Sample records for outer wall layer

  1. Turbine airfoil with a compliant outer wall

    DOEpatents

    Campbell, Christian X [Oviedo, FL; Morrison, Jay A [Oviedo, FL

    2012-04-03

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation in the outer layer is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a support structure. The outer layer may be a compliant layer configured such that the outer layer may thermally expand and thereby reduce the stress within the outer layer. The outer layer may be formed from a nonplanar surface configured to thermally expand. In another embodiment, the outer layer may be planar and include a plurality of slots enabling unrestricted thermal expansion in a direction aligned with the outer layer.

  2. Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure

    DOEpatents

    Campbell,; Christian X. , Morrison; Jay, A [Oviedo, FL

    2011-12-20

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a compliant structure. The compliant structure may be configured such that the outer layer may thermally expand without limitation by the inner layer. The compliant structure may be formed from a plurality of pedestals positioned generally parallel with each other. The pedestals may include a first foot attached to a first end of the pedestal and extending in a first direction aligned with the outer layer, and may include a second foot attached to a second end of the pedestal and extending in a second direction aligned with the inner layer.

  3. Endomembrane proteomics reveals putative enzymes involved in cell wall metabolism in wheat grain outer layers

    PubMed Central

    Chateigner-Boutin, Anne-Laure; Suliman, Muhtadi; Bouchet, Brigitte; Alvarado, Camille; Lollier, Virginie; Rogniaux, Hélène; Guillon, Fabienne; Larré, Colette

    2015-01-01

    Cereal grain outer layers fulfil essential functions for the developing seed such as supplying energy and providing protection. In the food industry, the grain outer layers called ‘the bran’ is valuable since it is rich in dietary fibre and other beneficial nutriments. The outer layers comprise several tissues with a high content in cell wall material. The cell wall composition of the grain peripheral tissues was investigated with specific probes at a stage of active cell wall synthesis. Considerable wall diversity between cell types was revealed. To identify the cellular machinery involved in cell wall synthesis, a subcellular proteomic approach was used targeting the Golgi apparatus where most cell wall polysaccharides are synthesized. The tissues were dissected into outer pericarp and intermediate layers where 822 and 1304 proteins were identified respectively. Many carbohydrate-active enzymes were revealed: some in the two peripheral grain fractions, others only in one tissue. Several protein families specific to one fraction and with characterized homologs in other species might be related to the specific detection of a polysaccharide in a particular cell layer. This report provides new information on grain cell walls and its biosynthesis in the valuable outer tissues, which are poorly studied so far. A better understanding of the mechanisms controlling cell wall composition could help to improve several quality traits of cereal products (e.g. dietary fibre content, biomass conversion to biofuel). PMID:25769308

  4. Theory of nanotube faraday cage

    NASA Astrophysics Data System (ADS)

    Roxana Margine, Elena; Nisoli, Cristiano; Kolmogorov, Aleksey; Crespi, Vincent H.

    2003-03-01

    Charge transfer between dopants and double-wall carbon nanotubes is examined theoretically. We model the system as a triple cylindrical capacitor with the dopants forming a shell around the outer wall of the nanotube. The total energy of the system contains three terms: the band structure energies of the inner and outer tube, calculated in a tight-binding model with rigid bands, and the electrostatic energy of the tri-layer distribution. Even for metallic inner and outer tube walls, wherein the diameter dependence of the bandgap does not favor the outer wall, nearly all of the dopant charge resides on the outer layer, a nanometer-scale Faraday cage. The calculated charge distribution is in agreement with recent experimental measurements.

  5. Inner-outer interactions in a turbulent boundary layer overlying complex roughness

    NASA Astrophysics Data System (ADS)

    Pathikonda, Gokul; Christensen, Kenneth T.

    2017-04-01

    Hot-wire measurements were performed in a zero-pressure-gradient turbulent boundary layer overlying both a smooth and a rough wall for the purpose of investigating the details of inner-outer flow interactions. The roughness considered embodies a broad range of topographical scales arranged in an irregular manner and reflects the topographical complexity often encountered in practical flow systems. Single-probe point-wise measurements with a traversing probe were made at two different regions of the rough-wall flow, which was previously shown to be heterogeneous in the spanwise direction, to investigate the distribution of streamwise turbulent kinetic energy and large scale-small scale interactions. In addition, two-probe simultaneous measurements were conducted enabling investigation of inner-outer interactions, wherein the large scales were independently sampled in the outer layer. Roughness-induced changes to the near-wall behavior were investigated, particularly by contrasting the amplitude and frequency modulation effects of inner-outer interactions in the rough-wall flow with well-established smooth-wall flow phenomena. It was observed that the rough-wall flow exhibits both amplitude and frequency modulation features close to the wall in a manner very similar to smooth-wall flow, though the correlated nature of these effects was found to be more intense in the rough-wall flow. In particular, frequency modulation was found to illuminate these enhanced modulation effects in the rough-wall flow. The two-probe measurements helped in evaluating the suitability of the interaction-schematic recently proposed by Baars et al., Exp. Fluids 56, 1 (2015), 10.1007/s00348-014-1876-4 for rough-wall flows. This model was found to be suitable for the rough-wall flow considered herein, and it was found that frequency modulation is a "cleaner" measure of the inner-outer modulation interactions for this rough-wall flow.

  6. Superficial Macromolecular Arrays on the Cell Wall of Spirillum putridiconchylium

    PubMed Central

    Beveridge, T. J.; Murray, R. G. E.

    1974-01-01

    Electron microscopy of the cell envelope of Spirillum putridiconchylium, using negatively stained, thin-sectioned, and replicated freeze-etched preparations, showed two superficial wall layers forming a complex macromolecular pattern on the external surface. The outer structured layer was a linear array of particles overlying an inner tetragonal array of larger subunits. They were associated in a very regular fashion, and the complex was bonded to the outer, pitted surface of the lipopolysaccharide tripartite layer of the cell wall. The relationship of the components of the two structured layers was resolved with the aid of optical diffraction, combined with image filtering and reconstruction and linear and rotary integration techniques. The outer structural layer consisted of spherical 1.5-nm units set in double lines determined by the size and arrangement of 6- by 3-nm inner structural layer subunits, which bore one outer structural layer unit on each outer corner. The total effect of this arrangement was a double-ridged linear structure that was evident in surface replicas and negatively stained fragments of the whole wall. The packing of these units was not square but skewed by 2° off the perpendicular so that the “unit array” described by optical diffraction and linear integration appeared to be a deformed tetragon. The verity of the model was checked by using a photographically reduced image to produce an optical diffraction pattern for comparison with that of the actual layers. The correspondence was nearly perfect. Images PMID:4137219

  7. Numerical simulations of the stratified oceanic bottom boundary layer

    NASA Astrophysics Data System (ADS)

    Taylor, John R.

    Numerical simulations are used to consider several problems relevant to the turbulent oceanic bottom boundary layer. In the first study, stratified open channel flow is considered with thermal boundary conditions chosen to approximate a shallow sea. Specifically, a constant heat flux is applied at the free surface and the lower wall is assumed to be adiabatic. When the surface heat flux is strong, turbulent upwellings of low speed fluid from near the lower wall are inhibited by the stable stratification. Subsequent studies consider a stratified bottom Ekman layer over a non-sloping lower wall. The influence of the free surface is removed by using an open boundary condition at the top of the computational domain. Particular attention is paid to the influence of the outer layer stratification on the boundary layer structure. When the density field is initialized with a linear profile, a turbulent mixed layer forms near the wall, which is separated from the outer layer by a strongly stable pycnocline. It is found that the bottom stress is not strongly affected by the outer layer stratification. However, stratification reduces turbulent transport to the outer layer and strongly limits the boundary layer height. The mean shear at the top of the boundary layer is enhanced when the outer layer is stratified, and this shear is strong enough to cause intermittent instabilities above the pycnocline. Turbulence-generated internal gravity waves are observed in the outer layer with a relatively narrow frequency range. An explanation for frequency content of these waves is proposed, starting with an observed broad-banded turbulent spectrum and invoking linear viscous decay to explain the preferential damping of low and high frequency waves. During the course of this work, an open-source computational fluid dynamics code has been developed with a number of advanced features including scalar advection, subgrid-scale models for large-eddy simulation, and distributed memory parallelism.

  8. Measuring the Density of States of the Inner and Outer Wall of Double-Walled Carbon Nanotubes.

    PubMed

    Chambers, Benjamin A; Shearer, Cameron J; Yu, LePing; Gibson, Christopher T; Andersson, Gunther G

    2018-06-19

    The combination of ultraviolet photoelectron spectroscopy and metastable helium induced electron spectroscopy is used to determine the density of states of the inner and outer coaxial carbon nanotubes. Ultraviolet photoelectron spectroscopy typically measures the density of states across the entire carbon nanotube, while metastable helium induced electron spectroscopy measures the density of states of the outermost layer alone. The use of double-walled carbon nanotubes in electronic devices allows for the outer wall to be functionalised whilst the inner wall remains defect free and the density of states is kept intact for electron transport. Separating the information of the inner and outer walls enables development of double-walled carbon nanotubes to be independent, such that the charge transport of the inner wall is maintained and confirmed whilst the outer wall is modified for functional purposes.

  9. Wall turbulence control

    NASA Technical Reports Server (NTRS)

    Wilkinson, Stephen P.; Lindemann, A. Margrethe; Beeler, George B.; Mcginley, Catherine B.; Goodman, Wesley L.; Balasubramanian, R.

    1986-01-01

    A variety of wall turbulence control devices which were experimentally investigated are discussed; these include devices for burst control, alteration of outer flow structures, large eddy substitution, increased heat transfer efficiency, and reduction of wall pressure fluctuations. Control of pre-burst flow was demonstrated with a single, traveling surface depression which is phase-locked to elements of the burst production process. Another approach to wall turbulence control is to interfere with the outer layer coherent structures. A device in the outer part of a boundary layer was shown to suppress turbulence and reduce drag by opposing both the mean and unsteady vorticity in the boundary layer. Large eddy substitution is a method in which streamline curvature is introduced into the boundary layer in the form of streamwise vortices. Riblets, which were already shown to reduce turbulent drag, were also shown to exhibit superior heat transfer characteristics. Heat transfer efficiency as measured by the Reynolds Analogy Factor was shown to be as much as 36 percent greater than a smooth flat plate in a turbulent boundary layer. Large Eddy Break-Up (LEBU) which are also known to reduce turbulent drag were shown to reduce turbulent wall pressure fluctuation.

  10. Compound Walls For Vacuum Chambers

    NASA Technical Reports Server (NTRS)

    Frazer, Robert E.

    1988-01-01

    Proposed compound-wall configuration enables construction of large high-vacuum chambers without having to use thick layers of expensive material to obtain necessary strength. Walls enclose chambers more than 1 m in diameter and several kilometers long. Compound wall made of strong outer layer of structural-steel culvert pipe welded to thin layer of high-quality, low-outgassing stainless steel.

  11. Explosion containment device

    DOEpatents

    Benedick, William B.; Daniel, Charles J.

    1977-01-01

    The disclosure relates to an explosives storage container for absorbing and containing the blast, fragments and detonation products from a possible detonation of a contained explosive. The container comprises a layer of distended material having sufficient thickness to convert a portion of the kinetic energy of the explosion into thermal energy therein. A continuous wall of steel sufficiently thick to absorb most of the remaining kinetic energy by stretching and expanding, thereby reducing the momentum of detonation products and high velocity fragments, surrounds the layer of distended material. A crushable layer surrounds the continuous steel wall and accommodates the stretching and expanding thereof, transmitting a moderate load to the outer enclosure. These layers reduce the forces of the explosion and the momentum of the products thereof to zero. The outer enclosure comprises a continuous pressure wall enclosing all of the layers. In one embodiment, detonation of the contained explosive causes the outer enclosure to expand which indicates to a visual observer that a detonation has occurred.

  12. Wall-layer eruptions in turbulent flows

    NASA Technical Reports Server (NTRS)

    Walker, J. D. A.

    1989-01-01

    The near-wall region of a turbulent flow is investigated in the limit of large Reynolds numbers. When low-speed streaks are present, the governing equations are shown to be of the boundary-layer type. Physical processes leading to local breakdown and a strong interaction with the outer region are considered. It is argued that convected vortices, predominantly of the hairpin type, will provoke eruptions and regenerative interactions with the outer region.

  13. Turbulent transport of heat and momentum in a boundary layer subject to deceleration, suction and variable wall temperature

    NASA Technical Reports Server (NTRS)

    Orlando, A. F.; Moffat, R. J.; Kays, W. M.

    1974-01-01

    The relationship between the turbulent transport of heat and momentum in an adverse pressure gradient boundary layer was studied. An experimental study was conducted of turbulent boundary layers subject to strong adverse pressure gradients with suction. Near-equilibrium flows were attained, evidenced by outer-region similarity in terms of defect temperature and defect velocity profiles. The relationship between Stanton number and enthalpy thickness was shown to be the same as for a flat plate flow both for constant wall temperature boundary conditions and for steps in wall temperature. The superposition principle used with the step-wall-temperature experimental result was shown to accurately predict the Stanton number variation for two cases of arbitrarily varying wall temperature. The Reynolds stress tensor components were measured for strong adverse pressure gradient conditions and different suction rates. Two peaks of turbulence intensity were found: one in the inner and one in the outer regions. The outer peak is shown to be displaced outward by an adverse pressure gradient and suppressed by suction.

  14. A New View on Origin, Role and Manipulation of Large Scales in Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Nagib, H. M.; Guezennec, Y. G.

    1982-01-01

    The potential of passive 'manipulators' for altering the large scale turbulent structures in boundary layers was investigated. Utilizing smoke wire visualization and multisensor probes, the experiment verified that the outer scales could be suppressed by simple arrangements of parallel plates. As a result of suppressing the outer scales in turbulent layers, a decrease in the streamwise growth of the boundary layer thickness was achieved and was coupled with a 30 percent decrease in the local wall friction coefficient. After accounting for the drag on the manipulator plates, the net drag reduction reached a value of 20 percent within 55 boundary layer thicknesses downstream of the device. No evidence for the reoccurrence of the outer scales was present at this streamwise distance thereby suggesting that further reductions in the net drag are attainable. The frequency of occurrence of the wall events is simultaneously dependent on the two parameters, Re2 delta sub 2 and Re sub x. As a result of being able to independently control the inner and outer boundary layer characteristics with these manipulators, a different view of these layers emerged.

  15. Inner-outer predictive wall model for wall-bounded turbulence in hypersonic flow

    NASA Astrophysics Data System (ADS)

    Martin, M. Pino; Helm, Clara M.

    2017-11-01

    The inner-outer predictive wall model of Mathis et al. is modified for hypersonic turbulent boundary layers. The model is based on a modulation of the energized motions in the inner layer by large scale momentum fluctuations in the logarithmic layer. Using direct numerical simulation (DNS) data of turbulent boundary layers with free stream Mach number 3 to 10, it is shown that the variation of the fluid properties in the compressible flows leads to large Reynolds number (Re) effects in the outer layer and facilitate the modulation observed in high Re incompressible flows. The modulation effect by the large scale increases with increasing free-stream Mach number. The model is extended to include spanwise and wall-normal velocity fluctuations and is generalized through Morkovin scaling. Temperature fluctuations are modeled using an appropriate Reynolds Analogy. Density fluctuations are calculated using an equation of state and a scaling with Mach number. DNS data are used to obtain the universal signal and parameters. The model is tested by using the universal signal to reproduce the flow conditions of Mach 3 and Mach 7 turbulent boundary layer DNS data and comparing turbulence statistics between the modeled flow and the DNS data. This work is supported by the Air Force Office of Scientific Research under Grant FA9550-17-1-0104.

  16. Expansible apparatus for removing the surface layer from a concrete object

    DOEpatents

    Allen, Charles H.

    1979-01-01

    A method and apparatus for removing the surface layer from a concrete object. The method consists of providing a hole having a circular wall in the surface layer of the object, the hole being at least as deep as the thickness of the surface layer to be removed, and applying an outward wedging pressure on the wall of the hole sufficient to spall the surface layer around the hole. By the proper spacing of an appropriate number of holes, it is possible to remove the entire surface layer from an object. The apparatus consists of an elongated tubular-shaped body having a relatively short handle with a solid wall at one end, the wall of the remainder of the body containing a plurality of evenly spaced longitudinal cuts to form a relatively long expandable section, the outer end of the expandable section having an expandable, wedge-shaped spalling edge extending from the outer surface of the wall, perpendicular to the longitudinal axis of the body, and expanding means in the body for outwardly expanding the expandable section and forcing the spalling edge into the wall of a hole with sufficient outward pressure to spall away the surface layer of concrete. The method and apparatus are particularly suitable for removing surface layers of concrete which are radioactively contaminated.

  17. Extremely high wall-shear stress events in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Pan, Chong; Kwon, Yongseok

    2018-04-01

    The present work studies the fluctuating characteristics of the streamwise wall-shear stress in a DNS of a turbulent boundary layer at Re τ =1500 from a structural view. The two-dimensional field of the fluctuating friction velocity u‧ τ (x,z) is decomposed into the large- and small-scale components via a recently proposed scale separation algorithm, Quasi-bivariate Variational Mode Decomposition (QB-VMD). Both components are found to be dominated by streak-like structures, which can be regarded as the wall signature of the inner-layer streaks and the outer-layer LSMs, respectively. Extreme positive/negative wall-shear stress fluctuation events are detected in the large-scale component. The former’s occurrence frequency is nearly one order of magnitude higher than the latter; therefore, they contribute a significant portion of the long tail of the wall-shear stress distribution. Both two-point correlations and conditional averages show that these extreme positive wall-shear stress events are embedded in the large-scale positive u‧ τ streaks. They seem to be formed by near-wall ‘splatting’ process, which are related to strong finger-like sweeping (Q4) events originated from the outer-layer positive LSMs.

  18. The structure of a three-dimensional turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Degani, A. T.; Smith, F. T.; Walker, J. D. A.

    1993-01-01

    The three-dimensional turbulent boundary layer is shown to have a self-consistent two-layer asymptotic structure in the limit of large Reynolds number. In a streamline coordinate system, the streamwise velocity distribution is similar to that in two-dimensional flows, having a defect-function form in the outer layer which is adjusted to zero at the wall through an inner wall layer. An asymptotic expansion accurate to two orders is required for the cross-stream velocity which is shown to exhibit a logarithmic form in the overlap region. The inner wall-layer flow is collateral to leading order but the influence of the pressure gradient, at large but finite Reynolds numbers, is not negligible and can cause substantial skewing of the velocity profile near the wall. Conditions under which the boundary layer achieves self-similarity and the governing set of ordinary differential equations for the outer layer are derived. The calculated solution of these equations is matched asymptotically to an inner wall-layer solution and the composite profiles so formed describe the flow throughout the entire boundary layer. The effects of Reynolds number and cross-stream pressure gradient on the crossstream velocity profile are discussed and it is shown that the location of the maximum cross-stream velocity is within the overlap region.

  19. Role of Lipid Metabolism in Plant Pollen Exine Development.

    PubMed

    Zhang, Dabing; Shi, Jianxin; Yang, Xijia

    2016-01-01

    Pollen plays important roles in the life cycle of angiosperms plants. It acts as not only a biological protector of male sperms but also a communicator between the male and the female reproductive organs, facilitating pollination and fertilization. Pollen is produced within the anther, and covered by the specialized outer envelope, pollen wall. Although the morphology of pollen varies among different plant species, the pollen wall is mainly comprised of three layers: the pollen coat, the outer exine layer, and the inner intine layer. Except the intine layer, the other two layers are basically of lipidic nature. Particularly, the outer pollen wall layer, the exine, is a highly resistant biopolymer of phenylpropanoid and lipidic monomers covalently coupled by ether and ester linkages. The precise molecular mechanisms underlying pollen coat formation and exine patterning remain largely elusive. Herein, we summarize the current genetic, phenotypic and biochemical studies regarding to the pollen exine development and underlying molecular regulatory mechanisms mainly obtained from monocot rice (Oryza sativa) and dicot Arabidopsis thaliana, aiming to extend our understandings of plant male reproductive biology. Genes, enzymes/proteins and regulatory factors that appear to play conserved and diversified roles in lipid biosynthesis, transportation and modification during pollen exine formation, were highlighted.

  20. Outer-layer manipulators for turbulent drag reduction

    NASA Technical Reports Server (NTRS)

    Anders, J. B., Jr.

    1990-01-01

    The last ten years have yielded intriguing research results on aerodynamic boundary outer-layer manipulators as local skin friction reduction devices at low Reynolds numbers; net drag reduction device systems for entire aerodynamic configurations are nevertheless noted to remain elusive. Evidence has emerged for dramatic alterations of the structure of a turbulent boundary layer which persist for long distances downstream and reduce wall shear as a results of any one of several theoretically possible mechanisms. Reduced effectiveness at high Reynolds numbers may, however, limit the applicability of outer-layer manipulators to practical aircraft drag reduction.

  1. ELECTRON MICROSCOPE STUDY OF MYCOBACTERIUM LEPRAE AND ITS ENVIRONMENT IN A VESICULAR LEPROUS LESION

    PubMed Central

    Imaeda, Tamotsu; Convit, Jacinto

    1962-01-01

    Imaeda, Tamotsu (Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela) and Jacinto Convit. Electron microscope study of Mycobacterium leprae and its environment in a vesicular leprous lesion. J. Bacteriol. 83:43–52. 1962.—Biopsied specimens of a borderline leprosy lesion were observed with the electron microscope. In this lesion, the majority of Mycobacterium leprae were laden with cytoplasmic components. The bacilli were separated from the cytoplasm of host cells by an enclosing membrane, thus differing from the environment of well-developed lepra cells in lepromatous lesions. The cell wall is composed of a moderately dense layer. A diffuse layer is discernible outside the cell wall, separated from it by a low density space. It is suggested that the cell wall is further coated by a low density layer, although the nature of the outermost diffuse layer has not yet been determined. The plasma membrane consists of a double layer, i.e., dense inner and outer layers separated by a low density space. The outer layer is closely adjacent to the cell wall. In the region where the outer layer of the plasma membrane enters the cytoplasm and is transformed into a complex membranous structure, the inner layer encloses this membranous configuration. Together they form the intracytoplasmic membrane system. In the bacterial cytoplasm, moderately dense, presumably polyphosphate bodies are apparent. As neither these bodies nor the intracytoplasmic membrane system are visible in the degenerating bacilli, it seems probable that these two components represent indicators of the state of bacillary activity. Images PMID:16561926

  2. Large scale structures in a turbulent boundary layer and their imprint on wall shear stress

    NASA Astrophysics Data System (ADS)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2015-11-01

    Experiments were performed on a turbulent boundary layer developing on a flat plate model under zero pressure gradient flow. A MEMS differential capacitive shear stress sensor with a 1 mm × 1 mm floating element was used to capture the fluctuating wall shear stress simultaneously with streamwise velocity measurements from a hot-wire anemometer traversed in the wall normal direction. Near the wall, the peak in the cross correlation corresponds to an organized motion inclined 45° from the wall. In the outer region, the peak diminishes in value, but is still significant at a distance greater than half the boundary layer thickness, and corresponds to a structure inclined 14° from the wall. High coherence between the two signals was found for the low-frequency content, reinforcing the belief that large scale structures have a vital impact on wall shear stress. Thus, estimation of the wall shear stress from the low-frequency velocity signal will be performed, and is expected to be statistically significant in the outer boundary layer. Additionally, conditionally averaged mean velocity profiles will be presented to assess the effects of high and low shear stress. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  3. Lumley decomposition of turbulent boundary layer at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Tutkun, Murat; George, William K.

    2017-02-01

    The decomposition proposed by Lumley in 1966 is applied to a high Reynolds number turbulent boundary layer. The experimental database was created by a hot-wire rake of 143 probes in the Laboratoire de Mécanique de Lille wind tunnel. The Reynolds numbers based on momentum thickness (Reθ) are 9800 and 19 100. Three-dimensional decomposition is performed, namely, proper orthogonal decomposition (POD) in the inhomogeneous and bounded wall-normal direction, Fourier decomposition in the homogeneous spanwise direction, and Fourier decomposition in time. The first POD modes in both cases carry nearly 50% of turbulence kinetic energy when the energy is integrated over Fourier dimensions. The eigenspectra always peak near zero frequency and most of the large scale, energy carrying features are found at the low end of the spectra. The spanwise Fourier mode which has the largest amount of energy is the first spanwise mode and its symmetrical pair. Pre-multiplied eigenspectra have only one distinct peak and it matches the secondary peak observed in the log-layer of pre-multiplied velocity spectra. Energy carrying modes obtained from the POD scale with outer scaling parameters. Full or partial reconstruction of turbulent velocity signal based only on energetic modes or non-energetic modes revealed the behaviour of urms in distinct regions across the boundary layer. When urms is based on energetic reconstruction, there exists (a) an exponential decay from near wall to log-layer, (b) a constant layer through the log-layer, and (c) another exponential decay in the outer region. The non-energetic reconstruction reveals that urms has (a) an exponential decay from the near-wall to the end of log-layer and (b) a constant layer in the outer region. Scaling of urms using the outer parameters is best when both energetic and non-energetic profiles are combined.

  4. Hairpin vortices in the outer and near wall regions of the canonical turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Wallace, James; Wu, Xiaohua; Moin, Parviz

    2016-11-01

    While the dominance of hairpin vortices and their significance for transport processes in the transitional and early turbulent regions of the canonical turbulent boundary layer has been widely accepted, opinion is divided about the developed flow downstream. Here we investigate the representative vortical structures in the outer and near wall regions for the momentum thickness Reynolds number, Reθ , of up to 3000 using the DNS database described in. This boundary layer grows spatially from a laminar state at Reθ = 80 beneath a freestream of continuous and nearly isotropic turbulence decaying from an intensity of 3 to 0.8%. The vortical structures are visualized with the swirling strength, λci. In the outer region hairpin vortices appear and are advected over distances corresponding to about 300 - 400 in Reθ within the fully turbulent region, demonstrating that they are not remnants of transitional structures. The near wall vortical structures are more difficult to visualize and require careful tuning of the swirling strength and making invisible the flow above the near wall region of the flow. The hairpins in this region occur in intermittent clusters that have features remarkably similar to transitional turbulent spots.

  5. Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exhibit bilaminate structures and sloughing of extensive and intact layers

    PubMed Central

    Walker, Louise A.; Niño-Vega, Gustavo; Mora-Montes, Héctor M.; Neves, Gabriela W. P.; Villalobos-Duno, Hector; Barreto, Laura; Garcia, Karina; Franco, Bernardo; Martínez-Álvarez, José A.; Munro, Carol A.; Gow, Neil A. R.

    2018-01-01

    Sporotrichosis is a subcutaneous mycosis caused by pathogenic species of the Sporothrix genus. A new emerging species, Sporothrix brasiliensis, is related to cat-transmitted sporotrichosis and has severe clinical manifestations. The cell wall of pathogenic fungi is a unique structure and impacts directly on the host immune response. We reveal and compare the cell wall structures of Sporothrix schenckii and S. brasiliensis using high-pressure freezing electron microscopy to study the cell wall organization of both species. To analyze the components of the cell wall, we also used infrared and 13C and 1H NMR spectroscopy and the sugar composition was determined by quantitative high-performance anion-exchange chromatography. Our ultrastructural data revealed a bi-layered cell wall structure for both species, including an external microfibrillar layer and an inner electron-dense layer. The inner and outer layers of the S. brasiliensis cell wall were thicker than those of S. schenckii, correlating with an increase in the chitin and rhamnose contents. Moreover, the outer microfibrillar layer of the S. brasiliensis cell wall had longer microfibrils interconnecting yeast cells. Distinct from those of other dimorphic fungi, the cell wall of Sporothrix spp. lacked α-glucan component. Interestingly, glycogen α-particles were identified in the cytoplasm close to the cell wall and the plasma membrane. The cell wall structure as well as the presence of glycogen α-particles varied over time during cell culture. The structural differences observed in the cell wall of these Sporothrix species seemed to impact its uptake by monocyte-derived human macrophages. The data presented here show a unique cell wall structure of S. brasiliensis and S. schenckii during the yeast parasitic phase. A new cell wall model for Sporothrix spp. is therefore proposed that suggests that these fungi molt sheets of intact cell wall layers. This observation may have significant effects on localized and disseminated immunopathology. PMID:29522522

  6. Built-up outer wall and roofing sections for double walled envelope homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodhead, B.

    1980-01-01

    A site built system that uses the inner envelope wall is described. Blocking and vertical nailers are attached to this wall and sheathed with foil faced drywall to create the envelope cavity. An outer layer of 3 1/2 in. of Expended Poly Styrene provides continuous solid insulation. The trusses are also sheathed in foil faced drywall and insulated with 5 1/2 in. of E.P.S. This effectively surrounds the building with a continuous vapor and infiltration barrier. Construction details as well as cost breakdowns are presented.

  7. Ultrastructural studies on the boundary tissue of the seminiferous tubules of different mammals.

    PubMed

    Cieciura, L; Jaszczuk-Jarosz, B; Pietrzkowska, K

    1988-01-01

    The aims of our studies were to compare the ultrastructure of the boundary tissue of seminiferous tubules of various mammals (rat, mouse, hamster, guinea pig, rabbit, ram, bull and man). Visual analysis of electron micrographs revealed the similarity of structure of all layers at investigated animals. The boundary tissue consists of 4 layers: 1) amorphous inner lamina, 2) cellular inner lamina, 3) amorphous outer lamina, 4) cellular outer lamina. The outer lamina of boundary tissue of rat, mouse and hamster revealed in histochemical reactions meshes resembling honey-combs. The wall of seminiferous canalicules of bull and ram consists of more bigger and different structure than one at the other laboratory animals. The most different structure of boundary tissue in man was observed. The capillary vessels penetrate in the myofibroblastic layer, when comparted to that found in other mammals on the surface of the wall.

  8. Developmental origin of the posterior pigmented epithelium of iris.

    PubMed

    Wang, Xiaobing; Xiong, Kai; Lu, Lei; Gu, Dandan; Wang, Songtao; Chen, Jing; Xiao, Honglei; Zhou, Guomin

    2015-03-01

    Iris epithelium is a double-layered pigmented cuboidal epithelium. According to the current model, the neural retina and the posterior iris pigment epithelium (IPE) are derived from the inner wall of the optic cup, while the retinal pigment epithelium (RPE) and the anterior IPE are derived from the outer wall of the optic cup during development. Our current study shows evidence, contradicting this model of fetal iris development. We demonstrate that human fetal iris expression patterns of Otx2 and Mitf transcription factors are similar, while the expressions of Otx2 and Sox2 are complementary. Furthermore, IPE and RPE exhibit identical morphologic development during the early embryonic period. Our results suggest that the outer layer of the optic cup forms two layers of the iris epithelium, and the posterior IPE is the inward-curling anterior rim of the outer layer of the optic cup. These findings provide a reasonable explanation of how IPE cells can be used as an appropriate substitute for RPE cells.

  9. The rotation of cellulose synthase trajectories is microtubule dependent and influences the texture of epidermal cell walls in Arabidopsis hypocotyls.

    PubMed

    Chan, Jordi; Crowell, Elizabeth; Eder, Magdalena; Calder, Grant; Bunnewell, Susan; Findlay, Kim; Vernhettes, Samantha; Höfte, Herman; Lloyd, Clive

    2010-10-15

    Plant shoots have thick, polylamellate outer epidermal walls based on crossed layers of cellulose microfibrils, but the involvement of microtubules in such wall lamellation is unclear. Recently, using a long-term movie system in which Arabidopsis seedlings were grown in a biochamber, the tracks along which cortical microtubules move were shown to undergo slow rotary movements over the outer surface of hypocotyl epidermal cells. Because microtubules are known to guide cellulose synthases over the short term, we hypothesised that this previously unsuspected microtubule rotation could, over the longer term, help explain the cross-ply structure of the outer epidermal wall. Here, we test that hypothesis using Arabidopsis plants expressing the cellulose synthase GFP-CESA3 and show that cellulose synthase trajectories do rotate over several hours. Neither microtubule-stabilising taxol nor microtubule-depolymerising oryzalin affected the linear rate of GFP-CESA3 movement, but both stopped the rotation of cellulose synthase tracks. Transmission electron microscopy revealed that drug-induced suppression of rotation alters the lamellation pattern, resulting in a thick monotonous wall layer. We conclude that microtubule rotation, rather than any hypothetical mechanism for wall self-assembly, has an essential role in developing cross-ply wall texture.

  10. Near wall turbulence: An experimental view

    NASA Astrophysics Data System (ADS)

    Stanislas, Michel

    2017-10-01

    The present paper draws upon the experience of the author to illustrate the potential of advanced optical metrology for understanding near-wall-turbulence physics. First the canonical flat plate boundary layer problem is addressed, initially very near to the wall and then in the outer region when the Reynolds number is high enough to generate an outer turbulence peak. The coherent structure organization is examined in detail with the help of stereoscopic particle image velocimetry (PIV). Then the case of a turbulent boundary layer subjected to a mild adverse pressure gradient is considered. The results obtained show the great potential of a joint experimental-numerical approach. The conclusion is that the insight provided by today's optical metrology opens the way for significant improvements in turbulence modeling in upcoming years.

  11. Embedded function methods for supersonic turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    He, J.; Kazakia, J. Y.; Walker, J. D. A.

    1990-01-01

    The development of embedded functions to represent the mean velocity and total enthalpy distributions in the wall layer of a supersonic turbulent boundary layer is considered. The asymptotic scaling laws (in the limit of large Reynolds number) for high speed compressible flows are obtained to facilitate eventual implementation of the embedded functions in a general prediction method. A self-consistent asymptotic structure is derived, as well as a compressible law of the wall in which the velocity and total enthalpy are logarithmic within the overlap zone, but in the Howarth-Dorodnitsyn variable. Simple outer region turbulence models are proposed (some of which are modifications of existing incompressible models) to reflect the effects of compressibility. As a test of the methodology and the new turbulence models, a set of self-similar outer region profiles is obtained for constant pressure flow; these are then coupled with embedded functions in the wall layer. The composite profiles thus obtained are compared directly with experimental data and good agreement is obtained for flows with Mach numbers up to 10.

  12. Correlation between the outer flow and the turbulent production in a boundary layer

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.; Sandborn, V. A.

    1975-01-01

    Space-time velocity correlation measurements between fluctuations occurring in the convoluting outer edge of a flat boundary layer with fluctuations occurring near the viscous subregion were made. The correlations indicate that information is propagated from the outer region to the inner region. The migration of turbulence away from the wall was previously studied in the open literature. The results presented here along with the migration results lend support to the limit cycle model for turbulence production.

  13. Apparent resistivity for transient electromagnetic induction logging and its correction in radial layer identification

    NASA Astrophysics Data System (ADS)

    Meng, Qingxin; Hu, Xiangyun; Pan, Heping; Xi, Yufei

    2018-04-01

    We propose an algorithm for calculating all-time apparent resistivity from transient electromagnetic induction logging. The algorithm is based on the whole-space transient electric field expression of the uniform model and Halley's optimisation. In trial calculations for uniform models, the all-time algorithm is shown to have high accuracy. We use the finite-difference time-domain method to simulate the transient electromagnetic field in radial two-layer models without wall rock and convert the simulation results to apparent resistivity using the all-time algorithm. The time-varying apparent resistivity reflects the radially layered geoelectrical structure of the models and the apparent resistivity of the earliest time channel follows the true resistivity of the inner layer; however, the apparent resistivity at larger times reflects the comprehensive electrical characteristics of the inner and outer layers. To accurately identify the outer layer resistivity based on the series relationship model of the layered resistance, the apparent resistivity and diffusion depth of the different time channels are approximately replaced by related model parameters; that is, we propose an apparent resistivity correction algorithm. By correcting the time-varying apparent resistivity of radial two-layer models, we show that the correction results reflect the radially layered electrical structure and the corrected resistivities of the larger time channels follow the outer layer resistivity. The transient electromagnetic fields of radially layered models with wall rock are simulated to obtain the 2D time-varying profiles of the apparent resistivity and corrections. The results suggest that the time-varying apparent resistivity and correction results reflect the vertical and radial geoelectrical structures. For models with small wall-rock effect, the correction removes the effect of the low-resistance inner layer on the apparent resistivity of the larger time channels.

  14. An Experimental Study of a Separated/Reattached Flow Behind a Backward-Facing Step. Re(sub h) = 37,000

    NASA Technical Reports Server (NTRS)

    Jovic, Srba

    1996-01-01

    An experimental study was carried out to investigate turbulent structure of a two-dimensional incompressible separating/reattaching boundary layer behind a backward-facing step. Hot-wire measurement technique was used to measure three Reynolds stresses and higher-order mean products of velocity fluctuations. The Reynolds number, Re(sub h), based on the step height, h, and the reference velocity, U(sub 0), was 37,000. The upstream oncoming flow was fully developed turbulent boundary layer with the Re(sub theta) = 3600. All turbulent properties, such as Reynolds stresses, increase dramatically downstream of the step within an internally developing mixing layer. Distributions of dimensionless mean velocity, turbulent quantities and antisymmetric distribution of triple velocity products in the separated free shear layer suggest that the shear layer above the recirculating region strongly resembles free-shear mixing layer structure. In the reattachment region close to the wall, turbulent diffusion term balances the rate of dissipation since advection and production terms appear to be negligibly small. Further downstream, production and dissipation begin to dominate other transport processes near the wall indicating the growth of an internal turbulent boundary layer. In the outer region, however, the flow still has a memory of the upstream disturbance even at the last measuring station of 51 step-heights. The data show that the structure of the inner layer recovers at a much faster rate than the outer layer structure. The inner layer structure resembles the near-wall structure of a plane zero pressure-gradient turbulent boundary layer (plane TBL) by 25h to 30h, while the outer layer structure takes presumably over 100h.

  15. Inner-outer interactions in the convective atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Salesky, S.

    2017-12-01

    Recently, observational and numerical studies have revealed the existence of so-called large scale motions (LSMs) that populate the logarithmic layer of wall-bounded turbulent shear flows and modulate the amplitude and frequency of turbulence dynamics near the ground. Properties of LSMs are well understood in neutrally stratified flows over smooth and rough walls. However, the implications of previous studies for the convective atmospheric boundary layer (CBL) are not entirely clear, since the morphology of both small-scale and large-scale turbulent structures is known to be strongly affected by buoyancy [e.g. Salesky et al., Bound.-Layer Meteorol. 163:41-68 (2017)]. In the present study, inner-outer interactions in the CBL are investigated using a suite of large eddy simulations spanning neutral to highly convective conditions. Simulation results reveal that, as the atmosphere becomes increasingly unstable, the inclination angle of structures near the ground increases from 12-15° to nearly 90°. Furthermore, the scale separation between the inner and outer peaks in the premultiplied velocity spectra decreases until only a single peak remains (comparable in magnitude to the boundary layer depth). The extent to which the amplitude modulation of surface layer turbulence by outer layer structures changes with increasing instability will be considered, following the decoupling procedure proposed by Mathis et al. [J. Fluid Mech., vol 628, 311-337 (2009)]. Frequency modulation of surface layer turbulence also will be examined, following the wavelet analysis approach of Baars et al. [Exp. Fluids, 56:188, (2015)].

  16. Effect of artificial length scales in large eddy simulation of a neutral atmospheric boundary layer flow: A simple solution to log-layer mismatch

    NASA Astrophysics Data System (ADS)

    Chatterjee, Tanmoy; Peet, Yulia T.

    2017-07-01

    A large eddy simulation (LES) methodology coupled with near-wall modeling has been implemented in the current study for high Re neutral atmospheric boundary layer flows using an exponentially accurate spectral element method in an open-source research code Nek 5000. The effect of artificial length scales due to subgrid scale (SGS) and near wall modeling (NWM) on the scaling laws and structure of the inner and outer layer eddies is studied using varying SGS and NWM parameters in the spectral element framework. The study provides an understanding of the various length scales and dynamics of the eddies affected by the LES model and also the fundamental physics behind the inner and outer layer eddies which are responsible for the correct behavior of the mean statistics in accordance with the definition of equilibrium layers by Townsend. An economical and accurate LES model based on capturing the near wall coherent eddies has been designed, which is successful in eliminating the artificial length scale effects like the log-layer mismatch or the secondary peak generation in the streamwise variance.

  17. Spacecraft outer thermal blankets as hypervelocity impact bumpers

    NASA Astrophysics Data System (ADS)

    Cour-Palais, B. G.

    1996-05-01

    A thermal barrier consisting of a woven fabric outer layer followed by several layers of aluminized mylar insulation has been the primary impact protection against micrometeoroid and orbital impacts for many spacecraft currently in orbit. This paper examines its effectiveness as a hypervelocity "bumper" based on the performance of a NASA space suit. In this case, the thermal barrier consisted of a fabric layer followed by five layers of the aluminized mylar, which shielded either an aluminum rear wall or a rubberized pressure garment. The total areal density of the fabric and mylar layers was 0.052 g/cm2 and the fabric stand-off was 4 mm from the protected surfaces, with the aluminized mylar filling the space. Test results obtained with hypervelocity aluminum projectile impacts up to 8.5 km/s on the thermal barrier and aluminum wall are described, and a semi-empirical equation for this type of shielding is suggested.

  18. Derivation of Zagarola-Smits scaling in zero-pressure-gradient turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Wei, Tie; Maciel, Yvan

    2018-01-01

    This Rapid Communication derives the Zagarola-Smits scaling directly from the governing equations for zero-pressure-gradient turbulent boundary layers (ZPG TBLs). It has long been observed that the scaling of the mean streamwise velocity in turbulent boundary layer flows differs in the near surface region and in the outer layer. In the inner region of small-velocity-defect boundary layers, it is generally accepted that the proper velocity scale is the friction velocity, uτ, and the proper length scale is the viscous length scale, ν /uτ . In the outer region, the most generally used length scale is the boundary layer thickness, δ . However, there is no consensus on velocity scales in the outer layer. Zagarola and Smits [ASME Paper No. FEDSM98-4950 (1998)] proposed a velocity scale, U ZS=(δ1/δ ) U∞ , where δ1 is the displacement thickness and U∞ is the freestream velocity. However, there are some concerns about Zagarola-Smits scaling due to the lack of a theoretical base. In this paper, the Zagarola-Smits scaling is derived directly from a combination of integral, similarity, and order-of-magnitude analysis of the mean continuity equation. The analysis also reveals that V∞, the mean wall-normal velocity at the edge of the boundary layer, is a proper scale for the mean wall-normal velocity V . Extending the analysis to the streamwise mean momentum equation, we find that the Reynolds shear stress in ZPG TBLs scales as U∞V∞ in the outer region. This paper also provides a detailed analysis of the mass and mean momentum balance in the outer region of ZPG TBLs.

  19. Turbulent Boundary Layer on a Cylinder in Axial Flow

    DTIC Science & Technology

    1988-09-29

    finding the wall shea stress. Finally, ft ;hould be noted that the wall shear stress can be found from the streamwrwise gradient of the mornsntum...somewhat butter collapse than inner scaling, suggesting that the outer flow affects events at the wall. By comparison, the burst frequency in a planar

  20. Electrochemical cell design

    DOEpatents

    Arntzen, John D.

