Science.gov

Sample records for outer surface structures

  1. The Role of Shewanella oneidensis MR-1 Outer Surface Structures in Extracellular Electron Transfer

    DTIC Science & Technology

    2010-01-01

    less current than the wild type in an MFC and was unable to reduce Fe(III). These results indicated that although nanofilaments and soluble mediators...mutant that lacks the outer membrane c cytochromes, MtrC and OmcA. This mutant generated significantly less current than the wild type in an MFC and...published previously [34]. The anodes were single-sided carbon-coated titanium flags and the cathode system was graphite paper in 50 mM potassium

  2. Outer trapped surfaces are dense near MOTSs

    NASA Astrophysics Data System (ADS)

    Chruściel, Piotr T.; Galloway, Gregory J.

    2014-02-01

    We show that any vacuum initial data set containing a marginally outer trapped surface S and satisfying a ‘no KIDs’ condition can be perturbed near S so that S becomes strictly outer trapped in the new vacuum initial data set. This, together with the results in Eichmair et al (2012), gives a precise sense in which generic initial data containing marginally outer trapped surfaces lead to geodesically incomplete spacetimes.

  3. Outer trapped surfaces in Vaidya spacetimes

    SciTech Connect

    Ben-Dov, Ishai

    2007-03-15

    It is proven that in Vaidya spacetimes of bounded total mass, the outer boundary, in spacetime, of the region containing outer trapped surfaces, is the event horizon. Further, it is shown that the region containing trapped surfaces in these spacetimes does not always extend to the event horizon.

  4. Wettability on Inner and Outer Surface of Single Carbon Nanotubes.

    PubMed

    Yamada, Yutaka; Takahashi, Koji; Takata, Yasuyuki; Sefiane, Khellil

    2016-07-19

    The surface wettability of a liquid on the inner and outer surface of single carbon nanotubes (CNTs) was experimentally investigated. Although these contact angles on both surfaces were previously studied separately, the available data are of limited help to elucidate the effect of curvature orientation (concave or convex) on wettability due to the difference in surface structure. Here, we report on the three-phase contact region and wettability on the outer surface of CNT during the dipping and withdrawing experiment of CNT into an ionic liquid. Furthermore, the wettability on the inner surface was measured using a liquid within the same CNT. Our results show that the contact angle on the outer surface of the CNT is larger than that on the flat surface and that on the inner surface is smaller than that on the flat one. These findings suggest that the surface curvature orientation has a noticeable effect on the contact angle at the nanoscale because both inner and outer surfaces expose the same graphite wall structure and the contact line tension will be negligible in this situation. The presented results are rationalized using the free energy balance of liquid on curved surfaces.

  5. A Delicate Interplay of Structure, Dynamics, and Thermodynamics for Function: A High Pressure NMR Study of Outer Surface Protein A

    PubMed Central

    Kitahara, Ryo; Simorellis, Alana K.; Hata, Kazumi; Maeno, Akihiro; Yokoyama, Shigeyuki; Koide, Shohei; Akasaka, Kazuyuki

    2012-01-01

    Outer surface protein A (OspA) is a crucial protein in the infection of Borrelia burgdorferi causing Lyme disease. We studied conformational fluctuations of OspA with high-pressure 15N/1H two-dimensional NMR along with high-pressure fluorescence spectroscopy. We found evidence within folded, native OspA for rapid local fluctuations of the polypeptide backbone in the nonglobular single layer β-sheet connecting the N- and C-terminal domains with τ << ms, which may give the two domains certain independence in mobility and thermodynamic stability. Furthermore, we found that folded, native OspA is in equilibrium (τ >> ms) with a minor conformer I, which is almost fully disordered and hydrated for the entire C-terminal part of the polypeptide chain from β8 to the C-terminus. Conformer I is characterized with ΔG0 = 32 ± 9 kJ/mol and ΔV0 = −140 ± 40 mL/mol, populating only ∼0.001% at 40°C at 0.1 MPa, pH 5.9. Because in the folded conformer the receptor binding epitope of OspA is buried in the C-terminal domain, its transition into conformer I under in vivo conditions may be critical for the infection of B. burgdorferi. The formation and stability of the peculiar conformer I are apparently supported by a large packing defect or cavity located in the C-terminal domain. PMID:22385863

  6. Outer planet probe engineering model structural tests

    NASA Technical Reports Server (NTRS)

    Smittkamp, J. A.; Gustin, W. H.; Griffin, M. W.

    1977-01-01

    A series of proof of concept structural tests was performed on an engineering model of the Outer Planets Atmospheric Entry Probe. The tests consisted of pyrotechnic shock, dynamic and static loadings. The tests partially verified the structural concept.

  7. Structure of an outer surface lipoprotein BBA64 from the Lyme disease agent Borrelia burgdorferi which is critical to ensure infection after a tick bite.

    PubMed

    Brangulis, Kalvis; Tars, Kaspars; Petrovskis, Ivars; Kazaks, Andris; Ranka, Renate; Baumanis, Viesturs

    2013-06-01

    Lyme disease is a tick-borne infection caused by the transmission of Borrelia burgdorferi from infected Ixodes ticks to a mammalian host during the blood meal. Previous studies have shown that the expression of B. burgdorferi surface-localized lipoproteins, which include BBA64, is up-regulated during the process of tick feeding. Although the exact function of BBA64 is not known, this lipoprotein is critical for the transmission of the spirochete from the tick salivary glands to the mammalian organism after a tick bite. Since the mechanism of development of the disease and the functions of the surface lipoproteins associated with borreliosis are still poorly understood, the crystal structure of the B. burgdorferi outer surface lipoprotein BBA64 was solved at 2.4 Å resolution in order to obtain a better insight into the pathogenesis of B. burgdorferi and to promote the discovery of novel potential preventive drugs against Lyme disease. In this study, the crystal structure of BBA64 was also compared with that of the paralogous protein CspA (also referred to as BbCRASP-1, CRASP-1 or BBA68). CspA is the complement regulator-acquiring surface protein-1 of B. burgdorferi; its structure is known, but its function apparently differs from that of BBA64. It is demonstrated that unlike the homologous CspA, BBA64 does not form a homodimer. Their differences in function could be explained by divergence in their amino-acid sequences, electrostatic surface potentials and overall tertiary structures. The C-terminal part of BBA64 has a different conformation to that of CspA; the conformation of this region is essential for the proper function of CspA.

  8. Controlling the Deposition of Pd on Au Nanocages: Outer Surface Only versus Both Outer and Inner Surfaces.

    PubMed

    Yang, Miaoxin; Wang, Wenxia; Gilroy, Kyle D; Xia, Younan

    2017-09-13

    When a metal precursor is reduced in the presence of Au nanocages with a hollow interior and porous walls, in principle the resultant metal atoms can be deposited onto both the outer and inner surfaces or just the outer surface. Here we demonstrate that these two different scenarios of metal deposition can be deterministically achieved by controlling the reduction kinetics of the precursor. Specifically, if PdCl4(2-) is employed as the precursor, its fast reduction kinetics favors the solution reduction pathway, in which the resultant Pd atoms are deposited only onto the outer surface for the generation of Au@Pd double-shelled nanocages. When the precursor is switched to PdBr4(2-) to slow down the reduction, the precursor can readily diffuse into the interior of the Au nanocages prior to its reduction to elemental Pd. As such, both the outer and inner surfaces of the nanocages become coated with Pd for the generation of Pd@Au@Pd triple-shelled nanocages. This study not only offers a new synthetic approach to metal nanocages with diverse compositions and structures but also demonstrates the necessity of controlling the relative rates of reduction and bulk diffusion of a metal precursor when nanostructures with a hollow interior and porous walls are used for seed-mediated growth.

  9. Outer spiral structure in disk galaxies

    NASA Astrophysics Data System (ADS)

    Patsis, P. A.

    2017-03-01

    In several grand design barred-spiral galaxies it is observed a second, fainter, outer set of spiral arms. Typical examples of objects of this morphology can be considered NGC 1566 and NGC 5248. I suggest that such an overall structure can be the result of two dynamical mechanisms acting in the disc. The bar and both spiral systems rotate with the same pattern speed. The inner spiral is reinforced by regular orbits trapped around the stable, elliptical, periodic orbits of the central family, while the outer system of spiral arms is supported by chaotic orbits. Chaotic orbits are also responsible for a rhomboidal area surrounding the inner barred-spiral region. In general there is a discontinuity between the two spiral structures at the corotation region.

  10. Localization of outer surface proteins A and B in both the outer membrane and intracellular compartments of Borrelia burgdorferi.

    PubMed Central

    Brusca, J S; McDowall, A W; Norgard, M V; Radolf, J D

    1991-01-01

    Borrelia burgdorferi B31 with and without outer membranes contained nearly identical amounts of outer surface proteins A and B. The majority of each immunogen also was localized intracellularly by immunocryoultramicrotomy. These results are inconsistent with the widely held belief that outer surface proteins A and B are exclusively outer membrane proteins. Images FIG. 1 FIG. 2 FIG. 3 PMID:1744059

  11. The spiral structure of the outer Milky Way in hydrogen.

    PubMed

    Levine, E S; Blitz, Leo; Heiles, Carl

    2006-06-23

    We produce a detailed map of the perturbed surface density of neutral hydrogen in the outer Milky Way disk, demonstrating that the Galaxy is a non-axisymmetric multiarmed spiral. Spiral structure in the southern half of the Galaxy can be traced out to at least 25 kiloparsecs, implying a minimum radius for the gas disk. Overdensities in the surface density are coincident with regions of reduced gas thickness. The ratio of the surface density to the local median surface density is relatively constant along an arm. Logarithmic spirals can be fit to the arms with pitch angles of 20 degrees to 25 degrees .

  12. Structural basis of the Escherichi coli outer-membrane permeability

    NASA Astrophysics Data System (ADS)

    Amro, Nabil A.; Kotra, Lakshmi P.; Wadu-Mesthrige, Kapila; Bulychev, Alexy; Mobashery, Shahriar; Liu, Gang-yu

    1999-06-01

    We have studied, using AFM, the structural basis of the outer membrane permeability for the bacterium E. col. The surface of the bacteria is visualized with an unprecedented details. Our AFM images clearly reveal that the outer membrane exhibits protrusions, which correspond to patches of LPS containing hundreds to thousands of LPS molecules. The packing of the nearest neighbor patches is tight, and as such the LPS layer provides an effective permeability barrier for the Gram-negative bacteria. We have also studied the mechanism of their permeability increase upon metal depletion. Our AFM images reveal that LPS molecules are released from the boundaries of some patches during the initial EDTA treatment. Further metal depletion produces a very distinct structure at the outer membrane: appearance of irregularly shaped pits. The pits are likely formed as a result of liberation of LPS patches and lipoproteins, exposing areas of peptidoglacan surface. Our study has proven AFM to be a very useful technique in providing structural basis for the functions of organisms.

  13. Identification of Major Outer Surface Proteins of Streptococcus agalactiae

    PubMed Central

    Hughes, Martin J. G.; Moore, Joanne C.; Lane, Jonathan D.; Wilson, Rebecca; Pribul, Philippa K.; Younes, Zabin N.; Dobson, Richard J.; Everest, Paul; Reason, Andrew J.; Redfern, Joanne M.; Greer, Fiona M.; Paxton, Thanai; Panico, Maria; Morris, Howard R.; Feldman, Robert G.; Santangelo, Joseph D.

    2002-01-01

    To identify the major outer surface proteins of Streptococcus agalactiae (group B streptococcus), a proteomic analysis was undertaken. An extract of the outer surface proteins was separated by two-dimensional electrophoresis. The visualized spots were identified through a combination of peptide sequencing and reverse genetic methodologies. Of the 30 major spots identified as S. agalactiae specific, 27 have been identified. Six of these proteins, previously unidentified in S. agalactiae, were sequenced and cloned. These were ornithine carbamoyltransferase, phosphoglycerate kinase, nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase, purine nucleoside phosphorylase, enolase, and glucose-6-phosphate isomerase. Using a gram-positive expression system, we have overexpressed two of these proteins in an in vitro system. These recombinant, purified proteins were used to raise antisera. The identification of these proteins as residing on the outer surface was confirmed by the ability of the antisera to react against whole, live bacteria. Further, in a neonatal-animal model system, we demonstrate that some of these sera are protective against lethal doses of bacteria. These studies demonstrate the successful application of proteomics as a technique for identifying vaccine candidates. PMID:11854208

  14. New configuration for efficient and durable copper coating on the outer surface of a tube

    NASA Astrophysics Data System (ADS)

    Ahmad, Irfan; Chapman, Steven F.; Velas, Katherine M.; Krishnan, Mahadevan

    2017-03-01

    A well-adhered copper coating on stainless steel power coupler parts is required in superconducting radio frequency (SRF) accelerators. Radio frequency power coupler parts are complex, tubelike stainless steel structures, which require copper coating on their outer and inner surfaces. Conventional copper electroplating sometimes produces films with inadequate adhesion strength for SRF applications. Electroplating also requires a thin nickel strike layer under the copper coating, whose magnetic properties can be detrimental to SRF applications. Coaxial energetic deposition (CED) and sputtering methods have demonstrated efficient conformal coating on the inner surfaces of tubes but coating the outer surface of a tube is challenging because these coating methods are line of sight. When the substrate is off axis and the plasma source is on axis, only a small section of the substrate's outer surface is exposed to the source cathode. The conventional approach is to rotate the tube to achieve uniformity across the outer surface. This method results in poor film thickness uniformity and wastes most of the source plasma. Alameda Applied Sciences Corporation (AASC) has developed a novel configuration called hollow external cathode CED (HEC-CED) to overcome these issues. HEC-CED produces a film with uniform thickness and efficiently uses all eroded source material. The Cu film deposited on the outside of a stainless steel tube using the new HEC-CED configuration survived a high pressure water rinse adhesion test. HEC-CED can be used to coat the outside of any cylindrical structure.

  15. Vertical Structure in Outer Planet Atmospheres

    NASA Technical Reports Server (NTRS)

    Rages, Kathy A.

    1999-01-01

    The period covered by this cooperative agreement included: 1) the analysis of data acquired by both Voyager spacecraft during their encounters with Saturn in 1979 and 1980; 2) work on Uranus' seasonal variability and transient albedo features on both Uranus and Neptune using observations made by the Hubble Space Telescope beginning in 2000; 3) a search for lightning on Jupiter using HST; and 4) the analysis of Pathfinder images of Martian surface features.

  16. Outer Retinal Structure Following Closed Globe Blunt Ocular Trauma

    PubMed Central

    Flatter, John A.; Cooper, Robert F.; Dubow, Michael J.; Pinhas, Alexander; Singh, Ravi S.; Kapur, Rashmi; Shah, Nishit; Walsh, Ryan D.; Hong, Sang H.; Weinberg, David V.; Stepien, Kimberly E.; Wirostko, William J.; Robison, Scott; Dubra, Alfredo; Rosen, Richard B.; Connor, Thomas B.; Carroll, Joseph

    2014-01-01

    Purpose To evaluate outer retinal structural abnormalities in patients with visual deficits following closed globe blunt ocular trauma (cgBOT). Methods Nine subjects with visual complaints following cgBOT were examined between 1 month post-trauma and 6 years post-trauma. Spectral domain optical coherence tomography (SD-OCT) was used to assess outer retinal architecture, while adaptive optics scanning light ophthalmoscopy (AOSLO) was used to analyze photoreceptor mosaic integrity. Results Visual deficits ranged from central scotomas to decreased visual acuity. SD-OCT defects included focal foveal photoreceptor lesions, variable attenuation of the interdigitation zone, and mottling of the outer segment band, with one subject having normal outer retinal structure. AOSLO revealed disruption of the photoreceptor mosaic in all subjects, variably manifesting as foveal focal discontinuities, perifoveal hyporeflective cones, and paracentral regions of selective cone loss. Conclusions We observe persistent outer retinal disruption in subjects with visual complaints following cgBOT, albeit to a variable degree. AOSLO imaging allows assessment of photoreceptor structure at a level of detail not resolvable using SD-OCT or other current clinical imaging tools. Multimodal imaging appears useful for revealing the cause of visual complaints in patients following cgBOT. Future studies are needed to better understand how photoreceptor structure changes longitudinally in response to various trauma. PMID:24752010

  17. Fluid flow near the surface of earth's outer core

    NASA Technical Reports Server (NTRS)

    Bloxham, Jeremy; Jackson, Andrew

    1991-01-01

    This review examines the recent attempts at extracting information on the pattern of fluid flow near the surface of the outer core from the geomagnetic secular variation. Maps of the fluid flow at the core surface are important as they may provide some insight into the process of the geodynamo and may place useful constraints on geodynamo models. In contrast to the case of mantle convection, only very small lateral variations in core density are necessary to drive the flow; these density variations are, by several orders of magnitude, too small to be imaged seismically; therefore, the geomagnetic secular variation is utilized to infer the flow. As substantial differences exist between maps developed by different researchers, the possible underlying reasons for these differences are examined with particular attention given to the inherent problems of nonuniqueness.

  18. Fluid flow near the surface of earth's outer core

    NASA Technical Reports Server (NTRS)

    Bloxham, Jeremy; Jackson, Andrew

    1991-01-01

    This review examines the recent attempts at extracting information on the pattern of fluid flow near the surface of the outer core from the geomagnetic secular variation. Maps of the fluid flow at the core surface are important as they may provide some insight into the process of the geodynamo and may place useful constraints on geodynamo models. In contrast to the case of mantle convection, only very small lateral variations in core density are necessary to drive the flow; these density variations are, by several orders of magnitude, too small to be imaged seismically; therefore, the geomagnetic secular variation is utilized to infer the flow. As substantial differences exist between maps developed by different researchers, the possible underlying reasons for these differences are examined with particular attention given to the inherent problems of nonuniqueness.

  19. Advanced Metal Foam Structures for Outer Space

    NASA Technical Reports Server (NTRS)

    Hanan, Jay; Johnson, William; Peker, Atakan

    2005-01-01

    A document discusses a proposal to use advanced materials especially bulk metallic glass (BMG) foams in structural components of spacecraft, lunar habitats, and the like. BMG foams, which are already used on Earth in some consumer products, are superior to conventional metal foams: BMG foams have exceptionally low mass densities and high strength-to-weight ratios and are more readily processable into strong, lightweight objects of various sizes and shapes. These and other attractive properties of BMG foams would be exploited, according to the proposal, to enable in situ processing of BMG foams for erecting and repairing panels, shells, containers, and other objects. The in situ processing could include (1) generation of BMG foams inside prefabricated deployable skins that would define the sizes and shapes of the objects thus formed and (2) thermoplastic deformation of BMG foams. Typically, the generation of BMG foams would involve mixtures of precursor chemicals that would be subjected to suitable pressure and temperature schedules. In addition to serving as structural components, objects containing or consisting of BMG foams could perform such functions as thermal management, shielding against radiation, and shielding against hypervelocity impacts of micrometeors and small debris particles.

  20. An Outer Arm in the Second Galactic Quadrant: Structure

    NASA Astrophysics Data System (ADS)

    Du, Xinyu; Xu, Ye; Yang, Ji; Sun, Yan; Li, Facheng; Zhang, Shaobo; Zhou, Xin

    2016-05-01

    The lack of arm tracers, especially remote tracers, is one of the most difficult problems preventing us from studying the structure of the Milky Way. Fortunately, with its high-sensitivity CO survey, the Milky Way Imaging Scroll Painting (MWISP) project offers such an opportunity. Since completing about one-third of its mission, an area of l = [100, 150]°, b = [-3, 5]° has nearly been covered. The Outer arm of the Milky Way first clearly revealed its shape in the second galactic quadrant in the form of molecular gas—this is the first time that the Outer arm has been reported in such a large-scale mapping of molecular gas. Using the 115 GHz 12CO(1-0) data of MWISP at the LSR velocity ≃[-100, -60] km s-1 and in the area mentioned above, we have detected 481 molecular clouds in total, and among them 332 (about 69%) are newly detected and 457 probably belong to the Outer arm. The total mass of the detected Outer arm clouds is ˜3.1 × 106 M ⊙. Assuming that the spiral arm is a logarithmic spiral, the pitch angle is fitted as ˜13.°1. Besides combining both the CO data from MWISP and the 21 cm H i data from the Canadian Galactic Plane Survey (CGPS), the gas distribution, warp, and thickness of the Outer arm are also studied.

  1. Structure and dynamics of Saturn's outer magnetosphere and boundary regions

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.; Lepping, R. P.; Ness, N. F.

    1983-01-01

    In 1979-1981, the three USA spacecraft Pioneer 11 and Voyagers 1 and 2 discovered and explored the magnetosphere of Saturn to the limited extent possible on flyby trajectories. Considerable variation in the locations of the bow shock (BS) and magnetopause (MP) surfaces were observed in association with variable solar wind conditions and, during the Voyager 2 encounter, possible immersion in Jupiter's distant magnetic tail. The limited number of BS and MP crossings were concentrated near the subsolar region and the dawn terminator, and that fact, together with the temporal variability, makes it difficult to assess the three dimensional shape of the sunward magnetospheric boundary. The combined BS and MP crossing positions from the three spacecraft yield an average BS-to-MP stagnation point distance ratio of 1.29 +/- 0.10. This is near the 1.33 value for the Earth's magnetosphere, implying a similar sunward shape at Saturn. Study of the structure and dynamical behavior of the outer magnetosphere, both in the sunward hemisphere and the magnetotail region using combined plasma and magnetic field data, suggest that Saturn's magnetosphere is more similar to that of Earth than that of Jupiter.

  2. Analysis of Surface-Exposed Outer Membrane Proteins in Helicobacter pylori

    PubMed Central

    Voss, Bradley J.; Gaddy, Jennifer A.; McDonald, W. Hayes

    2014-01-01

    More than 50 Helicobacter pylori genes are predicted to encode outer membrane proteins (OMPs), but there has been relatively little experimental investigation of the H. pylori cell surface proteome. In this study, we used selective biotinylation to label proteins localized to the surface of H. pylori, along with differential detergent extraction procedures to isolate proteins localized to the outer membrane. Proteins that met multiple criteria for surface-exposed outer membrane localization included known adhesins, as well as Cag proteins required for activity of the cag type IV secretion system, putative lipoproteins, and other proteins not previously recognized as cell surface components. We identified sites of nontryptic cleavage consistent with signal sequence cleavage, as well as C-terminal motifs that may be important for protein localization. A subset of surface-exposed proteins were highly susceptible to proteolysis when intact bacteria were treated with proteinase K. Most Hop and Hom OMPs were susceptible to proteolysis, whereas Hor and Hof proteins were relatively resistant. Most of the protease-susceptible OMPs contain a large protease-susceptible extracellular domain exported beyond the outer membrane and a protease-resistant domain at the C terminus with a predicted β-barrel structure. These features suggest that, similar to the secretion of the VacA passenger domain, the N-terminal domains of protease-susceptible OMPs are exported through an autotransporter pathway. Collectively, these results provide new insights into the repertoire of surface-exposed H. pylori proteins that may mediate bacterium-host interactions, as well as the cell surface topology of these proteins. PMID:24769695

  3. New configuration for efficient and durable copper coating on the outer surface of a tube

    DOE PAGES

    Ahmad, Irfan; Chapman, Steven F.; Velas, Katherine M.; ...

    2017-03-27

    A well-adhered copper coating on stainless steel power coupler parts is required in superconducting radio frequency (SRF) accelerators. Radio frequency power coupler parts are complex, tubelike stainless steel structures, which require copper coating on their outer and inner surfaces. Conventional copper electroplating sometimes produces films with inadequate adhesion strength for SRF applications. Electroplating also requires a thin nickel strike layer under the copper coating, whose magnetic properties can be detrimental to SRF applications. Coaxial energetic deposition (CED) and sputtering methods have demonstrated efficient conformal coating on the inner surfaces of tubes but coating the outer surface of a tube ismore » challenging because these coating methods are line of sight. When the substrate is off axis and the plasma source is on axis, only a small section of the substrate’s outer surface is exposed to the source cathode. The conventional approach is to rotate the tube to achieve uniformity across the outer surface. This method results in poor film thickness uniformity and wastes most of the source plasma. Alameda Applied Sciences Corporation (AASC) has developed a novel configuration called hollow external cathode CED (HEC-CED) to overcome these issues. HEC-CED produces a film with uniform thickness and efficiently uses all eroded source material. Furthermore, the Cu film deposited on the outside of a stainless steel tube using the new HEC-CED configuration survived a high pressure water rinse adhesion test. HEC-CED can be used to coat the outside of any cylindrical structure.« less

  4. U(VI) Reduction by Diverse Outer Surface c-Type Cytochromes of Geobacter sulfurreducens

    PubMed Central

    Leavitt, Janet J.; Comolli, Luis R.; Csencsits, Roseann; Janot, Noemie; Flanagan, Kelly A.; Gray, Arianna S.; Leang, Ching; Izallalen, Mounir; Mester, Tünde; Lovley, Derek R.

    2013-01-01

    Early studies with Geobacter sulfurreducens suggested that outer-surface c-type cytochromes might play a role in U(VI) reduction, but it has recently been suggested that there is substantial U(VI) reduction at the surface of the electrically conductive pili known as microbial nanowires. This phenomenon was further investigated. A strain of G. sulfurreducens, known as Aro-5, which produces pili with substantially reduced conductivity reduced U(VI) nearly as well as the wild type, as did a strain in which the gene for PilA, the structural pilin protein, was deleted. In order to reduce rates of U(VI) reduction to levels less than 20% of the wild-type rates, it was necessary to delete the genes for the five most abundant outer surface c-type cytochromes of G. sulfurreducens. X-ray absorption near-edge structure spectroscopy demonstrated that whereas 83% ± 10% of the uranium associated with wild-type cells correspond to U(IV) after 4 h of incubation, with the quintuple mutant, 89% ± 10% of uranium was U(VI). Transmission electron microscopy and X-ray energy dispersion spectroscopy revealed that wild-type cells did not precipitate uranium along pili as previously reported, but U(IV) was precipitated at the outer cell surface. These findings are consistent with those of previous studies, which have suggested that G. sulfurreducens requires outer-surface c-type cytochromes but not pili for the reduction of soluble extracellular electron acceptors. PMID:23934497

  5. U(VI) reduction by diverse outer surface c-type cytochromes of Geobacter sulfurreducens.

    PubMed

    Orellana, Roberto; Leavitt, Janet J; Comolli, Luis R; Csencsits, Roseann; Janot, Noemie; Flanagan, Kelly A; Gray, Arianna S; Leang, Ching; Izallalen, Mounir; Mester, Tünde; Lovley, Derek R

    2013-10-01

    Early studies with Geobacter sulfurreducens suggested that outer-surface c-type cytochromes might play a role in U(VI) reduction, but it has recently been suggested that there is substantial U(VI) reduction at the surface of the electrically conductive pili known as microbial nanowires. This phenomenon was further investigated. A strain of G. sulfurreducens, known as Aro-5, which produces pili with substantially reduced conductivity reduced U(VI) nearly as well as the wild type, as did a strain in which the gene for PilA, the structural pilin protein, was deleted. In order to reduce rates of U(VI) reduction to levels less than 20% of the wild-type rates, it was necessary to delete the genes for the five most abundant outer surface c-type cytochromes of G. sulfurreducens. X-ray absorption near-edge structure spectroscopy demonstrated that whereas 83% ± 10% of the uranium associated with wild-type cells correspond to U(IV) after 4 h of incubation, with the quintuple mutant, 89% ± 10% of uranium was U(VI). Transmission electron microscopy and X-ray energy dispersion spectroscopy revealed that wild-type cells did not precipitate uranium along pili as previously reported, but U(IV) was precipitated at the outer cell surface. These findings are consistent with those of previous studies, which have suggested that G. sulfurreducens requires outer-surface c-type cytochromes but not pili for the reduction of soluble extracellular electron acceptors.

  6. Stellar structures in the outer regions of M 33

    NASA Astrophysics Data System (ADS)

    Grossi, M.; Hwang, N.; Corbelli, E.; Giovanardi, C.; Okamoto, S.; Arimoto, N.

    2011-09-01

    Aims: We present Subaru/Suprime-Cam deep V and I imaging of seven fields in the outer regions of M 33. Our aim is to search for stellar structures corresponding to extended Hi clouds found in a recent 21-cm survey of the galaxy. Three fields probe a large Hi complex to the southeastern (SE) side of the galaxy. An additional three fields cover the northwestern (NW) side of the galaxy along the Hi warp. A final target field was chosen further north, at a projected distance of approximately 25 kpc, to study part of the large stellar plume recently discovered around M 33. Methods: We analyse the stellar population at R > 10 kpc by means of V, I colour magnitude diagrams reaching the red clump. We constrain the age and metallicity of the different stellar populations, search for density enhancements that correspond to the Hi features, and investigate the radial surface distribution of the stars. Results: We find evolved stellar populations in all fields out to 120'(~30 kpc), while a diffuse population of young stars (~200 Myr) is detected out to a galactocentric radius of 15 kpc. The mean metallicity in the southern fields remains approximately constant at [M/H] = -0.7 beyond the edge of the optical disc, from 40'out to 80'. Along the northern fields probing the outer Hi disc, we also find a metallicity of [M/H] = -0.7 between 35'and 70'from the centre, which decreases to [M/H] = -1.0 at larger angular radii out to 120'. In the northernmost field, outside the disc extent, the stellar population of the large stellar plume possibly related to a M 33-M 31 interaction is on average more metal-poor ([M/H] = -1.3) and older (≳6 Gyr). Conclusions: An exponential disc with a large scale-length (~7 kpc) fits well the average distribution of stars detected in both the SE and NW regions from a galactocentric distance of 11 kpc out to 30 kpc. The stellar disc extends beyond the Hi disc. The stellar distribution at large radii is disturbed and, although there is no clear

  7. Planning Assembly Of Large Truss Structures In Outer Space

    NASA Technical Reports Server (NTRS)

    De Mello, Luiz S. Homem; Desai, Rajiv S.

    1992-01-01

    Report dicusses developmental algorithm used in systematic planning of sequences of operations in which large truss structures assembled in outer space. Assembly sequence represented by directed graph called "assembly graph", in which each arc represents joining of two parts or subassemblies. Algorithm generates assembly graph, working backward from state of complete assembly to initial state, in which all parts disassembled. Working backward more efficient than working forward because it avoids intermediate dead ends.

  8. Crystal structure of the open state of the Neisseria gonorrhoeae MtrE outer membrane channel.

    PubMed

    Lei, Hsiang-Ting; Chou, Tsung-Han; Su, Chih-Chia; Bolla, Jani Reddy; Kumar, Nitin; Radhakrishnan, Abhijith; Long, Feng; Delmar, Jared A; Do, Sylvia V; Rajashankar, Kanagalaghatta R; Shafer, William M; Yu, Edward W

    2014-01-01

    Active efflux of antimicrobial agents is one of the most important strategies used by bacteria to defend against antimicrobial factors present in their environment. Mediating many cases of antibiotic resistance are transmembrane efflux pumps, composed of one or more proteins. The Neisseria gonorrhoeae MtrCDE tripartite multidrug efflux pump, belonging to the hydrophobic and amphiphilic efflux resistance-nodulation-cell division (HAE-RND) family, spans both the inner and outer membranes of N. gonorrhoeae and confers resistance to a variety of antibiotics and toxic compounds. We here describe the crystal structure of N. gonorrhoeae MtrE, the outer membrane component of the MtrCDE tripartite multidrug efflux system. This trimeric MtrE channel forms a vertical tunnel extending down contiguously from the outer membrane surface to the periplasmic end, indicating that our structure of MtrE depicts an open conformational state of this channel.

  9. STUDIES OF THE INNER AND OUTER PROTOPLASMIC SURFACES OF LARGE PLANT CELLS : I. PLASMOLYSIS DUE TO SALTS.

    PubMed

    Osterhout, W J

    1943-11-20

    In Nitella, Chara, Hydrodictyon, and Valonia the inner and outer non-aqueous protoplasmic surface layers can be separated by certain plasmolytic agents which penetrate the outer surface more rapidly than the inner and hence raise the osmotic pressure of the protoplasm lying between them and cause it to increase in thickness by taking up water from the central vacuole. We may therefore conclude that the two surfaces differ. This idea is confirmed by earlier electrical measurements which show that when sap is placed outside the cell the chain See PDF for Structure produces an E.M.F. of several millivolts.

  10. Fine tuning the ionic liquid-vacuum outer atomic surface using ion mixtures.

    PubMed

    Villar-Garcia, Ignacio J; Fearn, Sarah; Ismail, Nur L; McIntosh, Alastair J S; Lovelock, Kevin R J

    2015-03-28

    Ionic liquid-vacuum outer atomic surfaces can be created that are remarkably different from the bulk composition. In this communication we demonstrate, using low-energy ion scattering (LEIS), that for ionic liquid mixtures the outer atomic surface shows significantly more atoms from anions with weaker cation-anion interactions (and vice versa).

  11. Structural Basis for Alginate Secretion Across the Bacterial Outer Membrane

    SciTech Connect

    J Whitney; I Hay; C Li; P Eckford; H Robinson; M Amaya; L Wood; D Ohman; C Bear; et al.

    2011-12-31

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  12. Structural basis for alginate secretion across the bacterial outer membrane

    SciTech Connect

    Whitney, J.C.; Robinson, H.; Hay, I. D.; Li, C.; Eckford, P. D. W.; Amaya, M. F.; Wood, L. F.; Ohman, D. E.; Bear, C. E.; Rehm, B. H.; Howell, P. L.

    2011-08-09

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  13. Estimating Relative Positions of Outer-Space Structures

    NASA Technical Reports Server (NTRS)

    Balian, Harry; Breckenridge, William; Brugarolas, Paul

    2009-01-01

    A computer program estimates the relative position and orientation of two structures from measurements, made by use of electronic cameras and laser range finders on one structure, of distances and angular positions of fiducial objects on the other structure. The program was written specifically for use in determining errors in the alignment of large structures deployed in outer space from a space shuttle. The program is based partly on equations for transformations among the various coordinate systems involved in the measurements and on equations that account for errors in the transformation operators. It computes a least-squares estimate of the relative position and orientation. Sequential least-squares estimates, acquired at a measurement rate of 4 Hz, are averaged by passing them through a fourth-order Butterworth filter. The program is executed in a computer aboard the space shuttle, and its position and orientation estimates are displayed to astronauts on a graphical user interface.

  14. Structure of Rotavirus Outer-Layer Protein VP7 Bound with a Neutralizing Fab

    SciTech Connect

    Aoki, Scott T.; Settembre, Ethan C.; Trask, Shane D.; Greenberg, Harry B.; Harrison, Stephen C.; Dormitzer, Philip R.

    2009-06-17

    Rotavirus outer-layer protein VP7 is a principal target of protective antibodies. Removal of free calcium ions (Ca{sup 2+}) dissociates VP7 trimers into monomers, releasing VP7 from the virion, and initiates penetration-inducing conformational changes in the other outer-layer protein, VP4. We report the crystal structure at 3.4 angstrom resolution of VP7 bound with the Fab fragment of a neutralizing monoclonal antibody. The Fab binds across the outer surface of the intersubunit contact, which contains two Ca{sup 2+} sites. Mutations that escape neutralization by other antibodies suggest that the same region bears the epitopes of most neutralizing antibodies. The monovalent Fab is sufficient to neutralize infectivity. We propose that neutralizing antibodies against VP7 act by stabilizing the trimer, thereby inhibiting the uncoating trigger for VP4 rearrangement. A disulfide-linked trimer is a potential subunit immunogen.

  15. The puzzling structure in Saturn's outer B ring

    NASA Astrophysics Data System (ADS)

    Nicholson, Philip D.; Hedman, Matt; Buckingham, Rikley

    2017-06-01

    As first noted in Voyager images, the outer edge of Saturn's B ring is strongly perturbed by the 2:1 inner Lindblad resonance with Mimas (Porco \\etal\\ 1984). Cassini imaging and occultation data have revealed a more complex situation, where the expected resonantly-forced m=2 perturbation with an amplitude of 33~km is accompanied by freemodes with m=1, 2, 3, 4 and 5 (Spitale & Porco 2010, Nicholson \\etal\\ 2014a). To date, however, the structure immediately interior to the ring edge has not been examined carefully. We have compared optical depth profiles of the outer 1000~km of the B ring, using a large set of stellar occultations carried out since 2005 by the Cassini VIMS instrument. A search for wavelike structure, using a code written to search for hidden density waves (Hedman \\& Nicholson 2016), reveals a significant signature at a radius of ~117,150 km with a radial wavelength of ~110 km. This appears to be a trailing spiral with m=1 and a pattern speed equal to the local apsidal precession rate, $\\dpi\\simeq5.12\\dd$. Further searches for organized large-scale structure have revealed none with m=2 (as might have been expected), but several additional regions with significant m=1 variations and pattern speeds close to the local value of $\\dpi$. At present, it is unclear if these represent propagating spirals, standing waves, or perhaps features more akin to the eccentric ringlets often seen within gaps in the C ring and Cassini Division (Nicholson \\etal\\ 2014b, French \\etal\\ 2016). Comparisons of sets of profiles from 2008/9, 2012-14 and 2016 seem to show that these structures are changing over time.

  16. Atmospheric structure of the outer planets from thermal emission data

    NASA Technical Reports Server (NTRS)

    Orton, G. S.

    1981-01-01

    Methods for determining atmospheric structure exploit the opacities provided by the collision induced H2 dipole and the nu4 fundamental of CH4. In addition to earth-based observations, useful measurements of thermal emission from Jupiter and Saturn have been or soon will be made by several spacecraft, with results cross-checked with independent radio occultaion results. For Uranus and Neptune, only a limited set of whole-disk earth-based data exists. All the outer planets show evidence for stratospheric temperature inversions; temperature minima range from about 105 K for Jupiter and 87 K for Saturn, to roughly 55 K for Uranus and Neptune. Remaining problems may be resolved by better quantitative understanding of gas and aerosol absorption and scattering properties, chemical composition, and non-LTE source functions. Ultimately, temperature structure results must be supplemented by quantitative energy equilibrium models which will allow some meaning to be given to the relationships between such characteristics as temperature, clouds, incident solar and planetary radiation, and chemical composition.

  17. Structural Basis for Outer Membrane Sugar Uptake in Pseudomonads*

    PubMed Central

    van den Berg, Bert

    2012-01-01

    Substrate-specific outer membrane channels of Gram-negative bacteria mediate uptake of many small molecules, including carbohydrates. The mechanism of sugar uptake by enterobacterial channels, such as Escherichia coli LamB (maltoporin), has been characterized in great detail. In pseudomonads and related organisms, sugar uptake is not mediated by LamB but by OprB channels. Beyond the notion that OprB channels seem to prefer monosaccharides as substrates, very little is known about OprB-mediated sugar uptake. Here I report the X-ray crystal structure of an OprB channel from Pseudomonas putida F1. The structure shows that OprB forms a monomeric, 16-stranded β-barrel with a constriction formed by extracellular loops L2 and L3. The side chains of two highly conserved arginine residues (Arg83 and Arg110) and a conserved glutamate (Glu106) line the channel constriction and interact with a bound glucose molecule. Liposome swelling uptake assays show a strong preference for monosaccharide transport over disaccharides. Moreover, substrates with a net negative charge are disfavored by the channel, probably due to the negatively charged character of the constriction. The architecture of the eyelet and the absence of a greasy slide provide an explanation for the observed specificity of OprB for monosaccharides rather than the oligosaccharides preferred by LamB and related enterobacterial channels. PMID:23066028

  18. Structural basis for outer membrane sugar uptake in pseudomonads.

    PubMed

    van den Berg, Bert

    2012-11-30

    Substrate-specific outer membrane channels of gram-negative bacteria mediate uptake of many small molecules, including carbohydrates. The mechanism of sugar uptake by enterobacterial channels, such as Escherichia coli LamB (maltoporin), has been characterized in great detail. In pseudomonads and related organisms, sugar uptake is not mediated by LamB but by OprB channels. Beyond the notion that OprB channels seem to prefer monosaccharides as substrates, very little is known about OprB-mediated sugar uptake. Here I report the X-ray crystal structure of an OprB channel from Pseudomonas putida F1. The structure shows that OprB forms a monomeric, 16-stranded β-barrel with a constriction formed by extracellular loops L2 and L3. The side chains of two highly conserved arginine residues (Arg(83) and Arg(110)) and a conserved glutamate (Glu(106)) line the channel constriction and interact with a bound glucose molecule. Liposome swelling uptake assays show a strong preference for monosaccharide transport over disaccharides. Moreover, substrates with a net negative charge are disfavored by the channel, probably due to the negatively charged character of the constriction. The architecture of the eyelet and the absence of a greasy slide provide an explanation for the observed specificity of OprB for monosaccharides rather than the oligosaccharides preferred by LamB and related enterobacterial channels.

  19. Composite load bearing outer skin for an arctic structure and a method for erecting same

    SciTech Connect

    Chen, J.; Birdy, J. N.; Watt, B. J.

    1985-08-27

    The load bearing outer skin contains an inner assembly and an outer assembly. Both the inner and outer assemblies include a skin plate member which is stiffened by stiffeners welded to one side of the skin plate member. The stiffeners are located at spaced intervals from each other and are disposed substantially perpendicular to the skin plate member. The inner and outer assembly are placed substantially parallel to each other to form a composite structure having an internal cavity defined by the inner and outer plates. The stiffeners of the inner assembly and the outer assembly are disposed in the cavity at a spaced relation to each other and extend partly into the cavity. A cementitious material substantially fills the cavity thereby completing the load bearing outer skin structure. The stiffeners may be flat steel plates or may have the profile of structural shapes such as angles or T's among others.

  20. Structure and properties of the outer membranes of Brucella abortus and Brucella melitensis.

    PubMed

    Moriyón, I; López-Goñi, I

    1998-03-01

    The brucellae are Gram-negative bacteria characteristically able to multiply facultatively within phagocytic cells and which cause a zoonosis of world-wide importance. This article reviews the structure and topology of the main components (lipopolysaccharide, native hapten polysaccharide, free lipids and proteins) of the outer membranes of Brucella abortus and B. melitensis, as well as some distinctive properties (permeability and interactions with cationic peptides) of these membranes. On these data, an outer membrane model is proposed in which, as compared to other Gram-negatives, there is a stronger hydrophobic anchorage for the lipopolysaccharide, free lipids, porin proteins and lipoproteins, and a reduced surface density of anionic groups, which could be partially or totally neutralized by ornithine lipids. This model accounts for the permeability of Brucella to hydrophobic permeants and for its resistance to the bactericidal oxygen-independent systems of phagocytes.

  1. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    PubMed

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane.

  2. Thermal structure and heat balance of the outer planets

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.; Hanel, R. A.; Samuelson, R. E.

    1989-01-01

    Current knowledge of the thermal structure and energy balance of the outer planets is summarized. The Voyager spacecraft experiments have provided extensive new information on the atmospheric temperatures and energetics of Jupiter, Saturn and Uranus. All three planets show remarkably small global-scale horizontal thermal contrast, indicating efficient redistribution of heat within the atmospheres or interiors. Horizontal temperature gradients on the scale of the zonal jets indicate that the winds decay with height in the upper troposphere. This suggests that the winds are driven at deeper levels and are subjected to frictional damping of unknown origin at higher levels. Both Jupiter and Saturn have internal power sources equal to about 70 percent of the absorbed solar power. This result is consistent with the view that significant helium differentiation has occurred on Saturn. Uranus has an internal power no greater than 13 percent of the absorbed solar power, while earth-based observations suggest Neptune has an internal power in excess of 100 percent of the absorbed solar power.

  3. Structure and function of outer dynein arm intermediate and light chain complex

    PubMed Central

    Oda, Toshiyuki; Abe, Tatsuki; Yanagisawa, Haruaki; Kikkawa, Masahide

    2016-01-01

    The outer dynein arm (ODA) is a molecular complex that drives the beating motion of cilia/flagella. Chlamydomonas ODA is composed of three heavy chains (HCs), two ICs, and 11 light chains (LCs). Although the three-dimensional (3D) structure of the whole ODA complex has been investigated, the 3D configurations of the ICs and LCs are largely unknown. Here we identified the 3D positions of the two ICs and three LCs using cryo–electron tomography and structural labeling. We found that these ICs and LCs were all localized at the root of the outer-inner dynein (OID) linker, designated the ODA-Beak complex. Of interest, the coiled-coil domain of IC2 extended from the ODA-Beak to the outer surface of ODA. Furthermore, we investigated the molecular mechanisms of how the OID linker transmits signals to the ODA-Beak, by manipulating the interaction within the OID linker using a chemically induced dimerization system. We showed that the cross-linking of the OID linker strongly suppresses flagellar motility in vivo. These results suggest that the ICs and LCs of the ODA form the ODA-Beak, which may be involved in mechanosignaling from the OID linker to the HCs. PMID:26864626

  4. Revealing the structure of the outer disks of Be stars

    NASA Astrophysics Data System (ADS)

    Klement, R.; Carciofi, A. C.; Rivinius, T.; Matthews, L. D.; Vieira, R. G.; Ignace, R.; Bjorkman, J. E.; Mota, B. C.; Faes, D. M.; Bratcher, A. D.; Curé, M.; Štefl, S.

    2017-05-01

    Context. The structure of the inner parts of Be star disks (≲ 20 stellar radii) is well explained by the viscous decretion disk (VDD) model, which is able to reproduce the observable properties of most of the objects studied so far. The outer parts, on the other hand, are not observationally well-explored, as they are observable only at radio wavelengths. A steepening of the spectral slope somewhere between infrared and radio wavelengths was reported for several Be stars that were previously detected in the radio, but a convincing physical explanation for this trend has not yet been provided. Aims: We test the VDD model predictions for the extended parts of a sample of six Be disks that have been observed in the radio to address the question of whether the observed turndown in the spectral energy distribution (SED) can be explained in the framework of the VDD model, including recent theoretical development for truncated Be disks in binary systems. Methods: We combine new multi-wavelength radio observations from the Karl. G. Jansky Very Large Array (JVLA) and Atacama Pathfinder Experiment (APEX) with previously published radio data and archival SED measurements at ultraviolet, visual, and infrared wavelengths. The density structure of the disks, including their outer parts, is constrained by radiative transfer modeling of the observed spectrum using VDD model predictions. In the VDD model we include the presumed effects of possible tidal influence from faint binary companions. Results: For 5 out of 6 studied stars, the observed SED shows strong signs of SED turndown between far-IR and radio wavelengths. A VDD model that extends to large distances closely reproduces the observed SEDs up to far IR wavelengths, but fails to reproduce the radio SED. Using a truncated VDD model improves the fit, leading to a successful explanation of the SED turndown observed for the stars in our sample. The slope of the observed SEDs in the radio is however not well reproduced by

  5. Linear Evolution of the Outer and Inner Surfaces of Imploding Spherical Shells

    NASA Astrophysics Data System (ADS)

    Goncharov, V. N.; Betti, R.; McCrory, R. L.; Verdon, C. P.

    1997-11-01

    In ICF implosions, the perturbations on the outer surface of a spherical shell grow and feed through the target during the acceleration phase. When the acceleration is reversed (deceleration phase), such perturbation is expected to grow, causing the fuel to mix with the shell material. A sharp boundary model is developed to investigate the time evolution of the inner and outer surfaces of an imploding spherical shell. The model includes mass ablation and target compressibility. The Rayleigh-Taylor and Bell-Plesset growths are studied in acceleration and deceleration phases. The inner- and outer-surface deformations are related to ablation velocity, target acceleration, and shell compressibility determined by using the one-dimensional hydrocode LILAC*. A detailed comparison with two-dimensional simulation is also presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  6. Detailed Structure of the Outer Disk Around HD 169142 with Polarized Light in H-band

    NASA Technical Reports Server (NTRS)

    Momose, Munetake; Morita, Ayaka; Fukagawa, Misato; Muto, Takayuki; Takeuchi, Taku; Hashimoto, Jun; Honda, Mitsuhiko; Kudo, Tomoyuki; Okamoto, Yoshiko K.; Kanagawa, Kazuhiro D.; Tanaka, Hidekazu; Grady, Carol A.; Sitko, Michael L.; Akiyama, Eiji; Currie, Thayne; Follette, Katherine B.; Mayama, Satoshi; Kusakabe, Nobuhiko; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian; Feldt, Markus; McElwain, Michael W.

    2015-01-01

    Coronagraphic imagery of the circumstellar disk around HD 169142 in H-band polarized intensity (PI) with Subaru/HiCIAO is presented. The emission scattered by dust particles at the disk surface in 0.''2=r=1.''2, or 29=r=174 AU, is successfully detected. The azimuthally-averaged radial profile of the PI shows a double power-law distribution, in which the PIs in r = 29-52 AU and r = 81.2-145 AU respectively show r-3-dependence. These two power-law regions are connected smoothly with a transition zone (TZ), exhibiting an apparent gap in r = 40-70 AU. The PI in the inner power-law region shows a deep minimum whose location seems to coincide with the point source at lambda = 7 mm. This can be regarded as another sign of a protoplanet in TZ. The observed radial profile of the PI is reproduced by a minimally flaring disk with an irregular surface density distribution or with an irregular temperature distribution or with the combination of both. The depletion factor of surface density in the inner power-law region (r <50 AU) is derived to be =0.16 from a simple model calculation. The obtained PI image also shows small scale asymmetries in the outer power-law region. Possible origins for these asymmetries include corrugation of the scattering surface in the outer region, and shadowing effect by a puffed up structure in the inner power-law region.

  7. Molecular Structure of the Outer Bacterial Membrane of Pseudomonas aeruginosa via Classical Simulation

    SciTech Connect

    Shroll, Robert M.; Straatsma, TP

    2002-10-23

    A detailed structural analysis has been performed of the outer bacterial membrane of Pseudomonas aeruginosa using a parameterized classical simulation model [R. D. Lins and T. P. Straatsma, Biophys. J. 81:1037-1046, (2001)] with modest modifications. The structural analysis of the membrane is presented and newly discovered characteristics of the membrane are discussed. Simulations indicate that the relative contribution of different ligands to calcium ion coordination varies across the membrane, while maintaining a constant average coordination number of 6.1. Water penetrates the surface of the membrane to a depth of about 30?. The hydration of ions and phosphate groups is shown to depend on location within the membrane. A measure of saccharide residue orientation is defined and average orientations are presented. Saccharide residues possess varying degrees of motion with a trend of greater mobility at the membrane surface. However, their motion is limited and even in the membrane outer core region the average structure appears fairly rigid over a period of 1 ns.

  8. Surface Analysis of Stainless Steel Outer Race Bearing Specimens

    DTIC Science & Technology

    1991-10-01

    modification or degradation of both the lubricant and ubiquitous fluorinated grease (" Krytox ’) additive during the wear stages. Chemical and structural...with grease containing 5% Schiff base additive; removed prior to failure (400+ hr) N23 Run in bearing test with grease containing 5% Schiff base...additive; removed prior to failure (400+ hr) Following analysis of these four initial specimens [MML Interim Report, 8/15/90], three additional specimens

  9. Surface Structure and Surface Order

    DTIC Science & Technology

    1991-05-15

    dynamics simulations shown in fig. 6.22, show that surface melting is expected to be Figure 6.22. A molecular dynamics simulation for a two...to determine the critical exponents in Table II. Figure 6.22. A molecular dynamics simulation for a two-dimensional slab showing trajectories of the...Their calculations confirm that the relaxation should be oscillatory [7]. 6.1 b. Structures Due to Adsorption and Segregation When atoms or molecules

  10. Computer-aided detection of lung nodules using outer surface features.

    PubMed

    Demir, Önder; Yılmaz Çamurcu, Ali

    2015-01-01

    In this study, a computer-aided detection (CAD) system was developed for the detection of lung nodules in computed tomography images. The CAD system consists of four phases, including two-dimensional and three-dimensional preprocessing phases. In the feature extraction phase, four different groups of features are extracted from volume of interests: morphological features, statistical and histogram features, statistical and histogram features of outer surface, and texture features of outer surface. The support vector machine algorithm is optimized using particle swarm optimization for classification. The CAD system provides 97.37% sensitivity, 86.38% selectivity, 88.97% accuracy and 2.7 false positive per scan using three groups of classification features. After the inclusion of outer surface texture features, classification results of the CAD system reaches 98.03% sensitivity, 87.71% selectivity, 90.12% accuracy and 2.45 false positive per scan. Experimental results demonstrate that outer surface texture features of nodule candidates are useful to increase sensitivity and decrease the number of false positives in the detection of lung nodules in computed tomography images.

  11. Inner and Outer Photometric Structure of Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Graham, Alister W.; Erwin, P.; Trujillo, I.; Asensio Ramos, A.

    The Nuker model, when applied to the inner regions of ``core'' galaxies, is shown to produce systematic biases in the determination of the core ``break-radii''. These radii can easily be (and often have been, see Trujillo et al. 2003) over-estimated by more than 100%. Moreover, due to curvature in the outer profiles of early-type galaxies (i.e., beyond the break-radius), none of the Nuker model parameters are found to be robust quantities. A new empirical model that simultaneously describes both the inner and outer light-profiles of elliptical galaxies (and bulges in general) is presented. It consists of a Sérsic function with an inner power-law and a variable transition region.

  12. Solution structure and dynamics of the outer membrane cytochrome OmcF from Geobacter sulfurreducens.

    PubMed

    Dantas, Joana M; Silva, Marta A; Pantoja-Uceda, David; Turner, David L; Bruix, Marta; Salgueiro, Carlos A

    2017-09-01

    Gene knock-out studies on Geobacter sulfurreducens cells showed that the outer membrane-associated monoheme cytochrome OmcF is involved in respiratory pathways leading to the extracellular reduction of Fe(III) and U(VI). In addition, microarray analysis of an OmcF-deficient mutant revealed that many of the genes with decreased transcript level were those whose expression is up-regulated in cells grown with a graphite electrode as electron acceptor, suggesting that OmcF also regulates the electron transfer to electrode surfaces and the concomitant electricity production by G. sulfurreducens in microbial fuel cells. (15)N,(13)C-labeled OmcF was produced and NMR spectroscopy was used to determine the solution structure of the protein in the fully reduced state and the pH-dependent conformational changes. In addition, (15)N relaxation NMR experiments were used to characterize the overall and internal backbone dynamics of OmcF. The structure obtained is well-defined, with an average pairwise root mean square deviation of 0.37Å for the backbone atoms and 0.98Å for all heavy atoms. For the first time a solution structure and the protein motions were determined for an outer membrane cytochrome from G. sulfurreducens, which constitutes an important step to understand the extracellular electron transfer mechanism in Geobacter cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Antigenic Structure of Outer Membrane Protein E of Moraxella catarrhalis and Construction and Characterization of Mutants

    PubMed Central

    Murphy, Timothy F.; Brauer, Aimee L.; Yuskiw, Norine; Hiltke, Thomas J.

    2000-01-01

    Outer membrane protein E (OMP E) is a 50-kDa protein of Moraxella catarrhalis which possesses several characteristics indicating that the protein will be an effective vaccine antigen. To study the antigenic structure of OMP E, eight monoclonal antibodies were developed and characterized. Three of the antibodies recognized epitopes which are present on the bacterial surface. Fusion peptides corresponding to overlapping regions of OMP E were constructed, and immunoblot assays were performed to localize the areas of the molecule bound by the monoclonal antibodies. These studies identified a surface-exposed epitope in the region of amino acids 80 through 180. To further study the protein, two mutants which lack OMP E were constructed. In bactericidal assays, the mutants were more readily killed by normal human serum compared to the isogenic parent strains. These results indicate that OMP E is involved in the expression of serum resistance of M. catarrhalis. PMID:11035732

  14. Deuterium Labeling Strategies for Creating Contrast in Structure-Function Studies of Model Bacterial Outer Membranes Using Neutron Reflectometry.

    PubMed

    Le Brun, Anton P; Clifton, Luke A; Holt, Stephen A; Holden, Peter J; Lakey, Jeremy H

    2016-01-01

    Studying the outer membrane of Gram-negative bacteria is challenging due to the complex nature of its structure. Therefore, simplified models are required to undertake structure-function studies of processes that occur at the outer membrane/fluid interface. Model membranes can be created by immobilizing bilayers to solid supports such as gold or silicon surfaces, or as monolayers on a liquid support where the surface pressure and fluidity of the lipids can be controlled. Both model systems are amenable to having their structure probed by neutron reflectometry, a technique that provides a one-dimensional depth profile through a membrane detailing its thickness and composition. One of the strengths of neutron scattering is the ability to use contrast matching, allowing molecules containing hydrogen and those enriched with deuterium to be highlighted or matched out against the bulk isotopic composition of the solvent. Lipopolysaccharides, a major component of the outer membrane, can be isolated for incorporation into model membranes. Here, we describe the deuteration of lipopolysaccharides from rough strains of Escherichia coli for incorporation into model outer membranes, and how the use of deuterated materials enhances structural analysis of model membranes by neutron reflectometry. © 2016 Elsevier Inc. All rights reserved.

  15. Development of Outer Surface Irradiated Laser Stress Improvement Process (L-SIP)

    SciTech Connect

    Noriaki Sugimoto; Hironori Onitsuka; Koji Okimura; Takahiro Ohta; Kazuhiko Kamo

    2006-07-01

    Improvement of residual stress is effective in a countermeasure to deal with the stress corrosion cracks in pipe welds. A irradiated laser stress improvement process (L-SIP) will be introduced as a method to improve residual stress inside steel pipes. This work method is to improve inner surface residual stress from tensile stress to compressive stress by irradiating laser beam around the welds of steel pipe and utilizing the temperature differences between inner and outer surface. (authors)

  16. Outer-sphere Pb(II) adsorbed at specific surface sites on single crystal α-alumina

    USGS Publications Warehouse

    Bargar, John R.; Towle, Steven N.; Brown, Gordon E.; Parks, George A.

    1996-01-01

    Solvated Pb(II) ions were found to adsorb as structurally well-defined outer-sphere complexes at specific sites on the α-Al2O3 (0001) single crystal surface, as determined by grazing-incidence X-ray absorption fine structure (GI-XAFS) measurements. The XAFS results suggest that the distance between Pb(II) adions and the alumina surface is approximately 4.2 Å. In contrast, Pb(II) adsorbs as more strongly bound inner-sphere complexes on α-Al2O3 (102). The difference in reactivities of the two alumina surfaces has implications for modeling surface complexation reactions of contaminants in natural environments, catalysis, and compositional sector zoning of oxide crystals.

  17. Surface display of a borrelial lipoprotein on meningococcal outer membrane vesicles.

    PubMed

    Salverda, Merijn L M; Meinderts, Sanne M; Hamstra, Hendrik-Jan; Wagemakers, Alex; Hovius, Joppe W R; van der Ark, Arno; Stork, Michiel; van der Ley, Peter

    2016-02-17

    Outer Membrane Vesicles (OMVs) are gaining attention as vaccine candidates. The successful expression of heterologous antigens in OMVs, with the OMV functioning both as adjuvant and delivery vehicle, has greatly enhanced their vaccine potential. Since there are indications that surface exposed antigens might induce a superior immune response, targeting of heterologous antigens to the OMV surface is of special interest. Several systems for surface display of heterologous antigens on OMVs have been developed. However, these systems have not been used to display lipidated membrane-associated proteins known as lipoproteins, which are emerging as key targets for protective immunity. We were therefore interested to see whether we could express a foreign lipoprotein on the outer surface of OMVs. When outer surface protein A (OspA), a borrelial surface-exposed lipoprotein, was expressed in meningococci, it was found that although OspA was present in OMVs, it was no longer surface-exposed. Therefore, a set of fusions of OspA to different regions of factor H binding protein (fHbp), a meningococcal surface-exposed lipoprotein, were designed and tested for their surface-exposure. An N-terminal part of fHbp was found to be necessary for the successful surface display of OspA on meningococcal OMVs. When mice were immunized with this set of OMVs, an OspA-specific antibody response was only elicited by OMVs with clearly surface-exposed OspA, strengthening the idea that the exact positioning of an antigen in the OMV affects the immune response. This method for the surface display of heterologous lipoproteins on OMVs is a step forward in the development of OMVs as a vaccine platform. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Outer surface proteins E and F of Borrelia burgdorferi, the agent of Lyme disease.

    PubMed Central

    Lam, T T; Nguyen, T P; Montgomery, R R; Kantor, F S; Fikrig, E; Flavell, R A

    1994-01-01

    We report the cloning and characterization of two outer surface proteins (Osps), designated OspE and OspF, from strain N40 of Borrelia burgdorferi, the spirochetal agent of Lyme disease. The ospE and ospF genes are structurally arranged in tandem as one transcriptional unit under the control of a common promoter. The ospE gene, located at the 5' end of the operon, is 513 nucleotides in length and encodes a 171-amino-acid protein with a calculated molecular mass of 19.2 kDa. The ospF gene, located 27 bp downstream of the stop codon of the ospE gene, consists of 690 nucleotides and encodes a protein of 230 amino acids with a calculated molecular mass of 26.1 kDa. Pulsed-field gel electrophoresis showed that the ospE and ospF genes are located on a 45-kb plasmid. Comparison of the leader sequences of OspE and OspF with those of the four known B. burgdorferi Osps (OspA, OspB, OspC, and OspD) reveals a hydrophobic domain and a consensus cleavage sequence (L-X-Y-C) recognized by signal peptidase II, and [3H]palmitate labeling shows that OspE and OspF are lipoproteins. Immunofluorescence studies demonstrated that both the OspE and OspF proteins are surface exposed. These features are consistent with the finding that OspE and OspF are B. burgdorferi surface lipoproteins. Images PMID:8262642

  19. Detailed structure of the outer disk around HD 169142 with polarized light in H-band

    NASA Astrophysics Data System (ADS)

    Momose, Munetake; Morita, Ayaka; Fukagawa, Misato; Muto, Takayuki; Takeuchi, Taku; Hashimoto, Jun; Honda, Mitsuhiko; Kudo, Tomoyuki; Okamoto, Yoshiko K.; Kanagawa, Kazuhiro D.; Tanaka, Hidekazu; Grady, Carol A.; Sitko, Michael L.; Akiyama, Eiji; Currie, Thayne; Follette, Katherine B.; Mayama, Satoshi; Kusakabe, Nobuhiko; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian; Feldt, Markus; Goto, Miwa; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kuzuhara, Masayuki; Kwon, Jungmi; Matsuo, Taro; McElwain, Michael W.; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2015-10-01

    Coronagraphic imagery of the circumstellar disk around HD 169142 in H-band polarized intensity (PI) with Subaru/HiCIAO is presented. The emission scattered by dust particles at the disk surface in 0{^''.}2 ≤ r ≤ 1{^''.}2, or 29 ≤ r ≤ 174 au, is successfully detected. The azimuthally averaged radial profile of the PI shows a double power-law distribution, in which the PIs in r = 29-52 au and r = 81.2-145 au respectively show r-3 dependence. These two power-law regions are connected smoothly with a transition zone (TZ), exhibiting an apparent gap in r = 40-70 au. The PI in the inner power-law region shows a deep minimum whose location seems to coincide with the point source at λ = 7 mm. This can be regarded as another sign of a protoplanet in the TZ. The observed radial profile of the PI is reproduced by a minimally flaring disk with an irregular surface density distribution, an irregular temperature distribution, or with a combination of both. The depletion factor of surface density in the inner power-law region (r < 50 au) is derived to be ≥ 0.16 from a simple model calculation. The obtained PI image also shows small-scale asymmetries in the outer power-law region. Possible origins for these asymmetries include corrugation of the scattering surface in the outer region, and a shadowing effect by a puffed-up structure in the inner power-law region.

  20. Time varying velocity structures in Earth's outer core: Constraints from exotic P-waves

    NASA Astrophysics Data System (ADS)

    Day, E. A.; Irving, J. C.; Deuss, A. F.; Cormier, V. F.

    2011-12-01

    The outer core is one of the most dynamic divisions of our planet. However, despite undergoing vigorous convection, the outer core is not necessarily a uniform, homogeneous layer of the Earth. Accumulation of light element enriched iron at the top of the outer core, below the core-mantle boundary, may lead to the formation of a stably stratified layer, corresponding to the E' layer as defined by Bullen. The E' layer would have different properties to the rest of the outer core and may be a source of scattering. The lowermost outer core, the F layer, may also have different physical properties than the rest of the outer core, either due to the crystallisation of iron or the release of light elements as the inner core grows. Time varying structure in the Earth's core has been observed in some previous studies, particularly using earthquake doublets. The vigorous convection in the outer core may lead to small-scale lateral variations in its velocity structure over time, due to the movement of fluids and slurry near to the core-mantle and inner core boundaries. We investigate the velocity and attenuation structure of the upper 1500 km of the outer core using high frequency PmKP seismic phases. PmKP waves travel as P-waves throughout the Earth, bouncing m-1 times on the underside of the core-mantle boundary. By analysing the relative arrival times and amplitudes of the PmKP waves and other seismic phases, and comparing these to synthetic waveforms, it is possible to constrain the velocity and attenuation characteristics of the upper 1500 km of the outer core. We correct for known mantle structure and explore the effects of core-mantle boundary topography. To investigate the scattering characteristics of the uppermost outer core and the sharpness of any stratified layers we search for precursors to PmKP phases, which are elusive. P4KP-PcP differential travel times suggest that the uppermost 1300 km of the outer core is up to 0.4% slower than PREM. There is some evidence

  1. Cell surface physiology and outer cell envelope impermeability for hydrophobic substances in Burkholderia multivorans.

    PubMed

    Ruskoski, Sallie A; Champlin, Franklin R

    2017-07-01

    The purpose of the present study was to obtain a better understanding of the relationship between cell surface physiology and outer cellular envelope permeability for hydrophobic substances in mucoid and non-mucoid B. multivorans strains, as well as in two capsule-deficient derivatives of a mucoid parental strain. Cell surface hydrophobicity properties were determined using the hydrocarbon adherence method, while outer cell envelope accessibility and permeability for non-polar compounds were measured using hydrophobic antimicrobial agent susceptibility and fluorescent probe assays. Extracellular polysaccharide (EPS) production was assessed by cultivating strains of disparate origin on yeast extract agar (YEA) containing different sugars, while the resultant colonial and cellular morphological parameters were assessed macro- and microscopically, respectively.Results/Key findings. The cell surfaces of all the strains were hydrophilic, impermeable to mechanistically disparate hydrophobic antibacterial agents and inaccessible to the hydrophobic probe N-phenyl-1-napthylamine, regardless of EPS phenotype. Supplementation of basal YEA with eight different sugars enhanced macroscopic EPS expression for all but one non-mucoid strain, with mannose potentiating the greatest effect. Despite acquisition of the mucoid phenotype, non-mucoid strains remained non-capsulated and capsulation of a hyper-mucoid strain and its two non-mucoid derivative strains was unaffected, as judged by microscopic observation. These data support the conclusion that EPS expression and the consistent mucoid phenotype are not necessarily associated with the ability of the outer cell surface to associate with non-polar substances or cellular capsulation.

  2. Large-scale density structures in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Belcher, J. W.; Lazarus, A. J.; Mcnutt, R. L., Jr.; Gordon, G. S., Jr.

    1993-01-01

    The Plasma Science experiment on the Voyager 2 spacecraft has measured the solar wind density from 1 to 38 AU. Over this distance, the solar wind density decreases as the inverse square of the heliocentric distance. However, there are large variations in this density at a given radius. Such changes in density are the dominant cause of changes in the solar wind ram pressure in the outer heliosphere and can cause large perturbations in the location of the termination shock of the solar wind. Following a simple model suggested by Suess, we study the non-equilibrium, dynamic location of the termination shock as it responds to these pressure changes. The results of this study suggest that the termination shock is rarely if ever at its equilibrium distance and may depart from that distance by as much as 50 AU at times.

