-pressure plasma jet (APPJ) was used to generate reactive oxygen and nitrogen species in aqueous solution. The APPJ treatment of N. crassa spores in water significantly reduced the viability of spores. The reduction in the spore viability can be attributed to the reactive species from the plasma itself and those derived from the reaction of plasma radicals with aqueous solution. These structural modifications were contingent on the medium in which N. crassa spores were suspended; plasma treatment of N. crassa spores in PBS did not significantly affect the viability of spores as compared with N. crassa spores in water. Scanning electron microscopy images and circular dichroism spectra indicated that the spore cell wall was damaged by plasma treatment. The optical absorption spectrum of untreated N. crassa spores exhibited two resonance absorption bands at approximately λ1 ≈ 260 nm and λ2 ≈ 472 nm, originating from deoxyribonucleic acid (DNA) and β-carotene. The Raman spectrum of untreated N. crassa spores exhibited three main peaks at 1519, 1157 and 1006 cm -1, attributed to β-carotene inside the cell wall. The Raman spectra showed that the APPJ treatment of N. crassa spores in water caused degradation of β-carotene, affecting the viability of spores.

  18. Efficient coupling of Sec23-Sec24 to Sec13-Sec31 drives COPII-dependent collagen secretion and is essential for normal craniofacial development.

    PubMed

    Townley, Anna K; Feng, Yi; Schmidt, Katy; Carter, Deborah A; Porter, Robert; Verkade, Paul; Stephens, David J

    2008-09-15

    The COPII coat assembles on endoplasmic reticulum membranes to coordinate the collection of secretory cargo with the formation of transport vesicles. During COPII assembly, Sar1 deforms the membrane and recruits the Sec23-Sec24 complex (Sec23/24), which is the primary cargo-binding adaptor for the system, and Sec13-Sec31 (Sec13/31), which provides a structural outer layer for vesicle formation. Here we show that Sec13 depletion results in concomitant loss of Sec31 and juxtanuclear clustering of pre-budding complexes containing Sec23/24 and cargo. Electron microscopy reveals the presence of curved coated profiles on distended endoplasmic reticulum, indicating that Sec13/31 is not required for the generation or maintenance of the curvature. Surprisingly, export of tsO45-G-YFP, a marker of secretory cargo, is unaffected by Sec13/31 depletion; by contrast, secretion of collagen from primary fibroblasts is strongly inhibited. Suppression of Sec13 expression in zebrafish causes defects in proteoglycan deposition and skeletal abnormalities that are grossly similar to the craniofacial abnormalities of crusher mutant zebrafish and patients with cranio-lenticulo-sutural dysplasia. We conclude that efficient coupling of the inner (Sec23/24) and outer (Sec13/31) layers of the COPII coat is required to drive the export of collagen from the endoplasmic reticulum, and that highly efficient COPII assembly is essential for normal craniofacial development during embryogenesis.

  19. Well-crystallized mesoporous TiO2 shells for enhanced photocatalytic activity: prepared by carbon coating and silica-protected calcination.

    PubMed

    Zhang, Zewu; Zhou, Yuming; Zhang, Yiwei; Zhou, Shijian; Shi, Junjun; Kong, Jie; Zhang, Sicheng

    2013-04-14

    Mesoporous anatase-phase TiO2 hollow shells were successfully fabricated by the solvothermal and calcination process. This method involves preparation of SiO2@TiO2 core-shell colloidal templates, sequential deposition of carbon and then silica layers through solvothermal and sol-gel processes, crystallization of TiO2 by calcination and finally removal of the inner and outer silica to produce hollow anatase TiO2 shells. The prepared samples were characterized by transmission electron microscopy, X-ray diffraction, N2 adsorption-desorption isotherms and UV-vis absorption spectroscopy. The results show that a uniform carbon layer is coated on the core-shell particles through the solvothermal process. The combustion of carbon offers the space for the TiO2 to further grow into large crystal grains, and the outer silica layer serves as a barrier against the excessive growth of anatase TiO2 nanocrystals. Furthermore, the initial crystallization of TiO2 generated in the carbon coating step and the heat generated by the combustion of the carbon layer allow the crystallization of TiO2 at a relatively low temperature without changing the uniform structure. When used as photocatalysts for the oxidation decomposition of Rhodamine B in aqueous solution under UV irradiation, the hollow TiO2 shells showed enhanced catalytic activity. Moreover, the TiO2 hollow shells prepared with optimal crystallinity by this method showed a higher performance than commercial P25 TiO2.

  20. The differential effects of heat-shocking on the viability of spores from Bacillus anthracis, Bacillus subtilis, and Clostridium sporogenes after treatment with peracetic acid- and glutaraldehyde-based disinfectants.

    PubMed

    March, Jordon K; Pratt, Michael D; Lowe, Chinn-Woan; Cohen, Marissa N; Satterfield, Benjamin A; Schaalje, Bruce; O'Neill, Kim L; Robison, Richard A

    2015-10-01

    This study investigated (1) the susceptibility of Bacillus anthracis (Ames strain), Bacillus subtilis (ATCC 19659), and Clostridium sporogenes (ATCC 3584) spores to commercially available peracetic acid (PAA)- and glutaraldehyde (GA)-based disinfectants, (2) the effects that heat-shocking spores after treatment with these disinfectants has on spore recovery, and (3) the timing of heat-shocking after disinfectant treatment that promotes the optimal recovery of spores deposited on carriers. Suspension tests were used to obtain inactivation kinetics for the disinfectants against three spore types. The effects of heat-shocking spores after disinfectant treatment were also determined. Generalized linear mixed models were used to estimate 6-log reduction times for each spore type, disinfectant, and heat treatment combination. Reduction times were compared statistically using the delta method. Carrier tests were performed according to AOAC Official Method 966.04 and a modified version that employed immediate heat-shocking after disinfectant treatment. Carrier test results were analyzed using Fisher's exact test. PAA-based disinfectants had significantly shorter 6-log reduction times than the GA-based disinfectant. Heat-shocking B. anthracis spores after PAA treatment resulted in significantly shorter 6-log reduction times. Conversely, heat-shocking B. subtilis spores after PAA treatment resulted in significantly longer 6-log reduction times. Significant interactions were also observed between spore type, disinfectant, and heat treatment combinations. Immediately heat-shocking spore carriers after disinfectant treatment produced greater spore recovery. Sporicidal activities of disinfectants were not consistent across spore species. The effects of heat-shocking spores after disinfectant treatment were dependent on both disinfectant and spore species. Caution must be used when extrapolating sporicidal data of disinfectants from one spore species to another. Heat-shocking provides a more accurate picture of spore survival for only some disinfectant/spore combinations. Collaborative studies should be conducted to further examine a revision of AOAC Official Method 966.04 relative to heat-shocking. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  1. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott [Dublin, CA; Rader, Daniel John [Albuquerque, NM; Walton, Christopher [Berkeley, CA; Folta, James [Livermore, CA

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  2. Method of making a sodium sulfur battery

    DOEpatents

    Elkins, P. E.

    1981-09-22

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another. 3 figs.

  3. New amino acid germinants for spores of the enterotoxigenic Clostridium perfringens type A isolates.

    PubMed

    Udompijitkul, Pathima; Alnoman, Maryam; Banawas, Saeed; Paredes-Sabja, Daniel; Sarker, Mahfuzur R

    2014-12-01

    Clostridium perfringens spore germination plays a critical role in the pathogenesis of C. perfringens-associated food poisoning (FP) and non-food-borne (NFB) gastrointestinal diseases. Germination is initiated when bacterial spores sense specific nutrient germinants (such as amino acids) through germinant receptors (GRs). In this study, we aimed to identify and characterize amino acid germinants for spores of enterotoxigenic C. perfringens type A. The polar, uncharged amino acids at pH 6.0 efficiently induced germination of C. perfringens spores; L-asparagine, L-cysteine, L-serine, and L-threonine triggered germination of spores of most FP and NFB isolates; whereas, L-glutamine was a unique germinant for FP spores. For cysteine- or glutamine-induced germination, gerKC spores (spores of a gerKC mutant derivative of FP strain SM101) germinated to a significantly lower extent and released less DPA than wild type spores; however, a less defective germination phenotype was observed in gerAA or gerKB spores. The germination defects in gerKC spores were partially restored by complementing the gerKC mutant with a recombinant plasmid carrying wild-type gerKA-KC, indicating that GerKC is an essential GR protein. The gerKA, gerKC, and gerKB spores germinated significantly slower with L-serine and L-threonine than their parental strain, suggesting the requirement for these GR proteins for normal germination of C. perfringens spores. In summary, these results indicate that the polar, uncharged amino acids at pH 6.0 are effective germinants for spores of C. perfringens type A and that GerKC is the main GR protein for germination of spores of FP strain SM101 with L-cysteine, L-glutamine, and L-asparagine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Influence of spore moisture content on the dry-heat resistance of Bacillus subtilis var. niger.

    PubMed

    Angelotti, R; Maryanski, J H; Butler, T F; Peeler, J T; Campbell, J E

    1968-05-01

    The dry-heat resistance of Bacillus subtilis var. niger spores located in or on various materials was determined as D and z values in the range of 105 through 160 C. The systems tested included spores located on steel and paper strips, spores located between stainless-steel washers mated together under 150 inch-lb and 12 inch-lb of torque, and spores encapsulated in methylmethacrylate and epoxy plastics. D values for a given temperature varied with the test system. High D values were observed for the systems in which spores were encapsulated or under heavy torque, whereas lower D values were observed for the steel and paper strip systems and the lightly torqued system. Similar z values were obtained for the plastic and steel strip systems (z(D) = 21 C), but an unusually low z for spores on paper (z(D) = 12.9 C) and an unusually high z for spores on steel washers mated at 150 inch-lb of torque (z(D) = 32 C) were observed. The effect of spore moisture content on the D value of spores encapsulated in water-impermeable plastic was determined, and maximal resistance was observed for spores with a water activity (a(w)) of 0.2 to 0.4. Significantly decreased D values were observed for spores with moisture contents below a(w) 0.2 or above a(w) 0.4. The data indicate that the important factors to be considered when measuring the dry heat resistance of spores are (i) the initial moisture content of the spore, (ii) the rate of spore desiccation during heating, (iii) the water retention capacity of the material in or on which spores are located, and (iv) the relative humidity of the system at the test temperature.

  5. Sensitizing Clostridium difficile Spores with Germinants on Skin and Environmental Surfaces Represents a New Strategy for Reducing Spores via Ambient Mechanisms

    PubMed Central

    Nerandzic, Michelle M.; Donskey, Curtis J.