    1978-01-01

    An electrochemical cell includes two outer electrodes and a central electrode of opposite polarity, all nested within a housing having two symmetrical halves which together form an offset configuration. The outer electrodes are nested within raised portions within the side walls of each housing half while the central electrode sealingly engages the perimetric margins of the side-wall internal surfaces. Suitable interelectrode separators and electrical insulating material electrically isolate the central electrode from the housing and the outer electrodes. The outer electrodes are electrically connected to the internal surfaces of the cell housing to provide current collection. The nested structure minimizes void volume that would otherwise be filled with gas or heavy electrolyte and also provides perimetric edge surfaces for sealing and supporting at the outer margins of frangible interelectrode separator layers.

  1. Skewness and flatness factors of the longitudinal velocity derivative in wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Djenidi, Lyazid; Antonia, Robert A.; Talluru, Murali K.; Abe, Hiroyuki

    2017-06-01

    Hot-wire measurements are carried out in turbulent boundary layers over smooth and rough walls in order the assess the behavior of the skewness (S ) and flatness (F ) factors of the longitudinal velocity derivative as y , the distance from the wall, increases. The measurements are complemented by direct numerical simulations of a smooth wall turbulent channel flow. It is observed that, as the distance to the wall increases, S and F vary significantly before approaching a constant in the outer layer of the boundary layer. Further, S and F exhibit a nontrivial dependence on the Taylor microscale Reynolds number (Reλ). For example, in the region below about 0.2 δ (δ is the boundary layer thickness) where Reλ varies significantly, S and F strongly vary with Reλ and can be multivalued at a given Reλ. In the outer region, between 0.3 δ and 0.6 δ , S , F , and Reλ remain approximately constant. The channel flow direct numerical simulation data for S and F exhibit a similar behavior. These results point to the ambiguity that can arise when assessing the Reλ dependence of S and F in wall shear flows. In particular, the multivaluedness of S and F can lead to erroneous conclusions if y /δ is known only poorly, as is the case for the atmospheric shear layer (ASL). If the laboratory turbulent boundary layer is considered an adequate surrogate to the neutral ASL, then the behavior of S and F in the ASL is expected to be similar to that reported here.

  2. Self-consistent simulations of a von Kármán type dynamo in a spherical domain with metallic walls.

    PubMed

    Guervilly, Céline; Brummell, Nicholas H

    2012-10-01

    We have performed numerical simulations of boundary-driven dynamos using a three-dimensional nonlinear magnetohydrodynamical model in a spherical shell geometry. A conducting fluid of magnetic Prandtl number Pm=0.01 is driven into motion by the counter-rotation of the two hemispheric walls. The resulting flow is of von Kármán type, consisting of a layer of zonal velocity close to the outer wall and a secondary meridional circulation. Above a certain forcing threshold, the mean flow is unstable to non-axisymmetric motions within an equatorial belt. For fixed forcing above this threshold, we have studied the dynamo properties of this flow. The presence of a conducting outer wall is essential to the existence of a dynamo at these parameters. We have therefore studied the effect of changing the material parameters of the wall (magnetic permeability, electrical conductivity, and thickness) on the dynamo. In common with previous studies, we find that dynamos are obtained only when either the conductivity or the permeability is sufficiently large. However, we find that the effect of these two parameters on the dynamo process are different and can even compete to the detriment of the dynamo. Our self-consistent approach allow us to analyze in detail the dynamo feedback loop. The dynamos we obtain are typically dominated by an axisymmetric toroidal magnetic field and an axial dipole component. We show that the ability of the outer shear layer to produce a strong toroidal field depends critically on the presence of a conducting outer wall, which shields the fluid from the vacuum outside. The generation of the axisymmetric poloidal field, on the other hand, occurs in the equatorial belt and does not depend on the wall properties.

  3. Thermo-fluid-dynamics of turbulent boundary layer over a moving continuous flat sheet in a parallel free stream

    NASA Astrophysics Data System (ADS)

    Afzal, Bushra; Noor Afzal Team; Bushra Afzal Team

    2014-11-01

    The momentum and thermal turbulent boundary layers over a continuous moving sheet subjected to a free stream have been analyzed in two layers (inner wall and outer wake) theory at large Reynolds number. The present work is based on open Reynolds equations of momentum and heat transfer without any closure model say, like eddy viscosity or mixing length etc. The matching of inner and outer layers has been carried out by Izakson-Millikan-Kolmogorov hypothesis. The matching for velocity and temperature profiles yields the logarithmic laws and power laws in overlap region of inner and outer layers, along with friction factor and heat transfer laws. The uniformly valid solution for velocity, Reynolds shear stress, temperature and thermal Reynolds heat flux have been proposed by introducing the outer wake functions due to momentum and thermal boundary layers. The comparison with experimental data for velocity profile, temperature profile, skin friction and heat transfer are presented. In outer non-linear layers, the lowest order momentum and thermal boundary layer equations have also been analyses by using eddy viscosity closure model, and results are compared with experimental data. Retired Professor, Embassy Hotel, Rasal Ganj, Aligarh 202001 India.

  4. Process for forming a long gas turbine engine blade having a main wall with a thin portion near a tip

    DOEpatents

    Campbell, Christian X; Thomaidis, Dimitrios

    2014-05-13

    A process is provided for forming an airfoil for a gas turbine engine involving: forming a casting of a gas turbine engine airfoil having a main wall and an interior cavity, the main wall having a wall thickness extending from an external surface of the outer wall to the interior cavity, an outer section of the main wall extending from a location between a base and a tip of the airfoil casting to the tip having a wall thickness greater than a final thickness. The process may further involve effecting movement, using a computer system, of a material removal apparatus and the casting relative to one another such that a layer of material is removed from the casting at one or more radial portions along the main wall of the casting.

  5. The spanwise spectra in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei

    2017-12-01

    The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.

  6. The spanwise spectra in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei

    2018-06-01

    The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.

  7. Experimental data and model for the turbulent boundary layer on a convex, curved surface

    NASA Technical Reports Server (NTRS)

    Gillis, J. C.; Johnson, J. P.; Moffat, R. J.; Kays, W. M.

    1981-01-01

    Experiments were performed to determine how boundary layer turbulence is affected by strong convex curvature. The data gathered on the behavior of the Reynolds stress suggested the formulation of a simple turbulence model. Data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero. Two experiments were performed at delta/R approximately 0.10, and one at weaker curvature with delta/R approximately 0.05. Results show that after a sudden introduction of curvature the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. When the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions. A simple turbulence model, which was based on the theory that the Prandtl mixing length in the outer layer should scale on the velocity gradient layer, was shown to account for the slow recovery.

  8. Layer-dependent role of collagen recruitment during loading of the rat bladder wall.

    PubMed

    Cheng, Fangzhou; Birder, Lori A; Kullmann, F Aura; Hornsby, Jack; Watton, Paul N; Watkins, Simon; Thompson, Mark; Robertson, Anne M

    2018-04-01

    In this work, we re-evaluated long-standing conjectures as to the source of the exceptionally large compliance of the bladder wall. Whereas these conjectures were based on indirect measures of loading mechanisms, in this work we take advantage of advances in bioimaging to directly assess collagen fibers and wall architecture during biaxial loading. A custom biaxial mechanical testing system compatible with multiphoton microscopy was used to directly measure the layer-dependent collagen fiber recruitment in bladder tissue from 9 male Fischer rats (4 adult and 5 aged). As for other soft tissues, the bladder loading curve was exponential in shape and could be divided into toe, transition and high stress regimes. The relationship between collagen recruitment and loading curves was evaluated in the context of the inner (lamina propria) and outer (detrusor smooth muscle) layers. The large extensibility of the bladder was found to be possible due to folds in the wall (rugae) that provide a mechanism for low resistance flattening without any discernible recruitment of collagen fibers throughout the toe regime. For more extensible bladders, as the loading extended into the transition regime, a gradual coordinated recruitment of collagen fibers between the lamina propria layer and detrusor smooth muscle layer was found. A second important finding was that wall extensibility could be lost by premature recruitment of collagen in the outer wall that cut short the toe region. This change was correlated with age. This work provides, for the first time, a mechanistic understanding of the role of collagen recruitment in determining bladder extensibility and capacitance.

  9. S-layer and cytoplasmic membrane - exceptions from the typical archaeal cell wall with a focus on double membranes.

    PubMed

    Klingl, Andreas

    2014-01-01

    The common idea of typical cell wall architecture in archaea consists of a pseudo-crystalline proteinaceous surface layer (S-layer), situated upon the cytoplasmic membrane. This is true for the majority of described archaea, hitherto. Within the crenarchaea, the S-layer often represents the only cell wall component, but there are various exceptions from this wall architecture. Beside (glycosylated) S-layers in (hyper)thermophilic cren- and euryarchaea as well as halophilic archaea, one can find a great variety of other cell wall structures like proteoglycan-like S-layers (Halobacteria), glutaminylglycan (Natronococci), methanochondroitin (Methanosarcina) or double layered cell walls with pseudomurein (Methanothermus and Methanopyrus). The presence of an outermost cellular membrane in the crenarchaeal species Ignicoccus hospitalis already gave indications for an outer membrane similar to Gram-negative bacteria. Although there is just limited data concerning their biochemistry and ultrastructure, recent studies on the euryarchaeal methanogen Methanomassiliicoccus luminyensis, cells of the ARMAN group, and the SM1 euryarchaeon delivered further examples for this exceptional cell envelope type consisting of two membranes.

  10. On investigating wall shear stress in two-dimensional plane turbulent wall jets

    NASA Astrophysics Data System (ADS)

    Mehdi, Faraz; Johansson, Gunnar; White, Christopher; Naughton, Jonathan

    2012-11-01

    Mehdi & White [Exp Fluids 50:43-51(2011)] presented a full momentum integral based method for determining wall shear stress in zero pressure gradient turbulent boundary layers. They utilized the boundary conditions at the wall and at the outer edge of the boundary layer. A more generalized expression is presented here that uses just one boundary condition at the wall. The method is mathematically exact and has an advantage of having no explicit streamwise gradient terms. It is successfully applied to two different experimental plane turbulent wall jet datasets for which independent estimates of wall shear stress were known. Complications owing to experimental inaccuracies in determining wall shear stress from the proposed method are also discussed.

  11. Surgical Marking Pen Dye Inhibits Saphenous Vein Cell Proliferation and Migration in Saphenous Vein Graft Tissue

    PubMed Central

    Kikuchi, Shinsuke; Kenagy, Richard D; Gao, Lu; Wight, Thomas N; Azuma, Nobuyoshi; Sobel, Michael; Clowes, Alexander W

    2014-01-01

    Objective Markers containing dyes such as crystal violet (CAS 548-62-9) are routinely used on the adventitia of vein bypass grafts to avoid twisting during placement. Since little is known about how these dyes affect vein graft healing and function, we determined the effect of crystal violet on cell migration and proliferation, which are responses to injury after grafting. Methods Fresh human saphenous veins were obtained as residual specimens from leg bypass surgeries. Portions of the vein that had been surgically marked with crystal violet were analyzed separately from those that had no dye marking. In the laboratory, they were split into easily dissected inner and outer layers after removal of endothelium. This f cleavage plane was within the circular muscle layer of the media. Cell migration from explants was measured daily as either 1) % migration positive explants, which exclusively measures migration, or 2) the number of cells on the plastic surrounding each explant, which measures migration plus proliferation. Cell proliferation and apoptosis (Ki67 and TUNEL staining, respectively) were determined in dye-marked and unmarked areas of cultured vein rings. The dose-dependent effects of crystal violet were measured for cell migration from explants as well as proliferation, migration, and death of cultured outer layer cells. Dye was extracted from explants with ethanol and quantified by spectrophotometry. Results There was significantly less cell migration from visibly blue, compared to unstained, outer layer explants by both methods. There was no significant difference in migration from inner layer explants adjacent to blue-stained or unstained sections of vein, because dye did not penetrate to the inner layer. Ki67 staining of vein in organ culture, which is a measure of proliferation, progressively increased up to 6 days in non-blue outer layer and was abolished in the blue outer layer. Evidence of apoptosis (TUNEL staining) was present throughout the wall and not different in blue-stained and unstained vein wall segments. Blue outer layer explants had 65.9±8.0 ng dye/explant compared to 2.1±1.3 for non-blue outer layer explants. Dye applied in vitro to either outer or inner layer explants dose-dependently inhibited migration (IC50=8.5 ng/explant). The IC50s of crystal violet for outer layer cell proliferation and migration were 0.1 and 1.2 μg/ml, while the EC50 for death was between 1 and 10 μg/ml. Conclusion Crystal violet inhibits venous cell migration and proliferation indicating that alternative methods should be considered for marking vein grafts. PMID:25935273

  12. The Effects of Acoustic Treatment on Pressure Disturbances From a Supersonic Jet in a Circular Duct

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    1996-01-01

    The pressure disturbances generated by an instability wave in the shear layer of a supersonic jet are studied for an axisymmetric jet inside a lined circular duct. For the supersonic jet, locally linear stability analysis with duct wall boundary conditions is used to calculate the eigenvalues and the eigenfunctions at each axial location. These values are used to determine the growth rates and phase velocities of the instability waves and the near field pressure disturbance patterns. The study is confined to the dominant Kelvin-Helmholtz instability mode and to the region just downstream of the nozzle exit where the shear layer is growing but is still small in size compared to the radius of the duct. Numerical results are used to study the effects of changes in the outer flow, growth in the shear layer thickness, wall distance, and wall impedance, and the effects of these changes on non-axisymmetric modes. The primary results indicate that the effects of the duct wall on stability characteristics diminish as the outer flow increases and as the jet azimuthal mode number increases. Also, wall reflections are reduced when using a finite impedance boundary condition at the wall; but in addition, reflections are reduced and growth rates diminished by keeping the imaginary part of the impedance negative when using the negative exponential for the harmonic dependence.

  13. A Structurally Specialized Uniform Wall Layer is Essential for Constructing Wall Ingrowth Papillae in Transfer Cells

    PubMed Central

    Xia, Xue; Zhang, Hui-Ming; Offler, Christina E.; Patrick, John W.

    2017-01-01

    Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans-differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta. Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated. PMID:29259611

  14. A Structurally Specialized Uniform Wall Layer is Essential for Constructing Wall Ingrowth Papillae in Transfer Cells.

    PubMed

    Xia, Xue; Zhang, Hui-Ming; Offler, Christina E; Patrick, John W

    2017-01-01

    Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans -differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta . Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated.

  15. The Production of Turbulence in Boundary Layers -- The Role of Microscale Coherent Motions.

    DTIC Science & Technology

    1987-06-01

    unstable and it breaks up as it moves away from the wall. The wall layer must be thin and vortex stretching, due to inviscid image effects, dominate...how a Typical eddy ultimately creates the long streaks is not clear. It is entirely possible that the viscous image of the rolled up vorticity forms...clarified, especially the formation of the long streaky structure, and secondary hairpin vorticity. It appears that the outer region microscale coherent

  16. Apparatus and filtering systems relating to combustors in combustion turbine engines

    DOEpatents

    Johnson, Thomas Edward [Greer, SC; Zuo, Baifang [Simpsonville, SC; Stevenson, Christian Xavier [Inman, SC

    2012-03-27

    A combustor for a combustion turbine engine that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; and a multilayer screen filter comprising at least two layers of screen over at least a portion of the windows and at least one layer of screen over the remaining portion of the windows. The windows include a forward end and a forward portion, and an aft end and an aft portion. The multilayer screen filter is positioned over the windows such that, in operation, a supply of compressed air entering the chamber through the windows passes through at least one layer of screen. The multilayer screen filter is configured such that the aft portion of the windows include at least two layers of screen, and the forward portion of the windows includes one less layer of screen than the aft portion of the windows.

  17. Heat insulating device for low temperature liquefied gas storage tank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, T.; Nishimoto, T.; Sawada, K.

    1978-05-02

    Hitachi Shipbuilding and Engineering Co., Ltd.'s insulation method for spherical LNG containers solves various problems associated with insulating a sphere's three-dimensional curved surface; equalizing the thickness of the insulation, insulating the junctions between insulation blocks, and preventing seawater or LNG from penetrating the insulation barrier in the event of a rupture in the tank and ship's hull. The design incorporates a number of blocks or plates of rigid foam-insulating material bonded to the outer wall; seats for receiving pressing jigs for the bonding operation are secured to the outer wall in the joints between the insulating blocks. The joints aremore » filled with soft synthetic foam (embedding the seats), a moistureproof layer covers the insulating blocks and joints, and a waterproof material covers the moistureproof layer.« less

  18. Analysis of the interaction of a weak normal shock wave with a turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Melnik, R. E.; Grossman, B.

    1974-01-01

    The method of matched asymptotic expansions is used to analyze the interaction of a normal shock wave with an unseparated turbulent boundary layer on a flat surface at transonic speeds. The theory leads to a three-layer description of the interaction in the double limit of Reynolds number approaching infinity and Mach number approaching unity. The interaction involves an outer, inviscid rotational layer, a constant shear-stress wall layer, and a blending region between them. The pressure distribution is obtained from a numerical solution of the outer-layer equations by a mixed-flow relaxation procedure. An analytic solution for the skin friction is determined from the inner-layer equations. The significance of the mathematical model is discussed with reference to existing experimental data.

  19. Empowering Marine Corps System Administrators: Taxonomy of Training

    DTIC Science & Technology

    2004-03-01

    of Systems and Engineering Management Graduate School of Engineering and Management Air Force Institute of Technology Air University Air...Information Assurance ................................................................................ 16 2.8 Attacks, Social Engineering & Online Users... drawbridge , outer castle walls, inner castle walls and the keep. No single form of defense is foolproof, thus each layer compensates for deficiencies

  20. Explosion Welding for Hermetic Containerization

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin; Sanok, Joseph

    2003-01-01

    A container designed for storing samples of hazardous material features a double wall, part of which is sacrificed during an explosion-welding process in which the container is sealed and transferred to a clean environment. The major advantage of this container sealing process is that once the samples have been sealed inside, the outer wall of what remains of the container is a clean surface that has not come into contact with the environment from which the samples were taken. Thus, there is no need to devise a decontamination process capable of mitigating all hazards that might be posed by unanticipated radioactive, chemical, and/or biological contamination of the outside of the container. The container sealing method was originally intended to be used to return samples from Mars to Earth, but it could also be used to store samples of hazardous materials, without the need to decontaminate its outer surface. The process stages are shown. In its initial double-wall form, the volume between the walls is isolated from the environment; in other words, the outer wall (which is later sacrificed) initially serves to protect the inner container from contamination. The sample is placed inside the container through an opening at one end, then the container is placed into a transfer dock/lid. The surfaces that will be welded together under the explosive have been coated with a soft metallic sacrificial layer. During the explosion, the sacrificial layer is ejected, and the container walls are welded together, creating a strong metallic seal. The inner container is released during the same event and enters the clean environment.

  1. Cell Surface Interference with Plasma Membrane and Transport Processes in Yeasts.

    PubMed

    Francois, Jean Marie

    2016-01-01

    The wall of the yeast Saccharomyces cerevisiae is a shell of about 120 nm thick, made of two distinct layers, which surrounds the cell. The outer layer is constituted of highly glycosylated proteins and the inner layer is composed of β-glucan and chitin. These two layers are interconnected through covalent linkages leading to a supramolecular architecture that is characterized by physical and chemical properties including rigidity, porosity and biosorption. The later property results from the presence of highly negative charged phosphate and carboxylic groups of the cell wall proteins, allowing the cell wall to act as an efficient barrier to metals ions, toxins and organic compounds. An intimate connection between cell wall and plasma membrane is indicated by the fact that changes in membrane fluidity results in change in cell wall nanomechanical properties. Finally, cell wall contributes to transport processes through the use of dedicated cell wall mannoproteins, as it is the case for Fit proteins implicated in the siderophore-iron bound transport and the Tir/Dan proteins family in the uptake of sterols.

  2. Turbulent boundary layer on a convex, curved surface

    NASA Technical Reports Server (NTRS)

    Gillis, J. C.; Johnston, J. P.; Kays, W. M.; Moffat, R. J.

    1980-01-01

    The effects of strong convex curvature on boundary layer turbulence were investigated. The data gathered on the behavior of Reynolds stress suggested the formulation of a simple turbulence model. Three sets of data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning, and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero - thus avoiding any effects of streamwise acceleration on the wall layers. Results show that after a sudden introduction of curvature, the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. In contrast, when the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions.

  3. The three-dimensional turbulent boundary layer near a plane of symmetry

    NASA Technical Reports Server (NTRS)

    Degani, A. T.; Smith, F. T.; Walker, J. D. A.

    1992-01-01

    The asymptotic structure of the three-dimensional turbulent boundary layer near a plane of symmetry is considered in the limit of large Reynolds number. A self-consistent two-layer structure is shown to exist wherein the streamwise velocity is brought to rest through an outer defect layer and an inner wall layer in a manner similar to that in two-dimensional boundary layers. The cross-stream velocity distribution is more complex and two terms in the asymptotic expansion are required to yield a complete profile which is shown to exhibit a logarithmic region. The flow in the inner wall layer is demonstrated to be collateral to leading order; pressure-gradient effects are formally of higher order but can cause the velocity profile to skew substantially near the wall at the large but finite Reynolds numbers encountered in practice. The governing set of ordinary differential equations describing a self-similar flow is derived. The calculated numerical solutions of these equations are matched asymptotically to an inner wall-layer solution and the results show trends that are consistent with experimental observations.

  4. Viscous drag reduction in boundary layers

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)

    1990-01-01

    The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.

  5. Use of yeast spores for microencapsulation of enzymes.

    PubMed

    Shi, Libing; Li, Zijie; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2014-08-01

    Here, we report a novel method to produce microencapsulated enzymes using Saccharomyces cerevisiae spores. In sporulating cells, soluble secreted proteins are transported to the spore wall. Previous work has shown that the spore wall is capable of retaining soluble proteins because its outer layers work as a diffusion barrier. Accordingly, a red fluorescent protein (RFP) fusion of the α-galactosidase, Mel1, expressed in spores was observed in the spore wall even after spores were subjected to a high-salt wash in the presence of detergent. In vegetative cells, however, the cell wall cannot retain the RFP fusion. Although the spore wall prevents diffusion of proteins, it is likely that smaller molecules, such as sugars, pass through it. In fact, spores can contain much higher α-galactosidase activity to digest melibiose than vegetative cells. When present in the spore wall, the enzyme acquires resistance to environmental stresses including enzymatic digestion and high temperatures. The outer layers of the spore wall are required to retain enzymes but also decrease accessibility of the substrates. However, mutants with mild spore wall defects can retain and stabilize the enzyme while still permitting access to the substrate. In addition to Mel1, we also show that spores can retain the invertase. Interestingly the encapsulated invertase has significantly lower activity toward raffinose than toward sucrose.This suggests that substrate selectivity could be altered by the encapsulation.

  6. A law of the wall for turbulent boundary layers with suction: Stevenson's formula revisited

    NASA Astrophysics Data System (ADS)

    Vigdorovich, Igor

    2016-08-01

    The turbulent velocity field in the viscous sublayer of the boundary layer with suction to a first approximation is homogeneous in any direction parallel to the wall and is determined by only three constant quantities — the wall shear stress, the suction velocity, and the fluid viscosity. This means that there exists a finite algebraic relation between the turbulent shear stress and the longitudinal mean-velocity gradient, using which as a closure condition for the equations of motion, we establish an exact asymptotic behavior of the velocity profile at the outer edge of the viscous sublayer. The obtained relationship provides a generalization of the logarithmic law to the case of wall suction.

  7. Interaction of Vascular Smooth Muscle Cells Under Low Shear Stress

    NASA Technical Reports Server (NTRS)

    Seidel, Charles L.

    1998-01-01

    The blood vessel wall consists of three cellular layers, an outer adventitial, a middle medial and an inner intimal layer. When the blood vessel forms in the embryo it begins as a tube composed of a single cell type called endothelial cells. Over time, other cells are recruited from the surrounding tissue to form additional layers on the outer surface of the endothelial tube. The cells that are recruited are called mesenchymal cells. Mesenchymal cells are responsible for the production of connective tissue that holds the blood vessel together and for developing into vascular smooth muscle cells that are responsible for regulating the diameter of the vessel (1) and therefore, blood flow. In a fully developed blood vessel, the endothelial cells make- up the majority of cells in the intimal layer while the mesenchymal cells make-up the majority of cells in the medial and adventitial layers. Within the medial layer of a mature vessel, cells are organized into multiple circular layers of alternating bands of connective tissue and cells. The cell layer is composed of a mixture of mesenchymal cells that have not developed into smooth muscle cells and fully developed smooth muscle cells (2). The assembly and organization of complex tissues is directed in part by a signaling system composed of proteins on the cell surface called adhesion molecules. Adhesion molecules enable cells to recognize each other as well as the composition of the connective tissue in which they reside (3). It was hypothesized that the different cell types that compose the vascular wall possess different adhesion molecules that enable them to recognize each other and through this recognition system, form the complex layered organization of the vascular wall. In other words, the layered organization is an intrinsic property of the cells. If this hypothesis is correct then the different cells that make up the vessel wall, when mixed together, should organize themselves into a layered structure resembling an intact blood vessel. Experiments described below were designed to test this hypothesis.

  8. Experimental investigation on aero-optics of supersonic turbulent boundary layers.

    PubMed

    Ding, Haolin; Yi, Shihe; Zhu, Yangzhu; He, Lin

    2017-09-20

    Nanoparticle-based planar laser scattering was used to measure the density distribution of the supersonic (Ma=3.0) turbulent boundary layer and the optical path difference (OPD), which is quite crucial for aero-optics study. Results were obtained using ray tracing. The influences of different layers in the boundary layer, turbulence scales, and light incident angle on aero-optics were examined, and the underlying flow physics were analyzed. The inner layer plays a dominant role, followed by the outer layer. One hundred OPD rms of the outer layer at different times satisfy the normal distribution better than that of the inner layer. Aero-optics induced by the outer layer is sensitive to the filter scale. When induced by the inner layer, it is not sensitive to the filter scale. The vortices with scales less than the Kolmogorov scale (=46.0  μm) have little influence on the aero-optics and could be ignored; the validity of the smallest optically active scale (=88.1  μm) proposed by Mani is verified, and vortices with scales less than that are ignored, resulting in a 1.62% decay of aero-optics; the filter with a width of 16-grid spacing (=182.4  μm) decreases OPD rms by 7.04%. With the increase of the angle between the wall-normal direction and the light-incident direction, the aero-optics becomes more serious, and the difference between the distribution of the OPD rms and the normal distribution increases. The difficulty of aero-optics correction is increased. Light tilted toward downstream experiences more distortions than when tilted toward upstream at the same angle relative to the wall-normal direction.

  9. Patterns of muscular strain in the embryonic heart wall.

    PubMed

    Damon, Brooke J; Rémond, Mathieu C; Bigelow, Michael R; Trusk, Thomas C; Xie, Wenjie; Perucchio, Renato; Sedmera, David; Denslow, Stewart; Thompson, Robert P

    2009-06-01

    The hypothesis that inner layers of contracting muscular tubes undergo greater strain than concentric outer layers was tested by numerical modeling and by confocal microscopy of strain within the wall of the early chick heart. We modeled the looped heart as a thin muscular shell surrounding an inner layer of sponge-like trabeculae by two methods: calculation within a two-dimensional three-variable lumped model and simulated expansion of a three-dimensional, four-layer mesh of finite elements. Analysis of both models, and correlative microscopy of chamber dimensions, sarcomere spacing, and membrane leaks, indicate a gradient of strain decreasing across the wall from highest strain along inner layers. Prediction of wall thickening during expansion was confirmed by ultrasonography of beating hearts. Degree of stretch determined by radial position may thus contribute to observed patterns of regional myocardial conditioning and slowed proliferation, as well as to the morphogenesis of ventricular trabeculae and conduction fascicles. Developmental Dynamics 238:1535-1546, 2009. (c) 2009 Wiley-Liss, Inc.

  10. Large-Eddy Simulation of the Flat-plate Turbulent Boundary Layer at High Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Inoue, Michio

    The near-wall, subgrid-scale (SGS) model [Chung and Pullin, "Large-eddy simulation and wall-modeling of turbulent channel flow'', J. Fluid Mech. 631, 281--309 (2009)] is used to perform large-eddy simulations (LES) of the incompressible developing, smooth-wall, flat-plate turbulent boundary layer. In this model, the stretched-vortex, SGS closure is utilized in conjunction with a tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the wall. The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. This is then used to study several aspects of zero- and adverse-pressure gradient turbulent boundary layers. First, LES of the zero-pressure gradient turbulent boundary layer are performed at Reynolds numbers Retheta based on the free-stream velocity and the momentum thickness in the range Retheta = 103-1012. Results include the inverse skin friction coefficient, 2/Cf , velocity profiles, the shape factor H, the Karman "constant", and the Coles wake factor as functions of Re theta. Comparisons with some direct numerical simulation (DNS) and experiment are made, including turbulent intensity data from atmospheric-layer measurements at Retheta = O (106). At extremely large Retheta , the empirical Coles-Fernholz relation for skin-friction coefficient provides a reasonable representation of the LES predictions. While the present LES methodology cannot of itself probe the structure of the near-wall region, the present results show turbulence intensities that scale on the wall-friction velocity and on the Clauser length scale over almost all of the outer boundary layer. It is argued that the LES is suggestive of the asymptotic, infinite Reynolds-number limit for the smooth-wall turbulent boundary layer and different ways in which this limit can be approached are discussed. The maximum Retheta of the present simulations appears to be limited by machine precision and it is speculated, but not demonstrated, that even larger Retheta could be achieved with quad- or higher-precision arithmetic. Second, the time series velocity signals obtained from LES within the logarithmic region of the zero-pressure gradient turbulent boundary layer are used in combination with an empirical, predictive inner--outer wall model [Marusic et al., "Predictive model for wall-bounded turbulent flow'', Science 329, 193 (2010)] to calculate the statistics of the fluctuating streamwise velocity in the inner region of the zero-pressure gradient turbulent boundary layer. Results, including spectra and moments up to fourth order, are compared with equivalent predictions using experimental time series, as well as with direct experimental measurements at Reynolds numbers Retau based on the friction velocity and the boundary layer thickness, Retau = 7,300, 13,600 and 19,000. LES combined with the wall model are then used to extend the inner-layer predictions to Reynolds numbers Retau = 62,000, 100,000 and 200,000 that lie within a gap in log(Retau) space between laboratory measurements and surface-layer, atmospheric experiments. The present results support a log-like increase in the near-wall peak of the streamwise turbulence intensities with Retau and also provide a means of extending LES results at large Reynolds numbers to the near-wall region of wall-bounded turbulent flows. Finally, we apply the wall model to LES of a turbulent boundary layer subject to an adverse pressure gradient. Computed statistics are found to be consistent with recent experiments and some Reynolds number similarity is observed over a range of two orders of magnitude.

  11. Resonant Raman scattering of double wall carbon nanotubes prepared by chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Ci, Lijie; Zhou, Zhenping; Yan, Xiaoqin; Liu, Dongfang; Yuan, Huajun; Song, Li; Gao, Yan; Wang, Jianxiong; Liu, Lifeng; Zhou, Weiya; Wang, Gang; Xie, Sishen; Tan, Pingheng

    2003-11-01

    Resonant Raman spectra of double wall carbon nanotubes (DWCNTs), with diameters from 0.4 to 3.0 nm, were investigated with several laser excitations. The peak position and line shape of Raman bands were shown to be strongly dependent on the laser energies. With different excitations, the diameter and chirality of the DWCNTs can be discussed in detail. We show that tubes (the inner or outer layers of DWCNTs) with all kinds of chiralities could be synthesized, and a DWCNT can have any combination of chiralities of the inner and outer tubes.

  12. Direct Numerical Simulation of a Plane Transitional Wall Jet

    NASA Astrophysics Data System (ADS)

    Ramesh, O.; Varghese, Joel

    2017-11-01

    A transitional plane wall jet is studied using direct numerical simulation. The presence of an inflectional point leads to the outer layer rolling up into vortices that interacts with the inner region resulting in a double array of counter rotating vortices before breakdown into turbulence. Past studies have focused on forced wall jet which results in shorter transition region and prominent vortical structures. In the present work, natural transition will be discussed by analysing the coherent structures and scaled frequency spectra. Clear hairpin like structures leaning downstream in the inner region(as in a boundary layer) and leaning upstream in the outerstream (as in a jet) are evident.

  13. Turbulent Flow Over Large Roughness Elements: Effect of Frontal and Plan Solidity on Turbulence Statistics and Structure

    NASA Astrophysics Data System (ADS)

    Placidi, M.; Ganapathisubramani, B.

    2018-04-01

    Wind-tunnel experiments were carried out on fully-rough boundary layers with large roughness (δ /h ≈ 10, where h is the height of the roughness elements and δ is the boundary-layer thickness). Twelve different surface conditions were created by using LEGO™ bricks of uniform height. Six cases are tested for a fixed plan solidity (λ _P) with variations in frontal density (λ _F), while the other six cases have varying λ _P for fixed λ _F. Particle image velocimetry and floating-element drag-balance measurements were performed. The current results complement those contained in Placidi and Ganapathisubramani (J Fluid Mech 782:541-566, 2015), extending the previous analysis to the turbulence statistics and spatial structure. Results indicate that mean velocity profiles in defect form agree with Townsend's similarity hypothesis with varying λ _F, however, the agreement is worse for cases with varying λ _P. The streamwise and wall-normal turbulent stresses, as well as the Reynolds shear stresses, show a lack of similarity across most examined cases. This suggests that the critical height of the roughness for which outer-layer similarity holds depends not only on the height of the roughness, but also on the local wall morphology. A new criterion based on shelter solidity, defined as the sheltered plan area per unit wall-parallel area, which is similar to the `effective shelter area' in Raupach and Shaw (Boundary-Layer Meteorol 22:79-90, 1982), is found to capture the departure of the turbulence statistics from outer-layer similarity. Despite this lack of similarity reported in the turbulence statistics, proper orthogonal decomposition analysis, as well as two-point spatial correlations, show that some form of universal flow structure is present, as all cases exhibit virtually identical proper orthogonal decomposition mode shapes and correlation fields. Finally, reduced models based on proper orthogonal decomposition reveal that the small scales of the turbulence play a significant role in assessing outer-layer similarity.

  14. Development of a defect stream function, law of the wall/wake method for compressible turbulent boundary layers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wahls, Richard A.

    1990-01-01

    The method presented is designed to improve the accuracy and computational efficiency of existing numerical methods for the solution of flows with compressible turbulent boundary layers. A compressible defect stream function formulation of the governing equations assuming an arbitrary turbulence model is derived. This formulation is advantageous because it has a constrained zero-order approximation with respect to the wall shear stress and the tangential momentum equation has a first integral. Previous problems with this type of formulation near the wall are eliminated by using empirically based analytic expressions to define the flow near the wall. The van Driest law of the wall for velocity and the modified Crocco temperature-velocity relationship are used. The associated compressible law of the wake is determined and it extends the valid range of the analytical expressions beyond the logarithmic region of the boundary layer. The need for an inner-region eddy viscosity model is completely avoided. The near-wall analytic expressions are patched to numerically computed outer region solutions at a point determined during the computation. A new boundary condition on the normal derivative of the tangential velocity at the surface is presented; this condition replaces the no-slip condition and enables numerical integration to the surface with a relatively coarse grid using only an outer region turbulence model. The method was evaluated for incompressible and compressible equilibrium flows and was implemented into an existing Navier-Stokes code using the assumption of local equilibrium flow with respect to the patching. The method has proven to be accurate and efficient.

  15. Experimental study of the flow in the wake of a stationary sphere immersed in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    van Hout, René; Eisma, Jerke; Elsinga, Gerrit E.; Westerweel, Jerry

    2018-02-01

    In many applications, finite-sized particles are immersed in a turbulent boundary layer (TBL) and it is of interest to study wall effects on the instantaneous shedding of turbulence structures and associated mean velocity and Reynolds stress distributions. Here, 3D flow field dynamics in the wake of a prototypical, small sphere (D+=50 , 692

  16. Time Resolved Tomographic PIV Measurements of Rough-Wall Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Miorini, Rinaldo; Zhang, Cao; Katz, Joseph

    2013-11-01

    Time resolved tomographic PIV is used to study flow structures in the outer region of a rough-wall turbulent boundary layer, focusing on imprints of the roughness on the outer layer. Measurements are performed in a transparent channel installed in the JHU optically index matched facility. The roughness consists of pyramids with height, k = 0.46 mm, and wavelength, λ = 3.2 mm, satisfying h/k = 55 (h = 25.4 mm is the channel half-height), k + = 64 and Re = 40000. The TPIV setup consists of four high-speed cameras operating at 3 kHz, which view the sample volume through acrylic prisms. The flow field is illuminated by an Nd:YLF laser. Following enhancement, calibration, and reconstruction, 643 voxels interrogation volumes with 0.75 overlap provide 3D velocity fields with spacing of 0.5883 mm3. Formation and transport of near-wall 3D U-shaped vortex structures, with base in front of the pyramids, and quasi-streamwise legs extending between pyramid crest lines are evident from the data. Extended streamwise regions of high wall-normal vorticity appear ``latched'' to the roughness elements close to the wall, but are transported downstream at higher elevations. Also evident are traveling streamwise low velocity streaks, which cover many roughness elements. Sponsored by NSF CBET and ONR.

  17. Endosporoideus gen. nov., a mitosporic fungus on Phoenix hanceana.

    PubMed

    Ho, Wai Hong; Yanna; Hyde, Kevin D; Goh, Teik Khiang

    2005-01-01

    Endosporoideus pedicellata gen. et sp, nov. is described and illustrated from decaying petioles of Phoenix hanceana collected from grassland in Tai Mo Shan, Hong Kong. The genus is unique in producing solitary, phragmosporous conidia. The conidia comprise a brown to dark brown inner-wall layer and thick, hyaline outer-wall layer and are produced holoblastically from determinate conidiogenous cells on micronematous, mononematous conidiophores. Cells of conidia may disarticulate at the septa. Representative steps in conidiogenesis of E. pedicellata are illustrated with light micrographs, and details of the conidiogenous events are interpreted schematically.

  18. A defect stream function, law of the wall/wake method for compressible turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Barnwell, Richard W.; Dejarnette, Fred R.; Wahls, Richard A.

    1989-01-01

    The application of the defect stream function to the solution of the two-dimensional, compressible boundary layer is examined. A law of the wall/law of the wake formulation for the inner part of the boundary layer is presented which greatly simplifies the computational task near the wall and eliminates the need for an eddy viscosity model in this region. The eddy viscosity model in the outer region is arbitrary. The modified Crocco temperature-velocity relationship is used as a simplification of the differential energy equation. Formulations for both equilibrium and nonequilibrium boundary layers are presented including a constrained zero-order form which significantly reduces the computational workload while retaining the significant physics of the flow. A formulation for primitive variables is also presented. Results are given for the constrained zero-order and second-order equilibrium formulations and are compared with experimental data. A compressible wake function valid near the wall has been developed from the present results.

  19. Turbine airfoil with outer wall thickness indicators

    DOEpatents

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  20. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  1. High-resolution electron microscopic evidence for the filamentous structure of the cyst wall in Giardia muris and Giardia duodenalis.

    PubMed

    Erlandsen, S L; Bemrick, W J; Pawley, J

    1989-10-01

    High-resolution morphological studies of the cyst wall of Giardia spp. were performed using low-voltage scanning electron microscopy (LVSEM) and transmission electron microscopy (TEM). The cyst wall was composed of membranous and filamentous layers. The membranous layer consisted of an inner and an outer cyst membrane separated by a thin layer of cytoplasm. The filamentous layer contained individual filaments that ranged from 7 to 20 nm in diameter when measured by LVSEM, formed a dense meshwork with branches or interconnections, and were occasionally arranged on the surface in whorled patterns. Cysts of Giardia muris from mice, Giardia duodenalis from dogs, pigs, voles, beavers, muskrats, and humans, and Giardia psittaci from a bird (parakeet), possessed an essentially identical wall composed of filaments. Inducement of excystation in viable Giardia cysts produced a dramatic increase in the interfilament spacing over an entire cyst, but none was observed in heat-killed or chemically fixed control cysts. These results demonstrated that the cyst wall of Giardia spp. was composed of a complex arrangement of filaments, presumably formed during the process of encystment.

  2. Scanning electron microscopy of echinoid podia.

    PubMed

    Florey, E; Cahill, M A

    1982-01-01

    Tube feet of the sea urchin Strongylocentrotus franciscanus were studied with the scanning electron microscope (SEM). By use of fractured preparations it was possible to obtain views of all components of the layered tube-foot wall. The outer epithelium was found to bear tufts of cilia possibly belonging to sensory cells. The nerve plexus was clearly revealed as being composed of bundles of varicose axons. The basal lamina, which covers the outer and inner surfaces of the connective tissue layer, was found to be a mechanically resistant and elastic membrane. The connective tissue appears as dense bundles of (collagen) fibers. The luminal epithelium (coelothelium) is a single layer of flagellated collar cells. There is no indication that the muscle fibers, which insert on the inner basal lamina of the connective tissue layer are innervated by axons from the basi-epithelial nerve plexus. The results agree with previous conclusions concerning tube-foot structure based on transmission electron microscopy, and provide additional information, particularly with regard to the outer and inner epithelia.

  3. A corrosive resistant heat exchanger

    DOEpatents

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  4. High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces

    NASA Astrophysics Data System (ADS)

    Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min

    2007-11-01

    This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.

  5. Instability waves and transition in adverse-pressure-gradient boundary layers

    NASA Astrophysics Data System (ADS)

    Bose, Rikhi; Zaki, Tamer A.; Durbin, Paul A.

    2018-05-01

    Transition to turbulence in incompressible adverse-pressure-gradient (APG) boundary layers is investigated by direct numerical simulations. Purely two-dimensional instability waves develop on the inflectional base velocity profile. When the boundary layer is perturbed by isotropic turbulence from the free stream, streamwise elongated streaks form and may interact with the instability waves. Subsequent mechanisms that trigger transition depend on the intensity of the free-stream disturbances. All evidence from the present simulations suggest that the growth rate of instability waves is sufficiently high to couple with the streaks. Under very low levels of free-stream turbulence (˜0.1 % ), transition onset is highly sensitive to the inlet disturbance spectrum and is accelerated if the spectrum contains frequency-wave-number combinations that are commensurate with the instability waves. Transition onset and completion in this regime is characterized by formation and breakdown of Λ vortices, but they are more sporadic than in natural transition. Beneath free-stream turbulence with higher intensity (1-2 % ), bypass transition mechanisms are dominant, but instability waves are still the most dominant disturbances in wall-normal and spanwise perturbation spectra. Most of the breakdowns were by disturbances with critical layers close to the wall, corresponding to inner modes. On the other hand, the propensity of an outer mode to occur increases with the free-stream turbulence level. Higher intensity free-stream disturbances induce strong streaks that favorably distort the boundary layer and suppress the growth of instability waves. But the upward displacement of high amplitude streaks brings them to the outer edge of the boundary layer and exposes them to ambient turbulence. Consequently, high-amplitude streaks exhibit an outer-mode secondary instability.