  3. Selective Association of Outer Surface Lipoproteins with the Lipid Rafts of Borrelia burgdorferi

    PubMed Central

    Toledo, Alvaro; Crowley, Jameson T.; Coleman, James L.; LaRocca, Timothy J.; Chiantia, Salvatore; London, Erwin; Benach, Jorge L.

    2014-01-01

    ABSTRACT Borrelia burgdorferi contains unique cholesterol-glycolipid-rich lipid rafts that are associated with lipoproteins. These complexes suggest the existence of macromolecular structures that have not been reported for prokaryotes. Outer surface lipoproteins OspA, OspB, and OspC were studied for their participation in the formation of lipid rafts. Single-gene deletion mutants with deletions of ∆ospA, ∆ospB, and ∆ospC and a spontaneous gene mutant, strain B313, which does not express OspA and OspB, were used to establish their structural roles in the lipid rafts. All mutant strains used in this study produced detergent-resistant membranes, a common characteristic of lipid rafts, and had similar lipid and protein slot blot profiles. Lipoproteins OspA and OspB but not OspC were shown to be associated with lipid rafts by transmission electron microscopy. When the ability to form lipid rafts in live B. burgdorferi spirochetes was measured by fluorescence resonance energy transfer (FRET), strain B313 showed a statistically significant lower level of segregation into ordered and disordered membrane domains than did the wild-type and the other single-deletion mutants. The transformation of a B313 strain with a shuttle plasmid containing ospA restored the phenotype shared by the wild type and the single-deletion mutants, demonstrating that OspA and OspB have redundant functions. In contrast, a transformed B313 overexpressing OspC neither rescued the FRET nor colocalized with the lipid rafts. Because these lipoproteins are expressed at different stages of the life cycle of B. burgdorferi, their selective association is likely to have an important role in the structure of prokaryotic lipid rafts and in the organism’s adaptation to changing environments. PMID:24618252

  4. Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure

    DOEpatents

    Campbell,; Christian X. , Morrison; Jay, A [Oviedo, FL

    2011-12-20

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a compliant structure. The compliant structure may be configured such that the outer layer may thermally expand without limitation by the inner layer. The compliant structure may be formed from a plurality of pedestals positioned generally parallel with each other. The pedestals may include a first foot attached to a first end of the pedestal and extending in a first direction aligned with the outer layer, and may include a second foot attached to a second end of the pedestal and extending in a second direction aligned with the inner layer.

  5. Interactions between magainin 2 and Salmonella typhimurium outer membranes: Effect of lipopolysaccharide structure

    SciTech Connect

    Rana, F.R.; Macias, E.A.; Sultany, C.M.; Modzrakowski, M.C.; Blazyk, J. )

    1991-06-18

    The role of the outer membrane and lipopolysaccharide (LPS) in the interaction between the small cationic antimicrobial peptide magainin 2 and the Gram-negative cell envelope was studied by FT-IR spectroscopy. Magainin 2 alters the thermotropic properties of the outer membrane-peptidoglycan complexes from wild-type Salmonella typhimurium and a series of LPS mutants which display differential susceptibility to the bactericidal activity of cationic antibiotics. These results are correlated with the LPS phosphorylation pattern and charge (characterized by high-resolution {sup 31}P NMR) and outer membrane lipid composition, and are compared to the bactericidal susceptibility. LPS mutants show a progressive loss of resistance to killing by magainin 2 as the length of the LPS polysaccharide moiety decreases. Disordering of the outer membrane lipid fatty acyl chains by magainin 2, however, depends primarily upon the magnitude of PLS charge rather than the length of the LPS polysaccharide. While disruption of outer membrane structure most likely is not the primary factor leading to cell death, the susceptibility of Gram-negative cells to magainin 2 is associated with factors that facilitate the transport of the peptide across the outer membrane, such as the magnitude and location of LPS charge, and concentration of LPS in the outer membrane, outer membrane molecular architecture, and the presence or absence of the O-antigen side chain.

  6. The motion of a thin liquid layer on the outer surface of a rotating cylinder

    NASA Astrophysics Data System (ADS)

    Morad, A. M.; Zhukov, M. Yu.

    2015-01-01

    We derive the shallow water equations describing the motion of a thin liquid film on the outer surface of a rotating cylinder. These equations are an analogue of the modified Boussinesq equations describing shallow water flows with constant vorticity. The standard multi-scale methods are employed to construct asymptotic equations in the long-wave approximation. These asymptotic equations are analyzed using the hodograph method. It is found that for the particular case of a dispersionless irrotational flow, the equations describing flows on the outer surface of a cylinder reduce to elliptic equations. Numerical evaluation of the exact solutions obtained shows that the asymptotic equations possess a rich variety of solutions representing various wave patterns.

  7. STRUCTURAL PARAMETERS FOR GLOBULAR CLUSTERS IN THE OUTER HALO OF M31

    SciTech Connect

    Wang Song; Ma Jun

    2012-06-15

    In this paper, we present internal surface brightness profiles, using images in the F606W and F814W filter bands observed with the Advanced Camera for Surveys on the Hubble Space Telescope, for 10 globular clusters (GCs) in the outer halo of M31. Standard King models are fitted to the profiles to derive their structural and dynamical parameters. The results show that, in general, the properties of clusters in M31 and the Milky Way fall in the same regions of parameter spaces. The outer halo GCs of M31 have larger ellipticities than most of the GCs in M31 and the Milky Way. Their large ellipticities may be due to galaxy tides coming from satellite dwarf galaxies of M31 or may be related to the apparently more vigorous accretion or merger history that M31 has experienced. The tight correlation of cluster binding energy E{sub b} with mass M{sub mod} indicates that the 'fundamental plane' does exist for clusters, regardless of their host environments, which is consistent with previous studies.

  8. Structural Parameters for Globular Clusters in the Outer Halo of M31

    NASA Astrophysics Data System (ADS)

    Wang, Song; Ma, Jun

    2012-06-01

    In this paper, we present internal surface brightness profiles, using images in the F606W and F814W filter bands observed with the Advanced Camera for Surveys on the Hubble Space Telescope, for 10 globular clusters (GCs) in the outer halo of M31. Standard King models are fitted to the profiles to derive their structural and dynamical parameters. The results show that, in general, the properties of clusters in M31 and the Milky Way fall in the same regions of parameter spaces. The outer halo GCs of M31 have larger ellipticities than most of the GCs in M31 and the Milky Way. Their large ellipticities may be due to galaxy tides coming from satellite dwarf galaxies of M31 or may be related to the apparently more vigorous accretion or merger history that M31 has experienced. The tight correlation of cluster binding energy Eb with mass M mod indicates that the "fundamental plane" does exist for clusters, regardless of their host environments, which is consistent with previous studies.

  9. Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens.

    PubMed

    Smith, Jessica A; Lovley, Derek R; Tremblay, Pier-Luc

    2013-02-01

    Geobacter species are important Fe(III) reducers in a diversity of soils and sediments. Mechanisms for Fe(III) oxide reduction have been studied in detail in Geobacter sulfurreducens, but a number of the most thoroughly studied outer surface components of G. sulfurreducens, particularly c-type cytochromes, are not well conserved among Geobacter species. In order to identify cellular components potentially important for Fe(III) oxide reduction in Geobacter metallireducens, gene transcript abundance was compared in cells grown on Fe(III) oxide or soluble Fe(III) citrate with whole-genome microarrays. Outer-surface cytochromes were also identified. Deletion of genes for c-type cytochromes that had higher transcript abundance during growth on Fe(III) oxides and/or were detected in the outer-surface protein fraction identified six c-type cytochrome genes, that when deleted removed the capacity for Fe(III) oxide reduction. Several of the c-type cytochromes which were essential for Fe(III) oxide reduction in G. metallireducens have homologs in G. sulfurreducens that are not important for Fe(III) oxide reduction. Other genes essential for Fe(III) oxide reduction included a gene predicted to encode an NHL (Ncl-1-HT2A-Lin-41) repeat-containing protein and a gene potentially involved in pili glycosylation. Genes associated with flagellum-based motility, chemotaxis, and pili had higher transcript abundance during growth on Fe(III) oxide, consistent with the previously proposed importance of these components in Fe(III) oxide reduction. These results demonstrate that there are similarities in extracellular electron transfer between G. metallireducens and G. sulfurreducens but the outer-surface c-type cytochromes involved in Fe(III) oxide reduction are different.

  10. Simultaneous Inner- and Outer-Sphere As(V) Adsorption on Iron and Aluminum Oxide Surfaces

    NASA Astrophysics Data System (ADS)

    Catalano, J. G.; Park, C.; Zhang, Z.; Fenter, P.

    2006-05-01

    Adsorption of toxic elements onto mineral surfaces reduces their bioavailability and potential for transport. A fundamental understanding of adsorption processes is desired in order to predict the fate of contaminants in complexes systems and to generalize about the behavior of these elements in the environment. The adsorption of arsenate (AsO43-) at pH 5 on the (012) surfaces of α-Al2O3 and α-Fe2O3 was studied using resonant anomalous X-ray reflectivity (RAXR). Two distinct sorbed arsenate species were observed in roughly equal proportions on both surfaces: an inner-sphere species consistent with a bridging bidentate complex, and an outer-sphere species, presumably adsorbed via hydrogen bonding. The relative fraction of arsenate adsorbed as an outer-sphere complex was generally independent of the arsenate concentration in solution. These results suggest that outer-sphere arsenate adsorption may be a significant sequestration mechanism that has been largely overlooked in past studies and whose impacts on the fate and bioavailability of arsenic need further evaluation. This work is supported by the Geosciences Research Program of the Office of Basic Energy Sciences, U.S. Department of Energy, through contract W-31-109-ENG-38 to Argonne National Laboratory.

  11. Patterns of morphological variation in enamel–dentin junction and outer enamel surface of human molars

    PubMed Central

    Morita, Wataru; Yano, Wataru; Nagaoka, Tomohito; Abe, Mikiko; Ohshima, Hayato; Nakatsukasa, Masato

    2014-01-01

    Tooth crown patterning is governed by the growth and folding of the inner enamel epithelium (IEE) and the following enamel deposition forms outer enamel surface (OES). We hypothesized that overall dental crown shape and covariation structure are determined by processes that configurate shape at the enamel–dentine junction (EDJ), the developmental vestige of IEE. This this hypothesis was tested by comparing patterns of morphological variation between EDJ and OES in human permanent maxillary first molar (UM1) and deciduous second molar (um2). Using geometric morphometric methods, we described morphological variation and covariation between EDJ and OES, and evaluated the strength of two components of phenotypic variability, canalization and morphological integration, in addition to the relevant evolutionary flexibility, i.e. the ability to respond to selective pressure. The strength of covariation between EDJ and OES was greater in um2 than in UM1, and the way that multiple traits covary between EDJ and OES was different between these teeth. The variability analyses showed that EDJ had less shape variation and a higher level of morphological integration than OES, which indicated that canalization and morphological integration acted as developmental constraints. These tendencies were greater in UM1 than in um2. On the other hand, EDJ and OES had a comparable level of evolvability in these teeth. Amelogenesis could play a significant role in tooth shape and covariation structure, and its influence was not constant among teeth, which may be responsible for the differences in the rate and/or period of enamel formation. PMID:24689536

  12. Real-Time Curvature Defect Detection on Outer Surfaces Using Best-Fit Polynomial Interpolation

    PubMed Central

    Golkar, Ehsan; Prabuwono, Anton Satria; Patel, Ahmed

    2012-01-01

    This paper presents a novel, real-time defect detection system, based on a best-fit polynomial interpolation, that inspects the conditions of outer surfaces. The defect detection system is an enhanced feature extraction method that employs this technique to inspect the flatness, waviness, blob, and curvature faults of these surfaces. The proposed method has been performed, tested, and validated on numerous pipes and ceramic tiles. The results illustrate that the physical defects such as abnormal, popped-up blobs are recognized completely, and that flames, waviness, and curvature faults are detected simultaneously. PMID:23202186

  13. Real-time curvature defect detection on outer surfaces using best-fit polynomial interpolation.

    PubMed

    Golkar, Ehsan; Prabuwono, Anton Satria; Patel, Ahmed

    2012-11-02

    This paper presents a novel, real-time defect detection system, based on a best-fit polynomial interpolation, that inspects the conditions of outer surfaces. The defect detection system is an enhanced feature extraction method that employs this technique to inspect the flatness, waviness, blob, and curvature faults of these surfaces. The proposed method has been performed, tested, and validated on numerous pipes and ceramic tiles. The results illustrate that the physical defects such as abnormal, popped-up blobs are recognized completely, and that flames, waviness, and curvature faults are detected simultaneously.

  14. Surface expression, single-channel analysis and membrane topology of recombinant Chlamydia trachomatis Major Outer Membrane Protein

    PubMed Central

    Findlay, Heather E; McClafferty, Heather; Ashley, Richard H

    2005-01-01

    Background Chlamydial bacteria are obligate intracellular pathogens containing a cysteine-rich porin (Major Outer Membrane Protein, MOMP) with important structural and, in many species, immunity-related roles. MOMP forms extensive disulphide bonds with other chlamydial proteins, and is difficult to purify. Leaderless, recombinant MOMPs expressed in E. coli have yet to be refolded from inclusion bodies, and although leadered MOMP can be expressed in E. coli cells, it often misfolds and aggregates. We aimed to improve the surface expression of correctly folded MOMP to investigate the membrane topology of the protein, and provide a system to display native and modified MOMP epitopes. Results C. trachomatis MOMP was expressed on the surface of E. coli cells (including "porin knockout" cells) after optimizing leader sequence, temperature and medium composition, and the protein was functionally reconstituted at the single-channel level to confirm it was folded correctly. Recombinant MOMP formed oligomers even in the absence of its 9 cysteine residues, and the unmodified protein also formed inter- and intra-subunit disulphide bonds. Its topology was modeled as a (16-stranded) β-barrel, and specific structural predictions were tested by removing each of the four putative surface-exposed loops corresponding to highly immunogenic variable sequence (VS) domains, and one or two of the putative transmembrane strands. The deletion of predicted external loops did not prevent folding and incorporation of MOMP into the E. coli outer membrane, in contrast to the removal of predicted transmembrane strands. Conclusions C. trachomatis MOMP was functionally expressed on the surface of E. coli cells under newly optimized conditions. Tests of its predicted membrane topology were consistent with β-barrel oligomers in which major immunogenic regions are displayed on surface-exposed loops. Functional surface expression, coupled with improved understanding of MOMP's topology, could provide

  15. Permanent hydrophilization of outer and inner surfaces of polytetrafluoroethylene tubes using ambient air plasma generated by surface dielectric barrier discharges

    SciTech Connect

    Pavliňák, D.; Galmiz, O.; Zemánek, M.; Brablec, A.; Čech, J.; Černák, M.

    2014-10-13

    We present an atmospheric pressure ambient air plasma technique developed for technically simple treatment of inner and/or outer surfaces of plastic tubes and other hollow dielectric bodies. It is based on surface dielectric barrier discharge generating visually diffuse plasma layers along the treated dielectric surfaces using water-solution electrodes. The observed visual uniformity and measured plasma rotational and vibrational temperatures of 333 K and 2350 K indicate that the discharge can be readily applied to material surface treatment without significant thermal effect. This is exemplified by the obtained permanent surface hydrophilization of polytetrafluoroethylene tubes related to the replacement of a high fraction (more than 80%) of the surface fluorine determined by X-ray photoelectron spectroscopy. A tentative explanation of the discharge mechanism based on high-speed camera observations and the discharge current and voltage of measurements is outlined.

  16. Nonmetallic rigid-flexible outer sheath with pneumatic shapelocking mechanism and double curvature structure.

    PubMed

    Zuo, Siyang; Masamune, Ken; Kuwana, Kenta; Tomikawa, Morimasa; Ieiri, Satoshi; Ohdaira, Takeshi; Hashizume, Makoto; Dohi, Takeyoshi

    2011-01-01

    Single port access (SPA) surgery is a laparoscopic procedure using only one transumbilical-placed port. Natural orifice transluminal endoscopic surgery (NOTES) offers the possibility of surgery without visible scars. To address the access and stability problems in SPA and NOTES, we developed a device called rigid-flexible outer sheath. This sheath can be switched between flexible and rigid modes by a novel pneumatic shapelocking mechanism, and it has a double curvature structure that enables it to flex in four directions at the distal end and three directions on the rigid-flexible shaft. The insertion part of the prototype is 300 mm long with a 20 mm outer diameter, and the part is equipped with four working channels. In vivo experiments using a swine show that the outer sheath has high potential for solving access and stability problems. We expect that the outer sheath will be useful for SPA and NOTES.

  17. Contamination of Outer Surfaces of International Space Station Studied by Non-Destructive Techniques

    NASA Astrophysics Data System (ADS)

    Borisov, V. A.; Naumov, S. F.; Sokolova, S. P.; Kurilenok, A. O.; Skurat, V. E.; Zhigach, A. N.; Beriozkina, N. G.; Leipunsky, I. O.; Pshechenkov, P. A.; Zotova, E. S.; Volkov, I. O.; Naumkin, A. V.; Artemov, V. V.

    The aim of this work is to study non -volatile components of contamination deposits on outer surfaces of International Space Station (Russian segment) by a complex of non-destructive techniques - X-ray photoelectron spectroscopy (XPS), diffuse reflection infrared spectroscopy, scanning electron microscopy and local X-ray microanalysis (LXMA). These methods were used for investigation of 40 samples of materials and coatings after their exposure to residual atmosphere of Earth and external conditions of spacecraft. Elemental and chemical composition of surface and sub-surface layers is varied in very broad limits due to concurrence of many processes changing the sample composition. Contamination deposits contain nitrogenous components besides ubiquitous carbonaceous and siliceous components that are typical for spacecraft surface contamination.

  18. Surface-Localized Spermidine Protects the Pseudomonas aeruginosa Outer Membrane from Antibiotic Treatment and Oxidative Stress

    PubMed Central

    Johnson, Lori; Mulcahy, Heidi; Kanevets, Uliana; Shi, Yan

    2012-01-01

    Extracellular DNA acts as a cation chelator and induces the expression of antibiotic resistance genes regulated by Mg2+ levels. Here we report the characterization of novel DNA-induced genes in Pseudomonas aeruginosa that are annotated as homologs of the spermidine synthesis genes speD (PA4773) and speE (PA4774). The addition of sublethal concentrations of DNA and membrane-damaging antibiotics induced expression of the genes PA4773 to PA4775, as shown using transcriptional lux fusions and quantitative RT-PCR. Exogenous polyamine addition prevented DNA- and peptide-mediated gene induction. Mutation of PA4774 resulted in an increased outer membrane (OM) susceptibility phenotype upon polymyxin B, CP10A, and gentamicin treatment. When the membrane-localized fluorescent probe C11-BODIPY581/591 was used as an indicator of peroxidation of membrane lipids, the PA4774::lux mutant demonstrated an increased susceptibility to oxidative membrane damage from H2O2 treatment. Addition of exogenous polyamines protected the membranes of the PA4774::lux mutant from polymyxin B and H2O2 treatment. Polyamines from the outer surface were isolated and shown to contain putrescine and spermidine by using high-performance liquid chromatography and mass spectrometry. The PA4774::lux mutant did not produce spermidine on the cell surface, but genetic complementation restored surface spermidine production as well as the antibiotic and oxidative stress resistance phenotypes of the membrane. We have identified new functions for spermidine on the cell surface and propose that polyamines are produced under Mg2+-limiting conditions as an organic polycation to bind lipopolysaccharide (LPS) and to stabilize and protect the outer membrane against antibiotic and oxidative damage. PMID:22155771

  19. Borrelia burgdorferi lipoproteins are secreted to the outer surface by default.

    PubMed

    Schulze, Ryan J; Zückert, Wolfram R

    2006-03-01

    Borrelia spirochaetes are unique among diderm bacteria in their abundance of surface-displayed lipoproteins, some of which play important roles in the pathogenesis of Lyme disease and relapsing fever. To identify the lipoprotein-sorting signals in Borrelia burgdorferi, we generated chimeras between the outer surface lipoprotein OspA, the periplasmic oligopeptide-binding lipoprotein OppAIV and mRFP1, a monomeric red fluorescent reporter protein. Localization of OspA and OppAIV point mutants showed that Borrelia lipoproteins do not follow the '+2' sorting rule which targets lipoproteins to the cytoplasmic or outer membrane of Gram-negative bacteria via the Lol pathway. Fusions of mRFP1 to short N-terminal lipopeptides of OspA, and surprisingly OppAIV, were targeted to the spirochaetal surface. Mutagenesis of the OspA N-terminus defined less than five N-terminal amino acids as the minimal secretion-facilitating signal. With the exception of negative charges, which can act as partial subsurface retention signals in certain peptide contexts, lipoprotein secretion occurs independent of N-terminal sequence. Together, these data indicate that Borrelia lipoproteins are targeted to the bacterial surface by default, but can be retained in the periplasm by sequence-specific signals.

  20. Outer Domain of HIV-1 gp120: Antigenic Optimization, Structural Malleability, and Crystal Structure with Antibody VRC-PG04

    PubMed Central

    Joyce, M. Gordon; Kanekiyo, Masaru; Xu, Ling; Biertümpfel, Christian; Boyington, Jeffrey C.; Moquin, Stephanie; Shi, Wei; Wu, Xueling; Yang, Yongping; Yang, Zhi-Yong; Zhang, Baoshan; Zheng, Anqi; Zhou, Tongqing; Zhu, Jiang; Mascola, John R.

    2013-01-01

    The outer domain of the HIV-1 gp120 envelope glycoprotein contains the epitope for broadly neutralizing antibodies directed to the CD4-binding site, many of which are able to neutralize over 90% of circulating HIV-1 isolates. While the outer domain is conformationally more stable than other portions of the HIV-1 envelope, efforts to express the outer domain as an immunogen for eliciting broadly neutralizing antibodies have not been successful, potentially because natural outer domain variants do not bind strongly to antibodies such as VRC01. In this study, we optimized the antigenic properties of the HIV-1 Env outer domain to generate OD4.2.2, from the KER2018 strain of clade A HIV-1, enabling it to bind antibodies such as VRC01 with nanomolar affinity. The crystal structure of OD4.2.2 in complex with VRC-PG04 was solved at 3.0-Å resolution and compared to known crystal structures including (i) the structure of core gp120 bound by VRC-PG04 and (ii) a circularly permutated version of the outer domain in complex with antibody PGT128. Much of the VRC-PG04 epitope was preserved in the OD4.2.2 structure, though with altered N and C termini conformations. Overall, roughly one-third of the outer domain structure appeared to be fixed in conformation, independent of alterations in termini, clade, or ligand, while other portions of the outer domain displayed substantial structural malleability. The crystal structure of OD4.2.2 with VRC-PG04 provides atomic-level details for an HIV-1 domain recognized by broadly neutralizing antibodies and insights relevant to the rational design of an immunogen that could elicit such antibodies by vaccination. PMID:23236069

  1. Outer domain of HIV-1 gp120: antigenic optimization, structural malleability, and crystal structure with antibody VRC-PG04.

    PubMed

    Joyce, M Gordon; Kanekiyo, Masaru; Xu, Ling; Biertümpfel, Christian; Boyington, Jeffrey C; Moquin, Stephanie; Shi, Wei; Wu, Xueling; Yang, Yongping; Yang, Zhi-Yong; Zhang, Baoshan; Zheng, Anqi; Zhou, Tongqing; Zhu, Jiang; Mascola, John R; Kwong, Peter D; Nabel, Gary J

    2013-02-01

    The outer domain of the HIV-1 gp120 envelope glycoprotein contains the epitope for broadly neutralizing antibodies directed to the CD4-binding site, many of which are able to neutralize over 90% of circulating HIV-1 isolates. While the outer domain is conformationally more stable than other portions of the HIV-1 envelope, efforts to express the outer domain as an immunogen for eliciting broadly neutralizing antibodies have not been successful, potentially because natural outer domain variants do not bind strongly to antibodies such as VRC01. In this study, we optimized the antigenic properties of the HIV-1 Env outer domain to generate OD4.2.2, from the KER2018 strain of clade A HIV-1, enabling it to bind antibodies such as VRC01 with nanomolar affinity. The crystal structure of OD4.2.2 in complex with VRC-PG04 was solved at 3.0-Å resolution and compared to known crystal structures including (i) the structure of core gp120 bound by VRC-PG04 and (ii) a circularly permutated version of the outer domain in complex with antibody PGT128. Much of the VRC-PG04 epitope was preserved in the OD4.2.2 structure, though with altered N and C termini conformations. Overall, roughly one-third of the outer domain structure appeared to be fixed in conformation, independent of alterations in termini, clade, or ligand, while other portions of the outer domain displayed substantial structural malleability. The crystal structure of OD4.2.2 with VRC-PG04 provides atomic-level details for an HIV-1 domain recognized by broadly neutralizing antibodies and insights relevant to the rational design of an immunogen that could elicit such antibodies by vaccination.

  2. Velocity profiles and the structure of turbulence at the outer bank of a compound meander bend

    NASA Astrophysics Data System (ADS)

    Engel, Frank L.; Rhoads, Bruce L.

    2017-10-01

    Few studies have quantified near-bank turbulence at the field-scale in meander bends. As a result, details of the structure of turbulence at the outer bank of bends are poorly understood, despite recognized linkages among turbulence, bank erosion, and channel migration. This study uses high-frequency measurements of flow velocities to analyze the characteristics of turbulence in close proximity to the outer bank of an actively migrating compound meander bend. Results show that the structure of turbulence in the bend is linked to curvature-induced effects through the progressive advection of high momentum fluid toward the outer bank as flow moves through the bend. Vertical profiles of streamwise-vertical Reynolds stresses near the outer bank differ considerably from those in wide straight channels because of the effects both of curvature-induced helical motion and of local frictional effects associated with the complex bank morphology. The results of the study provide the basis for a conceptual model of the structure of outer bank turbulence in this meander bend.

  3. Surface current patterns suggested by suspended sediment distribution over the outer continental margin, Bering Sea

    USGS Publications Warehouse

    Karl, Herman A.; Carlson, P.R.

    1987-01-01

    Samples of total suspended matter (TSM) were collected at the surface over the northern outer continental margin of the Bering Sea during the summers of 1980 and 1981. Volume concentrations of surface TSM averaged 0.6 and 1.1 mg l-1 for 1980 and 1981, respectively. Organic matter, largely plankton, made up about 65% of the near-surface TSM for both years. Distributions of TSM suggested that shelf circulation patterns were characterized either by meso- and large- scale eddies or by cross-shelf components of flow superimposed on a general northwesterly net drift. These patterns may be caused by large submarine canyons which dominate the physiography of this part of the Bering Sea continental margin. ?? 1987.

  4. Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes

    PubMed Central

    Jacobson, Kurt H.; Gunsolus, Ian L.; Kuech, Thomas R.; Troiano, Julianne M.; Melby, Eric S.; Lohse, Samuel E.; Hu, Dehong; Chrisler, William B.; Murphy, Catherine J.; Orr, Galya; Geiger, Franz M.; Haynes, Christy L.; Pedersen, Joel A.

    2015-01-01

    Design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations and assessment of the potential implications of nanoparticle release into the environment requires understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate the electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the outer leaflet-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed the electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) and second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. The association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides. PMID:26207769

  5. The Design and Structure of Outer Membrane Receptors from Peroxisomes, Mitochondria, and Chloroplasts.

    PubMed

    Panigrahi, Rashmi; Kubiszewski-Jakubiak, Szymon; Whelan, James; Vrielink, Alice

    2015-10-06

    The eukaryotic cell is defined by compartments that allow specialization of function. This compartmental structure generates a new concept in cell biology compared with the simpler prokaryotic cell structure, namely the specific targeting of proteins to intracellular compartments. Protein targeting is achieved by the action of specialized signals on proteins destined for organelles that are recognized by cognate receptors. An understanding of the specificity of targeting signal recognition leading to import requires an understanding of the receptor structures. Here, we focus on the structures of receptors of different import machineries located on the outer membrane of three organelles: peroxisomes, mitochondria, and chloroplasts. This review provides an overview of the structural features of outer membrane import receptors that recognize targeting signals. Finally, we briefly discuss combinatorial approaches that might aid in understanding the structural factors mediating receptor targeting signal recognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Nanopods: a new bacterial structure and mechanism for deployment of outer membrane vesicles.

    PubMed

    Shetty, Ameesha; Chen, Shicheng; Tocheva, Elitza I; Jensen, Grant J; Hickey, William J

    2011-01-01

    Bacterial outer membrane vesicles (OMV) are packets of periplasmic material that, via the proteins and other molecules they contain, project metabolic function into the environment. While OMV production is widespread in proteobacteria, they have been extensively studied only in pathogens, which inhabit fully hydrated environments. However, many (arguably most) bacterial habitats, such as soil, are only partially hydrated. In the latter, water is characteristically distributed as films on soil particles that are, on average thinner, than are typical OMV (ca. ≤10 nm water film vs. 20 to >200 nm OMV;). We have identified a new bacterial surface structure, termed a "nanopod", that is a conduit for projecting OMV significant distances (e.g., ≥6 µm) from the cell. Electron cryotomography was used to determine nanopod three-dimensional structure, which revealed chains of vesicles within an undulating, tubular element. By using immunoelectron microscopy, proteomics, heterologous expression and mutagenesis, the tubes were determined to be an assembly of a surface layer protein (NpdA), and the interior structures identified as OMV. Specific metabolic function(s) for nanopods produced by Delftia sp. Cs1-4 are not yet known. However, a connection with phenanthrene degradation is a possibility since nanopod formation was induced by growth on phenanthrene. Orthologs of NpdA were identified in three other genera of the Comamonadaceae family, and all were experimentally verified to form nanopods. Nanopods are new bacterial organelles, and establish a new paradigm in the mechanisms by which bacteria effect long-distance interactions with their environment. Specifically, they create a pathway through which cells can effectively deploy OMV, and the biological activity these transmit, in a diffusion-independent manner. Nanopods would thus allow environmental bacteria to expand their metabolic sphere of influence in a manner previously unknown for these organisms.

  7. Structure of isolated large-scale inhomogeneities in the outer ionosphere

    NASA Astrophysics Data System (ADS)

    Kalinin, Iu. K.; Romanchuk, A. A.

    1991-03-01

    The structure of large-scale inhomogeneities in the outer ionosphere is examined with reference to Thomson scattering data. The dependence of delta Ne/Ne and delta Ne on the local coordinates is established. The shape function is also examined.

  8. Selective association of outer surface lipoproteins with the lipid rafts of Borrelia burgdorferi.

    PubMed

    Toledo, Alvaro; Crowley, Jameson T; Coleman, James L; LaRocca, Timothy J; Chiantia, Salvatore; London, Erwin; Benach, Jorge L

    2014-03-11

    Borrelia burgdorferi contains unique cholesterol-glycolipid-rich lipid rafts that are associated with lipoproteins. These complexes suggest the existence of macromolecular structures that have not been reported for prokaryotes. Outer surface lipoproteins OspA, OspB, and OspC were studied for their participation in the formation of lipid rafts. Single-gene deletion mutants with deletions of ospA, ospB, and ospC and a spontaneous gene mutant, strain B313, which does not express OspA and OspB, were used to establish their structural roles in the lipid rafts. All mutant strains used in this study produced detergent-resistant membranes, a common characteristic of lipid rafts, and had similar lipid and protein slot blot profiles. Lipoproteins OspA and OspB but not OspC were shown to be associated with lipid rafts by transmission electron microscopy. When the ability to form lipid rafts in live B. burgdorferi spirochetes was measured by fluorescence resonance energy transfer (FRET), strain B313 showed a statistically significant lower level of segregation into ordered and disordered membrane domains than did the wild-type and the other single-deletion mutants. The transformation of a B313 strain with a shuttle plasmid containing ospA restored the phenotype shared by the wild type and the single-deletion mutants, demonstrating that OspA and OspB have redundant functions. In contrast, a transformed B313 overexpressing OspC neither rescued the FRET nor colocalized with the lipid rafts. Because these lipoproteins are expressed at different stages of the life cycle of B. burgdorferi, their selective association is likely to have an important role in the structure of prokaryotic lipid rafts and in the organism's adaptation to changing environments. IMPORTANCE Lipid rafts are cholesterol-rich clusters within the membranes of cells. Lipid rafts contain proteins that have functions in sensing the cell environment and transmitting signals. Although selective proteins are present in

  9. Prediction of structural features and application to outer membrane protein identification

    PubMed Central

    Yan, Renxiang; Wang, Xiaofeng; Huang, Lanqing; Yan, Feidi; Xue, Xiaoyu; Cai, Weiwen

    2015-01-01

    Protein three-dimensional (3D) structures provide insightful information in many fields of biology. One-dimensional properties derived from 3D structures such as secondary structure, residue solvent accessibility, residue depth and backbone torsion angles are helpful to protein function prediction, fold recognition and ab initio folding. Here, we predict various structural features with the assistance of neural network learning. Based on an independent test dataset, protein secondary structure prediction generates an overall Q3 accuracy of ~80%. Meanwhile, the prediction of relative solvent accessibility obtains the highest mean absolute error of 0.164, and prediction of residue depth achieves the lowest mean absolute error of 0.062. We further improve the outer membrane protein identification by including the predicted structural features in a scoring function using a simple profile-to-profile alignment. The results demonstrate that the accuracy of outer membrane protein identification can be improved by ~3% at a 1% false positive level when structural features are incorporated. Finally, our methods are available as two convenient and easy-to-use programs. One is PSSM-2-Features for predicting secondary structure, relative solvent accessibility, residue depth and backbone torsion angles, the other is PPA-OMP for identifying outer membrane proteins from proteomes. PMID:26104144

  10. Prediction of structural features and application to outer membrane protein identification

    NASA Astrophysics Data System (ADS)

    Yan, Renxiang; Wang, Xiaofeng; Huang, Lanqing; Yan, Feidi; Xue, Xiaoyu; Cai, Weiwen

    2015-06-01

    Protein three-dimensional (3D) structures provide insightful information in many fields of biology. One-dimensional properties derived from 3D structures such as secondary structure, residue solvent accessibility, residue depth and backbone torsion angles are helpful to protein function prediction, fold recognition and ab initio folding. Here, we predict various structural features with the assistance of neural network learning. Based on an independent test dataset, protein secondary structure prediction generates an overall Q3 accuracy of ~80%. Meanwhile, the prediction of relative solvent accessibility obtains the highest mean absolute error of 0.164, and prediction of residue depth achieves the lowest mean absolute error of 0.062. We further improve the outer membrane protein identification by including the predicted structural features in a scoring function using a simple profile-to-profile alignment. The results demonstrate that the accuracy of outer membrane protein identification can be improved by ~3% at a 1% false positive level when structural features are incorporated. Finally, our methods are available as two convenient and easy-to-use programs. One is PSSM-2-Features for predicting secondary structure, relative solvent accessibility, residue depth and backbone torsion angles, the other is PPA-OMP for identifying outer membrane proteins from proteomes.

  11. Difference in radiocarbon ages of carbonized material from the inner and outer surfaces of pottery from a wetland archaeological site.

    PubMed

    Miyata, Yoshiki; Minami, Masayo; Onbe, Shin; Sakamoto, Minoru; Matsuzaki, Hiroyuki; Nakamura, Toshio; Imamura, Mineo

    2011-01-01

    AMS (Accelerator Mass Spectrometry) radiocarbon dates for eight potsherds from a single piece of pottery from a wetland archaeological site indicated that charred material from the inner pottery surfaces (5052 ± 12 BP; N = 5) is about 90 (14)C years older than that from the outer surfaces (4961 ± 22 BP; N = 7). We considered three possible causes of this difference: the old wood effect, reservoir effects, and diagenesis. We concluded that differences in the radiocarbon ages between materials from the inner and outer surfaces of the same pot were caused either by the freshwater reservoir effect or by diagenesis. Moreover, we found that the radiocarbon ages of carbonized material on outer surfaces (soot) of pottery from other wetland archaeological sites were the same as the ages of material on inner surfaces (charred food) of the same pot within error, suggesting absence of freshwater reservoir effect or diagenesis.

  12. Difference in radiocarbon ages of carbonized material from the inner and outer surfaces of pottery from a wetland archaeological site

    PubMed Central

    MIYATA, Yoshiki; MINAMI, Masayo; ONBE, Shin; SAKAMOTO, Minoru; MATSUZAKI, Hiroyuki; NAKAMURA, Toshio; IMAMURA, Mineo

    2011-01-01

    AMS (Accelerator Mass Spectrometry) radiocarbon dates for eight potsherds from a single piece of pottery from a wetland archaeological site indicated that charred material from the inner pottery surfaces (5052 ± 12 BP; N = 5) is about 90 14C years older than that from the outer surfaces (4961 ± 22 BP; N = 7). We considered three possible causes of this difference: the old wood effect, reservoir effects, and diagenesis. We concluded that differences in the radiocarbon ages between materials from the inner and outer surfaces of the same pot were caused either by the freshwater reservoir effect or by diagenesis. Moreover, we found that the radiocarbon ages of carbonized material on outer surfaces (soot) of pottery from other wetland archaeological sites were the same as the ages of material on inner surfaces (charred food) of the same pot within error, suggesting absence of freshwater reservoir effect or diagenesis. PMID:21986315

  13. Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis.

    PubMed

    Große, Lena; Wurm, Christian A; Brüser, Christian; Neumann, Daniel; Jans, Daniel C; Jakobs, Stefan

    2016-02-15

    The Bcl-2 family proteins Bax and Bak are essential for the execution of many apoptotic programs. During apoptosis, Bax translocates to the mitochondria and mediates the permeabilization of the outer membrane, thereby facilitating the release of pro-apoptotic proteins. Yet the mechanistic details of the Bax-induced membrane permeabilization have so far remained elusive. Here, we demonstrate that activated Bax molecules, besides forming large and compact clusters, also assemble, potentially with other proteins including Bak, into ring-like structures in the mitochondrial outer membrane. STED nanoscopy indicates that the area enclosed by a Bax ring is devoid of mitochondrial outer membrane proteins such as Tom20, Tom22, and Sam50. This strongly supports the view that the Bax rings surround an opening required for mitochondrial outer membrane permeabilization (MOMP). Even though these Bax assemblies may be necessary for MOMP, we demonstrate that at least in Drp1 knockdown cells, these assemblies are not sufficient for full cytochrome c release. Together, our super-resolution data provide direct evidence in support of large Bax-delineated pores in the mitochondrial outer membrane as being crucial for Bax-mediated MOMP in cells. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  14. A Miniaturized Seismometer for Surface Measurements in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; Pike, W. T.

    2001-01-01

    Seismology is a powerful tool for investigating the inner structure and dynamic processes of a planetary body. The interior structure information derived from seismic measurements is complementary to other methods of probing the subsurface (such as gravity and electromagnetics), both in terms of spatial and depth resolution and the relevant types of material properties being sensed. The propagation of seismic waves is sensitive to composition (via density and elastic parameters), temperature (via attenuation) and physical state (solid vs. liquid). In addition, the seismicity (level and distribution in space and time of seismic activity) provides information on the impact flux and tectonic forces currently active within the body. The major satellites of the outer solar system provide obvious targets for seismic investigations. In addition, small bodies, such as asteroids and comets, can also benefit from seismic measurements. We have developed an extremely small, lightweight, low-power seismometer for planetary applications which is ideally suited for use in the outer solar system. This instrument has previously been proposed and selected for use on a comet (on the Rosetta Lander, subsequently deselected for programmatic reasons) and Mars (on the NetLander mission). Additional information is contained in the original extended abstract.

  15. Insights into the Structure and Assembly of Escherichia coli Outer Membrane Protein A

    PubMed Central

    Reusch, Rosetta N.

    2012-01-01

    Outer membrane protein A (OmpA) of Escherichia coli is a paradigm for the biogenesis of outer membrane proteins; however, the structure and assembly of OmpA have remained controversial. A review of studies to date supports the hypothesis that native OmpA is a single-domain large pore, while a two-domain narrow pore structure is a folding intermediate or minor conformer. The in vitro refolding of OmpA to the large pore conformation requires that the protein be isolated from outer membranes with an intact disulfide bond and then adequately incubated in lipids at temperatures ≥ 26 °C to overcome the high energy of activation for refolding. The in vivo maturation of the protein involves covalent modification of serines in the eighth β-barrel of the N-terminal domain by oligo-(R)-3-hydroxybutyrates as the protein is escorted across the cytoplasm by SecB for post-translational secretion across the SEC translocase in the inner membrane. After cleavage of the signal sequence, protein chaperones, such a Skp, DegP and SurA, guide OmpA across the periplasm to the BAM complex in the outer membrane. During this passage, a disulfide bond is formed between C290 and C302 by DsbA, and the hydrophobicity of segments of the C-terminal domain which are destined for incorporation as β-barrels in the outer membrane bilayer is increased by covalent attachment of oligo-(R)-3-hydroxybutyrates. With the aid of the BAM complex, OmpA is then assembled into the outer membrane as a single-domain large pore. PMID:22251410

  16. Brain surface parameterization using Riemann surface structure.

    PubMed

    Wang, Yalin; Gu, Xianfeng; Hayashi, Kiralee M; Chan, Tony F; Thompson, Paul M; Yau, Shing-Tung

    2005-01-01

    We develop a general approach that uses holomorphic 1-forms to parameterize anatomical surfaces with complex (possibly branching) topology. Rather than evolve the surface geometry to a plane or sphere, we instead use the fact that all orientable surfaces are Riemann surfaces and admit conformal structures, which induce special curvilinear coordinate systems on the surfaces. Based on Riemann surface structure, we can then canonically partition the surface into patches. Each of these patches can be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable. To illustrate the technique, we computed conformal structures for several types of anatomical surfaces in MRI scans of the brain, including the cortex, hippocampus, and lateral ventricles. We found that the resulting parameterizations were consistent across subjects, even for branching structures such as the ventricles, which are otherwise difficult to parameterize. Compared with other variational approaches based on surface inflation, our technique works on surfaces with arbitrary complexity while guaranteeing minimal distortion in the parameterization. It also offers a way to explicitly match landmark curves in anatomical surfaces such as the cortex, providing a surface-based framework to compare anatomy statistically and to generate grids on surfaces for PDE-based signal processing.

  17. Prestin is expressed on the whole outer hair cell basolateral surface.

    PubMed

    Yu, Ning; Zhu, Meng-Lei; Zhao, Hong-Bo

    2006-06-20

    Prestin has been identified as a motor protein responsible for outer hair cell (OHC) electromotility. Previous experiments revealed that OHC electromotility and its associated nonlinear capacitance resided in the OHC lateral wall and was not detected at the apical cuticular plate and basal region. In this experiment, the distribution of prestin in adult mouse, rat, and guinea pig OHCs was re-examined by use of immunofluorescent staining and confocal microscopy. We found that prestin labeling was located at the whole OHC basolateral wall, including the basal plasma membrane. However, staining at the basal membrane was weak. As compared with the intensity at the lateral wall, the intensities of prestin labeling at the membrane at the nuclear level and basal pole were 80.5% and 61.1%, respectively. Prestin labeling was not found at the cuticular plate and stereocilia. The prestin labeling was also absent in the cytoplasm and nuclei. The OHC lateral wall above the nuclear level is composed of the plasma membrane, cortical lattice, and subsurface cisternae. By co-staining with di-8-ANEPPS, prestin labeling was found at the outer layer of the OHC lateral wall, which was further evidenced by use of a hypotonic challenge to separate the plasma membrane from the underlying subsurface cisternae. The data revealed that prestin is expressed at the whole OHC basolateral membrane. Prestin in the basal plasma membrane may provide a reservoir on the OHC surface for prestin-recycling and may also facilitate performing its hypothesized transporter function.

  18. Joint segmentation of 3D femoral lumen and outer wall surfaces from MR images.

    PubMed

    Ukwatta, Eranga; Yuan, Jing; Qiu, Wu; Rajchl, Martin; Chiu, Bernard; Shavakh, Shadi; Xu, Jianrong; Fenster, Aaron

    2013-01-01

    We propose a novel algorithm to jointly delineate the femoral artery lumen and outer wall surfaces from 3D black-blood MR images, while enforcing the spatial consistency of the reoriented MR slices along the medial axis of the femoral artery. We demonstrate that the resulting optimization problem of the proposed segmentation can be solved globally and exactly by means of convex relaxation, for which we introduce a novel coupled continuous max-flow (CCOMF) model based on an Ishikawa-type flow configuration and show its duality to the studied convex relaxed optimization problem. Using the proposed CCMF model, the exactness and globalness of its dual convex relaxation problem is proven. Experiment results demonstrate that the proposed method yielded high accuracy (i.e. Dice similarity coefficient > 85%) for both the lumen and outer wall and high reproducibility (intra-class correlation coefficient of 0.95) for generating vessel wall area. The proposed method outperformed the previous method, in terms of computation time, by a factor of pproximately 20.

  19. Turbine airfoil with a compliant outer wall

    DOEpatents

    Campbell, Christian X [Oviedo, FL; Morrison, Jay A [Oviedo, FL

    2012-04-03

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation in the outer layer is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a support structure. The outer layer may be a compliant layer configured such that the outer layer may thermally expand and thereby reduce the stress within the outer layer. The outer layer may be formed from a nonplanar surface configured to thermally expand. In another embodiment, the outer layer may be planar and include a plurality of slots enabling unrestricted thermal expansion in a direction aligned with the outer layer.

  20. The outer regions of galaxy clusters: Chandra constraints on the X-ray surface brightness

    NASA Astrophysics Data System (ADS)

    Ettori, S.; Balestra, I.

    2009-03-01

    Context: We study the properties of the X-ray surface brightness profiles in a sample of galaxy clusters that were observed with Chandra and have emission detectable with a signal-to-noise ratio higher than 2 per radial bin at a radius beyond R500 ≈ 0.7 × R200. Aims: Our study aims to measure the slopes in both the X-ray surface brightness and gas density profiles in the outskirts of massive clusters. These constraints are compared with similar results obtained from observations and numerical simulations of the temperature and dark-matter density profiles with the intention of presenting a consistent picture of the outer regions of galaxy clusters. Methods: We extract the surface brightness profiles S_b(r) of 52 X-ray luminous galaxy clusters at z>0.3 from X-ray exposures obtained with Chandra. These objects, which are of both high X-ray surface brightness and high redshift, allow us to use Chandra either in ACIS-I or even ACIS-S configuration to survey the cluster outskirts. We estimate R200 using both a β-model that reproduces the surface brightness profiles and scaling relations from the literature. The two methods converge to comparable values. We determine the radius, R_S2N, at which the signal-to-noise ratio is higher than 2, and select the objects in the sample that satisfy the criterion R_S2N/R200 > 0.7. For the eleven selected objects, we model by a power-law function the behaviour of S_b(r) to estimate the slope at several characteristic radii expressed as a fraction of R200. Results: We measure a consistent steepening of the S_b(r) profile moving outward from 0.4R200, where an average slope of -3.6 (σ = 0.8) is estimated. At R200, we evaluate a slope of -4.3 (σ = 0.9) that implies a slope in the gas density profile of ≈-2.6 and a predicted mean value of the surface brightness in the 0.5-2 keV band of 2 × 10-12 erg s-1 cm-2 deg-2. Conclusions: Combined with estimates of the outer slope of the gas temperature profile and expectations about the

  1. Self-assemblies based on the "outer-surface interactions" of cucurbit[n]urils: new opportunities for supramolecular architectures and materials.

    PubMed

    Ni, Xin-Long; Xiao, Xin; Cong, Hang; Zhu, Qian-Jiang; Xue, Sai-Feng; Tao, Zhu

    2014-04-15

    Supramolecular architectures and materials have attracted immense attention during the last decades because they not only open the possibility of obtaining a large variety of aesthetically interesting structures but also have applications in gas storage, sensors, separation, catalysis, and so on. On the other hand, cucurbit[n]urils (Q[n]s), a relatively new class of macrocyclic hosts with a rigid hydrophobic cavity and two identical carbonyl fringed portals, have attracted much attention in supramolecular chemistry. Because of the strong charge-dipole and hydrogen bonding interactions, as well as hydrophobic and hydrophilic effect derived from the negative portals and rigid cavities of Q[n]s, nearly all research in Q[n]s has been focused on utilizing the portals and cavities to construct supramolecular assemblies similar to other macrocyclic receptors such as cyclodextrin and calixarenes. Interestingly, a recent study revealed that other weak noncovalent interactions such as hydrogen bonding and π···π stacking, as well as C-H···π and ion-dipole interactions, could also be defined as "outer-surface interactions", which are derived from the electrostatically positive outer surface of Q[n]s. These interactions could be the driving forces in the formation of various novel Q[n]-based supramolecular architectures and functional materials. In this Account, we provide a comprehensive overview of supramolecular self-assemblies based on the outer-surface interactions of Q[n]s. These outer-surface interactions include those between Q[n]s, Q[n]s and aromatic molecules, Q[n]s and calixarenes, Q[n]s and inorganic complex ions, and Q[n]s and polyoxometalates. Pioneering work has shown that such weak noncovalent interactions play very important roles in the formation of various Q[n]-based functional materials and supramolecular architectures. For example, hydrogen bonds in outer-surface interactions between Q[n] molecules not only function as the sole driving force in the

  2. Structure, function and binding selectivity and stereoselectivity of siderophore-iron outer membrane transporters.

    PubMed

    Schalk, Isabelle J; Mislin, Gaëtan L A; Brillet, Karl

    2012-01-01

    To get access to iron, microorganisms produce and release into their environment small organic metal chelators called siderophores. In parallel, they produce siderophore-iron outer membrane transporters (also called TonB-Dependent Transporters or TBDT) embedded in the outer membrane; these proteins actively reabsorb the siderophore loaded with iron from the extracellular medium. This active uptake requires energy in the form of the proton motive force transferred from the inner membrane to the outer membrane transporter via the inner membrane TonB complex. Siderophores produced by microorganisms are structurally very diverse with molecular weights of 150 up to 2000Da. Siderophore-iron uptake from the extracellular medium by TBDTs is a highly selective and sometimes even stereoselective process, with each siderophore having a specific TBDT. Unlike the siderophores, all TBDTs have similar structures and belong to the outer membrane β-barrel protein superfamily. The way in which the siderophore-iron complex passes through the TBDT is still unclear. In some bacteria, TBDTs are also partners of signaling cascades regulating the expression of proteins involved in siderophore biosynthesis and siderophore-iron acquisition.

  3. Tracing the Spiral Structure of the Outer Milky Way with Dense Atomic Hydrogen Gas

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Chul; Park, Geumsook; Kim, Woong-Tae; Lee, Myung Gyoon; Balser, Dana S.; Wenger, Trey V.

    2017-09-01

    We present a new face-on map of dense neutral atomic hydrogen ({{H}} i) gas in the outer Galaxy. Our map has been produced from the Leiden/Argentine/Bonn {{H}} i 21 cm line all-sky survey by finding intensity maxima along every line of sight and then by projecting them on the Galactic plane. The resulting face-on map strikingly reveals the complex spiral structure beyond the solar circle, which is characterized by a mixture of distinct long arcs of {{H}} i concentrations and numerous “interarm” features. The comparison with more conventional spiral tracers confirms the nature of those long arc structures as spiral arms. Our map shows that the {{H}} i spiral structure in the outer Galaxy is well described by a four-arm spiral model (pitch angle of 12^\\circ ) with some deviations, and gives a new insight into identifying {{H}} i features associated with individual arms.

  4. Enhanced Protective Immunogenicity of Homodimeric Borrelia burgdorferi Outer Surface Protein C

    PubMed Central

    Edmondson, Diane G.; Prabhakaran, Sabitha; Ullmann, Amy J.; Piesman, Joe; Dolan, Marc; Probst, Christian; Radzimski, Christiane; Stöcker, Winfried

    2016-01-01

    ABSTRACT Lyme borreliosis is caused by tick-transmitted spirochetes of the Borrelia burgdorferi sensu lato group and is the most common vector-borne disease in the United States and Europe. Outer surface protein C (OspC) is a 23-kDa outer surface lipoprotein expressed during spirochete transmission from the tick to the vertebrate host. In a previous study, we found that immunization with a recombinant disulfide-bridged dimeric form of OspC (D-OspC) stimulates increased antibody responses relative to immunization with commonly employed monomeric OspC. Here, we report that mice immunized with dimeric OspC proteins also exhibited enhanced protection against infection with the cognate B. burgdorferi strain. Mice were protected by four immunizations containing as little as 100 ng of dimeric OspC, suggesting that this form of the protein can induce protective immunity within a dose range reasonable for a human or veterinary vaccine. In contrast, monomeric OspC was only partially protective at much higher doses. IgG subclass analysis revealed that D-OspC-immunized animals mainly possessed anti-OspC-IgG1. In contrast, infected animals develop anti-OspC restricted to the IgG3 isotype. A subset of antibodies generated by dimeric OspC immunization did not recognize the monomeric variant, indicating that unique epitopes exist on the dimeric form. Moreover, monoclonal antibodies that recognized only dimeric OspC protected mice from B. burgdorferi challenge, whereas another monoclonal that recognized both immunogens was not protective. These studies suggest that this dimeric OspC presents distinctive epitopes that generate antibodies protective against B. burgdorferi infection and could be a useful vaccine component. PMID:27733423

  5. Detection of Campylobacter on the outer surface of retail broiler meat packages and from the exudate within

    USDA-ARS?s Scientific Manuscript database

    Previous work has suggested that outer surfaces of retail broiler meat packaging may be contaminated with Campylobacter presenting a potential hazard to the consumer through direct transfer or by cross contamination of other products or surfaces. The objectives of this study were to measure the pre...

  6. Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to surfaces.

    PubMed

    Ionescu, Michael; Zaini, Paulo A; Baccari, Clelia; Tran, Sophia; da Silva, Aline M; Lindow, Steven E

    2014-09-16

    Outer membrane vesicles (OMVs) of Gram-negative bacteria have been studied intensively in recent years, primarily in their role in delivering virulence factors and antigens during pathogenesis. However, the near ubiquity of their production suggests that they may play other roles, such as responding to envelope stress or trafficking various cargoes to prevent dilution or degradation by other bacterial species. Here we show that OMVs produced by Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, block its interaction with various surfaces such as the walls of xylem vessels in host plants. The release of OMVs was suppressed by the diffusible signal factor-dependent quorum-sensing system, and a X. fastidiosa ΔrpfF mutant in which quorum signaling was disrupted was both much more virulent to plants and less adhesive to glass and plant surfaces than the WT strain. The higher virulence of the ΔrpfF mutant was associated with fivefold higher numbers of OMVs recovered from xylem sap of infected plants. The frequency of attachment of X. fastidiosa to xylem vessels was 20-fold lower in the presence of OMVs than in their absence. OMV production thus is a strategy used by X. fastidiosa cells to adjust attachment to surfaces in its transition from adhesive cells capable of insect transmission to an "exploratory" lifestyle for systemic spread within the plant host which would be hindered by attachment. OMV production may contribute to the movement of other bacteria in porous environments by similarly reducing their contact with environmental constituents.

  7. Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes

    SciTech Connect

    Jacobson, Kurt H.; Gunsolus, Ian L.; Kuech, Thomas R.; Troiano, Julianne M.; Melby, Eric S.; Lohse, Samuel E.; Hu, Dehong; Chrisler, William B.; Murphy, Catherine J.; Orr, Galya; Geiger, Franz M.; Haynes, Christy L.; Pedersen, Joel A.

    2015-07-24

    We report that design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations, and assessment of the potential implications of nanoparticle release into the environment require understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the lipid-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) and second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. Association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Lastly, our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides.

  8. Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes

    DOE PAGES

    Jacobson, Kurt H.; Gunsolus, Ian L.; Kuech, Thomas R.; ...

    2015-07-24

    We report that design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations, and assessment of the potential implications of nanoparticle release into the environment require understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the lipid-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) andmore » second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. Association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Lastly, our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides.« less

  9. Variable stiffness outer sheath with "Dragon skin" structure and negative pneumatic shape-locking mechanism.

    PubMed

    Zuo, Siyang; Iijima, Kazuo; Tokumiya, Takahiro; Masamune, Ken

    2014-09-01

       Natural orifice transluminal endoscopic surgery (NOTES) offers the possibility of surgery without visible scars. To overcome the limitations of NOTES, we developed a novel surgical device called the rigid and flexible outer sheath with multi-piercing surgery (MPS).    This sheath can switch between flexible and rigid modes using a novel "Dragon skin" structure and a negative pneumatic shape-locking mechanism. In addition, it has an integrated bending structure that enables it to flex in four directions at the distal end. The insertion part of the prototype is 575 mm long with a 20 mm outer diameter. The rigid and flexible shaft is separated into two parts. The primary and secondary shape-locking shafts are 300 and 200 mm long, respectively. The two parts of shape-locking shaft can be locked independently, including both being locked simultaneously. In addition, the model was equipped with one 7- and 1.7-mm-diameter, and three 3-mm-diameter working channels. When the sheath approaches the target, the surgeon locks the shape and then easily inserts flexible instruments through the path created by the sheath. In this study, we evaluated the stiffness of the prototype. Furthermore, an in vivo partial gastrectomy experiment was also performed.    The experimental results regarding the shape property suggest that the rigidity of the shaft was considerably increased using this mechanism. An in vivo partial gastrectomy experiment performed using a swine was successfully performed using the outer sheath for assistance. The outer sheath was inserted through a percutaneous route during the in vivo experiment.    The evaluation results show that the advanced outer sheath system has great promise for solving access and stability problems with NOTES.

  10. Outer membrane proteins can be simply identified using secondary structure element alignment

    PubMed Central

    2011-01-01

    Background Outer membrane proteins (OMPs) are frequently found in the outer membranes of gram-negative bacteria, mitochondria and chloroplasts and have been found to play diverse functional roles. Computational discrimination of OMPs from globular proteins and other types of membrane proteins is helpful to accelerate new genome annotation and drug discovery. Results Based on the observation that almost all OMPs consist of antiparallel β-strands in a barrel shape and that their secondary structure arrangements differ from those of other types of proteins, we propose a simple method called SSEA-OMP to identify OMPs using secondary structure element alignment. Through intensive benchmark experiments, the proposed SSEA-OMP method is better than some well-established OMP detection methods. Conclusions The major advantage of SSEA-OMP is its good prediction performance considering its simplicity. The web server implements the method is freely accessible at http://protein.cau.edu.cn/SSEA-OMP/index.html. PMID:21414186

  11. THE STRUCTURE AND METALLICITY GRADIENT IN THE EXTREME OUTER DISK OF NGC 7793

    SciTech Connect

    Vlajic, M.; Bland-Hawthorn, J.; Freeman, K. C.

    2011-05-01

    Studies of outer regions of spirals disks are fundamental to our understanding of both the process of galaxy assembly and the subsequent secular evolution of galaxies. In an earlier series of papers, we explored the extent and abundance gradient in the outer disk of NGC 300 and found an extended purely exponential disk with a metallicity gradient which flattens off in the outermost regions. We now continue the study of outskirts of pure disk spirals with another Sculptor Group spiral, NGC 7793. Using the Gemini Multi Object Spectrograph camera at Gemini South, we trace the disk of NGC 7793 with star counts out to {approx}9 scale lengths, corresponding to 11.5 kpc at our calibrated distance of 3.61 {+-} 0.53 Mpc. The outer disk of NGC 7793 shows no evidence of a break in its light profile down to an effective surface brightness of {approx}30 mag arcsec{sup -2} ({approx}3 mag arcsec{sup -2} deeper than what has been achieved with surface photometry) and exhibits a non-negative abundance gradient within the radial extent of our data.

  12. Origin and development of recurrent dipolar vorticity structures in the outer Ría de Vigo (NW Spain)

    NASA Astrophysics Data System (ADS)

    Piedracoba, S.; Rosón, G.; Varela, R. A.,

    2016-04-01

    Two short-range (46 MHz) Coastal Ocean Dynamics Application Radar (CODAR) SeaSonde HF were operating in the Ría de Vigo during one year between September 2012 and August 2013 to permit observations of the surface circulation in the outer region of the Ría de Vigo (NW Spain). An analysis of low-pass current and vorticity conducted over one year revealed two opposite vorticity structures in the HF radar coverage area. Simultaneously, wind stress and its curl, calculated at two meteorological stations (Cíes and Borneira) in the HF radar coverage area, were assessed to establish the main mechanisms promoting the formation of these two opposite vorticity structures. Researchers selected three periods of 58, 41.5, and 77 days within the study year in which radar and wind data were simultaneously recorded at two stations. Examining HF radar vorticity at specific grid points representing both vorticity structures reveals a greater correlation between HF radar vorticity and the y-component of wind stress at the outermost meteorological station (Cíes) for all periods (R=0.52-0.80).Only one period (1 Sep-28 Oct 2012) displayed a correlation between the vorticity and the curl wind stress calculated at these two meteorological stations (R=0.50-0.62). Once wind forcing has been reported as the main factor responsible for generating these dipolar vorticity structures at subtidal frequencies, these structures can be shown to develop in two patterns: (1) counter-clockwise and clockwise relative vorticity in the northern and southern outer ría respectively, mainly developing during the transition from upwelling to downwelling, and with a lifetime normally dependent to the duration of the subsequent downwelling/relaxation conditions; and (2) clockwise and counter-clockwise vorticity in the northern and southern outer ría respectively, mainly generated during moderate or intense upwelling events. The life span of these vorticity structures ranges from 2 to 8 days. The largest

  13. Modification of DPOAE Fine Structure Stemming from Changes in Outer and Middle Ear Function

    NASA Astrophysics Data System (ADS)

    Long, Glenis R.; Henin, Simon; Thompson, Suzanne

    2011-11-01

    High resolution DPOAE fine structure was evaluated when the output impedance of the cochlea was modified by: (1) Changes in outer ear volume, due to accumulation of cerumen, which does not modify input impedance. (2) Manipulation of middle ear pressure and scarring of the tympanic membrane (which modify both input and output impedance). At high primary levels a wider and deeper DPOAE structure combined with (and sometimes dominated) DPOAE level fine structure. The group delay was also modified, sometimes giving rise to negative group delay. The data can be modeled by assuming that the increased impedance at the oval widow produces reflections back into the cochlea which can be re-reflected.

  14. Novel Bacterial Surface Display Systems Based on Outer Membrane Anchoring Elements from the Marine Bacterium Vibrio anguillarum▿ †

    PubMed Central

    Yang, Zhao; Liu, Qin; Wang, Qiyao; Zhang, Yuanxing

    2008-01-01

    Surface display of heterologous peptides and proteins such as receptors, antigens, and enzymes on live bacterial cells is of considerable value for various biotechnological and industrial applications. In this study, a series of novel cell surface display systems were examined by using Vibrio anguillarum outer membrane protein and outer membrane lipoprotein as anchoring motifs. These display systems consist of (i) the signal sequence and first 11 N-terminal amino acids of V. anguillarum outer membrane lipoprotein Wza, or the signal sequence and first 9 N-terminal amino acids of the mature major Escherichia coli lipoprotein Lpp, and (ii) transmembrane domains of V. anguillarum outer membrane proteins Omporf1, OmpU, or Omp26La. In order to assay the translocation efficiency of constructed display systems in bacteria, green fluorescent protein (GFP) was inserted to the systems and the results of GFP surface localization confirmed that four of the six surface display systems could successfully display GFP on the E. coli surface. For assaying its potential application in live bacteria carrier vaccines, an excellent display system Wza-Omporf1 was fused with the major capsid protein (MCP) of large yellow croaker iridovirus and introduced into attenuated V. anguillarum strain MVAV6203, and subsequent analysis of MCP surface localization proved that the novel display system Wza-Omporf1 could function as a strong tool in V. anguillarum carrier vaccine development. PMID:18487403

  15. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    SciTech Connect

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; Ciesielski, Filip; Kuzmenko, Ivan; Holt, Stephen A.; Lakey, Jeremy H.

    2014-12-09

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.

  16. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    DOE PAGES

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; ...

    2014-12-09

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutronmore » reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less

  17. Earth's rotational variations due to rapid surface flows at both boundaries of the outer core

    NASA Astrophysics Data System (ADS)

    Nakada, Masao

    2011-01-01

    Rapid geomagnetic fluctuations with periods less than a couple of years, so called geomagnetic jerks, are coincident with sharp changes in rate of change of Earth's length of day (LOD) and phase of the Chandler wobble. Here I examine the rotational variations in response to sudden changes of toroidal core surface flows for geomagnetic jerks, assuming rigid rotation of the outer core and core surface flows at both boundaries (CMB and ICB) with the magnitude of ˜3 km yr-1. I take into account the gravitational torque acting on the inner core associated with convective processes in the mantle and the electromagnetic (EM) coupling for a model with conductivity of the core of 5 × 105 S m-1 and a 200 m conducting layer of 5 × 105 S m-1 at the bottom of the mantle. The present study indicates that rapid accelerations of the flow at the CMB can produce LOD change consistent with observed LOD derivative with ˜0.1 ms yr-1, but do not produce much for the polar motion. On the other hand, rapid accelerations of the flow at the ICB insignificantly affect the LOD change, but can produce polar motion signals that might affect the Chandler wobble if we adopt the EM coupling for a model with the flows of ˜3 km yr-1 and root-mean-square value of 4˜5 mT for the radial magnetic field at the ICB.

  18. HST Photometry of Triton: Evidence for a Changing Surface in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Bauer, James M.; Buratti, B. J.; Li, J. Y.; Hicks, M. D.; Goguen, J. D.; Pilorz, S.; Schmidt, B.; Royle, P.; Herbert, B.; Cobb, B.; Ward, J.; Wright, E.; Acton, C.

    2008-09-01

    Triton is one of the few bodies in the solar system with observed cryo-volcanic activity, in the form of plumes (Soderblom et al. 1990). Prompted by evidence from previous observations at ground and space-based telescopes of possible seasonal surface changes on Triton (Young & Stern 1999), we proposed to confirm and characterize these changes using the HST ACS instrument to image Triton at UV, B, V, I and Methane-band wavelengths over as much of its surface as visible from near Earth in 2005. Preliminary analysis indicates a rotation light curve amplitude in excess of that predicted by static models (Hillier et al. 1994 & Hillier 1999) for visual wavelengths, and significant departures from observations taken 12 years earlier in the UV. Surface brightness maps generated from the data show significant departures from the Voyager images obtained in 1989. We will describe in detail these differences which set constraints on activity and surface temperature as well as composition. Such constraints have profound implications for our understanding of Triton's evolution as well as the history of other outer solar system bodies that may undergo similar geophysical processes or have similar composition, such as Pluto (Buratti et al. 2003, Young et al. 2001). References Buratti, B.J., Hillier, J.K., Heinze, A.,Hicks, M.D., Tryka, K.A., Mosher, J.A., Ward, J., Garske, M., Young, J., & Atienza-Rosel, J. Icarus, 162, 171. Hillier, J., Veverka, J., Helfenstein, P., & Lee, P. 1994, Icarus, 109, 296. Hillier, J.K. 1999, Icarus, 139, 202. Soderblom, L.A., Becker, T.L., Kieffer, S.W., Brown, R.H., Hansen, C.J., & Johnson, T.V. 1990, Science, 250, 410. Young, L.A., & Stern, A.S. 1999, AJ, 122, 449. Young, E. F.; Binzel, R. P.; Crane, K. 2001, AJ, 121, 552.