    2017-01-01

    Background Clostridium difficile is a leading cause of healthcare-associated infections worldwide. Prevention of C. difficile transmission is challenging because spores are not killed by alcohol-based hand sanitizers or many commonly used disinfectants. One strategy to control spores is to induce germination, thereby rendering the spores more susceptible to benign disinfection measures and ambient stressors. Methods/Results C. difficile spores germinated on skin after a single application of cholic acid-class bile salts and co-germinants; for 4 C. difficile strains, recovery of viable spores from skin was reduced by ~0.3 log10CFU to 2 log10CFU after 2 hours and ~1 log10CFU to > 2.5 log10CFU after 24 hours. The addition of taurocholic acid to 70% and 30% ethanol significantly enhanced reduction of viable spores on skin and on surfaces. Desiccation, and to a lesser extent the presence of oxygen, were identified as the stressors responsible for reductions of germinated spores on skin and surfaces. Additionally, germinated spores became susceptible to killing by pH 1.5 hydrochloric acid, suggesting that germinated spores that remain viable on skin and surfaces might be killed by gastric acid after ingestion. Antibiotic-treated mice did not become colonized after exposure to germinated spores, whereas 100% of mice became colonized after exposure to the same quantity of dormant spores. Conclusions Germination could provide a new approach to reduce C. difficile spores on skin and in the environment and to render surviving spores less capable of causing infection. Our findings suggest that it may be feasible to develop alcohol-based hand sanitizers containing germinants that reduce spores on hands. PMID:29167835

  6. Imaging bacterial spores by soft-x-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores bymore » soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.« less

  7. Morphogenetic Pathway of Spore Wall Assembly in Saccharomyces cerevisiae

    PubMed Central

    Coluccio, Alison; Bogengruber, Edith; Conrad, Michael N.; Dresser, Michael E.; Briza, Peter; Neiman, Aaron M.

    2004-01-01

    The Saccharomyces cerevisiae spore is protected from environmental damage by a multilaminar extracellular matrix, the spore wall, which is assembled de novo during spore formation. A set of mutants defective in spore wall assembly were identified in a screen for mutations causing sensitivity of spores to ether vapor. The spore wall defects in 10 of these mutants have been characterized in a variety of cytological and biochemical assays. Many of the individual mutants are defective in the assembly of specific layers within the spore wall, leading to arrests at discrete stages of assembly. The localization of several of these gene products has been determined and distinguishes between proteins that likely are involved directly in spore wall assembly and probable regulatory proteins. The results demonstrate that spore wall construction involves a series of dependent steps and provide the outline of a morphogenetic pathway for assembly of a complex extracellular structure. PMID:15590821

  8. Inactivation of Bacillus subtilis spores by high pressure CO2 with high temperature.

    PubMed

    Rao, Lei; Xu, Zhenzhen; Wang, Yongtao; Zhao, Feng; Hu, Xiaosong; Liao, Xiaojun

    2015-07-16

    The objective of this study was to investigate the inactivation of the Bacillus subtilis spores by high pressure CO2 combined with high temperature (HPCD+HT) and to analyze the clumping effect of the spores on their HPCD+HT resistance. The spores of B. subtilis were subjected to heat at 0.1 MPa and HPCD at 6.5-25 MPa, and 82 °C, 86 °C, and 91 °C for 0-120 min. The spores were effectively inactivated by HPCD+HT, but a protective effect on the spores was also found, which was closely correlated to the pressure, temperature and time. The spores treated by HPCD+HT at 6.5 and 10 MPa exhibited a two-stage inactivation curve of shoulder and log-linear regions whereas the spores at 15-25 MPa exhibited a three-stage inactivation curve of shoulder, log-linear and tailing regions, and these curves were well fitted to the Geeraerd model. Approximately 90% of pyridine-2,6-dicarboxylic acid (DPA) was released after HPCD+HT and the 90% DPA release time depend on the pressure and temperature. Moreover, the spore clumping in suspensions was examined by dynamic light scattering. The particle size of the spore suspensions increased with the increase of pressure, temperature and time, indicating the spore clumping. 0.1% Tween 80 as a surfactant inhibited the spore clumping and increased the inactivation ratio of the spores by HPCD+HT. These results indicated that the spore clumping enhanced the spores' resistance to HPCD+HT and induced a protective effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Monitoring of Commitment, Blocking, and Continuation of Nutrient Germination of Individual Bacillus subtilis Spores

    PubMed Central

    Zhang, Pengfei; Liang, Jintao; Yi, Xuan; Setlow, Peter

    2014-01-01

    Short exposures of Bacillus spores to nutrient germinants can commit spores to germinate when germinants are removed or their binding to the spores' nutrient germinant receptors (GRs) is inhibited. Bacillus subtilis spores were exposed to germinants for various periods, followed by germinant removal to prevent further commitment. Release of spore dipicolinic acid (DPA) was then measured by differential interference contrast microscopy to monitor germination of multiple individual spores, and spores did not release DPA after 1 to 2 min of germinant exposure until ∼7 min after germinant removal. With longer germinant exposures, percentages of committed spores with times for completion of DPA release (Trelease) greater than the time of germinant removal (Tb) increased, while the time Tlag − Tb, where Tlag represents the time when rapid DPA release began, was decreased but rapid DPA release times (ΔTrelease = Trelease − Tlag) were increased; Factors affecting average Trelease values and the percentages of committed spores were germinant exposure time, germinant concentration, sporulation conditions, and spore heat activation, as previously shown for commitment of spore populations. Surprisingly, germination of spores given a 2nd short germinant exposure 30 to 45 min after a 1st exposure of the same duration was significantly higher than after the 1st exposure, but the number of spores that germinated in the 2nd germinant exposure decreased as the interval between germinant exposures increased up to 12 h. The latter results indicate that spores have some memory, albeit transient, of their previous exposure to nutrient germinants. PMID:24769693

  10. Spore ornamentation of Haplosporidium pickfordi Barrow, 1961 (Haplosporidia), a parasite of freshwater snails in Michigan, USA.

    PubMed

    Burreson, E M

    2001-01-01

    Spore ornamentation is increasingly recognized as a key character for species differentiation and genus assignment in the phylum Haplosporidia. Unfortunately, spore ornamentation is known for only a small number of described species so it is difficult to assign most species to genera with any confidence. Scanning and transmission electron microscopy were used to determine the presence and morphology of spore ornamentation of Haplosporidium pickfordi collected from the digestive gland of the snail Physella parkeri in Douglas Lake, Michigan. Spores possess filaments that are derived from the spore wall and originate from two separate areas at the posterior end of the spore. When spores are first isolated from host tissue, filaments are fused into a sheet that wraps around the spore, passing under the opercular lid. These filaments gradually unravel when spores are held in water and after about 14 d most filaments project freely from the posterior end of the spore. The number of filaments could not be determined with certainty, but appears to be approximately nine. Filaments are 100 nm in diam. and up to 50 microm in length. The presence of spore wall-derived filaments confirms the placement of the parasite in the genus Haplosporidium.

  11. Effects of Interface Coating and Nitride Enhancing Additive on Properties of Hi-Nicalon SiC Fiber Reinforced Reaction-Bonded Silicon Nitride Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishana T.; Hull, David R.; Eldridge, Jeffrey I.; Babuder, Raymond

    2000-01-01

    Strong and tough Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride matrix composites (SiC/ RBSN) have been fabricated by the fiber lay-up approach. Commercially available uncoated and PBN, PBN/Si-rich PBN, and BN/SiC coated SiC Hi-Nicalon fiber tows were used as reinforcement. The composites contained approximately 24 vol % of aligned 14 micron diameter SiC fibers in a porous RBSN matrix. Both one- and two-dimensional composites were characterized. The effects of interface coating composition, and the nitridation enhancing additive, NiO, on the room temperature physical, tensile, and interfacial shear strength properties of SiC/RBSN matrix composites were evaluated. Results indicate that for all three coated fibers, the thickness of the coatings decreased from the outer periphery to the interior of the tows, and that from 10 to 30 percent of the fibers were not covered with the interface coating. In the uncoated regions, chemical reaction between the NiO additive and the SiC fiber occurs causing degradation of tensile properties of the composites. Among the three interface coating combinations investigated, the BN/SiC coated Hi-Nicalon SiC fiber reinforced RBSN matrix composite showed the least amount of uncoated regions and reasonably uniform interface coating thickness. The matrix cracking stress in SiC/RBSN composites was predicted using a fracture mechanics based crack bridging model.

  12. ENZYMES OF GLUCOSE AND PYRUVATE CATABOLISM IN CELLS, SPORES, AND GERMINATED SPORES OF CLOSTRIDIUM BOTULINUM1

    PubMed Central

    Simmons, Richard J.; Costilow, Ralph N.

    1962-01-01

    Simmons, R. J. (Michigan State University, East Lansing), and R. N. Costilow. Enzymes of glucose and pyruvate catabolism in cells, spores, and germinated spores of Clostridium botulinum. J. Bacteriol. 84:1274–1281. 1962.—An investigation was made of the enzymes of vegetative cells, spores, and germinated spores of Clostridium botulinum 62-A to elucidate a pathway of glucose metabolism. Manometric studies were conducted with intact cells, and various enzymes and enzyme systems were assayed in cell-free and spore-free extracts by use of spectrophotometric and colorimetric procedures. Glucose fermentation was found to be inducible; glucokinase was the controlling enzyme. All other enzymes of the Embden-Meyerhof-Parnas (EMP) pathway were found in both induced and non-induced cells, but they were in relatively low concentrations in the latter. This, plus the fact that no glucose-6-phosphate dehydrogenase was detected, led to the conclusion that glucose is catabolized primarily by the EMP system. A number of glycolytic enzymes were also found in extracts of spores and germinated spores of this organism, but the activities were extremely low as compared with activities in cell extracts. A phosphoroclastic-type reaction was readily demonstrated in both glucose-adapted and non-adapted cells, but not in spores and germinated spores. However, both acetokinase and phosphotransacetylase, as well as coenzyme A transphorase, were detected in spores and germinated-spore extracts, although at very low activity levels as compared with cell extracts. The specific activity of diaphorase in spore extracts was about one-half that of corresponding cell extracts, and the activity of reduced diphosphopyridine nucleotide (DPNH) oxidase was actually higher in the spore extracts. In addition, the DPNH oxidase in spore extracts was considerably more heat-stable than that in extracts of cells or germinated spores. PMID:13977433

  13. Meteorological factors associated with abundance of airborne fungal spores over natural vegetation

    NASA Astrophysics Data System (ADS)

    Crandall, Sharifa G.; Gilbert, Gregory S.

    2017-08-01

    The abundance of airborne fungal spores in agricultural and urban settings increases with greater air temperature, relative humidity, or precipitation. The same meteorological factors that affect temporal patterns in spore abundance in managed environments also vary spatially across natural habitats in association with differences in vegetation structure. Here we investigated how temporal and spatial variation in aerial spore abundance is affected by abiotic (weather) and biotic (vegetation) factors as a foundation for predicting how fungi may respond to changes in weather and land-use patterns. We measured the phenology of airborne fungal spores across a mosaic of naturally occurring vegetation types at different time scales to describe (1) how spore abundance changes over time, (2) which local meteorological variables are good predictors for airborne spore density, and (3) whether spore abundance differs across vegetation types. Using an air volumetric vacuum sampler, we collected spore samples at 3-h intervals over a 120-h period in a mixed-evergreen forest and coastal prairie to measure diurnal, nocturnal, and total airborne spore abundance across vegetation types. Spore samples were also collected at weekly and monthly intervals in mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types from 12 field sites across two years. We found greater airborne spore densities during the wetter winter months compared to the drier summer months. Mean total spore abundance in the mixed-evergreen forest was twice than in the coastal prairie, but there were no significant differences in total airborne spore abundance among mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types. Weekly and monthly peaks in airborne spore abundance corresponded with rain events and peaks in soil moisture. Overall, temporal patterns in meteorological factors were much more important in determining airborne fungal spore abundance than the vegetation type. This suggests that overall patterns of fungal spore dynamics may be predictable across heterogeneous landscapes based on local weather patterns.