  6. POE/PLGA composite microspheres: formation and in vitro behavior of double walled microspheres.

    PubMed

    Yang, Yi-Yan; Shi, Meng; Goh, Suat-Hong; Moochhala, Shabbir M; Ng, Steve; Heller, Jorge

    2003-03-07

    The poly(ortho ester) (POE) and poly(D,L-lactide-co-glycolide) 50:50 (PLGA) composite microspheres were fabricated by a water-in-oil-in-water (w/o/w) double emulsion process. The morphology of the composite microspheres varied depending on POE content. When the POE content was 50, 60 or 70% in weight, the double walled microspheres with a dense core of POE and a porous shell of PLGA were formed. The formation of the double walled POE/PLGA microspheres was analysed. Their in vitro degradation behavior was characterized by scanning electron microscopy, gel permeation chromatography, Fourier-transform infrared microscopy and nuclear magnetic resonance spectroscopy (NMR). It was found that compared to the neat POE or PLGA microspheres, distinct degradation mechanism was achieved in the double walled POE/PLGA microspheres system. The degradation of the POE core was accelerated due to the acidic microenvironment produced by the hydrolysis of the outer PLGA layer. The formation of hollow microspheres became pronounced after the first week in vitro. 1H NMR spectra showed that the POE core was completely degraded after 4 weeks. On the other hand, the outer PLGA layer experienced slightly retarded degradation after the POE core disappeared. PLGA in the double walled microspheres kept more than 32% of its initial molecular weight over a period of 7 weeks.

  7. Apparatus for integrating a rigid structure into a flexible wall of an inflatable structure

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher J. (Inventor); Patterson, Ross M. (Inventor); Spexarth, Gary R. (Inventor)

    2009-01-01

    For an inflatable structure having a flexible outer shell or wall structure having a flexible restraint layer comprising interwoven, load-bearing straps, apparatus for integrating one or more substantially rigid members into the flexible shell. For each rigid member, a corresponding opening is formed through the flexible shell for receiving the rigid member. A plurality of connection devices are mounted on the rigid member for receiving respective ones of the load-bearing straps. In one embodiment, the connection devices comprise inner connecting mechanisms and outer connecting mechanisms, the inner and outer connecting mechanisms being mounted on the substantially rigid structure and spaced along a peripheral edge portion of the structure in an interleafed array in which respective outer connecting mechanisms are interposed between adjacent pairs of inner connecting mechanisms, the outer connecting mechanisms projecting outwardly from the peripheral edge portion of the substantially rigid structure beyond the adjacent inner connecting mechanisms to form a staggered array of connecting mechanisms extending along the panel structure edge portion. In one embodiment, the inner and outer connecting mechanisms form part of an integrated, structure rotatably mounted on the rigid member peripheral edge portion.

  8. Systems to facilitate reducing flashback/flame holding in combustion systems

    DOEpatents

    Lacy, Benjamin Paul [Greer, SC; Kraemer, Gilbert Otto [Greer, SC; Varatharajan, Balachandar [Clifton Park, NY; Yilmaz, Ertan [Albany, NY; Zuo, Baifang [Simpsonville, SC

    2012-02-21

    A method for assembling a premixing injector is provided. The method includes providing a centerbody including a center axis and a radially outer surface, and providing an inlet flow conditioner. The inlet flow conditioner includes a radially outer wall, a radially inner wall, and an end wall coupled substantially perpendicularly between the outer wall and the inner wall. Each of the outer wall and the end wall include a plurality of openings defined therein. The outer wall, the inner wall, and the end wall define a first passage therebetween. The method also includes coupling the inlet flow conditioner to the centerbody such that the inlet flow conditioner substantially circumscribes the centerbody, such that the inner wall is substantially parallel to the centerbody outer surface, and such that a second passage is defined between the centerbody outer surface and the inner wall.

  9. Smooth- and rough-wall boundary layer structure from high spatial range particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Squire, D. T.; Morrill-Winter, C.; Hutchins, N.; Marusic, I.; Schultz, M. P.; Klewicki, J. C.

    2016-10-01

    Two particle image velocimetry arrangements are used to make true spatial comparisons between smooth- and rough-wall boundary layers at high Reynolds numbers across a very wide range of streamwise scales. Together, the arrangements resolve scales ranging from motions on the order of the Kolmogorov microscale to those longer than twice the boundary layer thickness. The rough-wall experiments were obtained above a continuous sandpaper sheet, identical to that used by Squire et al. [J. Fluid Mech. 795, 210 (2016), 10.1017/jfm.2016.196], and cover a range of friction and equivalent sand-grain roughness Reynolds numbers (12 000 ≲δ+≲ 18000, 62 ≲ks+≲104 ). The smooth-wall experiments comprise new and previously published data spanning 6500 ≲δ+≲17 000 . Flow statistics from all experiments show similar Reynolds number trends and behaviors to recent, well-resolved hot-wire anemometry measurements above the same rough surface. Comparisons, at matched δ+, between smooth- and rough-wall two-point correlation maps and two-point magnitude-squared coherence maps demonstrate that spatially the outer region of the boundary layer is the same between the two flows. This is apparently true even at wall-normal locations where the total (inner-normalized) energy differs between the smooth and rough wall. Generally, the present results provide strong support for Townsend's [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1956), Vol. 1] wall-similarity hypothesis in high Reynolds number fully rough boundary layer flows.

  10. Evidence for a Structural Role for Acid-Fast Lipids in Oocyst Walls of Cryptosporidium, Toxoplasma, and Eimeria

    PubMed Central

    Bushkin, G. Guy; Motari, Edwin; Carpentieri, Andrea; Dubey, Jitender P.; Costello, Catherine E.; Robbins, Phillips W.; Samuelson, John

    2013-01-01

    ABSTRACT Coccidia are protozoan parasites that cause significant human disease and are of major agricultural importance. Cryptosporidium spp. cause diarrhea in humans and animals, while Toxoplasma causes disseminated infections in fetuses and untreated AIDS patients. Eimeria is a major pathogen of commercial chickens. Oocysts, which are the infectious form of Cryptosporidium and Eimeria and one of two infectious forms of Toxoplasma (the other is tissue cysts in undercooked meat), have a multilayered wall. Recently we showed that the inner layer of the oocyst walls of Toxoplasma and Eimeria is a porous scaffold of fibers of β-1,3-glucan, which are also present in fungal walls but are absent from Cryptosporidium oocyst walls. Here we present evidence for a structural role for lipids in the oocyst walls of Cryptosporidium, Toxoplasma, and Eimeria. Briefly, oocyst walls of each organism label with acid-fast stains that bind to lipids in the walls of mycobacteria. Polyketide synthases similar to those that make mycobacterial wall lipids are abundant in oocysts of Toxoplasma and Eimeria and are predicted in Cryptosporidium. The outer layer of oocyst wall of Eimeria and the entire oocyst wall of Cryptosporidium are dissolved by organic solvents. Oocyst wall lipids are complex mixtures of triglycerides, some of which contain polyhydroxy fatty acyl chains like those present in plant cutin or elongated fatty acyl chains like mycolic acids. We propose a two-layered model of the oocyst wall (glucan and acid-fast lipids) that resembles the two-layered walls of mycobacteria (peptidoglycan and acid-fast lipids) and plants (cellulose and cutin). PMID:24003177

  11. Streak instability as an initiating mechanism of the large-scale motions in a turbulent channel flow

    NASA Astrophysics Data System (ADS)

    de Giovanetti, Matteo; Sung, Hyung Jin; Hwang, Yongyun

    2016-11-01

    The large-scale motions (or bulges) have often been believed to be formed via merge and/or growth of the near-wall hairpin vortical structures. Here, we report our observation that they can be directly generated by an instability of the amplified streaky motions in the outer region (i.e. very-large-scale motions) through the self-sustaining process. We design a LES-based numerical experiment in turbulent channel flow for Reτ = 2000 where a body forcing is implemented to artificially drive an infinitely long streaky motion in the outer layer. As the forcing amplitude is increased, it is found that a new energetic structure emerges at λx 3 4 h of the streamwise length (h is the half height of channel) particularly in the wall-normal and spanwise velocities. A careful statistical examination reveals that this structure is likely to be linked with the sinuous-mode streak instability of the amplified streak, consistent with previous theoretical studies. Application of dynamic mode decomposition to this instability further shows that the phase speed of this structure scales with the outer velocity and it is initiated around the critical layer of the streaky flow.

  12. Influence of strong perturbations on wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Buxton, O. R. H.; Ewenz Rocher, M.; Rodríguez-López, E.

    2018-01-01

    Single-point hot-wire measurements are made downstream of a series of spanwise repeating obstacles that are used to generate an artificially thick turbulent boundary layer. The measurements are made in the near field, in which the turbulent boundary layer is beginning to develop from the wall-bounded wakes of the obstacles. The recent paper of Rodríguez-López et al. [E. Rodríguez-López et al., Phys. Rev. Fluids 1, 074401 (2016), 10.1103/PhysRevFluids.1.074401] broadly categorized the mechanisms by which canonical turbulent boundary layers eventually develop from wall-bounded wakes into two distinct mechanisms, the wall-driven and wake-driven mechanisms. In the present work we attempt to identify the geometric parameters of tripping arrays that trigger these two mechanisms by examining the spectra of the streamwise velocity fluctuations and the intermittent outer region of the flow. Using a definition reliant upon the magnitude of the velocity fluctuations, an intermittency function is devised that can discriminate between turbulent and nonturbulent flow. These results are presented along with the spectra in order to try to ascertain which aspects of a trip's geometry are more likely to favor the wall-driven or wake-driven mechanism. The geometrical aspects of the trips tested are the aspect ratio, the total blockage, and the blockage at the wall. The results indicate that the presence, or not, of perforations is the most significant factor in affecting the flow downstream. The bleed of fluid through the perforations reenergizes the mean recirculation and leads to a narrower intermittent region with a more regular turbulent-nonturbulent interface. The near-wall turbulent motions are found to recover quickly downstream of all of the trips with a wall blockage of 50%, but a clear influence of the outer fluctuations, generated by the tip vortices of the trips, is observed in the near-wall region for the high total blockage trips. The trip with 100% wall blockage is found to modify the nature of the inner-wall peak of turbulent kinetic energy.

  13. The effects of streamwise concave curvature on turbulent boundary layer structure

    NASA Astrophysics Data System (ADS)

    Jeans, A. H.; Johnston, J. P.

    1982-06-01

    Concave curvature has a relatively large, unpredictable effect on turbulent boundary layers. Some, but not all previous studies suggest that a large-scale, stationary array of counter-rotating vortices exists within the turbulent boundary layer on a concave wall. The objective of the present study was to obtain a qualitative model of the flow field in order to increase our understanding of the underlying physics. A large free-surface water channel was constructed in order to perform a visual study of the flow. Streamwise components of mean velocity and turbulence intensity were measured using a hot film anemometer. The upstream boundary was spanwise uniform with a momentum thickness to radius of curvature of 0.05. Compared to flat wall flow, large-scale, randomly distributed sweeps and ejections were seen in the boundary layer on the concave wall. The sweeps appear to suppress the normal mechanism for turbulence production near the wall by inhibiting the bursting process. The ejections appear to enhance turbulence production in the outer layers as the low speed fluid convected from regions near the wall interacts with the higher speed fluid farther out. The large-scale structures did not occur at fixed spanwise locations, and could not be called roll cells or vortices.

  14. A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles.

    PubMed

    Singh, Bir; Avci, Utku; Eichler Inwood, Sarah E; Grimson, Mark J; Landgraf, Jeff; Mohnen, Debra; Sørensen, Iben; Wilkerson, Curtis G; Willats, William G T; Haigler, Candace H

    2009-06-01

    Cotton (Gossypium hirsutum) provides the world's dominant renewable textile fiber, and cotton fiber is valued as a research model because of its extensive elongation and secondary wall thickening. Previously, it was assumed that fibers elongated as individual cells. In contrast, observation by cryo-field emission-scanning electron microscopy of cotton fibers developing in situ within the boll demonstrated that fibers elongate within tissue-like bundles. These bundles were entrained by twisting fiber tips and consolidated by adhesion of a cotton fiber middle lamella (CFML). The fiber bundles consolidated via the CFML ultimately formed a packet of fiber around each seed, which helps explain how thousands of cotton fibers achieve their great length within a confined space. The cell wall nature of the CFML was characterized using transmission electron microscopy, including polymer epitope labeling. Toward the end of elongation, up-regulation occurred in gene expression and enzyme activities related to cell wall hydrolysis, and targeted breakdown of the CFML restored fiber individuality. At the same time, losses occurred in certain cell wall polymer epitopes (as revealed by comprehensive microarray polymer profiling) and sugars within noncellulosic matrix components (as revealed by gas chromatography-mass spectrometry analysis of derivatized neutral and acidic glycosyl residues). Broadly, these data show that adhesion modulated by an outer layer of the primary wall can coordinate the extensive growth of a large group of cells and illustrate dynamic changes in primary wall structure and composition occurring during the differentiation of one cell type that spends only part of its life as a tissue.

  15. Pressure Fluctuations Induced by a Hypersonic Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a spatially-developed Mach 5.86 turbulent boundary layer. The unsteady pressure field is analyzed at multiple wall-normal locations, including those at the wall, within the boundary layer (including inner layer, the log layer, and the outer layer), and in the free stream. The statistical and structural variations of pressure fluctuations as a function of wall-normal distance are highlighted. Computational predictions for mean velocity pro les and surface pressure spectrum are in good agreement with experimental measurements, providing a first ever comparison of this type at hypersonic Mach numbers. The simulation shows that the dominant frequency of boundary-layer-induced pressure fluctuations shifts to lower frequencies as the location of interest moves away from the wall. The pressure wave propagates with a speed nearly equal to the local mean velocity within the boundary layer (except in the immediate vicinity of the wall) while the propagation speed deviates from the Taylor's hypothesis in the free stream. Compared with the surface pressure fluctuations, which are primarily vortical, the acoustic pressure fluctuations in the free stream exhibit a significantly lower dominant frequency, a greater spatial extent, and a smaller bulk propagation speed. The freestream pressure structures are found to have similar Lagrangian time and spatial scales as the acoustic sources near the wall. As the Mach number increases, the freestream acoustic fluctuations exhibit increased radiation intensity, enhanced energy content at high frequencies, shallower orientation of wave fronts with respect to the flow direction, and larger propagation velocity.

  16. Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Zhang, X.; Nagata, K.

    2018-03-01

    The turbulent/non-turbulent interface (TNTI) detected in direct numerical simulations is studied for incompressible, temporally developing turbulent boundary layers at momentum thickness Reynolds number Reθ ≈ 2000. The outer edge of the TNTI layer is detected as an isosurface of the vorticity magnitude with the threshold determined with the dependence of the turbulent volume on a threshold level. The spanwise vorticity magnitude and passive scalar are shown to be good markers of turbulent fluids, where the conditional statistics on a distance from the outer edge of the TNTI layer are almost identical to the ones obtained with the vorticity magnitude. Significant differences are observed for the conditional statistics between the TNTI detected by the kinetic energy and vorticity magnitude. A widely used grid setting determined solely from the wall unit results in an insufficient resolution in a streamwise direction in the outer region, whose influence is found for the geometry of the TNTI and vorticity jump across the TNTI layer. The present results suggest that the grid spacing should be similar for the streamwise and spanwise directions. Comparison of the TNTI layer among different flows requires appropriate normalization of the conditional statistics. Reference quantities of the turbulence near the TNTI layer are obtained with the average of turbulent fluids in the intermittent region. The conditional statistics normalized by the reference turbulence characteristics show good quantitative agreement for the turbulent boundary layer and planar jet when they are plotted against the distance from the outer edge of the TNTI layer divided by the Kolmogorov scale defined for turbulent fluids in the intermittent region.

  17. Combining hydrothermal pretreatment with enzymes de-pectinates and exposes the innermost xyloglucan-rich hemicellulose layers of wine grape pomace.

    PubMed

    Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Vivier, Melané A

    2017-10-01

    Chardonnay grape pomace was treated with pressurized heat followed by enzymatic hydrolysis, with commercial or pure enzymes, in buffered conditions. The pomace was unfermented as commonly found for white winemaking wastes and treatments aimed to simulate biovalorization processing. Cell wall profiling techniques showed that the pretreatment led to depectination of the outer layers thereby exposing xylan polymers and increasing the extractability of arabinans, galactans, arabinogalactan proteins and mannans. This higher extractability is believed to be linked with partial degradation and opening-up of cell wall networks. Pectinase-rich enzyme preparations were presumably able to access the inner rhamnogalacturonan I dominant coating layers due to the hydrothermal pretreatment. Patterns of epitope abundance and the sequential release of cell wall polymers with specific combinations of enzymes led to a working model of the hitherto, poorly understood innermost xyloglucan-rich hemicellulose layers of unfermented grape pomace. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cell Envelope of Corynebacteria: Structure and Influence on Pathogenicity

    PubMed Central

    Burkovski, Andreas

    2013-01-01

    To date the genus Corynebacterium comprises 88 species. More than half of these are connected to human and animal infections, with the most prominent member of the pathogenic species being Corynebacterium diphtheriae, which is also the type species of the genus. Corynebacterium species are characterized by a complex cell wall architecture: the plasma membrane of these bacteria is followed by a peptidoglycan layer, which itself is covalently linked to a polymer of arabinogalactan. Bound to this, an outer layer of mycolic acids is found which is functionally equivalent to the outer membrane of Gram-negative bacteria. As final layer, free polysaccharides, glycolipids, and proteins are found. The composition of the different substructures of the corynebacterial cell envelope and their influence on pathogenicity are discussed in this paper. PMID:23724339

  19. Cell envelope of corynebacteria: structure and influence on pathogenicity.

    PubMed

    Burkovski, Andreas

    2013-01-01

    To date the genus Corynebacterium comprises 88 species. More than half of these are connected to human and animal infections, with the most prominent member of the pathogenic species being Corynebacterium diphtheriae, which is also the type species of the genus. Corynebacterium species are characterized by a complex cell wall architecture: the plasma membrane of these bacteria is followed by a peptidoglycan layer, which itself is covalently linked to a polymer of arabinogalactan. Bound to this, an outer layer of mycolic acids is found which is functionally equivalent to the outer membrane of Gram-negative bacteria. As final layer, free polysaccharides, glycolipids, and proteins are found. The composition of the different substructures of the corynebacterial cell envelope and their influence on pathogenicity are discussed in this paper.

  20. Advanced two-layer level set with a soft distance constraint for dual surfaces segmentation in medical images

    NASA Astrophysics Data System (ADS)

    Ji, Yuanbo; van der Geest, Rob J.; Nazarian, Saman; Lelieveldt, Boudewijn P. F.; Tao, Qian

    2018-03-01

    Anatomical objects in medical images very often have dual contours or surfaces that are highly correlated. Manually segmenting both of them by following local image details is tedious and subjective. In this study, we proposed a two-layer region-based level set method with a soft distance constraint, which not only regularizes the level set evolution at two levels, but also imposes prior information on wall thickness in an effective manner. By updating the level set function and distance constraint functions alternatingly, the method simultaneously optimizes both contours while regularizing their distance. The method was applied to segment the inner and outer wall of both left atrium (LA) and left ventricle (LV) from MR images, using a rough initialization from inside the blood pool. Compared to manual annotation from experience observers, the proposed method achieved an average perpendicular distance (APD) of less than 1mm for the LA segmentation, and less than 1.5mm for the LV segmentation, at both inner and outer contours. The method can be used as a practical tool for fast and accurate dual wall annotations given proper initialization.

  1. The growing outer epidermal wall: design and physiological role of a composite structure.

    PubMed

    Kutschera, U

    2008-04-01

    The cells of growing plant organs secrete an extracellular fibrous composite (the primary wall) that allows the turgid protoplasts to expand irreversibly via wall-yielding events, which are regulated by processes within the cytoplasm. The role of the epidermis in the control of stem elongation is described with special reference to the outer epidermal wall (OEW), which forms a 'tensile skin'. The OEW is much thicker and less extensible than the walls of the inner tissues. Moreover, in the OEW the amount of cellulose per unit wall mass is considerably greater than in the inner tissues. Ultrastructural studies have shown that the expanding OEW is composed of a highly ordered internal and a diffuse outer half, with helicoidally organized cellulose microfibrils in the inner (load-bearing) region of this tension-stressed organ wall. The structural and mechanical backbone of the wall consists of helicoids, i.e. layers of parallel, inextensible cellulose microfibrils. These 'plywood laminates' contain crystalline 'cables' orientated in all directions with respect to the axis of elongation (isotropic material). Cessation of cell elongation is accompanied by a loss of order, i.e. the OEW is a dynamic structure. Helicoidally arranged extracellular polymers have also been found in certain bacteria, algae, fungi and animals. In the insect cuticle crystalline cutin nanofibrils form characteristic 'OEW-like' herringbone patterns. Theoretical considerations, in vitro studies and computer simulations suggest that extracellular biological helicoids form by directed self-assembly of the crystalline biopolymers. This spontaneous generation of complex design 'without an intelligent designer' evolved independently in the protective 'skin' of plants, animals and many other organisms.

  2. Identification of Sporopollenin as the Outer Layer of Cell Wall in Microalga Chlorella protothecoides.

    PubMed

    He, Xi; Dai, Junbiao; Wu, Qingyu

    2016-01-01

    Chlorella protothecoides has been put forth as a promising candidate for commercial biodiesel production. However, the cost of biodiesel remains much higher than diesel from fossil fuel sources, partially due to the high costs of oil extraction from algae. Here, we identified the presence of a sporopollenin layer outside the polysaccharide cell wall; this was evaluated using transmission electron microscopy, 2-aminoethanol treatment, acetolysis, and Fourier Transform Infrared Spectroscopy. We also performed bioinformatics analysis of the genes of the C. protothecoides genome that are likely involved in sporopollenin synthesis, secretion, and translocation, and evaluated the expression of these genes via real-time PCR. We also found that that removal of this sporopollenin layer greatly improved the efficiency of oil extraction.

  3. An investigation of green iridescence on the mollusc Patella granatina

    NASA Astrophysics Data System (ADS)

    Brink, D. J.; van der Berg, N. G.

    2005-01-01

    In this paper we investigate the relatively rare phenomenon of iridescence on the outer surface of seashells (not the well known pearly inner surfaces). Using reflection spectroscopy and scanning electron microscopy we show that rows of iridescent green spots on the mollusc Patella granatina are caused by a thin-film stack buried about 100 µm below the rough outer surface of the shell. The high-density layers in the stack seem to be made of crystalline aragonite, but according to Raman spectroscopy and ellipsometry measurements the low-density layers as well as the bulk of the shell wall are a mixture of porous aragonite and organic materials such as carotenoids.

  4. Strategies To Discover the Structural Components of Cyst and Oocyst Walls

    PubMed Central

    Bushkin, G. Guy; Chatterjee, Aparajita; Robbins, Phillips W.

    2013-01-01

    Cysts of Giardia lamblia and Entamoeba histolytica and oocysts of Toxoplasma gondii and Cryptosporidium parvum are the infectious and sometimes diagnostic forms of these parasites. To discover the structural components of cyst and oocyst walls, we have developed strategies based upon a few simple assumptions. Briefly, the most abundant wall proteins are identified by monoclonal antibodies or mass spectrometry. Structural components include a sugar polysaccharide (chitin for Entamoeba, β-1,3-linked glucose for Toxoplasma, and β-1,3-linked GalNAc for Giardia) and/or acid-fast lipids (Toxoplasma and Cryptosporidium). Because Entamoeba cysts and Toxoplasma oocysts are difficult to obtain, studies of walls of nonhuman pathogens (E. invadens and Eimeria, respectively) accelerate discovery. Biochemical methods to dissect fungal walls work well for cyst and oocyst walls, although the results are often unexpected. For example, echinocandins, which inhibit glucan synthases and kill fungi, arrest the development of oocyst walls and block their release into the intestinal lumen. Candida walls are coated with mannans, while Entamoeba cysts are coated in a dextran-like glucose polymer. Models for cyst and oocyst walls derive from their structural components and organization within the wall. Cyst walls are composed of chitin fibrils and lectins that bind chitin (Entamoeba) or fibrils of the β-1,3-GalNAc polymer and lectins that bind the polymer (Giardia). Oocyst walls of Toxoplasma have two distinct layers that resemble those of fungi (β-1,3-glucan in the inner layer) or mycobacteria (acid-fast lipids in the outer layer). Oocyst walls of Cryptosporidium have a rigid bilayer of acid-fast lipids and inner layer of oocyst wall proteins. PMID:24096907

  5. Pulsatile flows and wall-shear stresses in models simulating normal and stenosed aortic arches

    NASA Astrophysics Data System (ADS)

    Huang, Rong Fung; Yang, Ten-Fang; Lan, Y.-K.

    2010-03-01

    Pulsatile aqueous glycerol solution flows in the models simulating normal and stenosed human aortic arches are measured by means of particle image velocimetry. Three transparent models were used: normal, 25% stenosed, and 50% stenosed aortic arches. The Womersley parameter, Dean number, and time-averaged Reynolds number are 17.31, 725, and 1,081, respectively. The Reynolds numbers based on the peak velocities of the normal, 25% stenosed, and 50% stenosed aortic arches are 2,484, 3,456, and 3,931, respectively. The study presents the temporal/spatial evolution processes of the flow pattern, velocity distribution, and wall-shear stress during the systolic and diastolic phases. It is found that the flow pattern evolving in the central plane of normal and stenosed aortic arches exhibits (1) a separation bubble around the inner arch, (2) a recirculation vortex around the outer arch wall upstream of the junction of the brachiocephalic artery, (3) an accelerated main stream around the outer arch wall near the junctions of the left carotid and the left subclavian arteries, and (4) the vortices around the entrances of the three main branches. The study identifies and discusses the reasons for the flow physics’ contribution to the formation of these features. The oscillating wall-shear stress distributions are closely related to the featured flow structures. On the outer wall of normal and slightly stenosed aortas, large wall-shear stresses appear in the regions upstream of the junction of the brachiocephalic artery as well as the corner near the junctions of the left carotid artery and the left subclavian artery. On the inner wall, the largest wall-shear stress appears in the region where the boundary layer separates.

  6. Distribution of alginate and cellulose and regulatory role of calcium in the cell wall of the brown alga Ectocarpus siliculosus (Ectocarpales, Phaeophyceae).

    PubMed

    Terauchi, Makoto; Nagasato, Chikako; Inoue, Akira; Ito, Toshiaki; Motomura, Taizo

    2016-08-01

    This work investigated a correlation between the three-dimensional architecture and compound-components of the brown algal cell wall. Calcium greatly contributes to the cell wall integrity. Brown algae have a unique cell wall consisting of alginate, cellulose, and sulfated polysaccharides. However, the relationship between the architecture and the composition of the cell wall is poorly understood. Here, we investigated the architecture of the cell wall and the effect of extracellular calcium in the sporophyte and gametophyte of the model brown alga, Ectocarpus siliculosus (Dillwyn) Lyngbye, using transmission electron microscopy, histochemical, and immunohistochemical studies. The lateral cell wall of vegetative cells of the sporophyte thalli had multilayered architecture containing electron-dense and negatively stained fibrils. Electron tomographic analysis showed that the amount of the electron-dense fibrils and the junctions was different between inner and outer layers, and between the perpendicular and tangential directions of the cell wall. By immersing the gametophyte thalli in the low-calcium (one-eighth of the normal concentration) artificial seawater medium, the fibrous layers of the lateral cell wall of vegetative cells became swollen. Destruction of cell wall integrity was also induced by the addition of sorbitol. The results demonstrated that electron-dense fibrils were composed of alginate-calcium fibrous gels, and electron negatively stained fibrils were crystalline cellulose microfibrils. It was concluded that the spatial arrangement of electron-dense fibrils was different between the layers and between the directions of the cell wall, and calcium was necessary for maintaining the fibrous layers in the cell wall. This study provides insights into the design principle of the brown algal cell wall.

  7. Mean turbulence statistics in boundary layers over high-porosity foams

    NASA Astrophysics Data System (ADS)

    Efstathiou, Christoph; Luhar, Mitul

    2018-04-01

    This paper reports turbulent boundary layer measurements made over open-cell reticulated foams with varying pore size and thickness, but constant porosity ($\\epsilon \\approx 0.97$). The foams were flush-mounted into a cutout on a flat plate. A Laser Doppler Velocimeter (LDV) was used to measure mean streamwise velocity and turbulence intensity immediately upstream of the porous section, and at multiple measurement stations along the porous substrate. The friction Reynolds number upstream of the porous section was $Re_\\tau \\approx 1690$. For all but the thickest foam tested, the internal boundary layer was fully developed by $<10 \\delta$ downstream from the porous transition, where $\\delta$ is the boundary layer thickness. Fully developed mean velocity profiles showed the presence of a substantial slip velocity at the porous interface ($>30\\%$ of the free stream velocity) and a mean velocity deficit relative to the canonical smooth-wall profile further from the wall. While the magnitude of the mean velocity deficit increased with average pore size, the slip velocity remained approximately constant. Fits to the mean velocity profile suggest that the logarithmic region is shifted relative to a smooth wall, and that this shift increases with pore size until it becomes comparable to substrate thickness $h$. For all foams, the turbulence intensity was found to be elevated further into the boundary layer to $y/ \\delta \\approx 0.2$. An outer peak in intensity was also evident for the largest pore sizes. Velocity spectra indicate that this outer peak is associated with large-scale structures resembling Kelvin-Helmholtz vortices that have streamwise length scale $2\\delta-4\\delta$. Skewness profiles suggest that these large-scale structures may have an amplitude-modulating effect on the interfacial turbulence.

  8. Four-wall turbine airfoil with thermal strain control for reduced cycle fatigue

    DOEpatents

    Cambell, Christian X

    2013-09-17

    A turbine airfoil (20B) with a thermal expansion control mechanism that increases the airfoil camber (60, 61) under operational heating. The airfoil has four-wall geometry, including pressure side outer and inner walls (26, 28B), and suction side outer and inner walls (32, 34B). It has near-wall cooling channels (31F, 31A, 33F, 33A) between the outer and inner walls. A cooling fluid flow pattern (50C, 50W, 50H) in the airfoil causes the pressure side inner wall (28B) to increase in curvature under operational heating. The pressure side inner wall (28B) is thicker than walls (26, 34B) that oppose it in camber deformation, so it dominates them in collaboration with the suction side outer wall (32), and the airfoil camber increases. This reduces and relocates a maximum stress area (47) from the suction side outer wall (32) to the suction side inner wall (34B, 72) and the pressure side outer wall (26).

  9. Molecular Characterization of the S-Layer Gene, sbpA, of Bacillus sphaericus CCM 2177 and Production of a Functional S-Layer Fusion Protein with the Ability To Recrystallize in a Defined Orientation while Presenting the Fused Allergen

    PubMed Central

    Ilk, Nicola; Völlenkle, Christine; Egelseer, Eva M.; Breitwieser, Andreas; Sleytr, Uwe B.; Sára, Margit

    2002-01-01

    The nucleotide sequence encoding the crystalline bacterial cell surface (S-layer) protein SbpA of Bacillus sphaericus CCM 2177 was determined by a PCR-based technique using four overlapping fragments. The entire sbpA sequence indicated one open reading frame of 3,804 bp encoding a protein of 1,268 amino acids with a theoretical molecular mass of 132,062 Da and a calculated isoelectric point of 4.69. The N-terminal part of SbpA, which is involved in anchoring the S-layer subunits via a distinct type of secondary cell wall polymer to the rigid cell wall layer, comprises three S-layer-homologous motifs. For screening of amino acid positions located on the outer surface of the square S-layer lattice, the sequence encoding Strep-tag I, showing affinity to streptavidin, was linked to the 5′ end of the sequence encoding the recombinant S-layer protein (rSbpA) or a C-terminally truncated form (rSbpA31-1068). The deletion of 200 C-terminal amino acids did not interfere with the self-assembly properties of the S-layer protein but significantly increased the accessibility of Strep-tag I. Thus, the sequence encoding the major birch pollen allergen (Bet v1) was fused via a short linker to the sequence encoding the C-terminally truncated form rSpbA31-1068. Labeling of the square S-layer lattice formed by recrystallization of rSbpA31-1068/Bet v1 on peptidoglycan-containing sacculi with a Bet v1-specific monoclonal mouse antibody demonstrated the functionality of the fused protein sequence and its location on the outer surface of the S-layer lattice. The specific interactions between the N-terminal part of SbpA and the secondary cell wall polymer will be exploited for an oriented binding of the S-layer fusion protein on solid supports to generate regularly structured functional protein lattices. PMID:12089001

  10. Coaxial fuel and air premixer for a gas turbine combustor

    DOEpatents

    York, William D; Ziminsky, Willy S; Lacy, Benjamin P

    2013-05-21

    An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.

  11. Time-evolution of uniform momentum zones in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Laskari, Angeliki; Hearst, R. Jason; de Kat, Roeland; Ganapathisubramani, Bharathram

    2016-11-01

    Time-resolved planar particle image velocimetry (PIV) is used to analyse the organisation and evolution of uniform momentum zones (UMZs) in a turbulent boundary layer. Experiments were performed in a recirculating water tunnel on a streamwise-wall-normal plane extending approximately 0 . 5 δ × 1 . 8 δ , in x and y, respectively. In total 400,000 images were captured and for each of the resulting velocity fields, local peaks in the probability density distribution of the streamwise velocity were detected, indicating the instantaneous presence of UMZs throughout the boundary layer. The main characteristics of these zones are outlined and more specifically their velocity range and wall-normal extent. The variation of these characteristics with wall normal distance and total number of zones are also discussed. Exploiting the time information available, time-scales of zones that have a substantial coherence in time are analysed and results show that the zones' lifetime is dependent on both their momentum deficit level and the total number of zones present. Conditional averaging of the flow statistics seems to further indicate that a large number of zones is the result of a wall-dominant mechanism, while the opposite implies an outer-layer dominance.

  12. Theoretical Study of α-V2O5 -Based Double-Wall Nanotubes.

    PubMed

    Porsev, Vitaly V; Bandura, Andrei V; Evarestov, Robert A

    2015-10-05

    First-principles calculations of the atomic and electronic structure of double-wall nanotubes (DWNTs) of α-V2 O5 are performed. Relaxation of the DWNT structure leads to the formation of two types of local regions: 1) bulk-type regions and 2) puckering regions. Calculated total density of states (DOS) of DWNTs considerably differ from that of single-wall nanotubes and the single layer, as well as from the DOS of the bulk and double layer. Small shoulders that appear on edges of valence and conduction bands result in a considerable decrease in the band gaps of the DWNTs (up to 1 eV relative to the single-layer gaps). The main reason for this effect is the shift of the inner- and outer-wall DOS in opposite directions on the energetic scale. The electron density corresponding to shoulders at the conduction-band edges is localized on vanadium atoms of the bulk-type regions, whereas the electron density corresponding to shoulders at the valence-band edges belongs to oxygen atoms of both regions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A perspective on coherent structures and conceptual models for turbulent boundary layer physics

    NASA Technical Reports Server (NTRS)

    Robinson, Stephen K.

    1990-01-01

    Direct numerical simulations of turbulent boundary layers have been analyzed to develop a unified conceptual model for the kinematics of coherent motions in low Reynolds number canonical turbulent boundary layers. All classes of coherent motions are considered in the model, including low-speed streaks, ejections and sweeps, vortical structures, near-wall and outer-region shear layers, sublayer pockets, and large-scale outer-region eddies. The model reflects the conclusions from the study of the simulated boundary layer that vortical structures are directly associated with the production of turbulent shear stresses, entrainment, dissipation of turbulence kinetic energy, and the fluctuating pressure field. These results, when viewed from the perspective of the large body of published work on the subject of coherent motions, confirm that vortical structures may be considered the central dynamic element in the maintenance of turbulence in the canonical boundary layer. Vortical structures serve as a framework on which to construct a unified picture of boundary layer structure, providing a means to relate the many known structural elements in a consistent way.

  14. Vacuum Plasma Spraying Replaces Electrodeposition

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Power, Chris; Burns, David H.; Daniel, Ron; Mckechnie, Timothy N.

    1992-01-01

    Vacuum plasma spraying used to fabricate large parts with complicated contours and inner structures, without uninspectable welds. Reduces time, and expense of fabrication. Wall of combustion chamber built up inside of outer nickel-alloy jacket by plasma spraying. Particles of metal sprayed partially melted in plasma gun and thrown at supersonic speed toward deposition surface. Vacuum plasma-spray produces stronger bond between the grooves and covering layer completing channels and wall of combustion chamber. In tests, bond withstood pressure of 20 kpsi, three times allowable limit by old method.

  15. Effect of Steel Framing for Securing Drywall Panels on Thermal and Humidity Parameters of the Outer Walls

    NASA Astrophysics Data System (ADS)

    Major, Maciej; Kosiń, Mariusz

    2017-12-01

    The paper analyses the effect of steel framing used to secure drywall panels on thermal and humidity properties of outer walls. In the practice of building a light structure, the most popular components are steel and wood studs. They are used to obtain framing for building a wall (an outer wall in this study). Analysis presented in this study concerned the corner of the outer wall build using the technology of light steel framing. Computer simulation was used to perform thermal and humidity analysis for the joint of the outer wall.

  16. Turbine stator vane segment having internal cooling circuits

    DOEpatents

    Jones, Raymond Joseph; Burns, James Lee; Bojappa, Parvangada Ganapathy; Jones, Schotsch Margaret

    2003-01-01

    A turbine stator vane includes outer and inner walls each having outer and inner chambers and a vane extending between the outer and inner walls. The vane includes first, second, third, fourth and fifth cavities for flowing a cooling medium. The cooling medium enters the outer chamber of the outer wall, flows through an impingement plate for impingement cooling of the outer band wall defining in part the hot gas path and through openings in the first, second and fourth cavities for flow radially inwardly, cooling the vane. The spent cooling medium flows into the inner wall and inner chamber for flow through an impingement plate radially outwardly to cool the inner wall. The spent cooling medium flows through the third cavity for egress from the turbine vane segment from the outer wall. The first, second or third cavities contain inserts having impingement openings for impingement cooling of the vane walls. The fifth cavity provides air cooling for the trailing edge.

  17. Effects of cell wall components on the functionality of wheat gluten.

    PubMed

    Autio, K

    2006-01-01

    Normal white wheat flours and especially whole meal flour contain solids from the inner endosperm cell walls, from germ, aleurone layer and the outer layers of cereal grains. These solids can prevent either gluten formation or gas cell structure. The addition of small amounts of pericarp layers (1-2%) to wheat flour had a marked detrimental effect on loaf volume. Microstructural studies indicated that in particular the epicarp hairs appeared to disturb the gas cell structure. The detrimental effects of insoluble cell walls can be prevented by using endoxylanases. It has been shown that some oxidative enzymes, naturally present in flour or added to the dough, will oxidise water-extractable arabinoxylans via ferulic acid bridges, and the resulting arabinoxylan gel will hinder gluten formation. The negative effects of water-unextractable arabinoxylans on gluten yield and rheological properties can be compensated by the addition of ferulic acid. Free ferulic acid can probably prevent arabinoxylan cross-linking via ferulic acid.

  18. Directional moisture transfer through a wild silkworm cocoon wall.

    PubMed

    Jin, Xing; Zhang, Jin; Gao, Weimin; Du, Shan; Li, Jingliang; Wang, Xungai

    2016-06-25

    A silkworm cocoon is a porous biological structure with multiple protective functions. In the current work, the authors have used both experimental and numerical methods to reveal the unique moisture transfer characteristics through a wild Antheraea pernyi silkworm cocoon wall, in comparison with the long-domesticated Bombyx mori silkworm cocoon walls. The water vapor transmission and water vapor permeability (WVP) properties show that the A. pernyi cocoons exhibit directional moisture transfer behavior, with easier moisture transfer from inside out than outside in [e.g., the average WVP is 0.057 g/(h m bar) from inside out and is 0.034 g/(h m bar) from outside in]. Numerical analysis shows that the cubic mineral crystals in the outer section of the A. pernyi cocoon wall create a rough surface that facilitates air turbulence and promotes disturbance amplitude of the flow field, leading to lengthened water vapor transfer path and increased tortuosity of the moist air. It also indicates the vortex of water vapor can be generated in the outer section of cocoon wall, which increases the diffusion distance of water vapor and enhances the turbulence kinetic energy and turbulence eddy dissipation, signifying higher moisture resistance in the outer section. The difference in moisture resistance of the multiple A. pernyi cocoon layers is largely responsible for the unique directional moisture transfer behavior of this wild silkworm cocoon. These findings may inspire a biomimicry approach to develop novel lightweight moisture management materials and structures.

  19. Bark structure of the southern pines

    Treesearch

    Elaine T. Howard

    1971-01-01

    The living inner bark is composed of thin-walled elements - soeve cells, albuminous cells, longitudinal and ray parenchyma, and epithelial cells. the rhytidome or outer bark is dead and has alternating areas of distorted phloem enclosed by periderm layers. Periderms consist of phellogen and its derivative cells -- phelloderm and phellem. Phelloderm cells, to the inside...

  20. In Vivo Evaluation of Short-Term Performance of New Three-Layer Collagen-Based Vascular Graft Designed for Low-Flow Peripheral Vascular Reconstructions

    PubMed Central

    Grus, Tomas; Mlcek, Mikulas; Chlup, Hynek; Honsova, Eva; Spacek, Miroslav; Burgetova, Andrea; Lindner, Jaroslav

    2018-01-01

    Aim The aim of this study was to evaluate short-term patency of the new prosthetic graft and its structural changes after explantation. Methods The study team developed a three-layer conduit composed of a scaffold made from polyester coated with collagen from the inner and outer side with an internal diameter of 6 mm. The conduit was implanted as a bilateral bypass to the carotid artery in 7 sheep and stenosis was created in selected animals. After a period of 161 days, the explants were evaluated as gross and microscopic specimens. Results The initial flow rate (median ± IQR) in grafts with and without artificial stenosis was 120 ± 79 ml/min and 255 ± 255 ml/min, respectively. Graft occlusion occurred after 99 days in one of 13 conduits (patency rate: 92%). Wall-adherent thrombi occurred only in sharp curvatures in two grafts. Microscopic evaluation showed good engraftment and preserved structure in seven conduits; inflammatory changes with foci of bleeding, necrosis, and disintegration in four conduits; and narrowing of the graft due to thickening of the wall with multifocal separation of the outer layer in two conduits. Conclusions This study demonstrates good short-term patency rates of a newly designed three-layer vascular graft even in low-flow conditions in a sheep model. PMID:29682536

  1. In Vivo Evaluation of Short-Term Performance of New Three-Layer Collagen-Based Vascular Graft Designed for Low-Flow Peripheral Vascular Reconstructions.

    PubMed

    Grus, Tomas; Lambert, Lukas; Mlcek, Mikulas; Chlup, Hynek; Honsova, Eva; Spacek, Miroslav; Burgetova, Andrea; Lindner, Jaroslav

    2018-01-01

    The aim of this study was to evaluate short-term patency of the new prosthetic graft and its structural changes after explantation. The study team developed a three-layer conduit composed of a scaffold made from polyester coated with collagen from the inner and outer side with an internal diameter of 6 mm. The conduit was implanted as a bilateral bypass to the carotid artery in 7 sheep and stenosis was created in selected animals. After a period of 161 days, the explants were evaluated as gross and microscopic specimens. The initial flow rate (median ± IQR) in grafts with and without artificial stenosis was 120 ± 79 ml/min and 255 ± 255 ml/min, respectively. Graft occlusion occurred after 99 days in one of 13 conduits (patency rate: 92%). Wall-adherent thrombi occurred only in sharp curvatures in two grafts. Microscopic evaluation showed good engraftment and preserved structure in seven conduits; inflammatory changes with foci of bleeding, necrosis, and disintegration in four conduits; and narrowing of the graft due to thickening of the wall with multifocal separation of the outer layer in two conduits. This study demonstrates good short-term patency rates of a newly designed three-layer vascular graft even in low-flow conditions in a sheep model.