  19. Neisserial surface lipoproteins: structure, function and biogenesis.

    PubMed

    Hooda, Yogesh; Shin, Hyejin E; Bateman, Thomas J; Moraes, Trevor F

    2017-03-01

    The surface of many Gram-negative bacteria contains lipidated protein molecules referred to as surface lipoproteins or SLPs. SLPs play critical roles in host immune evasion, nutrient acquisition and regulation of the bacterial stress response. The focus of this review is on the SLPs present in Neisseria, a genus of bacteria that colonise the mucosal surfaces of animals. Neisseria contains two pathogens of medical interest, namely Neisseria meningitidis and N. gonorrhoeae. Several SLPs have been identified in Neisseria and their study has elucidated key strategies used by these pathogens to survive inside the human body. Herein, we focus on the identification, structure and function of SLPs that have been identified in Neisseria. We also survey the translocation pathways used by these SLPs to reach the cell surface. Specifically, we elaborate on the strategies used by neisserial SLPs to translocate across the outer membrane with an emphasis on Slam, a novel outer membrane protein that has been implicated in SLP biogenesis. Taken together, the study of SLPs in Neisseria illustrates the widespread roles played by this family of proteins in Gram-negative bacteria. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Structure and dynamics of Titan’s outer icy shell constrained from Cassini data

    NASA Astrophysics Data System (ADS)

    Lefevre, Axel; Tobie, Gabriel; Choblet, Gaël; Čadek, Ondřej

    2014-07-01

    The Cassini-Huygens mission has brought evidence for an internal ocean lying beneath an outer icy shell on Titan. The observed topography differs significantly from the reference hydrostatic shape, while the measured geoid anomalies (estimated up to degree three) remain weak. This suggests compensation either by deflections of the ocean/ice interface or by density variations in an upper crust. However, the observed degree-three gravity signal indicates either that the topography is not perfectly compensated, or that mass anomalies exist in the deep interior, or a combination of both. To investigate the compensation mechanisms, we developed an interior structure model satisfying simultaneously the surface gravity and long-wavelength topography. We quantified the excess deflection of ocean/ice I interface, the density anomalies in the upper crust, or the deflection of the ice/rock interface needed to explain the observed degree-three anomalies. Finally, we tested the long-term mechanical stability of the internal mass anomalies by computing the relaxation rate of each internal interface in response to interface mass load. We showed that the computed deflection of the ocean/ice I interface is stable only for a conductive highly viscous layer above a relatively cold ocean (T < 250 K). Solutions with a moderately convecting ice shell are possible only for models with crustal density variations. Due to fast relaxation, the high pressure ice layer cannot be the source of the degree three geoid anomalies. The existence of mass anomalies in the rocky core remains a possible explanation. Estimation of the degree-four gravity signal by future Cassini flybys will further constrain the compensation mechanism and the source of gravity anomalies.

  1. Simultaneous and long-lasting hydrophilization of inner and outer wall surfaces of polytetrafluoroethylene tubes by transferring atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Faze; Song, Jinlong; Huang, Shuai; Xu, Sihao; Xia, Guangqing; Yang, Dezheng; Xu, Wenji; Sun, Jing; Liu, Xin

    2016-09-01

    Plasma hydrophilization is a general method to increase the surface free energy of materials. However, only a few works about plasma modification focus on the hydrophilization of tube inner and outer walls. In this paper, we realize simultaneous and long-lasting plasma hydrophilization on the inner and outer walls of polytetrafluoroethylene (PTFE) tubes by atmospheric pressure plasmas (APPs). Specifically, an Ar atmospheric pressure plasma jet (APPJ) is used to modify the PTFE tube’s outer wall and meanwhile to induce transferred He APP inside the PTFE tube to modify its inner wall surface. The optical emission spectrum (OES) shows that the plasmas contain many chemically active species, which are known as enablers for various applications. Water contact angle (WCA) measurements, x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) are used to characterize the plasma hydrophilization. Results demonstrate that the wettability of the tube walls are well improved due to the replacement of the surface fluorine by oxygen and the change of surface roughness. The obtained hydrophilicity decreases slowly during more than 180 d aging, indicating a long-lasting hydrophilization. The results presented here clearly demonstrate the great potential of transferring APPs for surface modification of the tube’s inner and outer walls simultaneously.

  2. Bacterial cell surface structures in Yersinia enterocolitica.

    PubMed

    Białas, Nataniel; Kasperkiewicz, Katarzyna; Radziejewska-Lebrecht, Joanna; Skurnik, Mikael

    2012-06-01

    Yersinia enterocolitica is a widespread member of the family of Enterobacteriaceae that contains both non-virulent and virulent isolates. Pathogenic Y. enterocolitica strains, especially belonging to serotypes O:3, O:5,27, O:8 and O:9 are etiologic agents of yersiniosis in animals and humans. Y. enterocolitica cell surface structures that play a significant role in virulence have been subject to many investigations. These include outer membrane (OM) glycolipids such as lipopolysaccharide (LPS) and enterobacterial common antigen (ECA) and several cell surface adhesion proteins present only in virulent Y. enterocolitica, i.e., Inv, YadA and Ail. While the yadA gene is located on the Yersinia virulence plasmid the Ail, Inv, LPS and ECA are chromosomally encoded. These structures ensure the correct architecture of the OM, provide adhesive properties as well as resistance to antimicrobial peptides and to host innate immune response mechanisms.

  3. Outer membrane active transport: structure of the BtuB:TonB complex.

    PubMed

    Shultis, David D; Purdy, Michael D; Banchs, Christian N; Wiener, Michael C

    2006-06-02

    In Gram-negative bacteria, the import of essential micronutrients across the outer membrane requires a transporter, an electrochemical gradient of protons across the inner membrane, and an inner membrane protein complex (ExbB, ExbD, TonB) that couples the proton-motive force to the outer membrane transporter. The inner membrane protein TonB binds directly to a conserved region, called the Ton-box, of the transporter. We solved the structure of the cobalamin transporter BtuB in complex with the C-terminal domain of TonB. In contrast to its conformations in the absence of TonB, the Ton-box forms a beta strand that is recruited to the existing beta sheet of TonB, which is consistent with a mechanical pulling model of transport.

  4. Structure of TonB in complex with FhuA, E. coli outer membrane receptor.

    PubMed

    Pawelek, Peter D; Croteau, Nathalie; Ng-Thow-Hing, Christopher; Khursigara, Cezar M; Moiseeva, Natalia; Allaire, Marc; Coulton, James W

    2006-06-02

    The cytoplasmic membrane protein TonB spans the periplasm of the Gram-negative bacterial cell envelope, contacts cognate outer membrane receptors, and facilitates siderophore transport. The outer membrane receptor FhuA from Escherichia coli mediates TonB-dependent import of ferrichrome. We report the 3.3 angstrom resolution crystal structure of the TonB carboxyl-terminal domain in complex with FhuA. TonB contacts stabilize FhuA's amino-terminal residues, including those of the consensus Ton box sequence that form an interprotein beta sheet with TonB through strand exchange. The highly conserved TonB residue arginine-166 is oriented to form multiple contacts with the FhuA cork, the globular domain enclosed by the beta barrel.

  5. Structure of TonB in Complex with FhuA, E. Coli Outer Membrane Receptor

    SciTech Connect

    Pawelek,P.; Croteau, N.; Ng-Thow-Hing, C.; Khursigara, C.; Moiseeva, N.; Allaire, M.; Coulton, J.

    2006-01-01

    The cytoplasmic membrane protein TonB spans the periplasm of the Gram-negative bacterial cell envelope, contacts cognate outer membrane receptors, and facilitates siderophore transport. The outer membrane receptor FhuA from Escherichia coli mediates TonB-dependent import of ferrichrome. We report the 3.3 angstrom resolution crystal structure of the TonB carboxyl-terminal domain in complex with FhuA. TonB contacts stabilize FhuA's amino-terminal residues, including those of the consensus Ton box sequence that form an interprotein {beta} sheet with TonB through strand exchange. The highly conserved TonB residue arginine-166 is oriented to form multiple contacts with the FhuA cork, the globular domain enclosed by the {beta} barrel.

  6. Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material

    SciTech Connect

    G. Gordon

    2004-10-13

    Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the performance of Alloy 22

  7. Disk Galaxies in the Outer Local Supercluster: Optical CCD Surface Photometry and Distribution of Galaxy Disk Parameter

    NASA Technical Reports Server (NTRS)

    Lu, N. Y.

    1998-01-01

    We report new B-band CCD surface photometry on a sample of 76 disk galaxies brighter than BT = 14.5 mag in the Uppsala General Catalogue of Galaxies, which are confined within a volume located in the outer part of the Local Supercluster.

  8. Outer Surface Protein C Is a Dissemination-Facilitating Factor of Borrelia burgdorferi during Mammalian Infection

    PubMed Central

    Seemanapalli, Sunita V.; Xu, Qilong; McShan, Kristy; Liang, Fang Ting

    2010-01-01

    Background The Lyme disease spirochete Borrelia burgdorferi dramatically upregulates outer surface protein C (OspC) in response to fresh bloodmeal during transmission from the tick vector to a mammal, and abundantly produces the antigen during early infection. As OspC is an effective immune target, to evade the immune system B. burgdorferi downregulates the antigen once the anti-OspC humoral response has developed, suggesting an important role for OspC during early infection. Methodology/Principal Findings In this study, a borrelial mutant producing an OspC antigen with a 5-amino-acid deletion was generated. The deletion didn't significantly increase the 50% infectious dose or reduce the tissue bacterial burden during infection of the murine host, indicating that the truncated OspC can effectively protect B. burgdorferi against innate elimination. However, the deletion greatly impaired the ability of B. burgdorferi to disseminate to remote tissues after inoculation into mice. Conclusions/Significance The study indicates that OspC plays an important role in dissemination of B. burgdorferi during mammalian infection. PMID:21209822

  9. Antibody responses to Borrelia burgdorferi outer surface proteins C and F in experimentally infected Beagle dogs.

    PubMed

    Callister, Steven M; LaFleur, Rhonda L; Jobe, Dean A; Lovrich, Steven D; Wasmoen, Terri L

    2015-07-01

    Antibody levels to outer surface proteins C and F (OspC and OspF, respectively) in sera collected from laboratory Beagle dogs at 1, 2, and 4 months after challenge with infected black-legged ticks (Ixodes scapularis) were determined. Each dog was confirmed by culture to harbor Borrelia burgdorferi in the skin (n = 10) or the skin and joints (n = 14). Significant levels of immunoglobulin M (Ig)M or IgG anti-OspC antibodies were detected in single serum samples from only 3 (13%) dogs. Similarly, IgM anti-OspF antibodies were detected in only 1 (4%) serum sample collected from a dog with B. burgdorferi in the skin and joints. In contrast, 4 (29%) dogs with skin and joint infections produced IgG anti-OspF antibodies after 2 months, and the response expanded to include 2 (20%) dogs with skin infection and 4 additional dogs with skin and joint infections (overall sensitivity = 62%) after 4 months. The findings failed to support the utility of OspC-based antibody tests for diagnosing canine Lyme disease, but demonstrated that dogs with B. burgdorferi colonizing joint tissue most often produced significant levels of IgG anti-OspF antibodies. Therefore, additional studies to more thoroughly evaluate the clinical utility of OspF-based antibody tests are warranted. © 2015 The Author(s).

  10. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection.

    PubMed

    Wagemakers, A; Mason, L M K; Oei, A; de Wever, B; van der Poll, T; Bins, A D; Hovius, J W R

    2014-12-01

    Borrelia afzelii is the predominant Borrelia species causing Lyme borreliosis in Europe. Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines against Borrelia burgdorferi sensu stricto. DNA tattooing is a novel vaccination method that can be applied in a rapid vaccination schedule. We vaccinated C3H/HeN mice with B. afzelii strain PKo OspC (outer-surface protein C) using a codon-optimized DNA vaccine tattoo and compared this with recombinant protein vaccination in a 0-2-4 week vaccination schedule. We also assessed protection by DNA tattoo in a 0-3-6 day schedule. DNA tattoo and recombinant OspC vaccination induced comparable total IgG responses, with a lower IgG1/IgG2a ratio after DNA tattoo. Two weeks after syringe-challenge with 5 × 10(5) B. afzelii spirochetes most vaccinated mice had negative B. afzelii tissue DNA loads and all were culture negative. Furthermore, DNA tattoo vaccination in a 0-3-6 day regimen also resulted in negative Borrelia loads and cultures after challenge. To conclude, DNA vaccination by tattoo was fully protective against B. afzelii challenge in mice in a rapid vaccination protocol, and induces a favorable humoral immunity compared to recombinant protein vaccination. Rapid DNA tattoo is a promising vaccination strategy against spirochetes.

  11. Production of Borreliacidal Antibody to Outer Surface Protein A In Vitro and Modulation by Interleukin-4

    PubMed Central

    Munson, Erik L.; Du Chateau, Brian K.; Jobe, Dean A.; Lovrich, Steven D.; Callister, Steven M.; Schell, Ronald F.

    2000-01-01

    Borreliacidal antibody production is one of several parameters for establishing the effectiveness of Borrelia burgdorferi vaccines. The production of borreliacidal antibody was studied in vitro by culturing immune lymph node cells with macrophages and B. burgdorferi. We showed that borreliacidal antibody, directed primarily against outer surface protein A (OspA), was readily produced by lymph node cells obtained from C3H/HeJ mice vaccinated with formalin-inactivated B. burgdorferi in aluminum hydroxide, but not recombinant OspA. Anti-OspA borreliacidal antibody was detected in supernatants of cultures of lymph node cells obtained on day 7 after vaccination, peaked on day 17, and rapidly declined. The borreliacidal activity was attributable to immunoglobulin G1 (IgG1), IgG2a, and IgG2b antibodies. When lymph node cells were treated with interleukin-4 (IL-4), production of borreliacidal antibody was inhibited but was unaffected by treatment with anti-IL-4 antibodies. These results suggest that other cytokines, but not IL-4, are mainly responsible for production of the secondary borreliacidal antibody response. PMID:10992445

  12. Models of Organic-Rich Surfaces in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Wilson, Peter Derrick

    This thesis applies light-scattering theory along with recently-measured optical constants of astronomically-interesting organic materials in an attempt to understand the surfaces of representative organic-rich bodies in the outer Solar System. any other object in the Solar System. The Centaur 5145 Pholus has a visible and near-ir spectrum redder than Its color can be reproduced by an intraparticle mixture of water ice, Titan tholin, and either astronomical silicate or polymerized hydrogen cyanide. The solar UV flux, combined with surface gardening by micrometeoroids, will convert all carbon-bearing ices to dark organic solids in the top millimeter of Kuiper Belt Objects in ~107 yrs. Initially red, further irradiation makes the surface more neutral. If impacts expose fresh ice over a large fraction of the object's surface on a similar time scale, an average red color may be retained. The color diversity observed in the Centaur and Kuiper Belt populations thus can be explained by a variation in the average exposure ages of their surfaces. The dark material on the leading hemisphere of Iapetus has a spectrum that is too generic, lacking in absorption features, to strongly constrain models of its composition; many mixtures of water ice, organics, and∨ silicates can reproduce its albedo and spectrum. Several mechanisms have been proposed to explain why one hemisphere of Iapetus is extremely dark while the other hemisphere is very bright, but this thesis finds major flaws in most of them. A scheme postulating a global, several-km-thick layer of dark material covered by a layer of ice ~1-m thick, but which is excavated on the leading hemisphere, works best. Finally, the impacts of the fragments of Comet Shoemaker-Levy 9 into Jupiter left behind dark atmospheric blemishes that may be composed of organic matter. The optical constants of the blemish aerosols-as derived by others-are near-perfect matches to Murchison organic residue. The reflectances of the initial impact

  13. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    DOE PAGES

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; ...

    2015-10-27

    Disorder among surface spins largely dominates the magnetic response of ultrafine magnetic particle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8±0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and becomes frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point tomore » highly frustrated surface spins that rearrange much more slowly than interior spins with bulk coordination. Monte Carlo simulations of a hollow particle reproducing the experimental morphology corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Lastly, our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.« less

  14. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-10-01

    Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8 ± 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and become frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.

  15. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    PubMed Central

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-01-01

    Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8 ± 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and become frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures. PMID:26503506

  16. Solid organic matter in the atmosphere and on the surface of outer Solar System bodies.

    PubMed

    Khare, B N; Bakes, E L; Cruikshank, D; McKay, C P

    2001-01-01

    Many bodies in the outer Solar System display the presence of low albedo materials. These materials, evident on the surface of asteroids, comets, Kuiper Belt objects and their intermediate evolutionary step, Centaurs, are related to macromolecular carbon bearing materials such as polycyclic aromatic hydrocarbons and organic materials such as methanol and related light hydrocarbons, embedded in a dark, refractory, photoprocessed matrix. Many planetary rings and satellites around the outer gaseous planets display such component materials. One example, Saturn's largest satellite, Titan, whose atmosphere is comprised of around 90% molecular nitrogen N2 and less than 10% methane CH4, displays this kind of low reflectivity material in its atmospheric haze. These materials were first recorded during the Voyager 1 and 2 flybys of Titan and showed up as an optically thick pinkish orange haze layer. These materials are broadly classified into a chemical group whose laboratory analogs are termed "tholins", after the Greek word for "muddy". Their analogs are produced in the laboratory via the irradiation of gas mixtures and ice mixtures by radiation simulating Solar ultraviolet (UV) photons or keV charged particles simulating particles trapped in Saturn's magnetosphere. Fair analogs of Titan tholin are produced by bombarding a 9:1 mixture of N2:CH4 with charged particles and its match to observations of both the spectrum and scattering properties of the Titan haze is very good over a wide range of wavelengths. In this paper, we describe the historical background of laboratory research on this kind of organic matter and how our laboratory investigations of Titan tholin compare. We comment on the probable existence of polycyclic aromatic hydrocarbons in the Titan Haze and how biological and nonbiological racemic amino acids produced from the acid hydrolysis of Titan tholins make these complex organic compounds prime candidates in the evolution of terrestrial life and

  17. Sedimentology and geochemistry of surface sediments, outer continental shelf, southern Bering Sea

    USGS Publications Warehouse

    Gardner, J.V.; Dean, W.E.; Vallier, T.L.

    1980-01-01

    Islands and the outer continental shelf and slope, indicates that Holocene sediment dynamics cannot be used to explain the observed distribution of surface sediment derived from the Aleutian Islands. We suggest that this pattern is relict and resulted from sediment dynamics during lower sea levels of the Pleistocene. ?? 1980.

  18. Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains.

    PubMed

    Remis, Jonathan P; Wei, Dongguang; Gorur, Amita; Zemla, Marcin; Haraga, Jessica; Allen, Simon; Witkowska, H Ewa; Costerton, J William; Berleman, James E; Auer, Manfred

    2014-02-01

    The social soil bacterium, Myxococcus xanthus, displays a variety of complex and highly coordinated behaviours, including social motility, predatory rippling and fruiting body formation. Here we show that M. xanthus cells produce a network of outer membrane extensions in the form of outer membrane vesicle chains and membrane tubes that interconnect cells. We observed peritrichous display of vesicles and vesicle chains, and increased abundance in biofilms compared with planktonic cultures. By applying a range of imaging techniques, including three-dimensional (3D) focused ion beam scanning electron microscopy, we determined these structures to range between 30 and 60 nm in width and up to 5 μm in length. Purified vesicle chains consist of typical M. xanthus lipids, fucose, mannose, N-acetylglucosamine and N-acetylgalactoseamine carbohydrates and a small set of cargo protein. The protein content includes CglB and Tgl outer membrane proteins known to be transferable between cells in a contact-dependent manner. Most significantly, the 3D organization of cells within biofilms indicates that cells are connected via an extensive network of membrane extensions that may connect cells at the level of the periplasmic space. Such a network would allow the transfer of membrane proteins and other molecules between cells, and therefore could provide a mechanism for the coordination of social activities.

  19. THE INFLUENCE OF OUTER SOLAR SYSTEM ARCHITECTURE ON THE STRUCTURE AND EVOLUTION OF THE OORT CLOUD

    SciTech Connect

    Lewis, Alexia R.; Quinn, Thomas; Kaib, Nathan A.

    2013-07-01

    We study the influence of outer solar system architecture on the structural evolution of the Oort Cloud (OC) and the flux of Earth-crossing comets. In particular, we seek to quantify the role of the giant planets as ''planetary protectors''. To do so, we have run simulations in each of four different planetary mass configurations to understand the significance of each of the giant planets. Because the outer planets modify the structure of the OC throughout its formation, we integrate each simulation over the full age of the solar system. Over this time, we follow the evolution of cometary orbits from their starting point in the protoplanetary disk to their injection into the OC to their possible re-entry into the inner planetary region. We find that the overall structure of the OC, including the location of boundaries and the relative number of comets in the inner and outer parts, does not change significantly between configurations; however, as planetary mass decreases, the trapping efficiency (TE) of comets into the OC and the flux of comets into the observable region increases. We determine that those comets that evolve onto Earth-crossing orbits come primarily from the inner OC but show no preference for initial protoplanetary disk location. We also find that systems that have at least a Saturn-mass object are effective at deflecting possible Earth-crossing comets but the difference in flux between systems with and without such a planet is less than an order of magnitude. We conclude by discussing the individual roles of the planets and the implications of incorporating more realistic planetary accretion and migration scenarios into simulations, particularly on existing discrepancies between low TE and the mass of the protoplanetary disk and on determining the structural boundaries of the OC.

  20. NMR structural studies of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes.

    PubMed

    Mahalakshmi, Radhakrishnan; Franzin, Carla M; Choi, Jungyuen; Marassi, Francesca M

    2007-12-01

    The beta-barrels found in the outer membranes of prokaryotic and eukaryotic organisms constitute an important functional class of proteins. Here we present solid-state NMR spectra of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes. We show that OmpX is folded in both glass-supported oriented lipid bilayers and in lipid bicelles that can be magnetically oriented with the membrane plane parallel or perpendicular to the direction of the magnetic field. The presence of resolved peaks in these spectra demonstrates that OmpX undergoes rotational diffusion around an axis perpendicular to the membrane surface. A tightly hydrogen-bonded domain of OmpX resists exchange with D2O for days and is assigned to the transmembrane beta-barrel, while peaks at isotropic resonance frequencies that disappear rapidly in D2O are assigned to the extracellular and periplasmic loops. The two-dimensional 1H/15N separated local field spectra of OmpX have several resolved peaks, and agree well with the spectra calculated from the crystal structure of OmpX rotated with the barrel axis nearly parallel (5 degrees tilt) to the direction of the magnetic field. The data indicate that it will be possible to obtain site-specific resonance assignments and to determine the structure, tilt, and rotation of OmpX in membranes using the solid-state NMR methods that are currently being applied to alpha-helical membrane proteins.

  1. Analysis of O2-binding Sites in Proteins Using Gas-Pressure NMR Spectroscopy: Outer Surface Protein A.

    PubMed

    Kawamura, Takahiro; Wakamoto, Takuro; Kitazawa, Soichiro; Sakuraba, Shun; Kameda, Tomoshi; Kitahara, Ryo

    2017-05-09

    Internal cavities in proteins produce conformational fluctuations and enable the binding of small ligands. Here, we report a NMR analysis of O2-binding sites by O2-induced paramagnetic relaxation enhancements (PREs) on amide groups of proteins in solution. Outer surface protein A contains a nonglobular single-layer β-sheet that connects the N- and C-terminal globular domains. Several cavities have been observed in both domains of the crystallized protein structure. The receptor-binding sites are occluded and line the largest cavity of the C-terminal domain. We observed significant O2-induced PREs for amide protons located around the largest cavity and at the central β-sheet. We suggested three potential O2-accessible sites in the protein based on the 1/r(6) distance dependence of the PRE. Two sites were in or close to the largest cavity and the third site was in the surface crevice of the central β-sheet. These results provide, to our knowledge, the first evidence of ligand binding to the surface crevice and cavity of the protein in solution. Because O2 generally binds more specifically to hydrophobic rather than hydrophilic cavities within a protein, the results also indicated that the receptor-binding sites lining the largest cavity were in the hydrophobic environment in the ground-state conformation. Molecular dynamics simulations permitted the visualization of the rotational and translational motions of O2 within the largest cavity, egress of O2 from the cavity, and ingress of O2 in the surface crevice of the β-sheet. These molecular dynamics simulation results qualitatively explained the O2-induced changes in NMR observations. Exploring cavities that are sufficiently dynamic to enable access by small molecules can be a useful strategy for the design of stable proteins and their ligands. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. A Comprehensive Approach to Identification of Surface-Exposed, Outer Membrane-Spanning Proteins of Leptospira interrogans

    PubMed Central

    Pinne, Marija; Haake, David A.

    2009-01-01

    Leptospirosis is a zoonosis with worldwide distribution caused by pathogenic spirochetes belonging to the genus Leptospira. The leptospiral life cycle involves transmission via fresh water and colonization of the renal tubules of their reservoir hosts or infection of accidental hosts, including humans. Bacterial outer membrane proteins (OMPs), particularly those with surface-exposed regions, play crucial roles in virulence mechanisms of pathogens and the adaptation to various environmental conditions, including those of the mammalian host. Little is known about the surface-exposed OMPs in Leptospira, particularly those with outer membrane-spanning domains. Herein, we describe a comprehensive strategy for identification and characterization of leptospiral transmembrane OMPs. The genomic sequence of L. interrogans serovar Copenhageni strain Fiocruz L1–130 allowed us to employ the β-barrel prediction programs, PRED-TMBB and TMBETA-NET, to identify potential transmembrane OMPs. Several complementary methods were used to characterize four novel OMPs, designated OmpL36, OmpL37, OmpL47 and OmpL54. In addition to surface immunofluorescence and surface biotinylation, we describe surface proteolysis of intact leptospires as an improved method for determining the surface exposure of leptospiral proteins. Membrane integration was confirmed using techniques for removal of peripheral membrane proteins. We also demonstrate deficiencies in the Triton X-114 fractionation method for assessing the outer membrane localization of transmembrane OMPs. Our results establish a broadly applicable strategy for the elucidation of novel surface-exposed outer membrane-spanning proteins of Leptospira, an essential step in the discovery of potential virulence factors, diagnostic antigens and vaccine candidates. PMID:19562037

  3. Conservation of peptide structure of outer membrane protein-macromolecular complex from Neisseria gonorrhoeae.

    PubMed Central

    Hansen, M V; Wilde, C E

    1984-01-01

    The structural conservation of an outer membrane protein of Neisseria gonorrhoeae called OMP-MC (outer membrane protein-macromolecular complex) was investigated by determining the isoelectric point and amino-terminal amino acid sequence of the protein and by using high-performance liquid chromatography for comparative tryptic peptide mapping. The 76,000-dalton subunits generated by reduction and alkylation of the native 800,000-dalton complex from six test strains focused in ultrathin gels as bands of restricted heterogeneity at an approximate pI of 7.6. Dansyl chloride labeling indicated that all strains shared glycine as the amino-terminal amino acid. Sequence analysis of OMP-MC from two strains revealed no amino acid differences within the first 11 residues. Dual-label peptide maps revealed an extremely high degree of conservation of peptide structure. The results indicate that (i) OMP-MCs isolated from various strains of N. gonorrhoeae share structural homology and (ii) the 800,000-dalton complex is a homopolymer composed of 10 to 12 apparently identical 76,000-dalton subunits. Images PMID:6421738

  4. Role of Geobacter sulfurreducens Outer Surface c-Type Cytochromes in Reduction of Soil Humic Acid and Anthraquinone-2,6-Disulfonate▿

    PubMed Central

    Voordeckers, James W.; Kim, Byoung-Chan; Izallalen, Mounir; Lovley, Derek R.

    2010-01-01

    Deleting individual genes for outer surface c-type cytochromes in Geobacter sulfurreducens partially inhibited the reduction of humic substances and anthraquinone-2,6,-disulfonate. Complete inhibition was obtained only when five of these genes were simultaneously deleted, suggesting that diverse outer surface cytochromes can contribute to the reduction of humic substances and other extracellular quinones. PMID:20154112

  5. Role of Geobacter sulfurreducens outer surface c-type cytochromes in reduction of soil humic acid and anthraquinone-2,6-disulfonate.

    PubMed

    Voordeckers, James W; Kim, Byoung-Chan; Izallalen, Mounir; Lovley, Derek R

    2010-04-01

    Deleting individual genes for outer surface c-type cytochromes in Geobacter sulfurreducens partially inhibited the reduction of humic substances and anthraquinone-2,6,-disulfonate. Complete inhibition was obtained only when five of these genes were simultaneously deleted, suggesting that diverse outer surface cytochromes can contribute to the reduction of humic substances and other extracellular quinones.

  6. Visualization of the ultrastructural interface of cells with the outer and inner-surface of coral skeletons.

    PubMed

    Jeger, Rina; Lichtenfeld, Yona; Peretz, Hagit; Shany, Boaz; Vago, Razi; Baranes, Danny

    2009-04-01

    Crystalline, porous biomaterials, such as marine invertebrate skeletons, have been widely used for functional reconstruction of human tissues like bone and dental implants. Since in such an abrasive microenvironment adequate cell-material interactions are crucial for a successful treatment, it is of great importance to improve the means to examine these interactions. We developed a method that reveals the ultrastructure of the interface between coral skeletons and cultured neural cells to a higher quality than do traditional methods as it does not include damaging procedures like decalcification or sectioning non-decalcified skeletons. It is rather based on generating two electron opacity distinct Araldite masks, of the skeleton and its surrounding, by polymerizing them to different durations. The contrast created at the border of the two masks outlined the fine and fragile crystals of the coral skeleton's outer and inner surfaces and their contact sites with the cells. The skeleton's internal structure contains a mesh of narrow (few microns wide) and large channel-shaped gaps interrupted by irregular-shaped crystalline material. Neural cells grew on the skeleton surface by stretching between crystal tips, with occasional rearrangements of cytoskeletal fibers located near the anchorage focal adherence points. Cell processes infiltrated the skeleton interior by stretching between inter-surface crystals and by adjusting their volume to the space of the conduits they grew into. The technique advances the study of coral biology and of neural cells-hard biomaterial interaction; it can be applied to other biomaterials and cell types and open new ways for studying tissue development and engineering.

  7. Surface Structure of Azotobacter vinelandii Cysts as Revealed by Freeze-Cleaving1

    PubMed Central

    Koo, Victoria M.; Lin, L. P.; Sadoff, H. L.

    1969-01-01

    Micrographs of freeze-cleaved Azotobacter vinelandii cysts reveal that the surface is composed of several overlapping layers. This observation is consistent with the previously proposed structure of the outer cyst coat. Images PMID:5359611

  8. Structural and functional importance of outer membrane proteins in Vibrio cholerae flagellum.

    PubMed

    Bari, Wasimul; Lee, Kang-Mu; Yoon, Sang Sun

    2012-08-01

    Vibrio cholerae has a sheath-covered monotrichous flagellum that is known to contribute to virulence. Although the structural organization of the V. cholerae flagellum has been extensively studied, the involvement of outer membrane proteins as integral components in the flagellum still remains elusive. Here we show that flagella produced by V. cholerae O1 El Tor strain C6706 were two times thicker than those from two other Gram-negative bacteria. A C6706 mutant strain (SSY11) devoid of two outer membrane proteins (OMPs), OmpU and OmpT, produced thinner flagella. SSY11 showed significant defects in the flagella-mediated motility as compared to its parental strain. Moreover, increased shedding of the flagella-associated proteins was observed in the culture supernatant of SSY11. This finding was also supported by the observation that culture supernatants of the SSY11 strain induced the production of a significantly higher level of IL-8 in human colon carcinoma HT29 and alveolar epithelial A549 cells than those of the wild-type C6706 strain. These results further suggest a definite role of these two OMPs in providing the structural integrity of the V. cholerae flagellum as part of the surrounding sheath.

  9. Crystal structure of a major outer membrane protein from Thermus thermophilus HB27.

    PubMed

    Brosig, Alexander; Nesper, Jutta; Boos, Winfried; Welte, Wolfram; Diederichs, Kay

    2009-02-06

    The thermophilic eubacterium Thermus thermophilus belongs to one of the oldest branches of evolution and has a multilayered cell envelope that differs from that of modern Gram-negative bacteria. Its outer membrane contains integral outer membrane proteins (OMPs), of which only a few are characterized. TtoA, a new beta-barrel OMP, was identified by searching the genome sequence of strain HB27 for the presence of a C-terminal signature sequence. The structure of TtoA was determined to a resolution of 2.8 A, representing the first crystal structure of an OMP from a thermophilic bacterium. TtoA consists of an eight-stranded beta-barrel with a large extracellular part to which a divalent cation is bound. A five-stranded extracellular beta-sheet protrudes out of the membrane-embedded transmembrane barrel and is stabilized by a disulfide bridge. The edge of this beta-sheet forms crystal contacts that could mimic interactions with other proteins. In modern Gram-negative bacteria, the C-terminal signature sequence of OMPs is required for binding to an Omp85 family protein as a prerequisite for its assembly. We present hints that a similar assembly pathway exists in T. thermophilus by an in vitro binding assay, where unfolded TtoA binds to the Thermus Omp85 family protein TtOmp85, while a mutant without the signature sequence does not.

  10. Structure of BamA, an essential factor in outer membrane protein biogenesis.

    PubMed

    Albrecht, Reinhard; Schütz, Monika; Oberhettinger, Philipp; Faulstich, Michaela; Bermejo, Ivan; Rudel, Thomas; Diederichs, Kay; Zeth, Kornelius

    2014-06-01

    Outer membrane protein (OMP) biogenesis is an essential process for maintaining the bacterial cell envelope and involves the β-barrel assembly machinery (BAM) for OMP recognition, folding and assembly. In Escherichia coli this function is orchestrated by five proteins: the integral outer membrane protein BamA of the Omp85 superfamily and four associated lipoproteins. To unravel the mechanism underlying OMP folding and insertion, the structure of the E. coli BamA β-barrel and P5 domain was determined at 3 Å resolution. These data add information beyond that provided in the recently published crystal structures of BamA from Haemophilus ducreyi and Neisseria gonorrhoeae and are a valuable basis for the interpretation of pertinent functional studies. In an `open' conformation, E. coli BamA displays a significant degree of flexibility between P5 and the barrel domain, which is indicative of a multi-state function in substrate transfer. E. coli BamA is characterized by a discontinuous β-barrel with impaired β1-β16 strand interactions denoted by only two connecting hydrogen bonds and a disordered C-terminus. The 16-stranded barrel surrounds a large cavity which implies a function in OMP substrate binding and partial folding. These findings strongly support a mechanism of OMP biogenesis in which substrates are partially folded inside the barrel cavity and are subsequently released laterally into the lipid bilayer.

  11. Processing of ammonia-containing ices by heavy ions and its relevance to outer Solar System surfaces

    NASA Astrophysics Data System (ADS)

    Pilling, Sergio; Seperuelo Duarte, Eduardo; da Silveira, Enio F.; Domaracka, Alicja; Balanzat, Emmanuel; Rothard, Hermann; Boduch, Philippe

    Ammonia-containing ices have been detected or postulated as important components of the icy surfaces of planetary satellites (e.g. Enceladus, Miranda), in the outer Solar System objects (e.g. Charon, Quaoar) and in Oort cloud comets. We present experimental studies of the interaction of heavy, highly-charged, and energetic ions with ammonia-containing ices (pure NH3 ; NH3 :CO; NH3 :H2 O and NH3 :H2 O:CO) in an attempt to simulate the physical chemistry induced by heavy-ion cosmic rays and heavy-ion solar wind particles at outer Solar System surfaces. The measurements were performed inside a high vacuum chamber at the heavy-ion accelerator GANIL (Grand Accelerateur National d'Ions Lourds) in Caen, France. The gas samples were deposited onto a polished CsI substrate previously cooled to 13 K. In-situ analysis was performed by a Fourier transform infrared spectrometer (FTIR) at different ion fluences. The dissociation cross-section and sputtering yield of ammonia and other ice compounds have been determined. Half-life of frozen ammonia due to heavy ion bombardment at different Solar System surfaces has been estimated. Radiolysis products have been identified and their implications for the chemistry on outer Solar System surfaces are discussed.

  12. Outer structure of the Galactic warp and flare: explaining the Canis Major over-density

    NASA Astrophysics Data System (ADS)

    Momany, Y.; Zaggia, S.; Gilmore, G.; Piotto, G.; Carraro, G.; Bedin, L. R.; de Angeli, F.

    2006-05-01

    Aims.In this paper we derive the structure of the Galactic stellar warp and flare. Methods: .We use 2MASS red clump and red giant stars, selected at mean and fixed heliocentric distances of R⊙≃3, 7 and 17 kpc. Results: .Our results can be summarized as follows: (i) a clear stellar warp signature is derived for the 3 selected rings, proving that the warp starts already within the solar circle; (ii) the derived stellar warp is consistent (both in amplitude and phase-angle) with that for the Galactic interstellar dust and neutral atomic hydrogen; (iii) the consistency and regularity of the stellar-gaseous warp is traced out to about R_GC˜20 kpc; (iv) the Sun seems not to fall on the line of nodes. The stellar warp phase-angle orientation (φ˜15°) is close to the orientation angle of the Galactic bar and this, most importantly, produces an asymmetric warp for the inner R⊙≃3 and 7 kpc rings; (v) a Northern/Southern warp symmetry is observed only for the ring at R⊙≃17 kpc, at which the dependency on φ is weakened; (vi) treating a mixture of thin and thick disk stellar populations, we trace the variation with R_GC of the disk thickness (flaring) and derive an almost constant scale-height (~0.65 kpc) within R_GC˜15 kpc. Further out, the disk flaring increase gradually reaching a mean scale-height of ~1.5 kpc at R_GC˜23 kpc; (vii) the derived outer disk warping and flaring provide further robust evidence that there is no disk radial truncation at R_GC˜14 kpc. Conclusions: .In the particular case of the Canis Major (CMa) over-density we confirm its coincidence with the Southern stellar maximum warp occurring near l˜240° (for R⊙≃7 kpc) which brings down the Milky Way mid-plane by ~3° in this direction. The regularity and consistency of the stellar, gaseous and dust warp argues strongly against a recent merger scenario for Canis Major. We present evidence to conclude that all observed parameters (e.g. number density, radial velocities, proper motion

  13. Structural outer rim of Chesapeake Bay impact crater: Seismic and bore hole evidence

    USGS Publications Warehouse

    Poag, C.W.

    1996-01-01

    Nine seismic-reflection profiles and four continuous core holes define the gross structural and stratigraphic framework of the outer rim of the Chesapeake Bay impact crater. The rim is manifested as a 90 km diameter ring of terraced normal-fault blocks, which forms a ???320 m-1200 m high rim escarpment. The top of the rim escarpment is covered by a 20 m-30 m thick ejecta blanket. The escarpment encircles a flat-floored annular trough, which is partly filled with an ???250 m thick breccia lens (Exmore breccia). The Exmore breccia overlies a 200 m-800 m thick interval of slumped sedimentary megablocks, which, in turn, rests on crystalline basement rocks. All postimpact strata (upper Eocene to Quaternary) sag structurally into the annular trough, and most units also thicken as they cross the rim into the crater. Postimpact compaction and subsidence of the Exmore breccia have created extensive normal faulting in overlying strata.

  14. Analyses of a steel containment vessel with an outer contact structure under severe internal overpressurization conditions

    SciTech Connect

    Porter, V.L.

    1993-12-31

    Many Mark-I and Mark-II BWR plants are designed with a steel vessel as the primary containment. Typically, the steel containment vessel (SCV) is enclosed within a reinforced concrete shield building with only a small gap (50--90mm) separating the two structures. This paper describes finite element analyses performed to evaluate the effects of contact and friction between a steel containment vessel and an outer contact structure when the containment vessel is subjected to large internal pressures. These computations were motivated by a joint program on containment integrity involving the Nuclear Power Engineering Corporation (NUPEC) of Japan, the US Nuclear Regulatory Commission (NRC), and Sandia National Laboratories for testing model containments.

  15. Display of Polyhistidine Peptides on the Escherichia coli Cell Surface by Using Outer Membrane Protein C as an Anchoring Motif

    PubMed Central

    Xu, Zhaohui; Lee, Sang Yup

    1999-01-01

    A novel cell surface display system was developed by employing Escherichia coli outer membrane protein C (OmpC) as an anchoring motif. Polyhistidine peptides consisting of up to 162 amino acids could be successfully displayed on the seventh exposed loop of OmpC. Recombinant cells displaying polyhistidine could adsorb up to 32.0 μmol of Cd2+ per g (dry weight) of cells. PMID:10543834

  16. From Highly Crystalline to Outer Surface-Functionalized Covalent Organic Frameworks—A Modulation Approach

    PubMed Central

    2015-01-01

    Crystallinity and porosity are of central importance for many properties of covalent organic frameworks (COFs), including adsorption, diffusion, and electronic transport. We have developed a new method for strongly enhancing both aspects through the introduction of a modulating agent in the synthesis. This modulator competes with one of the building blocks during the solvothermal COF growth, resulting in highly crystalline frameworks with greatly increased domain sizes reaching several hundreds of nanometers. The obtained materials feature fully accessible pores with an internal surface area of over 2000 m2 g–1. Compositional analysis via NMR spectroscopy revealed that the COF-5 structure can form over a wide range of boronic acid-to-catechol ratios, thus producing frameworks with compositions ranging from highly boronic acid-deficient to networks with catechol voids. Visualization of an −SH-functionalized modulating agent via iridium staining revealed that the COF domains are terminated by the modulator. Using functionalized modulators, this synthetic approach thus also provides a new and facile method for the external surface functionalization of COF domains, providing accessible sites for post-synthetic modification reactions. We demonstrate the feasibility of this concept by covalently attaching fluorescent dyes and hydrophilic polymers to the COF surface. We anticipate that the realization of highly crystalline COFs with the option of additional surface functionality will render the modulation concept beneficial for a range of applications, including gas separations, catalysis, and optoelectronics. PMID:26694214

  17. Laboratory Studies of Ethane Ice Relevant to Outer Solar System Surfaces

    NASA Astrophysics Data System (ADS)

    Moore, Marla H.; Hudson, R. L.; Raines, L.

    2009-09-01

    Oort Cloud comets, as well as TNOs Makemake (2005 FY9), Quaoar, and Pluto, are known to contain ethane. However, even though this molecule is found on several outer Solar System objects relatively little information is available about its amorphous and crystalline phases. In new experiments, we have prepared ethane ices at temperatures applicable to the outer Solar System, and have heated and ion-irradiated these ices to study phase changes and ethane's radiation chemistry using mid-IR spectroscopy (2.2 - 16.6 microns). Included in our work is the meta-stable phase that exists at 35 - 55 K. These results, including newly obtained optical constants, are relevant to ground-based observational campaigns, the New Horizons mission, and supporting laboratory work. An improved understanding of solid-phase ethane may contribute to future searches for this and other hydrocarbons in the outer Solar System. This work was funded by NASA's Planetary Geology and Geophysics, Planetary Atmospheres, and Outer Planets programs. LR was supported by a summer research internship at the NASA Astrobiology Institute's Goddard Center for Astrobiology.

  18. In situ spectroscopic evidence for neptunium(V)-carbonate inner-sphere and outer-sphere ternary surface complexes on hematite surfaces.

    PubMed

    Arai, Yuji; Moran, P B; Honeyman, B D; Davis, J A

    2007-06-01

    Np(V) surface speciation on hematite surfaces at pH 7-9 under pC2 = 10(-3.45) atm was investigated using X-ray absorption spectroscopy (XAS). In situ XAS analyses suggest that bis-carbonato inner-sphere and tris-carbonato outer-sphere ternary surface species coexist at the hematite-water interface at pH 7-8.8, and the fraction of outer-sphere species gradually increases from 27 to 54% with increasing pH from 7 to 8.8. The results suggest that the heretofore unknown Np(V)-carbonato ternary surface species may be important in predicting the fate and transport of Np(V) in the subsurface environment down gradient of high-level nuclear waste respositories.

  19. Adhesion of Type 1-Fimbriated Escherichia coli to Abiotic Surfaces Leads to Altered Composition of Outer Membrane Proteins

    PubMed Central

    Otto, Karen; Norbeck, Joakim; Larsson, Thomas; Karlsson, Karl-Anders; Hermansson, Malte

    2001-01-01

    Phenotypic differences between planktonic bacteria and those attached to abiotic surfaces exist, but the mechanisms involved in the adhesion response of bacteria are not well understood. By the use of two-dimensional (2D) polyacrylamide gel electrophoresis, we have demonstrated that attachment of Escherichia coli to abiotic surfaces leads to alteration in the composition of outer membrane proteins. A major decrease in the abundance of resolved proteins was observed during adhesion of type 1-fimbriated E. coli strains, which was at least partly caused by proteolysis. Moreover, a study of fimbriated and nonfimbriated mutants revealed that these changes were due mainly to type 1 fimbria-mediated surface contact and that only a few changes occurred in the outer membranes of nonfimbriated mutant strains. Protein synthesis and proteolytic degradation were involved to different extents in adhesion of fimbriated and nonfimbriated cells. While protein synthesis appeared to affect adhesion of only the nonfimbriated strain, proteolytic activity mostly seemed to contribute to adhesion of the fimbriated strain. Using matrix-assisted laser desorption ionization–time of flight mass spectrometry, six of the proteins resolved by 2D analysis were identified as BtuB, EF-Tu, OmpA, OmpX, Slp, and TolC. While the first two proteins were unaffected by adhesion, the levels of the last four were moderately to strongly reduced. Based on the present results, it may be suggested that physical interactions between type 1 fimbriae and the surface are part of a surface-sensing mechanism in which protein turnover may contribute to the observed change in composition of outer membrane proteins. This change alters the surface characteristics of the cell envelope and may thus influence adhesion. PMID:11274103

  20. The Toms Canyon structure, New Jersey outer continental shelf: A possible late Eocene impact crater

    USGS Publications Warehouse

    Poag, C.W.; Poppe, L.J.

    1998-01-01

    The Toms Canyon structure [~20-22 km wide] is located on the New Jersey outer continental shelf beneath 80-100 m of water, and is buried by ~1 km of upper Eocene to Holocene sedimentary strata. The structure displays several characteristics typical of terrestrial impact craters (flat floor; upraised faulted rim: brecciated sedimentary fill), but several other characteristics are atypical (an unusually thin ejecta blanket; lack of an inner basin, peak ring, or central peak; bearing nearly completely filled with breccia). Seismostratigraphic and biostratigraphic analyses show that the structure formed during planktonic foraminiferal biochron P15 of the early to middle late Eocene. The fill unit is stratigraphically correlating with impact ejecta cored nearby at Deep Sea Drilling Project (DSDP) Site 612 and at Ocean Drilling Program (ODP) Sites 903 and 904 (22-35 km southeast of the Toms Canyon structure). The Toms Canyon fill unit also correlates with the Exmore breccia, which fills the much larger Chesapeake Bay impact crater (90-km diameter; 335 km to the southwest). On the basis of our analyses, we postulate that the Toms Canyon structure is an impact crater, formed when a cluster of relatively small meteorites approached the target site bearing ~N 50 E, and struck the sea floor obliquely.

  1. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins

    PubMed Central

    Yamashita, Tetsuji; Hakizimana, Pierre; Wu, Siva; Hassan, Ahmed; Jacob, Stefan; Temirov, Jamshid; Fang, Jie; Mellado-Lagarde, Marcia; Gursky, Richard; Horner, Linda; Leibiger, Barbara; Leijon, Sara; Centonze, Victoria E.; Berggren, Per-Olof; Frase, Sharon; Auer, Manfred; Brownell, William E.; Fridberger, Anders; Zuo, Jian

    2015-01-01

    Nature’s fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5’s active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases. PMID:26352669

  2. Tick receptor for outer surface protein A from Ixodes ricinus — the first intrinsically disordered protein involved in vector-microbe recognition

    PubMed Central

    Urbanowicz, Anna; Lewandowski, Dominik; Szpotkowski, Kamil; Figlerowicz, Marek

    2016-01-01

    The tick receptor for outer surface protein A (TROSPA) is the only identified factor involved in tick gut colonization by various Borrelia species. TROSPA is localized in the gut epithelium and can recognize and bind the outer surface bacterial protein OspA via an unknown mechanism. Based on earlier reports and our latest observations, we considered that TROSPA would be the first identified intrinsically disordered protein (IDP) involved in the interaction between a vector and a pathogenic microbe. To verify this hypothesis, we performed structural studies of a TROSPA mutant from Ixodes ricinus using both computational and experimental approaches. Irrespective of the method used, we observed that the secondary structure content of the TROSPA polypeptide chain is low. In addition, the collected SAXS data indicated that this protein is highly extended and exists in solution as a set of numerous conformers. These features are all commonly considered hallmarks of IDPs. Taking advantage of our SAXS data, we created structural models of TROSPA and proposed a putative mechanism for the TROSPA-OspA interaction. The disordered nature of TROSPA may explain the ability of a wide spectrum of Borrelia species to colonize the tick gut. PMID:27112540

  3. Tick receptor for outer surface protein A from Ixodes ricinus — the first intrinsically disordered protein involved in vector-microbe recognition

    NASA Astrophysics Data System (ADS)

    Urbanowicz, Anna; Lewandowski, Dominik; Szpotkowski, Kamil; Figlerowicz, Marek

    2016-04-01

    The tick receptor for outer surface protein A (TROSPA) is the only identified factor involved in tick gut colonization by various Borrelia species. TROSPA is localized in the gut epithelium and can recognize and bind the outer surface bacterial protein OspA via an unknown mechanism. Based on earlier reports and our latest observations, we considered that TROSPA would be the first identified intrinsically disordered protein (IDP) involved in the interaction between a vector and a pathogenic microbe. To verify this hypothesis, we performed structural studies of a TROSPA mutant from Ixodes ricinus using both computational and experimental approaches. Irrespective of the method used, we observed that the secondary structure content of the TROSPA polypeptide chain is low. In addition, the collected SAXS data indicated that this protein is highly extended and exists in solution as a set of numerous conformers. These features are all commonly considered hallmarks of IDPs. Taking advantage of our SAXS data, we created structural models of TROSPA and proposed a putative mechanism for the TROSPA-OspA interaction. The disordered nature of TROSPA may explain the ability of a wide spectrum of Borrelia species to colonize the tick gut.

  4. The Growing Outer Epidermal Wall: Design and Physiological Role of a Composite Structure

    PubMed Central

    Kutschera, U.

    2008-01-01

    Background The cells of growing plant organs secrete an extracellular fibrous composite (the primary wall) that allows the turgid protoplasts to expand irreversibly via wall-yielding events, which are regulated by processes within the cytoplasm. The role of the epidermis in the control of stem elongation is described with special reference to the outer epidermal wall (OEW), which forms a ‘tensile skin’. Novel Facts The OEW is much thicker and less extensible than the walls of the inner tissues. Moreover, in the OEW the amount of cellulose per unit wall mass is considerably greater than in the inner tissues. Ultrastructural studies have shown that the expanding OEW is composed of a highly ordered internal and a diffuse outer half, with helicoidally organized cellulose microfibrils in the inner (load-bearing) region of this tension-stressed organ wall. The structural and mechanical backbone of the wall consists of helicoids, i.e. layers of parallel, inextensible cellulose microfibrils. These ‘plywood laminates’ contain crystalline ‘cables’ orientated in all directions with respect to the axis of elongation (isotropic material). Cessation of cell elongation is accompanied by a loss of order, i.e. the OEW is a dynamic structure. Helicoidally arranged extracellular polymers have also been found in certain bacteria, algae, fungi and animals. In the insect cuticle crystalline cutin nanofibrils form characteristic ‘OEW-like’ herringbone patterns. Conclusions Theoretical considerations, in vitro studies and computer simulations suggest that extracellular biological helicoids form by directed self-assembly of the crystalline biopolymers. This spontaneous generation of complex design ‘without an intelligent designer’ evolved independently in the protective ‘skin’ of plants, animals and many other organisms. PMID:18258808

  5. Methylation and in vivo expression of the surface-exposed Leptospira interrogans outer-membrane protein OmpL32

    PubMed Central

    Eshghi, Azad; Pinne, Marija; Haake, David A.; Zuerner, Richard L.; Frank, Ami

    2012-01-01

    Recent studies have revealed that bacterial protein methylation is a widespread post-translational modification that is required for virulence in selected pathogenic bacteria. In particular, altered methylation of outer-membrane proteins has been shown to modulate the effectiveness of the host immune response. In this study, 2D gel electrophoresis combined with MALDI-TOF MS identified a Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 protein, corresponding to ORF LIC11848, which undergoes extensive and differential methylation of glutamic acid residues. Immunofluorescence microscopy implicated LIC11848 as a surface-exposed outer-membrane protein, prompting the designation OmpL32. Indirect immunofluorescence microscopy of golden Syrian hamster liver and kidney sections revealed expression of OmpL32 during colonization of these organs. Identification of methylated surface-exposed outer-membrane proteins, such as OmpL32, provides a foundation for delineating the role of this post-translational modification in leptospiral virulence. PMID:22174381

  6. Enzyme Design From the Bottom Up: An Active Nickel Electrocatalyst with a Structured Peptide Outer Coordination Sphere

    SciTech Connect

    Reback, Matthew L.; Buchko, Garry W.; Kier, Brandon L.; Ginovska-Pangovska, Bojana; Xiong, Yijia; Lense, Sheri; Hou, Jianbo; Roberts, John A.; Sorensen, Christina M.; Raugei, Simone; Squier, Thomas C.; Shaw, Wendy J.

    2014-02-03

    Functional, peptide-containing metal complexes with a well-defined peptide structure have the potential to enhance molecular catalysts via an enzyme-like outer coordination sphere. Here, we report the synthesis and characterization of an active, peptide-based metal complex built upon the well characterized hydrogen production catalyst, Ni(PPh2NPh)2. The incorporated peptide maintains its B-hairpin structure when appended to the metal core, and the electrocatalytic activity of the peptide-based metal complex (~100,000 s-1) is fully retained. The combination of an active molecular catalyst with a structured peptide outer coordination sphere provides a scaffold that permits the incorporation of features of an enzyme-like outer-coordination sphere necessary to create molecular electrocatalysts with en-hanced functionality.

  7. Characteristics of geological structures and seismicity in inner and outer foothills of western Taiwan: their implications of deformation in fold-and-thrust belt

    NASA Astrophysics Data System (ADS)

    Yang, K.; Rau, R.; Yang, C.; Huang, S.; Mei, W.; Wu, J.

    2012-12-01

    Characteristics of seismicity in the frontal part of an ongoing mountain-building belt can be integrated with geological structural style to give some crucial information of deformation in the belt. In this study, we address variation in fault plane solutions of strike-slip fault in inner and outer foothills of western Taiwan, which are characterized by distinct fault and fold structural styles. We first describe the characteristics of structural settings on the surface to illustrate the differences and define the boundary between the inner and outer foothills. We then delineate variation in subsurface structural features in several balanced cross sections across the foothills. The correspondence between the geological structure and the seismicity is demonstrated in the final. The outer part of fault-and-thrust belt in northwestern Taiwan is characterized by two settings of thrust and accompanied fold, one trending ENE-WSW, representing reactivated structures of pre-existing normal faults, and the other trending NNE-SSW, parallel to the main strike of the fold-and-thrust belt. The formers cut off the latters and extend to terminate at the boundary between the inner and outer parts of the belt. The trend of structural settings in the inner part of foothills parallels that of the fold-and-thrust belt. In southwestern Taiwan, very few settings that trend ENE-WSW appear in the outer part of the foothills; almost all of them remain as normal fault features. In the balanced cross sections across the foothills of northwestern Taiwan, open fold structures predominate in the outer part, while the inner part is characterized by tight folds with tilted thrusts that originally cut low angle at the beddings. The change in tightness of fold is abrupt between two belts and can be assigned to define the boundary. However, structures of open and gentle styles recur in surface and shallow part of the innermost part of the foothills, meaning that hinterlandward increase of stratal

  8. Crystal Structure of the Outer Membrane Protein OpdK from Pseudomonas aeruginosa

    SciTech Connect

    Biswas,S.; Mohammad, M.; Movileanu, L.; van den Berg, B.

    2008-01-01

    In Gram-negative bacteria that do not have porins, most water-soluble and small molecules are taken up by substrate-specific channels belonging to the OprD family. We report here the X-ray crystal structure of OpdK, an OprD family member implicated in the uptake of vanillate and related small aromatic acids. The OpdK structure reveals a monomeric, 18-stranded {beta} barrel with a kidney-shaped central pore. The OpdK pore constriction is relatively wide for a substrate-specific channel ({approx}8 Angstroms diameter), and it is lined by a positively charged patch of arginine residues on one side and an electronegative pocket on the opposite side--features likely to be important for substrate selection. Single-channel electrical recordings of OpdK show binding of vanillate to the channel, and they suggest that OpdK forms labile trimers in the outer membrane. Comparison of the OpdK structure with that of Pseudomonas aeruginosa OprD provides the first qualitative insights into the different substrate specificities of these closely related channels.

  9. Arrested Foveal Development in Preterm Eyes: Thickening of the Outer Nuclear Layer and Structural Redistribution Within the Fovea.

    PubMed

    Sjöstrand, Johan; Rosén, Rebecka; Nilsson, Maria; Popovic, Zoran

    2017-10-01

    The aim of this study was to define landmarks to better characterize foveal microstructure in normal subjects and in preterms with or without signs of immaturity, and to report on thickness changes of outer foveal layers following analysis of optical coherence tomography (OCT) B-scan images. Selected eyes from eight young adults with a history of prematurity (24-33 weeks of gestation) and five controls were imaged using conventional and directional OCT. Retinal layer thickness analysis was performed at selected temporal eccentricities defined by the individual distance between two landmarks for each case, the foveal center and the foveal rim. The use of a foveal center and foveal rim landmark transformation enabled comparisons of interindividual B-scans at corresponding landmark positions in both controls and preterms. We found a 20% shorter foveal center to foveal rim distance in preterms with an immature fovea than in controls. Reflectometric and manual segmentation measurements showed increased thickness of inner retinal layers and photoreceptor cell body and outer plexiform layers centrally, but no observable change of photoreceptor inner and outer segment thickness. Our landmark-based analysis of OCT images using reflectometry and manual segmentation provides complementary findings in comparisons of normal and immature foveal structures. We show a central thickness increase in the outer nuclear layer, outer plexiform layer, and postreceptor layers in preterms with signs of arrested foveal development. We found no indication of abnormal photoreceptor inner or outer segment development in preterms.

  10. Ultra-fine-scale filamentary structures in the Outer Corona and the Solar Magnetic Field

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    2006-01-01

    Filamentary structures following magnetic field lines pervade the Sun's atmosphere and offer us insight into the solar magnetic field. Radio propagation measurements have shown that the smallest filamentary structures in the solar corona are more than 2 orders of magnitude finer than those seen in solar imaging. Here we use radio Doppler measurements to characterize their transverse density gradient and determine their finest scale in the outer corona at 20-30 R(circled dot operator), where open magnetic fields prevail. Filamentary structures overly active regions have the steepest gradient and finest scale, while those overlying coronal holes have the shallowest gradient and least finest scale. Their organization by the underlying corona implies that these subresolution structures extend radially from the entire Sun, confirming that they trace the coronal magnetic field responsible for the radial expansion of the solar wind. That they are rooted all over the Sun elucidates the association between the magnetic field of the photosphere and that of the corona, as revealed by the similarity between the power spectra of the photospheric field and the coronal density fluctuations. This association along with the persistence of filamentary structures far from the Sun demonstrate that subresolution magnetic fields must play an important role not only in magnetic coupling of the photosphere and corona, but also in coronal heating and solar wind acceleration through the process of small-scale magnetic reconnection. They also explain why current widely used theoretical models that extrapolate photospheric magnetic fields into the corona do not predict the correct source of the solar wind.

  11. Multimodal Characterization of Proliferative Diabetic Retinopathy Reveals Alterations in Outer Retinal Function and Structure

    PubMed Central

    Boynton, Grace E.; Stem, Maxwell S.; Kwark, Leon; Jackson, Gregory R.; Farsiu, Sina; Gardner, Thomas W.

    2014-01-01

    diffusely thinned RPE layers (p=0.031) compared to controls. Conclusions Patients with untreated PDR exhibit inner retinal dysfunction, as evidenced by reduced contrast sensitivity and FDP performance, accompanied by alterations in inner and outer retinal structure. PRP-treated patients had more profound changes in outer retinal structure and function. Distinguishing the effects of PDR and PRP may guide the development of restorative vision therapies for patients with advanced diabetic retinopathy. PMID:25601533

  12. Anode Biofilm Transcriptomics Reveals Outer Surface Components Essential for High Density Current Production in Geobacter sulfurreducens Fuel Cells

    PubMed Central

    Glaven, Richard H.; Johnson, Jessica P.; Woodard, Trevor L.; Methé, Barbara A.; DiDonato, Raymond J.; Covalla, Sean F.; Franks, Ashley E.; Liu, Anna; Lovley, Derek R.

    2009-01-01

    The mechanisms by which Geobacter sulfurreducens transfers electrons through relatively thick (>50 µm) biofilms to electrodes acting as a sole electron acceptor were investigated. Biofilms of Geobacter sulfurreducens were grown either in flow-through systems with graphite anodes as the electron acceptor or on the same graphite surface, but with fumarate as the sole electron acceptor. Fumarate-grown biofilms were not immediately capable of significant current production, suggesting substantial physiological differences from current-producing biofilms. Microarray analysis revealed 13 genes in current-harvesting biofilms that had significantly higher transcript levels. The greatest increases were for pilA, the gene immediately downstream of pilA, and the genes for two outer c-type membrane cytochromes, OmcB and OmcZ. Down-regulated genes included the genes for the outer-membrane c-type cytochromes, OmcS and OmcT. Results of quantitative RT-PCR of gene transcript levels during biofilm growth were consistent with microarray results. OmcZ and the outer-surface c-type cytochrome, OmcE, were more abundant and OmcS was less abundant in current-harvesting cells. Strains in which pilA, the gene immediately downstream from pilA, omcB, omcS, omcE, or omcZ was deleted demonstrated that only deletion of pilA or omcZ severely inhibited current production and biofilm formation in current-harvesting mode. In contrast, these gene deletions had no impact on biofilm formation on graphite surfaces when fumarate served as the electron acceptor. These results suggest that biofilms grown harvesting current are specifically poised for electron transfer to electrodes and that, in addition to pili, OmcZ is a key component in electron transfer through differentiated G. sulfurreducens biofilms to electrodes. PMID:19461962

  13. Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter

    PubMed Central

    Meng, Guoyu; Surana, Neeraj K; St Geme, Joseph W; Waksman, Gabriel

    2006-01-01

    Autotransporter proteins are defined by the ability to drive their own secretion across the bacterial outer membrane. The Hia autotransporter of Haemophilus influenzae belongs to the trimeric autotransporter subfamily and mediates bacterial adhesion to the respiratory epithelium. In this report, we present the crystal structure of the C-terminal end of Hia, corresponding to the entire Hia translocator domain and part of the passenger domain (residues 992–1098). This domain forms a β-barrel with 12 transmembrane β-strands, including four strands from each subunit. The β-barrel has a central channel of 1.8 nm in diameter that is traversed by three N-terminal α-helices, one from each subunit. Mutagenesis studies demonstrate that the transmembrane portion of the three α-helices and the loop region between the α-helices and the neighboring β-strands are essential for stability of the trimeric structure of the translocator domain, and that trimerization of the translocator domain is a prerequisite for translocator activity. Overall, this study provides important insights into the mechanism of translocation in trimeric autotransporters. PMID:16688217

  14. Active Hydrogenation Catalyst with a Structured, Peptide-Based Outer-Coordination Sphere

    SciTech Connect

    Jain, Avijita; Buchko, Garry W.; Reback, Matthew L.; O'Hagan, Molly J.; Ginovska-Pangovska, Bojana; Linehan, John C.; Shaw, Wendy J.

    2012-10-05

    The synthesis, catalytic activity, and structural features of a rhodium-based hydrogenation catalyst containing a phosphine ligand coupled to a 14-residue peptide are reported. Both CD and NMR spectroscopy show that the peptide adopts a helical structure in 1:1:1 TFE/MeCN/H2O that is maintained when the peptide is attached to the ligand and when the ligand is attached to the metal complex. The metal complex hydrogenates aqueous solutions of 3-butenol to 1-butanol at 360 ± 50 turnovers/Rh/h at 294 K. This peptide- based catalyst represents a starting point for developing and characterizing a peptide-based outer-coordination sphere that can be used to introduce enzyme-like features into molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (AJ, JCL and WJS), the Office of Science Early Career Research Program through the Office of Basic Energy Sciences (GWB, MLR and WJS). Part of the research was conducted at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by U.S. Department of Energy’s Office of Biolog-ical and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.

  15. Isolation and purification of recombinant outer surface protein C (rOspC) of Borrelia burgdorferi sensu lato.

    PubMed

    Krupka, Michal; Bĕláková, Jana; Sebestová, Martina; Tuhácková, Jana; Raska, Milan; Vrzal, Vladimír; Weigl, Evzen

    2005-12-01

    The aim of this work was isolation and purification of the major immunodominant protein, Outer surface protein C (OspC) of three members of the species group Borrelia burgdorferi, the causative agent of Lyme disease. Our aim was to obtain this protein in a quantity and purity sufficient for immunization of experimental animals. For optimalization of protein purification's yield we used immobilized metal ion affinity chromatography (IMAC) under different conditions. The greatest efficiency was achieved by using of HiTrap Chelating Column under native conditions.

  16. Optimal conditions for decorating outer surface of single-walled carbon nanotubes with RecA proteins

    NASA Astrophysics Data System (ADS)

    Oura, Shusuke; Umemura, Kazuo

    2016-03-01

    In this study, we estimated the optimal reaction conditions for decorating the outer surface of single-walled carbon nanotubes (SWNTs) with RecA proteins by comparison with hybrids of RecA and single-stranded DNA (ssDNA). To react SWNTs with RecA proteins, we first prepared ssDNA-SWNT hybrids. The heights of the ssDNA-SWNT hybrids increased as the amount of RecA used in the reaction increased, as determined from atomic force microscopy images. We further confirmed the increasing adsorption of RecA proteins onto ssDNA on SWNT surfaces by agarose gel electrophoresis. These results suggest that the combination of RecA proteins and ssDNA-SWNT hybrids forms RecA-ssDNA-SWNT hybrids. We also successfully controlled the amount of RecA adsorbed on the ssDNA-SWNT hybrids. Our results thus indicate the optimized reaction conditions for decorating the outer surface of SWNTs with RecA proteins, which is the key to the development of novel biosensors and nanomaterial-based bioelectronics.

  17. Surface structure determines dynamic wetting

    PubMed Central

    Wang, Jiayu; Do-Quang, Minh; Cannon, James J.; Yue, Feng; Suzuki, Yuji; Amberg, Gustav; Shiomi, Junichiro

    2015-01-01

    Liquid wetting of a surface is omnipresent in nature and the advance of micro-fabrication and assembly techniques in recent years offers increasing ability to control this phenomenon. Here, we identify how surface roughness influences the initial dynamic spreading of a partially wetting droplet by studying the spreading on a solid substrate patterned with microstructures just a few micrometers in size. We reveal that the roughness influence can be quantified in terms of a line friction coefficient for the energy dissipation rate at the contact line, and that this can be described in a simple formula in terms of the geometrical parameters of the roughness and the line-friction coefficient of the planar surface. We further identify a criterion to predict if the spreading will be controlled by this surface roughness or by liquid inertia. Our results point to the possibility of selectively controlling the wetting behavior by engineering the surface structure. PMID:25683872

  18. Structured surfaces on metal optics

    NASA Astrophysics Data System (ADS)

    Steinkopf, Ralf; Hartung, Johannes; Kinast, Jan; Gebhardt, Andreas; Risse, Stefan; Eberhardt, Ramona

    2015-09-01

    Diamond machining of metal optics is a flexible way to manufacture structured elements on different surface geometries. Especially curved substrates such as spheres, aspheres, or freeforms in combination with structured elements enable innovative products like headlights of automobiles or spectrometers in life science or space applications. Using diamond turning, servo turning, milling, and shaping, different technologies for arbitrary geometries are available. The addressed wavelengths are typically in the near- infrared (NIR) and infrared (IR) spectral range. Applying additional finishing processes, diamond machining is also used for optics applicable down to the EUV spectral range. This wide range of applications is represented in the used materials, too. However, one important material group for diamond machining is metal substrates. For diamond machining of structured surfaces, it is important to consider the microstructure of the utilized materials thoroughly. Especially amorphous materials as nickel-phosphorus alloys or fine-grained copper allow the fine structuring of refractive and diffractive structures. The paper analyzes the influence variables for diamond machining of structured surfaces and shows the use of this research for applications in the spectral range from IR to EUV.