  14. The distribution of Paenibacillus larvae spores in adult bees and honey and larval mortality, following the addition of American foulbrood diseased brood or spore-contaminated honey in honey bee (Apis mellifera) colonies.

    PubMed

    Lindström, Anders; Korpela, Seppo; Fries, Ingemar

    2008-09-01

    Within colony transmission of Paenibacillus larvae spores was studied by giving spore-contaminated honey comb or comb containing 100 larvae killed by American foulbrood to five experimental colonies respectively. We registered the impact of the two treatments on P. larvae spore loads in adult bees and honey and on larval mortality by culturing for spores in samples of adult bees and honey, respectively, and by measuring larval survival. The results demonstrate a direct effect of treatment on spore levels in adult bees and honey as well as on larval mortality. Colonies treated with dead larvae showed immediate high spore levels in adult bee samples, while the colonies treated with contaminated honey showed a comparable spore load but the effect was delayed until the bees started to utilize the honey at the end of the flight season. During the winter there was a build up of spores in the adult bees, which may increase the risk for infection in spring. The results confirm that contaminated honey can act as an environmental reservoir of P. larvae spores and suggest that less spores may be needed in honey, compared to in diseased brood, to produce clinically diseased colonies. The spore load in adult bee samples was significantly related to larval mortality but the spore load of honey samples was not.

  15. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat.

    PubMed

    Martins, Ligia O; Soares, Claudio M; Pereira, Manuela M; Teixeira, Miguel; Costa, Teresa; Jones, George H; Henriques, Adriano O

    2002-05-24

    The Bacillus subtilis endospore coat protein CotA shows laccase activity. By using comparative modeling techniques, we were able to derive a model for CotA based on the known x-ray structures of zucchini ascorbate oxidase and Cuprinus cereneus laccase. This model of CotA contains all the structural features of a laccase, including the reactive surface-exposed copper center (T1) and two buried copper centers (T2 and T3). Single amino acid substitutions in the CotA T1 copper center (H497A, or M502L) did not prevent assembly of the mutant proteins into the coat and did not alter the pattern of extractable coat polypeptides. However, in contrast to a wild type strain, both mutants produced unpigmented colonies and spores unable to oxidize syringaldazine (SGZ) and 2'2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The CotA protein was purified to homogeneity from an overproducing Escherichia coli strain. The purified CotA shows an absorbance and a EPR spectra typical of blue multicopper oxidases. Optimal enzymatic activity was found at < or =pH 3.0 and at pH 7.0 for ABTS or SGZ oxidation, respectively. The apparent K(m) values for ABTS and SGZ at 37 degrees C were of 106 +/- 11 and 26 +/- 2 microm, respectively, with corresponding k(cat) values of 16.8 +/- 0.8 and 3.7 +/- 0.1 s(-1). Maximal enzyme activity was observed at 75 degrees C with ABTS as substrate. Remarkably, the coat-associated or the purified enzyme showed a half-life of inactivation at 80 degrees C of about 4 and 2 h, respectively, indicating that CotA is intrinsically highly thermostable.

  16. A Standard Method To Inactivate Bacillus anthracis Spores to Sterility via Gamma Irradiation

    PubMed Central

    Cote, Christopher K.; Buhr, Tony; Bernhards, Casey B.; Bohmke, Matthew D.; Calm, Alena M.; Esteban-Trexler, Josephine S.; Hunter, Melissa; Katoski, Sarah E.; Kennihan, Neil; Klimko, Christopher P.; Miller, Jeremy A.; Minter, Zachary A.; Pfarr, Jerry W.; Prugh, Amber M.; Quirk, Avery V.; Rivers, Bryan A.; Shea, April A.; Shoe, Jennifer L.; Sickler, Todd M.; Young, Alice A.; Fetterer, David P.; Welkos, Susan L.; McPherson, Derrell; Fountain, Augustus W.

    2018-01-01

    ABSTRACT In 2015, a laboratory of the United States Department of Defense (DoD) inadvertently shipped preparations of gamma-irradiated spores of Bacillus anthracis that contained live spores. In response, a systematic evidence-based method for preparing, concentrating, irradiating, and verifying the inactivation of spore materials was developed. We demonstrate the consistency of spore preparations across multiple biological replicates and show that two different DoD institutions independently obtained comparable dose-inactivation curves for a monodisperse suspension of B. anthracis spores containing 3 × 1010 CFU. Spore preparations from three different institutions and three strain backgrounds yielded similar decimal reduction (D10) values and irradiation doses required to ensure sterility (DSAL) to the point at which the probability of detecting a viable spore is 10−6. Furthermore, spores of a genetically tagged strain of B. anthracis strain Sterne were used to show that high densities of dead spores suppress the recovery of viable spores. Together, we present an integrated method for preparing, irradiating, and verifying the inactivation of spores of B. anthracis for use as standard reagents for testing and evaluating detection and diagnostic devices and techniques. IMPORTANCE The inadvertent shipment by a U.S. Department of Defense (DoD) laboratory of live Bacillus anthracis (anthrax) spores to U.S. and international destinations revealed the need to standardize inactivation methods for materials derived from biological select agents and toxins (BSAT) and for the development of evidence-based methods to prevent the recurrence of such an event. Following a retrospective analysis of the procedures previously employed to generate inactivated B. anthracis spores, a study was commissioned by the DoD to provide data required to support the production of inactivated spores for the biodefense community. The results of this work are presented in this publication, which details the method by which spores can be prepared, irradiated, and tested, such that the chance of finding residual living spores in any given preparation is 1/1,000,000. These irradiated spores are used to test equipment and methods for the detection of agents of biological warfare and bioterrorism. PMID:29654186

  17. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components. [heat sensitivity of bacterial spores

    NASA Technical Reports Server (NTRS)

    Campbell, J. E.; Reyes, A. L.; Wehby, A. J.; Crawford, R. G.; Wimsatt, J. C.; Peeler, J. T.

    1973-01-01

    The mechanism for thermal inactivation of bacterial spores under moist or dry heat was studied. Experimental conditions were established relating to spore loss of heat resistance and loss of optical density as a measure of the rate and extent of germination in spore suspensions. Events occurring during germination were correlated with phase darkening (refractility and non-refractility of spores), stainability characteristics of heat and non-heat treated spores, morphological characteristics, and studies on swelling of spores by an increase in packed cell volume.

  18. Internal Porosity of Mineral Coating Supports Microbial Activity in Rapid Sand Filters for Groundwater Treatment

    PubMed Central

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin; Mateiu, Ramona V.; Albrechtsen, Hans-Jørgen

    2014-01-01

    A mineral coating develops on the filter grain surface when groundwater is treated via rapid sand filtration in drinking water production. The coating changes the physical and chemical properties of the filter material, but little is known about its effect on the activity, colonization, diversity, and abundance of microbiota. This study reveals that a mineral coating can positively affect the colonization and activity of microbial communities in rapid sand filters. To understand this effect, we investigated the abundance, spatial distribution, colonization, and diversity of all and of nitrifying prokaryotes in filter material with various degrees of mineral coating. We also examined the physical and chemical characteristics of the mineral coating. The amount of mineral coating correlated positively with the internal porosity, the packed bulk density, and the biologically available surface area of the filter material. The volumetric NH4+ removal rate also increased with the degree of mineral coating. Consistently, bacterial 16S rRNA and amoA abundances positively correlated with increased mineral coating levels. Microbial colonization could be visualized mainly within the outer periphery (60.6 ± 35.6 μm) of the mineral coating, which had a thickness of up to 600 ± 51 μm. Environmental scanning electron microscopic (E-SEM) observations suggested an extracellular polymeric substance-rich matrix and submicron-sized bacterial cells. Nitrifier diversity profiles were similar irrespective of the degree of mineral coating, as indicated by pyrosequencing analysis. Overall, our results demonstrate that mineral coating positively affects microbial colonization and activity in rapid sand filters, most likely due to increased volumetric cell abundances facilitated by the large surface area of internal mineral porosity accessible for microbial colonization. PMID:25192987

  19. Thermal coatings for titanium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Cunnington, George R.; Clark, Ronald K.; Robinson, John C.

    1993-01-01

    Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

  20. Spore development and nuclear inheritance in arbuscular mycorrhizal fungi

    PubMed Central

    2011-01-01

    Background A conventional tenet of classical genetics is that progeny inherit half their genome from each parent in sexual reproduction instead of the complete genome transferred to each daughter during asexual reproduction. The transmission of hereditary characteristics from parents to their offspring is therefore predictable, although several exceptions are known. Heredity in microorganisms, however, can be very complex, and even unknown as is the case for coenocytic organisms such as Arbuscular Mycorrhizal Fungi (AMF). This group of fungi are plant-root symbionts, ubiquitous in most ecosystems, which reproduce asexually via multinucleate spores for which sexuality has not yet been observed. Results We examined the number of nuclei per spore of four AMF taxa using high Z-resolution live confocal microscopy and found that the number of nuclei was correlated with spore diameter. We show that AMF have the ability, through the establishment of new symbioses, to pass hundreds of nuclei to subsequent generations of multinucleated spores. More importantly, we observed surprising heterogeneity in the number of nuclei among sister spores and show that massive nuclear migration and mitosis are the mechanisms by which AMF spores are formed. We followed spore development of Glomus irregulare from hyphal swelling to spore maturity and found that the spores reached mature size within 30 to 60 days, and that the number of nuclei per spores increased over time. Conclusions We conclude that the spores used for dispersal of AMF contain nuclei with two origins, those that migrate into the spore and those that arise by mitosis in the spore. Therefore, these spores do not represent a stage in the life cycle with a single nucleus, raising the possibility that AMF, unlike all other known eukaryotic organisms, lack the genetic bottleneck of a single-nucleus stage. PMID:21349193

  1. Spore development and nuclear inheritance in arbuscular mycorrhizal fungi.

    PubMed

    Marleau, Julie; Dalpé, Yolande; St-Arnaud, Marc; Hijri, Mohamed

    2011-02-24

    A conventional tenet of classical genetics is that progeny inherit half their genome from each parent in sexual reproduction instead of the complete genome transferred to each daughter during asexual reproduction. The transmission of hereditary characteristics from parents to their offspring is therefore predictable, although several exceptions are known. Heredity in microorganisms, however, can be very complex, and even unknown as is the case for coenocytic organisms such as Arbuscular Mycorrhizal Fungi (AMF). This group of fungi are plant-root symbionts, ubiquitous in most ecosystems, which reproduce asexually via multinucleate spores for which sexuality has not yet been observed. We examined the number of nuclei per spore of four AMF taxa using high Z-resolution live confocal microscopy and found that the number of nuclei was correlated with spore diameter. We show that AMF have the ability, through the establishment of new symbioses, to pass hundreds of nuclei to subsequent generations of multinucleated spores. More importantly, we observed surprising heterogeneity in the number of nuclei among sister spores and show that massive nuclear migration and mitosis are the mechanisms by which AMF spores are formed. We followed spore development of Glomus irregulare from hyphal swelling to spore maturity and found that the spores reached mature size within 30 to 60 days, and that the number of nuclei per spores increased over time. We conclude that the spores used for dispersal of AMF contain nuclei with two origins, those that migrate into the spore and those that arise by mitosis in the spore. Therefore, these spores do not represent a stage in the life cycle with a single nucleus, raising the possibility that AMF, unlike all other known eukaryotic organisms, lack the genetic bottleneck of a single-nucleus stage.