  2. Method to produce large, uniform hollow spherical shells

    DOEpatents

    Hendricks, C.D.

    1983-09-26

    The invention is a method to produce large uniform hollow spherical shells by (1) forming uniform size drops of heat decomposable or vaporizable material, (2) evaporating the drops to form dried particles, (3) coating the dried particles with a layer of shell forming material and (4) heating the composite particles to melt the outer layer and to decompose or vaporize the inner particle to form an expanding inner gas bubble. The expanding gas bubble forms the molten outer layer into a shell of relatively large diameter. By cycling the temperature and pressure on the molten shell, nonuniformities in wall thickness can be reduced. The method of the invention is utilized to produce large uniform spherical shells, in the millimeter to centimeter diameter size range, from a variety of materials and of high quality, including sphericity, concentricity and surface smoothness, for use as laser fusion or other inertial confinement fusion targets as well as other applications.

  3. Methods and systems to facilitate reducing NO.sub.x emissions in combustion systems

    DOEpatents

    Lacy, Benjamin Paul [Greer, SC; Kraemer, Gilbert Otto [Greer, SC; Varatharajan, Balachandar [Clifton Park, NY; Yilmaz, Ertan [Albany, NY; Lipinski, John Joseph [Simpsonville, SC; Ziminsky, Willy Steve [Simpsonville, SC

    2011-02-15

    A method for assembling a gas turbine combustor system is provided. The method includes providing a combustion liner including a center axis, an outer wall, a first end, and a second end. The outer wall is orientated substantially parallel to the center axis. The method also includes coupling a transition piece to the liner second end. The transition piece includes an outer wall. The method further includes coupling a plurality of lean-direct injectors along at least one of the liner outer wall and the transition piece outer wall such that the injectors are spaced axially apart along the wall.

  4. The experimental vibrational infrared spectrum of lemon peel and simulation of spectral properties of the plant cell wall

    NASA Astrophysics Data System (ADS)

    Berezin, K. V.; Shagautdinova, I. T.; Chernavina, M. L.; Novoselova, A. V.; Dvoretskii, K. N.; Likhter, A. M.

    2017-09-01

    The experimental vibrational IR spectra of the outer part of lemon peel are recorded in the range of 3800-650 cm-1. The effect of artificial and natural dehydration of the peel on its vibrational spectrum is studied. It is shown that the colored outer layer of lemon peel does not have a noticeable effect on the vibrational spectrum. Upon 28-day storage of a lemon under natural laboratory conditions, only sequential dehydration processes are reflected in the vibrational spectrum of the peel. Within the framework of the theoretical DFT/B3LYP/6-31G(d) method, a model of a plant cell wall is developed consisting of a number of polymeric molecules of dietary fibers like cellulose, hemicellulose, pectin, lignin, some polyphenolic compounds (hesperetin glycoside-flavonoid), and a free water cluster. Using a supermolecular approach, the spectral properties of the wall of a lemon peel cell was simulated, and a detailed theoretical interpretation of the recorded vibrational spectrum is given.

  5. Microanalysis of plant cell wall polysaccharides.

    PubMed

    Obel, Nicolai; Erben, Veronika; Schwarz, Tatjana; Kühnel, Stefan; Fodor, Andrea; Pauly, Markus

    2009-09-01

    Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first isolating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apoplastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.

  6. Cooled airfoil in a turbine engine

    DOEpatents

    Vitt, Paul H; Kemp, David A; Lee, Ching-Pang; Marra, John J

    2015-04-21

    An airfoil in a gas turbine engine includes an outer wall and an inner wall. The outer wall includes a leading edge, a trailing edge opposed from the leading edge in a chordal direction, a pressure side, and a suction side. The inner wall is coupled to the outer wall at a single chordal location and includes portions spaced from the pressure and suction sides of the outer wall so as to form first and second gaps between the inner wall and the respective pressure and suction sides. The inner wall defines a chamber therein and includes openings that provide fluid communication between the respective gaps and the chamber. The gaps receive cooling fluid that provides cooling to the outer wall as it flows through the gaps. The cooling fluid, after traversing at least substantial portions of the gaps, passes into the chamber through the openings in the inner wall.

  7. Large-eddy simulations of adverse pressure gradient turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Bobke, Alexandra; Vinuesa, Ricardo; Örlü, Ramis; Schlatter, Philipp

    2016-04-01

    Adverse pressure-gradient (APG) turbulent boundary layers (TBL) are studied by performing well-resolved large-eddy simulations. The pressure gradient is imposed by defining the free-stream velocity distribution with the description of a power law. Different inflow conditions, box sizes and upper boundary conditions are tested in order to determine the final set-up. The statistics of turbulent boundary layers with two different power-law coefficients and thus magnitudes of adverse pressure gradients are then compared to zero pressure-gradient (ZPG) data. The effect of the APG on TBLs is manifested in the mean flow through a much more prominent wake region and in the Reynolds stresses through the existence of an outer peak. The pre-multiplied energy budgets show that more energy is transported from the near-wall region to farther away from the wall.

  8. F-actin distribution and function during sexual development in Eimeria maxima.

    PubMed

    Frölich, Sonja; Wallach, Michael

    2015-06-01

    To determine the involvement of the actin cytoskeleton in macrogametocyte growth and oocyst wall formation, freshly purified macrogametocytes and oocysts were stained with Oregon Green 514 conjugated phalloidin to visualize F-actin microfilaments, while Evans blue staining was used to detect type 1 wall forming bodies (WFB1s) and the outer oocyst wall. The double-labelled parasites were then analysed at various stages of sexual development using three-dimensional confocal microscopy. The results showed F-actin filaments were distributed throughout the entire cytoplasm of mature Eimeria maxima macrogametocytes forming a web-like meshwork of actin filaments linking the type 1 WFBs together into structures resembling 'beads on a string'. At the early stages of oocyst wall formation, F-actin localization changed in alignment with the egg-shaped morphology of the forming oocysts with F-actin microfilaments making direct contact with the WFB1s. In tissue oocysts, the labelled actin cytoskeleton was situated underneath the forming outer layer of the oocyst wall. Treatment of macrogametocytes in vitro with the actin depolymerizing agents, Cytochalasin D and Latrunculin, led to a reduction in the numbers of mature WFB1s in the cytoplasm of the developing macrogametocytes, indicating that the actin plays an important role in WFB1 transport and oocyst wall formation in E. maxima.

  9. Electrochemical cell having cylindrical electrode elements

    DOEpatents

    Nelson, Paul A.; Shimotake, Hiroshi

    1982-01-01

    A secondary, high temperature electrochemical cell especially adapted for lithium alloy negative electrodes, transition metal chalcogenide positive electrodes and alkali metal halide or alkaline earth metal halide electrolyte is disclosed. The cell is held within an elongated cylindrical container in which one of the active materials is filled around the outside surfaces of a plurality of perforate tubular current collectors along the length of the container. Each of the current collector tubes contain a concentric tubular layer of electrically insulative ceramic as an interelectrode separator. The active material of opposite polarity in elongated pin shape is positioned longitudinally within the separator layer. A second electrically conductive tube with perforate walls can be swagged or otherwise bonded to the outer surface of the pin as a current collector and the electrically insulative ceramic layer can be coated or otherwise layered onto the outer surface of this second current collector. Alternatively, the central pin electrode can include an axial core as a current collector.

  10. The plant cell wall in the feeding sites of cyst nematodes.

    PubMed

    Bohlmann, Holger; Sobczak, Miroslaw

    2014-01-01

    Plant parasitic cyst nematodes (genera Heterodera and Globodera) are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2) and migrate intracellularly toward the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC) within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.

  11. Flow and heat transfer in a curved channel

    NASA Technical Reports Server (NTRS)

    Brinich, P. F.; Graham, R. W.

    1977-01-01

    Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.

  12. Changes of myoid and endothelial cells in the peritubular wall during contraction of the seminiferous tubule.

    PubMed

    Losinno, Antonella D; Sorrivas, Viviana; Ezquer, Marcelo; Ezquer, Fernando; López, Luis A; Morales, Alfonsina

    2016-08-01

    The wall of the seminiferous tubule in rodents consists of an inner layer of myoid cells covered by an outer layer of endothelial cells. Myoid cells are a type of smooth muscle cell containing α-actin filaments arranged in two independent layers that contract when stimulated by endothelin-1. The irregular surface relief of the tubular wall is often considered a hallmark of contraction induced by a variety of stimuli. We examine morphological changes of the rat seminiferous tubule wall during contraction by a combination of light, confocal, transmission and scanning electron microscopy. During ET-1-induced contraction, myoid cells changed from a flat to a conical shape, but their actin filaments remained in independent layers. As a consequence of myoid cell contraction, the basement membrane became wavy, orientation of collagen fibers in the extracellular matrix was altered and the endothelial cell layer became folded. To observe the basement of the myoid cell cone, the endothelial cell monolayer was removed by collagenase digestion prior to SEM study. In contracted tubules, it is possible to distinguish cell relief: myoid cells have large folds on the external surface oriented parallel to the tubular axis, whereas endothelial cells have numerous cytoplasmic projections facing the interstitium. The myoid cell cytoskeleton is unusual in that the actin filaments are arranged in two orthogonal layers, which adopt differing shapes during contraction with myoid cells becoming cone-shaped. This arrangement impacts on other components of the seminiferous tubule wall and affects the propulsion of the tubular contents to the rete testis.

  13. Liquid metal reactor air cooling baffle

    DOEpatents

    Hunsbedt, Anstein

    1994-01-01

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat.

  14. Liquid metal reactor air cooling baffle

    DOEpatents

    Hunsbedt, A.

    1994-08-16

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat. 3 figs.

  15. Measurements of the turbulent transport of heat and momentum in convexly curved boundary layers - Effects of curvature, recovery and free-stream turbulence

    NASA Technical Reports Server (NTRS)

    Kim, J.; Simon, T. W.

    1987-01-01

    The effects of streamwise convex curvature, recovery, and freestream turbulence intensity on the turbulent transport of heat and momentum in a mature boundary layer are studied using a specially designed three-wire hot-wire probe. Increased freestream turbulence is found to increase the profiles throughout the boundary layer on the flat developing wall. Curvature effects were found to dominate turbulence intensity effects for the present cases considered. For the higher TI (turbulence intensity) case, negative values of the turbulent Prandtl number are found in the outer half of the boundary layer, indicating a breakdown in Reynolds analogy.

  16. Rapid prototyping of a double-layer polyurethane-collagen conduit for peripheral nerve regeneration.

    PubMed

    Cui, Tongkui; Yan, Yongnian; Zhang, Renji; Liu, Li; Xu, Wei; Wang, Xiaohong

    2009-03-01

    A new technique for preparing double-layer polyurethane (PU)-collagen nerve conduits for peripheral nerve repair via a double-nozzle, low-temperature, deposition manufacturing (DLDM) system has been developed. The DLDM system is based on a digital prototyping approach, and uses a combination of thermally induced phase separation and freeze-drying. With this system, two kinds of biomaterials with different properties can be combined to produce scaffold structures with good biocompatibility in the inner layer and with the desired mechanical strength protruded by the outer. The forming precision is high, the wall thickness can be controlled, and a tight connection between the two layers can be achieved. The effects of changing the processing parameters and the material temperature on the structure of the scaffolds have been investigated. Additionally, the effect of material concentration on the mechanical strength and hydrophilic properties of the scaffolds has also been studied. Ideal peripheral nerve repair conduits, comprising an outer microporous layer of PU and internal oriented filaments of collagen, have been manufactured through optimizing the processing parameters and the biomaterial concentrations.

  17. What are we learning from simulating wall turbulence?

    PubMed

    Jiménez, Javier; Moser, Robert D

    2007-03-15

    The study of turbulence near walls has experienced a renaissance in the last decade, largely owing to the availability of high-quality numerical simulations. The viscous and buffer layers over smooth walls are essentially independent of the outer flow, and there is a family of numerically exact nonlinear structures that account for about half of the energy production and dissipation. The rest can be modelled by their unsteady bursting. Many characteristics of the wall layer, such as the dimensions of the dominant structures, are well predicted by those models, which were essentially completed in the 1990s after the increase in computer power made the kinematic simulations of the late 1980s cheap enough to undertake dynamic experiments.Today, we are at the early stages of simulating the logarithmic (or overlap) layer, and a number of details regarding its global properties are becoming clear. For instance, a finite Reynolds number correction to the logarithmic law has been validated in turbulent channels. This has allowed upper and lower limits of the overlap region to be clarified, with both upper and lower bounds occurring at much larger distances from the wall than commonly assumed. A kinematic picture of the various cascades present in this part of the flow is also beginning to emerge. Dynamical understanding can be expected in the next decade.

  18. The Mnn2 Mannosyltransferase Family Modulates Mannoprotein Fibril Length, Immune Recognition and Virulence of Candida albicans

    PubMed Central

    Hall, Rebecca A.; Bates, Steven; Lenardon, Megan D.; MacCallum, Donna M.; Wagener, Jeanette; Lowman, Douglas W.; Kruppa, Michael D.; Williams, David L.; Odds, Frank C.; Brown, Alistair J. P.; Gow, Neil A. R.

    2013-01-01

    The fungal cell wall is the first point of interaction between an invading fungal pathogen and the host immune system. The outer layer of the cell wall is comprised of GPI anchored proteins, which are post-translationally modified by both N- and O-linked glycans. These glycans are important pathogen associated molecular patterns (PAMPs) recognised by the innate immune system. Glycan synthesis is mediated by a series of glycosyl transferases, located in the endoplasmic reticulum and Golgi apparatus. Mnn2 is responsible for the addition of the initial α1,2-mannose residue onto the α1,6-mannose backbone, forming the N-mannan outer chain branches. In Candida albicans, the MNN2 gene family is comprised of six members (MNN2, MNN21, MNN22, MNN23, MNN24 and MNN26). Using a series of single, double, triple, quintuple and sextuple mutants, we show, for the first time, that addition of α1,2-mannose is required for stabilisation of the α1,6-mannose backbone and hence regulates mannan fibril length. Sequential deletion of members of the MNN2 gene family resulted in the synthesis of lower molecular weight, less complex and more uniform N-glycans, with the sextuple mutant displaying only un-substituted α1,6-mannose. TEM images confirmed that the sextuple mutant was completely devoid of the outer mannan fibril layer, while deletion of two MNN2 orthologues resulted in short mannan fibrils. These changes in cell wall architecture correlated with decreased proinflammatory cytokine induction from monocytes and a decrease in fungal virulence in two animal models. Therefore, α1,2-mannose of N-mannan is important for both immune recognition and virulence of C. albicans. PMID:23633946

  19. Fuel injector for use in a gas turbine engine

    DOEpatents

    Wiebe, David J.

    2012-10-09

    A fuel injector in a combustor apparatus of a gas turbine engine. An outer wall of the injector defines an interior volume in which an intermediate wall is disposed. A first gap is formed between the outer wall and the intermediate wall. The intermediate wall defines an internal volume in which an inner wall is disposed. A second gap is formed between the intermediate wall and the inner wall. The second gap receives cooling fluid that cools the injector. The cooling fluid provides convective cooling to the intermediate wall as it flows within the second gap. The cooling fluid also flows through apertures in the intermediate wall into the first gap where it provides impingement cooling to the outer wall and provides convective cooling to the outer wall. The inner wall defines a passageway that delivers fuel into a liner downstream from a main combustion zone.

  20. Component with inspection-facilitating features

    DOEpatents

    Marra, John J; Zombo, Paul J

    2014-02-11

    A turbine airfoil can be formed with features to facilitate measurement of its wall thickness. An outer wall of the airfoil can include an outer surface and an inner surface. The outer surface of the airfoil can have an outer inspection target surface, and the inner surface of the airfoil can have an inner inspection target surface. The inner and outer target surfaces can define substantially flat regions in surfaces that are otherwise highly contoured. The inner and outer inspection target surfaces can be substantially aligned with each other. The inner and outer target surfaces can be substantially parallel to each other. As a result of these arrangements, a highly accurate measurement of wall thickness can be obtained. In one embodiment, the outer inspection target surface can be defined by an innermost surface of a groove formed in the outer surface of the outer wall of the airfoil.

  1. Apparatus and filtering systems relating to combustors in combustion turbine engines

    DOEpatents

    Johnson, Thomas Edward [Greer, SC; Zuo, Baifang [Simpsonville, SC; Stevenson, Christian Xavier [Inman, SC

    2012-07-24

    A combustor for a combustion turbine engine, the combustor that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; a screen; and a standoff comprising a raised area on an outer surface of the outer wall near the periphery of the windows; wherein the screen extends over the windows and is supported by the standoff in a raised position in relation to the outer surface of the outer wall and the windows.

  2. Prevention of intra-abdominal adhesion by bi-layer electrospun membrane.

    PubMed

    Jiang, Shichao; Wang, Wei; Yan, Hede; Fan, Cunyi

    2013-06-04

    The aim of this study was to compare the anti-adhesion efficacy of a bi-layer electrospun fibrous membrane consisting of hyaluronic acid-loaded poly(ε-caprolactone) (PCL) fibrous membrane as the inner layer and PCL fibrous membrane as the outer layer with a single-layer PCL electrospun fibrous membrane in a rat cecum abrasion model. The rat model utilized a cecal abrasion and abdominal wall insult surgical protocol. The bi-layer and PCL membranes were applied between the cecum and the abdominal wall, respectively. Control animals did not receive any treatment. After postoperative day 14, a visual semiquantitative grading scale was used to grade the extent of adhesion. Histological analysis was performed to reveal the features of adhesion tissues. Bi-layer membrane treated animals showed significantly lower adhesion scores than control animals (p < 0.05) and a lower adhesion score compared with the PCL membrane. Histological analysis of the bi-layer membrane treated rat rarely demonstrated tissue adhesion while that of the PCL membrane treated rat and control rat showed loose and dense adhesion tissues, respectively. Bi-layer membrane can efficiently prevent adhesion formation in abdominal cavity and showed a significantly decreased adhesion tissue formation compared with the control.

  3. Shipping container for fissile material

    DOEpatents

    Crowder, H.E.

    1984-12-17

    The present invention is directed to a shipping container for the interstate transportation of enriched uranium materials. The shipping container is comprised of a rigid, high-strength, cylindrical-shaped outer vessel lined with thermal insulation. Disposed inside the thermal insulation and spaced apart from the inner walls of the outer vessel is a rigid, high-strength, cylindrical inner vessel impervious to liquid and gaseous substances and having the inner surfaces coated with a layer of cadmium to prevent nuclear criticality. The cadmium is, in turn, lined with a protective shield of high-density urethane for corrosion and wear protection. 2 figs.

  4. A self-sustaining process model of inertial layer dynamics in high Reynolds number turbulent wall flows.

    PubMed

    Chini, G P; Montemuro, B; White, C M; Klewicki, J

    2017-03-13

    Field observations and laboratory experiments suggest that at high Reynolds numbers Re the outer region of turbulent boundary layers self-organizes into quasi-uniform momentum zones (UMZs) separated by internal shear layers termed 'vortical fissures' (VFs). Motivated by this emergent structure, a conceptual model is proposed with dynamical components that collectively have the potential to generate a self-sustaining interaction between a single VF and adjacent UMZs. A large-Re asymptotic analysis of the governing incompressible Navier-Stokes equation is performed to derive reduced equation sets for the streamwise-averaged and streamwise-fluctuating flow within the VF and UMZs. The simplified equations reveal the dominant physics within-and isolate possible coupling mechanisms among-these different regions of the flow.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  5. A self-sustaining process model of inertial layer dynamics in high Reynolds number turbulent wall flows

    PubMed Central

    Montemuro, B.; White, C. M.; Klewicki, J.

    2017-01-01

    Field observations and laboratory experiments suggest that at high Reynolds numbers Re the outer region of turbulent boundary layers self-organizes into quasi-uniform momentum zones (UMZs) separated by internal shear layers termed ‘vortical fissures’ (VFs). Motivated by this emergent structure, a conceptual model is proposed with dynamical components that collectively have the potential to generate a self-sustaining interaction between a single VF and adjacent UMZs. A large-Re asymptotic analysis of the governing incompressible Navier–Stokes equation is performed to derive reduced equation sets for the streamwise-averaged and streamwise-fluctuating flow within the VF and UMZs. The simplified equations reveal the dominant physics within—and isolate possible coupling mechanisms among—these different regions of the flow. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167583

  6. Structural investigation of re-deposited layers in JET

    NASA Astrophysics Data System (ADS)

    Likonen, J.; Vainonen-Ahlgren, E.; Khriachtchev, L.; Coad, J. P.; Rubel, M.; Renvall, T.; Arstila, K.; Hole, D. E.; Contributors to the EFDA-JET Work-programme

    2008-07-01

    JET Mk-II Gas Box divertor tiles exposed in 1998-2001 have been analysed with various ion beam techniques, secondary ion mass spectrometry (SIMS) and Raman spectroscopy. Inner divertor wall tiles removed in 2001 were covered with a duplex film. The inner layer was very rich in metallic impurities, with Be/C ˜ 1 and H-isotopes only present at low concentrations. The outer layer contained higher concentrations of D than normal for plasma-facing surfaces in JET (D/C ˜ 0.4), and Be/C ˜ 0.14. Raman and SIMS analyses show that the deposited films on inner divertor tiles are hydrogenated amorphous carbon with low sp 3 fractions. The deposits have polymeric structure and low density. Both Raman scattering and SIMS indicate that films on inner divertor wall Tiles 1 and 3, and on floor Tile 4 have some differences in the chemical structure of the deposited films

  7. Fluid flow induced by periodic temperature oscillation over a flat plate: Comparisons with the classical Stokes problems

    NASA Astrophysics Data System (ADS)

    Pal, Debashis; Chakraborty, Suman

    2015-05-01

    We delineate the dynamics of temporally and spatially periodic flow over a flat plate originating out of periodic thermoviscous expansion of the fluid, as a consequence of a thermal wave applied on the plate wall. We identify two appropriate length scales, namely, the wavelength of the temperature wave and the thermal penetration depth, so as to bring out the complex thermo-physical interaction between the fluid and the solid boundaries. Our results reveal that the entire thermal fluctuation and the subsequent thermoviscous actuation remain confined within a "thermo-viscous boundary layer." Based on the length scales and the analytical solution for the temperature field, we demarcate three different layers, namely, the wall layer (which is further sub-divided into various sub-layers, based on the temperature field), the intermediate layer, and the outer layer. We show that the interactions between the pressure oscillation and temperature-dependent viscosity yield a unidirectional time-averaged (mean) flow within the wall layer opposite to the direction of motion of the thermal wave. We also obtain appropriate scalings for the time-averaged velocity, which we further substantiate by full scale numerical simulations. Our analysis may constitute a new design basis for simultaneous control of the net throughput and mixing over a solid boundary, by the judicious employment of a traveling temperature wave.

  8. Film cooling air pocket in a closed loop cooled airfoil

    DOEpatents

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  9. Selective degradation of the recalcitrant cell wall of Scenedesmus quadricauda CASA CC202.

    PubMed

    Reshma, Ragini; Arumugam, Muthu

    2017-10-01

    An eco-friendly cell wall digestion strategy was developed to enhance the availability of nutritionally important bio molecules of edible microalgae and exploit them for cloning, transformation, and expression of therapeutic proteins. Microalgae are the source for many nutritionally important bioactive compounds and potential drugs. Even though edible microalgae are rich in nutraceutical, bioavailability of all these molecules is very less due to their rigid recalcitrant cell wall. For example, the cell wall of Scenedesmus quadricauda CASA CC202 is made up of three layers comprising of rigid outer pectin and inner cellulosic layer separated by a thin middle layer. In the present investigation, a comprehensive method has been developed for the selective degradation of S. quadricauda CASA CC202 cell wall, by employing both mechanical and enzymatic treatments. The efficiency of cell wall removal was evaluated by measuring total reducing sugar (TRS), tannic acid-ferric chloride staining, calcoflour white staining, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) analysis. It was confirmed that the yield of TRS increased from 129.82 mg/g in 14 h from pectinase treatment alone to 352.44 mg/g by combined sonication and enzymatic treatment within 12 h. As a result, the combination method was found to be effective for the selective degradation of S. quadricauda CASA CC202 cell wall. This study will form a base for our future works, where this will help to enhance the digestibility and availability of nutraceutically important proteins.

  10. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy.

    PubMed

    Zhang, Tian; Zheng, Yunzhen; Cosgrove, Daniel J

    2016-01-01

    We used atomic force microscopy (AFM), complemented with electron microscopy, to characterize the nanoscale and mesoscale structure of the outer (periclinal) cell wall of onion scale epidermis - a model system for relating wall structure to cell wall mechanics. The epidermal wall contains ~100 lamellae, each ~40 nm thick, containing 3.5-nm wide cellulose microfibrils oriented in a common direction within a lamella but varying by ~30 to 90° between adjacent lamellae. The wall thus has a crossed polylamellate, not helicoidal, wall structure. Montages of high-resolution AFM images of the newly deposited wall surface showed that single microfibrils merge into and out of short regions of microfibril bundles, thereby forming a reticulated network. Microfibril direction within a lamella did not change gradually or abruptly across the whole face of the cell, indicating continuity of the lamella across the outer wall. A layer of pectin at the wall surface obscured the underlying cellulose microfibrils when imaged by FESEM, but not by AFM. The AFM thus preferentially detects cellulose microfibrils by probing through the soft matrix in these hydrated walls. AFM-based nanomechanical maps revealed significant heterogeneity in cell wall stiffness and adhesiveness at the nm scale. By color coding and merging these maps, the spatial distribution of soft and rigid matrix polymers could be visualized in the context of the stiffer microfibrils. Without chemical extraction and dehydration, our results provide multiscale structural details of the primary cell wall in its near-native state, with implications for microfibrils motions in different lamellae during uniaxial and biaxial extensions. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  11. Autonomic innervation of the muscles in the wall of the bladder and proximal urethra of male rats.

    PubMed Central

    Watanabe, H; Yamamoto, T Y

    1979-01-01

    The muscular coat of the body of the rat bladder is innervated almost exclusively by cholinergic endings:adrenergic endings are rare. In the inner longitudinal muscle layer of the proximal urethra, 53% of 310 autonomic nerve endings observed in close relation to the smooth muscle cells were adrenergic and the remaining 47% cholinergic. The middle circular muscle layer of the proximal urethra was innervated predominantly by adrenergic endings: in this layer 86% of the total of 335 endings examined wre regarded as adrenergic. A similar predominantly adrenergic innervation was noted in the outer longitudinal layer of the proximal urethra. A number of striated muscle fibres arose from the outermost striated muscle layer of the proximal urethra and intruded deeply into the outer and middle smooth muscle layers. These intruding striated muscle fibres also received direct autonomic (mostly adrenergic) innervation. The significance of these findings in relation to the physiology of the lower urinary tracts is discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 PMID:489473

  12. Inner- and outer-wall sorting of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  13. Inner- and outer-wall sorting of double-walled carbon nanotubes.

    PubMed

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  14. Chirality correlation in double-wall carbon nanotubes as studied by electron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirahara, Kaori; Bandow, Shunji; Kociak, Mathieu

    2006-05-15

    Structural correlation between two adjacent graphitic layers in double-wall carbon nanotubes (DWNTs) was systematically examined by using electron diffraction. Chiral angles and tube diameters were carefully measured, and the chiral indices of individual DWNTs were accurately determined. As a result, it was found that the interlayer distances of DWNTs were widely distributed in the range between 0.34 and 0.38 nm. Chiralities of the inner and outer tubes tended to be distributed at higher chiral angles, approaching 30 deg., for the tubes with diameter D<{approx}3 nm. On the other hand, for the tubes with D>{approx}3 nm, the chiral angles were widelymore » distributed, covering the chiral map entirely. Therefore, we consider that tubes with small diameters have a tendency to form armchair type. Correlation of chiralities between the inner and outer tubes was found to be random.« less

  15. Cooling circuit for steam and air-cooled turbine nozzle stage

    DOEpatents

    Itzel, Gary Michael; Yu, Yufeng

    2002-01-01

    The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.

  16. Influence of the Secondary Cell Wall Polymer on the Reassembly, Recrystallization, and Stability Properties of the S-Layer Protein from Bacillus stearothermophilus PV72/p2

    PubMed Central

    Sára, Margit; Dekitsch, Christine; Mayer, Harald F.; Egelseer, Eva M.; Sleytr, Uwe B.

    1998-01-01

    The high-molecular-weight secondary cell wall polymer (SCWP) from Bacillus stearothermophilus PV72/p2 is mainly composed of N-acetylglucosamine (GlcNAc) and N-acetylmannosamine (ManNAc) and is involved in anchoring the S-layer protein via its N-terminal region to the rigid cell wall layer. In addition to this binding function, the SCWP was found to inhibit the formation of self-assembly products during dialysis of the guanidine hydrochloride (GHCl)-extracted S-layer protein. The degree of assembly (DA; percent assembled from total S-layer protein) that could be achieved strongly depended on the amount of SCWP added to the GHCl-extracted S-layer protein and decreased from 90 to 10% when the concentration of the SCWP was increased from 10 to 120 μg/mg of S-layer protein. The SCWP kept the S-layer protein in the water-soluble state and favored its recrystallization on solid supports such as poly-l-lysine-coated electron microscopy grids. Derived from the orientation of the base vectors of the oblique S-layer lattice, the subunits had bound with their charge-neutral outer face, leaving the N-terminal region with the polymer binding domain exposed to the ambient environment. From cell wall fragments about half of the S-layer protein could be extracted with 1 M GlcNAc, indicating that the linkage type between the S-layer protein and the SCWP could be related to that of the lectin-polysaccharide type. Interestingly, GlcNAc had an effect on the in vitro self-assembly and recrystallization properties of the S-layer protein that was similar to that of the isolated SCWP. The SCWP generally enhanced the stability of the S-layer protein against endoproteinase Glu-C attack and specifically protected a potential cleavage site in position 138 of the mature S-layer protein. PMID:9696762

  17. Asymptotic structure and similarity solutions for three-dimensional turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Degani, A. T.; Walker, J. D. A.

    1989-01-01

    The asymptotic structure of the three-dimensional turbulent boundary layer is investigated in the limit of large Reynolds numbers. A self-consistent, but relatively complex, two-layer structure exists and the simplest situation, corresponding to a plane of symmetry, is considered in this paper as a first step. The adjustment of the streamwise velocity to relative rest, through an outer defect layer and then an inner wall layer, is similar to that in two-dimensional flow. The adjustment of the cross-streamwise velocity is more complicated and it is shown that two terms in the expansion are required to obtain useful results, and in particular to obtain the velocity skew angle at the wall near the symmetry plane. The conditions under which self-similarity is achieved near a plane of symmetry are investigated. A set of ordinary differential equations is developed which describe the streamwise and cross-streamwise velocities near a plane of symmetry in a self-similar flow through two orders of magnitude. Calculated numerical solutions of these equations yield trends which are consistent with experimental observations.

  18. Stability characteristics of compressible boundary layers over thermo-mechanically compliant walls

    NASA Astrophysics Data System (ADS)

    Dettenrieder, Fabian; Bodony, Daniel

    2017-11-01

    Transition prediction at hypersonic flight conditions continues to be a challenge and results in conservative safety factors that increase vehicle weight. The weight and thus cost reduction of the outer skin panels promises significant impact; however, fluid-structure interaction due to unsteady perturbations in the laminar boundary layer regime has not been systematically studied at conditions relevant for reusable, hypersonic flight. In this talk, we develop and apply convective and global stability analyses for compressible boundary layers over thermo-mechanically compliant panels. This compliance is shown to change the convective stability of the boundary layer modes, with both stabilization and destabilization observed. Finite panel lengths are shown to affect the global stability properties of the boundary layer.

  19. Developing flow in S-shaped ducts. 2: Circular cross-section duct

    NASA Technical Reports Server (NTRS)

    Taylor, A. M. K. P.; Whitelaw, J. H.; Yianneskis, M.

    1984-01-01

    Laser-Doppler velocimetry measured the laminar and turbulent streamwise flow in a S-duct. The wall pressure distribution and one component of cross-stream velocity were also obtained for the turbulent flow case. Boundary layers near the duct inlet were about 25 percent of the hydraulic diameter in the laminar flow and varied around the periphery of the pipe between 10 percent and 20 percent in turbulent flow. Pressure-driven secondary flows develop in the first half of the S-duct and are attenuated and reversed in the second half. For both Reynolds numbers there is a region near the outer wall of the second half of the duct where the sign of the radial vorticity results in an enforcement of the secondary flow which was established in the first half of the S-duct. The core flow migrates, for both Reynolds numbers, to the outside wall of the first half and lies towards the inside wall of the second half of the S-duct at the outlet. The thinner inlet boundary layers in the turbulent flow give rise to weaker secondary motion.

  20. Characteristics of turbulence in boundary layer with zero pressure gradient

    NASA Technical Reports Server (NTRS)

    Klebanoff, P S

    1955-01-01

    The results of an experimental investigation of a turbulent boundary layer with zero pressure gradient are presented. Measurements with the hot-wire anemometer were made of turbulent energy and turbulent shear stress, probability density and flattening factor of u-fluctuation (fluctuation in x-direction), spectra of turbulent energy and shear stress, and turbulent dissipation. The importance of the region near the wall and the inadequacy of the concept of local isotropy are demonstrated. Attention is given to the energy balance and the intermittent character of the outer region of the boundary layer. Also several interesting features of the spectral distribution of the turbulent motions are discussed.

  1. Lunar Return Reentry Thermal Analysis of a Generic Crew Exploration Vehicle Wall Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Tran, Van T.; Bowles, Jeff

    2007-01-01

    Thermostructural analysis was performed on generic crew exploration vehicle (GCEV) heat shielded wall structures subjected to reentry heating rates based on five potential lunar return reentry trajectories. The GCEV windward outer wall is fabricated with a graphite/epoxy composite honeycomb sandwich panel and the inner wall with an aluminum honeycomb sandwich panel. The outer wall is protected with an ablative Avcoat-5026-39H/CG thermal protection system (TPS). A virtual ablation method (a graphical approximation) developed earlier was further extended, and was used to estimate the ablation periods, ablation heat loads, and the TPS recession layer depths. It was found that up to 83 95 percent of the total reentry heat load was dissipated in the TPS ablation process, leaving a small amount (3-15 percent) of the remaining total reentry heat load to heat the virgin TPS and maintain the TPS surface at the ablation temperature, 1,200 F. The GCEV stagnation point TPS recession layer depths were estimated to be in the range of 0.280-0.910 in, and the allowable minimum stagnation point TPS thicknesses that could maintain the substructural composite sandwich wall at the limit temperature of 300 F were found to be in the range of 0.767-1.538 in. Based on results from the present analyses, the lunar return abort ballistic reentry was found to be quite attractive because it required less TPS weight than the lunar return direct, the lunar return skipping, or the low Earth orbit guided reentry, and only 11.6 percent more TPS weight than the low Earth orbit ballistic reentry that will encounter a considerable weight penalty to obtain the Earth orbit. The analysis also showed that the TPS weight required for the lunar return skipping reentry was much more than the TPS weight necessary for any of the other reentry trajectories considered.

  2. Data-driven spectral filters for decomposing the streamwise turbulent kinetic energy in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Baars, Woutijn J.; Hutchins, Nicholas; Marusic, Ivan

    2017-11-01

    An organization in wall-bounded turbulence is evidenced by the classification of distinctly different flow structures, including large-scale motions such as hairpin packets and very large-scale motions or superstructures. In conjunction with less organized turbulence, these flow structures all contribute to the streamwise turbulent kinetic energy . Since different class structures comprise dissimilar scalings of their overlapping imprints in the streamwise velocity spectra, their coexistence complicates the interpretation of the wall-normal trend in and its Reynolds number dependence. Via coherence analyses of two-point data in boundary layers we derive spectral filters for stochastically decomposing the streamwise spectra into sub-components, representing different types of statistical flow structures. It is also explored how the decomposition reflects the spectral break-down following the modeling attempts of Perry et al. 1986 and Marusic & Perry 1995. In the process we reveal a universal wall-scaling for a portion of the outer-region turbulence that is coherent with the near-wall region for Reτ O(103) to O(106) , which is described as a wall-attached self-similar structure embedded within the logarithmic region.

  3. Flame holding tolerant fuel and air premixer for a gas turbine combustor

    DOEpatents

    York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

    2012-11-20

    A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

  4. The N-Linked Outer Chain Mannans and the Dfg5p and Dcw1p Endo-α-1,6-Mannanases Are Needed for Incorporation of Candida albicans Glycoproteins into the Cell Wall

    PubMed Central

    Ao, Jie; Chinnici, Jennifer L.; Maddi, Abhiram

    2015-01-01

    A biochemical pathway for the incorporation of cell wall protein into the cell wall of Neurospora crassa was recently proposed. In this pathway, the DFG-5 and DCW-1 endo-α-1,6-mannanases function to covalently cross-link cell wall protein-associated N-linked galactomannans, which are structurally related to the yeast outer chain mannans, into the cell wall glucan-chitin matrix. In this report, we demonstrate that the mannosyltransferase enzyme Och1p, which is needed for the synthesis of the N-linked outer chain mannan, is essential for the incorporation of cell wall glycoproteins into the Candida albicans cell wall. Using endoglycosidases, we show that C. albicans cell wall proteins are cross-linked into the cell wall via their N-linked outer chain mannans. We further demonstrate that the Dfg5p and Dcw1p α-1,6-mannanases are needed for the incorporation of cell wall glycoproteins into the C. albicans cell wall. Our results support the hypothesis that the Dfg5p and Dcw1p α-1,6-mannanases incorporate cell wall glycoproteins into the C. albicans cell wall by cross-linking outer chain mannans into the cell wall glucan-chitin matrix. PMID:26048011

  5. The second species of Gromia (Protista) from the deep sea: its natural history and association with the Pakistan margin oxygen minimum zone.

    PubMed

    Gooday, Andrew J; Bowser, Samuel S

    2005-06-01

    We describe a gromiid protist Gromia pyriformis sp. nov., from bathyal depths on the Pakistan margin (NE Arabian Sea), an area characterised by a well-developed Oxygen Minimum Zone (OMZ). The new species is smaller (length usually <1 mm) than the only other described deep-sea gromiid species (Gromia sphaerica) or the well-known coastal species Gromia oviformis. Its identification as a gromiid is based on the test-wall ultrastructure. This includes (i) an outer wall (165-300 nm thick) limited by an electron-opaque layer and perforated by pore structures which typically extend through its entire thickness, and (ii) inner "honeycomb membrane" structures which form a discontinuous sheet (18-20 nm thick) lying parallel to the outer wall. An outermost glycocalyx (approximately 75 nm thick), not observed in other gromiid species, is also present and imparts a finely granular appearance to the outer test surface, as seen by Scanning Electron Microscopy (SEM). Numerous rod-shaped prokaryotes are attached to the exterior of the glycocalyx. Gromia pyriformis sp. nov. typically occurs above the sediment-water interface, attached to the large arborescent foraminiferan Pelosina sp. It is confined to a very narrow bathymetric zone (approximately 1000 m water depth) in the lower portion of the OMZ, where bottom-water oxygen concentrations are approximately 0.2 ml l(-1).

  6. Reynolds number and roughness effects on turbulent stresses in sandpaper roughness boundary layers

    NASA Astrophysics Data System (ADS)

    Morrill-Winter, C.; Squire, D. T.; Klewicki, J. C.; Hutchins, N.; Schultz, M. P.; Marusic, I.

    2017-05-01

    Multicomponent turbulence measurements in rough-wall boundary layers are presented and compared to smooth-wall data over a large friction Reynolds number range (δ+). The rough-wall experiments used the same continuous sandpaper sheet as in the study of Squire et al. [J. Fluid Mech. 795, 210 (2016), 10.1017/jfm.2016.196]. To the authors' knowledge, the present measurements are unique in that they cover nearly an order of magnitude in Reynolds number (δ+≃2800 -17 400 ), while spanning the transitionally to fully rough regimes (equivalent sand-grain-roughness range, ks+≃37 -98 ), and in doing so also maintain very good spatial resolution. Distinct from previous studies, the inner-normalized wall-normal velocity variances, w2¯, exhibit clear dependencies on both ks+ and δ+ well into the wake region of the boundary layer, and only for fully rough flows does the outer portion of the profile agree with that in a comparable δ+ smooth-wall flow. Consistent with the mean dynamical constraints, the inner-normalized Reynolds shear stress profiles in the rough-wall flows are qualitatively similar to their smooth-wall counterparts. Quantitatively, however, at matched Reynolds numbers the peaks in the rough-wall Reynolds shear stress profiles are uniformly located at greater inner-normalized wall-normal positions. The Reynolds stress correlation coefficient, Ru w, is also greater in rough-wall flows at a matched Reynolds number. As in smooth-wall flows, Ru w decreases with Reynolds number, but at different rates depending on the roughness condition. Despite the clear variations in the Ru w profiles with roughness, inertial layer u , w cospectra evidence invariance with ks+ when normalized with the distance from the wall. Comparison of the normalized contributions to the Reynolds stress from the second quadrant (Q2) and fourth quadrant (Q4) exhibit noticeable differences between the smooth- and rough-wall flows. The overall time fraction spent in each quadrant is, however, shown to be nearly fixed for all of the flow conditions investigated. The data indicate that at fixed δ+ both Q2 and Q4 events exhibit a sensitivity to ks+. The present results are discussed relative to the combined influences of roughness and Reynolds number on the scaling behaviors of boundary layers.

  7. Ultrastructure and Composition of the Nannochloropsis gaditana Cell Wall

    PubMed Central

    Scholz, Matthew J.; Weiss, Taylor L.; Jinkerson, Robert E.; Jing, Jia; Roth, Robyn; Goodenough, Ursula; Posewitz, Matthew C.

    2014-01-01

    Marine algae of the genus Nannochloropsis are promising producers of biofuel precursors and nutraceuticals and are also harvested commercially for aquaculture feed. We have used quick-freeze, deep-etch electron microscopy, Fourier transform infrared spectroscopy, and carbohydrate analyses to characterize the architecture of the Nannochloropsis gaditana (strain CCMP 526) cell wall, whose recalcitrance presents a significant barrier to biocommodity extraction. The data indicate a bilayer structure consisting of a cellulosic inner wall (∼75% of the mass balance) protected by an outer hydrophobic algaenan layer. Cellulase treatment of walls purified after cell lysis generates highly enriched algaenan preparations without using the harsh chemical treatments typically used in algaenan isolation and characterization. Nannochloropsis algaenan was determined to comprise long, straight-chain, saturated aliphatics with ether cross-links, which closely resembles the cutan of vascular plants. Chemical identification of >85% of the isolated cell wall mass is detailed, and genome analysis is used to identify candidate biosynthetic enzymes. PMID:25239976

  8. ELM induced divertor heat loads on TCV

    NASA Astrophysics Data System (ADS)

    Marki, J.; Pitts, R. A.; Horacek, J.; Tskhakaya, D.; TCV Team

    2009-06-01

    Results are presented for heat loads at the TCV outer divertor target during ELMing H-mode using a fast IR camera. Benefitting from a recent surface cleaning of the entire first wall graphite armour, a comparison of the transient thermal response of freshly cleaned and untreated tile surfaces (coated with thick co-deposited layers) has been performed. The latter routinely exhibit temperature transients exceeding those of the clean ones by a factor ˜3, even if co-deposition throughout the first days of operation following the cleaning process leads to the steady regrowth of thin layers. Filaments are occasionally observed during the ELM heat flux rise phase, showing a spatial structure consistent with energy release at discrete toroidal locations in the outer midplane vicinity and with individual filaments carrying ˜1% of the total ELM energy. The temporal waveform of the ELM heat load is found to be in good agreement with the collisionless free streaming particle model.