  19. Bacterial Social Networks: Structure and composition of Myxococcus xanthus outer membrane vesicle chains

    PubMed Central

    Remis, Jonathan P.; Wei, Doug; Gorur, Amita; Zemla, Marcin; Haraga, Jessica; Allen, Simon; Witkowska, H. Ewa; Costerton, J. William; Berleman, James E.; Auer, Manfred

    2014-01-01

    Summary The social soil bacterium, Myxococcus xanthus, displays a variety of complex and highly coordinated behaviors, including social motility, predatory rippling and fruiting body formation. Here we show that M. xanthus cells produce a network of outer membrane extensions in the form of vesicles and vesicle chains that interconnect cells. We observed peritrichous display of vesicles and vesicle chains and increased abundance in biofilms compared to planktonic cultures. By applying a range of imaging techniques, including 3D Focused Ion Beam Scanning Electron Microscopy (FIB/SEM), we determined these structures to range between 30-60 nm in width and up to 5 μm in length. Purified vesicle chains consist of typical M. xanthus lipids, fucose, mannose, N-acetylglucosamine (GlcNAc) and N-acetylgalactoseamine (GalNAc) carbohydrates and a small set of cargo protein. The protein content includes CglB and Tgl membrane proteins transferred in a contact-dependent manner. Most significantly, the 3D organization of cells within biofilms indicates that cells are connected via an extensive network of membrane extensions that may connect cells at the level of the periplasmic space. Such a network would allow the transfer of membrane proteins and other molecules between cells, and likely provides a mechanism for the coordination of social activities. PMID:23848955

  20. Associations Between Outer Retinal Structures and Focal Macular Electroretinograms in Patients With Retinitis Pigmentosa.

    PubMed

    Kominami, Taro; Ueno, Shinji; Kominami, Azusa; Nakanishi, Ayami; Yasuda, Shunsuke; Piao, Chang-Hua; Okado, Satoshi; Terasaki, Hiroko

    2017-10-01

    Our earlier study showed that the width of the intact ellipsoid zone (EZ) of the photoreceptors was significantly but weakly correlated with the amplitudes of the focal macular ERGs (FMERGs). The aim of this study was to determine a microstructure of the photoreceptors in the spectral-domain optical coherence tomographic (SD-OCT) images that was more strongly correlated with the FMERG parameters in eyes with retinitis pigmentosa (RP). This was a retrospective, observational study. The medical records of 65 patients with RP were reviewed. FMERGs were elicited by a 15-degree stimulus spot. The width of the EZ and the outer segment (OS) area surrounded by EZ and retinal pigment epithelium in the SD-OCT images within 15 degrees of the fovea were evaluated. Spearman correlation tests and multiple stepwise regression analyses were performed. There was a strong correlation between the amplitudes of FMERGs and the EZ width (r = 0.68 for a-wave amplitude; r = 0.64 for b-wave amplitude), and also between the amplitudes of the FMERGs and the OS area (r = 0.69 for a-wave amplitude; r = 0.67 for b-wave amplitude). However, some patients had long EZ widths but had severely reduced FMERGs. Multiple stepwise regression analyses showed that the OS area was the only significant independent predictor of the amplitudes of FMERGs (P < 0.001). The OS area might be a better morphological structure to use to predict the physiological function of the macula.

  1. Acylation-dependent Export of Trypanosoma cruzi Phosphoinositide-specific Phospholipase C to the Outer Surface of Amastigotes*

    PubMed Central

    de Paulo Martins, Vicente; Okura, Michael; Maric, Danijela; Engman, David M.; Vieira, Mauricio; Docampo, Roberto; Moreno, Silvia N. J.

    2010-01-01

    Phosphoinositide phospholipase C (PI-PLC) plays an essential role in cell signaling. A unique Trypanosoma cruzi PI-PLC (TcPI-PLC) is lipid-modified in its N terminus and localizes to the plasma membrane of amastigotes. Here, we show that TcPI-PLC is located onto the extracellular phase of the plasma membrane of amastigotes and that its N-terminal 20 amino acids are necessary and sufficient to target the fused GFP to the outer surface of the parasite. Mutagenesis of the predicted acylated residues confirmed that myristoylation of a glycine residue in the 2nd position and acyl modification of a cysteine in the 4th but not in the 8th or 15th position of the coding sequence are required for correct plasma membrane localization in T. cruzi epimastigotes or amastigotes. Interestingly, mutagenesis of the cysteine at the 8th position increased its flagellar localization. When expressed as fusion constructs with GFP, the N-terminal 6 and 10 amino acids fused to GFP are predominantly located in the cytosol and concentrated in a compartment that co-localizes with a Golgi complex marker. The N-terminal 20 amino acids of TcPI-PLC associate with lipid rafts when dually acylated. Taken together, these results indicate that N-terminal acyl modifications serve as a molecular addressing system for sending TcPI-PLC to the outer surface of the cell. PMID:20647312

  2. Three-dimensional flow structure and bed morphology in large elongate meander loops with different outer bank roughness characteristics

    NASA Astrophysics Data System (ADS)

    Konsoer, Kory M.; Rhoads, Bruce L.; Best, James L.; Langendoen, Eddy J.; Abad, Jorge D.; Parsons, Dan R.; Garcia, Marcelo H.

    2016-12-01

    Few studies have examined the three-dimensional flow structure and bed morphology within elongate loops of large meandering channels. The present study focuses on the spatial patterns of three-dimensional flow structure and bed morphology within two elongate meander loops and examines how differences in outer bank roughness influence near-bank flow characteristics. Three-dimensional velocities were measured during two different events - a near-bankfull flow and an overbank event. Detailed data on channel bathymetry and bed form geometry were obtained during a near-bankfull event. Flow structure within the loops is characterized by strong topographic steering by the point bar, by the development of helical motion associated with flow curvature, and by acceleration of flow where bedrock is exposed along the outer bank. Near-bank velocities during the overbank event are less than those for the near-bankfull flow, highlighting the strong influence of the point bar on redistribution of mass and momentum of the flow at subbankfull stages. Multiple outer bank pools are evident within the elongate meander loop with low outer bank roughness, but are not present in the loop with high outer bank roughness, which may reflect the influence of abundant large woody debris on near-bank velocity characteristics. The positions of pools within both loops can be linked to spatial variations in planform curvature. The findings indicate that flow structure and bed morphology in these large elongate loops is similar to that in small elongate loops, but differs somewhat from flow structure and bed morphology reported for experimental elongate loops.

  3. Analysis of work and efficiency increase of of the ILUR-03 installation magnetron system for tubular specimens outer surface modification

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Volkov, N. V.; Valikov, R. A.; Yashin, A. S.; Krivobokov, V. P.; Yanin, S. N.; Yuriev, Yu N.

    2017-05-01

    The method of material near-surface layers doping by mixing of alloying elements films with ion beam is widely used in science and technology. Three magnetrons with independent power systems, integrated in installation for ion-beam treatment of long-range products ILUR-03, were used as deposition systems. Targets for magnetrons were in the form of disks 60 mm diameter and 5 mm thickness and consisted of the following elements: Al, Fe, Mo, Zr, Cr of purity better than 99.99 at.%. Deposition was performed in argon atmosphere at 1-5 Pa pressure and room temperature in stable current mode at 30-100 mA. Analysis of the obtained films on the surface of cylindrical specimens from zirconium alloys with the outer diameter of 9.15 mm showed high uniformity of coating on length of 300 mm, good adhesion and absence of discontinuities in the films body.

  4. Impact of Reduced Rhodopsin Expression on the Structure of Rod Outer Segment Disc Membranes†

    PubMed Central

    Rakshit, Tatini; Park, Paul S.-H.

    2015-01-01

    Rhodopsin is the light receptor embedded in rod outer segment (ROS) disc membranes of photoreceptor cells that initiates vision via phototransduction. The relationship between rhodopsin expression and the formation of membrane structures in the ROS is unclear but important to better understand both normal function and pathological conditions. To determine the impact of reduced rhodopsin expression on the structure of ROS discs and the supramolecular organization of rhodopsin, ROS disc membrane samples from heterozygous rhodopsin knockout mice were examined by atomic force microscopy. Similar to rhodopsin in wild-type mice, rhodopsin formed nanodomains in ROS disc membranes of heterozygous knockout mice. The reduced rhodopsin expression in heterozygous knockout mice resulted in ROS disc membranes that were smaller compared to those in wild-type mice at all ages tested. Changes in ROS disc membrane properties were observed between 4 and 6 weeks of age in heterozygous knockout mice that were not present in age-matched wild-type mice. In 4 week-old mice, the number and density of rhodopsin in ROS disc membranes was lower than that in age-matched wild-type mice. In contrast, 6 and 8 week-old mice had more rhodopsin molecules present in disc membranes compared to 4 week-old mice, which resulted in rhodopsin densities similar to those found in age-matched wild-type mice. Thus, mechanisms appear to be present that maintain a constant density of rhodopsin within ROS disc membranes even when reducing the expression of the light receptor by about half. These adaptive mechanisms, however, only occur after 4 weeks of age. PMID:25881629

  5. Structure of the Inner Core-Outer Core Boundary Inferred From PKPBC Diffracted Waves

    NASA Astrophysics Data System (ADS)

    Zou, Z.; Koper, K. D.

    2004-12-01

    Examining the structure of the inner core-outer core boundary (ICB) is important for understanding the evolution and dynamics of the Earth's core. Seismic waves that diffract past the C cusp (PKPCdiff) preferentially sample the ICB and so contain important clues about this region. Just as Pdiff has been studied to infer core-mantle boundary structure, we expect that analysis of PKPCdiff will reveal ICB structure. However, there have been few systematic studies of PKPCdiff. We examined all of the IRIS temporary networks for which data are currently available and found three that provide enough high-quality PKPCdiff data for array processing techniques to be used effectively: INDEPTH-II, INDEPTH-III, and BANJO. We apply the cross-correlation and adaptive stacking techniques to the broadband waveforms to extract the differential travel times of PKPCdiff across the arrays, and use a weighted least-squares technique to invert theses times for the three-dimensional PKPCdiff slowness vector. We generate standard errors for the ray parameter and backazimuth using a bootstrap-type resampling algorithm. The earthquakes we analyze at the three networks sample different regions of ICB. For the earthquakes recorded at INDEPTH-II and INDEPTH-III arrays, PKPCdiff phases sample the ICB beneath north Africa and southwest Europe, and for the earthquakes at BANJO, they sample the ICB beneath Antarctica and west North America. We find PKPCdiff ray parameters vary from 1.79 ± 0.11 to 1.95 ± 0.05 s/deg beneath north Africa and southwest Europe,from 1.60 ± 0.08 to 1.74 ± 0.07 beneath Antarctica and have values around 1.82 ± 0.09 beneath west North America. In order to lessen the effect of shallow structure on the travel times, we also invert the differential travel times (PKPCdiff}-PKP{DF) for differential slowness vectors. We find less variation in them, however the differences appear to be significant. Therefore, our initial results support the idea of modest lateral heterogeneity

  6. ANTIGENIC STRUCTURE OF CELL SURFACES

    PubMed Central

    Aoki, Tadao; Hämmerling, Ulrich; de Harven, Etienne; Boyse, Edward A.; Old, Lloyd J.

    1969-01-01

    The representation of mouse alloantigens belonging to three systems, H-2, θ and TL, on the surface of cells from thymus, spleen, lymph nodes, and peritoneal cavity, was studied by electron microscopy with ferritin-labeled antibody. As expected from earlier serological data, TL was confined to thymocytes, θ was found on thymocytes and lymphocytes, and H-2 occurred to some extent on all cell types observed. On reticular cells, lymphocytes, plasma cells, and eosinophils, the majority of the cell surface was occupied by H-2; thymocytes had considerably less H-2, and erythrocytes and peritoneal macrophages least of all. In every instance the representation of antigen was discontinuous, the fraction of the cell surface covered being characteristic both of the antigen and of the type of cell. H-2 and θ provide a striking example of this; H-2 is present in far higher amounts on lymphocytes than on thymocytes, whereas the converse is true of θ. Within areas positive for H-2 or θ, protuberances of the surface membrane were often antigen-negative. A better definition of cell surface structure, gained from studies such as this, is necessary for further inquiry into how the cell surface is assembled, and into selective gene action in relation to cellular differentiation. PMID:5347699

  7. Surface, Subsurface and Atmosphere Exchanges on the Satellites of the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Tobie, G.; Giese, B.; Hurford, T. A.; Lopes, R. M.; Nimmo, F.; Postberg, F.; Retherford, K. D.; Schmidt, J.; Spencer, J. R.; Tokano, T.; Turtle, E. P.

    2010-06-01

    The surface morphology of icy moons is affected by several processes implicating exchanges between their subsurfaces and atmospheres (if any). The possible exchange of material between the subsurface and the surface is mainly determined by the mechanical properties of the lithosphere, which isolates the deep, warm and ductile ice material from the cold surface conditions. Exchanges through this layer occur only if it is sufficiently thin and/or if it is fractured owing to tectonic stresses, melt intrusion or impact cratering. If such conditions are met, cryomagma can be released, erupting fresh volatile-rich materials onto the surface. For a very few icy moons (Titan, Triton, Enceladus), the emission of gas associated with cryovolcanic activity is sufficiently large to generate an atmosphere, either long-lived or transient. For those moons, atmosphere-driven processes such as cryovolcanic plume deposition, phase transitions of condensable materials and wind interactions continuously re-shape their surfaces, and are able to transport cryovolcanically generated materials on a global scale. In this chapter, we discuss the physics of these different exchange processes and how they affect the evolution of the satellites’ surfaces.

  8. Charged-particle induced alterations of surfaces in the outer solar system

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1991-01-01

    Researchers calculated the plasma bombardment profiles of the surfaces of the icy Saturnian satellites in order to interpret reflection spectra and the effect of charged particles on the surfaces (mantles) of Pluto and of comets in the Oort cloud. Pluto's exposure to cosmic rays results in a slow alteration of the reflectance if the methane condensed on its surface. The UV absorbed in the atmosphere can produce precipitates. The researchers showed that, depending on the rates of the competing regolith processes and rates for replenishment of the methane, the surface can appear bright, red, or dark. Using laboratory data, they showed that the amount of darkening occurring in one orbit is small. Therefore, transport, burial, and re-exposure of organic sediments must control the reflectance, and the average reflectance is established by the radiation altered species accumulated over many orbits with the observed spatial, and possible temporal, differences in albedo due to transport. The cosmic rays, although producing changes in reflectance slowly, do so inevitably. Therefore, the fact that the surface is not dark everywhere implies that it is active and the exposure rates vs. depth into the surface of Pluto can be used to constrain turnover rates. Comets in the Oort cloud experience similar rates.

  9. OPUS - Outer Planets Unified Search with Enhanced Surface Geometry Parameters - Not Just for Rings

    NASA Astrophysics Data System (ADS)

    Gordon, Mitchell; Showalter, Mark Robert; Ballard, Lisa; Tiscareno, Matthew S.; Heather, Neil

    2016-10-01

    In recent years, with the massive influx of data into the PDS from a wide array of missions and instruments, finding the precise data you need has been an ongoing challenge. For remote sensing data obtained from Jupiter to Pluto, that challenge is being addressed by the Outer Planets Unified Search, more commonly known as OPUS.OPUS is a powerful search tool available at the PDS Ring-Moon Systems Node (RMS) - formerly the PDS Rings Node. While OPUS was originally designed with ring data in mind, its capabilities have been extended to include all of the targets within an instrument's field of view. OPUS provides preview images of search results, and produces a zip file for easy download of selected products, including a table of user specified metadata. For Cassini ISS and Voyager ISS we have generated and include calibrated versions of every image.Currently OPUS supports data returned by Cassini ISS, UVIS, VIMS, and CIRS (Saturn data through June 2010), New Horizons Jupiter LORRI, Galileo SSI, Voyager ISS and IRIS, and Hubble (ACS, WFC3 and WFPC2).At the RMS Node, we have developed and incorporated into OPUS detailed geometric metadata, based on the most recent SPICE kernels, for all of the bodies in the Cassini Saturn observations. This extensive set of geometric metadata is unique to the RMS Node and enables search constraints such as latitudes and longitudes (Saturn, Titan, and icy satellites), viewing and illumination geometry (phase, incidence and emission angles), and distances and resolution.Our near term plans include adding the full set of Cassini CIRS Saturn data (with enhanced geometry), New Horizons MVIC Jupiter encounter images, New Horizons LORRI and MVIC Pluto data, HST STIS observations, and Cassini and Voyager ring occultations. We also plan to develop enhanced geometric metadata for the New Horizons LORRI and MVIC instruments for both the Jupiter and the Pluto encounters.OPUS: http://pds-rings.seti.org/search/

  10. Purification and Bicelle Crystallization for Structure Determination of the E. coli Outer Membrane Protein TamA.

    PubMed

    Gruss, Fabian; Hiller, Sebastian; Maier, Timm

    2015-01-01

    TamA is an Omp85 protein involved in autotransporter assembly in the outer membrane of Escherichia coli. It comprises a C-terminal 16-stranded transmembrane β-barrel as well as three periplasmic POTRA domains, and is a challenging target for structure determination. Here, we present a method for crystal structure determination of TamA, including recombinant expression in E. coli, detergent extraction, chromatographic purification, and bicelle crystallization in combination with seeding. As a result, crystals in space group P21212 are obtained, which diffract to 2.3 Å resolution. This protocol also serves as a template for structure determination of other outer membrane proteins, in particular of the Omp85 family.

  11. Surface hydrolysis of sphingomyelin by the outer membrane protein Rv0888 supports replication of Mycobacterium tuberculosis in macrophages.

    PubMed

    Speer, Alexander; Sun, Jim; Danilchanka, Olga; Meikle, Virginia; Rowland, Jennifer L; Walter, Kerstin; Buck, Bradford R; Pavlenok, Mikhail; Hölscher, Christoph; Ehrt, Sabine; Niederweis, Michael

    2015-09-01

    Sphingomyelinases secreted by pathogenic bacteria play important roles in host-pathogen interactions ranging from interfering with phagocytosis and oxidative burst to iron acquisition. This study shows that the Mtb protein Rv0888 possesses potent sphingomyelinase activity cleaving sphingomyelin, a major lipid in eukaryotic cells, into ceramide and phosphocholine, which are then utilized by Mtb as carbon, nitrogen and phosphorus sources, respectively. An Mtb rv0888 deletion mutant did not grow on sphingomyelin as a sole carbon source anymore and replicated poorly in macrophages indicating that Mtb utilizes sphingomyelin during infection. Rv0888 is an unusual membrane protein with a surface-exposed C-terminal sphingomyelinase domain and a putative N-terminal channel domain that mediated glucose and phosphocholine uptake across the outer membrane in an M. smegmatis porin mutant. Hence, we propose to name Rv0888 as SpmT (sphingomyelinase of Mycobacterium tuberculosis). Erythrocyte membranes contain up to 27% sphingomyelin. The finding that Rv0888 accounts for half of Mtb's hemolytic activity is consistent with its sphingomyelinase activity and the observation that Rv0888 levels are increased in the presence of erythrocytes and sphingomyelin by 5- and 100-fold, respectively. Thus, Rv0888 is a novel outer membrane protein that enables Mtb to utilize sphingomyelin as a source of several essential nutrients during intracellular growth.

  12. Hydrophobic coating of surfaces by plasma polymerization in an RF plasma reactor with an outer planar electrode: synthesis, characterization and biocompatibility

    NASA Astrophysics Data System (ADS)

    Karaman, Mustafa; Gürsoy, Mehmet; Aykül, Fatmanur; Tosun, Zahide; Kars, M. Demirel; Yildiz, H. Bekir

    2017-08-01

    This paper presents the plasma polymerization of poly(hexafluorobutyl acrylate) (PHFBA) thin films on different substrates in an RF plasma reactor with an outer planar electrode. This reactor configuration allows large area uniformity and fast processing times. Deposition rates of up to 60 nm min-1 were observed. The influence of plasma power and substrate temperature on the deposition rate, structure and wettability of the as-deposited films was investigated. It was observed that better hydrophobicity was obtained at high plasma power and in low temperature conditions. PHFBA thin films deposited on electrospun poly(acrylonitrile) fiber mats under such conditions resulted in superhydrophobic surfaces with contact angle values greater than 150°. In vitro cell studies using human epithelial cells demonstrated the non-toxic nature of the plasma-polymerized PHFBA films.

  13. Computational redesign of the lipid-facing surface of the outer membrane protein OmpA.

    PubMed

    Stapleton, James A; Whitehead, Timothy A; Nanda, Vikas

    2015-08-04

    Advances in computational design methods have made possible extensive engineering of soluble proteins, but designed β-barrel membrane proteins await improvements in our understanding of the sequence determinants of folding and stability. A subset of the amino acid residues of membrane proteins interact with the cell membrane, and the design rules that govern this lipid-facing surface are poorly understood. We applied a residue-level depth potential for β-barrel membrane proteins to the complete redesign of the lipid-facing surface of Escherichia coli OmpA. Initial designs failed to fold correctly, but reversion of a small number of mutations indicated by backcross experiments yielded designs with substitutions to up to 60% of the surface that did support folding and membrane insertion.

  14. Finish ion beam treatment of the longrange cylindrical products outer surface in automatic mode

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Volkov, N. V.; Valikov, R. A.; Yashin, A. S.; Krivobokov, V. P.; Yanin, S. N.; Asainov, O. Kh; Yurev, Yu N.

    2016-04-01

    The results of using of ion-beam technologies methods for finish treatment of metal products are presented. The experiments were performed at the installation ILUR-03, which allows the operation of cleaning, polishing and surface layers doping of the material of unlimited length cylindrical samples by radial Ar+ ions beam with energy up to 5 keV. The tubes from zirconium alloy E110 up to 500 mm length were used as samples for investigation. It is shown that selected automatic treatment modes reduce the surface roughness over the entire length of the samples and increase uniformity of the surface layer without observable effect on the bulk properties of material. Treatment promotes the formation of oxide films with improved defensive properties.

  15. Computational redesign of the lipid-facing surface of the outer membrane protein OmpA

    PubMed Central

    Stapleton, James A.; Whitehead, Timothy A.; Nanda, Vikas

    2015-01-01

    Advances in computational design methods have made possible extensive engineering of soluble proteins, but designed β-barrel membrane proteins await improvements in our understanding of the sequence determinants of folding and stability. A subset of the amino acid residues of membrane proteins interact with the cell membrane, and the design rules that govern this lipid-facing surface are poorly understood. We applied a residue-level depth potential for β-barrel membrane proteins to the complete redesign of the lipid-facing surface of Escherichia coli OmpA. Initial designs failed to fold correctly, but reversion of a small number of mutations indicated by backcross experiments yielded designs with substitutions to up to 60% of the surface that did support folding and membrane insertion. PMID:26199411

  16. Structure of the Three N-Terminal Immunoglobulin Domains of the Highly Immunogenic Outer Capsid Protein from a T4-Like Bacteriophage

    SciTech Connect

    Fokine, Andrei; Islam, Mohammad Z.; Zhang, Zhihong; Bowman, Valorie D.; Rao, Venigalla B.; Rossmann, Michael G.

    2011-09-16

    The head of bacteriophage T4 is decorated with 155 copies of the highly antigenic outer capsid protein (Hoc). One Hoc molecule binds near the center of each hexameric capsomer. Hoc is dispensable for capsid assembly and has been used to display pathogenic antigens on the surface of T4. Here we report the crystal structure of a protein containing the first three of four domains of Hoc from bacteriophage RB49, a close relative of T4. The structure shows an approximately linear arrangement of the protein domains. Each of these domains has an immunoglobulin-like fold, frequently found in cell attachment molecules. In addition, we report biochemical data suggesting that Hoc can bind to Escherichia coli, supporting the hypothesis that Hoc could attach the phage capsids to bacterial surfaces and perhaps also to other organisms. The capacity for such reversible adhesion probably provides survival advantages to the bacteriophage.

  17. Rod outer segment structure influences the apparent kinetic parameters of cyclic GMP phosphodiesterase

    PubMed Central

    1994-01-01

    Cyclic GMP hydrolysis by the phosphodiesterase (PDE) of retinal rod outer segments (ROS) is a key amplification step in phototransduction. Definitive estimates of the turnover number, kcat, and of the Km are crucial to quantifying the amplification contributed by the PDE. Published estimates for these kinetic parameters vary widely; moreover, light-dependent changes in the Km of PDE have been reported. The experiments and analyses reported here account for most observed variations in apparent Km, and they lead to definitive estimates of the intrinsic kinetic parameters in amphibian rods. We first obtained a new and highly accurate estimate of the ratio of holo-PDE to rhodopsin in the amphibian ROS, 1:270. We then estimated the apparent kinetic parameters of light-activated PDE of suspensions of disrupted frog ROS whose structural integrity was systematically varied. In the most severely disrupted ROS preparation, we found Km = 95 microM and kcat = 4,400 cGMP.s-1. In suspensions of disc-stack fragments of greater integrity, the apparent Km increased to approximately 600 microM, though kcat remained unchanged. In contrast, the Km for cAMP was not shifted in the disc stack preparations. A theoretical analysis shows that the elevated apparent Km of suspensions of disc stacks can be explained as a consequence of diffusion with hydrolysis in the disc stack, which causes active PDEs nearer the center of the stack to be exposed to a lower concentration of cyclic GMP than PDEs at the disc stack rim. The analysis predicts our observation that the apparent Km for cGMP is elevated with no accompanying decrease in kcat. The analysis also predicts the lack of a Km shift for cAMP and the previously reported light dependence of the apparent Km for cGMP. We conclude that the intrinsic kinetic parameters of the PDE do not vary with light or structural integrity, and are those of the most severely disrupted disc stacks. PMID:7931138

  18. Fabrication of cell outer membrane mimetic polymer brush on polysulfone surface via RAFT technique

    NASA Astrophysics Data System (ADS)

    Ma, Qian; Zhang, Hui; Zhao, Jiang; Gong, Yong-Kuan

    2012-10-01

    Cell membrane mimetic antifouling polymer brush was grown on polysulfone (PSF) membrane by surface-induced reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC). The RAFT agent immobilized PSF substrate was prepared by successive chloromethylation, amination with ethylenediamine (EDA) and amidation of the amine group of grafted EDA with the carboxylic group of 4-cyanopentanoic acid dithiobenzoate (CPAD). The surface RAFT polymerization of MPC was initiated in aqueous solution by 4,4‧-azobis-4-cyanopentanoic acid (ACPA). The formation of PMPC brush coating is evidenced by X-ray photoelectron spectroscopy and water contact angle measurements. The degree of polymerization of PMPC and the polymer grafting density were calculated from the high resolution XPS spectra. The platelet adhesion and protein adsorption results showed that the PMPC-grafted PSF surface has excellent antifouling ability to resist platelet adhesion completely and suppress protein adsorption significantly. This biomimetic and bio-friendly surface RAFT polymerization strategy could be promising for a variety of biomedical applications.

  19. Native surface association of a recombinant 38-kilodalton Treponema pallidum antigen isolated from the Escherichia coli outer membrane.

    PubMed Central

    Fehniger, T E; Radolf, J D; Walfield, A M; Cunningham, T M; Miller, J N; Lovett, M A

    1986-01-01

    A recombinant plasmid designated pAW305, containing a 6-kilobase insert of Treponema pallidum DNA, directed the expression of a 38-kilodalton (kDa) treponemal antigen in Escherichia coli. The 38-kDa antigen copurified with the outer membrane fraction of the E. coli cell envelope after treatment with nonionic detergents or sucrose density gradient centrifugation. Rabbits immunized with the recombinant 38-kDa antigen developed antibodies which reacted specifically with a 38-kDa T. pallidum antigen on immunoblots, and 38-kDa antisera specifically immobilized T. pallidum in a complement-dependent manner in the T. pallidum immobilization test. Antisera to the 38-kDa recombinant antigen were also used to demonstrate its native surface association on T. pallidum by immunoelectron microscopy. Images PMID:3516880

  20. Turbine airfoil with outer wall thickness indicators

    DOEpatents

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  1. Structure of the reovirus outer capsid and dsRNA-binding protein σ3 at 1.8 Å resolution

    PubMed Central

    Olland, Andrea M.; Jané-Valbuena, Judit; Schiff, Leslie A.; Nibert, Max L.; Harrison, Stephen C.

    2001-01-01

    The crystallographically determined structure of the reovirus outer capsid protein σ3 reveals a two-lobed structure organized around a long central helix. The smaller of the two lobes includes a CCHC zinc-binding site. Residues that vary between strains and serotypes lie mainly on one surface of the protein; residues on the opposite surface are conserved. From a fit of this model to a reconstruction of the whole virion from electron cryomicroscopy, we propose that each σ3 subunit is positioned with the small lobe anchoring it to the protein µ1 on the surface of the virion, and the large lobe, the site of initial cleavages during entry-related proteolytic disassembly, protruding outwards. The surface containing variable residues faces solvent. The crystallographic asymmetric unit contains two σ3 subunits, tightly associated as a dimer. One broad surface of the dimer has a positively charged surface patch, which extends across the dyad. In infected cells, σ3 binds dsRNA and inhibits the interferon response. The location and extent of the positively charged surface patch suggest that the dimer is the RNA-binding form of σ3. PMID:11230122

  2. Crystal Structure of Escherichia coli CusC the Outer Membrane Component of a Heavy Metal Efflux Pump

    SciTech Connect

    R Kulathila; R Kulathila; M Indic; B van den Berg

    2011-12-31

    While copper has essential functions as an enzymatic co-factor, excess copper ions are toxic for cells, necessitating mechanisms for regulating its levels. The cusCBFA operon of E. coli encodes a four-component efflux pump dedicated to the extrusion of Cu(I) and Ag(I) ions. We have solved the X-ray crystal structure of CusC, the outer membrane component of the Cus heavy metal efflux pump, to 2.3 {angstrom} resolution. The structure has the largest extracellular opening of any outer membrane factor (OMF) protein and suggests, for the first time, the presence of a tri-acylated N-terminal lipid anchor. The CusC protein does not have any obvious features that would make it specific for metal ions, suggesting that the narrow substrate specificity of the pump is provided by other components of the pump, most likely by the inner membrane component CusA.

  3. Chemical modification of the inner and outer surfaces of Tobacco Mosaic Virus (TMV).

    PubMed

    Bruckman, Michael A; Steinmetz, Nicole F

    2014-01-01

    Viral nanoparticles derived from tobacco mosaic virus (TMV) find applications in various fields. We report the purification and chemical modification of TMV which is a hollow rod-shaped plant viral nanoparticle with modifiable interior and exterior surfaces. We describe methods to isolate TMV from its tobacco plant host for spatially controlled interior and exterior chemical modification and to characterize the resulting TMV hybrid materials.

  4. Structure, activity and interactions of the cysteine deleted analog of tachyplesin-1 with lipopolysaccharide micelle: Mechanistic insights into outer-membrane permeabilization and endotoxin neutralization.

    PubMed

    Saravanan, Rathi; Mohanram, Harini; Joshi, Mangesh; Domadia, Prerna N; Torres, Jaume; Ruedl, Christiane; Bhattacharjya, Surajit

    2012-07-01

    Tachyplesin-1, a disulfide stabilized beta-hairpin antimicrobial peptide, can be found at the hemocytes of horse shoe crab Tachypleus tridentatus. A cysteine deleted linear analog of tachyplesin-1 or CDT (KWFRVYRGIYRRR-NH2) contains a broad spectrum of bactericidal activity with a reduced hemolytic property. The bactericidal activity of CDT stems from selective interactions with the negatively charged lipids including LPS. In this work, CDT-LPS interactions were investigated using NMR spectroscopy, optical spectroscopy and functional assays. We found that CDT neutralized LPS and disrupted permeability barrier of the outer membrane. Zeta potential and ITC studies demonstrated charge compensation and hydrophobic interactions of CDT with the LPS-outer membrane, respectively. Secondary structure of the peptide was probed by CD and FT-IR experiments indicating beta-strands and/or beta-turn conformations in the LPS micelle. An ensemble of structures, determined in LPS micelle by NMR, revealed a beta-hairpin like topology of the CDT peptide that was typified by an extended cationic surface and a relatively shorter segment of hydrophobic region. Interestingly, at the non-polar face, residue R11 was found to be in a close proximity to the indole ring of W2, suggesting a cation-n type interactions. Further, saturation transfer difference (STD) NMR studies established intimate contacts among the aromatic and cationic residues of CDT with the LPS micelle. Fluorescence and dynamic light scattering experiments demonstrated that CDT imparted structural destabilization to the aggregated states of LPS. Collectively, atomic resolution structure and interactions of CDT with the outer membrane-LPS could be exploited for developing potent broad spectrum antimicrobial and anti-sepsis agents.

  5. A study of the minimum wetting rate of isothermal films flowing down on outer surface of vertical pipes

    SciTech Connect

    Koizumi, Yasuo; Ohtake, Hiroyasu; Ueda, Tatsuhiro

    1999-07-01

    The minimum wetting rate (MWR) was investigated experimentally with an isothermal water film flowing down on the outer surface of test pipes arranged vertically. A dry patch was generated by blowing a small air jet onto the film temporally, and observation was made to discriminate whether the dry patch was rewetted or not. The contact angle of the film at the top edge of the dry patch and the amplitude, length and velocity of large waves on the film were measured. The MWR decreased rapidly as the film flowed down and reached a nearly constant value at a position around 0.6 m down from the film inlet. There were large waves on the film. The tendency of the variation of MWR with the distance coincided well with the growth of the amplitude of large waves with the distance. The contact angle at the top edge of the dry patch varied periodically in a range synchronizing with the arrival of the waves. When the contact angle exceeded the maximum advancing contact angle, the rewetting of the dry patch was initiated. The existing correlations where the smooth surface film was assumed considerably over-predicted the MWR. The MWR was properly given by supposing that the dry patch is rewetted when the maximum of the fluctuating dynamic pressure of the film exceeds the upward component of the surface tension corresponding to the maximum advancing contact angle at the top edge of the dry patch.

  6. Surfaces, atmospheres and magnetospheres of the outer planets and their satellites and ring systems: Part X

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Atreya, S.; Castillo, J.; Coll, P.; Mueller-Wodarg, I.; Spilker, L.

    2014-12-01

    This issue contains research work presented during the past year in sessions organized at several international meetings and congresses (such as those of the European Geosciences Union (EGU), the Asia Oceania Geosciences Society (AOGS), the European Planetary Science Congress (EPSC) and others) and focusing on recent observations and models of the atmospheres, magnetospheres and surfaces of the giant planets and their satellites, as well as on their ring systems. Particular attention was devoted this time to the proposals for exploration of the Solar System by spacecraft and probes submitted during the ESA call for science themes for the L2 and L3 missions in 2013.

  7. Surface Structure of Yeast Protoplasts

    PubMed Central

    Streiblová, Eva

    1968-01-01

    The fine structure of the yeast cell wall during protoplast formation was studied by means of phase-contrast microscopy and the freeze-etching technique. The freeze-etching results indicated that at least in some cases the entire wall substance was not removed from the surface of the protoplasts. After a treatment of 30 min to 3 hr with 2% snail enzymes, an innermost thin wall layer as well as remnants of the fibrillar middle layer sometimes could be demonstrated. Images PMID:4867751

  8. Environment on the Surfaces of the Drip Shield and Waste Package Outer Barrier

    SciTech Connect

    T. Wolery

    2005-02-22

    This report provides supporting analysis of the conditions at which an aqueous solution can exist on the drip shield or waste package surfaces, including theoretical underpinning for the evolution of concentrated brines that could form by deliquescence or evaporation, and evaluation of the effects of acid-gas generation on brine composition. This analysis does not directly feed the total system performance assessment for the license application (TSPA-LA), but supports modeling and abstraction of the in-drift chemical environment (BSC 2004 [DIRS 169863]; BSC 2004 [DIRS 169860]). It also provides analyses that may support screening of features, events, and processes, and input for response to regulatory inquiries. This report emphasizes conditions of low relative humidity (RH) that, depending on temperature and chemical conditions, may be dry or may be associated with an aqueous phase containing concentrated electrolytes. Concentrated solutions at low RH may evolve by evaporative concentration of water that seeps into emplacement drifts, or by deliquescence of dust on the waste package or drip shield surfaces. The minimum RH for occurrence of aqueous conditions is calculated for various chemical systems based on current understanding of site geochemistry and equilibrium thermodynamics. The analysis makes use of known characteristics of Yucca Mountain waters and dust from existing tunnels, laboratory data, and relevant information from the technical literature and handbooks.

  9. BmpA is a surface-exposed outer membrane protein of Borrelia burgdorferi

    PubMed Central

    Bryksin, Anton V.; Tomova, Alexandra; Godfrey, Henry P.; Cabello, Felipe C.

    2010-01-01

    BmpA is an immunodominant protein of Borrelia burgdorferi as well as an arthritogenic factor. Rabbit anti-recombinant BmpA (rBmpA) antibodies were raised, characterized by assaying their cross reactivity with rBmpB, rBmpC and rBmpD, then rendered monospecific by absorption with rBmpB. This monospecific reagent reacted only with rBmpA in dot immunobinding and detected a single 39-kDa, pI 5.0, spot on two-dimensional immunoblots. It was used to assess BmpA cellular location. BmpA was present in both detergent-soluble and -insoluble fractions of Triton X-114 phase-partitioned borrelial cells, suggesting it was a membrane lipoprotein. Immunoblots of proteinase K-treated intact and Triton X-100 permeabilized cells showed digestion of BmpA in intact cells, consistent with surface exposure. This exposure was confirmed by dual-label immunofluorescence microscopy of intact and permeabilized borrelial cells. Conservation and surface localization of BmpA in all B. burgdorferi sensu lato genospecies could point to its playing a key role in this organism’s biology and pathobiology. PMID:20546313

  10. Synthetic HI observations of spiral structure in the outer disk in galaxies

    NASA Astrophysics Data System (ADS)

    Khoperskov, Sergey A.; Bertin, Giuseppe

    2015-12-01

    > By means of 3D hydrodynamical simulations, in a separate paper we have discussed the properties of non-axisymmetric density wave trains in the outermost regions of galaxy disks, based on the picture that self-excited global spiral modes in the bright optical stellar disk are accompanied by low-amplitude short trailing wave signals outside corotation; in the gas, such wave trains can penetrate through the outer Lindblad resonance and propagate outwards, forming prominent spiral patterns. In this paper we present the synthetic 21 cm velocity maps expected from simulated models of the outer gaseous disk, focusing on the case when the disk is dominated by a two-armed spiral pattern, but considering also other more complex situations. We discuss some aspects of the spiral pattern in the gaseous periphery of galaxy disks noted in our simulations that might be interesting to compare with specific observed cases.

  11. Implication of an Outer Surface Lipoprotein in Adhesion of Bifidobacterium bifidum to Caco-2 Cells▿

    PubMed Central

    Guglielmetti, Simone; Tamagnini, Isabella; Mora, Diego; Minuzzo, Mario; Scarafoni, Alessio; Arioli, Stefania; Hellman, Jukka; Karp, Matti; Parini, Carlo

    2008-01-01

    We found that the human intestinal isolate Bifidobacterium bifidum MIMBb75 strongly adhered to Caco-2 cells. Proteinase K and lithium chloride treatments showed that proteins play a key role in MIMBb75 adhesion to Caco-2 cells. By studying the cell wall-associated proteins, we identified a surface protein, which we labeled BopA. We purified the protein chromatographically and found that it functioned as an adhesion promoter on Caco-2 cells. In silico analysis of the gene coding for this protein and globomycin experiments showed that BopA is a cysteine-anchored lipoprotein expressed as a precursor polypeptide. A database search indicated that BopA appears to function biologically as an oligopeptide/tripeptide-solute-binding protein in the ABC transport system. We discovered a protein corresponding to BopA and its gene in eight other highly adherent B. bifidum strains. Finally, we found that B. bifidum MIMBb75 and BopA affected the production of interleukin-8 in Caco-2 epithelial cells. BopA is the first protein described to date to be directly involved in the adhesion of bifidobacteria to Caco-2 cells and to show immunomodulatory activity. PMID:18539800

  12. Implication of an outer surface lipoprotein in adhesion of Bifidobacterium bifidum to Caco-2 cells.

    PubMed

    Guglielmetti, Simone; Tamagnini, Isabella; Mora, Diego; Minuzzo, Mario; Scarafoni, Alessio; Arioli, Stefania; Hellman, Jukka; Karp, Matti; Parini, Carlo

    2008-08-01

    We found that the human intestinal isolate Bifidobacterium bifidum MIMBb75 strongly adhered to Caco-2 cells. Proteinase K and lithium chloride treatments showed that proteins play a key role in MIMBb75 adhesion to Caco-2 cells. By studying the cell wall-associated proteins, we identified a surface protein, which we labeled BopA. We purified the protein chromatographically and found that it functioned as an adhesion promoter on Caco-2 cells. In silico analysis of the gene coding for this protein and globomycin experiments showed that BopA is a cysteine-anchored lipoprotein expressed as a precursor polypeptide. A database search indicated that BopA appears to function biologically as an oligopeptide/tripeptide-solute-binding protein in the ABC transport system. We discovered a protein corresponding to BopA and its gene in eight other highly adherent B. bifidum strains. Finally, we found that B. bifidum MIMBb75 and BopA affected the production of interleukin-8 in Caco-2 epithelial cells. BopA is the first protein described to date to be directly involved in the adhesion of bifidobacteria to Caco-2 cells and to show immunomodulatory activity.

  13. Occurrence of Severe Destructive Lyme Arthritis in Hamsters Vaccinated with Outer Surface Protein A and Challenged with Borrelia burgdorferi

    PubMed Central

    Croke, Cindy L.; Munson, Erik L.; Lovrich, Steven D.; Christopherson, John A.; Remington, Monica C.; England, Douglas M.; Callister, Steven M.; Schell, Ronald F.

    2000-01-01

    Arthritis is a frequent and major complication of infection with Borrelia burgdorferi sensu stricto. The antigens responsible for the induction of arthritis are unknown. Here we provide direct evidence that a major surface protein, outer surface protein A (OspA), can induce arthritis. Hamsters were vaccinated with 30, 60, or 120 μg of recombinant OspA (rOspA) in aluminum hydroxide and challenged with B. burgdorferi sensu stricto isolate 297 or C-1-11. Swelling of the hind paws was detected in 100, 100, and 50% of hamsters vaccinated with 30, 60, or 120 μg of rOspA, respectively. In addition, arthritis developed in 57% of hamsters vaccinated with a canine rOspA vaccine after infection with B. burgdorferi sensu stricto. When the canine rOspA vaccine was combined with aluminum hydroxide, all vaccinated hamsters developed arthritis after challenge with B. burgdorferi sensu stricto. Histopathologic examination confirmed the development of severe destructive arthritis in rOspA-vaccinated hamsters challenged with B. burgdorferi sensu stricto. These findings suggest that rOspA vaccines should be modified to eliminate epitopes of OspA responsible for the induction of arthritis. Our results are important because an rOspA vaccine in aluminum hydroxide was approved by the Food and Drug Administration for use in humans. PMID:10639430

  14. Outer planet satellites

    SciTech Connect

    Schenk, P.M. )

    1991-01-01

    Recent findings on the outer-planet satellites are presented, with special consideration given to data on the rheologic properties of ice on icy satellites, the satellite surfaces and exogenic processes, cratering on dead cratered satellites, volcanism, and the interiors of outer-planet satellites. Particular attention is given to the state of Titan's surface and the properties of Triton, Pluto, and Charon. 210 refs.

  15. Correlation of Electrode Kinetics with Surface Structure.

    DTIC Science & Technology

    1980-09-01

    heterogeneous electron-transfer reactions and the molecular structure of the reactant and the electrode-solution interface. Emphasis is being placed on...reactions, (2) the influence of ionic specific adsorption upon the reactivities of outer-sphere pathways, (3) determination of the influence of reactant...specific adsorption to the reorganization energy barrier for electron transfer, and (4) elucidation of the role of reactant- solvent interactions in

  16. The complex structure of stars in the outer galactic disk as revealed by Pan-STARRS1

    SciTech Connect

    Slater, Colin T.; Bell, Eric F.; Schlafly, Edward F.; Martin, Nicolas F.; Rix, Hans-Walter; Morganson, Eric; Peñarrubia, Jorge; Bernard, Edouard J.; Ferguson, Annette M. N.; Martinez-Delgado, David; Wyse, Rosemary F. G.; Burgett, William S.; Chambers, Kenneth C.; Hodapp, Klaus W.; Kaiser, Nicholas; Magnier, Eugene A.; Tonry, John L.; Draper, Peter W.; Metcalfe, Nigel; Price, Paul A.; and others

    2014-08-10

    We present a panoptic view of the stellar structure in the Galactic disk's outer reaches commonly known as the Monoceros Ring, based on data from Pan-STARRS1. These observations clearly show the large extent of the stellar overdensities on both sides of the Galactic disk, extending between b = –25° and b = +35° and covering over 130° in Galactic longitude. The structure exhibits a complex morphology with both stream-like features and a sharp edge to the structure in both the north and the south. We compare this map to mock observations of two published simulations aimed at explaining such structures in the outer stellar disk, one postulating an origin as a tidal stream and the other demonstrating a scenario where the disk is strongly distorted by the accretion of a satellite. These morphological comparisons of simulations can link formation scenarios to observed structures, such as demonstrating that the distorted-disk model can produce thin density features resembling tidal streams. Although neither model produces perfect agreement with the observations—the tidal stream predicts material at larger distances that is not detected while in the distorted disk model, the midplane is warped to an excessive degree—future tuning of the models to accommodate these latest data may yield better agreement.

  17. Allergenic compounds on the inner and outer surfaces of natural latex gloves: MALDI mass spectrometry and imaging of proteinous allergens.

    PubMed

    Marchetti-Deschmann, Martina; Allmaier, Günter

    2009-01-01

    Natural latex gloves are the cause of a severe health problem to an increasing number of healthcare workers or patients due to the presence of protein allergens as Hevein or Rubber Elongation Factor (REF). One of the most challenging problems is the in situ localization of theses allergens in, e.g. gloves, to estimate the allergenic potential of the latex material. A sample preparation protocol applying a binary matrix-assisted laser desorption/ionization(MALDI) matrix containing alpha-cyano-4-hydroxy cinnamic acid (CHCA) and 2,5-dihydroxy benzoic acid (DHB) on trifluoro acetic acid (TFA) etched latex glove surfaces allowed the direct determination (exact molecular weight) of Hevein, REF and a truncated form of REF (tREF) within nine different brands of natural latex gloves by means of MALDI-TOF-MS in the linear mode. MALDI mass spectrometry demonstrated that Hevein, tREF and REF were present on the inner surfaces (in direct contact with the skin) of many, but not all, investigated gloves without any prior extraction procedure. Additionally, different isoforms of the allergen Hevein were detected (exhibiting ragged C-termini). tREF and REF could always be detected beside each other, but were not observed on every latex glove sample, which contained Hevein. It was also demonstrated that there is a significant difference in terms of proteins and polymers between inner and outer surfaces of gloves, which helps to explain the different allergenic potential of these.MALDI imaging allowed for the first time the unambiguous localization of all three allergens in parallel and showed that Hevein was present on 36% of the investigated area of a latex glove with a certain localization, whereupon, tREF and REF were only found on 25% of the investigated material.

  18. Pseudomonas aeruginosa Outer Membrane Vesicles Triggered by Human Mucosal Fluid and Lysozyme Can Prime Host Tissue Surfaces for Bacterial Adhesion

    PubMed Central

    Metruccio, Matteo M. E.; Evans, David J.; Gabriel, Manal M.; Kadurugamuwa, Jagath L.; Fleiszig, Suzanne M. J.

    2016-01-01

    Pseudomonas aeruginosa is a leading cause of human morbidity and mortality that often targets epithelial surfaces. Host immunocompromise, or the presence of indwelling medical devices, including contact lenses, can predispose to infection. While medical devices are known to accumulate bacterial biofilms, it is not well understood why resistant epithelial surfaces become susceptible to P. aeruginosa. Many bacteria, including P. aeruginosa, release outer membrane vesicles (OMVs) in response to stress that can fuse with host cells to alter their function. Here, we tested the hypothesis that mucosal fluid can trigger OMV release to compromise an epithelial barrier. This was tested using tear fluid and corneal epithelial cells in vitro and in vivo. After 1 h both human tear fluid, and the tear component lysozyme, greatly enhanced OMV release from P. aeruginosa strain PAO1 compared to phosphate buffered saline (PBS) controls (∼100-fold). Transmission electron microscopy (TEM) and SDS-PAGE showed tear fluid and lysozyme-induced OMVs were similar in size and protein composition, but differed from biofilm-harvested OMVs, the latter smaller with fewer proteins. Lysozyme-induced OMVs were cytotoxic to human corneal epithelial cells in vitro and murine corneal epithelium in vivo. OMV exposure in vivo enhanced Ly6G/C expression at the corneal surface, suggesting myeloid cell recruitment, and primed the cornea for bacterial adhesion (∼4-fold, P < 0.01). Sonication disrupted OMVs retained cytotoxic activity, but did not promote adhesion, suggesting the latter required OMV-mediated events beyond cell killing. These data suggest that mucosal fluid induced P. aeruginosa OMVs could contribute to loss of epithelial barrier function during medical device-related infections. PMID:27375592

  19. Structure of the colcemid-treated PtK1 kinetochore outer plate as determined by high voltage electron microscopic tomography

    PubMed Central

    1993-01-01

    High voltage electron microscopic tomography was used to determine the organization of the kinetochore plate and its attachment to the underlying chromosome. Six reconstructions were computed from thick sections of Colcemid-treated PtK1 cells and analyzed by a number of computer graphics methods including extensive thin slicing, three- dimensional masking, and volume rendering. When viewed en-face the kinetochore plate appeared to be constructed from a scaffold of numerous 10-20-nm thick fibers or rods. Although the fibers exhibited regions of parallel alignment and hints of a lattice, they were highly variable in length, orientation and spacing. When viewed in stereo, groups of these fibers were often seen oriented in different directions at different depths to give an overall matted appearance to the structure. When viewed "on edge," the plate was 35-40 nm thick, and in thin slices many regions were tripartite with electron-opaque domains, separated by a more translucent middle layer, forming the inner and outer plate boundaries. These domains were joined at irregular intervals. In some slices, each domain appeared as a linear array of 10- 20-nm dots or rods embedded in a less electron-opaque matrix, and adjacent dots within or between domains often appeared fused to form larger blocks. The plate was connected to the underlying chromosome by less densely arrayed 10-20-nm thick fibers that contacted the chromosome-facing (i.e., inner) surface of the plate in numerous patches. These patches tended to be arrayed in parallel rows perpendicular to the long axis of the chromosome. In contrast to connecting fibers, corona fibers were more uniformly distributed over the cytoplasmic-facing (i.e., outer) surface of the plate. When large portions of the reconstructions were viewed, either en-face or in successive slices parallel to the long axis of the chromosome, the edges of the plate appeared splayed into multiple "fingers" that partly encircled the primary constriction

  20. Structure of the colcemid-treated PtK1 kinetochore outer plate as determined by high voltage electron microscopic tomography.

    PubMed

    McEwen, B F; Arena, J T; Frank, J; Rieder, C L

    1993-01-01

    High voltage electron microscopic tomography was used to determine the organization of the kinetochore plate and its attachment to the underlying chromosome. Six reconstructions were computed from thick sections of Colcemid-treated PtK1 cells and analyzed by a number of computer graphics methods including extensive thin slicing, three-dimensional masking, and volume rendering. When viewed en-face the kinetochore plate appeared to be constructed from a scaffold of numerous 10-20-nm thick fibers or rods. Although the fibers exhibited regions of parallel alignment and hints of a lattice, they were highly variable in length, orientation and spacing. When viewed in stereo, groups of these fibers were often seen oriented in different directions at different depths to give an overall matted appearance to the structure. When viewed "on edge," the plate was 35-40 nm thick, and in thin slices many regions were tripartite with electron-opaque domains, separated by a more translucent middle layer, forming the inner and outer plate boundaries. These domains were joined at irregular intervals. In some slices, each domain appeared as a linear array of 10-20-nm dots or rods embedded in a less electron-opaque matrix, and adjacent dots within or between domains often appeared fused to form larger blocks. The plate was connected to the underlying chromosome by less densely arrayed 10-20-nm thick fibers that contacted the chromosome-facing (i.e., inner) surface of the plate in numerous patches. These patches tended to be arrayed in parallel rows perpendicular to the long axis of the chromosome. In contrast to connecting fibers, corona fibers were more uniformly distributed over the cytoplasmic-facing (i.e., outer) surface of the plate. When large portions of the reconstructions were viewed, either en-face or in successive slices parallel to the long axis of the chromosome, the edges of the plate appeared splayed into multiple "fingers" that partly encircled the primary constriction

  1. Mechanical development of an alternative set of actuators for the LMT/GTM primary surface outer rings: also useful to replace the interim actuators

    NASA Astrophysics Data System (ADS)

    Arteaga-Magaña, César; Hernández-Rebollar, José Luis; Lazaro-Hernandez, Josefina; Montalvo, Gabriela; Hernández, Ernesto; Ramos, Eduardo

    2016-07-01

    The Large Millimeter Telescope/Gran Telescopio Milimétrico (LMT/GTM) is the world's largest, single dish radio telescope for observations in millimeter wavelengths. 180 segments arranged in 5 rings form the reflector's active surface. Each segment supported by four linear actuators. The current interim actuators fill the 3 inner rings only, while allowing the completion of the rest of the surface and the installation of the final actuators. A new modification had, to be made in order to reduce the actuators size for the outer rings and also to improve their performance. The project needs to install at least another 336 actuators for the 2 outer rings of segments. However, the room for those actuators has reduced room underneath the outer rings. Initially, the present development was intended as alternative for the antenna's outer rings, but as time went by, we discovered the advantage of installing them as replacements of the current interim actuators, since a system of final actuators for the antenna's outer rings is already under test and construction. Hence, this new mechanical design of compact geometry is not only capable of fitting in the reduced space, but also of replacing the interim actuators in the inner rings.

  2. Homochiral magnetic structures at surfaces

    NASA Astrophysics Data System (ADS)

    Blugel, Stefan

    2008-03-01

    Electrons propagating in the vicinity of inversion asymmetric environments such as surfaces, interfaces, ultrathin films or nanostructures can give rise to an important antisymmetric exchange interaction, known as Dzyaloshinskii-Moriya (DM) interaction. Although this interaction, favoring spatially rotating spin structures, is in principle known for about 50 years, its consequences for the magnetic structure in low-dimensional magnets remained nearly unexplored and has been basically overlooked the past 20 years. Theoretical models considering isotropic exchange, magnetic anisotropy and the DM interaction display a rich phase diagram of complex magnetic phases on different length scales depending on the strength of the different contributions. Today, it is unknown how large is the strength of the DM interaction. Is this just a small perturbation to the collinear uniaxial ferro- or antiferromagnetic state, determined by exchange and magnetic anisotropy or is it strong enough to create new phases which had been overlooked? Surprisingly little first-principles calculations deal with the DM interaction. There might be several reasons for this: The investigation requires the treatment of non-collinear magnetism together with spin-orbit interactions of large magnetic structures in low-symmetry situations. We developed a perturbative strategy implemented into the FLAPW code FLEUR which can cope with this challenge. We show by first- principles calculations based on the vector-spin density formulation of the density- functional theory (DFT) that that there are circumstances whre the DM interaction is indeed sufficiently strong to compete with the interactions that favor collinear spin alignment causing magnetic phases of unique handedness e.g.homochiral magnetic phases such as a left rotation cycloidal spiral in Mn on W(110) [M. Bode et al., Nature 447, 190 (2007)] or favoring magnetic domain-walls with unique turning sense.

  3. Structural model of the outer vestibule and selectivity filter of the Shaker voltage-gated K+ channel.

    PubMed

    Durell, S R; Guy, H R

    1996-01-01

    A new generation of structural models were developed of the outer vestibule and ion-selective portion of the voltage-gated Shaker K+ channel. Some features of these models are similar to those that we have developed previously [Durrel S. R. and Guy H. R. (1992) Biophys. J. 62, 238-250; Guy H. R. (1990) In Monovalent Cations in Biological Systems (Pasternak C. A., Ed.), pp. 31-58, CRC Press, Boca Raton, FL; Guy H. R. and Durell S. R. (1994) In Molecular Evolution of Physiological processes (Fambrough D., Ed.), pp. 197-212, The Rockefeller University Press, NY; Guy H. R. and Durell S. R. (1995) In Ion Channels and Genetic Diseases (Dawson D., Ed.), pp. 1-16, The Rockefeller University Press, NY] and other features were modified to make the models more consistent with recent experimental findings. The first part of the P segment is postulated, as always, to form a short alpha helix that spans only the outer portion of the membrane. The helix is tilted so that its C-terminal is nearer the pore than its N-terminal. The latter part of the P segment, P2, is postulated to have a relatively elongated conformation that is positioned approximately parallel to the axis of the pore. Four of the P2 segments assemble to form an ion-selective region that has two narrow regions; one formed by the Y445 side-chains at the outer entrance of the pore and one formed by the backbone of the T442 residues near the innermost part of the P segments. The S6 segment is postulated to form two alpha helices. The first S6 helix packs next to the P segments in our models. The NMR structures of two scorpion toxins, charybdotoxin and agitoxin 2, have been docked into the models of the outer vestibules. The shape of the outer vestibule has been modeled so that specific toxin-channel residue-residue interactions correspond to those that have been identified experimentally.

  4. Modulation of bacterial outer membrane vesicle production by envelope structure and content.

    PubMed

    Schwechheimer, Carmen; Kulp, Adam; Kuehn, Meta J

    2014-12-21

    Vesiculation is a ubiquitous secretion process of Gram-negative bacteria, where outer membrane vesicles (OMVs) are small spherical particles on the order of 50 to 250 nm composed of outer membrane (OM) and lumenal periplasmic content. Vesicle functions have been elucidated in some detail, showing their importance in virulence factor secretion, bacterial survival, and biofilm formation in pathogenesis. Furthermore, OMVs serve as an envelope stress response, protecting the secreting bacteria from internal protein misfolding stress, as well as external envelope stressors. Despite their important functional roles very little is known about the regulation and mechanism of vesicle production. Based on the envelope architecture and prior characterization of the hypervesiculation phenotypes for mutants lacking the lipoprotein, Lpp, which is involved in the covalent OM-peptidoglycan (PG) crosslinks, it is expected that an inverse relationship exists between OMV production and PG-crosslinked Lpp. In this study, we found that subtle modifications of PG remodeling and crosslinking modulate OMV production, inversely correlating with bound Lpp levels. However, this inverse relationship was not found in strains in which OMV production is driven by an increase in "periplasmic pressure" resulting from the accumulation of protein, PG fragments, or lipopolysaccharide. In addition, the characterization of an nlpA deletion in backgrounds lacking either Lpp- or OmpA-mediated envelope crosslinks demonstrated a novel role for NlpA in envelope architecture. From this work, we conclude that OMV production can be driven by distinct Lpp concentration-dependent and Lpp concentration-independent pathways.

  5. Agglutination of like-charged red blood cells induced by binding of beta2-glycoprotein I to outer cell surface.

    PubMed

    Lokar, Marusa; Urbanija, Jasna; Frank, Mojca; Hägerstrand, Henry; Rozman, Blaz; Bobrowska-Hägerstrand, Malgorzata; Iglic, Ales; Kralj-Iglic, Veronika

    2008-08-01

    Plasma protein-mediated attractive interaction between membranes of red blood cells (RBCs) and phospholipid vesicles was studied. It is shown that beta(2)-glycoprotein I (beta(2)-GPI) may induce RBC discocyte-echinocyte-spherocyte shape transformation and subsequent agglutination of RBCs. Based on the observed beta(2)-GPI-induced RBC cell shape transformation it is proposed that the hydrophobic portion of beta(2)-GPI molecule protrudes into the outer lipid layer of the RBC membrane and increases the area of this layer. It is also suggested that the observed agglutination of RBCs is at least partially driven by an attractive force which is of electrostatic origin and depends on the specific molecular shape and internal charge distribution of membrane-bound beta(2)-GPI molecules. The suggested beta(2)-GPI-induced attractive electrostatic interaction between like-charged RBC membrane surfaces is qualitatively explained by using a simple mathematical model within the functional density theory of the electric double layer, where the electrostatic attraction between the positively charged part of the first domains of bound beta(2)-GPI molecules and negatively charged glycocalyx of the adjacent RBC membrane is taken into account.

  6. Effect of dDAVP on basolateral cell surface water permeability in the outer medullary collecting duct.

    PubMed

    Solenov, E I; Nesterov, V V; Baturina, G S; Khodus, G R; Ivanova, L N

    2003-11-01

    We report a novel approach for assessing the volume of living cells which allows quantitative, high-resolution characterization of dynamic changes in cell volume while retaining the cell functionality. The aim of this study was to evaluate the short-term effect of vasopressin on basolateral cell surface water permeability in the outer medullary collecting duct (OMCD). The permeability of the basolateral cell membrane was determined in the tubules where the apical membrane was blocked with oil injected into the lumen. The apparent coefficient of water permeability (Pf) was evaluated by measuring the cell swelling after the step from hypertonic to isotonic medium (600 mosm to 300 mosm). Desmopressin (dDAVP) induced an increase of the basolateral Pf from 113.7+/-8.5 microm/s in control cells to 186.6+/-11.4 mum/s in micro-dissected fragments of the OMCD incubated in vitro (10(-7) M dDAVP, 30 min at 37 degrees C) (P<0.05). Mercury caused pronounced inhibition of basolateral water permeability (26.0+/-6.9 microm/s; P<0.05). The effect of mercury (1.0 mM HgCl2) was reversible: after washing the fragments with PBS for 20 min, Pf values were restored to the control levels (125.0+/-9.5 microm/s). The results of the study indicate the existence of a mechanism controlling the osmotic water permeability of the basolateral cell membrane in the OMCD epithelium.

  7. Enteric YaiW Is a Surface-Exposed Outer Membrane Lipoprotein That Affects Sensitivity to an Antimicrobial Peptide

    PubMed Central

    Arnold, Markus F. F.; Caro-Hernandez, Paola; Tan, Karen; Runti, Giulia; Wehmeier, Silvia; Scocchi, Marco; Doerrler, William T.; Ferguson, Gail P.

    2014-01-01

    yaiW is a previously uncharacterized gene found in enteric bacteria that is of particular interest because it is located adjacent to the sbmA gene, whose bacA ortholog is required for Sinorhizobium meliloti symbiosis and Brucella abortus pathogenesis. We show that yaiW is cotranscribed with sbmA in Escherichia coli and Salmonella enterica serovar Typhi and Typhimurium strains. We present evidence that the YaiW is a palmitate-modified surface exposed outer membrane lipoprotein. Since BacA function affects the very-long-chain fatty acid (VLCFA) modification of S. meliloti and B. abortus lipid A, we tested whether SbmA function might affect either the fatty acid modification of the YaiW lipoprotein or the fatty acid modification of enteric lipid A but found that it did not. Interestingly, we did observe that E. coli SbmA suppresses deficiencies in the VLCFA modification of the lipopolysaccharide of an S. meliloti bacA mutant despite the absence of VLCFA in E. coli. Finally, we found that both YaiW and SbmA positively affect the uptake of proline-rich Bac7 peptides, suggesting a possible connection between their cellular functions. PMID:24214946

  8. Comparison of Protection in Rabbits against Host-Adapted and Cultivated Borrelia burgdorferi following Infection-Derived Immunity or Immunization with Outer Membrane Vesicles or Outer Surface Protein A

    PubMed Central

    Shang, Ellen S.; Champion, Cheryl I.; Wu, Xiao-Yang; Skare, Jonathan T.; Blanco, David R.; Miller, James N.; Lovett, Michael A.

    2000-01-01

    In this study, infection-derived immunity in the rabbit model of Lyme disease was compared to immunity following immunization with purified outer membrane vesicles (OMV) isolated from Borrelia burgdorferi and recombinant outer surface protein A (OspA). Immunization of rabbits with OMV isolated from virulent strain B31 and its avirulent derivative B313 (lacking OspA and DbpA) conferred highly significant protection against intradermal injection with 6 × 104 in vitro-cultivated virulent B. burgdorferi. This is the first demonstration of protective immunogenicity induced by OMV. While immunization with OspA and avirulent B31 OMV provided far less protection against this challenge, rabbits with infection-derived immunity were completely protected. Protection against host-adapted B. burgdorferi was assessed by implantation of skin biopsies taken from rabbit erythema migrans (a uniquely rich source of B. burgdorferi in vertebrate tissue) containing up to 108 spirochetes. While all of the OMV- and OspA-immunized rabbits were fully susceptible to skin and disseminated infection, rabbits with infection-derived immunity were completely protected. Analysis of the antibody responses to outer membrane proteins, including DbpA, OspA, and OspC, suggests that the remarkable protection exhibited by the infection-immune rabbits is due to antibodies directed at antigens unique to or markedly up-regulated in host-adapted B. burgdorferi. PMID:10858236

  9. Crystal Structures of the Outer Membrane Domain of Intimin and Invasin from Enterohemorrhagic E. coli and Enteropathogenic Y. pseudotuberculosis

    SciTech Connect

    Fairman, James W.; Dautin, Nathalie; Wojtowicz, Damian; Liu, Wei; Noinaj, Nicholas; Barnard, Travis J.; Udho, Eshwar; Przytycka, Teresa M.; Cherezov, Vadim; Buchanan, Susan K.

    2012-12-10

    Intimins and invasins are virulence factors produced by pathogenic Gram-negative bacteria. They contain C-terminal extracellular passenger domains that are involved in adhesion to host cells and N-terminal {beta} domains that are embedded in the outer membrane. Here, we identify the domain boundaries of an E. coli intimin {beta} domain and use this information to solve its structure and the {beta} domain structure of a Y. pseudotuberculosis invasin. Both {beta} domain structures crystallized as monomers and reveal that the previous range of residues assigned to the {beta} domain also includes a protease-resistant domain that is part of the passenger. Additionally, we identify 146 nonredundant representative members of the intimin/invasin family based on the boundaries of the highly conserved intimin and invasin {beta} domains. We then use this set of sequences along with our structural data to find and map the evolutionarily constrained residues within the {beta} domain.

  10. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    SciTech Connect

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-10-27

    Disorder among surface spins largely dominates the magnetic response of ultrafine magnetic particle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8±0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and becomes frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins with bulk coordination. Monte Carlo simulations of a hollow particle reproducing the experimental morphology corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Lastly, our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.

  11. State of the art of compact optical 3D profile measurement apparatuses: from outer surface to inner surface measurement

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Toru; Wakayama, Toshitaka

    2013-06-01

    This paper is not an original paper, but a review paper passed on our previous papers. We have been developing a few apparatuses for 2D and/or 3D profile measurement because these systems, especially 3D profiling systems, have become indispensable tools in manufacturing industry. However, in surface profile measurement, conventional systems have several short comings including being very large in size and heavy in weight. Therefore we propose to realize a compact portable apparatus on the basis of pattern projection method using a single MEMS mirror scanning. On the other hand, in the case of inner profile measurement for pipes or tubes, we propose to use optical section method by means of disk beam produced by a conical mirror. In these systems development of elements and devices such as a MEMS mirror and/or cone mirror play important role to apply our fundamental principles to practical apparatuses. We introduce the state of the art of these systems including commercialized products for practical purpose.