  2. Measuring spore settling velocity for an improved assessment of dispersal rates in mosses

    PubMed Central

    Zanatta, Florian; Patiño, Jairo; Lebeau, Frederic; Massinon, Mathieu; Hylander, Kristofer; de Haan, Myriam; Ballings, Petra; Degreef, Jerôme; Vanderpoorten, Alain

    2016-01-01

    Background and Aims The settling velocity of diaspores is a key parameter for the measurement of dispersal ability in wind-dispersed plants and one of the most relevant parameters in explicit dispersal models, but remains largely undocumented in bryophytes. The settling velocities of moss spores were measured and it was determined whether settling velocities can be derived from spore diameter using Stokes’ Law or if specific traits of spore ornamentation cause departures from theoretical expectations. Methods A fall tower design combined with a high-speed camera was used to document spore settling velocities in nine moss species selected to cover the range of spore diameters within the group. Linear mixed effect models were employed to determine whether settling velocity can be predicted from spore diameter, taking specific variation in shape and surface roughness into account. Key Results Average settling velocity of moss spores ranged from 0·49 to 8·52 cm s–1. There was a significant positive relationship between spore settling velocity and size, but the inclusion of variables of shape and texture of spores in the best-fit models provides evidence for their role in shaping spore settling velocities. Conclusions Settling velocities in mosses can significantly depart from expectations derived from Stokes’ Law. We suggest that variation in spore shape and ornamentation affects the balance between density and drag, and results in different dispersal capacities, which may be correlated with different life-history traits or ecological requirements. Further studies on spore ultrastructure would be necessary to determine the role of complex spore ornamentation patterns in the drag-to-mass ratio and ultimately identify what is the still poorly understood function of the striking and highly variable ornamentation patterns of the perine layer on moss spores. PMID:27296133

  3. Microbiological efficacy of superheated steam. I. Communication: results with spores of Bacillus subtilis and Bacillus stearothermophilus and with spore earth.

    PubMed

    Spicher, G; Peters, J; Borchers, U

    1999-02-01

    For the spores of Bacillus subtilis and Bacillus stearothermophilus as well as for spore earth (acc. DIN 58,946 Part 4 of August 1982), the dependence of resistance on the superheating of the steam used to kill germs was determined. A material (glass fibre fleece) was used as the germ carrier which does not superheat on contact with steam. The temperature of the saturated steam was 100 degrees C (B. subtilis) and 120 degrees C (B. stearothermophilus and spore earth). The yardstick for the resistance of the spores or bioindicators was the exposure period of the saturated or superheated steam at which 50% of the treated test objects no longer showed any viable test germs. The spores of Bacillus subtilis were far more sensitive to superheating of steam and reacted far more than the spores of Bacillus stearothermophilus and the germs in the spore earth. When superheating by 4 Kelvin the spores of Bacillus subtilis were approximately 2.5 times more resistant than they were to saturated steam. The resistance of Bacillus stearothermophilus and spore earth was only slightly higher up to superheating by 10 Kelvin. The spores of Bacillus subtilis had the highest resistance during superheating by 29 Kelvin; they were 119 times more resistant than they were to saturated steam. The resistance maximum of the spores of Bacillus stearothermophilus was at an superheating by around 22 Kelvin. However, the spores were only 4.1 times more resistant than they were to saturated steam. When using steam to kill germs, we must expect superheated steam. This raises the question whether the spores of Bacillus stearothermophilus, with their weaker reaction to the superheating of steam, are suitable as test germs for sterilisation with steam in all cases.

  4. Nanoscale Structural and Mechanical Analysis of Bacillus anthracis Spores Inactivated with Rapid Dry Heating

    PubMed Central

    Felker, Daniel L.; Burggraf, Larry W.

    2014-01-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating. PMID:24375142

  5. Multilayer Protective Coatings for High-Level Nuclear Waste Storage Containers

    NASA Astrophysics Data System (ADS)

    Fusco, Michael

    Corrosion-based failures of high-level nuclear waste (HLW) storage containers are potentially hazardous due to a possible release of radionuclides through cracks in the canister due to corrosion, especially for above-ground storage (i.e. dry casks). Protective coatings have been proposed to combat these premature failures, which include stress-corrosion cracking and hydrogen-diffusion cracking, among others. The coatings are to be deposited in multiple thin layers as thin films on the outer surface of the stainless steel waste basket canister. Coating materials include: TiN, ZrO2, TiO2, Al 2O3, and MoS2, which together may provide increased resistances to corrosion and mechanical wear, as well as act as a barrier to hydrogen diffusion. The focus of this research is on the corrosion resistance and characterization of single layer coatings to determine the possible benefit from the use of the proposed coating materials. Experimental methods involve electrochemical polarization, both DC and AC techniques, and corrosion in circulating salt brines of varying pH. DC polarization allows for estimation of corrosion rates, passivation behavior, and a qualitative survey of localized corrosion, whereas AC electrochemistry has the benefit of revealing information about kinetics and interfacial reactions that is not obtainable using DC techniques. Circulation in salt brines for nearly 150 days revealed sustained adhesion of the coatings and minimal weight change of the steel samples. One-inch diameter steel coupons composed of stainless steel types 304 and 316 and A36 low alloy carbon steel were coated with single layers using magnetron sputtering with compound targets in an inert argon atmosphere. This resulted in very thin films for the metal-oxides based on low sputter rates. DC polarization showed that corrosion rates were very similar between bare and coated stainless steel samples, whereas a statistically significant decrease in uniform corrosion was measured on coated, as opposed to bare, mild steel. Passivation and passive breakdown was largely unaffected by the coating materials. Activation parameters were determined for corrosion rates and passive breakdown potential based on measurements performed between 20°C and 80°C to simulate elevated waste canister temperatures due to decay heat. Electrochemical impedance spectroscopy (EIS) was used to study the metal-electrolyte interface and the passive film formed on types 304 and 316 stainless steel. Capacitance values were calculated by utilizing the constant phase element and a conversion technique proposed in the literature. This method was shown to remove the frequency dependence of the capacitance that is often seen in electrochemical analysis. The dielectric constant was estimated from impedance and potentiostatic current measurements, and film defect densities were calculated to be on the order of 1020 cm-3, which is consistent with highly-doped semiconductive films. EIS was also employed to study reactively-sputtered TiO2 films on stainless steel type 304, which was substantially thicker than initial TiO2 coatings. The impedance spectra of TiO2-coated stainless steel exhibited several distinctions from its uncoated counterpart and were clearly dominated by the dielectric coating material. Film defect density was on the order of 1017 cm-3, which is several orders of magnitude lower than the bare steel and is more consistent with solid-state semiconductors. This research shows the potential of these coating materials to alter the corrosion behavior of the outer surface of a HLW storage canister. Although the initial single layered coatings had little effect on the corrosion and passivity of the stainless steel substrates, it is possible that with a thicker multi-layered coating system the substrate may be sufficiently isolated from the environment. Moreover, the thin single layer coatings were able to reduce corrosion of A36 steel, showing the promise of these coating materials in reducing uniform corrosion. Further optimization of deposition parameters and testing of multilayer coatings is necessary for serious consideration of these coatings in the future.

  6. Surface tension propulsion of fungal spores by use of microdroplets

    NASA Astrophysics Data System (ADS)

    Noblin, Xavier; Yang, Sylvia; Dumais, Jacques

    2010-11-01

    Most basidiomycete fungi (such as edible mushrooms) actively eject their spores. The process begins with the condensation of a water droplet at the base of the spore. The fusion of the droplet onto the spore creates a momentum that propels the spore forward. The use of surface tension for spore ejection offers a new paradigm to perform work at small length scales. However, this mechanism of force generation remains poorly understood. To elucidate how fungal spores make effective use of surface tension, we performed high-speed video imaging of spore ejection in Auricularia auricula and Sporobolomyces yeast, along with a detailed mechanical analysis of the spore ejection. We developed an explicit relation for the conversion of surface energy into kinetic energy during the coalescence process. The relation was validated with a simple artificial system.

  7. Growth from spores of Clostridium perfringens in the presence of sodium nitrite.

    PubMed

    Labbe, R G; Duncan, C L

    1970-02-01

    The method by which sodium nitrite may act to prevent germination or outgrowth, or both, of heat-injured spores in canned cured meats was investigated by using Clostridium perfringens spores. Four possible mechanisms were tested: (i) prevention of germination of the heat-injured spores, (ii) prior combination with a component in a complex medium to prevent germination of heat-injured spores, (iii) inhibition of outgrowth of heat-injured spores, and (iv) induction of germination (which would render the spore susceptible to thermal inactivation). Only the third mechanism was effective with the entire spore population when levels of sodium nitrite commercially acceptable in canned cured meats were used. Concentrations of 0.02 and 0.01% prevented outgrowth of heat-sensitive and heat-resistant spores, respectively. Nitrite-induced germination occurred with higher sodium nitrite concentrations.

  8. Spore populations among bulk tank raw milk and dairy powders are significantly different.

    PubMed

    Miller, Rachel A; Kent, David J; Watterson, Matthew J; Boor, Kathryn J; Martin, Nicole H; Wiedmann, Martin

    2015-12-01

    To accommodate stringent spore limits mandated for the export of dairy powders, a more thorough understanding of the spore species present will be necessary to develop prospective strategies to identify and reduce sources (i.e., raw materials or in-plant) of contamination. We characterized 1,523 spore isolates obtained from bulk tank raw milk (n=33 farms) and samples collected from 4 different dairy powder-processing plants producing acid whey, nonfat dry milk, sweet whey, or whey protein concentrate 80. The spores isolated comprised 12 genera, at least 44 species, and 216 rpoB allelic types. Bacillus and Geobacillus represented the most commonly isolated spore genera (approximately 68.9 and 12.1%, respectively, of all spore isolates). Whereas Bacillus licheniformis was isolated from samples collected from all plants and farms, Geobacillus spp. were isolated from samples from 3 out of 4 plants and just 1 out of 33 farms. We found significant differences between the spore population isolated from bulk tank raw milk and those isolated from dairy powder plant samples, except samples from the plant producing acid whey. A comparison of spore species isolated from raw materials and finished powders showed that although certain species, such as B. licheniformis, were found in both raw and finished product samples, other species, such as Geobacillus spp. and Anoxybacillus spp., were more frequently isolated from finished powders. Importantly, we found that 8 out of 12 genera were isolated from at least 2 different spore count methods, suggesting that some spore count methods may provide redundant information if used in parallel. Together, our results suggest that (1) Bacillus and Geobacillus are the predominant spore contaminants in a variety of dairy powders, implying that future research efforts targeted at elucidating approaches to reduce levels of spores in dairy powders should focus on controlling levels of spore isolates from these genera; and (2) the spore populations isolated from bulk tank raw milk and some dairy powder products are significantly different, suggesting that targeting in-plant sources of contamination may be important for achieving low spore counts in the finished product. These data provide important insight regarding the diversity of spore populations isolated from dairy powders and bulk tank raw milk, and demonstrate that several spore genera are detected by multiple spore count methods. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Characterization of Clostridium difficile Spores Lacking Either SpoVAC or Dipicolinic Acid Synthetase

    PubMed Central

    Donnelly, M. Lauren; Fimlaid, Kelly A.