  9. An experimental investigation of compressible three-dimensional boundary layer flow in annular diffusers

    NASA Technical Reports Server (NTRS)

    Om, Deepak; Childs, Morris E.

    1987-01-01

    An experimental study is described in which detailed wall pressure measurements have been obtained for compressible three-dimensional unseparated boundary layer flow in annular diffusers with and without normal shock waves. Detailed mean flow-field data were also obtained for the diffuser flow without a shock wave. Two diffuser flows with shock waves were investigated. In one case, the normal shock existed over the complete annulus whereas in the second case, the shock existed over a part of the annulus. The data obtained can be used to validate computational codes for predicting such flow fields. The details of the flow field without the shock wave show flow reversal in the circumferential direction on both inner and outer surfaces. However, there is a lag in the flow reversal between the inner nad the outer surfaces. This is an interesting feature of this flow and should be a good test for the computational codes.

  10. Method of synthesizing small-diameter carbon nanotubes with electron field emission properties

    NASA Technical Reports Server (NTRS)

    Liu, Jie (Inventor); Du, Chunsheng (Inventor); Qian, Cheng (Inventor); Gao, Bo (Inventor); Qiu, Qi (Inventor); Zhou, Otto Z. (Inventor)

    2009-01-01

    Carbon nanotube material having an outer diameter less than 10 nm and a number of walls less than ten are disclosed. Also disclosed are an electron field emission device including a substrate, an optionally layer of adhesion-promoting layer, and a layer of electron field emission material. The electron field emission material includes a carbon nanotube having a number of concentric graphene shells per tube of from two to ten, an outer diameter from 2 to 8 nm, and a nanotube length greater than 0.1 microns. One method to fabricate carbon nanotubes includes the steps of (a) producing a catalyst containing Fe and Mo supported on MgO powder, (b) using a mixture of hydrogen and carbon containing gas as precursors, and (c) heating the catalyst to a temperature above 950.degree. C. to produce a carbon nanotube. Another method of fabricating an electron field emission cathode includes the steps of (a) synthesizing electron field emission materials containing carbon nanotubes with a number of concentric graphene shells per tube from two to ten, an outer diameter of from 2 to 8 nm, and a length greater than 0.1 microns, (b) dispersing the electron field emission material in a suitable solvent, (c) depositing the electron field emission materials onto a substrate, and (d) annealing the substrate.

  11. Ceramic-metal composite article and joining method

    DOEpatents

    Kang, Shinhoo; Selverian, John H.; Kim, Hans J.; Dunn, Edmund M.; Kim, Kyung S.

    1992-01-01

    A ceramic-metal article including a ceramic rod, a metal rod, and a braze joining the ceramic and metal rods at a braze area of a coaxial bore in the metal rod. The bore gradually decreases in diameter, having an inward seat area sized for close sliding fit about the ceramic, a larger brazing area near the joint end, and a void area intermediate the braze and seat areas. The ceramic is seated without brazing in the bore seat area. The side wall between the brazing area and the metal outer surface is about 0.030-0.080 inch. The braze includes an inner braze layer, an outer braze layer, and an interlayer about 0.030-0.090 inch thick. A shoulder between the brazing and void areas supports the interlayer during bonding while preventing bonding between the void area and the ceramic member, leaving a void space between the void area and the ceramic member. A venting orifice extends generally radially through the metal member from the outer surface to the void space. The braze layers are palladium, platinum, gold, silver, copper, nickel, indium, chromium, molybdenum, niobium, iron, aluminum, or alloys thereof. Preferred is a gold-palladium-nickel brazing alloy. The interlayer is nickel, molybdenum, copper, tantalum, tungsten, niobium, aluminum, cobalt, iron, or an alloy thereof.

  12. Ceramic-metal composite article and joining method

    DOEpatents

    Kang, S.; Selverian, J.H.; Kim, H.J.; Dunn, E.M.; Kim, K.S.

    1992-04-28

    A ceramic-metal article including a ceramic rod, a metal rod, and a braze joining the ceramic and metal rods at a braze area of a coaxial bore in the metal rod is described. The bore gradually decreases in diameter, having an inward seat area sized for close sliding fit about the ceramic, a larger brazing area near the joint end, and a void area intermediate the braze and seat areas. The ceramic is seated without brazing in the bore seat area. The side wall between the brazing area and the metal outer surface is about 0.030-0.080 inch. The braze includes an inner braze layer, an outer braze layer, and an interlayer about 0.030-0.090 inch thick. A shoulder between the brazing and void areas supports the interlayer during bonding while preventing bonding between the void area and the ceramic member, leaving a void space between the void area and the ceramic member. A venting orifice extends generally radially through the metal member from the outer surface to the void space. The braze layers are palladium, platinum, gold, silver, copper, nickel, indium, chromium, molybdenum, niobium, iron, aluminum, or alloys thereof. Preferred is a gold-palladium-nickel brazing alloy. The interlayer is nickel, molybdenum, copper, tantalum, tungsten, niobium, aluminum, cobalt, iron, or an alloy thereof. 4 figs.

  13. Nowa, a novel protein with minicollagen Cys-rich domains, is involved in nematocyst formation in Hydra.

    PubMed

    Engel, Ulrike; Ozbek, Suat; Streitwolf-Engel, Ruth; Petri, Barbara; Lottspeich, Friedrich; Holstein, Thomas W; Oezbek, Suat; Engel, Ruth

    2002-10-15

    The novel protein Nowa was identified in nematocysts, explosive organelles of Hydra, jellyfish, corals and other CNIDARIA: Biogenesis of these organelles is complex and involves assembly of proteins inside a post-Golgi vesicle to form a double-layered capsule with a long tubule. Nowa is the major component of the outer wall, which is formed very early in morphogenesis. The high molecular weight glycoprotein has a modular structure with an N-terminal sperm coating glycoprotein domain, a central C-type lectin-like domain, and an eightfold repeated cysteine-rich domain at the C-terminus. Interestingly, the cysteine-rich domains are homologous to the cysteine-rich domains of minicollagens. We have previously shown that the cysteines of these minicollagen cysteine-rich domains undergo an isomerization process from intra- to intermolecular disulfide bonds, which mediates the crosslinking of minicollagens to networks in the inner wall of the capsule. The minicollagen cysteine-rich domains present in both proteins provide a potential link between Nowa in the outer wall and minicollagens in the inner wall. We propose a model for nematocyst formation that integrates cytoskeleton rearrangements around the post-Golgi vesicle and protein assembly inside the vesicle to generate a complex structure that is stabilized by intermolecular disulfide bonds.

  14. Mathematical modelling of cell layer growth in a hollow fibre bioreactor.

    PubMed

    Chapman, Lloyd A C; Whiteley, Jonathan P; Byrne, Helen M; Waters, Sarah L; Shipley, Rebecca J

    2017-04-07

    Generating autologous tissue grafts of a clinically useful volume requires efficient and controlled expansion of cell populations harvested from patients. Hollow fibre bioreactors show promise as cell expansion devices, owing to their potential for scale-up. However, further research is required to establish how to specify appropriate hollow fibre bioreactor operating conditions for expanding different cell types. In this study we develop a simple model for the growth of a cell layer seeded on the outer surface of a single fibre in a perfused hollow fibre bioreactor. Nutrient-rich culture medium is pumped through the fibre lumen and leaves the bioreactor via the lumen outlet or passes through the porous fibre walls and cell layer, and out via ports on the outer wall of the extra-capillary space. Stokes and Darcy equations for fluid flow in the fibre lumen, fibre wall, cell layer and extra-capillary space are coupled to reaction-advection-diffusion equations for oxygen and lactate transport through the bioreactor, and to a simple growth law for the evolution of the free boundary of the cell layer. Cells at the free boundary are assumed to proliferate at a rate that increases with the local oxygen concentration, and to die and detach from the layer if the local fluid shear stress or lactate concentration exceed critical thresholds. We use the model to predict operating conditions that maximise the cell layer growth for different cell types. In particular, we predict the optimal flow rate of culture medium into the fibre lumen and fluid pressure imposed at the lumen outlet for cell types with different oxygen demands and fluid shear stress tolerances, and compare the growth of the cell layer when the exit ports on the outside of the bioreactor are open with that when they are closed. Model simulations reveal that increasing the inlet flow rate and outlet fluid pressure increases oxygen delivery to the cell layer and, therefore, the growth rate of cells that are tolerant to high shear stresses, but may be detrimental for shear-sensitive cells. The cell layer growth rate is predicted to increase, and be less sensitive to the lactate tolerance of the cells, when the exit ports are opened, as the radial flow through the bioreactor is enhanced and the lactate produced by the cells cleared more rapidly from the cell layer. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Fabrication of doxorubicin and heparin co-loaded microcapsules for synergistic cancer therapy.

    PubMed

    Chen, Jing-Xiao; Liang, Yan; Liu, Wen; Huang, Jin; Chen, Jing-Hua

    2014-08-01

    In this study, a layer-by-layer (LbL) assembly (HEP/CHI)5 microcapsule with doxorubicin hydrochloride (DOX) encapsulating inside was fabricated via alternatively depositing heparin (HEP) and chitosan (CHI) onto DOX-loaded CaCO3 templates. The microcapsules were of stable architecture and had good dispersity in aqueous medium. Fluorescence observation showed that DOX distributed both in the wall and in the cavity of microcapsules, while HEP presented in the capsule wall. The release rate of DOX increased at acidic pH as compared with that at basic pH, suggesting a pH-responsive drug release behavior. The microcapsules with positively charged CHI lying on the outer layer could protect HEP from heparanase degradation and achieve intracellular co-delivery of both DOX and HEP. Thus, the DOX-loaded microcapsules could have improved inhibition activity against A549 cells by combining pharmacological actions of DOX and HEP. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Structural heat pipe. [for spacecraft wall thermal insulation system

    NASA Technical Reports Server (NTRS)

    Ollendorf, S. (Inventor)

    1974-01-01

    A combined structural reinforcing element and heat transfer member is disclosed for placement between a structural wall and an outer insulation blanket. The element comprises a heat pipe, one side of which supports the outer insulation blanket, the opposite side of which is connected to the structural wall. Heat penetrating through the outer insulation blanket directly reaches the heat pipe and is drawn off, thereby reducing thermal gradients in the structural wall. The element, due to its attachment to the structural wall, further functions as a reinforcing member.

  17. Gas turbine row #1 steam cooled vane

    DOEpatents

    Cunha, Frank J.

    2000-01-01

    A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.

  18. [Impedance between modiolus and different walls of scala tympani].

    PubMed

    Du, Qiang; Wang, Zhengmin

    2008-10-01

    To compare the impedance between the modiolus and the inner wall of scala tympani with that between the modiolus and the outer wall of scala tympani. The impedances between the modiolus and the inner wall of scala tympani and the impedance between the modiolus and the outer wall of scala tympani were measured, calculated and compared under different stimulating rates 0.1, 1.0, 10.0 kHz. The impedance between the modiolus and the inner wall of scala tympani is less than that between the modiolus and the outer wall of scala tympani (P < 0.05). To effectively stimulate the residual neurons in the spiral ganglion, the electrodes should be kept close to the inner wall of scale tympani.

  19. Transitional and turbulent flat-plate boundary layers with heat transfer

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Moin, Parviz

    2010-11-01

    We report on our direct numerical simulation of two incompressible, nominally zero-pressure-gradient flat-plate boundary layers from momentum thickness Reynolds number 80 to 1950. Heat transfer between the constant-temperature solid surface and the free-stream is also simulated with molecular Prandtl number=1. Throughout the entire flat-plate, the ratio of Stanton number and skin-friction St/Cfdeviates from the exact Reynolds analogy value of 0.5 by less than 1.5%. Turbulent Prandtl number t peaks at the wall. Preponderance of hairpin vortices is observed in both the transitional and turbulent regions of the boundary layers. In particular, the internal structure of merged turbulent spots is hairpin forest; the internal structure of infant turbulent spots is hairpin packet. Numerous hairpin vortices are readily detected in both the near-wall and outer regions of the boundary layers up to momentum thickness Reynolds number 1950. This suggests that the hairpin vortices in the turbulent region are not simply the aged hairpin forests convected from the upstream transitional region. Temperature iso-surfaces in the companion thermal boundary layers are found to be a useful tracer in identifying hairpin vortex structures.

  20. Periodic unsteady effects on turbulent boundary layer transport and heat transfer: An experimental investigation in a cylinder-wall junction flow

    NASA Astrophysics Data System (ADS)

    Xie, Qi

    Heat transfer in a turbulent boundary layer downstream of junction with a cylinder has many engineering applications including controlling heat transfer to the endwall in gas turbine passages and cooling of protruding electronic chips. The main objective of this research is to study the fundamental process of heat transport and wall heat transfer in a turbulent three-dimensional flow superimposed with local large-scale periodic unsteadiness generated by vortex shedding from the cylinder. Direct measurements of the Reynolds heat fluxes (/line{utheta},\\ /line{vtheta}\\ and\\ /line{wtheta}) and time-resolved wall heat transfer rate will provide insight into unsteady flow behavior and data for advanced turbulence models for numerical simulation of complex engineering flows. Experiments were conducted in an open-circuit, low-speed wind tunnel. Reynolds stresses and heat fluxes were obtained from turbulent heat-flux probes which consisted of two hot wires, arranged in an X-wire configuration, and a cold wire located in front of the X-wire. Thin-film surface heat flux sensors were designed for measuring time-resolved wall heat flux. A reference probe and conditional-sampling technique connected the flow field dynamics to wall heat transfer. An event detecting and ensemble-averaging method was developed to separate effects of unsteadiness from those of background turbulence. Results indicate that unsteadiness affects both heat transport and wall heat transfer. The flow behind the cylinder can be characterized by three regions: (1) Wake region, where unsteadiness is observed to have modest effect; (2) Unsteady region, where the strongest unsteadiness effect is found; (3) Outer region, where the flow approaches the two-dimensional boundary-layer behavior. Vortex shedding from both sides of the cylinder contributes to mixing enhancement in the wake region. Unsteadiness contributes up to 51% of vertical and 59% of spanwise turbulent heat fluxes in the unsteady region. The instantaneous wall Stanton number increased up to 100% compared with an undisturbed flow. Large-scale fluctuations of wall Stanton number were due to the periodic thinning and thickening of the thermal layer caused by periodic vertical velocity fluctuations. This suggests that the outerlayer motion affects near-wall flow behavior and wall heat transfer.

  1. Regeneratively Cooled Porous Media Jacket

    NASA Technical Reports Server (NTRS)

    Mungas, Greg (Inventor); Fisher, David J. (Inventor); London, Adam Pollok (Inventor); Fryer, Jack Merrill (Inventor)

    2013-01-01

    The fluid and heat transfer theory for regenerative cooling of a rocket combustion chamber with a porous media coolant jacket is presented. This model is used to design a regeneratively cooled rocket or other high temperature engine cooling jacket. Cooling jackets comprising impermeable inner and outer walls, and porous media channels are disclosed. Also disclosed are porous media coolant jackets with additional structures designed to transfer heat directly from the inner wall to the outer wall, and structures designed to direct movement of the coolant fluid from the inner wall to the outer wall. Methods of making such jackets are also disclosed.

  2. Surface roughness effects on turbulent Couette flow

    NASA Astrophysics Data System (ADS)

    Lee, Young Mo; Lee, Jae Hwa

    2017-11-01

    Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  3. Imaging Cell Wall Architecture in Single Zinnia elegans Tracheary Elements1[OA

    PubMed Central

    Lacayo, Catherine I.; Malkin, Alexander J.; Holman, Hoi-Ying N.; Chen, Liang; Ding, Shi-You; Hwang, Mona S.; Thelen, Michael P.

    2010-01-01

    The chemical and structural organization of the plant cell wall was examined in Zinnia elegans tracheary elements (TEs), which specialize by developing prominent secondary wall thickenings underlying the primary wall during xylogenesis in vitro. Three imaging platforms were used in conjunction with chemical extraction of wall components to investigate the composition and structure of single Zinnia TEs. Using fluorescence microscopy with a green fluorescent protein-tagged Clostridium thermocellum family 3 carbohydrate-binding module specific for crystalline cellulose, we found that cellulose accessibility and binding in TEs increased significantly following an acidified chlorite treatment. Examination of chemical composition by synchrotron radiation-based Fourier-transform infrared spectromicroscopy indicated a loss of lignin and a modest loss of other polysaccharides in treated TEs. Atomic force microscopy was used to extensively characterize the topography of cell wall surfaces in TEs, revealing an outer granular matrix covering the underlying meshwork of cellulose fibrils. The internal organization of TEs was determined using secondary wall fragments generated by sonication. Atomic force microscopy revealed that the resulting rings, spirals, and reticulate structures were composed of fibrils arranged in parallel. Based on these combined results, we generated an architectural model of Zinnia TEs composed of three layers: an outermost granular layer, a middle primary wall composed of a meshwork of cellulose fibrils, and inner secondary wall thickenings containing parallel cellulose fibrils. In addition to insights in plant biology, studies using Zinnia TEs could prove especially productive in assessing cell wall responses to enzymatic and microbial degradation, thus aiding current efforts in lignocellulosic biofuel production. PMID:20592039

  4. Self-sustaining processes at all scales in wall-bounded turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Cossu, Carlo; Hwang, Yongyun

    2017-03-01

    We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend's attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier-Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions.

  5. Rarefaction effects in gas flows over curved surfaces

    NASA Astrophysics Data System (ADS)

    Dongari, Nishanth; White, Craig; Scanlon, Thomas J.; Zhang, Yonghao; Reese, Jason M.

    2012-11-01

    The fundamental test case of gas flow between two concentric rotating cylinders is considered in order to investigate rarefaction effects associated with the Knudsen layers over curved surfaces. We carry out direct simulation Monte Carlo simulations covering a wide range of Knudsen numbers and accommodation coefficients, and for various outer-to-inner cylinder radius ratios. Numerical data is compared with classical slip flow theory and a new power-law (PL) wall scaling model. The PL model incorporates Knudsen layer effects in near-wall regions by taking into account the boundary limiting effects on the molecular free paths. The limitations of both theoretical models are explored with respect to rarefaction and curvature effects. Torque and velocity profile comparisons also convey that mere prediction of integral flow parameters does not guarantee the accuracy of a theoretical model, and that it is important to ensure that prediction of the local flowfield is in agreement with simulation data.

  6. Technology Solutions for New and Existing Homes Case Study: Optimized Slab-on-Grade Foundation Insulation Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Schirber; Goldberg, L.; Mosiman, G.

    A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulationmore » at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).« less

  7. High-Performance Slab-on-Grade Foundation Insulation Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Louise F.; Mosiman, Garrett E.

    A more accurate assessment of slab-on-grade foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulationmore » at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).« less

  8. Electron Microscopy of Ultrathin Sections of Sporosarcina ureae

    PubMed Central

    Mazanec, K.; Kocur, M.; Martinec, T.

    1965-01-01

    Mazanec, K. (J. E. Purkyně University, Brno, Czechoslovakia), M. Kocur, and T. Martinec. Electron microscopy of ultrathin sections of Sporosarcina ureae. J. Bacteriol. 90:808–816. 1965.—Ultrathin sections of Sporosarcina ureae cells were studied by means of electron microscopy. The cell wall consists of several layers and is 340 A thick. The cytoplasm is of globular structure and includes ribosomelike structures, occasional mesosomes, and inclusions not precisely identifiable. The nuclear area has various shapes and is formed by filaments 10 to 20 A thick which proceed in various directions. Cell division occurs similarly to that of sarcinate. Both synchronic and asynchronic cell division was observed. The spores of S. ureae consist of an outer coat having several layers, a cortex, a spore wall, and cytoplasm. The results of the present investigation substantiate our previous suggestion that S. ureae should be transferred from the family Micrococcaceae to the family Bacillaceae. Images PMID:16562085

  9. Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors.

    PubMed

    Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-06-10

    Dark matter bubble chamber detectors use piezoelectric sensors in order to detect and discriminate the acoustic signals emitted by the bubbles grown within the superheated fluid from a nuclear recoil produced by a particle interaction. These sensors are attached to the outside walls of the vessel containing the fluid. The acoustic discrimination depends strongly on the properties of the sensor attached to the outer wall of the vessel that has to meet the requirements of radiopurity and size. With the aim of optimizing the sensor system, a test bench for the characterization of the sensors has been developed. The sensor response for different piezoelectric materials, geometries, matching layers, and backing layers have been measured and contrasted with FEM simulations and analytical models. The results of these studies lead us to have a design criterion for the construction of specific sensors for the next generation of dark matter bubble chamber detectors (250 L).

  10. Gas turbine nozzle vane insert and methods of installation

    DOEpatents

    Miller, William John; Predmore, Daniel Ross; Placko, James Michael

    2002-01-01

    A pair of hollow elongated insert bodies are disposed in one or more of the nozzle vane cavities of a nozzle stage of a gas turbine. Each insert body has an outer wall portion with apertures for impingement-cooling of nozzle wall portions in registration with the outer wall portion. The insert bodies are installed into the cavity separately and spreaders flex the bodies toward and to engage standoffs against wall portions of the nozzle whereby the designed impingement gap between the outer wall portions of the insert bodies and the nozzle wall portions is achieved. The spreaders are secured to the inner wall portions of the insert bodies and the bodies are secured to one another and to the nozzle vane by welding or brazing.

  11. Catalyst cartridge for carbon dioxide reduction unit

    NASA Technical Reports Server (NTRS)

    Holmes, R. F. (Inventor)

    1973-01-01

    A catalyst cartridge, for use in a carbon dioxide reducing apparatus in a life support system for space vehicles, is described. The catalyst cartridge includes an inner perforated metal wall, an outer perforated wall space outwardly from the inner wall, a base plate closing one end of the cartridge, and a cover plate closing the other end of the cartridge. The cover plate has a central aperture through which a supply line with a heater feeds a gaseous reaction mixture comprising hydrogen and carbon dioxide at a temperature from about 1000 to about 1400 F. The outer surfaces of the internal wall and the inner surfaces of the outer wall are lined with a ceramic fiber batting material of sufficient thickness to prevent carbon formed in the reaction from passing through it. The portion of the surfaces of the base and cover plates defined within the inner and outer walls are also lined with ceramic batting. The heated reaction mixture passes outwardly through the inner perforated wall and ceramic batting and over the catalyst. The solid carbon product formes is retained within the enclosure containing the catalyst. The solid carbon product formed is retained within the enclosure containing the catalyst. The water vapor and unreacted carbon dioxide and any intermediate products pass through the perforations of the outer wall.

  12. Time-evolving of very large-scale motions in a turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Hwang, Jinyul; Lee, Jin; Sung, Hyung Jin; Zaki, Tamer A.

    2014-11-01

    Direct numerical simulation (DNS) data of a turbulent channel flow at Reτ = 930 was scrutinized to investigate the formation of very large-scale motions (VLSMs) by merging of two large-scale motions (LSMs), aligned in the streamwise direction. We mainly focused on the supportive motions by the near-wall streaks during the merging of the outer LSMs. From visualization of the instantaneous flow fields, several low-speed streaks in the near-wall region were collected in the spanwise direction, when LSMs were concatenated in the outer region. The magnitude of the streamwise velocity fluctuations in the streaks was intensified during the spanwise merging of the near-wall streaks. Conditionally-averaged velocity fields around the merging of the outer LSMs showed that the intensified near-wall motions were induced by the outer LSMs and extended over the near-wall regions. The intense near-wall motions influence the formation of the outer low-speed regions as well as the reduction of the convection velocity of the downstream LSMs. The interaction between the near-wall and the outer motions is the essential origin of the different convection velocities of the upstream and downstream LSMs for the formation process of VLSMs by merging. This work was supported by the Creative Research Initiatives (No. 2014-001493) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.

  13. Use of the gram stain in microbiology.

    PubMed

    Beveridge, T J

    2001-05-01

    The Gram stain differentiates bacteria into two fundamental varieties of cells. Bacteria that retain the initial crystal violet stain (purple) are said to be "gram-positive," whereas those that are decolorized and stain red with carbol fuchsin (or safranin) are said to be "gram-negative." This staining response is based on the chemical and structural makeup of the cell walls of both varieties of bacteria. Gram-positives have a thick, relatively impermeable wall that resists decolorization and is composed of peptidoglycan and secondary polymers. Gram-negatives have a thin peptidoglycan layer plus an overlying lipid-protein bilayer known as the outer membrane, which can be disrupted by decolorization. Some bacteria have walls of intermediate structure and, although they are officially classified as gram-positives because of their linage, they stain in a variable manner. One prokaryote domain, the Archaea, have such variability of wall structure that the Gram stain is not a useful differentiating tool.

  14. Small-Scale Metal Tanks for High Pressure Storage of Fluids

    NASA Technical Reports Server (NTRS)

    London, Adam (Inventor)

    2016-01-01

    Small scale metal tanks for high-pressure storage of fluids having tank factors of more than 5000 meters and volumes of ten cubic inches or less featuring arrays of interconnected internal chambers having at least inner walls thinner than gage limitations allow. The chambers may be arranged as multiple internal independent vessels. Walls of chambers that are also portions of external tank walls may be arcuate on the internal and/or external surfaces, including domed. The tanks may be shaped adaptively and/or conformally to an application, including, for example, having one or more flat outer walls and/or having an annular shape. The tanks may have dual-purpose inlet/outlet conduits of may have separate inlet and outlet conduits. The tanks are made by fusion bonding etched metal foil layers patterned from slices of a CAD model of the tank. The fusion bonded foil stack may be further machined.

  15. Inner and outer layer turbulence over a superhydrophobic surface with low roughness level at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Abu Rowin, W.; Hou, J.; Ghaemi, S.

    2017-09-01

    The inner and outer layers of a turbulent channel flow over a superhydrophobic surface (SHS) are characterized using simultaneous long-range microscopic particle tracking velocimetry (micro-PTV) and particle image velocimetry, respectively. The channel flow is operated at a low Reynolds number of ReH = 4400 (based on full channel height and 0.174 m/s bulk velocity), equivalent to Reτ = 140 (based on half channel height and friction velocity). The SHS is produced by spray coating, and the root-mean-square of wall roughness normalized by wall-unit is k+rms = 0.11. The micro-PTV shows 0.023 m/s slip velocity over the SHS (about 13% of the bulk velocity), which corresponds to a slip-length of ˜200 μm. A drag reduction of ˜19% based on the slope of the linear viscous sublayer and 22% based on an analytical expression of Rastegari and Akhavan [J. Fluid Mech. 773, R4 (2015)] realized. The reduced Reτ over the SHS based on the corresponding friction velocity is ˜125, which is in the lower limit of a turbulence regime. The results show the increase of streamwise Reynolds stresses for the SHS in the linear viscous sublayer due to the slip boundary condition. The peak does not change in magnitude while it is displaced closer to the wall in physical distance. The wall-normal Reynolds stress over the SHS and smooth surface is observed to overlap near the wall at y+ < 10, while for the SHS is smaller further away from the wall in physical dimensions. At y+ = 30, is 30% smaller for the SHS. A small increase of Reynolds shear stress for the SHS is observed at y+ < 10, while about 30% reduction is observed at y+ = 30. The observed variation of Reynolds stresses is associated with the relatively small roughness of the surface. If Reynolds stresses are normalized based on the corresponding friction velocity, the non-dimensional stresses show a large increase of and a small increase of over the SHS at y+ < 20. Farther away from the wall at y+ > 20, the scaling of Reynolds stresses based on the corresponding uτ results in their overlap for the smooth and SHSs. The drag reduction is mainly associated with the reduction of viscous wall-shear stress, while the variation in Reynolds shear stress at the wall is negligible. The quadrant analysis of turbulent fluctuations shows attenuation of stronger sweep motions at y+ < 15, while ejections are attenuated in the buffer layer at y+ = 20 until 30.

  16. Evidence for a structural role for acid-fast lipids in oocyst walls of Cryptosporidium, Toxoplasma, and Eimeria.

    PubMed

    Bushkin, G Guy; Motari, Edwin; Carpentieri, Andrea; Dubey, Jitender P; Costello, Catherine E; Robbins, Phillips W; Samuelson, John

    2013-09-03

    Coccidia are protozoan parasites that cause significant human disease and are of major agricultural importance. Cryptosporidium spp. cause diarrhea in humans and animals, while Toxoplasma causes disseminated infections in fetuses and untreated AIDS patients. Eimeria is a major pathogen of commercial chickens. Oocysts, which are the infectious form of Cryptosporidium and Eimeria and one of two infectious forms of Toxoplasma (the other is tissue cysts in undercooked meat), have a multilayered wall. Recently we showed that the inner layer of the oocyst walls of Toxoplasma and Eimeria is a porous scaffold of fibers of β-1,3-glucan, which are also present in fungal walls but are absent from Cryptosporidium oocyst walls. Here we present evidence for a structural role for lipids in the oocyst walls of Cryptosporidium, Toxoplasma, and Eimeria. Briefly, oocyst walls of each organism label with acid-fast stains that bind to lipids in the walls of mycobacteria. Polyketide synthases similar to those that make mycobacterial wall lipids are abundant in oocysts of Toxoplasma and Eimeria and are predicted in Cryptosporidium. The outer layer of oocyst wall of Eimeria and the entire oocyst wall of Cryptosporidium are dissolved by organic solvents. Oocyst wall lipids are complex mixtures of triglycerides, some of which contain polyhydroxy fatty acyl chains like those present in plant cutin or elongated fatty acyl chains like mycolic acids. We propose a two-layered model of the oocyst wall (glucan and acid-fast lipids) that resembles the two-layered walls of mycobacteria (peptidoglycan and acid-fast lipids) and plants (cellulose and cutin). Oocysts, which are essential for the fecal-oral spread of coccidia, have a wall that is thought responsible for their survival in the environment and for their transit through the stomach and small intestine. While oocyst walls of Toxoplasma and Eimeria are strengthened by a porous scaffold of fibrils of β-1,3-glucan and by proteins cross-linked by dityrosines, both are absent from walls of Cryptosporidium. We show here that all oocyst walls are acid fast, have a rigid bilayer, dissolve in organic solvents, and contain a complex set of triglycerides rich in polyhydroxy and long fatty acyl chains that might be synthesized by an abundant polyketide synthase. These results suggest the possibility that coccidia build a waxy coat of acid-fast lipids in the oocyst wall that makes them resistant to environmental stress.

  17. Film cooling for a closed loop cooled airfoil

    DOEpatents

    Burdgick, Steven Sebastian; Yu, Yufeng Phillip; Itzel, Gary Michael

    2003-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

  18. Steam exit flow design for aft cavities of an airfoil

    DOEpatents

    Storey, James Michael; Tesh, Stephen William

    2002-01-01

    Turbine stator vane segments have inner and outer walls with vanes extending therebetween. The inner and outer walls have impingement plates. Steam flowing into the outer wall passes through the impingement plate for impingement cooling of the outer wall surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. A skirt or flange structure is provided for shielding the steam cooling impingement holes adjacent the inner wall aerofoil fillet region of the nozzle from the steam flow exiting the aft nozzle cavities. Moreover, the gap between the flash rib boss and the cavity insert is controlled to minimize the flow of post impingement cooling media therebetween. This substantially confines outflow to that exiting via the return channels, thus furthermore minimizing flow in the vicinity of the aerofoil fillet region that may adversely affect impingement cooling thereof.

  19. Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer

    NASA Astrophysics Data System (ADS)

    Zahradka, D.; Parziale, N. J.; Smith, M. S.; Marineau, E. C.

    2016-05-01

    The krypton tagging velocimetry (KTV) technique is applied to the turbulent boundary layer on the wall of the "Mach 3 Calibration Tunnel" at Arnold Engineering Development Complex (AEDC) White Oak. Profiles of velocity were measured with KTV and Pitot-pressure probes in the Mach 2.7 turbulent boundary layer comprised of 99 % {N}2/1 % Kr at momentum-thickness Reynolds numbers of {Re}_{\\varTheta }= 800, 1400, and 2400. Agreement between the KTV- and Pitot-derived velocity profiles is excellent. The KTV and Pitot velocity data follow the law of the wall in the logarithmic region with application of the Van Driest I transformation. The velocity data are analyzed in the outer region of the boundary layer with the law of the wake and a velocity-defect law. KTV-derived streamwise velocity fluctuation measurements are reported and are consistent with data from the literature. To enable near-wall measurement with KTV (y/δ ≈ 0.1-0.2), an 800-nm longpass filter was used to block the 760.2-nm read-laser pulse. With the longpass filter, the 819.0-nm emission from the re-excited Kr can be imaged to track the displacement of the metastable tracer without imaging the reflection and scatter from the read-laser off of solid surfaces. To operate the Mach 3 AEDC Calibration Tunnel at several discrete unit Reynolds numbers, a modification was required and is described herein.

  20. The flow field around a pair of cubic roughness elements with different spacings immersed in turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Agarwal, Karuna; Gao, Jian; Katz, Joseph

    2017-11-01

    The shape, size, and spacing between roughness elements in turbulent boundary layers affect the associated drag and noise. Understanding them require data on the flow structure around these elements. Dual-view tomographic holography is used to study the 3D 3-component velocity field around a pair of cubic roughness elements immersed in a turbulent boundary layer at Reτ = 2500 . These a = 1 mm high cubes correspond to 4% of the half channel height and 90 wall units (δν = 11 μ m). Tests are performed for spanwise spacings of a, 1.5 a and 2.5 a. The sample volume is 385δν × 250δν × 190δν and the vector spacing is 5.4δν. Conversed statistics is obtained by recording 1500 realizations in volumes centered upstream, downstream and around a cube. The boundary layer separating upstream of the cube does not reattach until the wake region, resulting in formation of a vortical ``canopy'' that engulfs each cube. It is dominated by spanwise vorticity above the cube and separated region, bounded by vertical vorticity on the sides. Flow channeling in the space between cubes causes asymmetry in the vorticity distributions along the inner and outer walls. The legs of horseshoe vortices remain near the wall between cubes, but grow and expand in the wake region. Funded by NSF and ONR.

  1. Improved engineering models for turbulent wall flows

    NASA Astrophysics Data System (ADS)

    She, Zhen-Su; Chen, Xi; Zou, Hong-Yue; Hussain, Fazle

    2015-11-01

    We propose a new approach, called structural ensemble dynamics (SED), involving new concepts to describe the mean quantities in wall-bounded flows, and its application to improving the existing engineering turbulence models, as well as its physical interpretation. First, a revised k - ω model for pipe flows is obtained, which accurately predicts, for the first time, both mean velocity and (streamwise) kinetic energy for a wide range of the Reynolds number (Re), validated by Princeton experimental data. In particular, a multiplicative factor is introduced in the dissipation term to model an anomaly in the energy cascade in a meso-layer, predicting the outer peak of agreeing with data. Secondly, a new one-equation model is obtained for compressible turbulent boundary layers (CTBL), building on a multi-layer formula of the stress length function and a generalized temperature-velocity relation. The former refines the multi-layer description - viscous sublayer, buffer layer, logarithmic layer and a newly defined bulk zone - while the latter characterizes a parabolic relation between the mean velocity and temperature. DNS data show our predictions to have a 99% accuracy for several Mach numbers Ma = 2.25, 4.5, improving, up to 10%, a previous similar one-equation model (Baldwin & Lomax, 1978). Our results promise notable improvements in engineering models.

  2. A 3-D Navier-Stokes CFD study of turbojet/ramjet nozzle plume interactions at Mach 3.0 and comparison with data

    NASA Technical Reports Server (NTRS)

    Chang, Ing; Hunter, Louis G.

    1995-01-01

    Advanced airbreathing propulsion systems used in Mach 4-6 mission scenarios, usually consist of a single integrated turboramjet or as in this study, a turbojet housed in an upper bay with a separate ramjet housed in a lower bay. As the engines transition from turbojet to ramjet, there is an operational envelope where both engines operate simultaneously. One nozzle concept under consideration has a common nozzle, where the plumes from the turbojet and ramjet interact with one another as they expand to ambient conditions. In this paper, the two plumes interact at the end of a common 2-D cowl, when they both reach an approximate Mach 3.0 condition and then jointly expand to Mach 3.6 at the common nozzle exit plane. At this condition, the turbojet engine operated at a higher NPR than the ramjet, where the turbojet overpowers the ramjet plume, deflecting it approximately 12 degrees downward and in turn the turbojet plume is deflected 6 degrees upward. In the process, shocks were formed at the deflections and a shear layer formed at the confluence of the two jets. This particular case was experimentally tested and the data used to compare with the PARC3D code with k-kl two equation turbulence model. The 2-D and 3-D centerline CFD solutions are in good agreement, but as the CFD solutions approach the outer sidewall, a slight variance occurs. The outer wall boundary layers are thin and do not present much of an interaction, however, where the confluence interaction shocks interact with the thin boundary layer on the outer wall, strong vortices run down each shock causing substantial disturbances in the boundary layer. These disturbances amplify somewhat as they propagate downstream axially from the confluence point. The nozzle coefficient (CFG) is reduced 1/2 percent as a result of this sidewall interaction, from 0.9850 to 0.9807. This three-dimensional reduction is in better agreement with the experimental value of 0.9790.

  3. Turbine vane structure

    DOEpatents

    Irwin, John A.

    1980-08-19

    A liquid cooled stator blade assembly for a gas turbine engine includes an outer shroud having a pair of liquid inlets and a pair of liquid outlets supplied through a header and wherein means including tubes support the header radially outwardly of the shroud and also couple the header with the pair of liquid inlets and outlets. A pair of turbine vanes extend radially between the shroud and a vane platform to define a gas turbine motive fluid passage therebetween; and each of the vanes is cooled by an internal body casting of super alloy material with a grooved layer of highly heat conductive material that includes spaced apart flat surface trailing edges in alignment with a flat trailing edge of the casting joined to wall segments of the liner which are juxtaposed with respect to the internal casting to form an array of parallel liquid inlet passages on one side of the vane and a second plurality of parallel liquid return passages on the opposite side of the vane; and a superalloy heat and wear resistant imperforate skin covers the outer surface of the composite blade including the internal casting and the heat conductive layer; a separate trailing edge section includes an internal casting and an outer skin butt connected to the end surfaces of the internal casting and the heat conductive layer to form an easily assembled liquid cooled trailing edge section in the turbine vane.

  4. Self-sustaining processes at all scales in wall-bounded turbulent shear flows

    PubMed Central

    Hwang, Yongyun

    2017-01-01

    We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend’s attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier–Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167581

  5. Self-sustaining processes at all scales in wall-bounded turbulent shear flows.

    PubMed

    Cossu, Carlo; Hwang, Yongyun

    2017-03-13

    We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend's attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier-Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  6. Inviscid Wall-Modeled Large Eddy Simulations for Improved Efficiency

    NASA Astrophysics Data System (ADS)

    Aikens, Kurt; Craft, Kyle; Redman, Andrew

    2015-11-01

    The accuracy of an inviscid flow assumption for wall-modeled large eddy simulations (LES) is examined because of its ability to reduce simulation costs. This assumption is not generally applicable for wall-bounded flows due to the high velocity gradients found near walls. In wall-modeled LES, however, neither the viscous near-wall region or the viscous length scales in the outer flow are resolved. Therefore, the viscous terms in the Navier-Stokes equations have little impact on the resolved flowfield. Zero pressure gradient flat plate boundary layer results are presented for both viscous and inviscid simulations using a wall model developed previously. The results are very similar and compare favorably to those from another wall model methodology and experimental data. Furthermore, the inviscid assumption reduces simulation costs by about 25% and 39% for supersonic and subsonic flows, respectively. Future research directions are discussed as are preliminary efforts to extend the wall model to include the effects of unresolved wall roughness. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.

  7. Visualization of the structural response of a hypersonic turbulent boundary layer to convex curvature

    NASA Astrophysics Data System (ADS)

    Humble, R. A.; Peltier, S. J.; Bowersox, R. D. W.

    2012-10-01

    The effects of convex curvature on the outer structure of a Mach 4.9 turbulent boundary layer (Reθ = 4.7 × 104) are investigated using condensate Rayleigh scattering and analyzed using spatial correlations, intermittency, and fractal theory. It is found that the post-expansion boundary layer structure morphology appears subtle, but certain features exhibit a more obvious response. The large-scale flow structures survive the initial expansion, appearing to maintain the same physical size. However, due to the nature of the expansion fan, a differential acceleration effect takes place across the flow structures, causing them to be reoriented, leaning farther away from the wall. The onset of intermittency moves closer towards the boundary layer edge and the region of intermittent flow decreases. It is likely that this reflects the less frequent penetration of outer irrotational fluid into the boundary layer, consistent with a boundary layer that is losing its ability to entrain freestream fluid. The fractal dimension of the turbulent/nonturbulent interface decreases with increasing favorable pressure gradient, indicating that the interface's irregularity decreases. Because fractal scale similarity does not encompass the largest scales, this suggests that the change in fractal dimension is due to the action of the smaller-scales, consistent with the idea that the small-scale flow structures are quenched during the expansion in response to bulk dilatation.

  8. β-(1,3)-Glucan Unmasking in Some Candida albicans Mutants Correlates with Increases in Cell Wall Surface Roughness and Decreases in Cell Wall Elasticity

    DOE PAGES

    Hasim, Sahar; Allison, David P.; Retterer, Scott T.; ...

    2016-11-14

    Candida albicans is among the most common human fungal pathogens, causing a broad range of infections, including life-threatening systemic infections. The cell wall of C. albicans is the interface between the fungus and the innate immune system. The cell wall is composed of an outer layer enriched in mannosylated glycoproteins (mannan) and an inner layer enriched in β-(1,3)-glucan and chitin. Detection of C. albicans by Dectin-1, a C-type signaling lectin specific for β-(1,3)-glucan, is important for the innate immune system to recognize systemic fungal infections. Increased exposure of β-(1,3)-glucan to the immune system occurs when the mannan layer is alteredmore » or removed in a process called unmasking. Nanoscale changes to the cell wall during unmasking were explored in this paper in live cells with atomic force microscopy (AFM). Two mutants, the cho1Δ/Δ and kre5Δ/Δ mutants, were selected as representatives that exhibit modest and strong unmasking, respectively. Comparisons of the cho1Δ/Δ and kre5Δ/Δ mutants to the wild type reveal morphological changes in their cell walls that correlate with decreases in cell wall elasticity. In addition, AFM tips functionalized with Dectin-1 revealed that the forces of binding of Dectin-1 to all of the strains were similar, but the frequency of binding was highest for the kre5Δ/Δ mutant, decreased for the cho1Δ/Δ mutant, and rare for the wild type. These data show that nanoscale changes in surface topology are correlated with increased Dectin-1 adhesion and decreased cell wall elasticity. Finally, AFM, using tips functionalized with immunologically relevant molecules, can map epitopes of the cell wall and increase our understanding of pathogen recognition by the immune system.« less

  9. β-(1,3)-Glucan Unmasking in Some Candida albicans Mutants Correlates with Increases in Cell Wall Surface Roughness and Decreases in Cell Wall Elasticity

    PubMed Central

    Hasim, Sahar; Allison, David P.; Retterer, Scott T.; Hopke, Alex; Wheeler, Robert T.; Doktycz, Mitchel J.