  12. Structurally Complex Surface of Europa

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a composite of two images of Jupiter's icy moon Europa obtained from a range of 2119 miles (3410 kilometers) by the Galileo spacecraft during its fourth orbit around Jupiter and its first close pass of Europa. The mosaic spans 11 miles by 30 miles (17 km by 49 km) and shows features as small as 230 feet (70 meters) across. This mosaic is the first very high resolution image data obtained of Europa, and has a resolution more than 50 times better than the best Voyager coverage and 500 times better than Voyager coverage in this area. The mosaic shows the surface of Europa to be structurally complex. The sun illuminates the scene from the right, revealing complex overlapping ridges and fractures in the upper and lower portions of the mosaic, and rugged, more chaotic terrain in the center. Lateral faulting is revealed where ridges show offsets along their lengths (upper left of the picture). Missing ridge segments indicate obliteration of pre-existing materials and emplacement of new terrain (center of the mosaic). Only a small number of impact craters can be seen, indicating the surface is not geologically ancient.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  13. Outer Surface Protein OspC Is an Antiphagocytic Factor That Protects Borrelia burgdorferi from Phagocytosis by Macrophages

    PubMed Central

    Carrasco, Sebastian E.; Troxell, Bryan; Yang, Youyun; Brandt, Stephanie L.; Li, Hongxia; Sandusky, George E.; Condon, Keith W.

    2015-01-01

    Outer surface protein C (OspC) is one of the major lipoproteins expressed on the surface of Borrelia burgdorferi during tick feeding and the early phase of mammalian infection. OspC is required for B. burgdorferi to establish infection in both immunocompetent and SCID mice and has been proposed to facilitate evasion of innate immune defenses. However, the exact biological function of OspC remains elusive. In this study, we showed that the ospC-deficient spirochete could not establish infection in NOD-scid IL2rγnull mice that lack B cells, T cells, NK cells, and lytic complement. The ospC mutant also could not establish infection in anti-Ly6G-treated SCID and C3H/HeN mice (depletion of neutrophils). However, depletion of mononuclear phagocytes at the skin site of inoculation in SCID and C3H/HeN mice allowed the ospC mutant to establish infection in vivo. In phagocyte-depleted mice, the ospC mutant was able to colonize the joints and triggered neutrophilia during dissemination. Furthermore, we found that phagocytosis of green fluorescent protein (GFP)-expressing ospC mutant spirochetes by murine peritoneal macrophages and human THP-1 macrophage-like cells, but not in PMN-HL60, was significantly higher than parental wild-type B. burgdorferi strains, suggesting that OspC has an antiphagocytic property. In addition, overproduction of OspC in spirochetes also decreased the uptake of spirochetes by murine peritoneal macrophages. Together, our findings provide evidence that mononuclear phagocytes play a key role in clearance of the ospC mutant and that OspC promotes spirochetes' evasion of macrophages during early Lyme borreliosis. PMID:26438793

  14. THE STRUCTURE AND STELLAR CONTENT OF THE OUTER DISKS OF GALAXIES: A NEW VIEW FROM THE Pan-STARRS1 MEDIUM DEEP SURVEY

    SciTech Connect

    Zheng, Zheng; Thilker, David A.; Heckman, Timothy M.; Meurer, Gerhardt R.; Burgett, W. S.; Huber, M. E.; Kaiser, N.; Magnier, E. A.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.; Chambers, K. C.; Metcalfe, N.; Price, P. A.

    2015-02-20

    We present the results of an analysis of Pan-STARRS1 Medium Deep Survey multi-band (grizy) images of a sample of 698 low-redshift disk galaxies that span broad ranges in stellar mass, star-formation rate, and bulge/disk ratio. We use population synthesis spectral energy distribution fitting techniques to explore the radial distribution of the light, color, surface mass density, mass/light ratio, and age of the stellar populations. We characterize the structure and stellar content of the galaxy disks out to radii of about twice Petrosian r {sub 90}, beyond which the halo light becomes significant. We measure normalized radial profiles for sub-samples of galaxies in three bins each of stellar mass and concentration. We also fit radial profiles to each galaxy. The majority of galaxies have down-bending radial surface brightness profiles in the bluer bands with a break radius at roughly r {sub 90}. However, they typically show single unbroken exponentials in the reddest bands and in the stellar surface mass density. We find that the mass/light ratio and stellar age radial profiles have a characteristic 'U' shape. There is a good correlation between the amplitude of the down-bend in the surface brightness profile and the rate of the increase in the M/L ratio in the outer disk. As we move from late- to early-type galaxies, the amplitude of the down-bend and the radial gradient in M/L both decrease. Our results imply a combination of stellar radial migration and suppression of recent star formation can account for the stellar populations of the outer disk.

  15. TonB induces conformational changes in surface-exposed loops of FhuA, outer membrane receptor of Escherichia coli.

    PubMed

    James, Karron J; Hancock, Mark A; Moreau, Violaine; Molina, Franck; Coulton, James W

    2008-10-01

    FhuA, outer membrane receptor of Escherichia coli, transports hydroxamate-type siderophores into the periplasm. Cytoplasmic membrane-anchored TonB transduces energy to FhuA to facilitate siderophore transport. Because the N-terminal cork domain of FhuA occludes the C-terminal beta-barrel lumen, conformational changes must occur to enable siderophore passage. To localize conformational changes at an early stage of the siderophore transport cycle, four anti-FhuA monoclonal antibodies (mAbs) were purified to homogeneity, and the epitopes that they recognize were determined by phage display. We mapped continuous and discontinuous epitopes to outer surface-exposed loops 3, 4, and 5 and to beta-barrel strand 14. To probe for conformational changes of FhuA, surface plasmon resonance measured mAb binding to FhuA in its apo- and siderophore-bound states. Changes in binding kinetics were observed for mAbs whose epitopes were mapped to outer surface-exposed loops. Further, we measured mAb binding in the absence and presence of TonB. After forming immobilized FhuA-TonB complexes, changes in kinetics of mAb binding to FhuA were even more pronounced compared with kinetics of binding in the absence of TonB. Measurement of extrinsic fluorescence of the dye MDCC conjugated to residue 336 in outer surface-exposed loop 4 revealed 33% fluorescence quenching upon ferricrocin binding and up to 56% quenching upon TonB binding. Binding of mAbs to apo- and ferricrocin-bound FhuA complemented by fluorescence spectroscopy studies showed that their cognate epitopes on loops 3, 4, and 5 undergo conformational changes upon siderophore binding. Further, our data demonstrate that TonB binding promotes conformational changes in outer surface-exposed loops of FhuA.

  16. Lunar near-surface structure

    NASA Technical Reports Server (NTRS)

    Cooper, M. R.; Kovach, R. L.; Watkins, J. S.

    1974-01-01

    Seismic refraction data obtained at the Apollo 14, 16, and 17 landing sites permit a compressional wave velocity profile of the lunar near surface to be derived. Beneath the regolith at the Apollo 14 Fra Mauro site and the Apollo 16 Descartes site is material with a seismic velocity of about 300 m/sec, believed to be brecciated material or impact-derived debris. Considerable detail is known about the velocity structure at the Apollo 17 Taurus-Littrow site. Seismic velocities of 100, 327, 495, 960, and 4700 m/sec are observed. The depth to the top of the 4700-m/sec material is 1385 m, compatible with gravity estimates for the thickness of mare basaltic flows, which fill the Taurus-Littrow valley. The observed magnitude of the velocity change with depth and the implied steep velocity-depth gradient of more than 2 km/sec/km are much larger than have been observed on compaction experiments on granular materials and preclude simple cold compaction of a fine-grained rock powder to thicknesses of the order of kilometers.

  17. Structure and Mechanics of the Outer Accretionary Wedge and Shallow Seismogenic Zone off Southern Washington from new Seismic Reflection and Multibeam Imaging

    NASA Astrophysics Data System (ADS)

    Tobin, H. J.; Holbrook, W.; Beeson, J. W.

    2012-12-01

    At the Cascadia subduction zone convergent margin off southern Washington and northern Oregon, the young, warm incoming Juan de Fuca plate is blanketed by a 2 to 3 kilometer-thick incoming plate sediment cover. Best available estimates for the extent of the potential seismogenic zone during megathrust earthquakes suggest that it lies entirely offshore and is the basal décollement fault to the accretionary wedge. It extends from a position beneath the outer continental shelf all the way to the deformation front (trench). In July 2012, a grid of 100-120 km long lines of new multi-channel seismic reflection imaging was carried out off Grays Harbor, Washington on the R/V Marcus Langseth, known as the COAST (Cascadia Open-Access Seismic Transects) project. The seafloor was simultaneously mapped with multibeam swath bathymetry and sonar backscatter imaging. We present and interpret a combination of bathymetry and both prestack-depth-migrated and poststack-time-migrated reflection images to address the structure, evolution, inferred mechanics, state of stress and pore fluid conditions at and around the plate boundary decollement. Off southern Washington, the lower continental slope and outer wedge is marked by a zone of dominantly landward-vergent thrust imbrication and shortening of the incoming sedimentary section, the result of rapid build-out of the accretionary complex into thick Pleistocene sediment accumulations. The landward-vergent zone is marked by a near-zero surface taper angle, and in some cases negative (landward deepening) surface slope. The basal plate boundary also dips very shallowly beneath the outer wedge, producing a nearly taperless wedge 40-80 kilometers wide. Individual thrust sheets and hanging wall fault-bend folds are widely separated and nearly buried in piggyback slope basin turbidite sediments and mass transport complexes. Between some of the thrusts, kilometer-wide zones of nearly undeformed strata are preserved. Virtually all of the

  18. The role of outer surface/inner bulk Brønsted acidic sites in the adsorption of a large basic molecule (simazine) on H-Y zeolite.

    PubMed

    Sannino, Filomena; Pansini, Michele; Marocco, Antonello; Bonelli, Barbara; Garrone, Edoardo; Esposito, Serena

    2015-11-21

    The simple means adopted for investigating H-Y zeolite acidity in water is the pH-dependence of the amount of a basic molecule adsorbed under isochoric conditions, a technique capable of yielding, under equilibrium conditions, an estimate of the pKa value of the involved acidic centres: the behaviour with temperature of adsorbed amounts yields instead some information on thermodynamics. Simazine (Sim, 2-chloro-4,6-bis(ethylamino)-s-triazine) was chosen as an adsorbate because its transverse dimension (7.5 Å) is close to the opening of the supercage in the faujasite structure of H-Y (7.4 Å). In short term measurements, Sim adsorption at 25 °C occurs only at the outer surface of H-Y particles. Two types of mildly acidic centres are present (with pKaca. 7 and ca. 8, respectively) and no strong one is observed. Previous adsorption of ammonia from the gas phase discriminates between the two. The former survives, and shows features common with the silanols of amorphous silica. The latter is suppressed: because of this and other features distinguishing this site from silanol species (e.g. the formation of dimeric Sim2H(+) species, favoured by coverage and unfavoured by temperatures of adsorption higher than ambient temperature) a candidate is an Al based site. We propose a Lewis centre coordinating a water molecule, exhibiting acidic properties. This acidic water molecule can be replaced by the stronger base ammonia, also depleting inner strong Brønsted sites. A mechanism for the generation of the two sites from surface Brønsted species is proposed. Long term adsorption measurements at 25 °C already show the onset of the interaction with inner strongly acidic Brønsted sites: because of its size, activation is required for Sim to pass the supercage openings and reach inner acidic sites. When adsorption is run at 40-50 °C, uptake is much larger and increases with temperature. Isochoric measurements suggest a pKa value of ca. 3 compatible with its marked acidic

  19. Surface and guided waves on structured surfaces and inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Polanco, Javier

    Surface and guided waves on structured surfaces and inhomogeneous media studies the propagation of waves in systems with spatially varying parameters. In the rainbow case (chapter 1), the dielectric constant changes with coordinates. In the cylinder case: boundary and the metal (chapter 2), it is a curved surface. Finally, in the last case (chapter 3), the dielectric constant changes in z-direction.

  20. The crystal structure of the outer membrane protein VceC from the bacterial pathogen Vibrio cholerae at 1.8 A resolution.

    PubMed

    Federici, Luca; Du, Dijun; Walas, Fabien; Matsumura, Hiroyoshi; Fernandez-Recio, Juan; McKeegan, Kenneth S; Borges-Walmsley, M Ines; Luisi, Ben F; Walmsley, Adrian R

    2005-04-15

    Multidrug resistance in Gram-negative bacteria arises in part from the activities of tripartite drug efflux pumps. In the pathogen Vibrio cholerae, one such pump comprises the inner membrane proton antiporter VceB, the periplasmic adaptor VceA, and the outer membrane channel VceC. Here, we report the crystal structure of VceC at 1.8 A resolution. The trimeric VceC is organized in the crystal lattice within laminar arrays that resemble membranes. A well resolved detergent molecule within this array interacts with the transmembrane beta-barrel domain in a fashion that may mimic protein-lipopolysaccharide contacts. Our analyses of the external surfaces of VceC and other channel proteins suggest that different classes of efflux pumps have distinct architectures. We discuss the implications of these findings for mechanisms of drug and protein export.

  1. Crystal Structure of Escherichia coli CusC, the Outer Membrane Component of a Heavy Metal Efflux Pump

    PubMed Central

    Indic, Mridhu; van den Berg, Bert

    2011-01-01

    Background While copper has essential functions as an enzymatic co-factor, excess copper ions are toxic for cells, necessitating mechanisms for regulating its levels. The cusCBFA operon of E. coli encodes a four-component efflux pump dedicated to the extrusion of Cu(I) and Ag(I) ions. Methodology/Principal Findings We have solved the X-ray crystal structure of CusC, the outer membrane component of the Cus heavy metal efflux pump, to 2.3 Å resolution. The structure has the largest extracellular opening of any outer membrane factor (OMF) protein and suggests, for the first time, the presence of a tri-acylated N-terminal lipid anchor. Conclusions/Significance The CusC protein does not have any obvious features that would make it specific for metal ions, suggesting that the narrow substrate specificity of the pump is provided by other components of the pump, most likely by the inner membrane component CusA. PMID:21249122

  2. Tuning Wettability and Adhesion of Structured Surfaces

    NASA Astrophysics Data System (ADS)

    Badge, Ila

    Structured surfaces with feature size ranging from a few micrometers down to nanometers are of great interest in the applications such as design of anti-wetting surfaces, tissue engineering, microfluidics, filtration, microelectronic devices, anti-reflective coatings and reversible adhesives. A specific surface property demands particular roughness geometry along with suitable surface chemistry. Plasma Enhanced Chemical Vapor Deposition (PECVD) is a technique that offers control over surface chemistry without significantly affecting the roughness and thus, provides a flexibility to alter surface chemistry selectively for a given structured surface. In this study, we have used PECVD to fine tune wetting and adhesion properties. The research presented focuses on material design aspects as well as the fundamental understanding of wetting and adhesion phenomena of structured surfaces. In order to study the effect of surface roughness and surface chemistry on the surface wettability independently, we developed a model surface by combination of colloidal lithography and PECVD. A systematically controlled hierarchical roughness using spherical colloidal particles and surface chemistry allowed for quantitative prediction of contact angles corresponding to metastable and stable wetting states. A well-defined roughness and chemical composition of the surface enabled establishing a correlation between theory predictions and experimental measurements. We developed an extremely robust superhydrophobic surface based on Carbon-Nanotubes (CNT) mats. The surface of CNTs forming a nano-porous mesh was modified using PECVD to deposit a layer of hydrophobic coating (PCNT). The PCNT surface thus formed is superhydrophobic with almost zero contact angle hysteresis. We demonstrated that the PCNT surface is not wetted under steam condensation even after prolonged exposure and also continues to retain its superhydrophobicity after multiple frosting-defrosting cycles. The anti

  3. THE HUBBLE WIDE FIELD CAMERA 3 TEST OF SURFACES IN THE OUTER SOLAR SYSTEM: SPECTRAL VARIATION ON KUIPER BELT OBJECTS

    SciTech Connect

    Fraser, Wesley C.; Brown, Michael E.; Glass, Florian

    2015-05-01

    Here, we present additional photometry of targets observed as part of the Hubble Wide Field Camera 3 (WFC3) Test of Surfaces in the Outer Solar System. Twelve targets were re-observed with the WFC3 in the optical and NIR wavebands designed to complement those used during the first visit. Additionally, all of the observations originally presented by Fraser and Brown were reanalyzed through the same updated photometry pipeline. A re-analysis of the optical and NIR color distribution reveals a bifurcated optical color distribution and only two identifiable spectral classes, each of which occupies a broad range of colors and has correlated optical and NIR colors, in agreement with our previous findings. We report the detection of significant spectral variations on five targets which cannot be attributed to photometry errors, cosmic rays, point-spread function or sensitivity variations, or other image artifacts capable of explaining the magnitude of the variation. The spectrally variable objects are found to have a broad range of dynamical classes and absolute magnitudes, exhibit a broad range of apparent magnitude variations, and are found in both compositional classes. The spectrally variable objects with sufficiently accurate colors for spectral classification maintain their membership, belonging to the same class at both epochs. 2005 TV189 exhibits a sufficiently broad difference in color at the two epochs that span the full range of colors of the neutral class. This strongly argues that the neutral class is one single class with a broad range of colors, rather than the combination of multiple overlapping classes.

  4. Brain surface conformal parameterization using Riemann surface structure.

    PubMed

    Wang, Yalin; Lui, Lok Ming; Gu, Xianfeng; Hayashi, Kiralee M; Chan, Tony F; Toga, Arthur W; Thompson, Paul M; Yau, Shing-Tung

    2007-06-01

    In medical imaging, parameterized 3-D surface models are useful for anatomical modeling and visualization, statistical comparisons of anatomy, and surface-based registration and signal processing. Here we introduce a parameterization method based on Riemann surface structure, which uses a special curvilinear net structure (conformal net) to partition the surface into a set of patches that can each be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable (their solutions tend to be smooth functions and the boundary conditions of the Dirichlet problem can be enforced). Conformal parameterization also helps transform partial differential equations (PDEs) that may be defined on 3-D brain surface manifolds to modified PDEs on a two-dimensional parameter domain. Since the Jacobian matrix of a conformal parameterization is diagonal, the modified PDE on the parameter domain is readily solved. To illustrate our techniques, we computed parameterizations for several types of anatomical surfaces in 3-D magnetic resonance imaging scans of the brain, including the cerebral cortex, hippocampi, and lateral ventricles. For surfaces that are topologically homeomorphic to each other and have similar geometrical structures, we show that the parameterization results are consistent and the subdivided surfaces can be matched to each other. Finally, we present an automatic sulcal landmark location algorithm by solving PDEs on cortical surfaces. The landmark detection results are used as constraints for building conformal maps between surfaces that also match explicitly defined landmarks.

  5. Brain Surface Conformal Parameterization Using Riemann Surface Structure

    PubMed Central

    Wang, Yalin; Lui, Lok Ming; Gu, Xianfeng; Hayashi, Kiralee M.; Chan, Tony F.; Toga, Arthur W.; Thompson, Paul M.; Yau, Shing-Tung

    2011-01-01

    In medical imaging, parameterized 3-D surface models are useful for anatomical modeling and visualization, statistical comparisons of anatomy, and surface-based registration and signal processing. Here we introduce a parameterization method based on Riemann surface structure, which uses a special curvilinear net structure (conformal net) to partition the surface into a set of patches that can each be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable (their solutions tend to be smooth functions and the boundary conditions of the Dirichlet problem can be enforced). Conformal parameterization also helps transform partial differential equations (PDEs) that may be defined on 3-D brain surface manifolds to modified PDEs on a two-dimensional parameter domain. Since the Jacobian matrix of a conformal parameterization is diagonal, the modified PDE on the parameter domain is readily solved. To illustrate our techniques, we computed parameterizations for several types of anatomical surfaces in 3-D magnetic resonance imaging scans of the brain, including the cerebral cortex, hippocampi, and lateral ventricles. For surfaces that are topologically homeomorphic to each other and have similar geometrical structures, we show that the parameterization results are consistent and the subdivided surfaces can be matched to each other. Finally, we present an automatic sulcal landmark location algorithm by solving PDEs on cortical surfaces. The landmark detection results are used as constraints for building conformal maps between surfaces that also match explicitly defined landmarks. PMID:17679336

  6. Use of T7 RNA polymerase to direct expression of outer Surface Protein A (OspA) from the Lyme disease Spirochete, Borrelia burgdorferi

    NASA Technical Reports Server (NTRS)

    Dunn, John J.; Lade, Barbara N.

    1991-01-01

    The OspA gene from a North American strain of the Lyme disease Spirochete, Borrelia burgdorferi, was cloned under the control of transciption and translation signals from bacteriophage T7. Full-length OspA protein, a 273 amino acid (31kD) lipoprotein, is expressed poorly in Escherichia coli and is associated with the insoluble membrane fraction. In contrast, a truncated form of OspA lacking the amino-terminal signal sequence which normally would direct localization of the protein to the outer membrane is expressed at very high levels (less than or equal to 100 mg/liter) and is soluble. The truncated protein was purified to homogeneity and is being tested to see if it will be useful as an immunogen in a vaccine against Lyme disease. Circular dichroism and fluorescence spectroscopy was used to characterize the secondary structure and study conformational changes in the protein. Studies underway with other surface proteins from B burgdorferi and a related spirochete, B. hermsii, which causes relapsing fever, leads us to conclude that a strategy similar to that used to express the truncated OspA can provide a facile method for producing variations of Borrelia lipoproteins which are highly expressed in E. coli and soluble without exposure to detergents.

  7. Triple assembly of ZnO, large-scale hollow spherical shells with flower-like species consisting of rods grown on the outer surfaces of shells

    SciTech Connect

    Shang Yazhuo; Hu Jun; Liu Honglai; Hu Ying

    2010-03-15

    Novel large-scale hollow ZnO spherical shells were synthesized by ionic liquids assisted hydrothermal oxidization of pure zinc powder without any catalyst at a relatively low temperature of 160 deg. C. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) patterns show that the shells are composed of ZnO and the structure of the shells is very unique. Textured flower-like ZnO consisting of ZnO rods is grown on the outer surfaces of shells forming a triple assembly. Room-temperature photoluminescence spectra of the oxidized material show a sharp peak at 379 nm and a wider broad peak centered at 498 nm. The possible growth mechanism of the triple assembly of ZnO is discussed in detail. - Graphical abstract: A proposed growth mechanism of large scale hollow ZnO. Bubbles provide the aggregation center for ionic liquids that leads to the formation of hollow Zn particle-dotted shells, buoyancy promotes shells to go upward, the breach occurs when shells are subjected to overpressure.

  8. Elongated structure of the outer-membrane activator of peptidoglycan synthesis LpoA: implications for PBP1A stimulation.

    PubMed

    Jean, Nicolas L; Bougault, Catherine M; Lodge, Adam; Derouaux, Adeline; Callens, Gilles; Egan, Alexander J F; Ayala, Isabel; Lewis, Richard J; Vollmer, Waldemar; Simorre, Jean-Pierre

    2014-07-08

    The bacterial cell envelope contains the stress-bearing peptidoglycan layer, which is enlarged during cell growth and division by membrane-anchored synthases guided by cytoskeletal elements. In Escherichia coli, the major peptidoglycan synthase PBP1A requires stimulation by the outer-membrane-anchored lipoprotein LpoA. Whereas the C-terminal domain of LpoA interacts with PBP1A to stimulate its peptide crosslinking activity, little is known about the role of the N-terminal domain. Herein we report its NMR structure, which adopts an all-α-helical fold comprising a series of helix-turn-helix tetratricopeptide-repeat (TPR)-like motifs. NMR spectroscopy of full-length LpoA revealed two extended flexible regions in the C-terminal domain and limited, if any, flexibility between the N- and C-terminal domains. Analytical ultracentrifugation and small-angle X-ray scattering results are consistent with LpoA adopting an elongated shape, with dimensions sufficient to span from the outer membrane through the periplasm to interact with the peptidoglycan synthase PBP1A.

  9. Stress Corrosion Cracking of the Drip Shield, The Waste Package Outer Barrier and the Stainless Steel Structural Material

    SciTech Connect

    C. Stephen

    2000-04-17

    One of the potential failure modes of the drip shield (DS), the waste package (WP) outer barrier, and the stainless structural material is the initiation and propagation of stress corrosion cracking (SCC) induced by the WP environment and various types of stresses that can develop in the DSs or the WPs. For the current design of the DS and WP, however, the DS will be excluded from the SCC evaluation because stresses that are relevant to SCC are insignificant in the DS. The major sources of stresses in the DS are loadings due to backfill and earthquakes. These stresses will not induce SCC because the stress caused by backfill is generally compressive stress and the stress caused by earthquakes is temporary in nature. The 316NG stainless steel inner barrier of the WP will also be excluded from the SCC evaluation because the SCC performance assessment will not take credit from the inner barrier. Therefore, the purpose of this document is to provide a detailed description of the process-level models that can be applied to assess the performance of the material (i.e., Alloy 22) used for the WP outer barrier subjected to the effects of SCC. As already mentioned in the development plan for the WP PMR (CRWMS M and O 1999e), this Analyses and Models Report (AMR) is to serve as a feed to the Waste Package Degradation (WPD) Total System Performance Assessment (TSPA) and Process Model Report (PMR).

  10. Conformal coating of highly structured surfaces

    DOEpatents

    Ginley, David S.; Perkins, John; Berry, Joseph; Gennett, Thomas

    2012-12-11

    Method of applying a conformal coating to a highly structured substrate and devices made by the disclosed methods are disclosed. An example method includes the deposition of a substantially contiguous layer of a material upon a highly structured surface within a deposition process chamber. The highly structured surface may be associated with a substrate or another layer deposited on a substrate. The method includes depositing a material having an amorphous structure on the highly structured surface at a deposition pressure of equal to or less than about 3 mTorr. The method may also include removing a portion of the amorphous material deposited on selected surfaces and depositing additional amorphous material on the highly structured surface.

  11. Structure and properties of solid surfaces

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.

    1974-01-01

    Difficulties in experimental studies of crystalline surfaces are related to the fact that surface atoms have an intrinsic tendency to react with their environment. A second problem is connected with the effective thickness of surfaces, which ranges from one to several atom layers. The phenomenology of surface interactions with gases are considered, taking into account physical adsorption, chemisorption, and the oxidation of surfaces. Studies of the surface structure are discussed, giving attention to field emission microscopy, field-ion microscopy, electron diffraction techniques, Auger spectroscopy, scanning electron microscopy, electron probe microanalysis, ion microprobe methods, and low-energy backscattering spectroscopy. Investigations of semiconductor surfaces are also described.

  12. Structure and properties of solid surfaces

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.

    1974-01-01

    Difficulties in experimental studies of crystalline surfaces are related to the fact that surface atoms have an intrinsic tendency to react with their environment. A second problem is connected with the effective thickness of surfaces, which ranges from one to several atom layers. The phenomenology of surface interactions with gases are considered, taking into account physical adsorption, chemisorption, and the oxidation of surfaces. Studies of the surface structure are discussed, giving attention to field emission microscopy, field-ion microscopy, electron diffraction techniques, Auger spectroscopy, scanning electron microscopy, electron probe microanalysis, ion microprobe methods, and low-energy backscattering spectroscopy. Investigations of semiconductor surfaces are also described.

  13. Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1994-01-01

    A microporous structure with layered interstitial surface treatments, and method and apparatus for preparation thereof is presented. The structure is prepared by sequentially subjecting a uniformly surface-treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main atomic oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  14. Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1992-01-01

    A microporous structure with layered interstitial surface treatments, and the method and apparatus for its preparation are disclosed. The structure is prepared by sequentially subjecting a uniformly surface treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  15. Silicon surface structure-controlled oleophobicity.

    PubMed

    Liu, Yan; Xiu, Yonghao; Hess, Dennis W; Wong, C P

    2010-06-01

    Superoleophobic surfaces display contact angles >150 degrees with liquids that have lower surface energies than does water. The design of superoleophobic surfaces requires an understanding of the effect of the geometrical shape of etched silicon surfaces on the contact angle and hysteresis observed when different liquids are brought into contact with these surfaces. This study used liquid-based metal-assisted etching and various silane treatments to create superoleophobic surfaces on a Si(111) surface. Etch conditions such as the etch time and etch solution concentration played critical roles in establishing the oleophobicity of Si(111). When compared to Young's contact angle, the apparent contact angle showed a transition from a Cassie to a Wenzel state for low-surface-energy liquids as different silane treatments were applied to the silicon surface. These results demonstrated the relationship between the re-entrant angle of etched surface structures and the contact angle transition between Cassie and Wenzel behavior on etched Si(111) surfaces.

  16. Distinct Structural Elements Govern the Folding, Stability, and Catalysis in the Outer Membrane Enzyme PagP.

    PubMed

    Iyer, Bharat Ramasubramanian; Mahalakshmi, Radhakrishnan

    2016-09-06

    The outer membrane enzyme PagP is indispensable for lipid A palmitoylation in Gram-negative bacteria and has been implicated in resistance to host immune defenses. PagP possesses an unusual structure for an integral membrane protein, with a highly dynamic barrel domain that is tilted with respect to the membrane normal. In addition, it contains an N-terminal amphipathic helix. Recent functional and structural studies have shown that these molecular factors are critical for PagP to carry out its function in the challenging environment of the bacterial outer membrane. However, the precise contributions of the N-helix to folding and stability and residues that can influence catalytic rates remain to be addressed. Here, we identify a sequence-dependent stabilizing role for the N-terminal helix of PagP in the measured thermodynamic stability of the barrel. Using chimeric barrel sequences, we show that the Escherichia coli PagP N-terminal helix confers 2-fold greater stability to the Salmonella typhimurium barrel. Further, we find that the W78F substitution in S. typhimurium causes a nearly 20-fold increase in the specific activity in vitro for the phospholipase reaction, compared to that of E. coli PagP. Here, phenylalanine serves as a key regulator of catalysis, possibly by increasing the reaction rate. Through coevolution analysis, we detect an interaction network between seemingly unrelated segments of this membrane protein. Exchanging the structural and functional features between homologous PagP enzymes from E. coli and S. typhimurium has provided us with an understanding of the molecular factors governing PagP stability and function.

  17. A humidity sensitive two-dimensional tunable amorphous photonic structure in the outer layer of bivalve ligament from Sunset Siliqua.

    PubMed

    Zhang, Weigang; Zhang, Gangsheng

    2015-01-01

    A humidity sensitive two-dimensional tunable amorphous photonic structure (2D TAPS) in the outer layer of bivalve ligament from Sunset Siliqua (OLLS) was reported in this paper. The structural color and microstructure of OLLS were investigated by reflection spectra and scanning electron microscopy, respectively. The results indicate that the reflection peak wavelength of the wet OLLS blue-shifts from 454 nm to 392 nm with the increasing of air drying time from 0 to 40 min, while the reflectivity decreases gradually and vanishes at last, relevant color changes from blue to black background color. The structural color in the OLLS is produced by a two-dimensional amorphous photonic structure consisting of aligned protein fibers, in which the diameter of protein fiber and the inter-fiber spacing are 101 ± 12 nm. Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure, and the regulation achieved through dynamically tuning the interaction between inter-fiber spacing and average refractive index.

  18. Evidence for water structuring forces between surfaces

    SciTech Connect

    Stanley, Christopher B; Rau, Dr. Donald

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

  19. Surface structure and stability of partially hydroxylated silica surfaces

    DOE PAGES

    Rimsza, J. M.; Jones, R. E.; Criscenti, L. J.

    2017-04-04

    Surface energies of silicates influence crack propagation during brittle fracture and decrease with surface relaxation caused by annealing and hydroxylation. Molecular-level simulations are particularly suited for the investigation of surface processes. In this work, classical MD simulations of silica surfaces are performed with two force fields (ClayFF and ReaxFF) to investigate the effect of force field reactivity on surface structure and energy as a function of surface hydroxylation. An unhydroxylated fracture surface energy of 5.1 J/m2 is calculated with the ClayFF force field, and 2.0 J/m2 is calculated for the ReaxFF force field. The ClayFF surface energies are consistent withmore » the experimental results from double cantilever beam fracture tests (4.5 J/m2), whereas ReaxFF underestimated these surface energies. Surface relaxation via annealing and hydroxylation was performed by creating a low-energy equilibrium surface. Annealing condensed neighboring siloxane bonds increased the surface connectivity, and decreased the surface energies by 0.2 J/m2 for ClayFF and 0.8 J/m2 for ReaxFF. Posthydroxylation surface energies decreased further to 4.6 J/m2 with the ClayFF force field and to 0.2 J/m2 with the ReaxFF force field. Experimental equilibrium surface energies are ~0.35 J/m2, consistent with the ReaxFF force field. Although neither force field was capable of replicating both the fracture and equilibrium surface energies reported from experiment, each was consistent with one of these conditions. Furthermore, future computational investigations that rely on accurate surface energy values should consider the surface state of the system and select the appropriate force field.« less

  20. Heme uptake across the outer membrane as revealed by crystal structures of the receptor–hemophore complex

    PubMed Central

    Krieg, Stefanie; Huché, Frédéric; Diederichs, Kay; Izadi-Pruneyre, Nadia; Lecroisey, Anne; Wandersman, Cécile; Delepelaire, Philippe; Welte, Wolfram

    2009-01-01

    Gram-negative bacteria use specific heme uptake systems, relying on outer membrane receptors and excreted heme-binding proteins (hemophores) to scavenge and actively transport heme. To unravel the unknown molecular details involved, we present 3 structures of the Serratia marcescens receptor HasR in complex with its hemophore HasA. The transfer of heme over a distance of 9 Å from its high-affinity site in HasA into a site of lower affinity in HasR is coupled with the exergonic complex formation of the 2 proteins. Upon docking to the receptor, 1 of the 2 axial heme coordinations of the hemophore is initially broken, but the position and orientation of the heme is preserved. Subsequently, steric displacement of heme by a receptor residue ruptures the other axial coordination, leading to heme transfer into the receptor. PMID:19144921

  1. Post-mortem erosion of fine-scale spatial structure of epibenthic megafauna on the outer Grand Bank of Newfoundland

    NASA Astrophysics Data System (ADS)

    Schneider, D. C.; Haedrich, R. L.

    1991-08-01

    Marine organisms exhibit spatial variability at scales ranging from thousands of kilometres (biogeographic variability) to a few body lengths. Physical processes can increase spatial variability through selective sorting, or decrease it through mixing. We examine the effects of post-mortem processes on the spatial structure of empty shells and tests left by populations of molluscs and echinoderms on outer Grand Bank. Analysis of data from five photographic transects showed that spatial variability of shells and tests decreased relative to live organisms of the same species at scales greater than 140 m. Spatial variability did not increase relative to live specimens, with the exception of urchin tests at a scale of 20-30 m on two of five transects. We postulate that selective transport of shells does not occur in this environment at scales from 15 to 1500 m.

  2. Methylation and in vivo expression of the surface-exposed Leptospira interrogans outer membrane protein OmpL32

    USDA-ARS?s Scientific Manuscript database

    Recent studies have revealed that bacterial protein methylation is a widespread post-translational modification that is required for virulence in selected pathogenic bacteria. In particular, altered methylation of outer membrane proteins has been shown to modulate the effectiveness of the host immu...

  3. Atomic and electronic structures of novel silicon surface structures

    SciTech Connect

    Terry, J.H. Jr.

    1997-03-01

    The modification of silicon surfaces is presently of great interest to the semiconductor device community. Three distinct areas are the subject of inquiry: first, modification of the silicon electronic structure; second, passivation of the silicon surface; and third, functionalization of the silicon surface. It is believed that surface modification of these types will lead to useful electronic devices by pairing these modified surfaces with traditional silicon device technology. Therefore, silicon wafers with modified electronic structure (light-emitting porous silicon), passivated surfaces (H-Si(111), Cl-Si(111), Alkyl-Si(111)), and functionalized surfaces (Alkyl-Si(111)) have been studied in order to determine the fundamental properties of surface geometry and electronic structure using synchrotron radiation-based techniques.

  4. Chemical bonding in the outer core - High-pressure electronic structures of oxygen and sulfur in metallic iron

    NASA Astrophysics Data System (ADS)

    Sherman, David M.

    1991-10-01

    From its density the outer core is believed to be an alloy of iron and a light element such as sulfur or oxygen. The nature of the light element in the core is an important constraint for theories of the earth's formation. In this paper the electronic structure of oxygen and sulfur impurities in metallic iron are investigated to determine if pressure, temperature, and composition-induced changes in bonding might affect phase equilibria along the Fe-FeS and Fe-FeO binaries. The electronic structure of sulfur in metallic iron is consistent with the miscibility between Fe and FeS liquids. Volume compression strengthens the Fe-S bond, and it is expected that at sufficiently high pressure, sulfur can substitute for Fe and give solid solution behavior between Fe and FeS. In contrast, the electronic structure of oxygen in metallic iron shows that oxygen cannot act as a substitutional impurity (replacing Fe). This explains the observed miscibility gap on the Fe-FeO binary at 1 atm pressure. Volume compression does not greatly change the electronic structure if oxygen substitutes for iron in bcc and fcc iron. Iron-oxygen bonding does occur, however, if oxygen occupies interstitial sites. Insofar as the molar volume of FeO incorporated as interstitial oxygen in metallic iron is smaller than that of pure FeO, the incorporation of oxygen into metallic iron may be favored under the pressures on the earth's core.

  5. The structure of SN 1987A's outer circumstellar envelope as probed by light echoes

    NASA Astrophysics Data System (ADS)

    Crotts, Arlin; Sugerman, Ben; Lawrence, Stephen; Kunkel, William

    2001-05-01

    We present ground-based and HST images processed by image subtraction to highlight transient reflection nebulae or ``light echoes'' of the maximum light pulse of the explosion of SN 1987A from surrounding material. Along with numerous structures already discussed elsewhere, we have found (in multiple epochs of data) a new feature opposite the SN from the mysterious ``Napoleon's Hat'' which indicates a symmetric structure due to shocks internal to the SN's red supergiant wind and probably caused by the pile-up of gas due to differential velocities within the outflow. We also show how echoes betray the ram pressure distribution of the progenitor mass loss flow. .

  6. Numerical simulation of condensation on structured surfaces.

    PubMed

    Fu, Xiaowu; Yao, Zhaohui; Hao, Pengfei

    2014-11-25

    Condensation of liquid droplets on solid surfaces happens widely in nature and industrial processes. This phase-change phenomenon has great effect on the performance of some microfluidic devices. On the basis of micro- and nanotechnology, superhydrophobic structured surfaces can be well-fabricated. In this work, the nucleating and growth of droplets on different structured surfaces are investigated numerically. The dynamic behavior of droplets during the condensation is simulated by the multiphase lattice Boltzmann method (LBM), which has the ability to incorporate the microscopic interactions, including fluid-fluid interaction and fluid-surface interaction. The results by the LBM show that, besides the chemical properties of surfaces, the topography of structures on solid surfaces influences the condensation process. For superhydrophobic surfaces, the spacing and height of microridges have significant influence on the nucleation sites. This mechanism provides an effective way for prevention of wetting on surfaces in engineering applications. Moreover, it suggests a way to prevent ice formation on surfaces caused by the condensation of subcooled water. For hydrophilic surfaces, however, microstructures may be submerged by the liquid films adhering to the surfaces. In this case, microstructures will fail to control the condensation process. Our research provides an optimized way for designing surfaces for condensation in engineering systems.

  7. [Bacterial Outer Membrane Nanovesicles: Structure, Biogenesis, Functions, and Application in Biotechnology and Medicine (Review)].

    PubMed

    Lusta, K A

    2015-01-01

    The review summarizes the comprehensive biochemical and physicochemical characteristics of extracellular membrane nanovesicles (EMN) derived from different kinds of bacteria. The EMN structure, composition, biogenesis, secretion mechanisms, formation conditions, functions, involvement in pathogenesis, and application in biotechnology and medicine are discussed.

  8. Structure and functions of fungal cell surfaces

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.

    1984-01-01

    A review with 24 references on the biochemistry, molecular structure, and function of cell surfaces of fungi, especially dermatophytes: the chemistry and structure of the cell wall, the effect of polyene antibiotics on the morphology and function of cytoplasmic membranes, and the chemical structure and function of pigments produced by various fungi are discussed.

  9. Plasma immersion ion implantation for surface treatment of complex branched structures

    NASA Astrophysics Data System (ADS)

    Kashin, Oleg A.; Lotkov, Alexander I.; Borisov, Dmitry P.; Slabodchikov, Vladimir A.; Kuznetsov, Vladimir M.; Kudryashov, Andrey N.; Krukovsky, Konstantin V.

    2016-11-01

    The paper presents experimental results demonstrating the capabilities of plasma immersion ion implantation of silicon (Si) for surface treatment of complex branched structures such are self-expanding intravascular nickel-titanium (NiTi) stents. Using NiTi stents of diameter 4 and 8 mm, it is shown that plasma immersion ion implantation can provide rather homogeneous doping of their outer and inner surfaces with Si atoms. Also presented are research data on the processes that determine the thickness, composition, and structure of surface layers subjected to this type of treatment.

  10. Proteome-scale identification of outer membrane proteins in Mycobacterium avium subspecies paratuberculosis using a structure based combined hierarchical approach.

    PubMed

    Rana, Aarti; Rub, Abdur; Akhter, Yusuf

    2014-07-29

    Outer membrane proteins (OMPs) in eubacteria have several important roles, which range from membrane transport to the host-pathogen interactions. These are directly involved in pathogen attachment, entry and activation of several pathogen-induced signaling cascades in the cell. The cardinal structural features of OMPs include the presence of a β-barrel, a signal peptide and the absence of the transmembrane helix. This is the first report on proteome-wide identification of OMPs of ruminant pathogen, Mycobacterium avium subsp. paratuberculosis (MAP). The complete proteome of MAP was analyzed using a pipeline of algorithms, which screens the amino acid sequences and structural features shared by OMPs in other bacteria. Secondary structure of these proteins is also analyzed and scores are calculated for amphiphilic β-strands. From the set of 588 exported proteins, 264 proteins are predicted to be inner membrane proteins while 83 proteins are identified as potential OMPs in MAP. Finally, this study identified 57 proteins as top candidates, on the basis of computed isoelectric points, as the core set of OMPs. Significantly, the resulting data for OMPs are not only useful in designing novel vaccines but may also open avenues for the development of early serodiagnostic tools for MAP.

  11. Influence of the lipid membrane environment on structure and activity of the outer membrane protein Ail from Yersinia pestis.

    PubMed

    Ding, Yi; Fujimoto, L Miya; Yao, Yong; Plano, Gregory V; Marassi, Francesca M

    2015-02-01

    The surrounding environment has significant consequences for the structural and functional properties of membrane proteins. While native structure and function can be reconstituted in lipid bilayer membranes, the detergents used for protein solubilization are not always compatible with biological activity and, hence, not always appropriate for direct detection of ligand binding by NMR spectroscopy. Here we describe how the sample environment affects the activity of the outer membrane protein Ail (attachment invasion locus) from Yersinia pestis. Although Ail adopts the correct β-barrel fold in micelles, the high detergent concentrations required for NMR structural studies are not compatible with the ligand binding functionality of the protein. We also describe preparations of Ail embedded in phospholipid bilayer nanodiscs, optimized for NMR studies and ligand binding activity assays. Ail in nanodiscs is capable of binding its human ligand fibronectin and also yields high quality NMR spectra that reflect the proper fold. Binding activity assays, developed to be performed directly with the NMR samples, show that ligand binding involves the extracellular loops of Ail. The data show that even when detergent micelles support the protein fold, detergents can interfere with activity in subtle ways. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Influence of the lipid membrane environment on structure and activity of the outer membrane protein Ail from Yersinia pestis

    PubMed Central

    Ding, Yi; Fujimoto, L. Miya; Yao, Yong; Plano, Gregory V.; Marassi, Francesca M.

    2014-01-01

    The surrounding environment has significant consequences for the structural and functional properties of membrane proteins. While native structure and function can be reconstituted in lipid bilayer membranes, the detergents used for protein solubilization are not always compatible with biological activity and, hence, not always appropriate for direct detection of ligand binding by NMR spectroscopy. Here we describe how the sample environment affects the activity of the outer membrane protein Ail (attachment invasion locus) from Yersinia pestis. Although Ail adopts the correct β-barrel fold in micelles, the high detergent concentrations required for NMR structural studies are not compatible with the ligand binding functionality of the protein. We also describe preparations of Ail embedded in phospholipid bilayer nanodiscs, optimized for NMR studies and ligand binding activity assays. Ail in nanodiscs is capable of binding its human ligand fibronectin and also yields high quality NMR spectra that reflect the proper fold. Binding activity assays, developed to be performed directly with the NMR samples, show that ligand binding involves the extracellular loops of Ail. The data show that even when detergent micelles support the protein fold, detergents can interfere with activity in subtle ways. PMID:25433311

  13. Structure of the Small Outer Capsid Protein, Soc: A Clamp for Stabilizing Capsids of T4-like Phages

    SciTech Connect

    Qin, Li; Fokine, Andrei; O'Donnell, Erin; Rao, Venigalla B.; Rossmann, Michael G.

    2010-07-22

    Many viruses need to stabilize their capsid structure against DNA pressure and for survival in hostile environments. The 9-kDa outer capsid protein (Soc) of bacteriophage T4, which stabilizes the virus, attaches to the capsid during the final stage of maturation. There are 870 Soc molecules that act as a 'glue' between neighboring hexameric capsomers, forming a 'cage' that stabilizes the T4 capsid against extremes of pH and temperature. Here we report a 1.9 {angstrom} resolution crystal structure of Soc from the bacteriophage RB69, a close relative of T4. The RB69 crystal structure and a homology model of T4 Soc were fitted into the cryoelectron microscopy reconstruction of the T4 capsid. This established the region of Soc that interacts with the major capsid protein and suggested a mechanism, verified by extensive mutational and biochemical studies, for stabilization of the capsid in which the Soc trimers act as clamps between neighboring capsomers. The results demonstrate the factors involved in stabilizing not only the capsids of T4-like bacteriophages but also many other virus capsids.

  14. Structure of the small outer capsid protein, Soc: a clamp for stabilizing capsids of T4-like phages.

    PubMed

    Qin, Li; Fokine, Andrei; O'Donnell, Erin; Rao, Venigalla B; Rossmann, Michael G

    2010-01-29

    Many viruses need to stabilize their capsid structure against DNA pressure and for survival in hostile environments. The 9-kDa outer capsid protein (Soc) of bacteriophage T4, which stabilizes the virus, attaches to the capsid during the final stage of maturation. There are 870 Soc molecules that act as a "glue" between neighboring hexameric capsomers, forming a "cage" that stabilizes the T4 capsid against extremes of pH and temperature. Here we report a 1.9 A resolution crystal structure of Soc from the bacteriophage RB69, a close relative of T4. The RB69 crystal structure and a homology model of T4 Soc were fitted into the cryoelectron microscopy reconstruction of the T4 capsid. This established the region of Soc that interacts with the major capsid protein and suggested a mechanism, verified by extensive mutational and biochemical studies, for stabilization of the capsid in which the Soc trimers act as clamps between neighboring capsomers. The results demonstrate the factors involved in stabilizing not only the capsids of T4-like bacteriophages but also many other virus capsids.

  15. A Comparison of Long-Period SKS Datasets And What They Reveal About 1D Outer Core Structure

    NASA Astrophysics Data System (ADS)

    Houser, C. T.; Ritsema, J. E.; Grand, S.

    2010-12-01

    Seismology is the most direct tool for documenting the presences or absence of outer core stratification. The outermost core is most effectively sampled by SKS, S2KS, S3KS, S4KS, etc.) which have bottoming depths at the top of the outermost core. In order to incorporate modern data sets (e.g., USArray, Europe, China, etc), we need to sift through massive amounts of seismic data to identify the smaller portion of quality signals in a time-efficient manner. We evaluate the application of a cluster analysis technique (Houser et al., 2008) toward identifying and evaluating the SKS phases that traverse the outer core. Cluster analysis is a semi-automated method for interrogating large datasets by processing all the data for an earthquake while allowing the user to graphically interact with the data to remove low quality records. The Houser et al. (2008) cluster analysis method has already been applied to diffracted S waves (Manners et al., 2004), and here we will expand the cluster analysis to the radial component core phases. These newly measured SKS arrival times will be compared with SKS arrival time measurements used in previous mantle tomographic models, namely, S20RTS (Ritsema and van Heist, 2002) using a purely automated method and TXBW (Grand, 2002) using a purely manual method. We find that the arrival times collected by the three methods (automated, clustered, and manual) during overlapping time frames are in agreement within the measurement error bars. Therefore, the SKS data from these studies can be combined to constrain the radial structure of the outermost core. Thus, cluster analysis is an ideal tool for developing a large compilation of SKS arrival times from modern global seismic data, while simultaneously providing a measure of data quality.

  16. Inductance and resistance measurement method for vessel detection and coil powering in all-surface inductive heating systems composed of outer squircle coils

    NASA Astrophysics Data System (ADS)

    Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan

    2017-05-01

    In this work, we investigate a method proposed for vessel detection and coil powering in an all-surface inductive heating system composed of outer squircle coils. Besides conventional circular coils, coils with different shapes such as outer squircle coils are used for and enable efficient all-surface inductive heating. Validity of the method, which relies on measuring inductance and resistance values of a loaded coil at different frequencies, is experimentally demonstrated for a coil with shape different from conventional circular coil. Simple setup was constructed with a small coil to model an all-surface inductive heating system. Inductance and resistance maps were generated by measuring coil's inductance and resistance values at different frequencies loaded by a plate made of different materials and located at various positions. Results show that in an induction hob for various coil geometries it is possible to detect a vessel's presence, to identify its material type and to specify its position on the hob surface by considering inductance and resistance of the coil measured on at least two different frequencies. The studied method is important in terms of enabling safe, efficient and user flexible heating in an all-surface inductive heating system by automatically detecting the vessel's presence and powering on only the coils that are loaded by the vessel with predetermined current levels.

  17. ONE-DIMENSIONAL ACCELERATOR IN PULSAR OUTER MAGNETOSPHERE REVISITED

    SciTech Connect

    Lin, G. F.; Zhang, L.

    2009-07-10

    We re-examine the one-dimensional (1D) vacuum and nonvacuum accelerators in the outer magnetosphere of rotation-powered pulsars by considering the limit of trans-field height through pair-production process. In the original 1D nonvacuum outer gap model, both the Poisson equation for electrical potential and the Boltzmann equations of particles and gamma-rays are solved self-consistently by assuming the trans-field height as a free parameter, usually resulting in a narrow outer gap (i.e., gap length along magnetic field lines is short). In the modified 1D nonvacuum outer gap model, two improvements have been made: the trans-field height is limited by photon-photon pair production process and the outer boundary of the outer gap can be extended outside the light cylinder. Under the above assumptions, we self-consistently solve the Poisson equation for electrical potential, and the Boltzmann equations of electrons/positrons and gamma-rays in both vacuum and nonvacuum outer gaps for the parameters of both Vela and Geminga pulsars. We obtain an approximate geometry of the outer gap, i.e., the trans-field height is limited by the pair-production process and increases with the radial distance to the star, and the width of the outer gap starts at the inner boundary (near the null charge surface in the vacuum case) and ends at the outer boundary which is located inside or outside the light cylinder depending on the inclination angle. Our calculated results also indicate that gamma-ray spectrum from a wide outer gap is flatter than the one from a narrow outer gap and the relation between the electric field and trans-field height has an important effect on the structure of the outer gap.

  18. Structural evolution of cometary surfaces

    NASA Astrophysics Data System (ADS)

    Wallis, M. K.; Wickramasinghe, N. C.

    1991-04-01

    Comets with a high content of organics and light molecules are expected under cosmic radiation to gain a relatively unreactive crust and less volatile material to some 10 m deep. Interstellar dust impacts act to loosen and turn over about 1 cm of the surface. This paper discusses how far this accords with observations of cometary dust halos and new versus old comets. Two key material properties have emerged from recent studies: (1) the source of cometary volatiles is not ice in the sense of material with a single sublimation energy, and (2) the particulates are not simply mineral dust but include much organic material, some of which undergoes chemical processing and exchanges with the gaseous environment.

  19. Retrieval of Surface Structural Parameters from Multilayer Relaxed Surfaces

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Ballabh, T. K.

    2017-07-01

    Trial search method of determination of structure from LEED I-V curves is to compute the same including multiple scattering for plausible guess structures and finding the actual structure from the best match. This requires enormous amount of computer time and for some cases even may turn unsuccessful. Using change of computational techniques and different search algorithms tremendous advancement have been made, but still it is possible to get struck in a local minima rather than global one. Therefore a method for determination of surface structure from LEED I-V curves, avoiding a search in the parameter space, is always considered important not only for reducing computational time enormously but also for avoiding the trapping in local minima. To this end, we have investigated the possibilities of retrieval of surface structural parameters by reversing the process of layer doubling method of conventional LEED theory.

  20. Changes in the turbulent boundary layer structure associated with net drag reduction by outer layer manipulators

    NASA Technical Reports Server (NTRS)

    Rashidnia, N.; Falco, R. E.

    1987-01-01

    A specially designed wind tunnel was used to examine the effects of tandemly arranged parallel plate manipulators (TAPPMs) on a turbulent boundary-layer structure and the associated drag. Momentum balances, as well as measurements of the local shear stress from the velocity gradient near the wall, were used to obtain the net drag and local skin friction changes. Two TAPPMs, identical except for the thickness of their plates, were used in the study. Results with .003 inch plates were a maximum net drag reduction of 10 percent at 58 beta sub o (using a momentum balance). At 20 beta sub o, simultaneous laser sheet flow visualization and hot-wire anemometry data showed that the Reynolds stress in the large eddies was significantly reduced, as were the streamwise and normal velocity components. Using space-time correlations the reductions were again identified. Furthermore, quantitative flow visualization showed that the outward normal velocity of the inner region was also significantly decreased in the region around 20 beta sub o. However, throughout the first 130 beta sub o, the measured sublayer thickness with the TAPPMs in place was 15 to 20 percent greater. The data showed that the skin friction, as well as the structure of the turbulence, was strongly modified in the first 35 beta sub o, but that they both significantly relaxed toward unmanipulated boundary layer values by 50 beta sub o.

  1. Rapid change of blob structure in the outer scrape-off layer (SOL)

    NASA Astrophysics Data System (ADS)

    Cohen, R. H.

    2005-10-01

    Nonlinear structures (``blobs'') driven by the magnetic field curvature and highly elongated along the field lines may exist in the tokamak SOL.footnotetextS.I. Krasheninnikov. Phys. Lett. A 283, 368 (2001) The contact of the blob end with the divertor plate significantly affects the blob structure and velocity. However, the strong shearing of the flux-tube near the X-point makes impossible direct electrical contact of the blob in the upper SOL and the divertor, so that the sheath boundary condition (BC) has to be replaced by a BC imposed near the X point.footnotetextD. Ryutov, R.H. Cohen. Contr. Pl. Phys 44, 168 (2004) We show that, at larger distances from the separatrix, in the far SOL, the connection between the upper SOL and the divertor plate is re-established, and the sheath BC becomes again relevant. During the blob's outward radial motion, this event is reflected in a sudden change of its length, from the blob extending only to the X point to the blob extending down to the plate. Likewise, a blob initially existing only in the divertor leg becomes suddenly longer, and extends to the whole SOL.

  2. Structure of a bacterial cell surface decaheme electron conduit

    PubMed Central

    Clarke, Thomas A.; Edwards, Marcus J.; Gates, Andrew J.; Hall, Andrea; White, Gaye F.; Bradley, Justin; Reardon, Catherine L.; Shi, Liang; Beliaev, Alexander S.; Marshall, Matthew J.; Wang, Zheming; Watmough, Nicholas J.; Fredrickson, James K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.

    2011-01-01

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along “nanowire” appendages. We present a 3.2-Å crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Å octaheme chain transects the length of the protein and is bisected by a planar 45-Å tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface. PMID:21606337

  3. Structure of a bacterial cell surface decaheme electron conduit.

    PubMed

    Clarke, Thomas A; Edwards, Marcus J; Gates, Andrew J; Hall, Andrea; White, Gaye F; Bradley, Justin; Reardon, Catherine L; Shi, Liang; Beliaev, Alexander S; Marshall, Matthew J; Wang, Zheming; Watmough, Nicholas J; Fredrickson, James K; Zachara, John M; Butt, Julea N; Richardson, David J

    2011-06-07

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along "nanowire" appendages. We present a 3.2-Å crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Å octaheme chain transects the length of the protein and is bisected by a planar 45-Å tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.

  4. The structure of star clusters in the outer halo of M31

    NASA Astrophysics Data System (ADS)

    Tanvir, N. R.; Mackey, A. D.; Ferguson, A. M. N.; Huxor, A.; Read, J. I.; Lewis, G. F.; Irwin, M. J.; Chapman, S.; Ibata, R.; Wilkinson, M. I.; McConnachie, A. W.; Martin, N. F.; Davies, M. B.; Bridges, T. J.

    2012-05-01

    We present a structural analysis of halo star clusters in M31 based on deep Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) imaging. The clusters in our sample span a range in galactocentric projected distance from 13 to 100 kpc and thus reside in rather remote environments. Ten of the clusters are classical globulars, whilst four are from the Huxor et al. population of extended, old clusters. For most clusters, contamination by M31 halo stars is slight, and so the profiles can be mapped reliably to large radial distances from their centres. We find that the extended clusters are well fit by analytic King profiles with ˜20 parsec core radii and ˜100 parsec photometric tidal radii, or by Sérsic profiles of index ˜1 (i.e. approximately exponential). Most of the classical globulars also have large photometric tidal radii in the range 50-100 parsec; however, the King profile is a less good fit in some cases, particularly at small radii. We find 60 per cent of the classical globular clusters exhibit cuspy cores which are reasonably well described by Sérsic profiles of index ˜2-6. Our analysis also reinforces the finding that luminous classical globulars, with half-light radii <10 parsec, are present out to radii of at least 100 kpc in M31, which is in contrast to the situation in the Milky Way where such clusters (other than the unusual object NGC 2419) are absent beyond 40 kpc.

  5. Analysis of Eddy Current Capabilities for the Detection of Outer Diameter Stress Corrosion Cracking in Small Bore Metallic Structures

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Williams, Phillip; Simpson, John

    2007-01-01

    The use of eddy current techniques for the detection of outer diameter damage in tubing and many complex aerospace structures often requires the use of an inner diameter probe due to a lack of access to the outside of the part. In small bore structures the probe size and orientation are constrained by the inner diameter of the part, complicating the optimization of the inspection technique. Detection of flaws through a significant remaining wall thickness becomes limited not only by the standard depth of penetration, but also geometrical aspects of the probe. Recently, an orthogonal eddy current probe was developed for detection of such flaws in Space Shuttle Primary Reaction Control System (PRCS) Thrusters. In this case, the detection of deeply buried stress corrosion cracking by an inner diameter eddy current probe was sought. Probe optimization was performed based upon the limiting spatial dimensions, flaw orientation, and required detection sensitivity. Analysis of the probe/flaw interaction was performed through the use of finite and boundary element modeling techniques. Experimental data for the flaw detection capabilities, including a probability of detection study, will be presented along with the simulation data. The results of this work have led to the successful deployment of an inspection system for the detection of stress corrosion cracking in Space Shuttle Primary Reaction Control System (PRCS) Thrusters.

  6. Correlating simulated surface marks with near-surface tornado structure

    NASA Astrophysics Data System (ADS)

    Zimmerman, Michael I.

    Tornadoes often leave behind patterns of debris deposition, or "surface marks", which provide a direct signature of their near surface winds. The intent of this thesis is to investigate what can be learned about near-surface tornado structure and intensity through the properties of surface marks generated by simulated, debris-laden tornadoes. Earlier work showed through numerical simulations that the tornado's structure and intensity is highly sensitive to properties of the near-surface flow and can change rapidly in time for some conditions. The strongest winds often occur within tens of meters of the surface where the threat to human life and property is highest, and factors such as massive debris loadings and asymmetry of the main vortex have proven to be critical complications in some regimes. However, studying this portion of the flow in the field is problematic; while Doppler radar provides the best tornado wind field measurements, it cannot probe below about 20 m, and interpretation of Doppler data requires assumptions about tornado symmetry, steadiness in time, and correlation between scatterer and air velocities that are more uncertain near the surface. As early as 1967, Fujita proposed estimating tornado wind speeds from analysis of aerial photography and ground documentation of surface marks. A handful of studies followed but were limited by difficulties in interpreting physical origins of the marks, and little scientific attention has been paid to them since. Here, Fujita's original idea is revisited in the context of three-dimensional, large-eddy simulations of tornadoes with fully-coupled debris. In this thesis, the origins of the most prominent simulated marks are determined and compared with historical interpretations of real marks. The earlier hypothesis that cycloidal surface marks were directly correlated with the paths of individual vortices (either the main vortex or its secondary vortices, when present) is unsupported by the simulation results

  7. Electronic structures of hydrogenated Si(001) surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Seung Mi; Lee, Young Hee

    1996-02-01

    We have studied the electronic structure of clean and hydrogenated Si(001) surfaces via the empirical tight-binding total energy scheme. In the clean Si(001) surface, several reconstructed structures such as symmetric (2 × 1), buckled (2 × 1), p(2 × 2), and are studied. We find that higher-orderings such as the c(4 × 2) and p(2 × 2) are energetically favorable configurations. The electr density of states of these structures are also provided and compared with experimental results. In the hydrogenated Si(001) surface, there are three stable structures: monohydride, dihydride, and a (3 × 1) phase upon hydrogen coverage. We suggest that the electronic density of states can provide a way to distinguish the respective structures by several characteristic hydrogen-related peaks. These are further compared with experimental results.

  8. Preservation of Archaeal Surface Layer Structure During Mineralization

    NASA Astrophysics Data System (ADS)

    Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François

    2016-05-01

    Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record.

  9. Preservation of Archaeal Surface Layer Structure During Mineralization

    PubMed Central

    Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François

    2016-01-01

    Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record. PMID:27221593

  10. Creation of superwetting surfaces with roughness structures.

    PubMed

    Garg, Varun; Qiao, Lei; Sarwate, Prasha; Luo, Cheng

    2014-12-09

    In this work, we explored the possibility of creating superwetting surfaces, which are defined here as those with apparent contact angles of <5°, using roughness structures for the purpose of eliminating the surface tension effect on a floating small plate, which is denser than the surrounding liquid. The roughness ratio is often thought to play a critical role in generating superwetting surfaces. However, we found that the top surface ratio had more influence on apparent contact angles. When this ratio was <0.013, the resulting apparent contact angle might be less than 5°, when the intrinsic contact angle was ≥40°. Accordingly, hybrid micro- and nanostructures, which had such a small ratio, were chosen to create the superwetting surfaces. These surfaces were subsequently applied to eliminate the surface tension effect on a small plate. As a result of this elimination, the small plate sank down to the bottom of the liquid.

  11. 30 CFR 75.1708-1 - Surface structures; fireproof construction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface structures; fireproof construction. 75... Surface structures; fireproof construction. Structures of fireproof construction is interpreted to mean structures with fireproof exterior surfaces....

  12. 30 CFR 75.1708-1 - Surface structures; fireproof construction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Surface structures; fireproof construction. 75... Surface structures; fireproof construction. Structures of fireproof construction is interpreted to mean structures with fireproof exterior surfaces. ...

  13. 30 CFR 75.1708-1 - Surface structures; fireproof construction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface structures; fireproof construction. 75... Surface structures; fireproof construction. Structures of fireproof construction is interpreted to mean structures with fireproof exterior surfaces. ...

  14. 30 CFR 75.1708-1 - Surface structures; fireproof construction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface structures; fireproof construction. 75... Surface structures; fireproof construction. Structures of fireproof construction is interpreted to mean structures with fireproof exterior surfaces. ...

  15. 30 CFR 75.1708-1 - Surface structures; fireproof construction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Surface structures; fireproof construction. 75... Surface structures; fireproof construction. Structures of fireproof construction is interpreted to mean structures with fireproof exterior surfaces. ...

  16. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    SciTech Connect

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  17. Architecture and High-Resolution Structure of Bacillus thuringiensis and Bacillus cereus Spore Coat Surfaces

    SciTech Connect

    Plomp, M; Leighton, T; Wheeler, K; Malkin, A

    2005-02-18

    We have utilized atomic force microscopy (AFM) to visualize the native surface topology and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereus was {approx}8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to {approx}200 nm. The lattice constant of the honeycomb structures was {approx}9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing ''fingerprints'' of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.

  18. The Surface Structure of Relative Clauses

    ERIC Educational Resources Information Center

    Lucas, Michael A.

    1974-01-01

    This article attempts to show that a more rigorous approach to surface structure analysis can reveal distinctions just as subtle as those discovered through analyzing deep structures or transformations. Relative clauses are examined in relation to nominal constructions, and alternatives to restrictive and non-restrictive classifications are…

  19. Colloids with high-definition surface structures

    PubMed Central

    Chen, Hsien-Yeh; Rouillard, Jean-Marie; Gulari, Erdogan; Lahann, Joerg

    2007-01-01

    Compared with the well equipped arsenal of surface modification methods for flat surfaces, techniques that are applicable to curved, colloidal surfaces are still in their infancy. This technological gap exists because spin-coating techniques used in traditional photolithographic processes are not applicable to the curved surfaces of spherical objects. By replacing spin-coated photoresist with a vapor-deposited, photodefinable polymer coating, we have now fabricated microstructured colloids with a wide range of surface patterns, including asymmetric and chiral surface structures, that so far were typically reserved for flat substrates. This high-throughput method can yield surface-structured colloidal particles at a rate of ≈107 to 108 particles per operator per day. Equipped with spatially defined binding pockets, microstructured colloids can engage in programmable interactions, which can lead to directed self-assembly. The ability to create a wide range of colloids with both simple and complex surface patterns may contribute to the genesis of previously unknown colloidal structures and may have important technological implications in a range of different applications, including photonic and phononic materials or chemical sensors. PMID:17592149

  20. Colloids with high-definition surface structures.

    PubMed

    Chen, Hsien-Yeh; Rouillard, Jean-Marie; Gulari, Erdogan; Lahann, Joerg

    2007-07-03

    Compared with the well equipped arsenal of surface modification methods for flat surfaces, techniques that are applicable to curved, colloidal surfaces are still in their infancy. This technological gap exists because spin-coating techniques used in traditional photolithographic processes are not applicable to the curved surfaces of spherical objects. By replacing spin-coated photoresist with a vapor-deposited, photodefinable polymer coating, we have now fabricated microstructured colloids with a wide range of surface patterns, including asymmetric and chiral surface structures, that so far were typically reserved for flat substrates. This high-throughput method can yield surface-structured colloidal particles at a rate of approximately 10(7) to 10(8) particles per operator per day. Equipped with spatially defined binding pockets, microstructured colloids can engage in programmable interactions, which can lead to directed self-assembly. The ability to create a wide range of colloids with both simple and complex surface patterns may contribute to the genesis of previously unknown colloidal structures and may have important technological implications in a range of different applications, including photonic and phononic materials or chemical sensors.

  1. Electromagnetic force on structured metallic surfaces

    NASA Astrophysics Data System (ADS)

    Velzen, Andrew H.; Webb, Kevin J.

    2015-09-01

    We present a method by which the relatively weak electromagnetic force exerted on a surface can be dramatically enhanced. By structuring a metal surface at the nanoscale, we show that the force can be substantially increased over that on the planar metallic surface. The basis for this effect is found to be cavity-enhanced fields and the excitation of surface waves, and results are related to theory. In practice, this force enhancement could be expanded to other materials in various frequency regimes. This increased electromagnetic force should facilitate an expansion of applications related to optomechanics.