    2016-01-01

    ABSTRACT The spore-forming obligate anaerobe Clostridium difficile is a leading cause of antibiotic-associated diarrhea around the world. In order for C. difficile to cause infection, its metabolically dormant spores must germinate in the gastrointestinal tract. During germination, spores degrade their protective cortex peptidoglycan layers, release dipicolinic acid (DPA), and hydrate their cores. In C. difficile, cortex hydrolysis is necessary for DPA release, whereas in Bacillus subtilis, DPA release is necessary for cortex hydrolysis. Given this difference, we tested whether DPA synthesis and/or release was required for C. difficile spore germination by constructing mutations in either spoVAC or dpaAB, which encode an ion channel predicted to transport DPA into the forespore and the enzyme complex predicted to synthesize DPA, respectively. C. difficile spoVAC and dpaAB mutant spores lacked DPA but could be stably purified and were more hydrated than wild-type spores; in contrast, B. subtilis spoVAC and dpaAB mutant spores were unstable. Although C. difficile spoVAC and dpaAB mutant spores exhibited wild-type germination responses, they were more readily killed by wet heat. Cortex hydrolysis was not affected by this treatment, indicating that wet heat inhibits a stage downstream of this event. Interestingly, C. difficile spoVAC mutant spores were significantly more sensitive to heat treatment than dpaAB mutant spores, indicating that SpoVAC plays additional roles in conferring heat resistance. Taken together, our results demonstrate that SpoVAC and DPA synthetase control C. difficile spore resistance and reveal differential requirements for these proteins among the Firmicutes. IMPORTANCE Clostridium difficile is a spore-forming obligate anaerobe that causes ∼500,000 infections per year in the United States. Although spore germination is essential for C. difficile to cause disease, the factors required for this process have been only partially characterized. This study describes the roles of two factors, DpaAB and SpoVAC, which control the synthesis and release of dipicolinic acid (DPA), respectively, from bacterial spores. Previous studies of these proteins in other spore-forming organisms indicated that they are differentially required for spore formation, germination, and resistance. We now show that the proteins are dispensable for C. difficile spore formation and germination but are necessary for heat resistance. Thus, our study further highlights the diverse functions of DpaAB and SpoVAC in spore-forming organisms. PMID:27044622

  10. 76 FR 56200 - Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... Stent. The ZILVER-PTX Stent is a self-expanding nitinol stent coated on its outer surface with the... millimeter. The ZILVER-PTX Stent is available in diameters ranging from 5 to 10 millimeters (mm) and lengths... deployment, the ZILVER-PTX Stent expands to establish and maintain patency in the stented region. The...

  11. Spatial and temporal distribution of Alternaria spores in the Iberian Peninsula atmosphere, and meteorological relationships: 1993-2009

    NASA Astrophysics Data System (ADS)

    Aira, María-Jesús; Rodríguez-Rajo, Francisco-Javier; Fernández-González, María; Seijo, Carmen; Elvira-Rendueles, Belén; Abreu, Ilda; Gutiérrez-Bustillo, Montserrat; Pérez-Sánchez, Elena; Oliveira, Manuela; Recio, Marta; Tormo, Rafael; Morales, Julia

    2013-03-01

    This paper provides an updated of airborne Alternaria spore spatial and temporal distribution patterns in the Iberian Peninsula, using a common non-viable volumetric sampling method. The highest mean annual spore counts were recorded in Sevilla (39,418 spores), Mérida (33,744) and Málaga (12,947), while other sampling stations never exceeded 5,000. The same cities also recorded the highest mean daily spore counts (Sevilla 109 spores m-3; Mérida 53 spores m-3 and Málaga 35 spores m-3) and the highest number of days on which counts exceeded the threshold levels required to trigger allergy symptoms (Sevilla 38 % and Mérida 30 % of days). Analysis of annual spore distribution patterns revealed either one or two peaks, depending on the location and prevailing climate of sampling stations. For all stations, average temperature was the weather parameter displaying the strongest positive correlation with airborne spore counts, whilst negative correlations were found for rainfall and relative humidity.

  12. Spatial and temporal distribution of Alternaria spores in the Iberian Peninsula atmosphere, and meteorological relationships: 1993-2009.

    PubMed

    Aira, María-Jesús; Rodríguez-Rajo, Francisco-Javier; Fernández-González, María; Seijo, Carmen; Elvira-Rendueles, Belén; Abreu, Ilda; Gutiérrez-Bustillo, Montserrat; Pérez-Sánchez, Elena; Oliveira, Manuela; Recio, Marta; Tormo, Rafael; Morales, Julia

    2013-03-01

    This paper provides an updated of airborne Alternaria spore spatial and temporal distribution patterns in the Iberian Peninsula, using a common non-viable volumetric sampling method. The highest mean annual spore counts were recorded in Sevilla (39,418 spores), Mérida (33,744) and Málaga (12,947), while other sampling stations never exceeded 5,000. The same cities also recorded the highest mean daily spore counts (Sevilla 109 spores m(-3); Mérida 53 spores m(-3) and Málaga 35 spores m(-3)) and the highest number of days on which counts exceeded the threshold levels required to trigger allergy symptoms (Sevilla 38 % and Mérida 30 % of days). Analysis of annual spore distribution patterns revealed either one or two peaks, depending on the location and prevailing climate of sampling stations. For all stations, average temperature was the weather parameter displaying the strongest positive correlation with airborne spore counts, whilst negative correlations were found for rainfall and relative humidity.

  13. Membrane filtration method for enumeration and isolation of Alicyclobacillus spp. from apple juice.

    PubMed

    Lee, S-Y; Chang, S-S; Shin, J-H; Kang, D-H

    2007-11-01

    To evaluate the applicability of filtration membranes for detecting Alicyclobacillus spp. spores in apple juice. Ten types of nitrocellulose membrane filters from five manufacturers were used to collect and enumerate five Alicyclobacillus spore isolates and results were compared to conventional K agar plating. Spore recovery differed among filters with an average recovery rate of 126.2%. Recovery levels also differed among spore isolates. Although significant difference (P < 0.05) in spore sizes existed, no correlation could be determined between spore size and membrane filter recovery rate. Recovery of spores using membrane filtration is dependent on the manufacturer and filter pore size. Correlations between spore recovery rate and spore size could not be determined. Low numbers of Alicyclobacillus spores in juice can be effectively detected using membrane filtration although recovery rate differences exist among different manufacturers. Use of membrane filtration is a simple, fast alternative to the week-long enrichment procedures currently employed in most quality assurance tests.

  14. Mammalian TRAPPIII Complex positively modulates the recruitment of Sec13/31 onto COPII vesicles

    PubMed Central

    Zhao, Shan; Li, Chun Man; Luo, Xiao Min; Siu, Gavin Ka Yu; Gan, Wen Jia; Zhang, Lin; Wu, William K. K.; Chan, Hsiao Chang; Yu, Sidney

    2017-01-01

    The Transport protein particle (TRAPP) complex is a tethering factor for COPII vesicle. Of three forms of TRAPP (TRAPPI, II and III) complexes identified so far, TRAPPIII has been largely considered to play a role in autophagy. While depletion of TRAPPIII specific subunits caused defects in the early secretory pathway and TRAPPIII might interact with components of the COPII vesicle coat, its exact role remains to be determined. In this study, we studied the function of TRAPPIII in early secretory pathway using a TRAPPIII-specific subunit, TRAPPC12, as starting point. We found that TRAPPC12 was localized to the ER exit sites and ERGIC. In cells deleted with TRAPPC12, ERGIC and to a lesser extent, the Golgi became dispersed. ER-to-Golgi transport was also delayed. TRAPPC12, but not TRAPPC8, bound to Sec13/Sec31A tetramer but each Sec protein alone could not interact with TRAPPC12. TRAPPIII positively modulated the assembly of COPII outer layer during COPII vesicle formation. These results identified a novel function of TRAPPIII as a positive modulator of the outer layer of the COPII coat. PMID:28240221

  15. Widespread Abundance of Functional Bacterial Amyloid in Mycolata and Other Gram-Positive Bacteria▿

    PubMed Central

    Jordal, Peter Bruun; Dueholm, Morten Simonsen; Larsen, Poul; Petersen, Steen Vang; Enghild, Jan Johannes; Christiansen, Gunna; Højrup, Peter; Nielsen, Per Halkjær; Otzen, Daniel Erik

    2009-01-01

    Until recently, extracellular functional bacterial amyloid (FuBA) has been detected and characterized in only a few bacterial species, including Escherichia coli, Salmonella, and the gram-positive organism Streptomyces coelicolor. Here we probed gram-positive bacteria with conformationally specific antibodies and revealed the existence of FuBA in 12 of 14 examined mycolata species, as well as six other distantly related species examined belonging to the phyla Actinobacteria and Firmicutes. Most of the bacteria produced extracellular fimbriae, sometimes copious amounts of them, and in two cases large extracellular fibrils were also produced. In three cases, FuBA was revealed only after extensive removal of extracellular material by saponification, indicating that there is integrated attachment within the cellular envelope. Spores of species in the genera Streptomyces, Bacillus, and Nocardia were all coated with amyloids. FuBA was purified from Gordonia amarae (from the cell envelope) and Geodermatophilus obscurus, and they had the morphology, tinctorial properties, and β-rich structure typical of amyloid. The presence of approximately 9-nm-wide amyloids in the cell envelope of G. amarae was visualized by transmission electron microscopy analysis. We conclude that amyloid is widespread among gram-positive bacteria and may in many species constitute a hitherto overlooked integral part of the spore and the cellular envelope. PMID:19395568

  16. Turbulent Dispersion of Pathogenic Spores Within and Above Plant Canopies: Field Experiments and Lagrangian Modeling

    NASA Astrophysics Data System (ADS)

    Gleicher, S.; Chamecki, M.; Isard, S.; Katul, G. G.

    2012-12-01

    Plant disease epidemics caused by pathogenic spores are a common and consequential threat to agricultural crops. In most cases, pathogenic spores are produced and released deep inside plant canopies and must be transported out of the canopy region in order to infect other fields and spread the disease. The fraction of spores that "escape" the canopy is crucial in determining how fast and far these plant diseases will spread. The goal of this work is to use a field experiment, coupled with a Lagrangian Stochastic Model (LSM), to investigate how properties of canopy turbulence impact the dispersion of spores inside the canopy and the fraction of spores that escape from the canopy. An extensive field experiment was conducted to study spore dispersion inside and outside a corn canopy. The spores were released from point sources located at various depths inside the canopy. Concentration measurements were obtained inside and above the canopy by a 3-dimensional grid of spore collectors. The experimental measurements of mean spore concentration are used to validate a LSM for spore dispersion. In the LSM, flow field statistics used to drive the particle dispersion are specified by a second-order closure model for turbulence within plant canopies. The dispersion model includes spore deposition on and rebound from canopy elements. The combination of experimental and numerical simulations is used to quantify the fraction of spores that escape the canopy. Effects of release height, friction velocity, and canopy architecture on the escape fraction of spores are explored using the LSM, and implications for disease propagation are discussed.

  17. Cytological and Proteomic Analyses of Osmunda cinnamomea Germinating Spores Reveal Characteristics of Fern Spore Germination and Rhizoid Tip Growth.