    2016-01-01

    ABSTRACT Candida albicans is among the most common human fungal pathogens, causing a broad range of infections, including life-threatening systemic infections. The cell wall of C. albicans is the interface between the fungus and the innate immune system. The cell wall is composed of an outer layer enriched in mannosylated glycoproteins (mannan) and an inner layer enriched in β-(1,3)-glucan and chitin. Detection of C. albicans by Dectin-1, a C-type signaling lectin specific for β-(1,3)-glucan, is important for the innate immune system to recognize systemic fungal infections. Increased exposure of β-(1,3)-glucan to the immune system occurs when the mannan layer is altered or removed in a process called unmasking. Nanoscale changes to the cell wall during unmasking were explored in live cells with atomic force microscopy (AFM). Two mutants, the cho1Δ/Δ and kre5Δ/Δ mutants, were selected as representatives that exhibit modest and strong unmasking, respectively. Comparisons of the cho1Δ/Δ and kre5Δ/Δ mutants to the wild type reveal morphological changes in their cell walls that correlate with decreases in cell wall elasticity. In addition, AFM tips functionalized with Dectin-1 revealed that the forces of binding of Dectin-1 to all of the strains were similar, but the frequency of binding was highest for the kre5Δ/Δ mutant, decreased for the cho1Δ/Δ mutant, and rare for the wild type. These data show that nanoscale changes in surface topology are correlated with increased Dectin-1 adhesion and decreased cell wall elasticity. AFM, using tips functionalized with immunologically relevant molecules, can map epitopes of the cell wall and increase our understanding of pathogen recognition by the immune system. PMID:27849179

  10. β-(1,3)-Glucan Unmasking in Some Candida albicans Mutants Correlates with Increases in Cell Wall Surface Roughness and Decreases in Cell Wall Elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasim, Sahar; Allison, David P.; Retterer, Scott T.

    Candida albicans is among the most common human fungal pathogens, causing a broad range of infections, including life-threatening systemic infections. The cell wall of C. albicans is the interface between the fungus and the innate immune system. The cell wall is composed of an outer layer enriched in mannosylated glycoproteins (mannan) and an inner layer enriched in β-(1,3)-glucan and chitin. Detection of C. albicans by Dectin-1, a C-type signaling lectin specific for β-(1,3)-glucan, is important for the innate immune system to recognize systemic fungal infections. Increased exposure of β-(1,3)-glucan to the immune system occurs when the mannan layer is alteredmore » or removed in a process called unmasking. Nanoscale changes to the cell wall during unmasking were explored in this paper in live cells with atomic force microscopy (AFM). Two mutants, the cho1Δ/Δ and kre5Δ/Δ mutants, were selected as representatives that exhibit modest and strong unmasking, respectively. Comparisons of the cho1Δ/Δ and kre5Δ/Δ mutants to the wild type reveal morphological changes in their cell walls that correlate with decreases in cell wall elasticity. In addition, AFM tips functionalized with Dectin-1 revealed that the forces of binding of Dectin-1 to all of the strains were similar, but the frequency of binding was highest for the kre5Δ/Δ mutant, decreased for the cho1Δ/Δ mutant, and rare for the wild type. These data show that nanoscale changes in surface topology are correlated with increased Dectin-1 adhesion and decreased cell wall elasticity. Finally, AFM, using tips functionalized with immunologically relevant molecules, can map epitopes of the cell wall and increase our understanding of pathogen recognition by the immune system.« less

  11. Quantitative evaluation of the relationship between dorsal wall length, sole thickness, and rotation of the distal phalanx in the bovine claw using computed tomography.

    PubMed

    Tsuka, T; Murahata, Y; Azuma, K; Osaki, T; Ito, N; Okamoto, Y; Imagawa, T

    2014-10-01

    Computed tomography (CT) was performed on 800 untrimmed claws (400 inner claws and 400 outer claws) of 200 pairs of bovine hindlimbs to investigate the relationships between dorsal wall length and sole thickness, and between dorsal wall length and the relative rotation angle of distal phalanx-to-sole surface (S-D angle). Sole thickness was 3.8 and 4.0 mm at the apex of the inner claws and outer claws, respectively, with dorsal wall lengths <70 mm. These sole thickness values were less than the critical limit of 5 mm, which is associated with a softer surface following thinning of the soles. A sole thickness of 5 mm at the apex was estimated to correlate with dorsal wall lengths of 72.1 and 72.7 mm for the inner and outer claws, respectively. Sole thickness was 6.1 and 6.4 mm at the apex of the inner and outer claws, respectively, with dorsal wall lengths of 75 mm. These sole thickness values were less than the recommended sole thickness of 7 mm based on the protective function of the soles. A sole thickness >7 mm at the apex was estimated to correlate with a dorsal wall length of 79.8 and 78.4mm for the inner and outer claws, respectively. The S-D angles were recorded as anteversions of 2.9° and 4.7° for the inner and outer claws, respectively, with a dorsal wall length of 75 mm. These values indicate that the distal phalanx is likely to have rotated naturally forward toward the sole surface. The distal phalanx rotated backward to the sole surface at 3.2° and 7.6° for inner claws with dorsal wall lengths of 90-99 and ≥100 mm, respectively; and at 3.5° for outer claws with a dorsal wall length ≥100 mm. Dorsal wall lengths of 85.7 and 97.2 mm were estimated to correlate with a parallel positional relationship of the distal phalanx to the sole surface in the inner and outer claws, respectively. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Biomechanical remodeling of obstructed guinea pig jejunum

    PubMed Central

    Zhao, Jingbo; Liao, Donghua; Yang, Jian; Gregersen, Hans

    2010-01-01

    Data on morphological and biomechanical remodeling are needed to understand the mechanisms behind intestinal obstruction. The effect of partial obstruction on mechanical properties with reference to the zero-stress state and on the histomorphological properties of the guinea pig small intestine was determined in this study. Partial obstruction and sham operation were surgically created in mid-jejunum of guinea pigs. The animals survived 2, 4, 7, and 14 days respectively. The age-matched guinea pigs that were not operated served as normal controls. The segment proximal to the obstruction site was used for histological analysis, no-load state and zero-stress state data, and distension test. The segment for distension was immersed in an organ bath and inflated to 10 cmH20. The outer diameter change during the inflation was monitored using a microscope with CCD camera. Circumferential stresses and strains were computed from the diameter, pressure and the zero-stress state data. The opening angle and absolute value of residual strain decreased (P<0.01 and P<0.001) whereas the wall thickness, wall cross-sectional area, and the wall stiffness increased after 7 days obstruction (P<0.05, P<0.01). Histologically, the muscle and submucosa layers, especially the circumferential muscle layer increased in thickness after obstruction. The opening angle and residual strain mainly depended on the thickness of the muscle layer whereas the wall stiffness mainly depended on the thickness of the submucosa layer. In conclusion, the histomorphological and biomechanical properties of small intestine (referenced for the first time to the zero-stress state) remodel proximal to the obstruction site in a time-dependent manner. PMID:20189575

  13. Method for pressure modulation of turbine sidewall cavities

    DOEpatents

    Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.

    2002-01-01

    A method is provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  14. System for pressure modulation of turbine sidewall cavities

    DOEpatents

    Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.

    2002-01-01

    A system and method are provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  15. Nonintrusive measurement of the liquid refractive index by using properties of the cuvette wall.

    PubMed

    Xu, Ming; Ren, Junpeng; Miao, Runcai; Zhang, Zongquan

    2016-10-01

    We present a method of nonintrusive measurement of the refractive index of a liquid in a glass cuvette, which uses some optical properties of the cuvette wall and the principle of total internal reflection. By coating a transmission-scattering paint layer on the outer surface of the cuvette, we transform an incident laser beam into a transmitted scattered light. When the transmitted scattered light reaches the interface between the container wall and the liquid inside, the light beams satisfying the condition of total internal reflection are reflected to the coating layer, automatically forming a circular dark pattern that is related to the refractive index of the liquid. Based on an analytic relation between the diameter of the circular dark pattern and the refractive index of the liquid, we devised a method of in situ nonintrusive refractive index measurement. We tested the effect of several parameters on the measuring accuracy and found that the optimal thickness of the transmission-scattering layer is in the range of 50-70 μm, and the aperture of the diaphragm should be in the range of 0.7-1.0 mm. We measured the refractive indices of ethanol, Coca Cola, and red wine, and achieved an accuracy of ±3×10-4  RIU (refractive index unit).

  16. Investigation the effect of outdoor air infiltration on the heat-shielding characteristics the outer walls of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Vytchikov, Yu. S.; Kostuganov, A. B.; Saparev, M. E.; Belyakov, I. G.

    2018-03-01

    The presented article considers the influence of infiltrated outdoor air on the heat-shielding characteristics of the exterior walls of modern residential and public buildings. A review of the sources devoted to this problem confirmed its relevance at the present time, especially for high-rise buildings. The authors of the article analyzed the effect of longitudinal and transverse air infiltration on the heat-shielding characteristics of the outer wall of a 25-story building that was built in Samara. The results showed a significant reduction of the reduced resistance to the heat transfer of the outer wall when air is infiltrated through it. There are the results of full-scale examination of external walls to confirm the calculated data. Based on the results of the study carried out by the authors of the article, general recommendations on the internal finishing of the outer walls of high-rise buildings are given.

  17. Efficacy of passive acoustic screening: implications for the design of imager and MR-suite.

    PubMed

    Moelker, Adriaan; Vogel, Mika W; Pattynama, Peter M T

    2003-02-01

    To investigate the efficacy of passive acoustic screening in the magnetic resonance (MR) environment by reducing direct and indirect MR-related acoustic noise, both from the patient's and health worker's perspective. Direct acoustic noise refers to sound originating from the inner and outer shrouds of the MR imager, and indirect noise to acoustic reflections from the walls of the MR suite. Sound measurements were obtained inside the magnet bore (patient position) and at the entrance of the MR imager (health worker position). Inner and outer shrouds and walls were lined with thick layers of sound insulation to eliminate the direct and indirect acoustic pathways. Sound pressure levels (SPLs) and octave band frequencies were acquired during various MR imaging sequences at 1.5 T. Inside the magnet bore, direct acoustic noise radiating from the inner shroud was most relevant, with substantial reductions of up to 18.8 dB when using passive screening of the magnetic bore. At the magnet bore entrance, blocking acoustic noise from the outer shroud and reflections showed significant reductions of 4.5 and 2.8 dB, respectively, and 9.4 dB when simultaneously applied. Inner shroud coverage contributed minimally to the overall SPL reduction. Maximum noise reduction by passive acoustic screening can be achieved by reducing direct sound conduction through the inner and outer shrouds. Additional measures to optimize the acoustic properties of the MR suite have only little effect. Copyright 2003 Wiley-Liss, Inc.

  18. Gravity Scaling of a Power Reactor Water Shield

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.; Pearson, J. Boise

    2007-01-01

    A similarity analysis on a water-based reactor shield examined the effect of gravity on free convection between a reactor shield inner and outer vessel boundaries. Two approaches established similarity between operation on the Earth and the Moon: 1) direct scaling of Rayleigh number equating gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant. Nusselt number for natural convection (laminar and turbulent) is assumed of form Nu = CRa(sup n).

  19. Turbine airfoil having near-wall cooling insert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Jr., Nicholas F.; Wiebe, David J.

    A turbine airfoil is provided with at least one insert positioned in a cavity in an airfoil interior. The insert extends along a span-wise extent of the turbine airfoil and includes first and second opposite faces. A first near-wall cooling channel is defined between the first face and a pressure sidewall of an airfoil outer wall. A second near-wall cooling channel is defined between the second face and a suction sidewall of the airfoil outer wall. The insert is configured to occupy an inactive volume in the airfoil interior so as to displace a coolant flow in the cavity towardmore » the first and second near-wall cooling channels. A locating feature engages the insert with the outer wall for supporting the insert in position. The locating feature is configured to control flow of the coolant through the first or second near-wall cooling channel.« less

  20. Growth and wall-transpiration control of nonlinear unsteady Görtler vortices forced by free-stream vortical disturbances

    NASA Astrophysics Data System (ADS)

    Marensi, Elena; Ricco, Pierre

    2017-11-01

    The generation, nonlinear evolution, and wall-transpiration control of unsteady Görtler vortices in an incompressible boundary layer over a concave plate is studied theoretically and numerically. Görtler rolls are initiated and driven by free-stream vortical perturbations of which only the low-frequency components are considered because they penetrate the most into the boundary layer. The formation and development of the disturbances are governed by the nonlinear unsteady boundary-region equations with the centrifugal force included. These equations are subject to appropriate initial and outer boundary conditions, which account for the influence of the upstream and free-stream forcing in a rigorous and mutually consistent manner. Numerical solutions show that the stabilizing effect on nonlinearity, which also occurs in flat-plate boundary layers, is significantly enhanced in the presence of centrifugal forces. Sufficiently downstream, the nonlinear vortices excited at different free-stream turbulence intensities Tu saturate at the same level, proving that the initial amplitude of the forcing becomes unimportant. At low Tu, the disturbance exhibits a quasi-exponential growth with the growth rate being intensified for more curved plates and for lower frequencies. At higher Tu, in the typical range of turbomachinery applications, the Görtler vortices do not undergo a modal stage as nonlinearity saturates rapidly, and the wall curvature does not affect the boundary-layer response. Good quantitative agreement with data from direct numerical simulations and experiments is obtained. Steady spanwise-uniform and spanwise-modulated zero-mass-flow-rate wall transpiration is shown to attenuate the growth of the Görtler vortices significantly. A novel modified version of the Fukagata-Iwamoto-Kasagi identity, used for the first time to study a transitional flow, reveals which terms in the streamwise momentum balance are mostly affected by the wall transpiration, thus offering insight into the increased nonlinear growth of the wall-shear stress.

  1. Relationships of left ventricular strain and strain rate to wall stress and their afterload dependency.

    PubMed

    Murai, Daisuke; Yamada, Satoshi; Hayashi, Taichi; Okada, Kazunori; Nishino, Hisao; Nakabachi, Masahiro; Yokoyama, Shinobu; Abe, Ayumu; Ichikawa, Ayako; Ono, Kota; Kaga, Sanae; Iwano, Hiroyuki; Mikami, Taisei; Tsutsui, Hiroyuki

    2017-05-01

    Whether and how left ventricular (LV) strain and strain rate correlate with wall stress is not known. Furthermore, it is not determined whether strain or strain rate is less dependent on the afterload. In 41 healthy young adults, LV global peak strain and systolic peak strain rate in the longitudinal direction (LS and LSR, respectively) and circumferential direction (CS and CSR, respectively) were measured layer-specifically using speckle tracking echocardiography (STE) before and during a handgrip exercise. Among all the points before and during the exercise, all the STE parameters significantly correlated linearly with wall stress (LS: r = -0.53, p < 0.01, LSR: r = -0.28, p < 0.05, CS in the inner layer: r = -0.72, p < 0.01, CSR in the inner layer: r = -0.47, p < 0.01). Strain more strongly correlated with wall stress than strain rate (r = -0.53 for LS vs. r = -0.28 for LSR, p < 0.05; r = -0.72 for CS vs. r = -0.47 for CSR in the inner layer, p < 0.05), whereas the interobserver variability was similar between strain and strain rate (longitudinal 6.2 vs. 5.2 %, inner circumferential 4.8 vs. 4.7 %, mid-circumferential 7.9 vs. 6.9 %, outer circumferential 10.4 vs. 9.7 %), indicating that the differences in correlation coefficients reflect those in afterload dependency. It was thus concluded that LV strain and strain rate linearly and inversely correlated with wall stress in the longitudinal and circumferential directions, and strain more strongly depended on afterload than did strain rate. Myocardial shortening should be evaluated based on the relationships between these parameters and wall stress.

  2. Formation of the outer layer of the Dictyostelium spore coat depends on the inner-layer protein SP85/PsB.

    PubMed

    Metcalf, Talibah; Kelley, Karen; Erdos, Gregory W; Kaplan, Lee; West, Christopher M

    2003-02-01

    The Dictyostelium spore is surrounded by a 220 microm thick trilaminar coat that consists of inner and outer electron-dense layers surrounding a central region of cellulose microfibrils. In previous studies, a mutant strain (TL56) lacking three proteins associated with the outer layer exhibited increased permeability to macromolecular tracers, suggesting that this layer contributes to the coat permeability barrier. Electron microscopy now shows that the outer layer is incomplete in the coats of this mutant and consists of a residual regular array of punctate electron densities. The outer layer is also incomplete in a mutant lacking a cellulose-binding protein associated with the inner layer, and these coats are deficient in an outer-layer protein and another coat protein. To examine the mechanism by which this inner-layer protein, SP85, contributes to outer-layer formation, various domain fragments were overexpressed in forming spores. Most of these exert dominant negative effects similar to the deletion of outer-layer proteins, but one construct, consisting of a fusion of the N-terminal and Cys-rich C1 domain, induces a dense mat of novel filaments at the surface of the outer layer. Biochemical studies show that the C1 domain binds cellulose, and a combination of site-directed mutations that inhibits its cellulose-binding activity suppresses outer-layer filament induction. The results suggest that, in addition to a previously described early role in regulating cellulose synthesis, SP85 subsequently contributes a cross-bridging function between cellulose and other coat proteins to organize previously unrecognized structural elements in the outer layer of the coat.

  3. Turbulent structures of non-Newtonian solutions containing rigid polymers

    NASA Astrophysics Data System (ADS)

    Mohammadtabar, M.; Sanders, R. S.; Ghaemi, S.

    2017-10-01

    The turbulent structure of a channel flow of Xanthan Gum (XG) polymer solution is experimentally investigated and compared with water flow at a Reynolds number of Re = 7200 (based on channel height and properties of water) and Reτ = 220 (based on channel height and friction velocity, uτ0). The polymer concentration is varied from 75, 100, and 125 ppm to reach the point of maximum drag reduction (MDR). Measurements are carried out using high-resolution, two-component Particle Image Velocimetry (PIV) to capture the inner and outer layer turbulence. The measurements showed that the logarithmic layer shifts away from the wall with increasing polymer concentration. The slopes of the mean velocity profile for flows containing 100 and 125 ppm XG are greater than that measured for XG at 75 ppm, which is parallel with the slope obtained for deionized water. The increase in slope results in thickening buffer layer. At MDR, the streamwise Reynolds stresses are as large as those of the Newtonian flow while the wall-normal Reynolds stresses and Reynolds shear stresses are significantly attenuated. The sweep-dominated region in the immediate vicinity of the wall extends further from the wall with increasing polymer concentration. The near-wall skewness intensifies towards positive streamwise fluctuations and covers a larger wall-normal length at larger drag reduction values. The quadrant analysis at y + 0 = 25 shows that the addition of polymers inclines the principal axis of v versus u plot to almost zero (horizontal) as the joint probability density function of fluctuations becomes symmetric with respect to the u axis at MDR. The reduction of turbulence production is mainly associated with the attenuation of the ejection motions. The spatial-correlation of the fluctuating velocity field shows that increasing the polymer concentration increases the spatial coherence of u fluctuations in the streamwise direction while they appear to have the opposite effect in the wall-normal direction. The proper orthogonal decomposition of velocity fluctuations shows that the inclined shear layer structure of Newtonian wall flows becomes horizontal at the MDR and does not contribute to turbulence production.

  4. Biochemical and Immunocytological Characterizations of Arabidopsis Pollen Tube Cell Wall1[C][W][OA

    PubMed Central

    Dardelle, Flavien; Lehner, Arnaud; Ramdani, Yasmina; Bardor, Muriel; Lerouge, Patrice; Driouich, Azeddine; Mollet, Jean-Claude

    2010-01-01

    During plant sexual reproduction, pollen germination and tube growth require development under tight spatial and temporal control for the proper delivery of the sperm cells to the ovules. Pollen tubes are fast growing tip-polarized cells able to perceive multiple guiding signals emitted by the female organ. Adhesion of pollen tubes via cell wall molecules may be part of the battery of signals. In order to study these processes, we investigated the cell wall characteristics of in vitro-grown Arabidopsis (Arabidopsis thaliana) pollen tubes using a combination of immunocytochemical and biochemical techniques. Results showed a well-defined localization of cell wall epitopes. Low esterified homogalacturonan epitopes were found mostly in the pollen tube wall back from the tip. Xyloglucan and arabinan from rhamnogalacturonan I epitopes were detected along the entire tube within the two wall layers and the outer wall layer, respectively. In contrast, highly esterified homogalacturonan and arabinogalactan protein epitopes were found associated predominantly with the tip region. Chemical analysis of the pollen tube cell wall revealed an important content of arabinosyl residues (43%) originating mostly from (1→5)-α-l-arabinan, the side chains of rhamnogalacturonan I. Finally, matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of endo-glucanase-sensitive xyloglucan showed mass spectra with two dominant oligosaccharides (XLXG/XXLG and XXFG), both being mono O-acetylated, and accounting for over 68% of the total ion signals. These findings demonstrate that the Arabidopsis pollen tube wall has its own characteristics compared with other cell types in the Arabidopsis sporophyte. These structural features are discussed in terms of pollen tube cell wall biosynthesis and growth dynamics. PMID:20547702

  5. Biochemical and immunocytological characterizations of Arabidopsis pollen tube cell wall.

    PubMed

    Dardelle, Flavien; Lehner, Arnaud; Ramdani, Yasmina; Bardor, Muriel; Lerouge, Patrice; Driouich, Azeddine; Mollet, Jean-Claude

    2010-08-01

    During plant sexual reproduction, pollen germination and tube growth require development under tight spatial and temporal control for the proper delivery of the sperm cells to the ovules. Pollen tubes are fast growing tip-polarized cells able to perceive multiple guiding signals emitted by the female organ. Adhesion of pollen tubes via cell wall molecules may be part of the battery of signals. In order to study these processes, we investigated the cell wall characteristics of in vitro-grown Arabidopsis (Arabidopsis thaliana) pollen tubes using a combination of immunocytochemical and biochemical techniques. Results showed a well-defined localization of cell wall epitopes. Low esterified homogalacturonan epitopes were found mostly in the pollen tube wall back from the tip. Xyloglucan and arabinan from rhamnogalacturonan I epitopes were detected along the entire tube within the two wall layers and the outer wall layer, respectively. In contrast, highly esterified homogalacturonan and arabinogalactan protein epitopes were found associated predominantly with the tip region. Chemical analysis of the pollen tube cell wall revealed an important content of arabinosyl residues (43%) originating mostly from (1-->5)-alpha-L-arabinan, the side chains of rhamnogalacturonan I. Finally, matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of endo-glucanase-sensitive xyloglucan showed mass spectra with two dominant oligosaccharides (XLXG/XXLG and XXFG), both being mono O-acetylated, and accounting for over 68% of the total ion signals. These findings demonstrate that the Arabidopsis pollen tube wall has its own characteristics compared with other cell types in the Arabidopsis sporophyte. These structural features are discussed in terms of pollen tube cell wall biosynthesis and growth dynamics.

  6. Method of fabricating a prestressed cast iron vessel

    DOEpatents

    Lampe, Robert F.

    1982-01-01

    A method of fabricating a prestressed cast iron vessel wherein double wall cast iron body segments each have an arcuate inner wall and a spaced apart substantially parallel outer wall with a plurality of radially extending webs interconnecting the inner wall and the outer wall, the bottom surface and the two exposed radial side surfaces of each body segment are machined and eight body segments are formed into a ring. The top surfaces and outer surfaces of the outer walls are machined and keyways are provided across the juncture of adjacent end walls of the body segments. A liner segment complementary in shape to a selected inner wall of one of the body segments is mounted to each of the body segments and again formed into a ring. The liner segments of each ring are welded to form unitary liner rings and thereafter the cast iron body segments are prestressed to complete the ring assembly. Ring assemblies are stacked to form the vessel and adjacent unitary liner rings are welded. A top head covers the top ring assembly to close the vessel and axially extending tendons retain the top and bottom heads in place under pressure.

  7. The Cell Wall of the Human Fungal Pathogen Aspergillus fumigatus: Biosynthesis, Organization, Immune Response, and Virulence.

    PubMed

    Latgé, Jean-Paul; Beauvais, Anne; Chamilos, Georgios

    2017-09-08

    More than 90% of the cell wall of the filamentous fungus Aspergillus fumigatus comprises polysaccharides. Biosynthesis of the cell wall polysaccharides is under the control of three types of enzymes: transmembrane synthases, which are anchored to the plasma membrane and use nucleotide sugars as substrates, and cell wall-associated transglycosidases and glycosyl hydrolases, which are responsible for remodeling the de novo synthesized polysaccharides and establishing the three-dimensional structure of the cell wall. For years, the cell wall was considered an inert exoskeleton of the fungal cell. The cell wall is now recognized as a living organelle, since the composition and cellular localization of the different constitutive cell wall components (especially of the outer layers) vary when the fungus senses changes in the external environment. The cell wall plays a major role during infection. The recognition of the fungal cell wall by the host is essential in the initiation of the immune response. The interactions between the different pattern-recognition receptors (PRRs) and cell wall pathogen-associated molecular patterns (PAMPs) orientate the host response toward either fungal death or growth, which would then lead to disease development. Understanding the molecular determinants of the interplay between the cell wall and host immunity is fundamental to combatting Aspergillus diseases.

  8. Inspection of small multi-layered plastic tubing during extrusion, using low-energy X-ray beams

    NASA Astrophysics Data System (ADS)

    Armentrout, C.; Basinger, T.; Beyer, J.; Colesa, B.; Olsztyn, P.; Smith, K.; Strandberg, C.; Sullivan, D.; Thomson, J.

    1999-02-01

    The automotive industry uses nylon tubing with a thin ETFE (ethylene-tetrafluroethylene) inner layer to carry fuel from the tank to the engine. This fluorocarbon inner barrier layer is important to reduce the migration of hydrocarbons into the environment. Pilot Industries has developed a series of real-time inspection stations for dimensional measurements and flaw detection during the extrusion of this tubing. These stations are named LERA TM (low-energy radioscopic analysis), use a low energy X-ray source, a special high-resolution image converter and intensifier (ICI) stage, image capture hardware, a personal computer, and software that was specially designed to meet this task. Each LERA TM station operates up to 20 h a day, 6 days a week and nearly every week of the year. The tubing walls are 1-2 mm thick and the outer layer is nylon and the inner 0.2 mm thick layer is ethylene-tetrafluroethylene.

  9. Drag reduction in turbulent channel laden with finite-size oblate spheroids

    NASA Astrophysics Data System (ADS)

    Niazi Ardekani, Mehdi; Pedro Costa Collaboration; Wim-Paul Breugem Collaboration; Francesco Picano Collaboration; Luca Brandt Collaboration

    2016-11-01

    Suspensions of oblate rigid particles in a turbulent plane channel flow are investigated for different values of the particle volume fraction. We perform direct numerical simulations (DNS), using a direct-forcing immersed boundary method to account for the particle-fluid interactions, combined with a soft-sphere collision model and lubrication corrections for short-range particle-particle and particle-wall interactions. We show a clear drag reduction and turbulence attenuation in flows laden with oblate spheroids, both with respect to the single phase turbulent flow and to suspensions of rigid spheres. We explain the drag reduction by the lack of the particle layer at the wall, observed before for spherical particles. In addition, the special shape of the oblate particles creates a tendency to stay parallel to the wall in its vicinity, forming a shield of particles that prevents strong fluctuations in the outer layer to reach the wall and vice versa. Detailed statistics of the fluid and particle phase will be presented at the conference to explain the observed drag reduction. Supported by the European Research Council Grant No. ERC-2013-CoG-616186, TRITOS. The authors acknowledge computer time provided by SNIC (Swedish National Infrastructure for Computing) and the support from the COST Action MP1305: Flowing matter.

  10. Redox-controlled molecular permeability of composite-wall microcapsules

    NASA Astrophysics Data System (ADS)

    Ma, Yujie; Dong, Wen-Fei; Hempenius, Mark A.; Möhwald, Helmuth; Julius Vancso, G.

    2006-09-01

    Many smart materials in bioengineering, nanotechnology and medicine allow the storage and release of encapsulated drugs on demand at a specific location by an external stimulus. Owing to their versatility in material selection, polyelectrolyte multilayers are very promising systems in the development of microencapsulation technologies with permeation control governed by variations in the environmental conditions. Here, organometallic polyelectrolyte multilayer capsules, composed of polyanions and polycations of poly(ferrocenylsilane) (PFS), are introduced. Their preparation involved layer-by-layer self-assembly onto colloidal templates followed by core removal. PFS polyelectrolytes feature redox-active ferrocene units in the main chain. Incorporation of PFS into the capsule walls allowed us to explore the effects of a new stimulus, that is, changing the redox state, on capsule wall permeability. The permeability of these capsules could be sensitively tuned via chemical oxidation, resulting in a fast capsule expansion accompanied by a drastic permeability increase in response to a very small trigger. The substantial swelling could be suppressed by the application of an additional coating bearing common redox-inert species of poly(styrene sulfonate) (PSS-) and poly(allylamine hydrochloride) (PAH+) on the outer wall of the capsules. Hence, we obtained a unique capsule system with redox-controlled permeability and swellability with a high application potential in materials as well as in bioscience.

  11. Isolated development of inner (wall) caries like lesions in a bacterial-based in vitro model.

    PubMed

    Diercke, K; Lussi, A; Kersten, T; Seemann, R

    2009-12-01

    The study conducted in a bacterial-based in vitro caries model aimed to determine whether typical inner secondary caries lesions can be detected at cavity walls of restorations with selected gap widths when the development of outer lesions is inhibited. Sixty bovine tooth specimens were randomly assigned to the following groups: test group 50 (TG50; gap, 50 microm), test group 100 (TG100; gap, 100 microm), test group 250 (TG250; gap, 250 microm) and a control group (CG; gap, 250 microm). The outer tooth surface of the test group specimens was covered with an acid-resistant varnish to inhibit the development of an outer caries lesion. After incubation in the caries model, the area of demineralization at the cavity wall was determined by confocal laser scanning microscopy. All test group specimens demonstrated only wall lesions. The CG specimens developed outer and wall lesions. The TG250 specimens showed significantly less wall lesion area compared to the CG (p < 0.05). In the test groups, a statistically significant increase (p < 0.05) in lesion area could be detected in enamel between TG50 and TG250 and in dentine between TG50 and TG100. In conclusion, the inner wall lesions of secondary caries can develop without the presence of outer lesions and therefore can be regarded as an entity on their own. The extent of independently developed wall lesions increased with gap width in the present setting.

  12. Determination of the temperature distribution in a minichannel using ANSYS CFX and a procedure based on the Trefftz functions

    NASA Astrophysics Data System (ADS)

    Maciejewska, Beata; Błasiak, Sławomir; Piasecka, Magdalena

    This work discusses the mathematical model for laminar-flow heat transfer in a minichannel. The boundary conditions in the form of temperature distributions on the outer sides of the channel walls were determined from experimental data. The data were collected from the experimental stand the essential part of which is a vertical minichannel 1.7 mm deep, 16 mm wide and 180 mm long, asymmetrically heated by a Haynes-230 alloy plate. Infrared thermography allowed determining temperature changes on the outer side of the minichannel walls. The problem was analysed numerically through either ANSYS CFX software or special calculation procedures based on the Finite Element Method and Trefftz functions in the thermal boundary layer. The Trefftz functions were used to construct the basis functions. Solutions to the governing differential equations were approximated with a linear combination of Trefftz-type basis functions. Unknown coefficients of the linear combination were calculated by minimising the functional. The results of the comparative analysis were represented in a graphical form and discussed.

  13. Diagnosis and Treatment of Neurological Disorders by Millimeter-Wave Stimulation

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Pikov, Victor

    2011-01-01

    Increasingly, millimeter waves are being employed for telecomm, radar, and imaging applications. To date in the U.S, however, very few investigations on the impact of this radiation on biological systems at the cellular level have been undertaken. In the beginning, to examine the impact of millimeter waves on cellular processes, researchers discovered that cell membrane depolarization may be triggered by low levels of integrated power at these high frequencies. Such a situation could be used to advantage in the direct stimulation of neuronal cells for applications in neuroprosthetics and diagnosing or treating neurological disorders. An experimental system was set up to directly monitor cell response on exposure to continuous-wave, fixed-frequency, millimeter-wave radiation at low and modest power levels (0.1 to 100 safe exposure standards) between 50 and 100 GHz. Two immortalized cell lines derived from lung and neuronal tissue were transfected with green fluorescent protein (GFP) that locates on the inside of the cell membrane lipid bi-layer. Oxonol dye was added to the cell medium. When membrane depolarization occurs, the oxonal bound to the outer wall of the lipid bi-layer can penetrate close to the inner wall where the GFP resides. Under fluorescent excitation (488 nm), the normally green GFP (520 nm) optical signal quenches and gives rise to a red output when the oxonol comes close enough to the GFP to excite a fluorescence resonance energy transfer (FRET) with an output at 620 nm. The presence of a strong FRET signature upon exposures of 30 seconds to 2 minutes at 5-10 milliwatts per square centimeter RF power at 50 GHz, followed by a return to the normal 520-nm GFP signal after a few minutes indicating repolarization of the membrane, indicates that low levels of RF energy may be able to trigger non-destructive membrane depolarization without direct cell contact. Such a mechanism could be used to stimulate neuronal cells in the cortex without the need for invasive electrodes as millimeter waves penetrate skin and bone on the order of 15 mm in depth. Although 50 GHz could not readily penetrate from the outer skull to the center of the cortex, implants on the outer skull or even on the scalp could reach the outer layer of the cerebral cortex where substantial benefit could be realized from such non-contact type excitation.

  14. Alternative irradiation schemes for NIF and LMJ hohlraums

    DOE PAGES

    Bourgade, Jean-Luc; Bowen, Christopher; Gauthier, Pascal; ...

    2017-12-13

    Here, we explore two alternative irradiation schemes for the large ('outer') and small ('inner') angle beams that currently illuminate National Ignition Facility (NIF) and Laser Mégajoule cavities. In the first, while the outer laser beams enter through the usual end laser entrance holes (LEH), the inner beams enter through slots along the cavity axis wall, illuminating the back wall of the cavity. This avoids the current interaction of the inner laser beams with the gold wall bubbles generated by the outer beams, which leads to large time-dependent changes in drive symmetry. Another scheme potentially useful for NIF uses only themore » outer beams. The radiative losses through the slots or from the use of outer beams only are compensated by using a smaller cavity and LEH.« less

  15. Alternative irradiation schemes for NIF and LMJ hohlraums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourgade, Jean-Luc; Bowen, Christopher; Gauthier, Pascal

    Here, we explore two alternative irradiation schemes for the large ('outer') and small ('inner') angle beams that currently illuminate National Ignition Facility (NIF) and Laser Mégajoule cavities. In the first, while the outer laser beams enter through the usual end laser entrance holes (LEH), the inner beams enter through slots along the cavity axis wall, illuminating the back wall of the cavity. This avoids the current interaction of the inner laser beams with the gold wall bubbles generated by the outer beams, which leads to large time-dependent changes in drive symmetry. Another scheme potentially useful for NIF uses only themore » outer beams. The radiative losses through the slots or from the use of outer beams only are compensated by using a smaller cavity and LEH.« less

  16. Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Hutchins, N.; Hambleton, W. T.; Marusic, Ivan

    2005-10-01

    This work can be viewed as a reprise of Head & Bandyopadhyay's (J. Fluid Mech. vol. 107, p. 297) original boundary-layer visualization study although in this instance we make use of stereo particle image velocimetry (PIV), techniques to obtain a quantitative view of the turbulent structure. By arranging the laser light-sheet and image plane of a stereo PIV system in inclined spanwise/wall-normal planes (inclined at both 45(°) and 135(°) to the streamwise axis) a unique quantitative view of the turbulent boundary layer is obtained. Experiments are repeated across a range of Reynolds numbers, Re_{tau} {≈} 690-2800. Despite numerous experimental challenges (due to the large out-of-plane velocity components), mean flow and Reynolds stress profiles indicate that the salient features of the turbulent flow have been well resolved. The data are analysed with specific attention to a proposed hairpin eddy model. In-plane two-dimensional swirl is used to identify vortical eddy structures piercing the inclined planes. The vast majority of this activity occurs in the 135(°) plane, indicating an inclined eddy structure, and Biot-Savart law calculations are carried out to aid in the discussion. Conditional averaging and linear stochastic estimation results also support the presence of inclined eddies, arranged about low-speed regions. In the 135(°) plane, instantaneous swirl patterns exhibit a predisposition for counter-rotating vortex pairs (arranged with an ejection at their confluence). Such arrangements are consistent with the hairpin packet model. Correlation and scaling results show outer-scaling to be the correct way to quantify the characteristic spanwise length scale across the log and wake regions of the boundary layers (for the range of Reynolds numbers tested). A closer investigation of two-point velocity correlation contours indicates the occurrence of a distinct two-regime behaviour, in which contours (and hence streamwise velocity fluctuations) either appear to be ‘attached’ to the buffer region, or ‘detaching’ from it. The demarcation between these two regimes is found to scale well with outer variables. The results are consistent with a coherent structure that becomes increasingly uncoupled (or decorrelated) from the wall as it grows beyond the logarithmic region, providing additional support for a wall awake description of turbulent boundary layers.

  17. Effect of a finite ionization rate on the radiative heating of outer planet atmospheric entry probes

    NASA Technical Reports Server (NTRS)

    Nelson, H. F.

    1982-01-01

    The influence of finite rate ionization in the inviscid gas just behind the stagnation shock wave on the radiative heating of probes entering the hydrogen-helium atmosphere of the major plants was investigated. Two opposing conclusions were reached as to how the ionization rate assumption affects the radiative transfer. Hydrogen-helium shock waves with a cold nonblowing wall boundary condition at the probe heat shield are emphasized. The study is limited to the stagnation shock layer.

  18. Experiments on a smooth wall hypersonic boundary layer at Mach 6

    NASA Astrophysics Data System (ADS)

    Neeb, Dominik; Saile, Dominik; Gülhan, Ali

    2018-04-01

    The turbulent boundary layer along the surface of high-speed vehicles drives shear stress and heat flux. Although essential to the vehicle design, the understanding of compressible turbulent boundary layers at high Mach numbers is limited due to the lack of available data. This is particularly true if the surface is rough, which is typically the case for all technical surfaces. To validate a methodological approach, as initial step, smooth wall experiments were performed. A hypersonic turbulent boundary layer at Ma = 6 (Ma_e=5.4) along a 7{}° sharp cone model at low Reynolds numbers Re_{θ } ≈ 3000 was characterized. The mean velocities in the boundary layer were acquired by means of Pitot pressure and particle image velocimetry (PIV) measurements. Furthermore, the PIV data were used to extract turbulent intensities along the profile. The mean velocities in the boundary layer agree with numerical data, independent of the measurement technique. Based on the profile data, three different approaches to extract the skin friction velocity were applied and show favorable comparison to literature and numerical data. The extracted values were used for inner and outer scaling of the van Driest transformed velocity profiles which are in good agreement to incompressible theoretical data. Morkovin scaled turbulent intensities show ambiguous results compared to literature data which may be influenced by inflow turbulence level, particle lag and other measurement uncertainties.

  19. Experimental and theoretical investigation of three-dimensional turbulent boundary layers and turbulence characteristics inside an axial flow inducer passage. Final Report. Ph.D. Thesis, Jun. 1971

    NASA Technical Reports Server (NTRS)

    Anand, A. K.; Lakshminarayana, B.

    1977-01-01

    Analytical and experimental investigations of the characteristics of three dimensional turbulent boundary layers in a rotating helical passage of an inducer rotor are reported. Expressions are developed for the velocity profiles in the inner layer, where the viscous effects dominate, in the outer layer, where the viscous effects are small, and in the interference layer, where the end walls influence the flow. The prediction of boundary layer growth is based on the momentum integral technique. The equations derived are general enough to be valid for all turbomachinery rotors with arbitrary pressure gradients. The experimental investigations are carried out in a flat plate inducer 3 feet in diameter. The mean velocity profiles, turbulence intensities and shear stresses, wall shear stress, and limiting streamline angles are measured at various radial and chordwise locations by using rotating probes. The measurements are in general agreement with the predictions. The radial flows are well represented by an expression which includes the effect of stagger angle and radial pressure gradient. The radial flows in the rotor channel are higher than those on a single blade. The collateral region exists only very near the blade surface. The radial component of turbulence intensity is higher than the streamwise component because of the effect of rotation.

  20. Liquid metal heat exchanger for efficient heating of soils and geologic formations

    DOEpatents

    DeVault, Robert C [Knoxville, TN; Wesolowski, David J [Kingston, TN

    2010-02-23

    Apparatus for efficient heating of subterranean earth includes a well-casing that has an inner wall and an outer wall. A heater is disposed within the inner wall and is operable within a preselected operating temperature range. A heat transfer metal is disposed within the outer wall and without the inner wall, and is characterized by a melting point temperature lower than the preselected operating temperature range and a boiling point temperature higher than the preselected operating temperature range.

  1. Chemically Doped Double-Walled Carbon Nanotubes: Cylindrical Molecular Capacitors

    NASA Astrophysics Data System (ADS)

    Chen, Gugang; Bandow, S.; Margine, E. R.; Nisoli, C.; Kolmogorov, A. N.; Crespi, Vincent H.; Gupta, R.; Sumanasekera, G. U.; Iijima, S.; Eklund, P. C.

    2003-06-01

    A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.

  2. Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors.

    PubMed

    Chen, Gugang; Bandow, S; Margine, E R; Nisoli, C; Kolmogorov, A N; Crespi, Vincent H; Gupta, R; Sumanasekera, G U; Iijima, S; Eklund, P C

    2003-06-27

    A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.

  3. Double-walled silicon nanotubes: an ab initio investigation

    NASA Astrophysics Data System (ADS)

    Lima, Matheus P.

    2018-02-01

    The synthesis of silicon nanotubes realized in the last decade demonstrates multi-walled tubular structures consisting of Si atoms in {{sp}}2 and the {{sp}}3 hybridizations. However, most of the theoretical models were elaborated taking as the starting point {{sp}}2 structures analogous to carbon nanotubes. These structures are unfavorable due to the natural tendency of the Si atoms to undergo {{sp}}3. In this work, through ab initio simulations based on density functional theory, we investigated double-walled silicon nanotubes proposing layered tubes possessing most of the Si atoms in an {{sp}}3 hybridization, and with few {{sp}}2 atoms localized at the outer wall. The lowest-energy structures have metallic behavior. Furthermore, the possibility to tune the band structure with the application of a strain was demonstrated, inducing a metal-semiconductor transition. Thus, the behavior of silicon nanotubes differs significantly from carbon nanotubes, and the main source of the differences is the distortions in the lattice associated with the tendency of Si to make four chemical bonds.