  2. Nature inspired structured surfaces for biomedical applications.

    PubMed

    Webb, H K; Hasan, J; Truong, V K; Crawford, R J; Ivanova, E P

    2011-01-01

    Nature has created an array of superhydrophobic surfaces that possess water-repellent, self-cleaning and anti-icing properties. These surfaces have a number of potential applications in the biomedical industry, as they have the potential to control protein adsorption and cell adhesion. Natural superhydrophobic surfaces are typically composed of materials with a low intrinsic surface free-energy (e.g the cuticular waxes of lotus leaves and insect wings) with a hierarchical structural configuration. This hierarchical surface topography acts to decrease the contact area of water droplets in contact with the surface, thereby increasing the extent of the air/water interface, resulting in water contact angles greater than 150º. In order to employ these surfaces in biotechnological applications, fabrication techniques must be developed so that these multi-scale surface roughness characteristics can be reproduced. Additionally, these fabrication techniques must also be able to be applied to the material required for the intended application. An overview of some of the superhydrophobic surfaces that exist in nature is presented, together with an explanation of the theories of their wettability. Also included is a description of some of the biomedical applications of superhydrophobic surfaces and fabrication techniques that can be used to mimic superhydrophobic surfaces found in nature.

  3. Individual contribution of grain outer layers and their cell wall structure to the mechanical properties of wheat bran.

    PubMed

    Antoine, Carole; Peyron, Stéphane; Mabille, Frédéric; Lapierre, Catherine; Bouchet, Brigitte; Abecassis, Joël; Rouau, Xavier

    2003-03-26

    The mechanical properties of wheat bran and the contribution of each constitutive tissue on overall bran properties were determined on a hard wheat (cv. Baroudeur) and a soft wheat (cv. Scipion). Manual dissection allowed three different layers to be separated from wheat bran, according to radial and longitudinal grain orientations, which were identified by confocal laser scanning microscopy as outer pericarp, an intermediate strip (comprising inner pericarp, testa, and nucellar tissue), and aleurone layer, respectively. Tissue microstructure and cell wall composition were determined. Submitted to traction tests, whole bran, intermediate, and aleurone layers demonstrated elastoplastic behavior, whereas pericarp exhibited elastic behavior. By longitudinal orientation, pericarp governed 50% bran elasticity (elastic strength and rigidity), whereas, in the opposite orientation, bran elastic properties were mostly influenced by the other tissues. Regardless of test orientation, the linear force required to bran rupture corresponded to the sum of intermediate and aleurone layer strengths. According to radial orientation, the intermediate strip governed bran extensibility, but according to longitudinal orientation, all tissues contributed until bran disruption. Tissues from both wheat cultivars behaved similarly. A structural model of wheat bran layers illustrated the detachment of pericarp from intermediate layer within radial bran strips.

  4. Seismological evidence for mosaic structure of the surface of the Earth's inner core.

    PubMed

    Krasnoshchekov, Dmitry N; Kaazik, Peter B; Ovtchinnikov, Vladimir M

    2005-05-26

    The transition from the Earth's solid inner core to liquid outer core is the location where the inner core grows and from which compositional convection in the outer core originates. Most seismological models of the Earth describe the inner-core boundary as sharp and simple, although experimental data requiring the presence of a thin transition layer at the bottom of the outer core have been reported. The density jump at the inner-core boundary--an important parameter determining gravitational energy release and constraining the compositional difference between the inner and outer core-is also not well known. Estimates of this density jump obtained using free-oscillation eigenfrequencies give low values of 0.25-1.0 g cm(-3), whereas a method using the amplitude ratio of core-reflected phases yielded values of 0.6-1.8 g cm(-3) (refs 14, 15, 16-17). Here we analyse properties of waves precritically reflected from the Earth's inner core (PKiKP phases) that show significant variability in amplitude, consistent high-frequency content and stable travel times with respect to a standard Earth model. We infer that the data are best explained by a mosaic structure of the inner core's surface. Such a mosaic may be composed of patches in which the transition from solid inner to liquid outer core includes a thin partially liquid layer interspersed with patches containing a sharp transition.

  5. Effects of outer membrane vesicle formation, surface-layer production and nanopod development on the metabolism of phenanthrene by Delftia acidovorans Cs1-4.

    PubMed

    Shetty, Ameesha; Hickey, William J

    2014-01-01

    Nanopods are extracellular structures arising from the convergence of two widely distributed bacterial characteristics: production of outer membrane vesicles (OMV) and formation of surface layers (S-layers). Nanopod production is driven by OMV formation, and in Delftia acidovorans Cs1-4 growth on phenanthrene induces OMV/nanopod formation. While OMV production has been associated with many functions, particularly with pathogens, linkage to biodegradation has been limited to a membrane stress response to lipophilic compounds. The objectives of this study were to determine: 1.) Whether induction of nanopod formation was linked to phenanthrene metabolism or a non-specific membrane stress response, and 2.) The relative importance of OMV/nanopod formation vs. formation of the S-layer alone to phenanthrene utilization. Membrane stress response was investigated by quantifying nanopod formation following exposure to compounds that exceeded phenanthrene in membrane stress-inducing potential. Naphthalene did not induce nanopod formation, and toluene was a weak inducer compared to phenanthrene (two- vs. six-fold increase, respectively). Induction of nanopod formation by growth on phenanthrene was therefore linked to phenanthrene metabolism and not a membrane stress response. Impacts on phenanthrene biodegradation of OMV/nanopod production vs. S-layer formation were assessed with D. acidovorans Cs1-4 mutants deficient in S-layer formation or OMV/nanopod production. Both mutants had impaired growth on phenanthrene, but the loss of OMV/nanopod production was more significant than loss of the S-layer. The S-layer of D. acidovorans Cs1-4 did not affect phenanthrene uptake, and its primary role in phenanthrene biodegradation process appeared to be enabling nanopod development. Nanopods appeared to benefit phenanthrene biodegradation by enhancing cellular retention of metabolites. Collectively, these studies established that nanopod/OMV formation was an essential characteristic of

  6. Effects of Outer Membrane Vesicle Formation, Surface-Layer Production and Nanopod Development on the Metabolism of Phenanthrene by Delftia acidovorans Cs1-4

    PubMed Central

    Shetty, Ameesha; Hickey, William J.

    2014-01-01

    Nanopods are extracellular structures arising from the convergence of two widely distributed bacterial characteristics: production of outer membrane vesicles (OMV) and formation of surface layers (S-layers). Nanopod production is driven by OMV formation, and in Delftia acidovorans Cs1-4 growth on phenanthrene induces OMV/nanopod formation. While OMV production has been associated with many functions, particularly with pathogens, linkage to biodegradation has been limited to a membrane stress response to lipophilic compounds. The objectives of this study were to determine: 1.) Whether induction of nanopod formation was linked to phenanthrene metabolism or a non-specific membrane stress response, and 2.) The relative importance of OMV/nanopod formation vs. formation of the S-layer alone to phenanthrene utilization. Membrane stress response was investigated by quantifying nanopod formation following exposure to compounds that exceeded phenanthrene in membrane stress-inducing potential. Naphthalene did not induce nanopod formation, and toluene was a weak inducer compared to phenanthrene (two- vs. six-fold increase, respectively). Induction of nanopod formation by growth on phenanthrene was therefore linked to phenanthrene metabolism and not a membrane stress response. Impacts on phenanthrene biodegradation of OMV/nanopod production vs. S-layer formation were assessed with D. acidovorans Cs1-4 mutants deficient in S-layer formation or OMV/nanopod production. Both mutants had impaired growth on phenanthrene, but the loss of OMV/nanopod production was more significant than loss of the S-layer. The S-layer of D. acidovorans Cs1-4 did not affect phenanthrene uptake, and its primary role in phenanthrene biodegradation process appeared to be enabling nanopod development. Nanopods appeared to benefit phenanthrene biodegradation by enhancing cellular retention of metabolites. Collectively, these studies established that nanopod/OMV formation was an essential characteristic of

  7. Losing the Io plasma: Local time variations of magnetospheric structure and the development of the Jovian outer magnetospheric maelstrom

    NASA Astrophysics Data System (ADS)

    Southwood, D. J.; Kivelson, M. G.

    2003-04-01

    In comparisons of planetary magnetospheres, the dominant contribution of rotational stresses at Jupiter as contrasted with the dominant role of solar wind-driven interactions at Earth has been stressed repeatedly. Discussions of the outward transport of the plasma delivered at a rate of a ton per second to the magnetosphere of Jupiter from a source at Io, deep within the magnetosphere, have focused on interchange and diffusion. Here we consider the mechanisms of plasma transport from the middle magnetospheric plasmasheet to the outer portions of Jupiter's magnetosphere, invoking a different mechanism. We base our analysis on data acquired by Galileo and by previous spacecraft over a range of dayside local times between dawn and dusk, emphasizing in particular the dawn-dusk asymmetry that distinguishes Jupiter's rotation-dominated magnetosphere from Earth's. As the outer part of the plasmasheet rotates from dawn to noon, it moves radially inward and centrifugal stresses become increasingly effective in destabilizing the outermost flux tubes. Cloudlets of plasma enclosed in magnetic bubbles, sometimes observed as magnetic "nulls", break off to serve as a source of plasma for the outer magnetospheric flux tubes in the "cushion" region. Once trapped on a flux tube of the outer magnetosphere, a bubble is compressed by magnetic pressure and plasma moves along the field direction to fill a large volume. The cross section of the filled flux tube decreases and eventually can no longer confine the plasma which then expands into a much larger volume of the outer magnetosphere. The outer magnetospheric flux tubes lose their Iogenic plasma as they rotate through the magnetotail from which the plasma must return to the solar wind. Emphasizing the role of centrifugal stresses on the plasmasheet and the outer magnetospheric plasma, we also interpret the local time asymmetry of the thickness of the plasmasheet and account for the presence of auroral activity in high latitude

  8. Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification.

    PubMed

    Kim, June Sic; Singh, Vivek; Lee, Jun Ki; Lerch, Jason; Ad-Dab'bagh, Yasser; MacDonald, David; Lee, Jong Min; Kim, Sun I; Evans, Alan C

    2005-08-01

    Accurate reconstruction of the inner and outer cortical surfaces of the human cerebrum is a critical objective for a wide variety of neuroimaging analysis purposes, including visualization, morphometry, and brain mapping. The Anatomic Segmentation using Proximity (ASP) algorithm, previously developed by our group, provides a topology-preserving cortical surface deformation method that has been extensively used for the aforementioned purposes. However, constraints in the algorithm to ensure topology preservation occasionally produce incorrect thickness measurements due to a restriction in the range of allowable distances between the gray and white matter surfaces. This problem is particularly prominent in pediatric brain images with tightly folded gyri. This paper presents a novel method for improving the conventional ASP algorithm by making use of partial volume information through probabilistic classification in order to allow for topology preservation across a less restricted range of cortical thickness values. The new algorithm also corrects the classification of the insular cortex by masking out subcortical tissues. For 70 pediatric brains, validation experiments for the modified algorithm, Constrained Laplacian ASP (CLASP), were performed by three methods: (i) volume matching between surface-masked gray matter (GM) and conventional tissue-classified GM, (ii) surface matching between simulated and CLASP-extracted surfaces, and (iii) repeatability of the surface reconstruction among 16 MRI scans of the same subject. In the volume-based evaluation, the volume enclosed by the CLASP WM and GM surfaces matched the classified GM volume 13% more accurately than using conventional ASP. In the surface-based evaluation, using synthesized thick cortex, the average difference between simulated and extracted surfaces was 4.6 +/- 1.4 mm for conventional ASP and 0.5 +/- 0.4 mm for CLASP. In a repeatability study, CLASP produced a 30% lower RMS error for the GM surface and a 8

  9. Ab initio electronic band structure study of the valence bands of II-VI C(2 × 2) reconstructed surfaces

    NASA Astrophysics Data System (ADS)

    Rubio-Ponce, A.; Olguín, D.

    2015-01-01

    The structural and electronic properties of CdTe(001), CdSe(001), and ZnSe(001) C(2 x 2) reconstructed surfaces have been investigated through the use of first-principles calculations. To simulate the surface, we employed the slab model. Using the experimentally determined lattice parameters as inputs, we relaxed the internal atomic positions of the outer atomic layers. We demonstrate that our model appropriately reproduces both the surface structural parameters and the known electronic properties found for these semiconductor compounds in bulk. Finally, we discuss our results of the projected bulk bands and the surface and resonance states found for these surfaces.

  10. Sediments, structural framework, petroleum potential, environmental conditions, and operational considerations of the United States South Atlantic Outer Continental Shelf

    USGS Publications Warehouse

    ,

    1975-01-01

    The area designated for possible oil and gas lease sale in Bureau of Land Management memorandum 3310 #43 (722) and referred to therein as part of the United States South Atlantic Outer Continental Shelf (OCS) contains about 98,000 square kilometres of the continental margin seaward of the 3 mile offshore limit and within the 600 metre isobath. The designated area, offshore of North Carolina, South Carolina, Georgia, and Florida, encompasses parts of three physiographic provinces: the Continental Shelf, the Florida-Hatteras Slope, and the Blake Plateau. The structural framework of the U.3. South Atlantic region is dominated by the Southeast Georgia Embayment --an east-plunging depression recessed into the Atlantic Coastal Plain and shelf between Cape Fear, North Carolina and Jacksonville, Florida. The embayment is bounded to the north by the Cape Fear Arch and to southeast by the Peninsular Arch. Refraction data indicate a minor basement(?) ridge beneath the outer shelf between 30? and 32?N at 80?W. Drill hole data also suggest a gentle fold or accretionary structure (reef?) off the east coast of Florida. Several other structural features have been identified by refraction and reflection techniques and drilling. These are the Yamacraw Uplift, Burton High, Stone Arch, and the Suwannee Channel. Gravity and magnetic anomalies within the area probably result from emplacement of magma bodies along linear features representing fundamental crustal boundaries. Of these anomalies, the most prominent, is a segment of the East Coast Magnetic Anomaly which crosses the coast at Brunswick, Georgia. This anomaly has been interpreted as representing an ancient continental boundary where two formerly separate continental plates collided and were welded together. There may be as much as 5,000 m of sedimentary rocks in the Southeast Georgia Embayment out to the 600 m isobath. Basement rocks beneath the Southeast Georgia Embayment are expected to be similar to those exposed in the

  11. Transmembrane domain of surface-exposed outer membrane lipoprotein RcsF is threaded through the lumen of β-barrel proteins

    PubMed Central

    Konovalova, Anna; Perlman, David H.; Cowles, Charles E.; Silhavy, Thomas J.

    2014-01-01

    RcsF (regulator of capsule synthesis) is an outer membrane (OM) lipoprotein that functions to sense defects such as changes in LPS. However, LPS is found in the outer leaflet, and RcsF was thought to be tethered to the inner leaflet by its lipidated N terminus, raising the question of how it monitors LPS. We show that RcsF has a transmembrane topology with the lipidated N terminus on the cell surface and the C-terminal signaling domain in the periplasm. Strikingly, the short, unstructured, charged transmembrane domain is threaded through the lumen of β-barrel OM proteins where it is protected from the hydrophobic membrane interior. We present evidence that these unusual complexes, which contain one protein inside another, are formed by the Bam complex that assembles all β-barrel proteins in the OM. The ability of the Bam complex to expose lipoproteins at the cell surface underscores the mechanistic versatility of the β-barrel assembly machine. PMID:25267629

  12. Outer Plexiform Layer Structures Are Not Altered Following AAV-Mediated Gene Transfer in Healthy Rat Retina

    PubMed Central

    Giers, Bert C.; Klein, Daniela; Mendes-Madeira, Alexandra; Isiegas, Carolina; Lorenz, Birgit; Haverkamp, Silke; Stieger, Knut

    2017-01-01

    Ocular gene therapy approaches have been developed for a variety of different diseases. In particular, clinical gene therapy trials for RPE65 mutations, X-linked retinoschisis, and choroideremia have been conducted at different centers in recent years, showing that adeno-associated virus (AAV)-mediated gene therapy is safe, but limitations exist as to the therapeutic benefit and long-term duration of the treatment. The technique of vector delivery to retinal cells relies on subretinal injection of the vector solution, causing a transient retinal detachment. Although retinal detachments are known to cause remodeling of retinal neuronal structures as well as significant cell loss, the possible effects of this short-term therapeutic retinal detachment on retinal structure and circuitry have not yet been studied in detail. In this study, retinal morphology and apoptotic status were examined in healthy rat retinas following AAV-mediated gene transfer via subretinal injection with AAV2/5.CMV.d2GFP or sham injection with fluorescein. Outer plexiform layer (OPL) morphology was assessed by immunohistochemical labeling, laser scanning confocal microscopy, and electron microscopy. The number of synaptic contacts in the OPL was quantified after labeling with structural markers. To assess the apoptotic status, inflammatory and pro-apoptotic markers were tested and TUNEL assay for the detection of apoptotic nuclei was performed. Pre- and postsynaptic structures in the OPL, such as synaptic ribbons or horizontal and bipolar cell processes, did not differ in size or shape in injected versus non-injected areas and control retinas. Absolute numbers of synaptic ribbons were not altered. No signs of relevant gliosis were detected. TUNEL labeling of retinal cells did not vary between injected and non-injected areas, and apoptosis-inducing factor was not delocalized to the nucleus in transduced areas. The neuronal circuits in the OPL of healthy rat retinas undergoing AAV-mediated gene

  13. Outer Plexiform Layer Structures Are Not Altered Following AAV-Mediated Gene Transfer in Healthy Rat Retina.

    PubMed

    Giers, Bert C; Klein, Daniela; Mendes-Madeira, Alexandra; Isiegas, Carolina; Lorenz, Birgit; Haverkamp, Silke; Stieger, Knut

    2017-01-01

    Ocular gene therapy approaches have been developed for a variety of different diseases. In particular, clinical gene therapy trials for RPE65 mutations, X-linked retinoschisis, and choroideremia have been conducted at different centers in recent years, showing that adeno-associated virus (AAV)-mediated gene therapy is safe, but limitations exist as to the therapeutic benefit and long-term duration of the treatment. The technique of vector delivery to retinal cells relies on subretinal injection of the vector solution, causing a transient retinal detachment. Although retinal detachments are known to cause remodeling of retinal neuronal structures as well as significant cell loss, the possible effects of this short-term therapeutic retinal detachment on retinal structure and circuitry have not yet been studied in detail. In this study, retinal morphology and apoptotic status were examined in healthy rat retinas following AAV-mediated gene transfer via subretinal injection with AAV2/5.CMV.d2GFP or sham injection with fluorescein. Outer plexiform layer (OPL) morphology was assessed by immunohistochemical labeling, laser scanning confocal microscopy, and electron microscopy. The number of synaptic contacts in the OPL was quantified after labeling with structural markers. To assess the apoptotic status, inflammatory and pro-apoptotic markers were tested and TUNEL assay for the detection of apoptotic nuclei was performed. Pre- and postsynaptic structures in the OPL, such as synaptic ribbons or horizontal and bipolar cell processes, did not differ in size or shape in injected versus non-injected areas and control retinas. Absolute numbers of synaptic ribbons were not altered. No signs of relevant gliosis were detected. TUNEL labeling of retinal cells did not vary between injected and non-injected areas, and apoptosis-inducing factor was not delocalized to the nucleus in transduced areas. The neuronal circuits in the OPL of healthy rat retinas undergoing AAV-mediated gene

  14. Surface structure of novel semimetal WTe2

    NASA Astrophysics Data System (ADS)

    Kawahara, Kazuaki; Ni, Zeyuan; Arafune, Ryuichi; Shirasawa, Tetsuroh; Lin, Chun-Liang; Minamitani, Emi; Watanabe, Satoshi; Kawai, Maki; Takagi, Noriaki

    2017-04-01

    We investigate the atomic structure of the tungsten ditelluride (WTe2) surface by using low-energy electron diffraction (LEED), scanning tunneling microscopy, and density functional theory (DFT) calculations. From the LEED and DFT analyses, we find small but non-negligible surface relaxation that gradually decays in an oscillatory manner inside the first WTe2 layer. In addition, the DFT calculations reveal that the Fermi surface topology is sensitive to this relaxation. These results are helpful for understanding the exotic properties of WTe2.

  15. Surface structure and electronic properties of materials

    NASA Technical Reports Server (NTRS)

    Siekhaus, W. J.; Somorjai, G. A.

    1975-01-01

    A surface potential model is developed to explain dopant effects on chemical vapor deposition. Auger analysis of the interaction between allotropic forms of carbon and silicon films has shown Si-C formation for all forms by glassy carbon. LEED intensity measurements have been used to determine the mean square displacement of surface atoms of silicon single crystals, and electron loss spectroscopy has shown the effect of structure and impurities on surface states located within the band gap. A thin film of Al has been used to enhance film crystallinity at low temperature.

  16. The role of Shewanella oneidensis MR-1 outer surface structures in extracellular electron transfer

    SciTech Connect

    Bouhenni, Rachida; Vora, Gary J.; Biffinger, Justin C.; Shirodkar, Sheetal; Brockman, K. L.; Ray, Ricky; Wu, Peter; Johnson, Brandy J.; Biddle, E. M.; Marshall, Matthew J.; Fitzgerald, Lisa A.; Little, Brenda; Fredrickson, Jim K.; Beliaev, Alex S.; Ringeisen, Bradley R.; Saffarini, Daad

    2010-04-20

    Shewanella oneidensis is a facultative anaerobe that uses more than 14 different terminal electron acceptors for respiration. These include metal oxides and hydroxyoxides, and toxic metals such as uranium and chromium. Mutants deficient in metal reduction were isolated using the mariner transposon derivative, minihimar RB1. These included mutants with transposon insertions in the prepilin peptidase and type II secretion system genes. All mutants were deficient in Fe(III) and Mn(IV) reduction, and exhibited slow growth when DMSO was used as the electron acceptor. The genome sequence of S. oneidensis contains one prepilin peptidase gene, pilD. A similar prepilin peptidase that may function in the processing of type II secretion prepilins was not found. Single and multiple chromosomal deletions of four putative type IV pilin genes did not affect Fe(III) and Mn(IV) reduction. These results indicate that PilD in S. oneidensis is responsible for processing both type IV and type II secretion prepilin proteins. Type IV pili do not appear to be required for Fe(III) and Mn(IV) reduction.

  17. Identification of seven surface-exposed Brucella outer membrane proteins by use of monoclonal antibodies: immunogold labeling for electron microscopy and enzyme-linked immunosorbent assay.

    PubMed Central

    Cloeckaert, A; de Wergifosse, P; Dubray, G; Limet, J N

    1990-01-01

    A panel of monoclonal antibodies (MAbs) to seven Brucella outer membrane proteins were characterized. These antibodies were obtained by immunizing mice with sodium dodecyl sulfate-insoluble (SDS-I) fractions, cell walls, or whole bacterial cells of Brucella abortus or B. melitensis. Enzyme-linked immunosorbent assays were used to screen the hybridoma supernatants and to determine their binding at the surface of rough and smooth B. abortus and B. melitensis cells. The outer membrane proteins (OMPs) recognized by these antibodies were the proteins with molecular masses of 25 to 27 kDa and 36 to 38 kDa (porin) (major proteins) and the proteins with molecular masses of 10, 16.5, 19, 31 to 34, and 89 kDa (minor proteins). Surface exposure of these OMPs was visualized by electron microscopy by using the MAbs and immunogold labeling. Binding of the MAbs on whole rough bacterial cells indicates that the 10-, 16.5-, 19-, 25- to 27-, 31- to 34-, 36- to 38-, and 89-kDa OMPs are exposed at the cell surface. However, enzyme-linked immunosorbent assay results indicate a much better binding of the anti-OMP MAbs on rough strains than on the corresponding smooth strains except for the anti-19-kDa MAb. Immunoelectron microscopy showed that on smooth B. abortus cells only the 89- and 31- to 34-kDa OMPs were not accessible to the MAbs tested. Binding of the anti-31- to 34-kDa MAb at the cell surface was observed for the rough B. abortus cells and for the rough and smooth B. melitensis cells. These results indicate the importance of steric hindrance due to the presence of the long lipopolysaccharide O side chains in the accessibility of OMPs on smooth Brucella strains and should be considered when undertaking vaccine development. Images PMID:1701417

  18. Structure of a bacterial cell surface decaheme electron conduit

    USDA-ARS?s Scientific Manuscript database

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits...

  19. Planetary surface structure and evolution of Mars

    NASA Technical Reports Server (NTRS)

    Franck, Siegfried

    1991-01-01

    The surface of the planet Mars is characterized by two different hemispheres: old densely cratered structures in the Southern Uplands, and sparsely cratered younger topographically lower regions covering approximately the northern third of the planet's surface. The model for explaining these global surface structures is characterized by the following features: (1) homogeneous accretion of Mars; (2) formation of a metal melt layer; (3) northward translation of the undifferentiated core due to a Rayleigh-Taylor instability; (4) vigorous convection in the southern parts and formation of the Southern Uplands' crust; (5) fragmentation of the primordial core, slowly dissolving rockbergs, beginning of Tharsis uplift and volcanism; (6) formation of the Northern Lowlands' crust from only weakly differentiated silicatic material; and (7) reaching of the present state with symmetrically placed core and further thermal evolution.

  20. Nanomedicine strategy for optimizing delivery to outer hair cells by surface-modified poly(lactic/glycolic acid) nanoparticles with hydrophilic molecules

    PubMed Central

    Wen, Xingxing; Ding, Shan; Cai, Hui; Wang, Junyi; Wen, Lu; Yang, Fan; Chen, Gang

    2016-01-01

    Targeted drug delivery to outer hair cells (OHCs) in the cochlea by nanomedicine strategies forms an effective therapeutic approach for treating hearing loss. Surface chemistry plays a deciding role in nanoparticle (NP) biodistribution, but its influence on such distribution in the cochlea remains largely unknown. Herein, we report the first systematic comparison of poly(lactic/glycolic acid) nanoparticles (PLGA NPs) with or without surface modification of hydrophilic molecules for optimizing the delivery to OHCs both in vitro and in vivo. NPs that were surface modified with poloxamer 407 (P407), chitosan, or methoxy poly(ethylene glycol) and the unmodified NPs were highly biocompatible with L929 and House Ear Institute-organ of Corti 1 cells as well as cochlear tissues. Interestingly, among all the examined NPs, P407-PLGA NPs showed the greatest cellular uptake and prominent fluorescence in cochlear imaging. More importantly, we provide novel evidence that the surface-modified NPs reached the organ of Corti and were transported into the OHCs at a higher level. Together, these observations suggest that surface modification with hydrophilic molecules will allow future clinical applications of PLGA NPs, especially P407-PLGA NPs, in efficient hearing loss therapy. PMID:27877041

  1. Pool Boiling Heat Transfer on structured Surfaces

    NASA Astrophysics Data System (ADS)

    Addy, J.; Olbricht, M.; Müller, B.; Luke, A.

    2016-09-01

    The development in the process and energy sector shows the importance of efficient utilization of available resources to improve thermal devices. To achieve this goal, all thermal components have to be optimized continuously. Various applications of multi-phase heat and mass transfer have to be improved. Therefore, the heat transfer and the influence of surface roughness in nucleate boiling with the working fluid propane is experimentally investigated on structured mild steel tubes, because only few data are available in the literature. The mild steel tube is sandblasted to obtain different surface roughness. The measurements are carried out over wide ranges of heat flux and pressure. The experimental results are compared with correlations from literature and the effect of surface roughness on the heat transfer is discussed. It is shown that the heat transfer coefficient increases with increasing surface roughness, heat flux and reduced pressure at nucleate pool boiling.

  2. Surface conduction in encapsulated topological gated structures

    NASA Astrophysics Data System (ADS)

    Deshko, Yury; Korzhovska, Inna; Zhao, Lukas; Arefe, Ghidewon; Konczykowski, Marcin; Krusin-Elbaum, Lia

    2015-03-01

    In three-dimensional (3D) topological insulators (TIs), the surface Dirac fermions intermix with the conducting bulk, thereby complicating access to the low-energy surface charge transport or magnetic response. The subsurface 2D states of bulk origin are vulnerable to bandbending due to surface adatoms, a band modification thought to be responsible for the `ageing' effect. To minimize this effect, we have developed an inert environment mechanical exfoliation technique to fabricate transistor-like gated structures in which prototypical binary TIs as well as ultra-low bulk carrier density ternaries (such as Bi2Te2Se) were encapsulated by thin h-BN layers, with electrical contacts made using exfoliated graphene. The effects of electrostatic tuning by the gate bias voltage on surface conductivity as a function of thickness of the TI layers and the variation with disorder will be presented. Supported by NSF-DMR-1312483, and DOD-W911NF-13-1-0159.

  3. Specialized cell surface structures in cellulolytic bacteria.

    PubMed

    Lamed, R; Naimark, J; Morgenstern, E; Bayer, E A

    1987-08-01

    The cell surface topology of various gram-negative and -positive, anaerobic and aerobic, mesophilic and thermophilic, cellulolytic and noncellulolytic bacteria was investigated by scanning electron microscopic visualization using cationized ferritin. Characteristic protuberant structures were observed on cells of all cellulolytic strains. These structures appeared to be directly related to the previously described exocellular cellulase-containing polycellulosomes of Clostridium thermocellum YS (E. A. Bayer and R. Lamed, J. Bacteriol. 167:828-836, 1986). Immunochemical evidence and lectin-binding studies suggested a further correlation on the molecular level among cellulolytic bacteria. The results indicate that such cell surface cellulase-containing structures may be of general consequence to the bacterial interaction with and degradation of cellulose.

  4. Specialized cell surface structures in cellulolytic bacteria.

    PubMed Central

    Lamed, R; Naimark, J; Morgenstern, E; Bayer, E A

    1987-01-01

    The cell surface topology of various gram-negative and -positive, anaerobic and aerobic, mesophilic and thermophilic, cellulolytic and noncellulolytic bacteria was investigated by scanning electron microscopic visualization using cationized ferritin. Characteristic protuberant structures were observed on cells of all cellulolytic strains. These structures appeared to be directly related to the previously described exocellular cellulase-containing polycellulosomes of Clostridium thermocellum YS (E. A. Bayer and R. Lamed, J. Bacteriol. 167:828-836, 1986). Immunochemical evidence and lectin-binding studies suggested a further correlation on the molecular level among cellulolytic bacteria. The results indicate that such cell surface cellulase-containing structures may be of general consequence to the bacterial interaction with and degradation of cellulose. Images PMID:3301817

  5. Specific Bonds between an Iron Oxide Surface and Outer Membrane Cytochromes MtrC and OmcA from Shewanella oneidensis MR-1

    SciTech Connect

    Lower, Brian H.; Shi, Liang; Yongsunthon, Ruchirej; Droubay, Timothy C.; Mccready, David E.; Lower, Steven

    2007-07-31

    Shewanella oneidensis MR-1 is purported to express outer membrane cytochromes (e.g., MtrC and OmcA) that transfer electrons directly to Fe(III) in a mineral during anaerobic respiration.  A prerequisite for this type of reaction would be the formation of a stable bond between a cytochrome and an iron oxide surface.  Atomic force microscopy (AFM) was used to detect whether a specific bond forms between a hematite (Fe2O3) thin film, created with oxygen plasma assisted molecular beam epitaxy (MBE), and recombinant MtrC or OmcA molecules coupled to gold substrates.  Force spectra displayed a unique force signature indicative of a specific bond between each cytochrome and the hematite surface.  The strength of the OmcA-hematite bond was approximately twice as strong as the MtrC-hematite bond, but direct binding to hematite was twice as favorable for MtrC.  Reversible folding/unfolding reactions were observed for mechanically denatured MtrC molecules bound to hematite.  The force measurements for the hematite-cytochrome pairs were compared to spectra collected between an iron oxide and S. oneidensis under anaerobic conditions.  There is a strong correlation between the whole cell and pure protein force spectra suggesting that the unique binding attributes of each cytochrome complement one another and allow both MtrC and OmcA to play a prominent role in the transfer of electrons to Fe(III) in minerals.  Finally, by comparing the magnitude of binding force for the whole cell vs. pure protein data, we were able to estimate that a single bacterium of S. oneidensis (2 x 0.5 μm) expresses ~104 cytochromes on its outer surface

  6. Specific Bonds between an Iron Oxide Surface and Outer Membrane Cytochromes MtrC and OmcA from Shewanella oneidensis MR-1▿

    PubMed Central

    Lower, Brian H.; Shi, Liang; Yongsunthon, Ruchirej; Droubay, Timothy C.; McCready, David E.; Lower, Steven K.

    2007-01-01

    Shewanella oneidensis MR-1 is purported to express outer membrane cytochromes (e.g., MtrC and OmcA) that transfer electrons directly to Fe(III) in a mineral during anaerobic respiration. A prerequisite for this type of reaction would be the formation of a stable bond between a cytochrome and an iron oxide surface. Atomic force microscopy (AFM) was used to detect whether a specific bond forms between a hematite (Fe2O3) thin film, created with oxygen plasma-assisted molecular beam epitaxy, and recombinant MtrC or OmcA molecules coupled to gold substrates. Force spectra displayed a unique force signature indicative of a specific bond between each cytochrome and the hematite surface. The strength of the OmcA-hematite bond was approximately twice that of the MtrC-hematite bond, but direct binding to hematite was twice as favorable for MtrC. Reversible folding/unfolding reactions were observed for mechanically denatured MtrC molecules bound to hematite. The force measurements for the hematite-cytochrome pairs were compared to spectra collected for an iron oxide and S. oneidensis under anaerobic conditions. There is a strong correlation between the whole-cell and pure-protein force spectra, suggesting that the unique binding attributes of each cytochrome complement one another and allow both MtrC and OmcA to play a prominent role in the transfer of electrons to Fe(III) in minerals. Finally, by comparing the magnitudes of binding force for the whole-cell versus pure-protein data, we were able to estimate that a single bacterium of S. oneidensis (2 by 0.5 μm) expresses ∼104 cytochromes on its outer surface. PMID:17468239

  7. Bacillus atrophaeus outer spore coat assembly and ultrastructure.

    PubMed

    Plomp, Marco; Leighton, Terrance J; Wheeler, Katherine E; Pitesky, Maurice E; Malkin, Alexander J

    2005-11-08

    Our previous atomic force microscopy (AFM) studies successfully visualized native Bacillus atrophaeus spore coat ultrastructure and surface morphology. We have shown that the outer spore coat surface is formed by a crystalline array of approximately 11 nm thick rodlets, having a periodicity of approximately 8 nm. We present here further AFM ultrastructural investigations of air-dried and fully hydrated spore surface architecture. In the rodlet layer planar and point defects as well as domain boundaries similar to those described for inorganic and macromolecular crystals were identified. For several Bacillus species rodlet structure assembly and architectural variation appear to be a consequence of species-specific nucleation and crystallization mechanisms that regulate the formation of the outer spore coat. We propose a unifying mechanism for nucleation and self-assembly of this crystalline layer on the outer spore coat surface.

  8. Bacillus atrophaeus Outer Spore Coat Assembly and Ultrastructure

    SciTech Connect

    Plomp, M; Leighton, T J; Wheeler, K E; Pitesky, M E; Malkin, A J

    2005-11-21

    Our previous atomic force microscopy (AFM) studies successfully visualized native Bacillus atrophaeus spore coat ultrastructure and surface morphology. We have shown that the outer spore coat surface is formed by a crystalline array of {approx}11 nm thick rodlets, having a periodicity of {approx}8 nm. We present here further AFM ultrastructural investigations of air-dried and fully hydrated spore surface architecture. In the rodlet layer, planar and point defects, as well as domain boundaries, similar to those described for inorganic and macromolecular crystals, were identified. For several Bacillus species, rodlet structure assembly and architectural variation appear to be a consequence of species-specific nucleation and crystallization mechanisms that regulate the formation of the outer spore coat. We propose a unifying mechanism for nucleation and self-assembly of this crystalline layer on the outer spore coat surface.

  9. Detection of Borrelia burgdorferi outer surface protein antibodies in wild white-tailed deer (Odocoileus virginianus) in New York and Pennsylvania, USA.

    PubMed

    Kirchgessner, Megan S; Freer, Heather; Whipps, Christopher M; Wagner, Bettina

    2013-05-15

    Borrelia burgdorferi differentially exhibits outer surface proteins (Osp) on its outer membrane, and detection of particular Osp antibodies in mammals is suggestive of the infection stage. For example, OspF is typically associated with chronic infection, whereas OspC suggests early infection. A fluorescent bead-based multiplex assay was used to test sera from New York and Pennsylvania white-tailed deer (Odocoileus virginianus) for the presence of antibodies to OspA, OspC, and OspF. OspF seroprevalence was significantly greater than both OspA and OspC seroprevalence for all study sites. OspA, OspC, and OspF seroprevalences were significantly greater in Pennsylvania deer than New York deer. The regional differences in seroprevalence are believed to be attributable to a heterogeneous Ixodes scapularis distribution. While most seropositive deer were solely OspF seropositive, deer concurrently OspC and OspF seropositive were the second most commonly encountered individuals. Simultaneous detection of OspF and OspC antibodies may occur when non-infected or chronically infected deer are bitten by an infected tick within a few months of blood collection, thereby inducing production of antibodies associated with the early stages of infection with B. burgdorferi. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. [The effects of quinine on active motile responses and fine structure of isolated outer hair cells from the Guinea pig cochlea].

    PubMed

    Dieler, R; Davies, C; Shehata-Dieler, W E

    2002-03-01

    Large doses of quinine (as well as of salicylate) are known to produce reversible hearing loss and tinnitus. Cochlear outer hair cells seem to be the common site for the ototoxic effect of both drugs. Isolated outer hair cells from the guinea pig cochlea were exposed to ototoxic doses of quinine hydrochloride (0.05-1.5 mmol/l). The cells were examined using tight-seal whole-cell recording techniques and transmission electron microscopy. Quinine exposure led to a hyperpolarization followed by a depolarization of the hair cells' membrane potential. It also caused a diminution of evoked rapid motile responses that was more apparent in response to hyperpolarizing than to depolarizing pulses. These effects were largely dose dependent and reversible. Ototoxic doses of quinine were not found to induce changes in turgor, shape or fine structure of outer hair cells such as those reported with ototoxic doses of salicylates in vitro. The present in vitro findings show that quinine (as well as salicylate) directly and reversibly affects cochlear outer hair cells. They also indicate that the underlying mechanisms of quinine ototoxicity are considerably different to that of salicylate although both substances clinically lead to identical symptoms.

  11. Assessing the temporal stability of surface functional groups introduced by plasma treatments on the outer shells of carbon nanotubes

    PubMed Central

    Merenda, Andrea; Ligneris, Elise des; Sears, Kallista; Chaffraix, Thomas; Magniez, Kevin; Cornu, David; Schütz, Jürg A.; Dumée, Ludovic F.

    2016-01-01

    Plasma treatments are emerging as superior efficiency treatment for high surface to volume ratio materials to tune functional group densities and alter crystallinity due to their ability to interact with matter at the nanoscale. The purpose of this study is to assess for the first time the long term stability of surface functional groups introduced across the surface of carbon nanotube materials for a series of oxidative, reductive and neutral plasma treatment conditions. Both plasma duration dose matrix based exposures and time decay experiments, whereby the surface energy of the materials was evaluated periodically over a one-month period, were carried out. Although only few morphological changes across the graphitic planes of the carbon nanotubes were found under the uniform plasma treatment conditions, the time dependence of pertinent work functions, supported by Raman analysis, suggested that the density of polar groups decreased non-linearly over time prior to reaching saturation from 7 days post treatment. This work provides critical considerations on the understanding of the stability of functional groups introduced across high specific surface area nano-materials used for the design of nano-composites, adsorptive or separation systems, or sensing materials and where interfacial interactions are key to the final materials performance. PMID:27507621

  12. Assessing the temporal stability of surface functional groups introduced by plasma treatments on the outer shells of carbon nanotubes.

    PubMed

    Merenda, Andrea; Ligneris, Elise des; Sears, Kallista; Chaffraix, Thomas; Magniez, Kevin; Cornu, David; Schütz, Jürg A; Dumée, Ludovic F

    2016-08-10

    Plasma treatments are emerging as superior efficiency treatment for high surface to volume ratio materials to tune functional group densities and alter crystallinity due to their ability to interact with matter at the nanoscale. The purpose of this study is to assess for the first time the long term stability of surface functional groups introduced across the surface of carbon nanotube materials for a series of oxidative, reductive and neutral plasma treatment conditions. Both plasma duration dose matrix based exposures and time decay experiments, whereby the surface energy of the materials was evaluated periodically over a one-month period, were carried out. Although only few morphological changes across the graphitic planes of the carbon nanotubes were found under the uniform plasma treatment conditions, the time dependence of pertinent work functions, supported by Raman analysis, suggested that the density of polar groups decreased non-linearly over time prior to reaching saturation from 7 days post treatment. This work provides critical considerations on the understanding of the stability of functional groups introduced across high specific surface area nano-materials used for the design of nano-composites, adsorptive or separation systems, or sensing materials and where interfacial interactions are key to the final materials performance.

  13. Assessing the temporal stability of surface functional groups introduced by plasma treatments on the outer shells of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Merenda, Andrea; Ligneris, Elise Des; Sears, Kallista; Chaffraix, Thomas; Magniez, Kevin; Cornu, David; Schütz, Jürg A.; Dumée, Ludovic F.

    2016-08-01

    Plasma treatments are emerging as superior efficiency treatment for high surface to volume ratio materials to tune functional group densities and alter crystallinity due to their ability to interact with matter at the nanoscale. The purpose of this study is to assess for the first time the long term stability of surface functional groups introduced across the surface of carbon nanotube materials for a series of oxidative, reductive and neutral plasma treatment conditions. Both plasma duration dose matrix based exposures and time decay experiments, whereby the surface energy of the materials was evaluated periodically over a one-month period, were carried out. Although only few morphological changes across the graphitic planes of the carbon nanotubes were found under the uniform plasma treatment conditions, the time dependence of pertinent work functions, supported by Raman analysis, suggested that the density of polar groups decreased non-linearly over time prior to reaching saturation from 7 days post treatment. This work provides critical considerations on the understanding of the stability of functional groups introduced across high specific surface area nano-materials used for the design of nano-composites, adsorptive or separation systems, or sensing materials and where interfacial interactions are key to the final materials performance.

  14. Superhydrophobic Behavior on Nano-structured Surfaces

    NASA Astrophysics Data System (ADS)

    Schaeffer, Daniel

    2008-05-01

    Superhydrophobic behavior is observed in natural occurrences and has been thoroughly studied over the past few years. Water repellant properties on uniform arrays of vertically aligned nano-cones were investigated to determine the highest achievable contact angle (a measure of water drop repellency), which is measured from the reference plane on which the water drop sits to the tangent line of the point at which the drop makes contact with the reference plane. At low aspect ratios (height vs. width of the nano-cones), surface tension pulls the water into the nano-cone array, resulting in a wetted surface. Higher aspect ratios reverse the effect of the surface tension, resulting in a larger contact angle that causes water drops to roll off the surface. Fiber drawing, bundling, and redrawing are used to produce the structured array glass composite surface. Triple-drawn fibers are fused together, annealed, and sliced into thin wafers. The surface of the composite glass is etched to form nano-cones through a differential etching process and then coated with a fluorinated self-assembled monolayer (SAM). Cone aspect ratios can be varied through changes in the chemistry and concentration of the etching acid solution. Superhydrophobic behavior occurs at contact angles >150 and it is predicted and measured that optimal behavior is achieved when the aspect ratio is 4:1, which displays contact angles >=175 .

  15. Outer planets probe testing

    NASA Technical Reports Server (NTRS)

    Smittkamp, J. A.; Grote, M. G.; Edwards, T. M.

    1977-01-01

    An atmospheric entry Probe is being developed by NASA Ames Research Center (ARC) to conduct in situ scientific investigations of the outer planets' atmospheres. A full scale engineering model of an MDAC-E Probe configuration, was fabricated by NASA ARC. Proof-of-concept test validation of the structural and thermal design is being obtained at NASA ARC. The model was successfully tested for shock and dynamic loading and is currently in thermal vacuum testing.

  16. Disk resolved studies of the optical properties and physical nature of the surfaces of the outer planet satellites

    NASA Technical Reports Server (NTRS)

    Buratti, Bonnie J.; Mosher, J. A.; Johnson, T. V.

    1991-01-01

    The spatially resolved albedo, color, compaction state, roughness, and constituent particle sizes of the surfaces of the satellites of Saturn, Uranus, and Jupiter provide important constraints in understanding the geologic evolution and relevant exogenic processes operating in these satellite systems. Some details of observations are given.

  17. Biochemical and biophysical characterization of the major outer surface protein, OSP-A from North American and European isolates of Borrelia burgdorferi

    SciTech Connect

    McGrath, B.C.; Dunn, J.J.; France, L.L.; Jaing, W.; Polin, D.; Gorgone, G.; Luft, B.; Dykhuizen, D.

    1995-12-31

    Lyme borreliosis, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne disease in North America and Western Europe. As the major delayed immune response in humans, a better understanding of the major outer surface lipoproteins OspA and OspB are of much interest. These proteins have been shown to exhibit three distinct phylogenetic genotypes based on their DNA sequences. This paper describes the cloning of genomic DNA for each variant and amplification of PCR. DNA sequence data was used to derive computer driven phylogenetic analysis and deduced amino acid sequences. Overproduction of variant OspAs was carried out in E. coli using a T7-based expression system. Circular dichroism and fluorescence studies was carried out on the recombinant B31 PspA yielding evidence supporting a B31 protein containing 11% alpha-helix, 34% antiparallel beta-sheet, 12% parallel beta sheet.

  18. Advances on surface structural determination by LEED.

    PubMed

    Soares, Edmar A; de Castilho, Caio M C; de Carvalho, Vagner E

    2011-08-03

    In the last 40 years, low energy electron diffraction (LEED) has proved to be the most reliable quantitative technique for surface structural determination. In this review, recent developments related to the theory that gives support to LEED structural determination are discussed under a critical analysis of the main theoretical approximation-the muffin-tin calculation. The search methodologies aimed at identifying the best matches between theoretical and experimental intensity versus voltage curves are also considered, with the most recent procedures being reviewed in detail.

  19. An immunogenic, surface-exposed domain of Haemophilus ducreyi outer membrane protein HgbA is involved in hemoglobin binding.

    PubMed

    Nepluev, Igor; Afonina, Galyna; Fusco, William G; Leduc, Isabelle; Olsen, Bonnie; Temple, Brenda; Elkins, Christopher

    2009-07-01

    HgbA is the sole TonB-dependent receptor for hemoglobin (Hb) acquisition of Haemophilus ducreyi. Binding of Hb to HgbA is the initial step in heme acquisition from Hb. To better understand this step, we mutagenized hgbA by deletion of each of the 11 putative surface-exposed loops and expressed each of the mutant proteins in trans in host strain H. ducreyi FX547 hgbA. All mutant proteins were expressed, exported, and detected on the surface by anti-HgbA immunoglobulin G (IgG). Deletion of sequences in loops 5 and 7 of HgbA abolished Hb binding in two different formats. In contrast, HgbA proteins containing deletions in the other nine loops retained the ability to bind Hb. None of the clones expressing mutant proteins were able to grow on plates containing low concentrations of Hb. Previously we demonstrated in a swine model of chancroid infection that an HgbA vaccine conferred complete protection from a challenge infection. Using anti-HgbA IgG from this study and the above deletion mutants, we show that loops 4, 5, and 7 of HgbA were immunogenic and surface exposed and that IgG directed against loops 4 and 5 blocked Hb binding. Furthermore, loop 6 was cleaved by protease on intact H. ducreyi, suggesting surface exposure. These data implicate a central domain of HgbA (in respect to the primary amino acid sequence) as important in Hb binding and suggest that this region of the molecule might have potential as a subunit vaccine.

  20. Measurement of surface scratches on aircraft structures

    NASA Astrophysics Data System (ADS)

    Sarr, Dennis P.

    1996-01-01

    In assuring the quality of aircraft, the skin quality must be free of surface imperfections. Surface imperfections such as scratches are unacceptable for cosmetic and structural reasons. Scratches beyond a certain depth are not repairable, resulting in costly replacement of an aircraft's part. Measurements of aircraft exterior surfaces require a ladder or cherry picker for positioning the inspector. Commercially-available computer vision systems are not portable, easy to use, or ergonomic. The machine vision system must be designed with these criteria in mind. The scratch measurement system (SMS) uses computer vision, digital signal processing, and automated inspection methods. The system is portable and battery powered. It is certified for measuring the depth and width of the anomaly. The SMS provides a comprehensive, analytical, and accurate reading. A hardcopy output provides a permanent record of the analysis. The graphical data shows the surface profile and provides substantial information of the surface anomaly. The factory and flight line use the SMS at different stages of aircraft production. Six systems have been built for use within Boeing. A patent was issued for the SMS in February 1994.

  1. Spatial length scales of large-scale structures in atmospheric surface layers

    NASA Astrophysics Data System (ADS)

    Liu, HongYou; Wang, GuoHua; Zheng, XiaoJing

    2017-06-01

    Synchronous multipoint measurements were performed in the atmospheric surface layer at the Qingtu Lake Observation Array site to obtain high-Reynolds-number [Reτ˜O (106) ] data. Based on the selected high-quality data in the near-neutral surface layer, the spatial length scales of the large-scale dominant structures in the outer region of the turbulent boundary layer are investigated. The characteristic length scales are extracted from the two-point streamwise velocity correlations. Results show that the spatial length scales are invariant over a three order of magnitude change in Reynolds number [Reτ˜O (103) -O (106) ] . However, they increase significantly with the wall-normal distance, showing reasonable collapses on outer-scaled axes. The variation of the spanwise width scale in the logarithmic region follows a linear increase, with the rate of increase much larger than that in the wake region. Moreover, the variation of the wall-normal length scale is also revealed, which displays a qualitative behavior similar to that of the spanwise width scale. The universal laws revealed in the present work contribute to a better understanding of the dominant structures in the outer region of the turbulent boundary layer at high Reynolds numbers.

  2. THE HUBBLE WIDE FIELD CAMERA 3 TEST OF SURFACES IN THE OUTER SOLAR SYSTEM: THE COMPOSITIONAL CLASSES OF THE KUIPER BELT

    SciTech Connect

    Fraser, Wesley C.; Brown, Michael E.

    2012-04-10

    We present the first results of the Hubble Wide Field Camera 3 Test of Surfaces in the Outer Solar System. The purpose of this survey was to measure the surface properties of a large number of Kuiper Belt objects and attempt to infer compositional and dynamical correlations. We find that the Centaurs and the low-perihelion scattered disk and resonant objects exhibit virtually identical bifurcated optical color distributions and make up two well-defined groups of objects. Both groups have highly correlated optical and NIR colors that are well described by a pair of two-component mixture models that have different red components but share a common neutral component. The small, H{sub 606} {approx}> 5.6 high-perihelion excited objects are entirely consistent with being drawn from the two branches of the mixing model, suggesting that the color bifurcation of the Centaurs is apparent in all small excited objects. On the other hand, objects larger than H{sub 606} {approx} 5.6 are not consistent with the mixing model, suggesting some evolutionary process avoided by the smaller objects. The existence of a bifurcation amongst all excited populations argues that the two separate classes of object existed in the primordial disk before the excited Kuiper Belt was populated. The cold classical objects exhibit a different type of surface that has colors that are consistent with being drawn from the red branch of the mixing model, but with much higher albedos.

  3. Penumbral thermal structure below the visible surface

    NASA Astrophysics Data System (ADS)

    Borrero, J. M.; Franz, M.; Schlichenmaier, R.; Collados, M.; Asensio Ramos, A.

    2017-05-01

    Context. The thermal structure of the penumbra below its visible surface (i.e., τ5 ≥ 1) has important implications for our present understanding of sunspots and their penumbrae: their brightness and energy transport, mode conversion of magneto-acoustic waves, sunspot seismology, and so forth. Aims: We aim at determining the thermal stratification in the layers immediately beneath the visible surface of the penumbra: τ5 ∈ [1,3] (≈70-80 km below the visible continuum-forming layer) Methods: We analyzed spectropolarimetric data (i.e., Stokes profiles) in three Fe i lines located at 1565 nm observed with the GRIS instrument attached to the 1.5-m solar telescope GREGOR. The data are corrected for the smearing effects of wide-angle scattered light and then subjected to an inversion code for the radiative transfer equation in order to retrieve, among others, the temperature as a function of optical depth T(τ5). Results: We find that the temperature gradient below the visible surface of the penumbra is smaller than in the quiet Sun. This implies that in the region τ5 ≥ 1 the penumbral temperature diverges from that of the quiet Sun. The same result is obtained when focusing only on the thermal structure below the surface of bright penumbral filaments. Conclusions: We interpret these results as evidence of a thick penumbra, whereby the magnetopause is not located near its visible surface. In addition, we find that the temperature gradient in bright penumbral filaments is lower than in granules. This can be explained in terms of the limited expansion of a hot upflow inside a penumbral filament relative to a granular upflow, as magnetic pressure and tension forces from the surrounding penumbral magnetic field hinder an expansion like this.

  4. Surface finish quality of the outer AXAF mirror pair based on x ray measurements of the VETA-I

    NASA Technical Reports Server (NTRS)

    Hughes, John P.; Schwartz, Daniel A.; Szentgyorgyi, Andrew; Vanspeybroeck, Leon; Zhao, Ping

    1992-01-01

    We employ the X-ray measurements of the VETA-I taken at the X-Ray Calibration Facility (XRCF) of the Marshall Space Flight Center (MSFC) to extract information about the surface finish quality of the outermost pair of AXAF mirrors. The particular measurements we consider are one dimensional scans of the core of the point response function (PRF) (full width half maximum (FWHM) scans), the encircled energy as a function of radius, and one dimensional scans of the wings of the PRF. We discuss briefly our ray trace model which incorporates the numerous effects present in the VETA-I test, such as the finite source distance, the size and shape of the X-ray source, the residual gravitational distortions of the optic, the despace of the VETA-I, and particulate contamination. We show how the data constrain the amplitude of mirror surface deviations for spatial frequencies greater than about 0.1 mm(exp -1). Constraints on the average amplitude of circumferential slope errors are derived as well.

  5. Surface finish quality of the outer AXAF mirror pair based on X-ray measurements of the VETA-I

    NASA Technical Reports Server (NTRS)

    Hughes, John P.; Schwartz, Daniel; Szentgyorgyi, Andrew; Van Speybroeck, Leon; Zhao, Ping

    1993-01-01

    We employ the X-ray measurements of the VETA-I taken at the X-Ray Calibration Facility (XRCF) of the Marshall Space Flight Center (MSFC) to extract information about the surface finish quality of the outermost pair of AXAF mirrors. The particular measurements we consider are 1D scans of the core of the point response function (PRF) (FWHM scans), the encircled energy as a function of radius, and 1D scans of the wings of the PRF. We discuss briefly our raytrace model which incorporates the numerous effects present in the VETA-I test, such as the finite source distance, the size and shape of the X-ray source, the residual gravitational distortions of the optic, the despace of the VETA-I, and particulate contamination. We show how the data constrain the amplitude of mirror surface deviations for spatial frequencies greater than about 0.1/mm. Constraints on the average amplitude of circumferential slope errors are derived as well.

  6. Crystal structures of OprN and OprJ, outer membrane factors of multidrug tripartite efflux pumps of Pseudomonas aeruginosa.

    PubMed

    Yonehara, Ryo; Yamashita, Eiki; Nakagawa, Atsushi

    2016-06-01

    The genome of Pseudomonas aeruginosa encodes tripartite efflux pumps that extrude functionally and structurally dissimilar antibiotics from the bacterial cell. MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM are the main tripartite efflux pumps responsible for multidrug resistance in P. aeruginosa. The outer membrane factors OprN, OprJ, and OprM are essential components of functional tripartite efflux pumps. To elucidate the structural basis of multidrug resistance, we determined the crystal structures of OprN and OprJ. These structures revealed several features, including tri-acylation of the N-terminal cysteine, a small pore in the β-barrel domain, and a tightly sealed gate in the α-barrel domain. Despite the overall similarity of OprN, OprJ, and OprM, a comparison of their structures and electrostatic distributions revealed subtle differences at the periplasmic end of the α-barrel domain. These results suggested that the overall structures of these outer membrane factors are specifically optimized for particular tripartite efflux pumps. Proteins 2016; 84:759-769. © 2016 Wiley Periodicals, Inc.

  7. Lunar and Planetary Science XXXV: Outer Solar System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Outer Solar System" included the following reports:New Data About Seasonal Variations of the North-South Asymmetry of Polarized Light of Jupiter; Appearance of Second Harmonic in the Jupiter Spectrum; Dynamics of Confined Liquid Mass, Spreading on Planet Surface; "Cassini" will Discover 116 New Satellites of Saturn!; Jupiter's Light Reflection Law;and Internal Structure Modelling of Europa.

  8. Surface composition and dynamical evolution of two retrograde objects in the outer solar system: 2008 YB3 and 2005 VD

    NASA Astrophysics Data System (ADS)

    Pinilla-Alonso, N.; Alvarez-Candal, A.; Melita, M. D.; Lorenzi, V.; Licandro, J.; Carvano, J.; Lazzaro, D.; Carraro, G.; Alí-Lagoa, V.; Costa, E.; Hasselmann, P. H.

    2013-02-01

    Most of the objects in the trans-Neptunian belt (TNb) and related populations move in prograde orbits with low eccentricity and inclination. However, the list of icy minor bodies moving in orbits with an inclination above 40° has increased in recent years. The origin of these bodies, and in particular of those objects in retrograde orbits, is not well determined, and different scenarios are considered, depending on their inclination and perihelion. In this paper, we present new observational and dynamical data of two objects in retrograde orbits, 2008 YB3 and 2005 VD. We find that the surface of these extreme objects is depleted of ices and does not contain the "ultra-red" matter typical of some Centaurs. Despite small differences, these objects share common colors and spectral characteristics with the Trojans, comet nuclei, and the group of grey Centaurs. All of these populations are supposed to be covered by a mantle of dust responsible for their reddish-to-neutral color. To investigate if the surface properties and dynamical evolution of these bodies are related, we integrate their orbits for 108 years to the past. We find a remarkable difference in their dynamical evolutions: 2005 VD's evolution is dominated by a Kozai resonance with planet Jupiter while that of 2008 YB3 is dominated by close encounters with planets Jupiter and Saturn. Our models suggest that the immediate site of provenance of 2005 VD is the in the Oort Cloud, whereas for 2008 YB3 it is in the trans-Neptunian region. Additionally, the study of their residence time shows that 2005 VD has spent a larger lapse of time moving in orbits in the region of the giant planets than 2008 YB3. Together with the small differences in color between these two objects, with 2005 VD being more neutral than 2008 YB3, this fact suggests that the surface of 2005 VD has suffered a higher degree of processing, which is probably related to cometary activity episodes. Partially based on observations made with ESO

  9. Bioinspired, dynamic, structured surfaces for biofilm prevention

    NASA Astrophysics Data System (ADS)

    Epstein, Alexander K.

    Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of biocidal treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters, frequently impossible. Adding to the challenge, we have discovered that biofilm can be both impenetrable to vapors and extremely nonwetting, repelling even low surface tension commercial antimicrobials. Our study shows multiple contributing factors, including biochemical components and multiscale reentrant topography. Reliant on surface chemistry, conventional strategies for preventing biofilm only transiently affect attachment and/or are environmentally toxic. In this work, we look to Nature's antifouling solutions, such as the dynamic spiny skin of the echinoderm, and we develop a versatile surface nanofabrication platform. Our benchtop approach unites soft lithography, electrodeposition, mold deformation, and material selection to enable many degrees of freedom—material, geometric, mechanical, dynamic—that can be programmed starting from a single master structure. The mechanical properties of the bio-inspired nanostructures, verified by AFM, are precisely and rationally tunable. We examine how synthetic dynamic nanostructured surfaces control the attachment of pathogenic biofilms. The parameters governing long-range patterning of bacteria on high-aspect-ratio (HAR) nanoarrays are combinatorially elucidated, and we discover that sufficiently low effective stiffness of these HAR arrays mechanoselectively inhibits ˜40% of Pseudomonas aeruginosa biofilm attachment. Inspired by the active echinoderm skin, we design and fabricate externally actuated dynamic elastomer surfaces with active surface microtopography. We extract from a large parameter space the critical topographic length scales and actuation time scales for achieving

  10. Sediments, structural framework, petroleum potential, environmental conditions, and operational considerations of the United States North Atlantic Outer Continental Shelf

    USGS Publications Warehouse

    ,

    1975-01-01

    The area designated for possible oil and gas lease sale as modified from BLM memorandum 3310 #42 (722) and referred to therein as the North Atlantic Outer Continental Shelf (OCS) contains about 58,300 sq km of shelf beneath water depths of less than 200 m and lies chiefly within the Georges Bank basin. The oldest sediments drilled or dredged on the bordering Continental Slope are sandstone, clay, and silt of Upper Cretaceous age. In Upper Cretaceous exposures, on Marthas Vineyard and nearby New England islands, the predominant lithology appears to be clay. About 125 km northeast of the eastern tip of Georges Bank, the Shell B-93 well penetrated clays and silts of Upper and Lower Cretaceous age above dense Jurassic carbonate rocks which overlie a basement of lower Paleozoic slate, schist, quartzite, and granite. Structurally, the Georges Bank basin is a westerly trending trough which opens to the west-southwest. Post-Paleozoic sediments are more than 8 km thick in parts of the basin. Major structural features appear to be directly related to basement structures. Local anticlines, probably caused by differential compaction over basement flexures and horst blocks or by later uplift along basement faults are reflected principally in Lower Cretaceous and older sediments, though some of these features continue upward to within 0.7 of a second (about 650 m) of the seafloor. Tertiary deposits in the Georges Bank basin are probably up to a kilometre thick and are made up of poorly consolidated sand, silt, and clay. The Cretaceous section is inferred to be up to 3.5 km thick and to be mainly clastics -- shale, siltstone, calcareous shale, changing to limestone in the lowest part of the system. Jurassic rocks in the deepest part of the basin appear to be about 3.6 to 4.0 km thick and probably consist mainly of dense carbonates. Potential source rocks in the Georges Bank basin may include organic-rich Cretaceous shale and carbonaceous Jurassic limestone. By analogy with the

  11. The 3-Dimensional Inner and Outer Structure of Ejecta Around Eta Carinae as Detected by the STIS

    NASA Technical Reports Server (NTRS)

    Ishibashi, Kazunori; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    The HST/STIS instrument was used successfully to perform a complete mapping of the Homunculus nebula at two wavelength ranges including H-alpha and H-beta with a spectral resolving power of about 5000 and a spatial resolution of 0.1". The individual spectra were merged to synthesize three-dimensional data cubes that contain a set of images of Eta Car with spatial resolution of 0.10 to 0.251, sliced at velocity increment of 10 -- 30 km/s. For the first time this unique method allows us to diagnose the origin of intrinsic narrow emission structure of the nebula with high spatial and velocity resolution. Our initial analysis revealed the inner emission structure appeared to trace an elongated bipolar shell (possibly other shells as well) with a scale size of an arcsecond (i.e., "little homunculus in the Homunculus"). Furthermore, the mapping data cube revealed that the "fan" or "paddle" -- often referred as the source of peculiar blue-shifted intrinsic emissions including the Strontium cloud -- is not the source of intrinsic emissions. The fan is not even a part of the equatorial disk, but is spatially separated from the peculiar emission structure. Indeed we suggest that the fan is a surface of the Northwest lobe, possibly revealed by a blowout of the equatorial disk. We will use a number of visualization techniques (tomographic animations and simple 3-D models) to show these structures. These new results have strong impact upon future numerical modelings of the Homunculus nebula and of understanding of the evolution of the ejecta powered by the central source(s).

  12. The 3-Dimensional Inner and Outer Structure of Ejecta Around Eta Carinae as Detected by the STIS

    NASA Technical Reports Server (NTRS)

    Ishibashi, Kazunori; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    The HST/STIS instrument was used successfully to perform a complete mapping of the Homunculus nebula at two wavelength ranges including H-alpha and H-beta with a spectral resolving power of about 5000 and a spatial resolution of 0.1". The individual spectra were merged to synthesize three-dimensional data cubes that contain a set of images of Eta Car with spatial resolution of 0.10 to 0.251, sliced at velocity increment of 10 -- 30 km/s. For the first time this unique method allows us to diagnose the origin of intrinsic narrow emission structure of the nebula with high spatial and velocity resolution. Our initial analysis revealed the inner emission structure appeared to trace an elongated bipolar shell (possibly other shells as well) with a scale size of an arcsecond (i.e., "little homunculus in the Homunculus"). Furthermore, the mapping data cube revealed that the "fan" or "paddle" -- often referred as the source of peculiar blue-shifted intrinsic emissions including the Strontium cloud -- is not the source of intrinsic emissions. The fan is not even a part of the equatorial disk, but is spatially separated from the peculiar emission structure. Indeed we suggest that the fan is a surface of the Northwest lobe, possibly revealed by a blowout of the equatorial disk. We will use a number of visualization techniques (tomographic animations and simple 3-D models) to show these structures. These new results have strong impact upon future numerical modelings of the Homunculus nebula and of understanding of the evolution of the ejecta powered by the central source(s).

  13. Broadband Infrared Antireflection Structured Silicon Surfaces

    NASA Technical Reports Server (NTRS)

    Stewart, Kenneth; Fettig, Rainer; Allen, Christine; Larocque, Jennifer

    1999-01-01

    Silicon and germanium are materials often used for infrared (IR) windows and optical elements. However they have a very high index of refraction, in the order of three to four, which causes large reflection losses on each surface. These losses are especially high under large angles of incidence which are often desirable if signals are faint and fast optics are to be used. Solid antireflection coatings are either not available because materials with appropriate index of refraction do not exist, or their use is limited to a small wavelength range and small angles of incidence. We will present the status of our work to calculate, create, and test the performance of graded structures in Si to reduce its surface reflection. The structures are expected to work over the very broad wavelength range of 10 micron to 1000 micron and a wide range of angle of incidence. We.have identified several high aspect ratio MEMS process techniques to create the structures and have done 3D electromagnetic modeling, which predicts significant effects. Measurements on different samples have validated our modeling.

  14. Broadband Infrared Antireflection Structured Silicon Surfaces

    NASA Technical Reports Server (NTRS)

    Stewart, Kenneth; Fettig, Rainer; Allen, Christine; Larocque, Jennifer

    1999-01-01

    Silicon and germanium are materials often used for IR windows and optical elements. However they have a very high index of refraction, in the order of three to four, which causes large reflection losses on each surface. These losses are especially high under large angles of incidence which are often desirable if signals are faint and fast optics are to be used. Solid antireflection coatings are either not available because materials with appropriate index of refraction do not exist, or their use is limited to a small wavelength range and small angles of incidence. We will present the status of our work to calculate, create, and test the performance of graded structures in Si to reduce its surface reflection. The structures are expected to work over the very broad wavelength range of 10 to 1000 micrometers and a wide range of angle of incidence. We have identified several high aspect ratio MEMS process techniques to Create the structures and have done 3D electromagnetic modeling, which predicts significant effects. Measurements on different samples have validated our modeling.