    PubMed

    Suo, Jinwei; Zhao, Qi; Zhang, Zhengxiu; Chen, Sixue; Cao, Jian'guo; Liu, Guanjun; Wei, Xing; Wang, Tai; Yang, Chuanping; Dai, Shaojun

    2015-09-01

    Fern spore is a good single-cell model for studying the sophisticated molecular networks in asymmetric cell division, differentiation, and polar growth. Osmunda cinnamomea L. var. asiatica is one of the oldest fern species with typical separate-growing trophophyll and sporophyll. The chlorophyllous spores generated from sporophyll can germinate without dormancy. In this study, the spore ultrastructure, antioxidant enzyme activities, as well as protein and gene expression patterns were analyzed in the course of spore germination at five typical stages (i.e. mature spores, rehydrated spores, double-celled spores, germinated spores, and spores with protonemal cells). Proteomic analysis revealed 113 differentially expressed proteins, which were mainly involved in photosynthesis, reserve mobilization, energy supplying, protein synthesis and turnover, reactive oxygen species scavenging, signaling, and cell structure modulation. The presence of multiple proteoforms of 25 differentially expressed proteins implies that post-translational modification may play important roles in spore germination. The dynamic patterns of proteins and their encoding genes exhibited specific characteristics in the processes of cell division and rhizoid tip growth, which include heterotrophic and autotrophic metabolisms, de novo protein synthesis and active protein turnover, reactive oxygen species and hormone (brassinosteroid and ethylene) signaling, and vesicle trafficking and cytoskeleton dynamic. In addition, the function skew of proteins in fern spores highlights the unique and common mechanisms when compared with evolutionarily divergent spermatophyte pollen. These findings provide an improved understanding of the typical single-celled asymmetric division and polar growth during fern spore germination. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Influence of Spore Moisture Content on the Dry-Heat Resistance of Bacillus subtilis var. niger

    PubMed Central

    Angelotti, Robert; Maryanski, James H.; Butler, Thomas F.; Peeler, James T.; Campbell, Jeptha E.

    1968-01-01

    The dry-heat resistance of Bacillus subtilis var. niger spores located in or on various materials was determined as D and z values in the range of 105 through 160 C. The systems tested included spores located on steel and paper strips, spores located between stainless-steel washers mated together under 150 inch-lb and 12 inch-lb of torque, and spores encapsulated in methylmethacrylate and epoxy plastics. D values for a given temperature varied with the test system. High D values were observed for the systems in which spores were encapsulated or under heavy torque, whereas lower D values were observed for the steel and paper strip systems and the lightly torqued system. Similar z values were obtained for the plastic and steel strip systems (zD = 21 C), but an unusually low z for spores on paper (zD = 12.9 C) and an unusually high z for spores on steel washers mated at 150 inch-lb of torque (zD = 32 C) were observed. The effect of spore moisture content on the D value of spores encapsulated in water-impermeable plastic was determined, and maximal resistance was observed for spores with a water activity (aw) of 0.2 to 0.4. Significantly decreased D values were observed for spores with moisture contents below aw 0.2 or above aw 0.4. The data indicate that the important factors to be considered when measuring the dry heat resistance of spores are (i) the initial moisture content of the spore, (ii) the rate of spore desiccation during heating, (iii) the water retention capacity of the material in or on which spores are located, and (iv) the relative humidity of the system at the test temperature. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 PMID:4968962

  19. Investigating the Detrimental Effects of Low Pressure Plasma Sterilization on the Survival of Bacillus subtilis Spores Using Live Cell Microscopy.

    PubMed

    Fuchs, Felix M; Raguse, Marina; Fiebrandt, Marcel; Madela, Kazimierz; Awakowicz, Peter; Laue, Michael; Stapelmann, Katharina; Moeller, Ralf

    2017-11-30

    Plasma sterilization is a promising alternative to conventional sterilization methods for industrial, clinical, and spaceflight purposes. Low pressure plasma (LPP) discharges contain a broad spectrum of active species, which lead to rapid microbial inactivation. To study the efficiency and mechanisms of sterilization by LPP, we use spores of the test organism Bacillus subtilis because of their extraordinary resistance against conventional sterilization procedures. We describe the production of B. subtilis spore monolayers, the sterilization process by low pressure plasma in a double inductively coupled plasma reactor, the characterization of spore morphology using scanning electron microscopy (SEM), and the analysis of germination and outgrowth of spores by live cell microscopy. A major target of plasma species is genomic material (DNA) and repair of plasma-induced DNA lesions upon spore revival is crucial for survival of the organism. Here, we study the germination capacity of spores and the role of DNA repair during spore germination and outgrowth after treatment with LPP by tracking fluorescently-labelled DNA repair proteins (RecA) with time-resolved confocal fluorescence microscopy. Treated and untreated spore monolayers are activated for germination and visualized with an inverted confocal live cell microscope over time to follow the reaction of individual spores. Our observations reveal that the fraction of germinating and outgrowing spores is dependent on the duration of LPP-treatment reaching a minimum after 120 s. RecA-YFP (yellow fluorescence protein) fluorescence was detected only in few spores and developed in all outgrowing cells with a slight elevation in LPP-treated spores. Moreover, some of the vegetative bacteria derived from LPP-treated spores showed an increase in cytoplasm and tended to lyse. The described methods for analysis of individual spores could be exemplary for the study of other aspects of spore germination and outgrowth.

  20. Process for the Production of Star Tracklng [Tracking] Reticles

    NASA Technical Reports Server (NTRS)

    Smith, Wade O. (Inventor); Toft, Albert R. (Inventor)

    1972-01-01

    A method for the production of reticles, particularly those for use in outer space, wherein the product is a quartz base coated with highly adherent layers of chromium, chromium-silver, and silver vacuum deposited through a mask, and then coated with an electrodeposit of copper from a copper sulfate solution followed by an electrodeposit of black chromium. The masks are produced by coating a beryllium-copper alloy substrate with a positive working photoresist, developing the photoresist according to a pattern to leave a positive mask, plating uncoated areas with gold, removing the photoresist, coating the substrate with a negative working photoresist, developing the negative working photoresist to expose the base metal of the pattern, and chemically etching the unplated side of the pattern to produce the mask. The mask produced is then used in the vacuum deposition of: (1) chromium metal on the surface of a quartz base to obtain a highly adherent quartz-chromium interface; (2) silver on the chromium deposit, during the final stage of chromium deposit, to produce a silver chromium alloy layer; and (3) silver onto the surface of the alloy layer. The coated quartz base is then coated by electroplating utilizing an acid copper deposit followed by a black chromium electrodeposit to produce the product of the present invention.

  1. High-Melt Carbon-Carbon Coating for Nozzle Extensions

    NASA Technical Reports Server (NTRS)

    Thompson, James

    2015-01-01

    Carbon-Carbon Advanced Technologies, Inc. (C-CAT), has developed a high-melt coating for use in nozzle extensions in next-generation spacecraft. The coating is composed primarily of carbon-carbon, a carbon-fiber and carbon-matrix composite material that has gained a spaceworthy reputation due to its ability to withstand ultrahigh temperatures. C-CAT's high-melt coating embeds hafnium carbide (HfC) and zirconium diboride (ZrB2) within the outer layers of a carbon-carbon structure. The coating demonstrated enhanced high-temperature durability and suffered no erosion during a test in NASA's Arc Jet Complex. (Test parameters: stagnation heat flux=198 BTD/sq ft-sec; pressure=.265 atm; temperature=3,100 F; four cycles totaling 28 minutes) In Phase I of the project, C-CAT successfully demonstrated large-scale manufacturability with a 40-inch cylinder representing the end of a nozzle extension and a 16-inch flanged cylinder representing the attach flange of a nozzle extension. These demonstrators were manufactured without spalling or delaminations. In Phase II, C-CAT worked with engine designers to develop a nozzle extension stub skirt interfaced with an Aerojet Rocketdyne RL10 engine. All objectives for Phase II were successfully met. Additional nonengine applications for the coating include thermal protection systems (TPS) for next-generation spacecraft and hypersonic aircraft.

  2. Measuring Total and Germinable Spore Populations

    NASA Technical Reports Server (NTRS)

    Noell, A.C.; Yung, P.T.; Yang, W.; Lee, C.; Ponce, A.

    2011-01-01

    It has been shown that bacterial endospores can be enumerated using a microscopy based assay that images the luminescent halos from terbium ions bound to dipicolinic acid, a spore specific chemical marker released upon spore germination. Further development of the instrument has simplified it towards automation while at the same time improving image quality. Enumeration of total spore populations has also been developed allowing measurement of the percentage of viable spores in any population by comparing the germinable/culturable spores to the total. Percentage viability will allow a more quantitative comparison of the ability of spores to survive across a wide range of extreme environments.

  3. Mushrooms use convectively created airflows to disperse their spores

    PubMed Central

    Dressaire, Emilie; Yamada, Lisa; Song, Boya; Roper, Marcus

    2016-01-01

    Thousands of basidiomycete fungal species rely on mushroom spores to spread across landscapes. It has long been thought that spores depend on favorable winds for dispersal—that active control of spore dispersal by the parent fungus is limited to an impulse delivered to the spores to carry them clear of the gill surface. Here we show that evaporative cooling of the air surrounding the pileus creates convective airflows capable of carrying spores at speeds of centimeters per second. Convective cells can transport spores from gaps that may be only 1 cm high and lift spores 10 cm or more into the air. This work reveals how mushrooms tolerate and even benefit from crowding and explains their high water needs. PMID:26929324

  4. Selection of biological indicator for validating microwave heating sterilization.

    PubMed

    Sasaki, K; Mori, Y; Honda, W; Miyake, Y

    1998-01-01

    For the purpose of selecting an appropriate biological indicator for evaluation of the effects of microwave heating sterilization, we examined aerobic bacterial spores to determine whether microwaves have non-thermal sterilization effects. After microwave irradiation on dry bacterial spores (three species), none of the bacterial spores were killed. The survival rate of the spores after microwave irradiation of spore suspensions (twelve species) was compared with that after heating by a conventional method. The order of heat resistance in the bacterial species was similar between the two heating methods. Bacillus stearothermophilus spores were the most heat-resistant. These results suggest that microwaves have no non-thermal sterilization effects on bacterial spores, the specific resistant spores to microwave heating, and microwave heating sterilization can be evaluated in the same way as for conventional heating sterilization. As a biological indicator for evaluation of overkill sterilization, B. stearothermophilus spores may be appropriate for microwave heating sterilization as well as steam sterilization.

  5. Comparison of hand hygiene procedures for removing Bacillus cereus spores.

    PubMed

    Sasahara, Teppei; Hayashi, Shunji; Hosoda, Kouichi; Morisawa, Yuji; Hirai, Yoshikazu

    2014-01-01

    Bacillus cereus is a spore-forming bacterium. B. cereus occasionally causes nosocomial infections, in which hand contamination with the spores plays an important role. Therefore, hand hygiene is the most important practice for controlling nosocomial B. cereus infections. This study aimed to determine the appropriate hand hygiene procedure for removing B. cereus spores. Thirty volunteers' hands were experimentally contaminated with B. cereus spores, after which they performed 6 different hand hygiene procedures. We compared the efficacy of the procedures in removing the spores from hands. The alcohol-based hand-rubbing procedures scarcely removed them. The soap washing procedures reduced the number of spores by more than 2 log10. Extending the washing time increased the spore-removing efficacy of the washing procedures. There was no significant difference in efficacy between the use of plain soap and antiseptic soap. Handwashing with soap is appropriate for removing B. cereus spores from hands. Alcohol-based hand-rubbing is not effective.