  4. A new coccidian parasite, Isospora samoaensis, from the Wattled Honeyeater (Foulehaio carunculata) from American Samoa

    USGS Publications Warehouse

    Adamczyk, Kelly J.; McQuistion, Thomas E.; LaPointe, Dennis

    2004-01-01

    A new species of Isospora is described from the feces of the wattled honeyeater, Foulehaio carunculata from American Samoa. Numerous oocysts of similar morphology were found in a single adult wattled honeyeater. Sporulated oocysts are ovoid, 28.9 × 26.1 (25-32 × 23-30) µm, with a smooth, colorless, bilayered wall; the inner wall is slightly thicker and darker than the outer wall. The average shape index is 1.1. No micropyle or oocyst residuum are present but the oocyst contains one or two ovoid polar granules. Sporocysts are ovoid, 17.1 × 10.9 (16-18 × 10-11) µm with a smooth single layered wall and an average shape index of 1.6. The Stieda body is broad, dome-like with a rather rectangular-shaped substieda body. Within the sporocyst is a large amorphous residuum composed of coarse granules and 4 randomly arranged, sausage-shaped sporozoites with a subspherical, posterior refractile body and a centrally located nucleus.

  5. Remarkable biocompatibility enhancement of porous NiTi alloys by a new surface modification approach: in-situ nitriding and in vitro and in vivo evaluation.

    PubMed

    Li, H; Yuan, B; Gao, Y; Chung, C Y; Zhu, M

    2011-12-15

    An in-situ nitriding method has been developed to modify the outer surface and the pore walls of both open and closed pores of porous NiTi shape memory alloys (SMAs) as part of their sintering process. XRD and XPS examinations revealed that the modified layer is mainly TiN. The biocompatibility of the in-situ nitrided sample has been characterized by its corrosion resistance, cell adherence, and implant surgery. The in-situ nitrided porous NiTi SMAs exhibit much better corrosion resistance, cell adherence, and bone tissue induced capability than the porous NiTi alloys without surface modification. Furthermore, the released Ni ion content in the blood of rabbit is reduced greatly by the in-situ nitriding. The excellent biocompatibility of in-situ nitrided sample is attributed to the formation of the TiN layer on all the pore walls including both open and closed pores. Copyright © 2011 Wiley Periodicals, Inc.

  6. Preliminary Empirical Models for Predicting Shrinkage, Part Geometry and Metallurgical Aspects of Ti-6Al-4V Shaped Metal Deposition Builds

    NASA Astrophysics Data System (ADS)

    Escobar-Palafox, Gustavo; Gault, Rosemary; Ridgway, Keith

    2011-12-01

    Shaped Metal Deposition (SMD) is an additive manufacturing process which creates parts layer by layer by weld depositions. In this work, empirical models that predict part geometry (wall thickness and outer diameter) and some metallurgical aspects (i.e. surface texture, portion of finer Widmanstätten microstructure) for the SMD process were developed. The models are based on an orthogonal fractional factorial design of experiments with four factors at two levels. The factors considered were energy level (a relationship between heat source power and the rate of raw material input.), step size, programmed diameter and travel speed. The models were validated using previous builds; the prediction error for part geometry was under 11%. Several relationships between the factors and responses were identified. Current had a significant effect on wall thickness; thickness increases with increasing current. Programmed diameter had a significant effect on percentage of shrinkage; this decreased with increasing component size. Surface finish decreased with decreasing step size and current.

  7. Heat Conductivity Resistance of Concrete Wall Panel by Water Flowing in Different Orientations of Internal PVC pipe

    NASA Astrophysics Data System (ADS)

    Umi, N. N.; Norazman, M. N.; Daud, N. M.; Yusof, M. A.; Yahya, M. A.; Othman, M.

    2018-04-01

    Green building technology and sustainability development is current focus in the world nowadays. In Malaysia and most tropical countries the maximum temperature recorded typically at 35°C. Air-conditioning system has become a necessity in occupied buildings, thereby increasing the cost of electric consumption. The aim of this study is to find out the solution in minimizing heat transfer from the external environment and intentions towards going green. In this study, the experimental work includes testing three types of concrete wall panels. The main heat intervention material in this research is 2 inch diameter Polyvinyl Chloride (PVC) pipe embedded at the center of the concrete wall panel, while the EPS foam beads were added to the cement content in the concrete mix forming the outer layer of the wall panel. Water from the rainwater harvesting system is regulated in the PVC pipe to intervene with the heat conductivity through the wall panel. Results from the experimental works show that the internal surface temperature of these heat resistance wall panels is to 3□C lower than control wall panel from plain interlocking bricks.

  8. Planar ceramic membrane assembly and oxidation reactor system

    DOEpatents

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel

    2007-10-09

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  9. Planar ceramic membrane assembly and oxidation reactor system

    DOEpatents

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohrn, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, Paul Nigel

    2009-04-07

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  10. Premixed direct injection nozzle for highly reactive fuels

    DOEpatents

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

    2013-09-24

    A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  11. Recycling inflow method for simulations of spatially evolving turbulent boundary layers over rough surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Xiang I. A.; Meneveau, Charles

    2016-01-01

    The technique by Lund et al. to generate turbulent inflow for simulations of developing boundary layers over smooth flat plates is extended to the case of surfaces with roughness elements. In the Lund et al. method, turbulent velocities on a sampling plane are rescaled and recycled back to the inlet as inflow boundary condition. To rescale mean and fluctuating velocities, appropriate length scales need be identified and for smooth surfaces, the viscous scale lν = ν/uτ (where ν is the kinematic viscosity and uτ is the friction velocity) is employed for the inner layer. Different from smooth surfaces, in rough wall boundary layers the length scale of the inner layer, i.e. the roughness sub-layer scale ld, must be determined by the geometric details of the surface roughness elements and the flow around them. In the proposed approach, it is determined by diagnosing dispersive stresses that quantify the spatial inhomogeneity caused by the roughness elements in the flow. The scale ld is used for rescaling in the inner layer, and the boundary layer thickness δ is used in the outer region. Both parts are then combined for recycling using a blending function. Unlike the blending function proposed by Lund et al. which transitions from the inner layer to the outer layer at approximately 0.2δ, here the location of blending is shifted upwards to enable simulations of very rough surfaces in which the roughness length may exceed the height of 0.2δ assumed in the traditional method. The extended rescaling-recycling method is tested in large eddy simulation of flow over surfaces with various types of roughness element shapes.

  12. Multilayer Article Characterized by Low Coefficient of Thermal Expansion Outer Layer

    NASA Technical Reports Server (NTRS)

    Lee, Kang N. (Inventor)

    2004-01-01

    A multilayer article comprises a substrate comprising a ceramic or a silicon-containing metal alloy. The ceramic is a Si-containing ceramic or an oxide ceramic with or without silicon. An outer layer overlies the substrate and at least one intermediate layer is located between the outer layer and thc substrate. An optional bond layer is disposed between thc 1 least one intermediate layer and thc substrate. The at least one intermediate layer may comprise an optional chemical barrier layer adjacent the outer layer, a mullite-containing layer and an optional chemical barrier layer adjacent to the bond layer or substrate. The outer layer comprises a compound having a low coefficient of thermal expansion selected from one of the following systems: rare earth (RE) silicates; at least one of hafnia and hafnia-containing composite oxides; zirconia-containing composite oxides and combinations thereof.

  13. Staged fuel and air injection in combustion systems of gas turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Michael John; Berry, Jonathan Dwight

    A gas turbine including a working fluid flowpath extending aftward from a forward injector in a combustor. The combustor may include an inner radial wall, an outer radial wall, and, therebetween, a flow annulus, and a third radial wall formed about the outer radial wall that forms an outer flow annulus. A staged injector may intersect the flow annulus so to attain an injection point within the working fluid flowpath by which aftward and forward annulus sections are defined. Air directing structure may include an aftward intake section corresponding to the aftward annulus section and a forward intake section correspondingmore » to the forward annulus section. The air directing structure may include a switchback coolant flowpath to direct air from the compressor discharge cavity to the staged injector. The switchback coolant flowpath may include an upstream section through the flow annulus, and a downstream section through the outer flow annulus.« less

  14. [Moisture and mold on the inner walls of prefabricated building slabs--investigating a strange cause].

    PubMed

    Kaufhold, T; Fiedler, K; Jung, G; Lindner, M; Gassel, R P

    1997-04-01

    Reasons for indoor-moisture beyond the normal level can be caused by penetrating dampness, condensation-water, and apartment misuse. A fall in the air temperature below the dew point in connection with moulding inside buildings becomes evident mostly at places like badly insulated outer-walls or room-corners. In a number of houses built between 1980 and 1983 in the so called "Plattenbauweise" (prefabricated slabs), exclusively the inner-walls were covered in mould around cracks in the walls. Examinations showed connections between the apartment and the outer-corridor with a slight exchange of air through the cracks. Warm, wet air escaped from the apartment into the outer-corridor, and cold air entered the apartment from the outer-corridor. This temporary fall below the dewpoint caused by suitable variation of temperature probably resulted in the building materials and wallpapers becoming damp, as well as the growth of mould.

  15. Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)

    2015-01-01

    An eddy-current-minimizing flow plug has an outer radial wall with open flow channels formed between the plug's inlet and outlet. The plug has a central region coupled to the inner surface of the outer radial wall. Each open flow channel includes (i) a first portion originating at the inlet and converging to a location in the plug where convergence is contributed to by changes in thickness of the outer radial wall and divergence of the central region, and (ii) a second portion originating in the plug and diverging to the outlet where divergence is contributed to by changes in thickness of the outer radial wall and convergence of the central region. For at least a portion of the open flow channels, a central axis passing through the first and second portions is non-parallel with respect to the given direction of the flow.

  16. Physical and Electronic Isolation of Carbon Nanotube Conductors

    NASA Technical Reports Server (NTRS)

    OKeeffe, James; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Multi-walled nanotubes are proposed as a method to electrically and physically isolate nanoscale conductors from their surroundings. We use tight binding (TB) and density functional theory (DFT) to simulate the effects of an external electric field on multi-wall nanotubes. Two categories of multi-wall nanotube are investigated, those with metallic and semiconducting outer shells. In the metallic case, simulations show that the outer wall effectively screens the inner core from an applied electric field. This offers the ability to reduce crosstalk between nanotube conductors. A semiconducting outer shell is found not to perturb an electric field incident on the inner core, thereby providing physical isolation while allowing the tube to remain electrically coupled to its surroundings.

  17. Roughness Induced Transition in a Supersonic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam; Kergerise, Michael A.

    2013-01-01

    Direct numerical simulation is used to investigate the transition induced by threedimensional isolated roughness elements in a supersonic boundary layer at a free stream Mach number of 3.5. Simulations are performed for two different configurations: one is a square planform roughness and the other is a diamond planform roughness. The mean-flow calculations show that the roughness induces counter rotating streamwise vortices downstream of the roughness. These vortices persist for a long distance downstream and lift the low momentum fluid from the near wall region and place it near the outer part of the boundary layer. This forms highly inflectional boundary layer profiles. These observations agree with recent experimental observations. The receptivity calculations showed that the amplitudes of the mass-flux fluctuations near the neutral point for the diamond shape roughness are the same as the amplitude of the acoustic disturbances. They are three times smaller for the square shape roughness.

  18. A mathematical model for filtration and macromolecule transport across capillary walls.

    PubMed

    Facchini, L; Bellin, A; Toro, E F

    2014-07-01

    Metabolic substrates, such as oxygen and glucose, are rapidly delivered to the cells of large organisms through filtration across microvessels walls. Modelling this important process is complicated by the strong coupling between flow and transport equations, which are linked through the osmotic pressure induced by the colloidal plasma proteins. The microvessel wall is a composite media with the internal glycocalyx layer exerting a strong sieving effect on macromolecules, with respect to the external layer composed by the endothelial cells. The physiological structure of the microvessel is represented as the superimposition of two membranes with different properties; the inner membrane represents the glycocalyx, while the outer membrane represents the surrounding endothelial cells. Application of the mass conservation principle and thermodynamic considerations lead to a model composed of two coupled second-order ordinary differential equations for the hydrostatic and osmotic pressures, one, expressing volumetric mass conservation and the other, which is non-linear in the unknown osmotic pressure, expressing macromolecules mass conservation. Despite the complexity of the system, the assumption that the properties of the layers are piece-wise constant allows us to obtain analytical solutions for the two pressures. This solution is in agreement with experimental observations, which contrary to common belief, show that flow reversal cannot occur in steady-state conditions unless the hydrostatic pressure in the lumen drops below physiologically plausible values. The observed variations of the volumetric flux and the solute mass flux in case of a significant reduction of the hydrostatic pressure at the lumen are in qualitative agreement with observed variations during detailed experiments reported in the literature. On the other hand, homogenising the microvessel wall into a single-layer membrane with equivalent properties leads to a very different distribution of pressure across the microvessel walls, not consistent with observations. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Outer midplane scrape-off layer profiles and turbulence in simulations of Alcator C-Mod inner-wall limited discharges

    DOE PAGES

    Halpern, Federico D.; LaBombard, Brian; Terry, James L.; ...

    2017-06-27

    A region of steep plasma gradients, the so-called ”narrow-feature”, has been found in the near scrape-off layer (SOL) of inner-wall limited (IWL) discharges. Dedicated IWL discharges were carried out in Alcator C-Mod [E.S. Marmar et al., Nucl. Fusion 55, (2015)] to study this phenomenon, allowing detailed observations of the plasma profiles and fluctuations. Langmuir probe (LP) measurements show a clear two decay length n e and T e profile structure at the outer midplane. The Gas-Puff Imaging (GPI) diagnostic shows large turbulent fluctuations across the last closed flux-surface, hence supporting the hypothesis that turbulent phenomena play a role in settingmore » the profile steepness. We have carried out the flux-driven non-linear turbulence simulations of two C-Mod discharges which allows a three-way comparison between LP, GPI, and simulation data. Observations and simulations correlate the steep gradient region characterizing the narrow feature with sheared poloidal flows and a deviation of the plasma potential from its floating value. Furthermore, the E x B shear rate exceeds the linear ballooning growth rate, indicating that the narrow feature could result from the effects of sheared flows, although causality could not be established. The fluctuation level in the narrow feature remains of order unity across the entire SOL, indicating that the transport reduction in the near-SOL cannot result from a simple quench rule.« less

  20. Outer midplane scrape-off layer profiles and turbulence in simulations of Alcator C-Mod inner-wall limited discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halpern, Federico D.; LaBombard, Brian; Terry, James L.

    A region of steep plasma gradients, the so-called ”narrow-feature”, has been found in the near scrape-off layer (SOL) of inner-wall limited (IWL) discharges. Dedicated IWL discharges were carried out in Alcator C-Mod [E.S. Marmar et al., Nucl. Fusion 55, (2015)] to study this phenomenon, allowing detailed observations of the plasma profiles and fluctuations. Langmuir probe (LP) measurements show a clear two decay length n e and T e profile structure at the outer midplane. The Gas-Puff Imaging (GPI) diagnostic shows large turbulent fluctuations across the last closed flux-surface, hence supporting the hypothesis that turbulent phenomena play a role in settingmore » the profile steepness. We have carried out the flux-driven non-linear turbulence simulations of two C-Mod discharges which allows a three-way comparison between LP, GPI, and simulation data. Observations and simulations correlate the steep gradient region characterizing the narrow feature with sheared poloidal flows and a deviation of the plasma potential from its floating value. Furthermore, the E x B shear rate exceeds the linear ballooning growth rate, indicating that the narrow feature could result from the effects of sheared flows, although causality could not be established. The fluctuation level in the narrow feature remains of order unity across the entire SOL, indicating that the transport reduction in the near-SOL cannot result from a simple quench rule.« less

  1. Method of Fabricating Protective Coating for a Crucible with the Coating Having Channels Formed Therein

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N. (Inventor)

    2004-01-01

    A method is provided for the fabrication of a protective coating for a crucible with channels being formed in the coating. A material is adhered to the outer wall of the crucible to form a pattern thereon. The outer wall of the crucible along with the pattern of material adhered thereto is next coated with another material. The material used to form the pattern should extend through the outer material coating to define at least one port therein. Next, the crucible with its pattern of material and outer coating material is heated to a temperature of transformation at which the pattern of material is transformed to a fluidic state while the crucible and outer coating material maintain their solid integrity. Such transformation could also be accomplished by using a solvent that causes the pattern of material to dissolve. Finally, the material in its fluidic state is removed via the at least one port formed in the outer material coating thereby leaving channels defined in the coating adjacent the outer wall of the crucible.

  2. Conidial Hydrophobins of Aspergillus fumigatus

    PubMed Central

    Paris, Sophie; Debeaupuis, Jean-Paul; Crameri, Reto; Carey, Marilyn; Charlès, Franck; Prévost, Marie Christine; Schmitt, Christine; Philippe, Bruno; Latgé, Jean Paul

    2003-01-01

    The surface of Aspergillus fumigatus conidia, the first structure recognized by the host immune system, is covered by rodlets. We report that this outer cell wall layer contains two hydrophobins, RodAp and RodBp, which are found as highly insoluble complexes. The RODA gene was previously characterized, and ΔrodA conidia do not display a rodlet layer (N. Thau, M. Monod, B. Crestani, C. Rolland, G. Tronchin, J. P. Latgé, and S. Paris, Infect. Immun. 62:4380-4388, 1994). The RODB gene was cloned and disrupted. RodBp was highly homologous to RodAp and different from DewAp of A. nidulans. ΔrodB conidia had a rodlet layer similar to that of the wild-type conidia. Therefore, unlike RodAp, RodBp is not required for rodlet formation. The surface of ΔrodA conidia is granular; in contrast, an amorphous layer is present at the surface of the conidia of the ΔrodA ΔrodB double mutant. These data show that RodBp plays a role in the structure of the conidial cell wall. Moreover, rodletless mutants are more sensitive to killing by alveolar macrophages, suggesting that RodAp or the rodlet structure is involved in the resistance to host cells. PMID:12620846

  3. Analysis of radiative and phase-change phenomena with application to space-based thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lund, Kurt O.

    1991-01-01

    The simplified geometry for the analysis is an infinite, axis symmetric annulus with a specified solar flux at the outer radius. The inner radius is either adiabatic (modeling Flight Experiment conditions), or convective (modeling Solar Dynamic conditions). Liquid LiF either contacts the outer wall (modeling ground based testing), or faces a void gap at the outer wall (modeling possible space based conditions). The analysis is presented in three parts: Part 3 considers and adiabatic inner wall and linearized radiation equations; part 2 adds effects of convection at the inner wall; and part 1 includes the effect of the void gap, as well as previous effects, and develops the radiation model further. The main results are the differences in melting behavior which can occur between ground based 1 g experiments and the microgravity flight experiments. Under 1 gravity, melted PCM will always contact the outer wall having the heat flux source, thus providing conductance from this source to the phase change front. In space based tests where a void gap may likely form during solidification, the situation is reversed; radiation is now the only mode of heat transfer and the majority of melting takes place from the inner wall.

  4. Turbine airfoil with laterally extending snubber having internal cooling system

    DOEpatents

    Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.

    2016-09-06

    A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.

  5. Electronic transport properties of inner and outer shells in near ohmic-contacted double-walled carbon nanotube transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuchun; Zhou, Liyan; Zhao, Shangqian

    2014-06-14

    We investigate electronic transport properties of field-effect transistors based on double-walled carbon nanotubes, of which inner shells are metallic and outer shells are semiconducting. When both shells are turned on, electron-phonon scattering is found to be the dominant phenomenon. On the other hand, when outer semiconducting shells are turned off, a zero-bias anomaly emerges in the dependence of differential conductance on the bias voltage, which is characterized according to the Tomonaga-Luttinger liquid model describing tunneling into one-dimensional materials. We attribute these behaviors to different contact conditions for outer and inner shells of the double-walled carbon nanotubes. A simple model combiningmore » Luttinger liquid model for inner metallic shells and electron-phonon scattering in outer semiconducting shells is given here to explain our transport data at different temperatures.« less

  6. Dependence of Capillary Properties of Contemporary Clinker Bricks on Their Microstructure

    NASA Astrophysics Data System (ADS)

    Wesołowska, Maria; Kaczmarek, Anna

    2017-10-01

    Contemporary clinker bricks are applied for outer layers of walls built from other materials and walls which should have high durability and aesthetic qualities. The intended effect depends not only on the mortar applied but also on clinker properties. Traditional macroscopic tests do not allow to predict clinker behaviour in contact with mortars and external environment. The basic information for this issue is open porosity of material. It defines the material ability to absorb liquids: rain water (through the face wall surface) and grout from mortar (through base surface). The main capillary flow goes on in pores with diameters from 300 to 3000nm. It is possible to define pore distribution and their size using the Mercury Intrusion Porosimetry method. The aim of these research is evaluation of clinker brick capillary properties (initial water absorption and capillary rate) and analysis of differences in microstructure of the face and base wall of a product. Detailed results allowed to show pore distribution in function of their diameters and definition of pore amount responsible for capillary flow. Based on relation between volume function differential and pore diameter, a differential distribution curve was obtained which helped to determine the dominant diameters. The results obtained let us state that face wall of bricks was characterized with the lowest material density and open porosity. In this layer (most burnt) part of pores could be closed by locally appearing liquid phase during brick burning. Thus density is lower comparing to other part of the product.

  7. Skin Friction Reduction by Micro-Blowing Technique

    NASA Technical Reports Server (NTRS)

    Hwang, Danny P. (Inventor)

    1998-01-01

    A system and method for reducing skin friction of an object in relative motion to a fluid. A skin forming a boundary between the object and the fluid, the skin having holes through which micro-blowing of air is blown and a transmitting mechanism for transmitting air through the skin. The skin has an inner layer and an outer layer. the inner layer being a low permeable porous sheet, the outer layer being a plate having high aspect ratio high porosity. and small holes. The system may further include a suction apparatus for suctioning air from the outer layer. The method includes the steps of transmitting air through the inner layer and passing the air transmitted through the inner layer to the outer layer. The method may further include the step of bleeding air off the outer layer using the suction apparatus.

  8. Oscillation Characteristics of Thermocapillary Convection in An Open Annular Pool

    NASA Astrophysics Data System (ADS)

    Duan, Li; Kang, Qi; Zhang, Di

    2016-07-01

    Temperature oscillation characteristics and free surface deformation are essential phenomena in fluids with free surface. We report experimental oscillatory behaviors for hydrothermal wave instability in thermocapillary-driven flow in an open annular pool of silicone oil. The annular pool is heated from the inner cylindrical wall with the radius 4mm and cooled at the outer wall with radius 20mm, and the depth of the silicone oil layer is in the range of 0.8mm-3mm.Temperature difference between the two sidewalls was increased gradually, and the flow will become unstable via a super critical temperature difference. In the present paper we used T-type thermocouple measuring the single-point temperature inside the liquid layer and captured the tiny micrometer wave signal through a high-precision laser displacement sensor. The critical temperature difference and critical Ma number of onset of oscillation have been obtained. We discussed the critical temperature difference and critical Marangoni number varies with the change of the depth of liquid layer, and the relationship between the temperature oscillation and surface oscillation has been discussed. Experimental results show that temperature oscillation and surface oscillation start almost at the same time with similar spectrum characteristic.

  9. Experimental study on the seismic performance of new sandwich masonry walls

    NASA Astrophysics Data System (ADS)

    Xiao, Jianzhuang; Pu, Jie; Hu, Yongzhong

    2013-03-01

    Sandwich masonry walls are widely used as energy-saving panels since the interlayer between the outer leaves can act as an insulation layer. New types of sandwich walls are continually being introduced in research and applications, and due to their unique bond patterns, experimental studies have been performed to investigate their mechanical properties, especially with regard to their seismic performance. In this study, three new types of sandwich masonry wall have been designed, and cyclic lateral loading tests were carried out on five specimens. The results showed that the specimens failed mainly due to slippage along the bottom cracks or the development of diagonal cracks, and the failure patterns were considerably influenced by the aspect ratio. Analysis was undertaken on the seismic response of the new walls, which included ductility, stiffness degradation and energy dissipation capacity, and no obvious difference was observed between the seismic performance of the new walls and traditional walls. Comparisons were made between the experimental results and the calculated results of the shear capacity. It is concluded that the formulas in the two Chinese codes (GB 50011 and GB 50003) are suitable for the calculation of the shear capacity for the new types of walls, and the formula in GB 50011 tends to be more conservative.

  10. A Fungus-Inducible Pepper Carboxylesterase Exhibits Antifungal Activity by Decomposing the Outer Layer of Fungal Cell Walls.

    PubMed

    Seo, Hyo-Hyoun; Park, Ae Ran; Lee, Hyun-Hwa; Park, Sangkyu; Han, Yun-Jeong; Hoang, Quyen T N; Choi, Gyung Ja; Kim, Jin-Cheol; Kim, Young Soon; Kim, Jeong-Il

    2018-05-01

    Colletotrichum species are major fungal pathogens that cause devastating anthracnose diseases in many economically important crops. In this study, we observed the hydrolyzing activity of a fungus-inducible pepper carboxylesterase (PepEST) on cell walls of C. gloeosporioides, causing growth retardation of the fungus by blocking appressorium formation. To determine the cellular basis for the growth inhibition, we observed the localization of PepEST on the fungus and found the attachment of the protein on surfaces of conidia and germination tubes. Moreover, we examined the decomposition of cell-wall materials from the fungal surface after reaction with PepEST, which led to the identification of 1,2-dithiane-4,5-diol (DTD) by gas chromatography mass spectrometry analysis. Exogenous DTD treatment did not elicit expression of defense-related genes in the host plant but did trigger the necrosis of C. gloeosporioides. Furthermore, the DTD compound displayed protective effects on pepper fruits and plants against C. gloeosporioides and C. coccodes, respectively. In addition, DTD was also effective in preventing other diseases, such as rice blast, tomato late blight, and wheat leaf rust. Therefore, our results provide evidence that PepEST is involved in hydrolysis of the outmost layer of the fungal cell walls and that DTD has antifungal activity, suggesting an alternative strategy to control agronomically important phytopathogens.

  11. Skin Friction Reduction Through Large-Scale Forcing

    NASA Astrophysics Data System (ADS)

    Bhatt, Shibani; Artham, Sravan; Gnanamanickam, Ebenezer

    2017-11-01

    Flow structures in a turbulent boundary layer larger than an integral length scale (δ), referred to as large-scales, interact with the finer scales in a non-linear manner. By targeting these large-scales and exploiting this non-linear interaction wall shear stress (WSS) reduction of over 10% has been achieved. The plane wall jet (PWJ), a boundary layer which has highly energetic large-scales that become turbulent independent of the near-wall finer scales, is the chosen model flow field. It's unique configuration allows for the independent control of the large-scales through acoustic forcing. Perturbation wavelengths from about 1 δ to 14 δ were considered with a reduction in WSS for all wavelengths considered. This reduction, over a large subset of the wavelengths, scales with both inner and outer variables indicating a mixed scaling to the underlying physics, while also showing dependence on the PWJ global properties. A triple decomposition of the velocity fields shows an increase in coherence due to forcing with a clear organization of the small scale turbulence with respect to the introduced large-scale. The maximum reduction in WSS occurs when the introduced large-scale acts in a manner so as to reduce the turbulent activity in the very near wall region. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16-1-0194 monitored by Dr. Douglas Smith.

  12. Array of titanium dioxide nanostructures for solar energy utilization

    DOEpatents

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  13. Construction of University of Missouri-Rolla’s Full Scale Cloud Simulation Chamber and Applied Research

    DTIC Science & Technology

    1985-03-01

    aluminum outer walls by a matrix of studs screwed into blind holes in the inner wall plates and extending through the outer walls. Thermoelectric cooling...studied. The problem of the uncooled sample ports might have been dealt with, however the failure of several sections of thermoelectric cooling...encountered with the Proto I chamber. It should be kept in mind that the basic cooled wall design consists of thermoelectric cooling modules (TEM’s

  14. Alternative irradiation schemes for NIF and LMJ hohlraums

    NASA Astrophysics Data System (ADS)

    Bourgade, Jean-Luc; Bowen, Christopher; Gauthier, Pascal; Landen, Otto

    2018-02-01

    We explore two alternative irradiation schemes for the large (‘outer’) and small (‘inner’) angle beams that currently illuminate National Ignition Facility (NIF) and Laser Mégajoule cavities. In the first, while the outer laser beams enter through the usual end laser entrance holes (LEH), the inner beams enter through slots along the cavity axis wall, illuminating the back wall of the cavity. This avoids the current interaction of the inner laser beams with the gold wall bubbles generated by the outer beams, which leads to large time-dependent changes in drive symmetry. Another scheme potentially useful for NIF uses only the outer beams. The radiative losses through the slots or from the use of outer beams only are compensated by using a smaller cavity and LEH.

  15. Simultaneous measurement of aero-optical distortion and turbulent structure in a heated boundary layer

    NASA Astrophysics Data System (ADS)

    Saxton-Fox, Theresa; McKeon, Beverley; Smith, Adam; Gordeyev, Stanislav

    2014-11-01

    This study examines the relationship between turbulent structures and the aero-optical distortion of a laser beam passing through a turbulent boundary layer. Previous studies by Smith et al. (AIAA, 2014--2491) have found a bulk convection velocity of 0 . 8U∞ for aero-optical distortion in turbulent boundary layers, motivating a comparison of the distortion with the outer boundary layer. In this study, a turbulent boundary layer is developed over a flat plate with a moderately-heated section of length 25 δ . Density variation in the thermal boundary layer leads to aero-optical distortion, which is measured with a Malley probe (Smith et al., AIAA, 2013--3133). Simultaneously, 2D PIV measurements are recorded in a wall-normal, streamwise plane centered on the Malley probe location. Experiments are run at Reθ = 2100 and at a Mach number of 0.03, with the heated wall 10 to 20°C above the free stream temperature. Correlations and conditional averages are carried out between Malley probe distortion angles and flow features in the PIV vector fields. Aero-optical distortion in this study will be compared to distortion in higher Mach number flows studied by Gordeyev et al. (J. Fluid Mech., 2014), with the aim of extending conclusions into compressible flows. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.

  16. Ultrasonic isolation of the outer membrane of Escherichia coli with autodisplayed Z-domains.

    PubMed

    Bong, Ji-Hong; Yoo, Gu; Park, Min; Kang, Min-Jung; Jose, Joachim; Pyun, Jae-Chul

    2014-11-01

    The outer membrane of Escherichia coli was previously isolated as a liposome-like outer membrane particle using an enzymatic treatment for lysozymes; for immunoassays, the particles were subsequently layered on solid supports via hydrophobic interactions. This work presents an enzyme-free isolation method for the E. coli outer membrane with autodisplayed Z-domains using ultrasonication. First, the properties of the outer membrane particle, such as the particle size, zeta potential, and total protein, were compared with the properties of particles obtained using the previous preparation methods. Compared with the conventional isolation method using an enzyme treatment, the ultrasonic method exhibited a higher efficiency at isolating the outer membrane and less contamination by cytosolic proteins. The isolated outer membrane particles were layered on a gold surface, and the roughness and thickness of the layered outer membrane layers were subsequently analyzed using AFM analysis. Finally, the antibody-binding activity of two outer membrane layers with autodisplayed Z-domains created from particles that were isolated using the enzymatic and ultrasonic isolation methods was measured using fluorescein-labeled antibody as a model analyte, and the activity of the outer membrane layer that was isolated from the ultrasonic method was estimated to be more than 20% higher than that from the conventional enzymatic method. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Cryogenic Insulation System

    NASA Technical Reports Server (NTRS)

    Davis, Randall C. (Inventor); Taylor, Allan H. (Inventor); Jackson, L. Robert (Inventor); Mcauliffe, Patrick S. (Inventor)

    1988-01-01

    This invention relates to reusable, low density, high temperature cryogenic foam insulation systems and the process for their manufacture. A pacing technology for liquid hydrogen fueled, high speed aircraft is the development of a fully reusable, flight weight cryogenic insulation system for propellant tank structures. In the invention cryogenic foam insulation is adhesively bonded to the outer wall of the fuel tank structure. The cryogenic insulation consists of square sheets fabricated from an array of abutting square blocks. Each block consists of a sheet of glass cloth adhesively bonded between two layers of polymethacrylimide foam. Each block is wrapped in a vapor impermeable membrane, such as Kapton(R) aluminum Kapton(R), to provide a vapor barrier. Very beneficial results can be obtained by employing the present invention in conjunction with fibrous insulation and an outer aeroshell, a hot fuselage structure with an internal thermal protection system.

  18. Tungsten migration in Alcator C-Mod: sputtering and melting

    NASA Astrophysics Data System (ADS)

    Wright, G. M.; Barnard, H.; Lipschultz, B.; Whyte, D. G.

    2010-11-01

    A row of bulk tungsten (W) tiles were installed near the typical outer strike-point location in the Alcator C-Mod divertor in 2007. In the 2009/2010 campaign, one of the W tiles mechanically failed resulting in significant W melting at that location. Post-campaign PIXE surface analysis has been used to observe tungsten (W) deposition and migration patterns in the divertor for the typical operations (sputtering only) and operation with melted components. For sputtering conditions, W deposition of up to 20 nm equivalent thickness is observed at various divertor surfaces indicating prompt re-deposition at the outer divertor, neutral and ion transport through the private-flux region and ion transport in the scrape off layer. For melting conditions, W deposition of up to 400 nm equivalent thickness is observed at some locations at the outer divertor. However, the toroidal distribution of W on the outer divertor is strongly non-uniform. There is no W deposition measured on the inner wall limiter. These results indicate that impurity migration is affected by the erosion mechanism and source, with the migration from melting being less predictable and uniform than from the sputtering case. Supported by USDoE award DE-SC00-02060.

  19. Mount assembly for porous transition panel at annular combustor outlet

    NASA Technical Reports Server (NTRS)

    Sweeney, Ralph B. (Inventor); Verdouw, Albert J. (Inventor)

    1980-01-01

    A gas turbine engine combustor assembly of annular configuration has outer and inner walls made up of a plurality of axially extending multi-layered porous metal panels joined together at butt joints therebetween and each outer and inner wall including a transition panel of porous metal defining a combustor assembly outlet supported by a combustor mount assembly including a stiffener ring having a side undercut thereon fit over a transition panel end face; and wherein an annular weld joins the ring to the end face to transmit exhaust heat from the end face to the stiffener ring for dissipation from the combustor; a combustor pilot member is located in axially spaced, surrounding relationship to the end face and connector means support the stiffener ring in free floating relationship with the pilot member to compensate for both radial and axial thermal expansion of the transition panel; and said connector means includes a radial gap for maintaining a controlled flow of coolant from outside of the transition panel into cooling relationship with the stiffener ring and said weld to further cool the end face against excessive heat build-up therein during flow of hot gas exhaust through said outlet.

  20. Theoretical studies of urea adsorption on single wall boron-nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Chermahini, Alireza Najafi; Teimouri, Abbas; Farrokhpour, Hossein

    2014-11-01

    Surface modification of a boron nitride nanotube (BNNT) with urea molecule was investigated in terms of its energetic, geometric, and electronic properties using B3LYP and PW91 density functionals. In this investigation, various armchair (n,n) nanotubes, where n = 5, 6, 7 have been used. Two different interaction modes, including interaction with outer layer and inner layer of tube were studied. The results indicated that the adsorption of single urea molecule in all of its configurations is observed to be exothermic and physical in nature. Interestingly, the adsorption energy for the most stable configuration of urea was observed when the molecule located inside of the nanotube. Besides, the adsorption of urea on BNNTs changes the conductivity of nanotube.

  1. Radiation Insulation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Apollo and subsequent spacecraft have had highly effective radiation barriers; made of aluminized polymer film, they bar or let in heat to maintain consistent temperatures inside. Tech 2000, formerly Quantum International Corporation used the NASA technology in its insulating materials, Super "Q" Radiant Barrier, for home, industry and mobile applications. The insulation combines industrial aluminum foil overlaid around a core of another material, usually propylene or mylar. The outer layer reflects up to 97 percent of heat; the central layer creates a thermal break in the structure and thus allows low radiant energy emission. The Quantum Cool Wall, used in cars and trucks, takes up little space while providing superior insulation, thus reducing spoilage and costs. The panels can also dampen sound and engine, exhaust and solar heat.

  2. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOEpatents

    Jansen, Kai W.; Maley, Nagi

    2000-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  3. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOEpatents

    Jansen, Kai W.; Maley, Nagi

    2001-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  4. The Relationship Between Surface Curvature and Abdominal Aortic Aneurysm Wall Stress.

    PubMed

    de Galarreta, Sergio Ruiz; Cazón, Aitor; Antón, Raúl; Finol, Ender A

    2017-08-01

    The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.

  5. Shoulder and hip joints for hard space suits and the like

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.

    1986-01-01

    For use in hard space suits and the like, a joint between the torso covering and the upper arm covering (i.e., shoulder) or between the torso covering and upper leg covering (i.e., hip) is disclosed. Each joint has an outer covering and a inner covering. The outer covering has plural perferably truncated toroidal sections decreasing in size proceeding outwardly. In one embodiment at each joint there are two bearings, the first larger than the second. The outer race of the larger bearing is attached to the outer edge of the smaller end of each section and the inner race of the larger bearing is attached to the end wall. The inner race of the smaller bearing is attached to the end wall. The outer race of the smaller bearing is attached to the larger end of the next section. Each bearing hask appropriate seals. Between each section is a rubber ring for the comfort of the wearer. Such rubber rings have radial flanges attached to the inner races of two adjacent bearings. Matching semicircular grooves are formed in the abutting overlapping surfaces. Bellows-like inner walls are also provided for each section fixed at one end to an inner cylindrical flange and, at the opposite end, to an end wall. Each outer section may rotate 360 deg relative to the next outer section, whereas the bellows sections do not rotate, but rather expand or contract locally as the rigid sections rotate relative to each other.

  6. Piezoelectric anisotropy and energy-harvesting characteristics of novel sandwich layer BaTiO3 structures

    NASA Astrophysics Data System (ADS)

    Roscow, James I.; Topolov, Vitaly Yu; Taylor, John T.; Bowen, Christopher R.

    2017-10-01

    This paper presents a detailed modelling and experimental study of the piezoelectric and dielectric properties of novel ferroelectric sandwich layer BaTiO3 structures that consist of an inner porous layer and dense outer layers. The dependencies of the piezoelectric coefficients {d}3j* and dielectric permittivity {\\varepsilon }33* σ of the sandwich structure on the bulk relative density α are analysed by taking into account an inner layer with a porosity volume fraction of 0.5-0.6. The observed changes in {d}3j* and {\\varepsilon }33* σ are interpreted within the framework of a model of a laminar structure whereby the electromechanical interaction of the inner porous layer and outer dense layers have an important role in determining the effective properties of the system. The porous layer is represented as a piezocomposite with a 1-3-0 connectivity pattern, and the composite is considered as a system of long poled ceramic rods with 1-3 connectivity which are surrounded by an unpoled ceramic matrix that contains a system of oblate air pores (3-0 connectivity). The outer monolithic is considered as a dense poled ceramic, however its electromechanical properties differ from those of the ceramic rods in the porous layer due to different levels of mobility of 90° domain walls in ceramic grains. A large anisotropy of {d}3j* at α = 0.64-0.86 is achieved due to the difference in the properties of the porous and monolithic layers and the presence of highly oblate air pores. As a consequence, high energy-harvesting figures of merit {d}3j* {g}3j* are achieved that obey the condition {d}33* {g}33* /({d}31* {g}31* )˜ {10}2 at {d}33* {g}33* ˜ {10}-12 {{{Pa}}}-1, and values of the hydrostatic piezoelectric coefficients {d}h* ≈ 100 {{pC}} {{{N}}}-1 and {g}h* ≈ 20 {{mV}} {{m}} {{{N}}}-1 are achieved at α= 0.64-0.70. The studied BaTiO3-based sandwich structures has advantages over highly anisotropic PbTiO3-type ceramics as a result of the higher piezoelectric activity of ceramic BaTiO3 and can be used in piezoelectric sensor, energy-harvesting and related applications.

  7. Nitride based quantum well light-emitting devices having improved current injection efficiency

    DOEpatents

    Tansu, Nelson; Zhao, Hongping; Liu, Guangyu; Arif, Ronald

    2014-12-09

    A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 .ANG. and 24 .ANG. thick, respectively.

  8. Comparative study of encapsulated blebs following Ahmed glaucoma valve implantation and trabeculectomy with mitomycin-C.

    PubMed

    Bae, Kunho; Suh, Wool; Kee, Changwon

    2012-08-01

    To compare the histopathologic and morphologic findings of encapsulated blebs following Ahmed glaucoma valve implantation and primary standard trabeculectomy with mitomycin-C. We reviewed the records of patients with otherwise uncontrollable glaucoma who had undergone Ahmed glaucoma valve implantation or trabeculectomy with mitomycin-C. Five eyes that underwent Ahmed valve implantation and three eyes that underwent trabeculectomy needed surgical revision of the initial surgery due to encapsulated bleb development with total loss of function. The surgically removed encapsulated blebs were analyzed macroscopically and microscopically. Removal of the encapsulated bleb was performed at a mean follow-up time of 26.6 ± 19.4 weeks in the Ahmed valve implantation group and 12.0 ± 11.4 weeks in the trabeculectomy group. The fibrotic wall of the encapsulated blebs had an overall thickness of 2.48 ± 0.42 mm in the Ahmed valve implantation group and 1.62 ± 0.37 mm in the trabeculectomy group. Macroscopically, the coconut flesh-like smooth surface was split into two layers, and the wall of the capsule was thicker in the Ahmed valve implantation group than in the trabeculectomy group. Histopathologically, the fibrotic capsule was composed of an inner fibrodegenerative layer and an outer fibrovascular layer, and there were no histopathological differences between the two groups. The fibrotic capsule wall was thicker in the Ahmed valve group, but there were no differences in histological findings between the two groups.

  9. Clinical and histopathologic findings in dogs with the ultrasonographic appearance of gastric muscularis unorganized hyperechoic striations.

    PubMed

    Heng, Hock Gan; Lim, Chee Kin; Steinbach, Sarah; Broman, Meaghan Maureen; Miller, Margaret Allan

    2018-02-09

    Ultrasonographic appearance of unorganized hyperechoic striations (UHS) has been observed in the canine gastric muscularis layer. The purpose of the study was to determine the prevalence, sonographic and postmortem histologic features, and to determine the clinical significance of canine gastric muscularis UHS. In the prospective study, 72 dogs were included. The presence of gastric muscularis UHS were reviewed to determine its distribution and location. In the retrospective study, 167 dogs that had both abdominal ultrasonography and necropsy were included. The prevalence of gastric muscularis UHS in dogs was 37.5% in the prospective and 5.4% in the retrospective studies respectively. The higher prevalence in prospective study was due to greater anticipation by the radiologists in search for gastric muscularis UHS. In the ventral gastric wall, the muscularis UHS were better defined when the gastric lumen was empty or non-distended, and were mostly parallel with the serosa when the gastric wall was distended (with gas or fluid). Visualization of the dorsal gastric wall was often obscured by gas shadowing from luminal gas. Histopathology was performed on eight dogs with gastric muscularis UHS, three of which had fibrous tissue observed with Masson's trichrome stain. Presence of gastric muscularis UHS in dogs may have been attributable to presence of incomplete interfaces between the inner oblique, middle circular and outer longitudinal layers of the gastric tunica muscularis or due to presence of fibrous tissue within the gastric muscularis layer. The clinical significance of canine gastric muscularis UHS is uncertain.