  15. Broadband Infrared Antireflection Structured Silicon Surfaces

    NASA Technical Reports Server (NTRS)

    Stewart, Kenneth; Fettig, Rainer; Allen, Christine; Fettig, Rainer; Larocque, Jennifer

    1998-01-01

    Silicon and germanium are materials often used for IR windows and optical elements. However they have a very high index of refraction, in the order of three to four, which causes large reflection losses on each surface. These losses are especially high under large angles of incidence which are often desirable if signals are faint and fast optics are to be used. Solid antireflection coatings are either not available because materials with appropriate index of refraction do not exist, or their use is limited to a small wavelength range and small angles of incidence. We will present the status of our work to calculate, create, and test the performance of graded structures in Si to reduce its surface reflection. The structures are expected to work over the very broad wavelength range of 10 microns to 1000 microns and a wide range of angle of incidence. We have identified several high aspect ratio MEMS process techniques to create the structures and have done 3D electromagnetic modeling, which predicts significant effects. Measurements on different samples have validated our modeling.

  16. Structure and thermodynamics of surface recognition

    SciTech Connect

    Gupta, G.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Interactions of the surface glycoprotein, gp120, with the receptors of host cells define the pathogenesis of HIV-1, the virus that causes AIDS. gp120 is made of several disulfide-bridged loops--the amino acid sequences of some of these loops are fairly conserved whereas the rest are variable. The third variable (V3) loop has been the target of vaccine design for quite some time since this loop is involved in various steps of viral pathogenesis. However, this loop also happens to be the most variable one. The authors have carried out structural and immunological studies to determine the sequence-structure-antigenicity correlations of the HIV-1 V3 loops. This resulted in the identification of a secondary structure at the tip of the V3 loop that remains invariant in spite of the sequence variation. The authors designed a multi-valent V3-based antigen that presents multiple copies of the same tip element several times in the same structure. During the course of this project, they realized that the protective epitopes of gp120 should be judged in the context of the native structure. Therefore, the authors developed a method to obtain a model of gp120 that is consistent with all the immunology and virology data. This model is useful in choosing or designing gp120 subdomains for vaccine development.

  17. Disulfide-Mediated Oligomer Formation in Borrelia burgdorferi Outer Surface Protein C, a Critical Virulence Factor and Potential Lyme Disease Vaccine Candidate▿

    PubMed Central

    Earnhart, Christopher G.; Rhodes, DeLacy V. L.; Marconi, Richard T.

    2011-01-01

    Borrelia burgdorferi OspC is an outer membrane lipoprotein required for the establishment of infection in mammals. Due to its universal distribution among B. burgdorferi sensu lato strains and high antigenicity, it is being explored for the development of a next-generation Lyme disease vaccine. An understanding of the surface presentation of OspC will facilitate efforts to maximize its potential as a vaccine candidate. OspC forms homodimers at the cell surface, and it has been hypothesized that it may also form oligomeric arrays. Here, we employ site-directed mutagenesis to test the hypothesis that interdimeric disulfide bonds at cysteine 130 (C130) mediate oligomerization. B. burgdorferi B31 ospC was replaced with a C130A substitution mutant to yield strain B31::ospC(C130A). Recombinant protein was also generated. Disulfide-bond-dependent oligomer formation was demonstrated and determined to be dependent on C130. Oligomerization was not required for in vivo function, as B31::ospC(C130A) retained infectivity and disseminated normally. The total IgG response and the induced isotype pattern were similar between mice infected with untransformed B31 and those infected with the B31::ospC(C130A) strain. These data indicate that the immune response to OspC is not significantly altered by formation of OspC oligomers, a finding that has significant implications in Lyme disease vaccine design. PMID:21525304

  18. Structural Characterization of a Model Gram-Negative Bacterial Surface Using Lipopolysaccharides from Rough Strains of Escherichia coli

    PubMed Central

    2013-01-01

    Lipopolysaccharides (LPS) make up approximately 75% of the Gram-negative bacterial outer membrane (OM) surface, but because of the complexity of the molecule, there are very few model OMs that include LPS. The LPS molecule consists of lipid A, which anchors the LPS within the OM, a core polysaccharide region, and a variable O-antigen polysaccharide chain. In this work we used RcLPS (consisting of lipid A plus the first seven sugars of the core polysaccharide) from a rough strain of Escherichia coli to form stable monolayers of LPS at the air–liquid interface. The vertical structure RcLPS monolayers were characterized using neutron and X-ray reflectometry, while the lateral structure was investigated using grazing incidence X-ray diffraction and Brewster angle microscopy. It was found that RcLPS monolayers at surface pressures of 20 mN m–1 and above are resolved as hydrocarbon tails, an inner headgroup, and an outer headgroup of polysaccharide with increasing solvation from tails to outer headgroups. The lateral organization of the hydrocarbon lipid chains displays an oblique hexagonal unit cell at all surface pressures, with only the chain tilt angle changing with surface pressure. This is in contrast to lipid A, which displays hexagonal or, above 20 mN m–1, distorted hexagonal packing. This work provides the first complete structural analysis of a realistic E. coli OM surface model. PMID:23617615

  19. Near-Infrared Spectra of Icy Outer Solar System Surfaces: Remote Determination of H 2O Ice Temperatures

    NASA Astrophysics Data System (ADS)

    Grundy, W. M.; Buie, M. W.; Stansberry, J. A.; Spencer, J. R.; Schmitt, B.

    1999-12-01

    We present new 1.20 to 2.35 μm spectra of satellites of Jupiter, Saturn, and Uranus, and the rings of Saturn, obtained in 1995 and 1998 at Lowell Observatory. For most of the target objects, our data provide considerable improvement in spectral resolution and signal-to-noise over previously published data. Absorption bands with shapes characteristic of low-temperature, hexagonal crystalline H 2O ice dominate the spectra of most of our targets in this wavelength range. We make use of newly published temperature-dependent wavelengths and relative strengths of H 2O absorption bands to infer ice temperatures from our spectra. These ice temperatures are distinct from temperatures determined from thermal emission measurements or simulations of radiative balances. Unlike those methods, which average over all terrains including ice-free regions, our temperature-sensing method is only sensitive to the ice component. Our method offers a new constraint which, combined with other observations, can lead to better understanding of thermal properties and textures of remote, icy surfaces. Ice temperatures are generally lower than thermal emission brightness temperatures, indicative of the effects of thermal inertia and segregation between ice and warmer, darker materials. We also present the results of experiments to investigate possible changes of water ice temperature over time, including observations of Titania at two epochs, and of Ganymede and saturnian ring particles following emergence from the eclipse shadows of their primary planets. Finally, we discuss limitations of our temperature measurement method which can result from the presence of H 2O in phases other than hexagonal ice-I h, such as amorphous ice, hydrated mineral phases, or radiation-damaged crystalline ice. Our spectra of Europa and Enceladus exhibit peculiar spectral features which may result from effects such as these.

  20. Surface characterization of semiconductor photocathode structures

    NASA Astrophysics Data System (ADS)

    Liu, Zhi

    The need for a high performance photocathode in the electron beam lithography and microscopy is well established. Previous research demonstrated high brightness (1 x 108 A/cm2-sr at 3 KeV), and an energy spread as low as 50meV at room temperature for a GaAs based negative electron affinity (NEA) cathode in a sealed-off tube. However the GaAs cathodes suffer rapid decay in an open vacuum system. Achieving a clean, stoichiometric and repeatable GaAs(100) surface was the first step in this study. Based on the knowledge obtained from synchrotron radiation photoelectron spectroscopy, we successfully developed and optimized a reliable surface cleaning technique for our GaAs photocathodes. The fully activated photocathode and its decay under different vacuum conditions were investigated. The NEA activation layer is about 1 nm thick and was very vulnerable to oxygen in the system. A revised double dipole structural model was proposed to explain how the Cs/O co-deposition could produce a NEA surface. We found the chemical changes of oxygen species in the activation layer caused the initial quantum yield (QY) decay of the cathode. Further exposure to oxygen oxidized the substrate and permanently reduced the QY to zero. Energy distribution curve measurements of GaAs(100) and GaN(0001) NEA surfaces were performed under laser illumination. We found that the main contribution to the total emitted current of NEA GaAs and GaN surfaces was due to the electrons that were lost an average 140meV and 310 meV respectively in the near surface region prior to emission into vacuum. This energy loss is due not to the scattering through Cs or Cs/O layer; In GaN, it is probably due to a Gunn-like effect involving inter-valley phonon scattering within the band-bending region. We observed a highly directional emission profile from GaAs cathodes (electrons emitted within a semi-angle of 15° relative to the surface normal). In practice, it is expected that the highly directional photoemission

  1. Crystal structure of an antigenic outer-membrane protein from Salmonella Typhi suggests a potential antigenic loop and an efflux mechanism

    PubMed Central

    Guan, Hong-Hsiang; Yoshimura, Masato; Chuankhayan, Phimonphan; Lin, Chien-Chih; Chen, Nai-Chi; Yang, Ming-Chi; Ismail, Asma; Fun, Hoong-Kun; Chen, Chun-Jung

    2015-01-01

    ST50, an outer-membrane component of the multi-drug efflux system from Salmonella enterica serovar Typhi, is an obligatory diagnostic antigen for typhoid fever. ST50 is an excellent and unique diagnostic antigen with 95% specificity and 90% sensitivity and is used in the commercial diagnosis test kit (TYPHIDOTTM). The crystal structure of ST50 at a resolution of 2.98 Å reveals a trimer that forms an α-helical tunnel and a β-barrel transmembrane channel traversing the periplasmic space and outer membrane. Structural investigations suggest significant conformational variations in the extracellular loop regions, especially extracellular loop 2. This is the location of the most plausible antibody-binding domain that could be used to target the design of new antigenic epitopes for the development of better diagnostics or drugs for the treatment of typhoid fever. A molecule of the detergent n-octyl-β-D-glucoside is observed in the D-cage, which comprises three sets of Asp361 and Asp371 residues at the periplasmic entrance. These structural insights suggest a possible substrate transport mechanism in which the substrate first binds at the periplasmic entrance of ST50 and subsequently, via iris-like structural movements to open the periplasmic end, penetrates the periplasmic domain for efflux pumping of molecules, including poisonous metabolites or xenobiotics, for excretion outside the pathogen. PMID:26563565

  2. Crystal structure of an antigenic outer-membrane protein from Salmonella Typhi suggests a potential antigenic loop and an efflux mechanism.

    PubMed

    Guan, Hong-Hsiang; Yoshimura, Masato; Chuankhayan, Phimonphan; Lin, Chien-Chih; Chen, Nai-Chi; Yang, Ming-Chi; Ismail, Asma; Fun, Hoong-Kun; Chen, Chun-Jung

    2015-11-13

    ST50, an outer-membrane component of the multi-drug efflux system from Salmonella enterica serovar Typhi, is an obligatory diagnostic antigen for typhoid fever. ST50 is an excellent and unique diagnostic antigen with 95% specificity and 90% sensitivity and is used in the commercial diagnosis test kit (TYPHIDOT(TM)). The crystal structure of ST50 at a resolution of 2.98 Å reveals a trimer that forms an α-helical tunnel and a β-barrel transmembrane channel traversing the periplasmic space and outer membrane. Structural investigations suggest significant conformational variations in the extracellular loop regions, especially extracellular loop 2. This is the location of the most plausible antibody-binding domain that could be used to target the design of new antigenic epitopes for the development of better diagnostics or drugs for the treatment of typhoid fever. A molecule of the detergent n-octyl-β-D-glucoside is observed in the D-cage, which comprises three sets of Asp361 and Asp371 residues at the periplasmic entrance. These structural insights suggest a possible substrate transport mechanism in which the substrate first binds at the periplasmic entrance of ST50 and subsequently, via iris-like structural movements to open the periplasmic end, penetrates the periplasmic domain for efflux pumping of molecules, including poisonous metabolites or xenobiotics, for excretion outside the pathogen.

  3. Photoelectron holography applied to surface structural determination

    SciTech Connect

    Petersen, Barry Lee

    1995-05-01

    Photoemitted electron waves are used as coherent source waves for angstrom-scale holographic imaging of local atomic geometry at surfaces. Electron angular distribution patterns are collected above a sample surface and serve as a record of the interference between source wave and waves scattered from surrounding ion cores. Using a mathematical imaging integral transformation, the three-dimensional structural information is obtained directly from these collected patterns. Patterns measured with different electron kinetic energies are phase-summed for image improvement. Pt (111) surface is used as a model system. A pattern 9.6Å-1 (351 eV) is used to generate a full 3-D image of atom locations around an emitter with nearest neighbors within 0.lÅ of the expected bulk positions. Atoms several layers beyond the nearest neighbors are also apparent. Twin-image reduction and artifact suppression is obtained by phase-summing eight patterns measured from 8.8 to 10.2Å-1 (295 to 396 eV). 32 were measured in 0.2Å-1 steps from 6.0 to 12.2Å-1 (137 to 567 eV) are presented here. Simple models of two-slit interference are compared with electron scattering to illuminate understanding of holographic recording of the structural information. This also shows why it sometimes fails due to destructive interferences. Simple theoretical models of electron scattering are compared to experiment to show the origin of the structural information and the differences that result from atomic scattering and from the source wave. Experimental parameters and their relation to imaging is discussed. Comparison is made to the Pt pattern measured at 351 eV using the simple theoretical model. The remaining data set is also modeled, and the eight appropriate theoretical patterns are used to regenerate the multiple-wavenumber experimental result. A clean Cu (001) surface is also measured and imaged.

  4. The Surface Structure of Ground Metal Crystals

    NASA Technical Reports Server (NTRS)

    Boas, W.; Schmid, E.

    1944-01-01

    The changes produced on metallic surfaces as a result of grinding and polishing are not as yet fully understood. Undoubtedly there is some more or less marked change in the crystal structure, at least, in the top layer. Hereby a diffusion of separated crystal particles may be involved, or, on plastic material, the formation of a layer in greatly deformed state, with possible recrystallization in certain conditions. Czochralski verified the existence of such a layer on tin micro-sections by successive observations of the texture after repeated etching; while Thomassen established, roentgenographically by means of the Debye-Scherrer method, the existence of diffused crystal fractions on the surface of ground and polished tin bars, which he had already observed after turning (on the lathe). (Thickness of this layer - 0.07 mm). Whether this layer borders direct on the undamaged base material or whether deformed intermediate layers form the transition, nothing is known. One observation ty Sachs and Shoji simply states that after the turning of an alpha-brass crystal the disturbance starting from the surface, penetrates fairly deep (approx. 1 mm) into the crystal (proof by recrystallization at 750 C).

  5. Learning surface molecular structures via machine vision

    NASA Astrophysics Data System (ADS)

    Ziatdinov, Maxim; Maksov, Artem; Kalinin, Sergei V.

    2017-08-01

    Recent advances in high resolution scanning transmission electron and scanning probe microscopies have allowed researchers to perform measurements of materials structural parameters and functional properties in real space with a picometre precision. In many technologically relevant atomic and/or molecular systems, however, the information of interest is distributed spatially in a non-uniform manner and may have a complex multi-dimensional nature. One of the critical issues, therefore, lies in being able to accurately identify (`read out') all the individual building blocks in different atomic/molecular architectures, as well as more complex patterns that these blocks may form, on a scale of hundreds and thousands of individual atomic/molecular units. Here we employ machine vision to read and recognize complex molecular assemblies on surfaces. Specifically, we combine Markov random field model and convolutional neural networks to classify structural and rotational states of all individual building blocks in molecular assembly on the metallic surface visualized in high-resolution scanning tunneling microscopy measurements. We show how the obtained full decoding of the system allows us to directly construct a pair density function—a centerpiece in analysis of disorder-property relationship paradigm—as well as to analyze spatial correlations between multiple order parameters at the nanoscale, and elucidate reaction pathway involving molecular conformation changes. The method represents a significant shift in our way of analyzing atomic and/or molecular resolved microscopic images and can be applied to variety of other microscopic measurements of structural, electronic, and magnetic orders in different condensed matter systems.

  6. Learning surface molecular structures via machine vision

    DOE PAGES

    Ziatdinov, Maxim; Maksov, Artem; Kalinin, Sergei V.

    2017-08-10

    Recent advances in high resolution scanning transmission electron and scanning probe microscopies have allowed researchers to perform measurements of materials structural parameters and functional properties in real space with a picometre precision. In many technologically relevant atomic and/or molecular systems, however, the information of interest is distributed spatially in a non-uniform manner and may have a complex multi-dimensional nature. One of the critical issues, therefore, lies in being able to accurately identify (‘read out’) all the individual building blocks in different atomic/molecular architectures, as well as more complex patterns that these blocks may form, on a scale of hundreds andmore » thousands of individual atomic/molecular units. Here we employ machine vision to read and recognize complex molecular assemblies on surfaces. Specifically, we combine Markov random field model and convolutional neural networks to classify structural and rotational states of all individual building blocks in molecular assembly on the metallic surface visualized in high-resolution scanning tunneling microscopy measurements. We show how the obtained full decoding of the system allows us to directly construct a pair density function—a centerpiece in analysis of disorder-property relationship paradigm—as well as to analyze spatial correlations between multiple order parameters at the nanoscale, and elucidate reaction pathway involving molecular conformation changes. Here, the method represents a significant shift in our way of analyzing atomic and/or molecular resolved microscopic images and can be applied to variety of other microscopic measurements of structural, electronic, and magnetic orders in different condensed matter systems.« less

  7. An efficient bacterial surface display system based on a novel outer membrane anchoring element from the Escherichia coli protein YiaT.

    PubMed

    Han, Mee-Jung; Lee, Seung Hwan

    2015-01-01

    In a bacterial surface display system, the display of a successful recombinant protein is highly dependent on the choice of anchoring motif. In this study, we developed an efficient Escherichia coli display system using novel anchoring motifs derived from the protein YiaT. To determine the best surface-anchoring motif, full-length YiaT and two of its C-terminal truncated forms, cut at the R181 and R232 sites, were evaluated. Two industrial enzymes, a lipase from Pseudomonas fluorescens SIK W1 and an α-amylase from Bacillus subtilis, were used as the target proteins for display. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blot, immunofluorescence microscopy and whole-cell enzyme activity measurements confirmed the expression of the fusion proteins on the E. coli surface. Using YiaTR181 or YiaTR232 as the anchoring motif, the fusion proteins showed very high enzyme activities and did not exert any adverse effects on either cell growth or the outer membrane integrity. Additionally, these fusion proteins were suitable for displaying proteins of large molecular size in an active form. Compared with the previous anchoring motifs FadL and OprF, YiaTR181 and YiaTR232 had approximately 10-fold and 20-fold higher enzyme activities, respectively. These results suggest that YiaT can be used as an E. coli anchoring motif to efficiently display various enzymes; hence, this system could be employed in a variety of biotechnological and industrial applications.

  8. Design of a lunar surface structure

    NASA Astrophysics Data System (ADS)

    Mottaghi, Sohrob

    The next step for manned exploration and settlement is a return to the Moon. In such a return, the most challenging task is the construction of structures for habitation, considering the Moon's hostile environment. Therefore the question is: What is the best way to erect habitable structures on the lunar surface? Given the cost associated with bringing material to the Moon, In-Situ Resource Utilization (ISRU) is viewed by most as the basis for a successful manned exploration and settlement of the Solar system. Along these lines, we propose an advanced concept where the use of freeform fabrication technologies by autonomous mini-robots can form the basis for habitable lunar structures. Also, locally-available magnesium is proposed as the structural material. While it is one of the most pervasive metals in the regolith, magnesium has been only suggested only briefly as a viable option in the past. Therefore, a study has been conducted on magnesium and its alloys, taking into account the availability of the alloying elements on the Moon. An igloo-shaped magnesium structure, covered by sandbags of regolith shielding and supported on a sintered regolith foundation, is considered as a potential design of a lunar base, as well as the test bed for the proposed vision. Three studies are carried out: First a static analysis is conducted which proves the feasibility of the proposed material and method. Second, a thermal analysis is carried out to study the effect of the regolith shielding as well as the sensitivity of such designs to measurement uncertainties of regolith and sintered thermal properties. The lunar thermal environment is modeled for a potential site at 88º latitude in the lunar South Pole Region. Our analysis shows that the uncertainties are in an acceptable range where a three-meter thick shield is considered. Also, the required capacity of a thermal rejection system is estimated, choosing the thermal loads to be those of the Space Station modules. In the

  9. Femtosecond laser surface structuring technique for making human enamel and dentin surfaces superwetting

    NASA Astrophysics Data System (ADS)

    Vorobyev, A. Y.; Guo, Chunlei

    2013-12-01

    It is known that good wettability of enamel and dentin surfaces is a key factor in enhancing adhesion of restorative materials in dentistry. Here, we report on a femtosecond laser surface texturing approach that makes both the enamel and dentine surfaces superwetting. In contrast to the traditional chemical etching that yields random surface structures, this new approach produces engineered surface structures. The surface structure engineered and tested here is an array of femtosecond laser-produced parallel microgrooves that generates a strong capillary force. Due to the powerful capillary action, water is rapidly sucked into this engineered surface structure and spreads even on a vertical surface.

  10. Structural insights into cardiolipin transfer from the Inner membrane to the outer membrane by PbgA in Gram-negative bacteria

    PubMed Central

    Dong, Haohao; Zhang, Zhengyu; Tang, Xiaodi; Huang, Shihai; Li, Huanyu; Peng, Bo; Dong, Changjiang

    2016-01-01

    The outer membrane (OM) of Gram-negative bacteria is a unique asymmetric lipid bilayer in which the outer leaflet is composed of lipopolysaccharide (LPS) and the inner leaflet is formed by glycerophospholipid (GPL). The OM plays a fundamental role in protecting Gram-negative bacteria from harsh environments and toxic compounds. The transport and assembly pathways for phospholipids of bacterial OM are unknown. Cardiolipin (CL) plays an important role in OM biogenesis and pathogenesis, and the inner membrane (IM) protein PbgA, containing five transmembrane domains and a globular domain in periplasm has been recently identified as a CL transporter from the IM to the OM with an unknown mechanism. Here we present the first two crystal structures of soluble periplasmic globular domain of PbgA from S. typhimurium and E. coli, which revealed that the globular domains of PbgA resemble the structures of the arylsulfatase protein family and contains a novel core hydrophobic pocket that may be responsible for binding and transporting CLs. Our structural and functional studies shed an important light on the mechanism of CL transport in Gram-negative bacteria from the IM to the OM, which offers great potential for the development of novel antibiotics against multi-drug resistant bacterial infections. PMID:27487745

  11. The heterogeneity and spatial patterning of structure and physiology across the leaf surface in giant leaves of Alocasia macrorrhiza.

    PubMed

    Li, Shuai; Zhang, Yong-Jiang; Sack, Lawren; Scoffoni, Christine; Ishida, Atsushi; Chen, Ya-Jun; Cao, Kun-Fang

    2013-01-01

    Leaf physiology determines the carbon acquisition of the whole plant, but there can be considerable variation in physiology and carbon acquisition within individual leaves. Alocasia macrorrhiza (L.) Schott is an herbaceous species that can develop very large leaves of up to 1 m in length. However, little is known about the hydraulic and photosynthetic design of such giant leaves. Based on previous studies of smaller leaves, and on the greater surface area for trait variation in large leaves, we hypothesized that A. macrorrhiza leaves would exhibit significant heterogeneity in structure and function. We found evidence of reduced hydraulic supply and demand in the outer leaf regions; leaf mass per area, chlorophyll concentration, and guard cell length decreased, as did stomatal conductance, net photosynthetic rate and quantum efficiency of photosystem II. This heterogeneity in physiology was opposite to that expected from a thinner boundary layer at the leaf edge, which would have led to greater rates of gas exchange. Leaf temperature was 8.8°C higher in the outer than in the central region in the afternoon, consistent with reduced stomatal conductance and transpiration caused by a hydraulic limitation to the outer lamina. The reduced stomatal conductance in the outer regions would explain the observed homogeneous distribution of leaf water potential across the leaf surface. These findings indicate substantial heterogeneity in gas exchange across the leaf surface in large leaves, greater than that reported for smaller-leafed species, though the observed structural differences across the lamina were within the range reported for smaller-leafed species. Future work will determine whether the challenge of transporting water to the outer regions can limit leaf size for plants experiencing drought, and whether the heterogeneity of function across the leaf surface represents a particular disadvantage for large simple leaves that might explain their global rarity, even in

  12. The Heterogeneity and Spatial Patterning of Structure and Physiology across the Leaf Surface in Giant Leaves of Alocasia macrorrhiza

    PubMed Central

    Li, Shuai; Zhang, Yong-Jiang; Sack, Lawren; Scoffoni, Christine; Ishida, Atsushi; Chen, Ya-Jun; Cao, Kun-Fang

    2013-01-01

    Leaf physiology determines the carbon acquisition of the whole plant, but there can be considerable variation in physiology and carbon acquisition within individual leaves. Alocasia macrorrhiza (L.) Schott is an herbaceous species that can develop very large leaves of up to 1 m in length. However, little is known about the hydraulic and photosynthetic design of such giant leaves. Based on previous studies of smaller leaves, and on the greater surface area for trait variation in large leaves, we hypothesized that A. macrorrhiza leaves would exhibit significant heterogeneity in structure and function. We found evidence of reduced hydraulic supply and demand in the outer leaf regions; leaf mass per area, chlorophyll concentration, and guard cell length decreased, as did stomatal conductance, net photosynthetic rate and quantum efficiency of photosystem II. This heterogeneity in physiology was opposite to that expected from a thinner boundary layer at the leaf edge, which would have led to greater rates of gas exchange. Leaf temperature was 8.8°C higher in the outer than in the central region in the afternoon, consistent with reduced stomatal conductance and transpiration caused by a hydraulic limitation to the outer lamina. The reduced stomatal conductance in the outer regions would explain the observed homogeneous distribution of leaf water potential across the leaf surface. These findings indicate substantial heterogeneity in gas exchange across the leaf surface in large leaves, greater than that reported for smaller-leafed species, though the observed structural differences across the lamina were within the range reported for smaller-leafed species. Future work will determine whether the challenge of transporting water to the outer regions can limit leaf size for plants experiencing drought, and whether the heterogeneity of function across the leaf surface represents a particular disadvantage for large simple leaves that might explain their global rarity, even in

  13. Electric Potential (psi(delta) and psi(d)) at Outer Helmholtz Plane and Midplane on the Clay Colloid Surface with Overlapping Flat Double Layers.

    PubMed

    Xin; Jian-Min; Guo-Liang; Tian-Ren

    2000-07-15

    An anion negative adsorption equation in the condensed colloidal suspension with overlapping flat double layers was derived according to Gouy-Chapman theory. The electric potential at the outer Helmholtz plane (OHP), psi(delta), and the electric potential at the midplane, psi(d), were numerically solved by computer using the anion negative adsorption equation on the basis of experiments. The results showed that psi(delta) and psi(d) increase with the decrease of the distance between two clay plates, lambda, at first in the given electrolyte concentration. When lambda is smaller than 50-70 Å, psi(d) remains almost unchanged while psi(delta) declines remarkably with the further decrease of lambda. The change of psi(d)/psi(delta) with lambda can explain and manifest overlapping degree of flat double layers more appropriately than psi(d) in previous works. Due to compression of the flat double layer on the clay colloid surface at increasing electrolyte concentration, the magnitude of the electrical potentials at OHP and midplane is considerably reduced at a given lambda. Copyright 2000 Academic Press.

  14. Resistance of a vaccinia virus A34R deletion mutant to spontaneous rupture of the outer membrane of progeny virions on the surface of infected cells

    SciTech Connect

    Husain, Matloob; Weisberg, Andrea S.; Moss, Bernard

    2007-09-30

    The extracellular form of vaccinia virus is referred to as an enveloped virion (EV) because it contains an additional lipoprotein membrane surrounding the infectious mature virion (MV) that must be discarded prior to cell fusion and entry. Most EVs adhere to the surface of the parent cell and mediate spread of the infection to adjacent cells. Here we show that some attached EVs have ruptured envelopes. Rupture was detected by fluorescence microscopy of unfixed and unpermeabilized cells using antibodies to the F13 and L1 proteins, which line the inner side of the EV membrane and the outer side of the MV membrane, respectively. The presence of ruptured EV membranes was confirmed by immunogold transmission electron microscopy. EVs with broken membranes were present on several cell lines examined including one deficient in glycosaminoglycans, which are thought to play a role in breakage of the EV membrane prior to fusion of the MV. No correlation was found between EVs with ruptured membranes and actin tail formation. Studies with several mutant viruses indicated that EV membranes lacking the A34 protein were unbroken. This result was consistent with other properties of A34R deletion mutants including resistance of the EV membrane to polyanions, small plaque formation and low infectivity that can be increased by disruption of the EV membrane by freezing and thawing.

  15. Evaluation of Venezuelan Equine Encephalitis (VEE) replicon-based Outer surface protein A (OspA) vaccines in a tick challenge mouse model of Lyme disease.

    PubMed

    Gipson, Clay L; Davis, Nancy L; Johnston, Robert E; de Silva, Aravinda M

    2003-09-08

    Venezuelan Equine Encephalitis (VEE) virus replicon particles (VRPs) encoding Borrelia burgdorferi Outer surface protein A (OspA) were evaluated for their ability to induce an immune response and provide protection from tick-borne spirochetes. VRPs expressing ospA that accumulated intracellularly (VRP OspA) or that was secreted from host cells (VRP tPA-OspA) were tested. Both VRP OspA and VRP tPA-OspA expressed ospA in immunized mice. Mice vaccinated with VRPs expressing secreted OspA produced significant amounts of anti-OspA antibodies, whereas VRPs expressing intracellular OspA were less immunogenic. The VRP method of delivery induced a Th1 type immune response unlike the recombinant OspA protein in Freund's adjuvant, which induced a mixed (Th1 and Th2) immune response. The VRP tPA-OspA construct induced an immune response that reduced the bacterial load in feeding Ixodes scapularis and blocked transmission to the host. These results indicate that VRPs are capable of providing protection against tick-borne B. burgdorferi, and potentially can be used for developing improved vaccines against Lyme disease.

  16. Production of outer surface protein A by Borrelia burgdorferi during transmission from infected mammals to feeding ticks is insufficient to trigger OspA seroconversion.

    PubMed

    Woodman, Michael E; Cooley, Anne E; Stevenson, Brian

    2008-11-01

    The Lyme disease spirochete, Borrelia burgdorferi, produces two outer surface lipoproteins, OspA and OspB, that are essential for colonization of tick vectors. Both proteins are highly expressed during transmission from infected mammals to feeding ticks and during colonization of tick midguts, but are repressed when bacteria are transmitted from ticks to mammals. Humans and other infected mammals generally do not produce antibodies against either protein, although some Lyme disease patients do seroconvert and produce antibodies against OspA for unknown reasons. We hypothesized that, if such patients had been fed upon by additional ticks, bacteria moving from the patients' bodies to the feeding ticks would have produced OspA and OspB proteins, which then led to immune system recognition and antibody production. This hypothesis was tested by analyzing immune responses of infected mice following feedings by additional Ixodes scapularis ticks. However, results of the present studies demonstrate that expression of OspA and OspB by B. burgdorferi during transmission from infected mammals to feeding ticks does not trigger seroconversion.

  17. Surface Structures of UV-Irradiated Polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Renwu; Chen, Hongmin; Ying, Li; Huang, Chia-Ming; Zhang, Junjie; Mallon, Peter; Zhu, D. M.; Huang, Y. Y.; Sandreczki, T. C.; Peng, Q.; Richardson, J. R.; Wu, Yichu; Jean, Y. C.

    2001-03-01

    Photodegradation of polyurethane coatings and polyurethane-based paints is induced by UV irradiation using different light sources: 340nm-UVA, 313nm-UVB, Xe lamps and Florida weathering. Positron annihilation spectroscopy (PAS) is applied to measure the nano-structural changes at the atomic level from the surface to the bulk. Significant variations of sub-nanometer defect parameters determined from PAS results are observed as a function of depth, of exposure time, and of weathering conditions.1 The loss of durability at the early stage of UV irradiation is interpreted in terms of changes in crosslink density and formation of free radicals after chemical bonds are broken. This is correlated with results obtained using other methods, including AFM, ESR, NMR, FTIR, DSC, UV-vis absorption, and mechanical measurements. R. Zhang, et al, Rad. Phys. Chem., 58, 639 (2000). * Supported by NSF-CMS-9812717; AFOSR:F49629-97-0162,F49629-98-1-0309

  18. Lunar surface structural concepts and construction studies

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin

    1991-01-01

    The topics are presented in viewgraph form and include the following: lunar surface structures construction research areas; lunar crane related disciplines; shortcomings of typical mobile crane in lunar base applications; candidate crane cable suspension systems; NIST six-cable suspension crane; numerical example of natural frequency; the incorporation of two new features for improved performance of the counter-balanced actively-controlled lunar crane; lunar crane pendulum mechanics; simulation results; 1/6 scale lunar crane testbed using GE robot for global manipulation; basic deployable truss approaches; bi-pantograph elevator platform; comparison of elevator platforms; perspective of bi-pantograph beam; bi-pantograph synchronously deployable tower/beam; lunar module off-loading concept; module off-loader concept packaged; starburst deployable precision reflector; 3-ring reflector deployment scheme; cross-section of packaged starburst reflector; and focal point and thickness packaging considerations.

  19. Lunar surface structural concepts and construction studies

    NASA Astrophysics Data System (ADS)

    Mikulas, Martin

    The topics are presented in viewgraph form and include the following: lunar surface structures construction research areas; lunar crane related disciplines; shortcomings of typical mobile crane in lunar base applications; candidate crane cable suspension systems; NIST six-cable suspension crane; numerical example of natural frequency; the incorporation of two new features for improved performance of the counter-balanced actively-controlled lunar crane; lunar crane pendulum mechanics; simulation results; 1/6 scale lunar crane testbed using GE robot for global manipulation; basic deployable truss approaches; bi-pantograph elevator platform; comparison of elevator platforms; perspective of bi-pantograph beam; bi-pantograph synchronously deployable tower/beam; lunar module off-loading concept; module off-loader concept packaged; starburst deployable precision reflector; 3-ring reflector deployment scheme; cross-section of packaged starburst reflector; and focal point and thickness packaging considerations.

  20. 30 CFR 75.1708 - Surface structures, fireproofing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface structures, fireproofing. 75.1708... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1708 Surface structures, fireproofing. After March 30, 1970, all structures erected on the surface within 100 feet of any...

  1. 30 CFR 75.1708 - Surface structures, fireproofing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Surface structures, fireproofing. 75.1708... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1708 Surface structures, fireproofing. After March 30, 1970, all structures erected on the surface within 100 feet of any...

  2. 30 CFR 75.1708 - Surface structures, fireproofing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Surface structures, fireproofing. 75.1708... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1708 Surface structures, fireproofing. After March 30, 1970, all structures erected on the surface within 100 feet of any...

  3. 30 CFR 75.1708 - Surface structures, fireproofing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface structures, fireproofing. 75.1708... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1708 Surface structures, fireproofing. After March 30, 1970, all structures erected on the surface within 100 feet of any...

  4. Thermal Tomography of Asteroid Surface Structure

    NASA Astrophysics Data System (ADS)

    Harris, Alan W.; Drube, Line

    2016-12-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.

  5. Calculated activity of Mn2+ at the outer surface of the root cell plasma membrane governs Mn nutrition of cowpea seedlings

    PubMed Central

    Kopittke, Peter M.; Blamey, F. Pax C.; Wang, Peng; Menzies, Neal W.

    2011-01-01

    Manganese (Mn) is an essential micronutrient for plant growth but is often toxic in acid or waterlogged soils. Using cowpea (Vigna unguiculata L. Walp.) grown with 0.05–1500 μM Mn in solution, two short-term (48 h) solution culture experiments examined if the effects of cations (Ca, Mg, Na, Al, or H) on Mn nutrition are related to the root cells’ plasma membrane (PM) surface potential, ψ00. When grown in solutions containing levels of Mn that were toxic, both relative root elongation rate (RRER) and root tissue Mn concentration were more closely related to the activity of Mn2+ at the outer surface of the PM, {Mn2+}00 (R2=0.812 and 0.871) than to its activity in the bulk solution, {Mn2+}b (R2=0.673 and 0.769). This was also evident at lower levels of Mn (0.05–10 μM) relevant to studies investigating Mn as an essential micronutrient (R2=0.791 versus 0.590). In addition, changes in the electrical driving force for ion transport across the PM influenced both RRER and the Mn concentration in roots. The {Mn2+}b causing a 50% reduction in root growth was found to be c. 500 to >1000 μM (depending upon solution composition), whilst the corresponding value was 3300 μM when related to {Mn2+}00. Although specific effects such as competition are not precluded, the data emphasize the importance of non-specific electrostatic effects in the Mn nutrition of cowpea seedlings over a 1×105-fold range of Mn concentration in solution. PMID:21511910

  6. Structure of the airflow above surface waves

    NASA Astrophysics Data System (ADS)

    Buckley, Marc; Veron, Fabrice

    2016-04-01

    Weather, climate and upper ocean patterns are controlled by the exchanges of momentum, heat, mass, and energy across the ocean surface. These fluxes are, in turn, influenced by the small-scale physics at the wavy air-sea interface. We present laboratory measurements of the fine-scale airflow structure above waves, achieved in over 15 different wind-wave conditions, with wave ages Cp/u* ranging from 1.4 to 66.7 (where Cp is the peak phase speed of the waves, and u* the air friction velocity). The experiments were performed in the large (42-m long) wind-wave-current tank at University of Delaware's Air-Sea Interaction laboratory (USA). A combined Particle Image Velocimetry and Laser Induced Fluorescence system was specifically developed for this study, and provided two-dimensional airflow velocity measurement as low as 100 um above the air-water interface. Starting at very low wind speeds (U10~2m/s), we directly observe coherent turbulent structures within the buffer and logarithmic layers of the airflow above the air-water interface, whereby low horizontal velocity air is ejected away from the surface, and higher velocity fluid is swept downward. Wave phase coherent quadrant analysis shows that such turbulent momentum flux events are wave-phase dependent. Airflow separation events are directly observed over young wind waves (Cp/u*<3.7) and counted using measured vorticity and surface viscous stress criteria. Detached high spanwise vorticity layers cause intense wave-coherent turbulence downwind of wave crests, as shown by wave-phase averaging of turbulent momentum fluxes. Mean wave-coherent airflow motions and fluxes also show strong phase-locked patterns, including a sheltering effect, upwind of wave crests over old mechanically generated swells (Cp/u*=31.7), and downwind of crests over young wind waves (Cp/u*=3.7). Over slightly older wind waves (Cp/u* = 6.5), the measured wave-induced airflow perturbations are qualitatively consistent with linear critical layer

  7. Mercury: Remote Estimation of Surface Layer Structure

    NASA Astrophysics Data System (ADS)

    Shevchenko, V. V.

    Results of the optical observations of Mercury and the Moon confirm the close simi- larity of photometric properties of the bodies. Experience of lunar studies shows that space weathering processes on the Mercury (such as micrometeorite bombardment, solar wind ion bombardment etc.) can form properties of the upper layer of regolith. The amount of fused glassy particles and others agglutinates in the lunar upper layer is the direct index of the soil reworking caused be the micrometeorite bombardment. Besides, this micrometeorite bombardment is also responsible for the mechanical pro- cess through which the large particles are broken down into smaller ones. For lunar re- golith was showed that increasingly mature soils become progressively finer-grained, better-sorted, and composed of a greater proportion of agglutinates. The increasing rate of the fused glassy fragments, of agglutinates, and of fine size fraction in the regolith during its space weathering affects the polarization of the light reflected by an exposed lunar or Mercurian soil. Therefore, polarimetric properties of the regolith may be modified by the soil reworking process in the course of time. Comparison of the lunar and Mercurian optic observations confirms the remarkable similarity of the polarimetric properties of Mercury and the Moon. From of summary of polarization measurements of whole disk of Mercury it is possible to conclude that maturity of the soil on the Mercurian surface in scale of whole disk is similar to one in large old craters on the lunar highland. Comparison of the lunar and Mercurian disk-integrated photometric functions indicates the likeness of the surface layer structures of the bod- ies. Analysis of the phase curve inclination and magnitude of the opposition effect shows that Mercurian relief in scale of meter details is smoother than lunar one. It was measured brightness of number of small plots (10x10 cm) on the lunar surface (Luna-13 data). The range of phase angles was

  8. Hyperbolic Spirals as Surface Structures in Thin Layers.

    PubMed

    Weh, Lothar

    2001-03-15

    When thin layers of 4-chloro-3-methylphenol and a copolymer of methyl(methacrylate) and maleic acid dissolved in acetone are dried by solvent evaporation, various surface structures appear. Besides linear surface deformations that can ramify like fractals, spirals of the hyperbolic type have been found. The surface structures are due to crystallization processes and flows caused by surface tension differences. The spirals are surface elevations with grooves on both sides as shown by surface profile measurements by means of a microscope interferometer. The addition of surfactants reduces the structure formation. A large surfactant concentration prevents the structure formation. Copyright 2001 Academic Press.

  9. Dissecting Escherichia coli Outer Membrane Biogenesis Using Differential Proteomics

    PubMed Central

    Martorana, Alessandra M.; Motta, Sara; Di Silvestre, Dario; Falchi, Federica; Dehò, Gianni; Mauri, Pierluigi; Sperandeo, Paola; Polissi, Alessandra

    2014-01-01

    The cell envelope of Gram-negative bacteria is a complex multi-layered structure comprising an inner cytoplasmic membrane and an additional asymmetric lipid bilayer, the outer membrane, which functions as a selective permeability barrier and is essential for viability. Lipopolysaccharide, an essential glycolipid located in the outer leaflet of the outer membrane, greatly contributes to the peculiar properties exhibited by the outer membrane. This complex molecule is transported to the cell surface by a molecular machine composed of seven essential proteins LptABCDEFG that form a transenvelope complex and function as a single device. While advances in understanding the mechanisms that govern the biogenesis of the cell envelope have been recently made, only few studies are available on how bacterial cells respond to severe envelope biogenesis defects on a global scale. Here we report the use of differential proteomics based on Multidimensional Protein Identification Technology (MudPIT) to investigate how Escherichia coli cells respond to a block of lipopolysaccharide transport to the outer membrane. We analysed the envelope proteome of a lptC conditional mutant grown under permissive and non permissive conditions and identified 123 proteins whose level is modulated upon LptC depletion. Most such proteins belong to pathways implicated in cell envelope biogenesis, peptidoglycan remodelling, cell division and protein folding. Overall these data contribute to our understanding on how E. coli cells respond to LPS transport defects to restore outer membrane functionality. PMID:24967819

  10. 30 CFR 75.1708 - Surface structures, fireproofing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface structures, fireproofing. 75.1708... structures, fireproofing. After March 30, 1970, all structures erected on the surface within 100 feet of any mine opening shall be of fireproof construction. Unless structures existing on or prior to such...

  11. Structural-phase states and wear resistance of surface formed on steel by surfacing

    SciTech Connect

    Kapralov, Evgenie V.; Raykov, Sergey V.; Vaschuk, Ekaterina S.; Budovskikh, Evgenie A. Gromov, Victor E.; Ivanov, Yuri F.

    2014-11-14

    Investigations of elementary and phase structure, state of defect structure and tribological characteristics of a surfacing, formed on a low carbon low-alloy steel by a welding method were carried out. It was revealed that a surfacing, formed on a steel surface is accompanied by the multilayer formation, and increases the wear resistance of the layer surfacing as determined.

  12. Composite isogrid structures for parabolic surfaces

    NASA Technical Reports Server (NTRS)

    Silverman, Edward M. (Inventor); Boyd, Jr., William E. (Inventor); Rhodes, Marvin D. (Inventor); Dyer, Jack E. (Inventor)

    2000-01-01

    The invention relates to high stiffness parabolic structures utilizing integral reinforced grids. The parabolic structures implement the use of isogrid structures which incorporate unique and efficient orthotropic patterns for efficient stiffness and structural stability.

  13. Surface modification of active material structures in battery electrodes

    DOEpatents

    Erickson, Michael; Tikhonov, Konstantin

    2016-02-02

    Provided herein are methods of processing electrode active material structures for use in electrochemical cells or, more specifically, methods of forming surface layers on these structures. The structures are combined with a liquid to form a mixture. The mixture includes a surface reagent that chemically reacts and forms a surface layer covalently bound to the structures. The surface reagent may be a part of the initial liquid or added to the mixture after the liquid is combined with the structures. In some embodiments, the mixture may be processed to form a powder containing the structures with the surface layer thereon. Alternatively, the mixture may be deposited onto a current collecting substrate and dried to form an electrode layer. Furthermore, the liquid may be an electrolyte containing the surface reagent and a salt. The liquid soaks the previously arranged electrodes in order to contact the structures with the surface reagent.

  14. Outer planets satellites

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1983-01-01

    The present investigation takes into account the published literature on outer planet satellites for 1979-1982. It is pointed out that all but three (the moon and the two Martian satellites) of the known planetary satellites are found in the outer solar system. Most of these are associated with the three regular satellite systems of Jupiter, Saturn, and Uranus. The largest satellites are Titan in the Saturn system and Ganymede and Callisto in the Jupiter system. Intermediate in size between Mercury and Mars, each has a diameter of about 5000 km. Presumably each has an internal composition about 60 percent rock and 40 ice, and each is differentiated with a dense core extending out about 75 percent of the distance to the surface, with a mantle of high-pressure ice and a crust of ordinary ice perhaps 100 km thick. Attention is also given to Io, Europa, the icy satellites of Saturn, the satellites of Uranus, the small satellites of Jupiter and Saturn, Triton and the Pluto system, and plans for future studies.

  15. Enceladus Jet Orientations: Effects of Surface Structure

    NASA Astrophysics Data System (ADS)

    Helfenstein, P.; Porco, C.; DiNino, D.

    2013-12-01

    Jetting activity across the South Polar Terrain (SPT) of Enceladus is now known to erupt directly from tiger-stripe rifts and associated fracture systems. However, details of the vent conduit geometry are hidden below the icy surface. The three-dimensional orientations of the erupting jets may provide important clues. Porco et al. (2013, Lunar Planet. Sci. Conf. 44th, p.1775) surveyed jet locations and orientations as imaged at high resolution (< 1.3 km/pixel) by Cassini ISS from 2005 through May 2012. Ninety-eight (98) jets were identified either on the main trunks or branches of the 4 tiger-stripes. The azimuth angles of the jets are seen to vary across the SPT. Here, we use histogram analysis of the survey data to test if the jet azimuths are influenced by their placement relative to surface morphology and tectonic structures. Azimuths are measured positive counterclockwise with zero pointing along the fracture in the direction of the sub-Saturn hemisphere, and rosette histograms were binned in 30° increments. Overall, the jet azimuths are not random and only about 11% of them are co-aligned with the tiger stripe valley. There are preferred diagonal orientations between 105°-165° and again between 255°-345°. These trends are dominant along the Damascus and Baghdad tiger-stripes where more than half of the jets are found. Histograms for Cairo and Alexandria show less-distinct trends, fewer jets being measured there, but combining data from both suggests a different pattern of preferred orientations; from 45°-75° and 265°-280°. Many possible factors could affect the orientations of jets, for example, the conduit shape, the presence of obstacles like narrow medial ridges called 'shark-fins' along tiger-stripe valleys, the possibility that jets may breach the surface at some point other than the center of a tiger-stripe, and the presence of structural fabrics or mechanical weaknesses, such as patterns of cross-cutting fractures. The dominance of diagonally

  16. The study about forming high-precision optical lens minimalized sinuous error structures for designed surface

    NASA Astrophysics Data System (ADS)

    Katahira, Yu; Fukuta, Masahiko; Katsuki, Masahide; Momochi, Takeshi; Yamamoto, Yoshihiro

    2016-09-01

    Recently, it has been required to improve qualities of aspherical lenses mounted on camera units. Optical lenses in highvolume production generally are applied with molding process using cemented carbide or Ni-P coated steel, which can be selected from lens material such as glass and plastic. Additionally it can be obtained high quality of the cut or ground surface on mold due to developments of different mold product technologies. As results, it can be less than 100nmPV as form-error and 1nmRa as surface roughness in molds. Furthermore it comes to need higher quality, not only formerror( PV) and surface roughness(Ra) but also other surface characteristics. For instance, it can be caused distorted shapes at imaging by middle spatial frequency undulations on the lens surface. In this study, we made focus on several types of sinuous structures, which can be classified into form errors for designed surface and deteriorate optical system performances. And it was obtained mold product processes minimalizing undulations on the surface. In the report, it was mentioned about the analyzing process by using PSD so as to evaluate micro undulations on the machined surface quantitatively. In addition, it was mentioned that the grinding process with circumferential velocity control was effective for large aperture lenses fabrication and could minimalize undulations appeared on outer area of the machined surface, and mentioned about the optical glass lens molding process by using the high precision press machine.

  17. Along-trench variations in the seismic structure of the incoming Pacific plate at the outer rise of the northern Japan Trench

    NASA Astrophysics Data System (ADS)

    Fujie, Gou; Kodaira, Shuichi; Sato, Takeshi; Takahashi, Tsutomu

    2016-01-01

    To investigate along-trench variations in the seismic structure of the incoming oceanic plate and their effect on water transportation by the oceanic plate, we conducted a wide-angle seismic survey of a trench-parallel transect 270 km long on the outer rise of the northern Japan Trench. The resulting seismic structure models show that the central part of the transect is characterized by rough topography, thick oceanic crust, low seismic velocities, and high Vp/Vs ratios, suggesting pervasive fracturing and high water content (hydration) there. These observations are consistent with the presence of an ancient fracture zone associated with ridge propagation. The trenchward extension of this fracture zone corresponds to an area of low interplate seismicity, low seismic velocities, and high Vp/Vs ratio around the depth of the subduction interface. Our results suggest that this ancient scar on the oceanic plate influences along-trench variations in interplate seismic coupling through its effect on water transportation.

  18. Ceres’ impact craters: probes of near-surface internal structure and composition

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; Raymond, Carol; Park, Ryan; Schenk, Paul; McCord, Tom; Reddy, Vishnu; King, Scott; Sykes, Mark; Russell, Chris

    2015-11-01

    Dawn Framing Camera images of Ceres have revealed the existence of a heavily cratered surface. Shape models derived from these images indicate that most (though not all) large craters are quite deep: up to 6 km for craters larger than 100 km in diameter. The retention of deep craters is not consistent with a simple differentiated internal structure consisting of an outer layer composed solely of pure water ice (covered with a rocky lag) overlying a rocky core. Here we use finite element simulations to show that, for Ceres’ relatively warm surface temperatures, the timescale required to completely flatten a crater 60-km in diameter (or greater) is less than 100 Myr, assuming a relatively pure outer ice layer (for ice grain sizes ≤ 1 cm). Preserving substantial topography requires that the viscosity of Ceres’ outer-most layer (25-50 km thick) is substantially greater than that of pure water ice. A factor of ten increase in viscosity can be achieved by assuming the layer is a 50/50 ice-rock mixture by volume; however, our simulations show that such an increase is insufficient to prevent substantial relaxation over timescales of 1 Gyr. Only particulate volume fractions greater than 50% provide an increase in viscosity sufficient to prevent large-scale, rapid relaxation. Such volume fractions suggest an outer layer composed of frozen soil/regolith (i.e., more rock than ice by volume), a very salt-rich layer, or both. Notably, while most basins appear quite deep, a few relatively shallow basins have been observed (e.g., Coniraya), suggesting that relaxation may be occurring over very long timescales (e.g., 4 Ga), that Ceres’ interior is compositionally and spatial heterogeneous, and/or that temporal evolution of the interior structure and composition has occurred. If these shallow basins are in fact the result of relaxation, it places an upper limit on the viscosity of Ceres’ outer-most interior layer, implying at least some low-viscosity material is present

  19. Interiors and atmospheres of the outer planets

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1991-01-01

    This theoretical/observational project constrains structure of outer planet atmospheres and interiors through observational data. The primary observation tool is through observations of occultations of stars by outer solar system objects, which yield information about atmospheric temperatures and dynamics, and planetary dimensions and oblateness. The theoretical work relates the data to interior structures in a variety of ways.

  20. Protective immunity elicited by recombinant bacille Calmette-Guerin (BCG) expressing outer surface protein A (OspA) lipoprotein: a candidate Lyme disease vaccine

    PubMed Central

    1993-01-01

    The current vaccine against tuberculosis, Mycobacterium bovis strain bacille Calmette-Guerin (BCG), offers potential advantages as a live, innately immunogenic vaccine vehicle for the expression and delivery of protective recombinant antigens (Stover, C.K., V.F. de la Cruz, T.R. Fuerst, J.E. Burlein, L.A. Benson, L.T. Bennett, G.P. Bansal, J.F. Young, M.H. Lee, G.F. Hatfull et al. 1991. Nature [Lond]. 351:456; Jacobs, W.R., Jr., S.B. Snapper, L. Lugosi and B.R. Bloom. 1990. Curr. Top. Microbiol. Immunol. 155:153; Jacobs, W.R., M. Tuckman, and B.R. Bloom. 1987. Nature [Lond.]. 327:532); but as an attenuated intracellular bacterium residing in macrophages, BCG would seem to be best suited for eliciting cellular responses and not humoral responses. Since bacterial lipoproteins are often among the most immunogenic of bacterial antigens, we tested whether BCG expression of a target antigen as a membrane-associated lipoprotein could enhance the potential for a recombinant BCG vaccine to elicit high-titered protective antibody responses to target antigens. Immunization of mice with recombinant BCG vaccines expressing the outer surface protein A (OspA) antigen of Borrelia burgdorferi as a membrane-associated lipoprotein resulted in protective antibody responses that were 100- 1,000-fold higher than responses elicited by immunization with recombinant BCG expressing OspA cytoplasmically or as a secreted fusion protein. Furthermore, these improved antibody responses were observed in heterogeneous mouse strains that vary in their immune responsiveness to OspA and sensitivity to BCG growth. Thus, expression of protective antigens as chimeric membrane-associated lipoproteins on recombinant BCG may result in the generation of new candidate vaccines against Lyme borreliosis and other human or veterinary diseases where humoral immunity is the protective response. PMID:8315378

  1. The Crystal Structure of OprG from Pseudomonas aeruginosa a Potential Channel for Transport of Hydrophobic Molecules across the Outer Membrane

    SciTech Connect

    D Touw; D Patel; b van den Berg

    2011-12-31

    The outer membrane (OM) of Gram-negative bacteria provides a barrier to the passage of hydrophobic and hydrophilic compounds into the cell. The OM has embedded proteins that serve important functions in signal transduction and in the transport of molecules into the periplasm. The OmpW family of OM proteins, of which P. aeruginosa OprG is a member, is widespread in Gram-negative bacteria. The biological functions of OprG and other OmpW family members are still unclear. The outer membrane (OM) of Gram-negative bacteria provides a barrier to the passage of hydrophobic and hydrophilic compounds into the cell. The OM has embedded proteins that serve important functions in signal transduction and in the transport of molecules into the periplasm. The OmpW family of OM proteins, of which P. aeruginosa OprG is a member, is widespread in Gram-negative bacteria. The biological functions of OprG and other OmpW family members are still unclear. The crystal structure, together with recent biochemical data, suggests that OprG and other OmpW family members form channels that mediate the diffusion of small hydrophobic molecules across the OM by a lateral diffusion mechanism similar to that of E. coli FadL.

  2. In silico design of an immunogen against Acinetobacter baumannii based on a novel model for native structure of Outer membrane protein A.

    PubMed

    Jahangiri, Abolfazl; Rasooli, Iraj; Owlia, Parviz; Fooladi, Abbas Ali Imani; Salimian, Jafar

    2017-04-01

    Outer membrane protein A (OmpA) is the most promising vaccine candidate against one of the most successful nosocomial pathogens, A. baumannii. Despite advantages of the antigen, its cytotoxicity could be considered as a challenge in clinical trials. In order to improve this effective immunogen, rational vaccine design strategies such as structure-based vaccinology should be assessed. However, native structure of OmpA remains controversial. The present study is conducted to address the native structure of OmpA; then, a novel immunogen with lower toxicity and higher antigenicity was designed based on structural vaccinology. Various bioinformatic and immunoinformatic tools were harnessed to perform analyses such as topology, secondary structure, and tertiary structure predictions as well as B-cell epitope predictions. A novel 12-stranded model is suggested for OmpA. K320 and K322 were substituted by Alanine, "NADEEFWN" sequence was replaced by "YKYDFDGVNRGTRGTSEEGTL", Position 1-24 at the N-terminus and the C-terminal sequence "VVQPGQEAAAPAAAQ" were removed. The designed construct has more epitope density and antigenic properties with higher immunogenicity while its cytotoxicity is decreased. Moreover, this single cross-protective antigen could trigger antibodies rendering protection against two important nosocomial pathogens i.e. Pseudomonas aeruginosa and A. baumannii.

  3. Molecular organization of the nanoscale surface structures of the dragonfly Hemianax papuensis wing epicuticle.

    PubMed

    Ivanova, Elena P; Nguyen, Song Ha; Webb, Hayden K; Hasan, Jafar; Truong, Vi Khanh; Lamb, Robert N; Duan, Xiaofei; Tobin, Mark J; Mahon, Peter J; Crawford, Russell J

    2013-01-01

    The molecular organization of the epicuticle (the outermost layer) of insect wings is vital in the formation of the nanoscale surface patterns that are responsible for bestowing remarkable functional properties. Using a combination of spectroscopic and chromatographic techniques, including Synchrotron-sourced Fourier-transform infrared microspectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS) depth profiling and gas chromatography-mass spectrometry (GCMS), we have identified the chemical components that constitute the nanoscale structures on the surface of the wings of the dragonfly, Hemianax papuensis. The major components were identified to be fatty acids, predominantly hexadecanoic acid and octadecanoic acid, and n-alkanes with even numbered carbon chains ranging from C14 to C30. The data obtained from XPS depth profiling, in conjunction with that obtained from GCMS analyses, enabled the location of particular classes of compounds to different regions within the epicuticle. Hexadecanoic acid was found to be a major component of the outer region of the epicuticle, which forms the surface nanostructures, and was also detected in deeper layers along with octadecanoic acid. Aliphatic compounds were detected throughout the epicuticle, and these appeared to form a third discrete layer that was separate from both the inner and outer epicuticles, which has never previously been reported.

  4. Molecular Organization of the Nanoscale Surface Structures of the Dragonfly Hemianax papuensis Wing Epicuticle

    PubMed Central

    Ivanova, Elena P.; Nguyen, Song Ha; Webb, Hayden K.; Hasan, Jafar; Truong, Vi Khanh; Lamb, Robert N.; Duan, Xiaofei; Tobin, Mark J.; Mahon, Peter J.; Crawford, Russell J.

    2013-01-01

    The molecular organization of the epicuticle (the outermost layer) of insect wings is vital in the formation of the nanoscale surface patterns that are responsible for bestowing remarkable functional properties. Using a combination of spectroscopic and chromatographic techniques, including Synchrotron-sourced Fourier-transform infrared microspectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS) depth profiling and gas chromatography-mass spectrometry (GCMS), we have identified the chemical components that constitute the nanoscale structures on the surface of the wings of the dragonfly, Hemianax papuensis. The major components were identified to be fatty acids, predominantly hexadecanoic acid and octadecanoic acid, and n-alkanes with even numbered carbon chains ranging from C14 to C30. The data obtained from XPS depth profiling, in conjunction with that obtained from GCMS analyses, enabled the location of particular classes of compounds to different regions within the epicuticle. Hexadecanoic acid was found to be a major component of the outer region of the epicuticle, which forms the surface nanostructures, and was also detected in deeper layers along with octadecanoic acid. Aliphatic compounds were detected throughout the epicuticle, and these appeared to form a third discrete layer that was separate from both the inner and outer epicuticles, which has never previously been reported. PMID:23874463

  5. Outer membrane proteins of pathogenic spirochetes

    PubMed Central

    Cullen, Paul A.; Haake, David A.; Adler, Ben

    2009-01-01

    Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning biogenesis and structure of OMPs, with particular regard to the atypical signal peptide cleavage sites observed amongst the spirochetes, is discussed. We examine the functions that have been determined for several spirochetal OMPs including those that have been demonstrated to function as adhesins, porins or to have roles in complement resistance. A detailed description of the role of spirochetal OMPs in immunity, including those that stimulate protective immunity or that are involved in antigenic variation, is given. A final section is included which covers experimental considerations in spirochetal outer membrane biology. This section covers contentious issues concerning cellular localization of putative OMPs, including determination of surface exposure. A more detailed knowledge of spirochetal OMP biology will hopefully lead to the design of new vaccines and a better understanding of spirochetal pathogenesis. PMID:15449605

  6. Effect of lipopolysaccharide structure on reactivity of antiporin monoclonal antibodies with the bacterial cell surface.

    PubMed Central

    Bentley, A T; Klebba, P E

    1988-01-01

    We studied the reactivity of 66 anti-Escherichia coli B/r porin monoclonal antibodies (MAbs) with several E. coli and Salmonella typhimurium strains. Western immunoblots showed complete immunological cross-reactivity between E. coli B/r and K-12; among 34 MAbs which recognized porin in immunoblots of denatured outer membranes of E. coli B/r, all reacted with OmpF in denatured outer membranes of E. coli K-12. Extensive reactivity, although less than that for strain B/r (31 of 34 MAbs), occurred for porin from a wild-type isolate, E. coli O8:K27. Only one of the MAbs reacted with porin in denatured outer membranes of S. typhimurium. Even with immunochemical amplification of the Western immunoblot technique, only six MAbs recognized S. typhimurium porin (OmpD), demonstrating that there is significant immunological divergence between the porins of these species. Antibody binding to the bacterial surface, which was analyzed by cytofluorimetry, was strongly influenced by lipopolysaccharide (LPS) structure. An intact O antigen, as in E. coli O8:K27, blocked adsorption of all 20 MAbs in the test panel. rfa+ E. coli K-12, without an O antigen but with an intact LPS core, bound seven MAbs. When assayed against a series of rfa E. coli K-12 mutants, the number of MAbs that recognized porin surface epitopes increased sequentially as the LPS core became shorter. A total of 17 MAbs bound porin in a deep rough rfaD strain. Similar results were obtained with S. typhimurium. None of the anti-E. coli B/r porin MAbs adsorbed to a smooth strain, but three antibodies recognized porin on deep rough (rfaF, rfaE) mutants. These data define six distinct porin surface epitopes that are shielded by LPS from reaction with antibodies. Images PMID:2830227

  7. Structure and properties of polymeric composite materials during 1501 days outer space exposure at Salyut-7 orbital station

    SciTech Connect

    Startsev, O.V.; Nikishin, E.F.

    1995-02-01

    Specimens of polymeric composite materials for aviation and space applications such as glass fiber reinforced plastics (GFRP), carbon fiber reinforced plastics (CFRP), organic fiber reinforced plastics (OFRP), and hybrid plastics (HP) based on epoxy compounds were exposed to the space environment on the surface of Salyut-7 orbital station. The space exposure lasted 1501 days as a maximum. The data relating to the change in mechanical properties, mass losses, glass transition temperature, linear thermal expansion coefficient, and microstructure after various periods of exposure are given. It has been found that the change in properties is caused by the processes of binder postcuring and microerosion of the exposed surface of plastics. The phenomenon of strengthening of the surface layer of hybrid composites, due to which the nature of destruction changes at bending loads, has been revealed.

  8. Structure and properties of polymeric composite materials during 1501 days outer space exposure at Salyut-7 orbital station

    NASA Technical Reports Server (NTRS)

    Startsev, Oleg V.; Nikishin, Eugene F.

    1995-01-01

    Specimens of polymeric composite materials for aviation and space applications such as glass fiber reinforced plastics (GFRP), carbon fiber reinforced plastics (CFRP), organic fiber reinforced plastics (OFRP), and hybrid plastics (HP) based on epoxy compounds were exposed to the space environment on the surface of Salyut-7 orbital station. The space exposure lasted 1501 days as a maximum. The data relating to the change in mechanical properties, mass losses, glass transition temperature, linear thermal expansion coefficient, and microstructure after various periods of exposure are given. It has been found that the change in properties is caused by the processes of binder postcuring and microerosion of the exposed surface of plastics. The phenomenon of strengthening of the surface layer of hybrid composites, due to which the nature of destruction changes at bending loads, has been revealed.

  9. Crystal Structure of Neurotropism-Associated Variable Surface Protein 1 (VSP1) of Borrelia Turicatae

    SciTech Connect

    Lawson,C.; Yung, B.; Barbour, A.; Zuckert, W.

    2006-01-01

    Vsp surface lipoproteins are serotype-defining antigens of relapsing fever spirochetes that undergo multiphasic antigenic variation to allow bacterial persistence in spite of an immune response. Two isogenic serotypes of Borrelia turicatae strain Oz1 differ in their Vsp sequences and in disease manifestations in infected mice: Vsp1 is associated with the selection of a neurological niche, while Vsp2 is associated with blood and skin infection. We report here crystal structures of the Vsp1 dimer at 2.7 and 2.2 Angstroms. The structures confirm that relapsing fever Vsp proteins share a common helical fold with OspCs of Lyme disease-causing Borrelia. The fold features an inner stem formed by highly conserved N and C termini and an outer 'dome' formed by the variable central residues. Both Vsp1 and OspC structures possess small water-filled cavities, or pockets, that are lined largely by variable residues and are thus highly variable in shape. These features appear to signify tolerance of the Vsp-OspC fold for imperfect packing of residues at its antigenic surface. Structural comparison of Vsp1 with a homology model for Vsp2 suggests that observed differences in disease manifestation may arise in part from distinct differences in electrostatic surface properties; additional predicted positively charged surface patches on Vsp2 compared to Vsp1 may be sufficient to explain the relative propensity of Vsp2 to bind to acidic glycosaminoglycans.

  10. Rule for structures of open metal surfaces.

    PubMed

    Sun, Y Y; Xu, H; Feng, Y P; Huan, A C H; Wee, A T S

    2004-09-24

    We present a clear and simple rule for determining the relaxation sequences on open (stepped, vicinal, or high-Miller-index) metal surfaces. At the bulk-truncated configuration of a surface, a surface slab is defined where the coordination of atoms is reduced from the bulk. The rule predicts that the interlayer spacings within this slab contract, while the interlayer spacing between this slab and the substrate expands. By first-principles calculations, we show that this rule is obeyed on all open Cu surfaces with interlayer spacings down to about 0.5 A. We also illustrate a direct relation of the relaxation sequences to the charge redistribution on these surfaces, which is demonstrated to be driving the multilayer relaxations. The applicability of the rule can be extended to other fcc and bcc metals, including unreconstructed and missing-row surfaces.

  11. The outer layers of cool, non-Mira carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.

    1991-01-01

    The outer layers and near circumstellar envelope (CSE) of a typical carbon star have been studied using available data from theoretical and empirical models. An attempt is made to match the density-velocity structure of the photosphere-chromosphere region to values from the radio CO observations, which arise from the outer CSE. It is concluded that the stellar atmosphere includes a relatively thin high-temperature region close to hydrostatic equilibrium and a much more extended cooler region of outflowing gas and dust. To extend the outer photosphere and chromosphere to match the mass loss density appears to require an injection of energy and momentum by some mechanism rather close to the stellar surface.