  6. Efficacy of propidium iodide and FUN-1 stains for assessing viability in basidiospores of Rhizopogon roseolus.

    PubMed

    Fernández-Miranda, Elena; Majada, Juan; Casares, Abelardo

    2017-01-01

    The use of spores in applications of ectomycorrhizal fungi requires information regarding spore viability and germination, especially in genera such as Rhizopogon with high rates of spore dormancy. The authors developed a protocol to assess spore viability of Rhizopogon roseolus using four vital stains to quantify spore viability and germination and to optimize storage procedures. They showed that propidium iodide is an excellent stain for quantifying nonviable spores. Observing red fluorescent intravacuolar structures following staining with 2-chloro-4-(2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene)-1-phenylquinolinium iodide (FUN-1) can help identify viable spores that are activated. At 6 mo and 1 y, the spores kept in a water suspension survived better than those left within intact, dry gasterocarps. Our work highlights the importance of temperature, nutrients, and vitamins for maturation and germination of spores of R. roseolus during 1 y of storage.

  7. Significance of air humidity and air velocity for fungal spore release into the air

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.; Pasanen, P.; Jantunen, M. J.; Kalliokoski, P.

    Our previous field studies have shown that the presence of molds in buildings does not necessarily mean elevated airborne spore counts. Therefore, we investigated the release of fungal spores from cultures of Aspergillus fumigatus, Penicillium sp. and Cladosporium sp. at different air velocities and air humidities. Spores of A. fumigatus and Penicillium sp. were released from conidiophores already at air velocity of 0.5 ms -1, whereas Cladosporium spores required at least a velocity of 1.0 ms -1. Airborne spore counts of A. fumigatus and Penicillium sp. were usually higher in dry than moist air, being minimal at relative humidities (r.h.) above 70%, while the effect of r.h. on the release of Cladosporium sp. was ambivalent. The geometric mean diameter of released spores increased when the r.h. exceeded a certain level which depends on fungal genus. Thus, spores of all three fungi were hygroscopic but the hygroscopicity of various spores appeared at different r.h.-ranges. This study indicates that spore release is controlled by external factors and depends on fungal genus which can be one reason for considerable variation of airborne spore counts in buildings with mold problems.

  8. Development of an Aerosol Surface Inoculation Method for Bacillus Spores ▿

    PubMed Central

    Lee, Sang Don; Ryan, Shawn P.; Snyder, Emily Gibb

    2011-01-01

    A method was developed to deposit Bacillus subtilis spores via aerosolization onto various surface materials for biological agent decontamination and detection studies. This new method uses an apparatus coupled with a metered dose inhaler to reproducibly deposit spores onto various surfaces. A metered dose inhaler was loaded with Bacillus subtilis spores, a surrogate for Bacillus anthracis. Five different material surfaces (aluminum, galvanized steel, wood, carpet, and painted wallboard paper) were tested using this spore deposition method. This aerosolization method deposited spores at a concentration of more than 107 CFU per coupon (18-mm diameter) with less than a 50% coefficient of variation, showing that the aerosolization method developed in this study can deposit reproducible numbers of spores onto various surface coupons. Scanning electron microscopy was used to probe the spore deposition patterns on test coupons. The deposition patterns observed following aerosol impaction were compared to those of liquid inoculation. A physical difference in the spore deposition patterns was observed to result from the two different methods. The spore deposition method developed in this study will help prepare spore coupons via aerosolization fast and reproducibly for bench top decontamination and detection studies. PMID:21193670

  9. Development of an aerosol surface inoculation method for bacillus spores.

    PubMed

    Lee, Sang Don; Ryan, Shawn P; Snyder, Emily Gibb

    2011-03-01

    A method was developed to deposit Bacillus subtilis spores via aerosolization onto various surface materials for biological agent decontamination and detection studies. This new method uses an apparatus coupled with a metered dose inhaler to reproducibly deposit spores onto various surfaces. A metered dose inhaler was loaded with Bacillus subtilis spores, a surrogate for Bacillus anthracis. Five different material surfaces (aluminum, galvanized steel, wood, carpet, and painted wallboard paper) were tested using this spore deposition method. This aerosolization method deposited spores at a concentration of more than 10(7) CFU per coupon (18-mm diameter) with less than a 50% coefficient of variation, showing that the aerosolization method developed in this study can deposit reproducible numbers of spores onto various surface coupons. Scanning electron microscopy was used to probe the spore deposition patterns on test coupons. The deposition patterns observed following aerosol impaction were compared to those of liquid inoculation. A physical difference in the spore deposition patterns was observed to result from the two different methods. The spore deposition method developed in this study will help prepare spore coupons via aerosolization fast and reproducibly for bench top decontamination and detection studies.

  10. PpASCL, the Physcomitrella patens Anther-Specific Chalcone Synthase-Like Enzyme Implicated in Sporopollenin Biosynthesis, Is Needed for Integrity of the Moss Spore Wall and Spore Viability

    PubMed Central

    Daku, Rhys M.; Rabbi, Fazle; Buttigieg, Josef; Coulson, Ian M.; Horne, Derrick; Martens, Garnet; Ashton, Neil W.; Suh, Dae-Yeon

    2016-01-01

    Sporopollenin is the main constituent of the exine layer of spore and pollen walls. The anther-specific chalcone synthase-like (ASCL) enzyme of Physcomitrella patens, PpASCL, has previously been implicated in the biosynthesis of sporopollenin, the main constituent of exine and perine, the two outermost layers of the moss spore cell wall. We made targeted knockouts of the corresponding gene, PpASCL, and phenotypically characterized ascl sporophytes and spores at different developmental stages. Ascl plants developed normally until late in sporophytic development, when the spores produced were structurally aberrant and inviable. The development of the ascl spore cell wall appeared to be arrested early in microspore development, resulting in small, collapsed spores with altered surface morphology. The typical stratification of the spore cell wall was absent with only an abnormal perine recognisable above an amorphous layer possibly representing remnants of compromised intine and/or exine. Equivalent resistance of the spore walls of ascl mutants and the control strain to acetolysis suggests the presence of chemically inert, defective sporopollenin in the mutants. Anatomical abnormalities of late-stage ascl sporophytes include a persistent large columella and an air space incompletely filled with spores. Our results indicate that the evolutionarily conserved PpASCL gene is needed for proper construction of the spore wall and for normal maturation and viability of moss spores. PMID:26752629

  11. Monitoring the Wet-Heat Inactivation Dynamics of Single Spores of Bacillus Species by Using Raman Tweezers, Differential Interference Contrast Microscopy, and Nucleic Acid Dye Fluorescence Microscopy▿

    PubMed Central

    Zhang, Pengfei; Kong, Lingbo; Wang, Guiwen; Setlow, Peter; Li, Yong-qing

    2011-01-01

    Dynamic processes during wet-heat treatment of individual spores of Bacillus cereus, Bacillus megaterium, and Bacillus subtilis at 80 to 90°C were investigated using dual-trap Raman spectroscopy, differential interference contrast (DIC) microscopy, and nucleic acid stain (SYTO 16) fluorescence microscopy. During spore wet-heat treatment, while the spores' 1:1 chelate of Ca2+ with dipicolinic acid (CaDPA) was released rapidly at a highly variable time Tlag, the levels of spore nucleic acids remained nearly unchanged, and the Tlag times for individual spores from the same preparation were increased somewhat as spore levels of CaDPA increased. The brightness of the spores' DIC image decreased by ∼50% in parallel with CaDPA release, and there was no spore cortex hydrolysis observed. The lateral diameters of the spores' DIC image and SYTO 16 fluorescence image also decreased in parallel with CaDPA release. The SYTO 16 fluorescence intensity began to increase during wet-heat treatment at a time before Tlag and reached maximum at a time slightly later than Trelease. However, the fluorescence intensities of wet-heat-inactivated spores were ∼15-fold lower than those of nutrient-germinated spores, and this low SYTO 16 fluorescence intensity may be due in part to the low permeability of the dormant spores' inner membranes to SYTO 16 and in part to nucleic acid denaturation during the wet-heat treatment. PMID:21602365

  12. Spore Heat Activation Requirements and Germination Responses Correlate with Sequences of Germinant Receptors and with the Presence of a Specific spoVA2mob Operon in Foodborne Strains of Bacillus subtilis.

    PubMed

    Krawczyk, Antonina O; de Jong, Anne; Omony, Jimmy; Holsappel, Siger; Wells-Bennik, Marjon H J; Kuipers, Oscar P; Eijlander, Robyn T

    2017-04-01

    Spore heat resistance, germination, and outgrowth are problematic bacterial properties compromising food safety and quality. Large interstrain variation in these properties makes prediction and control of spore behavior challenging. High-level heat resistance and slow germination of spores of some natural Bacillus subtilis isolates, encountered in foods, have been attributed to the occurrence of the spoVA 2mob operon carried on the Tn 1546 transposon. In this study, we further investigate the correlation between the presence of this operon in high-level-heat-resistant spores and their germination efficiencies before and after exposure to various sublethal heat treatments (heat activation, or HA), which are known to significantly improve spore responses to nutrient germinants. We show that high-level-heat-resistant spores harboring spoVA 2mob required higher HA temperatures for efficient germination than spores lacking spoVA 2mob The optimal spore HA requirements additionally depended on the nutrients used to trigger germination, l-alanine (l-Ala), or a mixture of l-asparagine, d-glucose, d-fructose, and K + (AGFK). The distinct HA requirements of these two spore germination pathways are likely related to differences in properties of specific germinant receptors. Moreover, spores that germinated inefficiently in AGFK contained specific changes in sequences of the GerB and GerK germinant receptors, which are involved in this germination response. In contrast, no relation was found between transcription levels of main germination genes and spore germination phenotypes. The findings presented in this study have great implications for practices in the food industry, where heat treatments are commonly used to inactivate pathogenic and spoilage microbes, including bacterial spore formers. IMPORTANCE This study describes a strong variation in spore germination capacities and requirements for a heat activation treatment, i.e., an exposure to sublethal heat that increases spore responsiveness to nutrient germination triggers, among 17 strains of B. subtilis , including 9 isolates from spoiled food products. Spores of industrial foodborne isolates exhibited, on average, less efficient and slower germination responses and required more severe heat activation than spores from other sources. High heat activation requirements and inefficient, slow germination correlated with elevated resistance of spores to heat and with specific genetic features, indicating a common genetic basis of these three phenotypic traits. Clearly, interstrain variation and numerous factors that shape spore germination behavior challenge standardization of methods to recover highly heat-resistant spores from the environment and have an impact on the efficacy of preservation techniques used by the food industry to control spores. Copyright © 2017 American Society for Microbiology.

  13. Spore Heat Activation Requirements and Germination Responses Correlate with Sequences of Germinant Receptors and with the Presence of a Specific spoVA2mob Operon in Foodborne Strains of Bacillus subtilis

    PubMed Central

    Krawczyk, Antonina O.; de Jong, Anne; Omony, Jimmy; Holsappel, Siger; Wells-Bennik, Marjon H. J.; Eijlander, Robyn T.