  12. Smart Structures for Control of Optical Surfaces

    DTIC Science & Technology

    2002-03-01

    placed on a flat surface and allowed to cure [14]. After curing, the mirrors were tested using a Twyman -Green interferometer to determine the surface...surfaces can be accomplished using Twyman -Green interfer- ometry or a Shack-Hartmann sensor, among other techniques. Interferometry requires that the test...later. The mirror was placed in the test setup and a Twyman -Green interferometry setup was constructed using the available optics equipment [17

  13. Design of highly oleophobic cellulose surfaces from structured silicon templates.

    PubMed

    Aulin, Christian; Yun, Sang Ho; Wågberg, Lars; Lindström, Tom

    2009-11-01

    Structured silicon surfaces, possessing hierarchical porous characteristics consisting of micrometer-sized cavities superimposed upon a network of nanometer-sized pillars or wires, have been fabricated by a plasma-etching process. These surfaces have superoleophobic properties, after being coated with fluorinated organic trichlorosilanes, on intrinsically oleophilic surfaces. By comparison with flat silicon surfaces, which are oleophilic, it has been demonstrated that a combination of low surface energy and the structured features of the plasma-etched surface is essential to prevent oil from penetrating the surface cavities and thus induce the observed macroscopic superoleophobic phenomena with very low contact-angle hysteresis and low roll-off angles. The structured silicon surfaces were coated with cellulose nanocrystals using the polyelectrolyte multilayer technique. The cellulose surfaces prepared in this way were then coated with a monolayer of fluorinated trichlorosilanes. These porous cellulose films displayed highly nonwetting properties against a number of liquids with low surface tension, including alkanes such as hexadecane and decane. The wettability and chemical composition of the cellulose/silicon surfaces were characterized with contact-angle goniometry and X-ray photoelectron spectroscopy, respectively. The nano/microtexture features of the cellulose/silicon surfaces were also studied with field-emission scanning electron microscopy. The highly oleophobic structured cellulose surfaces are very interesting model surfaces for the development of biomimetic self-cleaning surfaces in a vast array of products, including green constructions, packaging materials, protection against environmental fouling, sports, and outdoor clothing, and microfluidic systems.

  14. Multilayer relaxation and surface structure of ordered alloys

    NASA Technical Reports Server (NTRS)

    Kobistek, Robert J.; Bozzolo, Guillermo; Ferrante, John; Schlosser, Herbert

    1993-01-01

    Using BFS, a new semiempirical method for alloys, we study the surface structure of fcc ordered binary alloys in the Ll(sub 2) structure (Ni3Al and Cu3Au). We show that the surface energy is lowest for the mixed composition truncation of the low-index faces of such systems. Also, we present results for the interlayer relaxations for planes close to the surface, revealing different relaxations for atoms of different species producing a rippled surface layer.

  15. Effects of surface structural disorder and surface coverage on isotopic fractionation during Zn(II) adsorption onto quartz and amorphous silica surfaces

    NASA Astrophysics Data System (ADS)

    Nelson, Joey; Wasylenki, Laura; Bargar, John R.; Brown, Gordon E.; Maher, Kate

    2017-10-01

    Metal ion-mineral surface interactions and the attendant isotopic fractionation depend on the properties of the mineral surface and the local atomic-level chemical environment. However, these factors have not been systematically examined for phases of the same composition with different levels of surface disorder. We present pH-dependent adsorption edges, X-ray absorption spectra, and isotopic measurements to illustrate the effects of surface structural disorder and surface coverage on zinc(II) (Zn(II)) surface complexation and isotope fractionation. Our results demonstrate that Zn(II) surface complexes on quartz and amorphous silica (SiO2(am)) transition from octahedral to tetrahedral coordination by oxygen as surface coverage increases. In low ionic strength solutions (I = 0.004 M) and at low surface loadings (Γ < 0.6 μmol m-2), Zn(II) adsorbs to the quartz surface predominantly as outer-sphere octahedral complexes (RZn-O = 2.05 Å) with no significant isotopic fractionation (Δ66/64Znaqueous-sorbed = -0.01 ± 0.06‰) from aqueous Zn(II). In contrast, under similar chemical conditions and surface loading, outer-sphere Zn(II) adsorption complexes are not observed on SiO2(am) surfaces. At high ionic strength (I = 0.1 M) and low surface loading (Γ < 0.2 μmol m-2), inner-sphere, monodentate octahedral Zn(II) complexes (RZn-O = 2.05-2.07 Å) are observed on both quartz and SiO2(am) surfaces. At the same ionic strength (I = 0.1 M) and higher surface loading (Γ = 0.6-1.4 μmol m-2), Zn(II) forms inner-sphere, monodentate tetrahedral complexes (RZn-O = 1.98 Å) at the quartz surface. On the SiO2(am) surface under similar chemical conditions and surface loading, Zn(II) forms dominantly inner-sphere, monodentate tetrahedral complexes with shorter Znsbnd O bond distances (RZn-O = 1.94 Å). Despite different coordination numbers, the measured equilibrium isotope fractionation factors for inner-sphere octahedral and tetrahedral complexes versus dissolved Zn, under the

  16. Independent estimate of velocity structure of Earth's lowermost outer core beneath the northeast Pacific from PKiKP - PKPbc differential traveltime and dispersion in PKPbc

    NASA Astrophysics Data System (ADS)

    Ohtaki, Toshiki; Kaneshima, Satoshi

    2015-11-01

    The presence of a low-velocity layer at the base of Earth's outer core has been proposed. However, the seismic profile of the basal layer indeed has been poorly constrained. In previous seismic studies the model parameters of the layer are substantially nonunique and there are tradeoffs between the seismic velocity of the layer and the properties of the mantle and inner core. A more tightly constrained profile of the layer helps further examine the composition and dynamics of the layer. In this study we obtained the P wave velocity profile of the basal layer beneath the northeast Pacific based on two new seismic observations by analyzing seismograms of the Hi-net in Japan. The new observations are particularly sensitive to the layer structure and are relatively insensitive to the structure of the other parts of the Earth: (1) the frequency dispersion in P waves that graze or are diffracted at the inner core boundary (PKPbc and PKPc-diff) and (2) differential traveltimes between the P waves reflected from the inner core boundary (PKiKP) and those that turn above the boundary (PKPbc). The resulting velocity model of the lowermost outer core (called "F layer velocity model for the Western Hemisphere" (FVW)) has P wave velocities that lie between those of AK135 and the preliminary reference Earth model (PREM), and a velocity gradient that is slightly gentler than that of PREM. Models with a uniform P wave velocity value within the layer are not supported by the observations for the region investigated, which appears not to support the presence of a thick basal layer that is Fe rich and dense there.

  17. Structured Surface Grid Generation on Boundary Represented Geometry

    SciTech Connect

    Chou, J J

    2002-01-18

    Generation of surface meshes is the first step in many grid generation processes. For the generation of block-structured meshes, structured surface meshes have to be generated first. This paper investigates the problem of generating a structured surface mesh across multiple surface patches on an object with the boundary representation and relates the problem to other commonly encountered issues in CAD/CAM. It describes a method for solving the problem. This method is based on initial surface construction, point projection and a mixed model-space and parameter-space based elliptic smoothing.

  18. Local atomic structure of a clean surface by surface-extended x-ray absorption fine structure: Amorphized Si

    SciTech Connect

    Comin, F.; Incoccia, L.; Lagarde, P.; Rossi, G.; Citrin, P.H.

    1985-01-14

    The application of near-edge surface, extended x-ray absorption fine structure to the study of a clean surface is reported. Direct evidence is found for surface recrystallization of ion-damaged (amorphized) Si, whereas no such evidence is seen for evaporated (amorphous) Si. The procedures described here are applicable to almost all clean or adsorbate-covered surfaces.

  19. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels.

    PubMed

    Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L

    2014-01-23

    Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail "neck", are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the "outer ion" site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies, shows that this site forms a previously unknown determinant of CaV high-affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily. © 2013. Published by Elsevier Ltd. All rights reserved.

  20. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels

    PubMed Central

    Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L.

    2013-01-01

    Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail ‘neck’, are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the ‘outer ion’ site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies shows that this site forms a previously unknown determinant of CaV high affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily. PMID:24120938

  1. Structure analysis of OmpC, one of the major proteins in the outer membrane of E. coli, by high resolution electron microscopy

    SciTech Connect

    Chang, C.F.

    1983-07-01

    This dissertation is concerned with the structure analysis of a pore-forming membrane protein, OmpC, which is one of the major proteins in the outer membrane of Escherichia coli. In order to obtain structural information it was necessary to develop a suitable technique for preparing two-dimensional crystalline arrays of this membrane protein in an unfixed, unstained and hydrated condition. Electron micrographs were recorded at exposures of less than 5 electrons/A/sup 2/ in order to avoid severe radiation damage. The resulting images were crystallographically averaged, in order to overcome the statistical limitations associated with the low electron exposures. The resulting images, which extend to a resolution of approx. 13.5 A, lend themselves to a natural interpretation that is consistent with the mass density of protein, water and lipid, prior data from 2-D and 3-D structure studies of negatively stained specimens at approx. = 20 A resolution, and published spectroscopic data on the peptide chain secondary structure.

  2. Surface structure of cleaved (001) USb2 single crystal surface

    SciTech Connect

    Chen, Shao-ping

    2008-01-01

    We have achieved what we believe to be the first atomic resolution scanning tunneling microscopy (STM) images for a uranium compound USb2 taken at room temperature. The a, b, and c lattice parameters in the images confirm that the tetragonal USb2 crystals cleave on the (001) basal plane as expected. Our calculations indicate a symmetric cut between Sb planes to be the most favorable cleavage plane and U atoms to be responsible for most of the density of states measured by STM. Since the spacing between Sb atoms and between U atoms is the same, STM topography alone cannot unambiguously identify the surface atom species.

  3. Protective efficacy afforded by live Pasteurella multocida vaccines in chickens is independent of lipopolysaccharide outer core structure.

    PubMed

    Harper, Marina; John, Marietta; Edmunds, Mark; Wright, Amy; Ford, Mark; Turni, Conny; Blackall, P J; Cox, Andrew; Adler, Ben; Boyce, John D

    2016-03-29

    Pasteurella multocida is a major animal pathogen that causes a range of diseases including fowl cholera. P. multocida infections result in considerable losses to layer and breeder flocks in poultry industries worldwide. Both killed whole-cell and live-attenuated vaccines are available; these vaccines vary in their protective efficacy, particularly against heterologous strains. Moreover, until recently there was no knowledge of P. multocida LPS genetics and structure to determine precisely how LPS structure affects the protective capacity of these vaccines. In this study we show that defined lipopolysaccharide (LPS) mutants presented as killed whole-cell vaccines elicited solid protective immunity only against P. multocida challenge strains expressing highly similar or identical LPS structures. This finding indicates that vaccination of commercial flocks with P. multocida killed cell formulations will not protect against strains producing an LPS structure different to that produced by strains included in the vaccine formulation. Conversely, protective immunity conferred by vaccination with live P. multocida strains was found to be largely independent of LPS structure. Birds vaccinated with a range of live mutants belonging to the L1 and L3 LPS genotypes, each expressing a specific truncated LPS structure, were protected against challenge with the parent strain. Moreover, birds vaccinated with any of the five LPS mutants belonging to the L1 LPS genotype were also protected against challenge with an unrelated strain and two of the five groups vaccinated with live LPS mutants belonging to the L3 genotype were protected against challenge with an unrelated strain. In summary, vaccination with live P. multocida aroA mutants producing full-length L1 or L3 LPS or vaccination with live strains producing shortened L1 LPS elicited strong protective immunity against both homologous and heterologous challenge.

  4. Chemical bonding in the outer core: high-pressure electronic structures of oxygen and sulfur in metallic iron

    USGS Publications Warehouse

    Sherman, David M.

    1991-01-01

    The electronic structures of oxygen and sulfur impurities in metallic iron are investigated to determine if pressure, temperature, and composition-induced changes in bonding might affect phase equilibria along the Fe-FeS and Fe-FeO binaries. -from Authors

  5. Phonons on the clean metal surfaces and in adsorption structures

    NASA Astrophysics Data System (ADS)

    Rusina, Galina G.; Chulkov, Evgenii V.

    2013-06-01

    The state-of-the-art studies of the vibrational dynamics of clean metal surfaces and metal surface structures formed upon the sub-monolayer adsorption of the atoms of various elements are considered. A brief historical survey of the milestones of investigations of surface phonons is presented. The results of studies of the atomic structure and vibration characteristics of surfaces with low and high Miller indices and adsorption structures are analyzed. It is demonstrated that vicinal surfaces of FCC metals tend to exhibit specific vibrational modes located on the step and polarized along the step. Irrespective of the type and position of adsorption or the substrate structure, the phonon spectra of sub-monolayer adsorption structures always tend to display two modes for combined translational displacements of adatoms and for coupled vibrations of substrate atoms and adatoms polarized in the direction normal to the surface. The bibliography includes 202 references.

  6. A well-structured metastable ceria surface

    SciTech Connect

    Olbrich, R.; Pieper, H. H.; Oelke, R.; Wilkens, H.; Wollschläger, J.; Reichling, M.; Zoellner, M. H.; Schroeder, T.

    2014-02-24

    By the growth of a 180 nm thick film on Si(111), we produce a metastable ceria surface with a morphology dominated by terraced pyramids with an oriented triangular base. Changes in the nanoscale surface morphology and local surface potential due to annealing at temperatures ranging from 300 K to 1150 K in the ultra-high vacuum are studied with non-contact atomic force microscopy and Kelvin probe force microscopy. As the surface is stable in the temperature range of 300 K to 850 K, it is most interesting for applications requiring regular steps with a height of one O-Ce-O triple layer.

  7. Coal surface structure and thermodynamics. Final report

    SciTech Connect

    Larsen, J.W.; Wernett, P.C.; Glass, A.S.; Quay, D.; Roberts, J.

    1994-05-01

    Coals surfaces were studied using static surface adsorption measurements, low angle x-ray scattering (LAXS), inverse gas chromatography (IGC) and a new {sup 13}C NMR relaxation technique. A comparison of surface areas determined by hydrocarbon gas adsorption and LAXS led to the twin conclusions that the hydrocarbons had to diffuse through the solid to reach isolated pores and that the coal pores do not form interconnected networks, but are largely isolated. This conclusion was confirmed when IGC data for small hydrocarbons showed no discontinuities in their size dependence as usually observed with porous solids. IGC is capable of providing adsorption thermodynamics of gases on coal surfaces. The interactions of non-polar molecules and coal surfaces are directly proportioned to the gas molecular polarizability. For bases, the adsorption enthalpy is equal to the polarizability interaction plus the heat of hydrogen bond formation with phenol. Amphoteric molecules have more complex interactions. Mineral matter can have highly specific effects on surface interactions, but with most of the molecules studied is not an important factor.

  8. Laser-induced periodic annular surface structures on fused silica surface

    SciTech Connect

    Liu, Yi; Brelet, Yohann; Forestier, Benjamin; Houard, Aurelien; Yu, Linwei; Deng, Yongkai; Jiang, Hongbing

    2013-06-24

    We report on the formation of laser-induced periodic annular surface structures on fused silica irradiated with multiple femtosecond laser pulses. This surface morphology emerges after the disappearance of the conventional laser induced periodic surface structures, under successive laser pulse irradiation. It is independent of the laser polarization and universally observed for different focusing geometries. We interpret its formation in terms of the interference between the reflected laser field on the surface of the damage crater and the incident laser pulse.

  9. Physics of the outer heliosphere

    SciTech Connect

    Gazis, P.R. )

    1991-01-01

    Major advances in the physics of the outer heliosphere are reviewed for the 1987-1990 time frame. Emphasis is placed on five broad topics: the detailed structure of the solar wind at large heliocentric distances, the global structure of the interplanetary field, latidudinal variations and meridional flows, radial and temporal variations, and the interaction of the solar wind with the local interstellar medium. 122 refs.

  10. Structure, interactions, and antibacterial activities of MSI-594 derived mutant peptide MSI-594F5A in lipopolysaccharide micelles: role of the helical hairpin conformation in outer-membrane permeabilization.

    PubMed

    Domadia, Prerna N; Bhunia, Anirban; Ramamoorthy, Ayyalusamy; Bhattacharjya, Surajit

    2010-12-29

    Lipopolysaccharide (LPS) provides a well-organized permeability barrier at the outer membrane of Gram-negative bacteria. Host defense cationic antimicrobial peptides (AMPs) need to disrupt the outer membrane before gaining access to the inner cytoplasmic membrane or intracellular targets. Several AMPs are largely inactive against Gram-negative pathogens due to the restricted permeation through the LPS layer of the outer membrane. MSI-594 (GIGKFLKKAKKGIGAVLKVLTTG) is a highly active AMP with a broad-spectrum of activities against bacteria, fungi, and virus. In the context of LPS, MSI-594 assumes a hairpin helical structure dictated by packing interactions between two helical segments. Residue Phe5 of MSI-594 has been found to be engaged in important interhelical interactions. In order to understand plausible structural and functional inter-relationship of the helical hairpin structure of MSI-594 with outer membrane permeabilization, a mutant peptide, termed MSI-594F5A, containing a replacement of Phe5 with Ala has been prepared. We have compared antibacterial activities, outer and inner membrane permeabilizations, LPS binding affinity, perturbation of LPS micelles structures by MSI-594 and MSI-594F5A peptides. Our results demonstrated that the MSI-594F5A has lower activities against Gram-negative bacteria, due to limited permeabilization through the LPS layer, however, retains Gram-positive activity, akin to MSI-594. The atomic-resolution structure of MSI-594F5A has been determined in LPS micelles by NMR spectroscopy showing an amphipathic curved helix without any packing interactions. The 3D structures, interactions, and activities of MSI-594 and its mutant MSI-594F5A in LPS provide important mechanistic insights toward the requirements of LPS specific conformations and outer membrane permeabilization by broad-spectrum antimicrobial peptides.

  11. Galactic Structure in the Outer Disk: The Field in the Line of Sight to the Intermediate-age Open Cluster Tombaugh 1

    NASA Astrophysics Data System (ADS)

    Carraro, Giovanni; Sales Silva, Joao Victor; Moni Bidin, Christian; Vazquez, Ruben A.

    2017-03-01

    We employ optical photometry and high-resolution spectroscopy to study a field toward the open cluster Tombaugh 1, where we identify a complex population mixture that we describe in terms of young and old Galactic thin disks. Of particular interest is the spatial distribution of the young population, which consists of dwarfs with spectral types as early as B6 and is distributed in a blue plume feature in the color–magnitude diagram. For the first time, we confirm spectroscopically that most of these stars are early-type stars and not blue stragglers or halo/thick-disk subdwarfs. Moreover, they are not evenly distributed along the line of sight but crowd at heliocentric distances between 6.6 and 8.2 kpc. We compare these results with present-day understanding of the spiral structure of the Galaxy and suggest that they trace the outer arm. This range of distances challenges current Galactic models adopting a disk cutoff at 14 kpc from the Galactic center. The young dwarfs overlap in space with an older component, which is identified as an old Galactic thin disk. Both young and old populations are confined in space since the disk is warped at the latitude and longitude of Tombaugh 1. The main effects of the warp are that the line of sight intersects the disk and entirely crosses it at the outer arm distance and that there are no traces of the closer Perseus arm, which would then be either unimportant in this sector or located much closer to the formal Galactic plane. Finally, we analyze a group of giant stars, which turn out to be located at very different distances and to possess very different chemical properties, with no obvious relation to the other populations. Based on observations carried out at Las Campanas Observatory, Chile (program ID CN009B-042), and Cerro Tololo Inter-American Observatory.

  12. Effect of natural polymorphism on structure and function of the Yersinia pestis outer membrane porin F (OmpF protein): a computational study.

    PubMed

    Shaban, Hiba; Na, Insing; Kislichkina, Angelina A; Dentovskaya, Svetlana V; Anisimov, Andrey P; Uversky, Vladimir N

    2016-09-03

    The Yersinia pestis outer membrane porin F (OmpF) is a transmembrane protein located in the outer membrane of this Gram-negative bacterium which is the causative agent of plague, where it plays a significant role in controlling the selective permeability of the membrane. The amino acid sequences of OmpF proteins from 48 Y. pestis strains representing all currently available phylogenetic groups of this Gram-negative bacterium were recently deduced. Comparison of these amino acid sequences revealed that the OmpF can be present in four isoforms, the pestis-pestis type, and the pestis-microtus types I, II, and III. OmpF of the most recent pestis-pestis type has an alanine residue at the position 148, where all the pestis-microtus types have threonine there (T148A polymorphism). The variability of different pestis-microtus types is caused by an additional polymorphism at the 193rd position, where the OmpFs of the pestis-microtus type II and type III have isoleucine-glycine (IG(+)193) or isoleucine-glycine-isoleucine-glycine (IGIG(+)193) insertions, respectively (IG(+)193 and IGIG(+)193 polymorphism). To investigate potential effects of these sequence polymorphisms on the structural properties of the OmpF protein, we conducted multi-level computational analysis of its isoforms. Analysis of the I-TASSER-generated 3D-models revealed that the Yersinia OmpF is very similar to other non-specific enterobacterial porins. The T148A polymorphism affected a loop located in the external vestibule of the OmpF channel, whereas IG(+)193 and IGIG(+)193 polymorphisms affected one of its β-strands. Our analysis also suggested that polymorphism has moderate effect on the predicted local intrinsic disorder predisposition of OmpF, but might have some functional implementations.

  13. Meso- and microscale structures related to post-magmatic deformation of the outer Izu-Bonin-Mariana fore arc system: preliminary results from IODP Expedition 352

    NASA Astrophysics Data System (ADS)

    Micheuz, P.; Kurz, W.; Ferre, E. C.

    2015-12-01

    IODP Expedition 352 aimed to drill through the entire volcanic sequence of the Bonin fore arc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Analysis of structures within drill cores, combined with borehole and site survey seismic data, indicates that tectonic deformation in the outer Izu-Bonin-Mariana fore arc is mainly post-magmatic, associated with the development of syn-tectonic sedimentary basins. Within the magmatic basement, deformation was accommodated by shear along cataclastic fault zones, and the formation of tension fractures, hybrid (tension and shear) fractures, and shear fractures. Veins commonly form by mineral filling of tension or hybrid fractures and, generally, show no or limited observable macroscale displacement along the fracture plane. The vein filling generally consists of (Low Mg-) calcite and/or various types of zeolite as well as clay. Vein frequency varies with depth but does not seem to correlate with the proximity of faults. This may indicate that these veins are genetically related to hydrothermal activity taking place shortly after magma cooling. Host-rock fragments are commonly embedded within precipitated vein material pointing to a high fluid pressure. Vein thickness varies from < 1 mm up to 15 mm. The wider veins appear to have formed in incremental steps of extension. Calcite veins tend to be purely dilational at shallow depths, but gradually evolve towards oblique tensional veins at depth, as shown by the growth of stretched calcite and/or zeolites (idiomorphic and/or stretched) with respect to vein margins. With increasing depth, the calcite grains exhibit deformation microstructures more frequently than at shallower core intervals. These microstructures include thin twinning (type I twins), increasing in width with depth (type I and type II twins), curved twins, and subgrain boundaries indicative of incipient plastic deformation.

  14. Hydroxyl migration disorders the surface structure of hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Cheng, Xiajie; Wu, Hong; Zhang, Li; Ma, Xingtao; Zhang, Xingdong; Yang, Mingli

    2017-09-01

    The surface structure of nano-hydroxyapatite (HAP) was investigated using a combined simulated annealing and molecular dynamics method. The stationary structures of nano-HAP with 4-7 nm in diameter and annealed under different temperatures were analyzed in terms of pair distribution function, structural factor, mean square displacement and atomic coordination number. The particles possess different structures from bulk crystal. A clear radial change in their atomic arrangements was noted. From core to surface the structures change from ordered to disordered. A three-shell model was proposed to describe the structure evolution of nano-HAP. Atoms in the core zone keep their arrangements as in crystal, while atoms in the surface shell are in short-range order and long-range disorder, adopting a typically amorphous structure. Atoms in the middle shell have small displacements and/or deflections but basically retain their original locations as in crystal. The disordered shell is about 1 nm in thickness, in agreement with experimental observations. The disordering mainly stems from hydroxyl migration during which hydroxyls move to the surface and bond with the exposed Ca ions, and their left vacancies bring about a rearrangement of nearby atoms. The disordering is to some extent different for particles unannealed under different temperatures, resulting from fewer number of migrated hydroxyls at lower temperatures. Particles with different sizes have similar surface structures, and their surface energy decreases with increasing size. Moreover, the surface energy is reduced by hydroxyl migration because the exposed Ca ions on the surface are ionically bonded with the migrated hydroxyls. Our calculations proposed a new structure model for nano-HAP, which indicates a surface structure with activities different from those without surface reorganization. This is particularly interesting because most bioactivities of biomaterials are dominated by their surface activity.

  15. Structure of the Neisserial Outer Membrane Protein Opa60: Loop Flexibility Essential to Receptor Recognition and Bacterial Engulfment

    PubMed Central

    2015-01-01

    The structure and dynamics of Opa proteins, which we report herein, are responsible for the receptor-mediated engulfment of Neisseria gonorrheae or Neisseria meningitidis by human cells and can offer deep understanding into the molecular recognition of pathogen–host receptor interactions. Such interactions are vital to understanding bacterial pathogenesis as well as the mechanism of foreign body entry to a human cell, which may provide insights for the development of targeted pharmaceutical delivery systems. The size and dynamics of the extracellular loops of Opa60 required a hybrid refinement approach wherein membrane and distance restraints were used to generate an initial NMR structural ensemble, which was then further refined using molecular dynamics in a DMPC bilayer. The resulting ensemble revealed that the extracellular loops, which bind host receptors, occupy compact conformations, interact with each other weakly, and are dynamic on the nanosecond time scale. We predict that this conformational sampling is critical for enabling diverse Opa loop sequences to engage a common set of receptors. PMID:24813921

  16. The X-37 Hot Structure Control Surface Testing

    NASA Technical Reports Server (NTRS)

    Hudson, Larry D.; Stephens, Craig A.

    2006-01-01

    Thermal-structural testing of three hot structure control surface subcomponent test articles (STA) designed for the X-37 (Boeing Phantom Works, Huntington Beach, California) Orbital Vehicle (OV) has been completed. The test articles were subcomponents of the X-37 OV bodyflap and flaperon control surfaces.

  17. Structures of surface and interface of amorphous ice

    NASA Astrophysics Data System (ADS)

    Kumagai, Yu; Ikeda-Fukazawa, Tomoko

    2017-06-01

    To investigate the surface structure, we performed molecular dynamics calculations of amorphous ice. The result shows that a low density layer, which forms a few hydrogen bonds with weaker strength, exists in the surface. Furthermore, the sintering processes were simulated to investigate the structure of grain boundary formed from the adsorption of two surfaces. The result indicates that a low density region exists in a boundary between amorphous ice grains. The structures of surface and interface of amorphous ice have important implications for adsorption, diffusion, and chemical reaction in ice grains of interstellar molecular clouds.

  18. Influence of surface structure on thermoprotection properties of intumescent systems

    NASA Astrophysics Data System (ADS)

    Reshetnikov, Igor S.; Yablokova, Marina Yu.; Khalturinskij, Nikolay A.

    1997-06-01

    Intumescent fire retardant coatings have found great application due to high thermoprotection properties, which reduce heat flow on the polymer surface. However there were no attempts to study the influence of surface structure on foamed char formation processes. In this work we present the experimental investigation of thermoprotection properties of CFR with a PTFE modified surface.

  19. Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis.

    PubMed

    Kota, Arun K; Li, Yongxin; Mabry, Joseph M; Tuteja, Anish

    2012-11-14

    Hierarchically structured, superoleophobic surfaces are demonstrated that display one of the lowest contact angle hysteresis values ever reported - even with extremely low-surface-tension liquids such as n-heptane. Consequently, these surfaces allow, for the first time, even ≈2 μL n-heptane droplets to bounce and roll-off at tilt angles. ≤ 2°.

  20. Surface ferromagnetism in close-packed structures

    NASA Astrophysics Data System (ADS)

    Sanchez, J. M.; Morán-López, J. L.

    The temperature-magnetic field equilibrium phase diagram for the (111) surface of an fcc spin- {1}/{2} Ising ferromagnet is calculated using the tetrahedron aproximation of the cluster variation method. Among the new features found in the model is a triple point corresponding to a ferromagnetic first-order phase transition at zero field. Some characteristics of the model, such as the increase in the surface transition temperature with the magnetic field, may be relevant to recent observations in Gd(0001) by Weller and Alvarado.

  1. Secondary electron emission from surfaces with small structure

    NASA Astrophysics Data System (ADS)

    Dzhanoev, A. R.; Spahn, F.; Yaroshenko, V.; Lühr, H.; Schmidt, J.

    2015-09-01

    It is found that for objects possessing small surface structures with differing radii of curvature the secondary electron emission (SEE) yield may be significantly higher than for objects with smooth surfaces of the same material. The effect is highly pronounced for surface structures of nanometer scale, often providing a more than 100 % increase of the SEE yield. The results also show that the SEE yield from surfaces with structure does not show a universal dependence on the energy of the primary, incident electrons as it is found for flat surfaces in experiments. We derive conditions for the applicability of the conventional formulation of SEE using the simplifying assumption of universal dependence. Our analysis provides a basis for studying low-energy electron emission from nanometer structured surfaces under a penetrating electron beam important in many technological applications.

  2. Surface wave holography on designing subwavelength metallic structures.

    PubMed

    Chen, Yu-Hui; Fu, Jin-Xin; Li, Zhi-Yuan

    2011-11-21

    We report a method in the framework of surface wave holography to manipulate the electromagnetic wave on the metallic surface for realizing complicated electromagnetic wave transport functionalities in three-dimensional (3D) space. The method allows for direct determination of the metallic surface structure morphology for a given transport functionality, by means of writing desirable object information on the metallic surface via interference with a reference surface wave. We have employed the analytical approach to design and build metallic surface structures that realize arbitrary single-point focusing, arbitrary single-direction beam collimation, and simultaneous two-point focusing of electromagnetic wave in 3D space. Good agreement between numerical simulations and microwave experimental measurements has been found and confirms the power of the method in conceptually understanding and exploiting the surface electromagnetic wave on subwavelength metal structures.

  3. Review of antireflective surface structures on laser optics and windows.

    PubMed

    Busse, Lynda E; Frantz, Jesse A; Shaw, L Brandon; Aggarwal, Ishwar D; Sanghera, Jasbinder S

    2015-11-01

    We present recent advancements in structured, antireflective surfaces on optics, including crystals for high-energy lasers as well as windows for the infrared wavelength region. These structured surfaces have been characterized and show high transmission and laser damage thresholds, making them attractive for these applications. We also present successful tests of windows with antireflective surfaces that were exposed to simulated harsh environments for the application of these laser systems.

  4. Prediction of Protein Structure Using Surface Accessibility Data

    PubMed Central

    Hartlmüller, Christoph; Göbl, Christoph

    2016-01-01

    Abstract An approach to the de novo structure prediction of proteins is described that relies on surface accessibility data from NMR paramagnetic relaxation enhancements by a soluble paramagnetic compound (sPRE). This method exploits the distance‐to‐surface information encoded in the sPRE data in the chemical shift‐based CS‐Rosetta de novo structure prediction framework to generate reliable structural models. For several proteins, it is demonstrated that surface accessibility data is an excellent measure of the correct protein fold in the early stages of the computational folding algorithm and significantly improves accuracy and convergence of the standard Rosetta structure prediction approach. PMID:27560616

  5. Examining lysozyme structures on polyzwitterionic brush surfaces.

    PubMed

    Wang, Haoyu; Akcora, Pinar

    2017-09-18

    Conformational structures of lysozyme at the interfaces of hydrophilic polymer poly[2-(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl)ammonium hydroxide] (PMEDSAH), are examined to understand the role of protein-polymer interactions on the stability of lysozyme. This work underpins the effect of hydration layer on the structures of physically adsorbed lysozyme on PMEDSAH brushes. Hydrophilic nature and strength of hydration layers around brushes are controlled by varying the brush thickness and temperature. We measured that lysozyme is structurally less stable on 15nm thick hydrophilic PMEDSAH brushes at 75°C than at room temperature. To the contrary, 5-8nm thick brushes stretch in hydrated state by heating, hence yield higher structural stability of lysozyme. These results suggest that short polyzwitterionic brushes can facilitate improved biomaterial interactions that are essential for biosensors performing at elevated temperatures. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Laser Surface Preparation and Bonding of Aerospace Structural Composites

    NASA Technical Reports Server (NTRS)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical prebonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  7. Surface structures of rutile TiO2(114)

    NASA Astrophysics Data System (ADS)

    Kubo, Toshitaka; Orita, Hideo; Nozoye, Hisakazu

    2016-11-01

    The surface structures of rutile TiO2(114) have been studied using a combination of scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Depending on the sample preparation, the surface exhibits many complicated local nanostructures, e.g., dot-like, missing row, row-like (1 × 3), and twin dotted (2 × 2) structures. After several cycles of sputtering and high-temperature annealing, all samples exhibit triangular pyramidal structure. Microfaceted structural models, which are composed of combinations of {111} and (001) microfacets, can explain all experimental results as well as the structural variety. The calculated STM images are in good agreement with the experimental results. The decreasing density of dangling bonds, the increasing coordination number, and the evolution of non-polar structures stabilize the surface energy, which results in the microfaceted reconstructions. The formation of various nanostructures and the surface stoichiometric changes are discussed.

  8. The Outer Limits: English.

    ERIC Educational Resources Information Center

    Tyler, Barbara R.; Biesekerski, Joan

    The Quinmester course "The Outer Limits" involves an exploration of unknown worlds, mental and physical, through fiction and nonfiction. Its purpose is to focus attention on the ongoing conquest of the frontiers of the mind, the physical world, and outer space. The subject matter includes identification and investigation of unknown…

  9. Structure of the Outer Cusp and Sources of the Cusp Precipitation during Intervals of a Horizontal IMF

    NASA Technical Reports Server (NTRS)

    Nemecek, Z.; Safrankova, J.; Prech, L.; Simunek, J.; Sauvaud, J.-A.; Fedorov, A.; Stenuit, H.; Fuselier, S. A.; Savin, S.; Zelenyi, L.

    2003-01-01

    The cusp represents a place where the magnetosheath plasma can directly penetrate into the magnetosphere. Since the main transport processes are connected with merging of the interplanetary and magnetospheric field lines, the interplanetary magnetic field (IMF) Orientation plays a decisive role in the formation of the high-altitude cusp. The importance of the sign of the IMF Bz component for this process was suggested about 40 years ago and later it was documented by many experimental investigations. However, situations when IMF Bz is the major IMF component are rather rare. The structure of the cusp during periods of a small IMF BZ is generally unknown, probably due to the fully 3-D nature of the interaction. The present case study reveals the importance of horizontal IMF components on the global magnetospheric configuration as well as on small-scale processes at the cusp-magnetosheath interface. We have used simultaneous measurements of several spacecraft (ISTP program) operating in different regions of interplanetary space and two closely spaced satellites (INTERBALL-1/MAGION- 4) crossing the cusp-magnetosheath boundary to show the connection between the short- and large-scale phenomena. In the northern hemisphere, observations suggest a presence of two spots of cusp-like precipitation supplied by reconnection occurring simultaneously in both hemispheres. A source of this bifurcation is the positive IMF By component further enhanced by the field draping in the magnetosheath. This magnetic field component shifts the entry point far away from the local noon but in opposite sense in either hemisphere.

  10. The solution structure of the outer membrane lipoprotein OmlA from Xanthomonas axonopodis pv. citri reveals a protein fold implicated in protein-protein interaction.

    PubMed

    Vanini, Marina Marques Teixeira; Spisni, Alberto; Sforça, Maurício Luis; Pertinhez, Thelma Aguiar; Benedetti, Celso Eduardo

    2008-06-01

    The outer membrane lipoprotein A (OmlA) belongs to a family of bacterial small lipoproteins widely distributed across the beta and gamma proteobacteria. Although the role of numerous bacterial lipoproteins is known, the biological function of OmlA remains elusive. We found that in the citrus canker pathogen, Xanthomonas axonopodis pv. citri (X. citri), OmlA is coregulated with the ferric uptake regulator (Fur) and their expression is enhanced when X. citri is grown on citrus leaves, suggesting that these proteins are involved in plant-pathogen interaction. To gain insights into the function of OmlA, its conformational and dynamic features were determined by nuclear magnetic resonance. The protein has highly flexible N- and C- termini and a structurally well defined core composed of three beta-strands and two small alpha-helices, which pack against each other forming a two-layer alpha/beta scaffold. This protein fold resembles the domains of the beta-lactamase inhibitory protein BLIP, involved in protein-protein binding. In conclusion, the structure of OmlA does suggest that this protein may be implicated in protein-protein interactions required during X. citri infection.

  11. Surface Nano-Structuring by Adsorption and Chemical Reactions

    PubMed Central

    Tanaka, Ken-ichi

    2010-01-01

    Nano-structuring of the surface caused by adsorption of molecules or atoms and by the reaction of surface atoms with adsorbed species is reviewed from a chemistry viewpoint. Self-assembly of adsorbed species is markedly influenced by weak mutual interactions and the local strain of the surface induced by the adsorption. Nano-structuring taking place on the surface is well explained by the notion of a quasi-molecule provided by the reaction of surface atoms with adsorbed species. Self-assembly of quasi-molecules by weak internal bonding provides quasi-compounds on a specific surface. Various nano-structuring phenomena are discussed: (i) self-assembly of adsorbed molecules and atoms; (ii) self-assembly of quasi-compounds; (iii) formation of nano-composite surfaces; (iv) controlled growth of nano-materials on composite surfaces. Nano-structuring processes are not always controlled by energetic feasibility, that is, the formation of nano-composite surface and the growth of nano-particles on surfaces are often controlled by the kinetics. The idea of the “kinetic controlled molding” might be valuable to design nano-materials on surfaces. PMID:28883340

  12. Chemical design of pH-sensitive nanovalves on the outer surface of mesoporous silicas for controlled storage and release of aromatic amino acid

    SciTech Connect

    Roik, N.V. Belyakova, L.A.

    2014-07-01

    Mesoporous silicas with hexagonally arranged pore channels were synthesized in water–ethanol-ammonia solution using cetyltrimethylammonium bromide as template. Directed modification of silica surface with N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups was realized by postsynthetic activation of halogenoalkylsilicas, which have surface uniformly or selectively distributed 3-chloropropyl groups, with 2-aminodiphenylamine in the liquid phase. Chemical composition of silica materials was estimated by IR spectroscopy and chemical analysis of the surface products of reactions. Characteristics of porous structure of MCM-41-type silicas were determined from X-ray and low-temperature nitrogen ad-desorption measurements. Release ability of synthesized silica carriers was established on encapsulation of 4-aminobenzoic acid in pore channels and subsequent delivery at pH=6.86 and pH=1.00. It was found that N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups block pore entrances at neutral pH preventing 4-aminobenzoic acid release. At pH=1.00 repulsion of positively charged surface aromatic amino groups localized near pore orifices provides unhindered liberation of aromatic amino acid from mesoporous channels. - Graphical abstract: Blocking of pores with N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups at pH=6.86 for storage of ABA and opening of pore entrances at pH=1.00 for unhindered ABA liberation. - Highlights: • Modification of MCM-41 with N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups. • Study of release ability of synthesized silica carriers in relation to amino acid. • Controlled blocking and opening of pores by amino groups at pH change were performed. • Retention of amino acid at pH=6.86 and its liberation at pH=1.00 was proved.

  13. Kinetics of Simple Inner- and Outer-Sphere Electrochemical Reactions at Rotating Silver Electrodes as Examined Using Surface-Enhanced Raman Spectroscopy.

    DTIC Science & Technology

    1984-09-01

    RD-A 45 686 KINETICS OF S IMPLE INNER- AND OUTER-SPHERE i/i ELECTROCHEMICAL REACTIONS AT R..(U) PURDUE UNIV LAFAYETTE IN DEPT OF CHEMISTRY S...Prepared for Publication in the Journal of Electroanalytical Chemistry Department of ChemistryT IC Purdue University 1! LECTEt^ West Lafayette, IN 47907 SEP...of Chemistry Purdue University - West Lafayette, Indiana 47907 * CONTROL.ING OFFICE NAME AND ADDRESS 12. REPORT DATE Office of Naval Research

  14. Membrane structure and surface coat of Entamoeba histolytica. Topochemistry and dynamics of the cell surface: cap formation and microexudate.

    PubMed

    Silva, P P; Martínez-Palomo, A; Gonzalez-Robles, A

    1975-03-01

    Treatment of living entamoeba histolytica cells with low concentrations of concanavalin A (con A) and peroxidase results in redistribution of the plasma membrane con A receptors to one pole of the cell where a morphologically distinct region--the uroid--is formed. Capping of con A receptors is not accompanied by parallel accumulation of ruthenium red-stainable components. In capped cells, the pattern of distribution of acidic sites ionized at pH 1.8 (labeled by colloidal iron) at the outer surface and of membrane particles (integral membrane components revealed by freeze-fracture) is not altered over the uroid region. Cytochemistry of substrate-attached microexudate located in regions adjacent to E. histolytica cells demonstrates the presence of con A binding sites and ruthenium red- and alcian blue-stainable components and the absent of colloidal iron binding sites. In a previous report we demonstrated that glycerol-induced aggregation of the plasma membrane particles is accompanied by a discontinuous distribution of colloidal iron binding sites, while con A receptors and acidic sites ionized at pH 4.0 remain uniformly distributed over the cell surface. Taken together, our experiments show that, in E. histolytica cells, peripheral membrane components may move independently of integral components and, also, that certain surface determinants may redistribute independently of others. These results point to the complexity of the membrane structure-cell surface relationship in E. histolytica plasma membranes relative to the membrane of the erythrocyte ghost where integral components (the membrane-intercalated particles) contain all antigens, receptors, and anionic sites labeled so far. We conclude that fluidity of integral membrane components (integral membrane fluidity) cannot be inferred from the demonstration of the mobility of surface components nor, conversely, can the fluidity of peripheral membrane components (peripheral membrane fluidity) be assumed from

  15. Structure and Hardness of Cast Iron after Surface Hardening

    NASA Astrophysics Data System (ADS)

    Safonov, E. N.

    2005-09-01

    Special features of structure formation in the heat-affected zone of roll-foundry iron with flaked or globular graphite due to surface heat treatment by direct electric (plasma) arc are considered. The influence of the parameters of the process on the composition, structure, and properties of the hardened zone is studied. Treatment modes ensuring a structure with enhanced hardness and wear resistance in the surface layer of iron are determined.

  16. Europa's phase curve - Implications for surface structure

    NASA Technical Reports Server (NTRS)

    Domingue, D. L.; Hapke, B. W.; Lockwood, G. W.; Thompson, D. T.

    1991-01-01

    The surface of the Jovian satellite Europa is characterized on the basis of an analysis of ground photoelectric photometry at 470 and 550 nm and Voyager images. The data are presented in extensive tables and graphs and discussed in detail. At 550 nm, Europa has single-scattering albedo 0.964, opposition-effect amplitude 0.5, opposition-effect width 0.0016, double-lobed Henyey-Greenstein factors b = -0.429 and c = 0.113, and mean roughness angle 10 deg (much lower than on other solar-system objects). From the small roughness and the 96-percent porosity implied by the narrow opposition peak, it is concluded that the surface was formed mainly by endogenic processes. It is also noted that only one of three observational criteria for preferential ion bombardment of the trailing hemisphere are met in Europa.

  17. Stress analysis for structures with surface cracks

    NASA Technical Reports Server (NTRS)

    Bell, J. C.

    1978-01-01

    Two basic forms of analysis, one treating stresses around arbitrarily loaded circular cracks, the other treating stresses due to loads arbitrarily distributed on the surface of a half space, are united by a boundary-point least squares method to obtain analyses for stresses from surface cracks in places or bars. Calculations were for enough cases to show how effects from the crack vary with the depth-to-length ratio, the fractional penetration ratio, the obliquity of the load, and to some extent the fractional span ratio. The results include plots showing stress intensity factors, stress component distributions near the crack, and crack opening displacement patterns. Favorable comparisons are shown with two kinds of independent experiments, but the main method for confirming the results is by wide checking of overall satisfaction of boundary conditions, so that external confirmation is not essential. Principles involved in designing analyses which promote dependability of the results are proposed and illustrated.

  18. Carbon Nanomaterials: Surface Structure and Morphology

    NASA Astrophysics Data System (ADS)

    Mansurov, Z. A.; Shabanova, T. A.; Mofa, N. N.; Glagolev, V. A.

    2014-09-01

    We propose a classification of individual nanoparticles on the basis of the form of the surface and the internal architectural packing for investigations carried out with the help of transmission electron microscopy. The investigated samples contain individual nanoparticles of seven kinds in different ratios: rounded, tubular, fibrous, fi lm, "veil," "active" particles and "particles with regular geometric contours." The classification was made on the basis of an analysis of the results of investigations of the surfaces and internal architectural packing of carbon particles obtained in different physiochemical processes (carbonization, carburizing, arc discharge, mechanochemical treatment, plasma chemistry, and in carbon-containing fl ames). For the source materials, we used waste of farming products and widely distributed mineral raw materials.

  19. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    PubMed Central

    2015-01-01

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed. PMID:25436035

  20. Surface Structure of Aerobically Oxidized Diamond Nanocrystals.

    PubMed

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E; Chen, Edward H; Nordlund, Dennis; Diaz, Rosa E; Gaathon, Ophir; Englund, Dirk; Owen, Jonathan S

    2014-11-20

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5-50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core-hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed.

  1. Structure of the Outer Cusp and Sources of the Cusp Precipitation during Intervals of a Horizontal IMF

    NASA Technical Reports Server (NTRS)

    Berchem, Jean; Nemecek, Z.; Safrankova, J.; Prech, L.; Simunek, J.; Sauvaud, J.-A.; Fedorov, A.; Stenuit, H.; Fuselier, S. A.; Savin, S.; hide

    2003-01-01

    The cusp represents a place where the magnetosheath plasma can directly penetrate into the magnetosphere. Since the main transport processes are connected with merging of the interplanetary and magnetospheric field lines: the interplanetary magnetic field (IMF) Orientation plays a decisive role in the formation of the high-altitude cusp. The importance of the sign of the IMF B(sub Z) component for this process was suggested about 40 years ago and later it was documented by many experimental investigations. However, situations when IMF Bz is the major IMF component are rather rare. The structure of the cusp during periods of a small IMF B(sub Z) is generally unknown, probably due to the fully 3-D nature of the interaction. The present case study reveals the importance of horizontal IMF components on the global magnetospheric configuration as well as on small-scale processes at the cusp-magnetosheath interface. We have used simultaneous measurements of several spacecraft (ISTP program) operating in different regions of interplanetary space and two closely spaced satellites (INTERBALL-1/MAGION-4) crossing the cusp-magnetosheath boundary to show the connection between the short- and large-scale phenomena. In the northern hemisphere, observations suggest a presence of two spots of cusp-like precipitation supplied by reconnection occurring simultaneously in both hemispheres. A source of this bifurcation is the positive IMF B(sub y) component further enhanced by the field draping in the magnetosheath. This magnetic field component shifts the entry point far away from the local noon but in opposite sense in either hemisphere. The cusp represents a place where the magnetosheath plasma can directly

  2. Structural Insights into Substrate Recognition and Catalysis in Outer Membrane Protein B (OmpB) by Protein-lysine Methyltransferases from Rickettsia.

    PubMed

    Abeykoon, Amila H; Noinaj, Nicholas; Choi, Bok-Eum; Wise, Lindsay; He, Yi; Chao, Chien-Chung; Wang, Guanghui; Gucek, Marjan; Ching, Wei-Mei; Chock, P Boon; Buchanan, Susan K; Yang, David C H

    2016-09-16

    Rickettsia belong to a family of Gram-negative obligate intracellular infectious bacteria that are the causative agents of typhus and spotted fever. Outer membrane protein B (OmpB) occurs in all rickettsial species, serves as a protective envelope, mediates host cell adhesion and invasion, and is a major immunodominant antigen. OmpBs from virulent strains contain multiple trimethylated lysine residues, whereas the avirulent strain contains mainly monomethyllysine. Two protein-lysine methyltransferases (PKMTs) that catalyze methylation of recombinant OmpB at multiple sites with varying sequences have been identified and overexpressed. PKMT1 catalyzes predominantly monomethylation, whereas PKMT2 catalyzes mainly trimethylation. Rickettsial PKMT1 and PKMT2 are unusual in that their primary substrate appears to be limited to OmpB, and both are capable of methylating multiple lysyl residues with broad sequence specificity. Here we report the crystal structures of PKMT1 from Rickettsia prowazekii and PKMT2 from Rickettsia typhi, both the apo form and in complex with its cofactor S-adenosylmethionine or S-adenosylhomocysteine. The structure of PKMT1 in complex with S-adenosylhomocysteine is solved to a resolution of 1.9 Å. Both enzymes are dimeric with each monomer containing an S-adenosylmethionine binding domain with a core Rossmann fold, a dimerization domain, a middle domain, a C-terminal domain, and a centrally located open cavity. Based on the crystal structures, residues involved in catalysis, cofactor binding, and substrate interactions were examined using site-directed mutagenesis followed by steady state kinetic analysis to ascertain their catalytic functions in solution. Together, our data reveal new structural and mechanistic insights into how rickettsial methyltransferases catalyze OmpB methylation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Local Surface Structure From Disparity Measurements

    NASA Astrophysics Data System (ADS)

    Jenkin, Michael R. M.; Jepson, Allan D.; Tsotsos, John K.

    1988-02-01

    Current theories of stereopsis involve three distinct stages: First, the two images of a stereo pair are processed separately to extract monocular features. One common choice of feature is the presence of a zero-crossing in a bandpassed versions of the image. Second, the monocular features in one image are matched with corresponding features found in the other image. In practice this second stage cannot be expected to produce only the correct matches, and a third stage must be considered in order to remove the incorrect matches ("false targets"). There are therefore three main issues the design of such a traditional algorithm for stereopsis, namely i) the choice of image features; the choice of matching criteria; and iii) the way false targets are avoided or eliminated. In this paper we introduce a different approach. We propose that symbolic features should not be extracted from the monocular images in the first stage of processing. Rather we examine a technique for measuring the local phase difference between the two images. We show how local phase difference in a bandpassed version of the image can be interpreted as disparity. This essentially combines the first two stages of the traditional approach. These disparity measurements may contain "false targets" which must be eliminated. Building upon the results of these disparty detectors, we show that a simple surface model based on object cohesiveness and local surface planarity across a range of spatial-frequency tuned channels can be used to reduce false matches. The resulting local planar surface support can be used to segment the image into planar regions in depth. Due to the independent nature of both the disparity detection and local planar support mechanism, this method is capable of dealing with both opaque and transparent stimuli.

  4. Surface Structure and Surface Electronic States Related to Plasma Cleaning of Silicon and Germanium

    NASA Astrophysics Data System (ADS)

    Cho, Jaewon

    This thesis discusses the surface structure and the surface electronic states of Si and Ge(100) surfaces as well as the effects of oxidation process on the silicon oxide/Si(100) interface structure. The H-plasma exposure was performed in situ at low temperatures. The active species, produced in the H-plasma by the rf-excitation of H_2 gas, not only remove microcontaminants such as oxygen and carbon from the surface, but also passivate the surface with atomic hydrogen by satisfying the dangling bonds of the surface atoms. The surfaces were characterized by Angle Resolved UV-Photoemission Spectroscopy (ARUPS) and Low Energy Electron Diffraction (LEED). In the case of Si(100), H-plasma exposure produced ordered H-terminated crystallographic structures with either a 2 x 1 or 1 x 1 LEED pattern. The hydride phases, found on the surfaces of the cleaned Si(100), were shown to depend on the temperature of the surface during H-plasma cleaning. The electronic states for the monohydride and dihydride phases were identified by ARUPS. When the plasma cleaned surface was annealed, the phase transition from the dihydride to monohydride was observed. The monohydride Si-H surface bond was stable up to 460^circC, and the dangling bond surface states were identified after annealing at 500^circC which was accompanied by the spectral shift. The H-terminated surface were characterized to have a flat band structure. For the Ge(100) surface, an ordered 2 x 1 monohydride phase was obtained from the surface cleaned at 180 ^circC. After plasma exposure at <=170^circC a 1 x 1 surface was observed, but the ARUPS indicated that the surface was predominantly composed of disordered monohydride structures. After annealing above the H-dissociation temperatures, the shift in the spectrum was shown to occur with the dangling bond surface states. The H-terminated surfaces were identified to be unpinned. The interface structure of silicon oxide/Si(100) was studied using ARUPS. Spectral shifts were

  5. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    SciTech Connect

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; Chen, Edward H.; Nordlund, Dennis; Diaz, Rosa E.; Gaaton, Ophir; Englund, Dirk; Owen, Jonathan S.

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.

  6. Thermodynamics and surface structure of coals

    SciTech Connect

    Glass, A.S.; Larsen, J.W.; Quay, D.M.; Roberts, J.E.; Wernett, P.C.

    1991-01-01

    Our work this month has been determining the effect of added surface dysprosium(III) ions on the NMR spectra of coal. We have also been examining the effect of this relaxation agent on our model system, an aryl sulfonate silica gel. To the best of our knowledge, NMR has not previously been. applied to surface studies of coal. It is a powerful technique because line positions and intensities are indicative of geometry, bonding hybridization and population of distinct functionalities as well as local environment effects. The NMR spectrum can be influenced by many factors including dipolar through-space coupling between an unpaired electron spin and the spin of the carbon atom. The unpaired electron can act as a relaxation sink, significantly shortening the spin-lattice relaxation time (T{sub 1}) of the coupled carbon-13 atom. This shortening of the T{sub 1} can broaden the signal to the point where it disappears into the baseline noise. The effective range of interaction is proportional to the inverse sixth power of the separation of the two spins (r{sup {minus}6}). In this system, the effective range is a relatively short distance on the order of 1 nanometer.

  7. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DOE PAGES

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; ...

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed.more » Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.« less

  8. Aft outer rim seal arrangement

    SciTech Connect

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J; Campbell, Christian X

    2015-04-28

    An outer rim seal arrangement (10), including: an annular rim (70) centered about a longitudinal axis (30) of a rotor disc (31), extending fore and having a fore-end (72), an outward-facing surface (74), and an inward-facing surface (76); a lower angel wing (62) extending aft from a base of a turbine blade (22) and having an aft end (64) disposed radially inward of the rim inward-facing surface to define a lower angel wing seal gap (80); an upper angel wing (66) extending aft from the turbine blade base and having an aft end (68) disposed radially outward of the rim outward-facing surface to define a upper angel wing seal gap (80, 82); and guide vanes (100) disposed on the rim inward-facing surface in the lower angel wing seal gap. Pumping fins (102) may be disposed on the upper angel wing seal aft end in the upper angel wing seal gap.

  9. Nematic films at chemically structured surfaces

    NASA Astrophysics Data System (ADS)

    Silvestre, N. M.; Telo da Gama, M. M.; Tasinkevych, M.

    2017-02-01

    We investigate theoretically the morphology of a thin nematic film adsorbed at flat substrate patterned by stripes with alternating aligning properties, normal and tangential respectively. We construct a simple ‘exactly-solvable’ effective interfacial model where the liquid crystal distortions are accounted for via an effective interface potential. We find that chemically patterned substrates can strongly deform the nematic-air interface. The amplitude of this substrate-induced undulations increases with decreasing average film thickness and with increasing surface pattern pitch. We find a regime where the interfacial deformation may be described in terms of a material-independent universal scaling function. Surprisingly, the predictions of the effective interfacial model agree semi-quantitatively with the results of the numerical solution of a full model based on the Landau-de Gennes theory coupled to a square-gradient phase field free energy functional for a two phase system.

  10. Influence of surface structure and chemistry on water droplet splashing.

    PubMed

    Koch, Kerstin; Grichnik, Roland

    2016-08-06

    Water droplet splashing and aerosolization play a role in human hygiene and health systems as well as in crop culturing. Prevention or reduction of splashing can prevent transmission of diseases between animals and plants and keep technical systems such as pipe or bottling systems free of contamination. This study demonstrates to what extent the surface chemistry and structures influence the water droplet splashing behaviour. Smooth surfaces and structured replicas of Calathea zebrina (Sims) Lindl. leaves were produced. Modification of their wettability was done by coating with hydrophobizing and hydrophilizing agents. Their wetting was characterized by contact angle measurement and splashing behaviour was observed with a high-speed video camera. Hydrophobic and superhydrophilic surfaces generally showed fewer tendencies to splash than hydrophobic ones. Structuring amplified the underlying behaviour of the surface chemistries, increasing hydrophobic surfaces' tendency to splash and decreasing splash on hydrophilic surfaces by quickly transporting water off the impact point by capillary forces. The non-porous surface structures found in C. zebrina could easily be applied to technical products such as plastic foils or mats and coated with hydrophilizing agents to suppress splash in areas of increased hygiene requirements or wherever pooling of liquids is not desirable.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.

  11. Electronic Structure of the NaxCoO2 Surface

    NASA Astrophysics Data System (ADS)

    Pillay, D.; Johannes, M. D.; Mazin, I. I.

    2008-12-01

    The idea that surface effects may play an important role in suppressing eg' Fermi surface pockets on NaxCoO2 (0.333≤x≤0.75) has been frequently proposed to explain the discrepancy between local-density approximation calculations which find eg' hole pockets present and Angle resolved photoemission spectra (ARPES) experiments, which do not observe the hole pockets. Since ARPES is a surface sensitive technique, it is important to investigate the effects that surface formation will have on the electronic structure. We show that a combination of surface formation and contamination effects could resolve the ongoing controversy between ARPES experiments and theory.

  12. Atomic Structure of the Stoichiometric GaAs(114) Surface.

    PubMed

    Márquez; Kratzer; Geelhaar; Jacobi; Scheffler

    2001-01-01

    The stoichiometric GaAs(114) surface has been prepared using molecular beam epitaxy followed by annealing in ultrahigh vacuum. Based on in situ scanning tunneling microscopy measurements and first-principles electronic-structure calculations, we determine the surface reconstruction which we call alpha2(2x1). Contrary to what is expected for a high-index surface, it is surprisingly elementary. The (2x1) unit cell contains two As dimers and two rebonded Ga atoms. The surface energy is calculated as 53 meV/Å(2), which falls well within the range of low-index GaAs surface energies.

  13. Rapid characterization of outer-membrane proteins in Neisseria lactamica by SELDI-TOF-MS (surface-enhanced laser desorption ionization-time-of-flight MS) for use in a meningococcal vaccine.

    PubMed

    Mukhopadhyay, Tarit Kumar; Halliwell, Denise; O'Dwyer, Cliona; Shamlou, Parviz Ayazi; Levy, Myriam Susana; Allison, Nigel; Gorringe, Andrew; Reddin, Karen M

    2005-04-01

    Immunological and epidemiological evidence suggests that the development of natural immunity to meningococcal disease results from colonization of the nasopharynx by commensal Neisseria species, particularly with Neisseria lactamica. We have reported previously that immunization with N. lactamica outer-membrane vesicles containing the major OMPs (outer-membrane proteins) protected mice against lethal challenge with meningococci of diverse serogroups and serotypes and has the potential to form the basis of a vaccine against meningococcal diseases [Oliver, Reddin, Bracegirdle et al. (2002) Infect. Immun. 70, 3621-3626]. In the present study, we have shown that biomass production and the profile of outer-membrane vesicle proteins may be affected by fermentation conditions and, in particular, media composition. Ciphergen SELDI-TOF Protein Chips were used as a rapid and sensitive new method in comparison with conventional SDS/PAGE. SELDI-TOF-MS (surface-enhanced laser-desorption ionization-time-of-flight MS) reproducibly identified three major OMPs (NspA, RmpM and PorB) and detected the changes in the protein profile when the growth medium was altered. The findings of this work indicate that SELDI-TOF-MS is a useful tool for the rapid optimization of OMP production in industrial fermentation processes and can be adapted as a Process Analytical Technology.

  14. Replication of Leaf Surface Structures for Light Harvesting.

    PubMed

    Huang, Zhongjia; Yang, Sai; Zhang, Hui; Zhang, Meng; Cao, Wei

    2015-09-18

    As one of the most important hosts of natural light harvesting, foliage normally has complicated surface structures to capture solar radiances. Bio-mimicking leaf surface structures can provide novel designs of covers in photovoltaic systems. In this article, we reported on replicating leaf surface structures on poly-(methyl methacrylate) polymers to prompt harvesting efficiencies. Prepared via a double transfer process, the polymers were found to have high optical transparencies and transmission hazes, with both values exceeding 80% in some species. Benefiting from optical properties and wrinkled surfaces, the biomimetic polymers brought up to 17% gains to photovoltaic efficiencies. Through Monte-Carlo simulations of light transport, ultrahigh haze values and low reflections were attributed to lightwave guidance schemes lead by the nano- and micro-morphologies which are inherited from master leaves. Thus, leaf surface bio-mimicking can be considered as a strategic direction to design covers of light harvesting systems.

  15. Replication of Leaf Surface Structures for Light Harvesting

    PubMed Central

    Huang, Zhongjia; Yang, Sai; Zhang, Hui; Zhang, Meng; Cao, Wei

    2015-01-01

    As one of the most important hosts of natural light harvesting, foliage normally has complicated surface structures to capture solar radiances. Bio-mimicking leaf surface structures can provide novel designs of covers in photovoltaic systems. In this article, we reported on replicating leaf surface structures on poly-(methyl methacrylate) polymers to prompt harvesting efficiencies. Prepared via a double transfer process, the polymers were found to have high optical transparencies and transmission hazes, with both values exceeding 80% in some species. Benefiting from optical properties and wrinkled surfaces, the biomimetic polymers brought up to 17% gains to photovoltaic efficiencies. Through Monte-Carlo simulations of light transport, ultrahigh haze values and low reflections were attributed to lightwave guidance schemes lead by the nano- and micro-morphologies which are inherited from master leaves. Thus, leaf surface bio-mimicking can be considered as a strategic direction to design covers of light harvesting systems. PMID:26381702

  16. Surface Relaxations, Surface Energies and Electronic Structures of BaSnO3 (001) Surfaces: Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Slassi, A.; Hammi, M.; El Rhazouani, O.

    2017-02-01

    The surface relaxations, surface energies and electronic structures of BaO- and SnO2-terminated BaSnO3 (001) surfaces have been studied by employing the first-principles density functional theory. For both terminations, we find that the upper-layer Ba and Sn atoms move inward, whereas upper-layer O atoms move outward from the surface. Moreover, the largest relaxations are occurred on the first-layer atoms of both terminations. The surface rumpling of BaO-terminated BaSnO3 (001) is slightly less than that of the SnO2-terminated BaSnO3 (001) surface. The surface energies show that both terminated surfaces are energetically stable and favorable. Finally, the surface band gap is slightly decreased for the BaO termination, while it is dramatically decreased for the SnO2 termination.

  17. Chemically directing d-block heterometallics to nanocrystal surfaces as molecular beacons of surface structure

    DOE PAGES

    Rosen, Evelyn L.; Gilmore, Keith; Sawvel, April M.; ...

    2015-07-28

    Our understanding of structure and bonding in nanoscale materials is incomplete without knowledge of their surface structure. Needed are better surveying capabilities responsive not only to different atoms at the surface, but also their respective coordination environments. We report here that d-block organometallics, when placed at nanocrystal surfaces through heterometallic bonds, serve as molecular beacons broadcasting local surface structure in atomic detail. This unique ability stems from their elemental specificity and the sensitivity of their d-orbital level alignment to local coordination environment, which can be assessed spectroscopically. Re-surfacing cadmium and lead chalcogenide nanocrystals with iron- or ruthenium-based molecular beacons ismore » readily accomplished with trimethylsilylated cyclopentadienyl metal carbonyls. For PbSe nanocrystals with iron-based beacons, we show how core-level X-ray spectroscopies and DFT calculations enrich our understanding of both charge and atomic reorganization at the surface when beacons are bound.« less

  18. Chemically directing d-block heterometallics to nanocrystal surfaces as molecular beacons of surface structure

    SciTech Connect

    Rosen, Evelyn L.; Gilmore, Keith; Sawvel, April M.; Hammack, Aaron T.; Doris, Sean E.; Aloni, Shaul; Altoe, Virginia; Nordlund, Dennis; Weng, Tsu -Chien; Sokaras, Dimosthenis; Cohen, Bruce E.; Urban, Jeffrey J.; Ogletree, D. Frank; Milliron, Delia J.; Prendergast, David; Helms, Brett A.

    2015-07-28

    Our understanding of structure and bonding in nanoscale materials is incomplete without knowledge of their surface structure. Needed are better surveying capabilities responsive not only to different atoms at the surface, but also their respective coordination environments. We report here that d-block organometallics, when placed at nanocrystal surfaces through heterometallic bonds, serve as molecular beacons broadcasting local surface structure in atomic detail. This unique ability stems from their elemental specificity and the sensitivity of their d-orbital level alignment to local coordination environment, which can be assessed spectroscopically. Re-surfacing cadmium and lead chalcogenide nanocrystals with iron- or ruthenium-based molecular beacons is readily accomplished with trimethylsilylated cyclopentadienyl metal carbonyls. For PbSe nanocrystals with iron-based beacons, we show how core-level X-ray spectroscopies and DFT calculations enrich our understanding of both charge and atomic reorganization at the surface when beacons are bound.

  19. Surface structures and surface-atom vibrations determined using photoelectron diffraction

    SciTech Connect

    Wang, L.Q. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1991-07-01

    Surface structures of {radical}3 {times} {radical}3 R30{degrees} Cl/Ni(111) and c(2 {times} 2)Cl/Cu(001) were determined using low- temperature angle-resolved photoemission extended fine structure (ARPEFS), which yields both more accurate surface and near-surface structural information for deeper substrate layers. A study of surface-atom vibrations for {radical}3 {times} {radical}3 R30{degrees} Cl/Ni(111) and c(2 {times} 2)Cl/Cu(001) was made using temperature-dependent ARPEFS. A model for predicting the adsorbate vibrational anisotropy from surface structures was proposed and also successfully applied to several adsorbate systems. This model offered a simple and straightforward physical picture for understanding different types of vibrational anisotropy.

  20. Determining the surface and interface structure of nanomaterials

    SciTech Connect

    Van Hove, Michel A.

    2004-06-14

    This paper informally speculates on the challenges of determining the atomic-scale surface and interface structure of nanomaterials. The relative capabilities of different techniques are compared. This includes discussion of theoretical methods needed to interpret experimental techniques.

  1. Impact of terrain heterogeneity on near-surface turbulence structure

    NASA Astrophysics Data System (ADS)

    Fesquet, Clément; Drobinski, Philippe; Barthlott, Christian; Dubos, Thomas

    2009-10-01

    This study investigates the impact of terrain heterogeneity on local turbulence measurements using 18 months of turbulence data taken on a 30 m tower at the SIRTA mixed land-use observatory under varying stability conditions and fetch configurations. These measurements show that turbulence variables such as the turbulent kinetic energy or momentum fluxes are strongly dependent on the upstream complexity of the terrain (presence of trees or buildings, open field). However, using a detection technique based on wavelet transforms which permits the isolation of the large-scale coherent structures from small-scale background fluctuations, the study shows that, for all stability conditions, whatever the upstream complexity of the terrain, the coherent structures display universal properties which are independent of the terrain nature: the frequency of occurrence, time duration of the coherent structures, the time separation between coherent structures and the relative contribution of the coherent structures to the total fluxes (momentum and heat) appear to be independent of the upstream roughness. This is an important result since coherent structures are known to transport a large portion of the total energy. This study extends to all stability conditions a numerical study by Fesquet et al. [Fesquet, C., Dupont, S., Drobinski, P., Barthlott, C., Dubos, T., 2008. Impact of terrain heterogeneities on coherent structures properties: experimental and numerical approaches. In: 18th Symposium on Boundary Layers and Turbulence. No. 11B.1. Stockholm, Sweden., Fesquet, C., Dupont, S., Drobinski, P., Dubos, T., Barthlott, C., in press. Impact of terrain heterogeneity on coherent structure properties: numerical approach. Bound.-Layer Meteorol.] conducted in neutral conditions which shows that a reason for such behavior is that the production of local active turbulence in an internal boundary layer associated with coherent structure originating from the outer layer and impinging

  2. Structural and electronic properties of a tetrahedral amorphous carbon surface

    NASA Astrophysics Data System (ADS)

    Dong, Jianjun; Drabold, D. A.

    1997-03-01

    We present ab initio studies of a mo