    2017-01-01

    ABSTRACT Spore heat resistance, germination, and outgrowth are problematic bacterial properties compromising food safety and quality. Large interstrain variation in these properties makes prediction and control of spore behavior challenging. High-level heat resistance and slow germination of spores of some natural Bacillus subtilis isolates, encountered in foods, have been attributed to the occurrence of the spoVA2mob operon carried on the Tn1546 transposon. In this study, we further investigate the correlation between the presence of this operon in high-level-heat-resistant spores and their germination efficiencies before and after exposure to various sublethal heat treatments (heat activation, or HA), which are known to significantly improve spore responses to nutrient germinants. We show that high-level-heat-resistant spores harboring spoVA2mob required higher HA temperatures for efficient germination than spores lacking spoVA2mob. The optimal spore HA requirements additionally depended on the nutrients used to trigger germination, l-alanine (l-Ala), or a mixture of l-asparagine, d-glucose, d-fructose, and K+ (AGFK). The distinct HA requirements of these two spore germination pathways are likely related to differences in properties of specific germinant receptors. Moreover, spores that germinated inefficiently in AGFK contained specific changes in sequences of the GerB and GerK germinant receptors, which are involved in this germination response. In contrast, no relation was found between transcription levels of main germination genes and spore germination phenotypes. The findings presented in this study have great implications for practices in the food industry, where heat treatments are commonly used to inactivate pathogenic and spoilage microbes, including bacterial spore formers. IMPORTANCE This study describes a strong variation in spore germination capacities and requirements for a heat activation treatment, i.e., an exposure to sublethal heat that increases spore responsiveness to nutrient germination triggers, among 17 strains of B. subtilis, including 9 isolates from spoiled food products. Spores of industrial foodborne isolates exhibited, on average, less efficient and slower germination responses and required more severe heat activation than spores from other sources. High heat activation requirements and inefficient, slow germination correlated with elevated resistance of spores to heat and with specific genetic features, indicating a common genetic basis of these three phenotypic traits. Clearly, interstrain variation and numerous factors that shape spore germination behavior challenge standardization of methods to recover highly heat-resistant spores from the environment and have an impact on the efficacy of preservation techniques used by the food industry to control spores. PMID:28130296

  14. Inorganic-organic hybrid coatings on stainless steel by layer-by-layer deposition and surface-initiated atom-transfer-radical polymerization for combating biocorrosion.

    PubMed

    Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2009-03-01

    To improve the biocorrosion resistance of stainless steel (SS) and to confer the bactericidal function on its surface for inhibiting bacterial adhesion and biofilm formation, well-defined inorganic-organic hybrid coatings, consisting of the inner compact titanium oxide multilayers and outer dense poly(vinyl-N-hexylpyridinium) brushes, were successfully developed. Nanostructured titanium oxide multilayer coatings were first built up on the SS substrates via the layer-by-layer sol-gel deposition process. The trichlorosilane coupling agent, containing the alkyl halide atom-transfer-radical polymerization (ATRP) initiator, was subsequently immobilized on the titanium oxide coatings for surface-initiated ATRP of 4-vinylpyridine (4VP). The pyridium nitrogen moieties of the covalently immobilized 4VP polymer, or P(4VP), brushes were quaternized with hexyl bromide to produce a high concentration of quaternary ammonium salt on the SS surfaces. The excellent antibacterial efficiency of the grafted polycations, poly(vinyl-N-pyridinium bromide), was revealed by viable cell counts and atomic force microscopy images of the surface. The effectiveness of the hybrid coatings in corrosion protection was verified by the Tafel plot and electrochemical impedance spectroscopy measurements.

  15. Dosage form design and in vitro/in vivo evaluation of cevimeline extended-release tablet formulations.

    PubMed

    Tajiri, Shinichiro; Kanamaru, Taro; Kamada, Makoto; Makoto, Kamada; Konno, Tsutomu; Nakagami, Hiroaki

    2010-01-04

    The objective of the present work is to develop an extended-release dosage form of cevimeline. Two types of extended-release tablets (simple matrix tablets and press-coated tablets) were prepared and their potential as extended-release dosage forms were assessed. Simple matrix tablets have a large amount of hydroxypropylcellulose as a rate-controlling polymer and the matrix is homogeneous throughout the tablet. The press-coated tablets consisted of a matrix core tablet, which was completely surrounded by an outer shell containing a large amount of hydroxypropylcellulose. The simple matrix tablets could not sustain the release of cevimeline effectively. In contrast, the press-coated tablets showed a slower dissolution rate compared with simple matrix tablets and the release curve was nearly linear. The dissolution of cevimeline from the press-coated tablets was not markedly affected by the pH of the dissolution medium or by a paddle rotating speed over the range of 50-200 rpm. Furthermore, cevimeline was constantly released from the press-coated tablets in the gastrointestinal tract and the steady-state plasma drug levels were maintained in beagle dogs. These results suggested that the designed PC tablets have a potential for extended-release dosage forms.

  16. Erythrocyte membrane-coated NIR-triggered biomimetic nanovectors with programmed delivery for photodynamic therapy of cancer.

    PubMed

    Ding, Hui; Lv, Yanlin; Ni, Dezhi; Wang, Jie; Tian, Zhiyuan; Wei, Wei; Ma, Guanghui

    2015-06-07

    A new type of photodynamic therapy (PDT) agents using upconversion nanoparticles (UCNPs) with incorporated photosensitizers as the inner core and an erythrocyte membrane (RM) decorated with dual targeting moieties as the cloak is developed. Owing to the endogenous nature of RM, the RM-coating endows the PDT agents with perfect biocompatibility and stealth ability to escape from the entrapment by the reticulo-endothelial system (RES). More importantly, owing to the unique nature of erythrocyte as an oxygen carrier in the blood, the RM outer layer of the agents unequivocally facilitates the permeation of ground-state molecular oxygen ((3)O2) and the singlet oxygen ((1)O2) as compared to the previously developed PDT agents with other types of coating. Another salient feature of the as-prepared PDT platform is the decoration of RM with dual targeting moieties for selective recognition of cancer cells and mitochondrial targeting, respectively. The synergistic effect of RM coating and dual-targeting of such feature-packed agents are investigated in tumor-bearing mice and the improved PDT therapeutic efficacy is confirmed, which is the first paradigm where RM-coated NIR-triggered nanovectors with programmed delivery ability is applied in PDT of tumor in vivo.

  17. The corrosion protection of AA2024-T3 aluminium alloy by leaching of lithium-containing salts from organic coatings.

    PubMed

    Visser, Peter; Liu, Yanwen; Zhou, Xiaorong; Hashimoto, Teruo; Thompson, George E; Lyon, Stuart B; van der Ven, Leendert G J; Mol, Arjan J M C; Terryn, Herman A

    2015-01-01

    Lithium carbonate and lithium oxalate were incorporated as leachable corrosion inhibitors in model organic coatings for the protection of AA2024-T3. The coated samples were artificially damaged with a scribe. It was found that the lithium-salts are able to leach from the organic coating and form a protective layer in the scribe on AA2024-T3 under neutral salt spray conditions. The present paper shows the first observation and analysis of these corrosion protective layers, generated from lithium-salt loaded organic coatings. The scribed areas were examined by scanning and transmission electron microscopy before and after neutral salt spray exposure (ASTM-B117). The protective layers typically consist of three different layered regions, including a relatively dense layer near the alloy substrate, a porous middle layer and a flake-shaped outer layer, with lithium uniformly distributed throughout all three layers. Scanning electron microscopy and white light interferometry surface roughness measurements demonstrate that the formation of the layer occurs rapidly and, therefore provides an effective inhibition mechanism. Based on the observation of this work, a mechanism is proposed for the formation of these protective layers.

  18. Ionic liquid polymer functionalized carbon nanotubes-doped poly(3,4-ethylenedioxythiophene) for highly-efficient solid-phase microextraction of carbamate pesticides.

    PubMed

    Wu, Mian; Wang, Liying; Zeng, Baizhao; Zhao, Faqiong

    2016-04-29

    A poly(3,4-ethylenedioxythiophene)-ionic liquid polymer functionalized multiwalled carbon nanotubes (PEDOT-PIL/MWCNTs) composite solid-phase microextraction (SPME) coating was fabricated by electrodeposition. After being dipped in Nafion solution, a Nafion-modified coating was obtained. The outer layer Nafion played a crucial role in enhancing the durability and stability of the coating, thus it was robust enough for replicated extraction for at least 150 times without decrease of extraction performance. The Nafion-modified coating exhibited much higher sensitivity than commercial coatings for the direct extraction of carbamate pesticides in aqueous solutions, due to its strong hydrophobic effect and π-π affinity based enrichment. When it was used for the determination of carbamate pesticides in combination with gas chromatography-flame ionization detection, good linearity (correlation coefficients higher than 0.9981), low limits of detection (15.2-27.2 ng/L) and satisfactory precision (relative standard deviation <8.2%, n=5) were achieved. The developed method was applied to the analysis of four carbamate pesticides in apple and lettuce samples, and acceptable recoveries (i.e. 87.5-106.5%) were obtained for the standard addition. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Membrane-spacer assembly for flow-electrode capacitive deionization

    NASA Astrophysics Data System (ADS)

    Lee, Ki Sook; Cho, Younghyun; Choo, Ko Yeon; Yang, SeungCheol; Han, Moon Hee; Kim, Dong Kook

    2018-03-01

    Flow-electrode capacitive deionization (FCDI) is a desalination process designed to overcome the limited desalination capacity of conventional CDI systems due to their fixed electrodes. Such a FCDI cell system is comprised of a current collector, freestanding ion-exchange membrane (IEM), gasket, and spacer for flowing saline water. To simplify the cell system, in this study we combined the membrane and spacer into a single unit, by coating the IEM on a porous ceramic structure that acts as the spacer. The combination of membrane with the porous structure avoids the use of costly freestanding IEM. Furthermore, the FCDI system can be readily scaled up by simply inserting the IEM-coated porous structures in between the channels for flow electrodes. However, coating the IEM on such porous ceramic structures can cause a sudden drop in the treatment capacity, if the coated IEM penetrates the ceramic pores and prevents these pores from acting as saline flow channels. To address this issue, we blocked the larger microscale pores on the outer surface with SiO2 and polymeric multilayers. Thus, the IEM is coated only onto the top surface of the porous structure, while the internal pores remain empty to function as water channels.

  20. Bactericidal activity of electrolyzed acid water from solution containing sodium chloride at low concentration, in comparison with that at high concentration.

    PubMed

    Kiura, Hiromasa; Sano, Kouichi; Morimatsu, Shinichi; Nakano, Takashi; Morita, Chizuko; Yamaguchi, Masaki; Maeda, Toyoyuki; Katsuoka, Yoji

    2002-05-01

    Electrolyzed strong acid water (ESW) containing free chlorine at various concentrations is becoming to be available in clinical settings as a disinfectant. ESW is prepared by electrolysis of a NaCl solution, and has a corrosive activity against medical instruments. Although lower concentrations of NaCl and free chlorine are desired to eliminate corrosion, the germicidal effect of ESW with low NaCl and free-chlorine concentrations (ESW-L) has not been fully clarified. In this study, we demonstrated that ESW-L possesses bactericidal activity against Mycobacteria and spores of Bacillus subtilis. The effect was slightly weaker than that of ESW containing higher NaCl and free-chlorine concentrations (ESW-H), but acceptable as a disinfectant. To clarify the mechanism of the bactericidal activity, we investigated ESW-L-treated Pseudomonas aeruginosa by transmission electron microscopy, a bacterial enzyme assay and restriction fragment length polymorphism pattern (RFLP) assay. Since the bacterium, whose growth was completely inhibited by ESW-L, revealed the inactivation of cytoplasmic enzyme, blebs and breaks in its outer membrane and remained complete RFLP of DNA, damage of the outer membrane and inactivation of cytoplasmic enzyme are the important determinants of the bactericidal activity.

Top