  10. Temporal and spatial characteristics of male cone development in Metasequoia glyptostroboides Hu et Cheng

    PubMed Central

    Jin, Biao; Tang, Liang; Lu, Yan; Wang, Di; Zhang, Min; Ma, Jiuxia

    2012-01-01

    Metasequoia glyptostroboides, a famous relic species of conifer that survived in China, has been successfully planted in large numbers across the world. However, limited information on male cone development in the species is available. In this study, we observed the morphological and anatomical changes that occur during male cone development in M. glyptostroboides using semi-thin sections and scanning electron microscopy. The male cones were borne oppositely on one-year-old twigs that were mainly located around the outer and sunlit parts of crown. Male cones were initiated from early September and shed pollen in the following February. Each cone consisted of spirally arranged microsporophylls subtended by decussate sterile scales, and each microsporophyll commonly consisted of three microsporangia and a phylloclade. The microsporangial wall was composed of an epidermis, endothecium, and tapetum. In mid-February, the endothecium and tapetum layers disintegrated, and in the epidermal layer the cell walls were thickened with inner protrusions. Subsequently, dehiscence of the microsporangia occurred through rupturing of the microsporangial wall along the dehiscence line. These results suggest that the structure, morphology, architecture and arrangement of male cones of M. glyptostroboides are mainly associated with the production, protection and dispersal of pollen for optimization of wind pollination. PMID:23221679

  11. Temporal and spatial characteristics of male cone development in Metasequoia glyptostroboides Hu et Cheng.

    PubMed

    Jin, Biao; Tang, Liang; Lu, Yan; Wang, Di; Zhang, Min; Ma, Jiuxia

    2012-12-01

    Metasequoia glyptostroboides, a famous relic species of conifer that survived in China, has been successfully planted in large numbers across the world. However, limited information on male cone development in the species is available. In this study, we observed the morphological and anatomical changes that occur during male cone development in M. glyptostroboides using semi-thin sections and scanning electron microscopy. The male cones were borne oppositely on one-year-old twigs that were mainly located around the outer and sunlit parts of crown. Male cones were initiated from early September and shed pollen in the following February. Each cone consisted of spirally arranged microsporophylls subtended by decussate sterile scales, and each microsporophyll commonly consisted of three microsporangia and a phylloclade. The microsporangial wall was composed of an epidermis, endothecium, and tapetum. In mid-February, the endothecium and tapetum layers disintegrated, and in the epidermal layer the cell walls were thickened with inner protrusions. Subsequently, dehiscence of the microsporangia occurred through rupturing of the microsporangial wall along the dehiscence line. These results suggest that the structure, morphology, architecture and arrangement of male cones of M. glyptostroboides are mainly associated with the production, protection and dispersal of pollen for optimization of wind pollination.

  12. Manufacture of thin-walled clad tubes by pressure welding of roll bonded sheets

    NASA Astrophysics Data System (ADS)

    Schmidt, Hans Christian; Grydin, Olexandr; Stolbchenko, Mykhailo; Homberg, Werner; Schaper, Mirko

    2017-10-01

    Clad tubes are commonly manufactured by fusion welding of roll bonded metal sheets or, mechanically, by hydroforming. In this work, a new approach towards the manufacture of thin-walled tubes with an outer diameter to wall thickness ratio of about 12 is investigated, involving the pressure welding of hot roll bonded aluminium-steel strips. By preparing non-welded edges during the roll bonding process, the strips can be zip-folded and (cold) pressure welded together. This process routine could be used to manufacture clad tubes in a continuous process. In order to investigate the process, sample tube sections with a wall thickness of 2.1 mm were manufactured by U-and O-bending from hot roll bonded aluminium-stainless steel strips. The forming and welding were carried out in a temperature range between RT and 400°C. It was found that, with the given geometry, a pressure weld is established at temperatures starting above 100°C. The tensile tests yield a maximum bond strength at 340°C. Micrograph images show a consistent weld of the aluminium layer over the whole tube section.

  13. A theoretical study of mixing downstream of transverse injection into a supersonic boundary layer

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Zelazny, S. W.

    1972-01-01

    A theoretical and analytical study was made of mixing downstream of transverse hydrogen injection, from single and multiple orifices, into a Mach 4 air boundary layer over a flat plate. Numerical solutions to the governing three-dimensional, elliptic boundary layer equations were obtained using a general purpose computer program. Founded upon a finite element solution algorithm. A prototype three-dimensional turbulent transport model was developed using mixing length theory in the wall region and the mass defect concept in the outer region. Excellent agreement between the computed flow field and experimental data for a jet/freestream dynamic pressure ratio of unity was obtained in the centerplane region of the single-jet configuration. Poorer agreement off centerplane suggests an inadequacy of the extrapolated two-dimensional turbulence model. Considerable improvement in off-centerplane computational agreement occured for a multi-jet configuration, using the same turbulent transport model.

  14. A Test of the Validity of Inviscid Wall-Modeled LES

    NASA Astrophysics Data System (ADS)

    Redman, Andrew; Craft, Kyle; Aikens, Kurt

    2015-11-01

    Computational expense is one of the main deterrents to more widespread use of large eddy simulations (LES). As such, it is important to reduce computational costs whenever possible. In this vein, it may be reasonable to assume that high Reynolds number flows with turbulent boundary layers are inviscid when using a wall model. This assumption relies on the grid being too coarse to resolve either the viscous length scales in the outer flow or those near walls. We are not aware of other studies that have suggested or examined the validity of this approach. The inviscid wall-modeled LES assumption is tested here for supersonic flow over a flat plate on three different grids. Inviscid and viscous results are compared to those of another wall-modeled LES as well as experimental data - the results appear promising. Furthermore, the inviscid assumption reduces simulation costs by about 25% and 39% for supersonic and subsonic flows, respectively, with the current LES application. Recommendations are presented as are future areas of research. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.

  15. Isolating Curvature Effects in Computing Wall-Bounded Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Gatski, Thomas B.

    2001-01-01

    The flow over the zero-pressure-gradient So-Mellor convex curved wall is simulated using the Navier-Stokes equations. An inviscid effective outer wall shape, undocumented in the experiment, is obtained by using an adjoint optimization method with the desired pressure distribution on the inner wall as the cost function. Using this wall shape with a Navier-Stokes method, the abilities of various turbulence models to simulate the effects of curvature without the complicating factor of streamwise pressure gradient can be evaluated. The one-equation Spalart-Allmaras turbulence model overpredicts eddy viscosity, and its boundary layer profiles are too full. A curvature-corrected version of this model improves results, which are sensitive to the choice of a particular constant. An explicit algebraic stress model does a reasonable job predicting this flow field. However, results can be slightly improved by modifying the assumption on anisotropy equilibrium in the model's derivation. The resulting curvature-corrected explicit algebraic stress model possesses no heuristic functions or additional constants. It lowers slightly the computed skin friction coefficient and the turbulent stress levels for this case (in better agreement with experiment), but the effect on computed velocity profiles is very small.

  16. Pectus excavatum postsurgical outcome based on preoperative soft body dynamics simulation

    NASA Astrophysics Data System (ADS)

    Moreira, Antonio H. J.; Rodrigues, Pedro L.; Fonseca, Jaime; Pinho, A. C. M.; Rodrigues, Nuno F.; Correia-Pinto, Jorge; Vilaça, João L.

    2012-02-01

    Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which an abnormal formation of the rib cage gives the chest a caved-in or sunken appearance. Today, the surgical correction of this deformity is carried out in children and adults through Nuss technic, which consists in the placement of a prosthetic bar under the sternum and over the ribs. Although this technique has been shown to be safe and reliable, not all patients have achieved adequate cosmetic outcome. This often leads to psychological problems and social stress, before and after the surgical correction. This paper targets this particular problem by presenting a method to predict the patient surgical outcome based on pre-surgical imagiologic information and chest skin dynamic modulation. The proposed approach uses the patient pre-surgical thoracic CT scan and anatomical-surgical references to perform a 3D segmentation of the left ribs, right ribs, sternum and skin. The technique encompasses three steps: a) approximation of the cartilages, between the ribs and the sternum, trough b-spline interpolation; b) a volumetric mass spring model that connects two layers - inner skin layer based on the outer pleura contour and the outer surface skin; and c) displacement of the sternum according to the prosthetic bar position. A dynamic model of the skin around the chest wall region was generated, capable of simulating the effect of the movement of the prosthetic bar along the sternum. The results were compared and validated with patient postsurgical skin surface acquired with Polhemus FastSCAN system.

  17. Evolutionary anatomy of the muscular apparatus involved in the anchoring of Acanthocephala to the intestinal wall of their vertebrate hosts.

    PubMed

    Herlyn, Holger; Taraschewski, Horst

    2017-04-01

    Different conceptions exist regarding structure, function, and evolution of the muscles that move the acanthocephalan presoma, including the proboscis, i.e., the usually hooked hold-fast anchoring these endoparasites to the intestinal wall of their vertebrate definitive hosts. In order to clarify the unresolved issues, we carried out a light microscopic analysis of series of semi-thin sections and whole mounts representing the three traditional acanthocephalan classes: Archiacanthocephala (Macracanthorhynchus hirudinaceus), Eoacanthocephala (Paratenuisentis ambiguus, Tenuisentis niloticus), and Palaeacanthocephala (Acanthocephalus anguillae, Echinorhynchus truttae, Pomphorhynchus laevis, Corynosoma sp.). Combining our data with published light, transmission electron, and scanning electron microscopic data, we demonstrate that receptacle protrusor and proboscis receptacle in Archi- and Eoacanthocephala are homologous to the outer and inner wall of the proboscis receptacle in Palaeacanthocephala. Besides the proboscis receptacle and a "surrounding muscle," the last common ancestor of Acanthocephala presumably possessed a proboscis retractor, receptacle retractor, neck retractor (continuous with lemnisci compressors), and retinacula. These muscles most probably evolved in the acanthocephalan stem line. Moreover, the last common ancestor of Acanthocephala presumably possessed only a single layer of muscular cords under the presomal tegument while the metasomal body wall had circular and longitudinal strands. Two lateral receptacle flexors (also lateral receptacle protrusors), an apical muscle plate (surrounding one or two apical sensory organs), a midventral longitudinal muscle, and the differentiation of longitudinal body wall musculature at the base of the proboscis probably emerged within Archiacanthocephala. All muscles have a common organization principle: a peripheral layer of contractile filaments encloses the cytoplasm.

  18. Alterations of the outer retina in non-arteritic anterior ischaemic optic neuropathy detected using spectral-domain optical coherence tomography.

    PubMed

    Ackermann, Philipp; Brachert, Maike; Albrecht, Philipp; Ringelstein, Marius; Finis, David; Geerling, Gerd; Aktas, Orhan; Guthoff, Rainer

    2017-07-01

    A characteristic disease pattern may be reflected by retinal layer thickness changes in non-arteritic anterior ischaemic optic neuropathy measured using spectraldomain optical coherence tomography. Retinal layer segmentation is enabled by advanced software. In this study, retinal layer thicknesses in acute and chronic non-arteritic anterior ischaemic optic neuropathy were compared. A single-centre cross-sectional analysis was used. A total of 27 patients (20 age-matched healthy eyes) were included: 14 with acute (<7 days) and 13 patients with chronic non-arteritic anterior ischaemic optic neuropathy. Macular volume and 12° peripapillary ring optical coherence tomography scans were used. The peripapillary thicknesses of the following layers were determined by manual segmentation: retinal nerve fibres, ganglion cells + inner plexiform layer, inner nuclear layer + outer plexiform layer, outer nuclear layer + inner segments of the photoreceptors and outer segments of the photoreceptors to Bruch's membrane. Macular retinal layer thicknesses were automatically determined in volume cubes centred on the fovea. Peripapillary retinal swelling in acute nonarteritic anterior ischaemic optic neuropathy was attributable to retinal nerve fibre layer, ganglion cell layer/inner plexiform layer and outer nuclear layer/segments of the photoreceptors thickening. In chronic cases, peripapillary retinal nerve fibre layer, macular ganglion cell layer and inner plexiform layer thinning were observed. In acute non-arteritic anterior ischaemic optic neuropathy, the inner and outer peripapillary retinal layers are affected by thickness changes. In chronic cases, atrophy of the ganglion cells and their axons and dendrites is evident by inner retinal layer thinning. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  19. HVI Ballistic Performance Characterization of Non-Parallel Walls

    NASA Technical Reports Server (NTRS)

    Bohl, William; Miller, Joshua; Christiansen, Eric

    2012-01-01

    The Double-Wall, "Whipple" Shield [1] has been the subject of many hypervelocity impact studies and has proven to be an effective shield system for Micro-Meteoroid and Orbital Debris (MMOD) impacts for spacecraft. The US modules of the International Space Station (ISS), with their "bumper shields" offset from their pressure holding rear walls provide good examples of effective on-orbit use of the double wall shield. The concentric cylinder shield configuration with its large radius of curvature relative to separation distance is easily and effectively represented for testing and analysis as a system of two parallel plates. The parallel plate double wall configuration has been heavily tested and characterized for shield performance for normal and oblique impacts for the ISS and other programs. The double wall shield and principally similar Stuffed Whipple Shield are very common shield types for MMOD protection. However, in some locations with many spacecraft designs, the rear wall cannot be modeled as being parallel or concentric with the outer bumper wall. As represented in Figure 1, there is an included angle between the two walls. And, with a cylindrical outer wall, the effective included angle constantly changes. This complicates assessment of critical spacecraft components located within outer spacecraft walls when using software tools such as NASA's BumperII. In addition, the validity of the risk assessment comes into question when using the standard double wall shield equations, especially since verification testing of every set of double wall included angles is impossible.

  20. Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-D.

    PubMed

    Lasnier, C J; Allen, S L; Ellis, R E; Fenstermacher, M E; McLean, A G; Meyer, W H; Morris, K; Seppala, L G; Crabtree, K; Van Zeeland, M A

    2014-11-01

    An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in diverted and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. Demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.

  1. Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-D

    DOE PAGES

    Lasnier, Charles J.; Allen, Steve L.; Ellis, Ronald E.; ...

    2014-08-26

    An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in divertedmore » and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. As a result, demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.« less

  2. Method of controlling the side wall thickness of a turbine nozzle segment for improved cooling

    DOEpatents

    Burdgick, Steven Sebastian

    2002-01-01

    A gas turbine nozzle segment has outer and inner bands and a vane extending therebetween. Each band has a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band has an inturned flange defining with the nozzle wall an undercut region. The outer surface of the side wall is provided with a step prior to welding the cover to the side wall. A thermal barrier coating is applied in the step and, after the cover is welded to the side wall, the side wall is finally machined to a controlled thickness removing all, some or none of the coating.

  3. Experimental evaluation of heat transfer on a 1030:1 area ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Kacynski, Kenneth J.; Pavli, Albert J.; Smith, Tamara A.

    1987-01-01

    A 1030:1 carbon steel, heat-sink nozzle was tested. The test conditions included a nominal chamber pressure of 2413 kN/sq m and a mixture ratio range of 2.78 to 5.49. The propellants were gaseous oxygen and gaseous hydrogen. Outer wall temperature measurements were used to calculate the inner wall temperature and the heat flux and heat rate to the nozzle at specified axial locations. The experimental heat fluxes were compared to those predicted by the Two-Dimensional Kinetics (TDK) computer model analysis program. When laminar boundary layer flow was assumed in the analysis, the predicted values were within 15 percent of the experimental values for the area ratios of 20 to 975. However, when turbulent boundary layer conditions were assumed, the predicted values were approximately 120 percent higher than the experimental values. A study was performed to determine if the conditions within the nozzle could sustain a laminar boundary layer. Using the flow properties predicted by TDK, the momentum-thickness Reynolds number was calculated, and the point of transition to turbulent flow was predicted. The predicted transition point was within 0.5 inches of the nozzle throat. Calculations of the acceleration parameter were then made to determine if the flow conditions could produce relaminarization of the boundary layer. It was determined that if the boundary layer flow was inclined to transition to turbulent, the acceleration conditions within the nozzle would tend to suppress turbulence and keep the flow laminar-like.

  4. Experimental evaluation of heat transfer on a 1030:1 area ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Kacynski, Kenneth J.; Pavli, Albert J.; Smith, Tamara A.

    1987-01-01

    A 1030:1 carbon steel, heat-sink nozzle was tested. The test conditions included a nominal chamber pressure of 2413 kN/sq m and a mixture ratio range of 2.78 to 5.49. The propellants were gaseous oxygen and gaseous hydrogen. Outer wall temperature measurements were used to calculate the inner wall temperature and the heat flux and heat rate to the nozzle at specified axial locations. The experimental heat fluxes were compared to those predicted by the Two-Dimensional Kinetics (TDK) computer model analysis program. When laminar boundary layer flow was assumed in the analysis, the predicted values were within 15% of the experimental values for the area ratios of 20 to 975. However, when turbulent boundary layer conditions were assumed, the predicted values were approximately 120% higher than the experimental values. A study was performed to determine if the conditions within the nozzle could sustain a laminar boundary layer. Using the flow properties predicted by TDK, the momentum-thickness Reynolds number was calculated, and the point of transition to turbulent flow was predicted. The predicted transition point was within 0.5 inches of the nozzle throat. Calculations of the acceleration parameter were then made to determine if the flow conditions could produce relaminarization of the boundary layer. It was determined that if the boundary layer flow was inclined to transition to turbulent, the acceleration conditions within the nozzle would tend to suppress turbulence and keep the flow laminar-like.

  5. Experimental Evaluation of an Isolated Synthetic Jet IN Crossflow

    NASA Technical Reports Server (NTRS)

    Schaeffler, Norman W.; Jenkins, Luther N.; Hepner, Timothy E.

    2007-01-01

    The second case for this workshop builds upon the isolated synthetic jet of Case 1 by adding a crossflow, with no streamwise pressure gradient, for the developing jet to interact with. Formally, Case 2 examines the interaction of a single, isolated, synthetic jet and a fully turbulent zero-pressure gradient boundary layer. The resulting flow has many of the characteristics that need to be modeled with fidelity if the results of the calculations are to serve as the basis for research and design with active flow control devices. These include the turbulence in the boundary layer, the time-evolution of the large vortical structure emanating from the jet orifice and its subsequent interaction with and distortion by the boundary layer turbulence, and the effect of the suction cycle on the boundary layer flow. In a synthetic jet, the flow through the orifice and out into the outer flowfield alternates between an exhaust and a suction cycle, driven by the contraction and expansion of a cavity internal to the actuator. In the present experiment, the volume changes in the internal cavity are accomplished by replacing one of the rigid walls of the cavity, the wall opposite the orifice exit, with a deformable wall. This flexible wall is driven by a bottom-mounted moveable piston. The piston is driven electro-mechanically. The synthetic jet issues into the external flow through a circular orifice. In the present experiment, this orifice has a diameter of 0.250 inches (6.35 mm). The flow is conceptually similar to that documented in Schaeffler [1]. To document the flow, several measurement techniques were utilized. The upstream boundary conditions (in-flow conditions), and several key phase-averaged velocity profiles were measured with a 3-component laser-Doppler velocimetry system. Phase-averaged velocity field measurements were made with both stereo digital particle image velocimetry and 2-D digital particle image velocimetry as the primary measurement system. Surface pressure measurements were made utilizing an electronically scanned pressure system.

  6. Thermal insulating conformal blanket

    NASA Technical Reports Server (NTRS)

    Barney, Andrea (Inventor); Whittington, Charles A (Inventor); Eilertson, Bryan (Inventor); Siminski, Zenon (Inventor)

    2003-01-01

    The conformal thermal insulating blanket may have generally rigid batting material covered by an outer insulating layer formed of a high temperature resistant woven ceramic material and an inner insulating layer formed of a woven ceramic fiber material. The batting and insulating layers may be fastened together by sewing or stitching using an outer mold layer thread fabricated of a high temperature resistant material and an inner mold layer thread of a ceramic fiber material. The batting may be formed to a composite structure that may have a firmness factor sufficient to inhibit a pillowing effect after the stitching to not more than 0.03 inch. The outer insulating layer and an upper portion of the batting adjacent the outer insulating layer may be impregnated with a ceramic coating material.

  7. Histopathologic and immunohistochemical features of capsular tissue around failed Ahmed glaucoma valves.

    PubMed

    Mahale, Alka; Fikri, Fatma; Al Hati, Khitam; Al Shahwan, Sami; Al Jadaan, Ibrahim; Al Katan, Hind; Khandekar, Rajiv; Maktabi, Azza; Edward, Deepak P

    2017-01-01

    Impervious encapsulation around Ahmed glaucoma valve (AGV) results in surgical failure raising intraocular pressure (IOP). Dysregulation of extracellular matrix (ECM) molecules and cellular factors might contribute to increased hydraulic resistance to aqueous drainage. Therefore, we examined these molecules in failed AGV capsular tissue. Immunostaining for ECM molecules (collagen I, collagen III, decorin, lumican, chondroitin sulfate, aggrecan and keratan sulfate) and cellular factors (αSMA and TGFβ) was performed on excised capsules from failed AGVs and control tenon's tissue. Staining intensity of ECM molecules was assessed using Image J. Cellular factors were assessed based on positive cell counts. Histopathologically two distinct layers were visible in capsules. The inner layer (proximal to the AGV) showed significant decrease in most ECM molecules compared to outer layer. Furthermore, collagen III (p = 0.004), decorin (p = 0.02), lumican (p = 0.01) and chondroitin sulfate (p = 0.02) was significantly less in inner layer compared to tenon's tissue. Outer layer labelling however was similar to control tenon's for most ECM molecules. Significantly increased cellular expression of αSMA (p = 0.02) and TGFβ (p = 0.008) was detected within capsular tissue compared to controls. Our results suggest profibrotic activity indicated by increased αSMA and TGFβ expression and decreased expression of proteoglycan (decorin and lumican) and glycosaminoglycans (chondroitin sulfate). Additionally, we observed decreased collagen III which might reflect increased myofibroblast contractility when coupled with increased TGFβ and αSMA expression. Together these events lead to tissue dysfunction potentially resulting in hydraulic resistance that may affect aqueous flow through the capsular wall.

  8. Noninvasive detection of coronary artery wall thickening with age in healthy subjects using high resolution MRI with beat-to-beat respiratory motion correction.

    PubMed

    Scott, Andrew D; Keegan, Jennifer; Mohiaddin, Raad H; Firmin, David N

    2011-10-01

    To demonstrate coronary artery wall thickening with age in a small healthy cohort using a highly efficient, reliable, and reproducible high-resolution MR technique. A 3D cross-sectional MR vessel wall images (0.7 × 0.7 × 3 mm resolution) with retrospective beat-to-beat respiratory motion correction (B2B-RMC) were obtained in the proximal right coronary artery of 21 healthy subjects (age, 22-62 years) with no known cardiovascular disease. Lumen and outer wall (lumen + vessel wall) areas were measured in one central slice from each subject and average wall thickness and wall area/outer wall area ratio (W/OW) calculated. Imaging was successful in 18 (86%) subjects with average respiratory efficiency 99.3 ± 1.7%. Coronary vessel wall thickness and W/OW significantly correlate with subject age, increasing by 0.088 mm and 0.031 per decade respectively (R = 0.53, P = 0.024 and R = 0.48, P = 0.046). No relationship was found between lumen area and vessel wall thickness (P = NS), but outer wall area increased significantly with vessel wall thickness at 19 mm(2) per mm (P = 0.046). This is consistent with outward vessel wall remodeling. Despite the small size of our healthy cohort, using high-resolution MR imaging and B2B-RMC, we have demonstrated increasing coronary vessel wall thickness and W/OW with age. The results obtained are consistent with outward vessel wall remodeling. Copyright © 2011 Wiley-Liss, Inc.

  9. Compartmentalization of the outer hair cell demonstrated by slow diffusion in the extracisternal space.

    PubMed

    Gliko, Olga; Saggau, Peter; Brownell, William E

    2009-08-19

    In the outer hair cell (OHC), the extracisternal space (ECiS) is a conduit and reservoir of the molecular and ionic substrates of the lateral wall, including those necessary for electromotility. To determine the mechanisms through which molecules are transported in the ECiS of the OHC, we selectively imaged the time-dependent spatial distribution of fluorescent molecules in a <100 nm layer near the cell/glass interface of the recording chamber after their photolytic activation in a diffraction-limited volume. The effective diffusion coefficient was calculated using the analytical solution of the diffusion equation. It was found that diffusion in the ECiS is isotropic and not affected by depolarizing the OHC. Compared with free solution, the diffusion of 10 kDa dextran was slowed down in both the ECiS and the axial core by a factor of 4.6 and 1.6, respectively.

  10. Solid oxide fuel cell matrix and modules

    DOEpatents

    Riley, Brian

    1990-01-01

    Porous refractory ceramic blocks arranged in an abutting, stacked configuration and forming a three dimensional array provide a support structure and coupling means for a plurality of solid oxide fuel cells (SOFCs). Each of the blocks includes a square center channel which forms a vertical shaft when the blocks are arranged in a stacked array. Positioned within the channel is a SOFC unit cell such that a plurality of such SOFC units disposed within a vertical shaft form a string of SOFC units coupled in series. A first pair of facing inner walls of each of the blocks each include an interconnecting channel hole cut horizontally and vertically into the block walls to form gas exit channels. A second pair of facing lateral walls of each block further include a pair of inner half circular grooves which form sleeves to accommodate anode fuel and cathode air tubes. The stack of ceramic blocks is self-supporting, with a plurality of such stacked arrays forming a matrix enclosed in an insulating refractory brick structure having an outer steel layer. The necessary connections for air, fuel, burnt gas, and anode and cathode connections are provided through the brick and steel outer shell. The ceramic blocks are so designed with respect to the strings of modules that by simple and logical design the strings could be replaced by hot reloading if one should fail. The hot reloading concept has not been included in any previous designs.

  11. Effects of CNT size on the desalination performance of an outer-wall CNT slit membrane.

    PubMed

    Ang, Elisa Y M; Ng, Teng Yong; Yeo, Jingjie; Lin, Rongming; Liu, Zishun; Geethalakshmi, K R

    2018-05-23

    We investigate the effect of varying carbon nanotube (CNT) size on the desalination performance through slit confinements formed by horizontally aligned CNTs stacked on top of one another. By increasing the CNT size, the results obtained from this study indicate a corresponding increase in the water flow rate, accompanied by a slight reduction in salt rejection performance. However, due to the increase in the membrane area with CNT size, the permeability performance is observed to reduce as the CNT size increases. Nevertheless, a comparison with nanoporous 2D membranes shows that the permeability of an outer-wall CNT slit membrane remains significantly higher for all CNT sizes considered. This indicates that precise dimensions of the CNTs are not highly crucial for achieving ultra-high permeability performance in such membranes, as long as the critical slit size is maintained. In-depth analytical studies were further conducted to correlate the influence of curvature effects due to increasing CNT size on the flow characteristcis of the outer-wall CNT membrane. These include the analysis of the measured velocity profiles, oxygen density mapping, potential of mean force profile and friction profile. The present numerical results demonstrate the superb desalination performance of the outer-wall CNT slit membrane, regardless of the size of CNTs used. In addition, an extensive analysis conducted provides detailed characterization of how the curvature affects flow across outer-wall CNTs, and can be used to guide future design and fabrication for experimental testing.

  12. Action of sympathetic nerves of inner and outer muscle of sheep carotid artery, and effect of pressure on nerve distribution.

    PubMed Central

    Keatinge, W R; Torrie, C

    1976-01-01

    1. The direction of torsion produced during active shortening of helical strips of sheep carotid arteries was measured to assess whether inner or outer muscle was contracting. 2. Noradrenaline contracted inner (non-innervated) muscle in lower concentrations than were needed to contract outer (innervated) muscle, even with desipramine present to prevent uptake of noradrenaline by the nerves and with enough cyanide present to rise the normally low O2 tension of inner muscle to that of outer muscle. 3. Activation of sympathetic nerves in the outer part of the artery by nicotine caused almost evenly balanced contraction of both parts of the wall, with slight bias to outer contraction. 4. Moderate external constriction of the artery in vivo for 10-17 days, in order to raise pressure throughout the wall to intraluminal pressure, made the entire wall nerve-free. 5. The results provide evidence that the nerves can induce substantial activation of inner muscle, which is highly sensitive to noradrenaline, and that the absence of nerves from inner muscle can be explained by the high pressure there. Images Plate 1 PMID:950610

  13. Hydrogen-isotope permeation barrier

    DOEpatents

    Maroni, Victor A.; Van Deventer, Erven H.

    1977-01-01

    A composite including a plurality of metal layers has a Cu-Al-Fe bronze layer and at least one outer layer of a heat and corrosion resistant metal alloy. The bronze layer is ordinarily intermediate two outer layers of metal such as austenitic stainless steel, nickel alloys or alloys of the refractory metals. The composite provides a barrier to hydrogen isotopes, particularly tritium that can reduce permeation by at least about 30 fold and possibly more below permeation through equal thicknesses of the outer layer material.

  14. Segmented trapped vortex cavity

    NASA Technical Reports Server (NTRS)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  15. Flow formed by spanwise gaps between roughness elements

    NASA Technical Reports Server (NTRS)

    Logan, E.; Lin, S. H.; Islam, O.

    1985-01-01

    Measurements of the three mean velocity components and the three Reynolds shear stresses were made in the region downstream of gaps between wall-mounted roughness elements of square cross section and high aspect ratio in a thick turbulent boundary layer. The effect of small and large gaps was studied in a wind tunnel at a Reynolds number of 3600, based on obstacle height and free-stream velocity. The small gap produces retardation of the gap flow as with a two-dimensional roughness element, but a definite interaction between gap and wake flows is observed. The interaction is more intense for the large gap than for the small. Both gaps generate a secondary crossflow which moves fluid away from the centerline in the wall region and toward the centerline in the outer (y greater than 1.5H) region.

  16. Spiral cooled fuel nozzle

    DOEpatents

    Fox, Timothy; Schilp, Reinhard

    2012-09-25

    A fuel nozzle for delivery of fuel to a gas turbine engine. The fuel nozzle includes an outer nozzle wall and a center body located centrally within the nozzle wall. A gap is defined between an inner wall surface of the nozzle wall and an outer body surface of the center body for providing fuel flow in a longitudinal direction from an inlet end to an outlet end of the fuel nozzle. A turbulating feature is defined on at least one of the central body and the inner wall for causing at least a portion of the fuel flow in the gap to flow transverse to the longitudinal direction. The gap is effective to provide a substantially uniform temperature distribution along the nozzle wall in the circumferential direction.

  17. Durable metallized polymer mirror

    DOEpatents

    Schissel, Paul O.; Kennedy, Cheryl E.; Jorgensen, Gary J.; Shinton, Yvonne D.; Goggin, Rita M.

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  18. Small particle transport across turbulent nonisothermal boundary layers

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.

  19. Explosives screening on a vehicle surface

    DOEpatents

    Parmeter, John E.; Brusseau, Charles A.; Davis, Jerry D.; Linker, Kevin L.; Hannum, David W.

    2005-02-01

    A system for detecting particles on the outer surface of a vehicle has a housing capable of being placed in a test position adjacent to, but not in contact with, a portion of the outer surface of the vehicle. An elongate sealing member is fastened to the housing along a perimeter surrounding the wall, and the elongate sealing member has a contact surface facing away from the wall to contact the outer surface of the vehicle to define a test volume when the wall is in the test position. A gas flow system has at least one gas inlet extending through the wall for providing a gas stream against the surface of the vehicle within the test volume. This gas stream, which preferably is air, dislodges particles from the surface of the vehicle covered by the housing. The gas stream exits the test volume through a gas outlet and particles in the stream are detected.

  20. Durable metallized polymer mirror

    DOEpatents

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  1. Hot gas path component cooling system

    DOEpatents

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  2. Hybrid Composite Cryogenic Tank Structure

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas

    2011-01-01

    A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic temperatures, and will not crack or produce leaks. The outer layer serves as more of a high-performance structural unit for the inner layer, and can handle external environments.

  3. Universal fuel basket for use with an improved oxide reduction vessel and electrorefiner vessel

    DOEpatents

    Herrmann, Steven D.; Mariani, Robert D.

    2002-01-01

    A basket, for use in the reduction of UO.sub.2 to uranium metal and in the electrorefining of uranium metal, having a continuous annulus between inner and outer perforated cylindrical walls, with a screen adjacent to each wall. A substantially solid bottom and top plate enclose the continuous annulus defining a fuel bed. A plurality of scrapers are mounted adjacent to the outer wall extending longitudinally thereof, and there is a mechanism enabling the basket to be transported remotely.

  4. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Izumi, N.; Meezan, N. B.; Divol, L.; Hall, G. N.; Barrios, M. A.; Jones, O.; Landen, O. L.; Kroll, J. J.; Vonhof, S. A.; Nikroo, A.; Jaquez, J.; Bailey, C. G.; Hardy, C. M.; Ehrlich, R. B.; Town, R. P. J.; Bradley, D. K.; Hinkel, D. E.; Moody, J. D.

    2016-11-01

    The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the technique of spectrally selective x-ray imaging are discussed.

  5. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility.

    PubMed

    Izumi, N; Meezan, N B; Divol, L; Hall, G N; Barrios, M A; Jones, O; Landen, O L; Kroll, J J; Vonhof, S A; Nikroo, A; Jaquez, J; Bailey, C G; Hardy, C M; Ehrlich, R B; Town, R P J; Bradley, D K; Hinkel, D E; Moody, J D

    2016-11-01

    The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the technique of spectrally selective x-ray imaging are discussed.

  6. RADIOAUTOGRAPHIC STUDY OF CELL WALL DEPOSITION IN GROWING PLANT CELLS

    PubMed Central

    Ray, Peter M.

    1967-01-01

    Segments cut from growing oat coleoptiles and pea stems were fed glucose-3H in presence and absence of the growth hormone indoleacetic acid (IAA). By means of electron microscope radioautography it was demonstrated that new cell wall material is deposited both at the wall surface (apposition) and within the preexisting wall structure (internally). Quantitative profiles for the distribution of incorporation with position through the thickness of the wall were obtained for the thick outer wall of epidermal cells. With both oat coleoptile and pea stem epidermal outer walls, it was found that a larger proportion of the newly synthesized wall material appeared to become incorporated within the wall in the presence of IAA. Extraction experiments on coleoptile tissue showed that activity that had been incorporated into the cell wall interior represented noncellulosic constituents, mainly hemicelluloses, whereas cellulose was deposited largely or entirely by apposition. It seems possible that internal incorporation of hemicelluloses plays a role in the cell wall expansion process that is involved in cell growth. PMID:6064369

  7. Developmental patterning of sub-epidermal cells in the outer integument of Arabidopsis seeds

    PubMed Central

    Fiume, Elisa; Coen, Olivier; Xu, Wenjia; Lepiniec, Loïc

    2017-01-01

    The seed, the reproductive unit of angiosperms, is generally protected by the seed coat. The seed coat is made of one or two integuments, each comprising two epidermal cells layers and, in some cases, extra sub-epidermal cell layers. The thickness of the seed-coat affects several aspects of seed biology such as dormancy, germination and mortality. In Arabidopsis, the inner integument displays one or two sub-epidermal cell layers that originate from periclinal cell divisions of the innermost epidermal cell layer. By contrast, the outer integument was considered to be two-cell layered. Here, we show that sub-epidermal chalazal cells grow in between the epidermal outer integument cell layers to create an incomplete three-cell layered outer integument. We found that the MADS box transcription factor TRANSPARENT TESTA 16 represses growth of the chalaza and formation of sub-epidermal outer integument cells. Finally, we demonstrate that sub-epidermal cells of the outer and inner integument respond differently to the repressive mechanism mediated by FERTILIZATION INDEPENDENT SEED Polycomb group proteins and to fertilization signals. Our data suggest that integument cell origin rather than sub-epidermal cell position underlies different responses to fertilization. PMID:29141031

  8. Application of water flowing PVC pipe and EPS foam bead as insulation for wall panel

    NASA Astrophysics Data System (ADS)

    Ali, Umi Nadiah; Nor, Norazman Mohamad; Yusuf, Mohammed Alias; Othman, Maidiana; Yahya, Muhamad Azani

    2018-02-01

    Malaysia located in tropical climate which have a typical temperature range between 21 °C to 36 °C. Due to this, air-conditioning system for buildings become a necessity to provide comfort to occupants. In order to reduce the energy consumption of the air-conditioning system, the transmission of heat from outdoor to indoor space should be kept as minimum as possible. This article discuss about a technology to resist heat transfer through concrete wall panel using a hybrid method. In this research, PVC pipe was embedded at the center of concrete wall panel while the EPS foam beads were added about 1% of the cement content in the concrete mix forming the outer layer of the wall panel. Water is regulated in the PVC pipe from the rainwater harvesting system. The aim of this study is to minimize heat transfer from the external environment into the building. Internal building temperature which indicated in BS EN ISO 7730 or ASHRAE Standard 55 where the comfort indoor thermal is below 25°C during the daytime. Study observed that the internal surface temperature of heat resistance wall panel is up to 3°C lower than control wall panel. Therefore, we can conclude that application of heat resistance wall panel can lead to lower interior building temperature.

  9. System for rapid biohydrogen phenotypic screening of microorganisms using a chemochromic sensor

    DOEpatents

    Seibert, Michael; Benson, David K.; Flynn, Timothy Michael

    2002-01-01

    Provided is a system for identifying a hydrogen gas producing organism. The system includes a sensor film having a first layer comprising a transition metal oxide or oxysalt and a second layer comprising a hydrogen-dissociative catalyst metal, the first and second layers having an inner and an outer surface wherein the inner surface of the second layer is deposited on the outer surface of the first layer, and a substrate adjacent to the outer surface of the second layer, the organism isolated on the substrate.

  10. Method and apparatus for rapid biohydrogen phenotypic screening of microorganisms using a chemochromic sensor

    DOEpatents

    Seibert, Michael; Benson, David K.; Flynn, Timothy Michael

    2001-01-01

    The invention provides an assay system for identifying a hydrogen-gas-producing organism, including a sensor film having a first layer comprising a transition metal oxide or oxysalt and a second layer comprising hydrogen-dissociative catalyst metal, the first and second layers having an inner and an outer surface wherein the inner surface of the second layer is deposited on the outer surface of the first layer, and a substrate disposed proximally to the outer surface of the second layer, the organism being isolated on the substrate.

  11. Method of Fault Detection and Rerouting

    NASA Technical Reports Server (NTRS)

    Gibson, Tracy L. (Inventor); Medelius, Pedro J. (Inventor); Lewis, Mark E. (Inventor)

    2013-01-01

    A system and method for detecting damage in an electrical wire, including delivering at least one test electrical signal to an outer electrically conductive material in a continuous or non-continuous layer covering an electrically insulative material layer that covers an electrically conductive wire core. Detecting the test electrical signals in the outer conductive material layer to obtain data that is processed to identify damage in the outer electrically conductive material layer.

  12. Turbine blade with contoured chamfered squealer tip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ching-Pang

    2014-12-30

    A squealer tip formed from a pressure side tip wall and a suction side tip wall extending radially outward from a tip of the turbine blade is disclosed. The pressure and suction side tip walls may be positioned along the pressure sidewall and the suction sidewall of the turbine blade, respectively. The pressure side tip wall may include a chamfered leading edge with film cooling holes having exhaust outlets positioned therein. An axially extending tip wall may be formed from at least two outer linear surfaces joined together at an intersection forming a concave axially extending tip wall. The axiallymore » extending tip wall may include a convex inner surface forming a radially outer end to an inner cavity forming a cooling system. The cooling system may include one or more film cooling holes in the axially extending tip wall proximate to the suction sidewall, which promotes increased cooling at the pressure and suction sidewalls.« less

  13. Design of a Laboratory Hall Thruster with Magnetically Shielded Channel Walls, Phase III: Comparison of Theory with Experiment

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.

    2012-01-01

    A proof-of-principle effort to demonstrate a technique by which erosion of the acceleration channel in Hall thrusters of the magnetic-layer type can be eliminated has been completed. The first principles of the technique, now known as "magnetic shielding," were derived based on the findings of numerical simulations in 2-D axisymmetric geometry. The simulations, in turn, guided the modification of an existing 6-kW laboratory Hall thruster. This magnetically shielded (MS) thruster was then built and tested. Because neither theory nor experiment alone can validate fully the first principles of the technique, the objective of the 2-yr effort was twofold: (1) to demonstrate in the laboratory that the erosion rates can be reduced by >order of magnitude, and (2) to demonstrate that the near-wall plasma properties can be altered according to the theoretical predictions. This paper concludes the demonstration of magnetic shielding by reporting on a wide range of comparisons between results from numerical simulations and laboratory diagnostics. Collectively, we find that the comparisons validate the theory. Near the walls of the MS thruster, theory and experiment agree: (1) the plasma potential has been sustained at values near the discharge voltage, and (2) the electron temperature has been lowered by at least 2.5-3 times compared to the unshielded (US) thruster. Also, based on carbon deposition measurements, the erosion rates at the inner and outer walls of the MS thruster are found to be lower by at least 2300 and 1875 times, respectively. Erosion was so low along these walls that the rates were below the resolution of the profilometer. Using a sputtering yield model with an energy threshold of 25 V, the simulations predict a reduction of 600 at the MS inner wall. At the outer wall ion energies are computed to be below 25 V, for which case we set the erosion to zero in the simulations. When a 50-V threshold is used the computed ion energies are below the threshold at both sides of the channel. Uncertainties, sensitivities and differences between theory and experiment are also discussed.

  14. Dynamics of High Sound-Speed Metal Confiners Driven By Non-Ideal High-Explosive Detonation

    DOE PAGES

    Short, Mark; Jackson, Scott I.

    2015-01-23

    Here, the results of 14 tests examining the behavior of aluminum (Al) conifners driven by non-ideal ANFO detonation in a cylinder test configuration are presented. In each test, the measured detonation phase velocity is slower than the aluminum sound speed. Thus, in the detonation reference frame, the ow in the Al is both shockless and subsonic. The tests involve: 3-inch inner diameter (ID) cylinders with Al wall thicknesses of 1/4, 3/8, 1/2, 1 and 2 inches; a 4-inch ID cylinder with a 1/2-inch Al wall thickness; and 6-inch ID cylinders with Al wall thicknesses of 1/2, 1 and 2 inches.more » The ANFO detonation velocity is seen to increase with increasing wall thickness for both the 3- and 6-inch ID tests, with no limiting velocity reached for the wall thicknesses used. The motion of the outer Al wall due to precursor elastic waves in the Al running ahead of the detonation is also measured at various axial locations along the cylinders. It is found that the magnitude of the outer wall motion due to the precursor elastic waves is small, while the associated wall motion is unsteady and decays in amplitude as the elastic disturbances move further ahead of the detonation front. The variations in the expansion history of the main outer wall motion of the cylinders are presented for increasing wall thickness at fixed ID, and for increasing cylinder inner diameter at a fixed wall thickness. Finally, we also explore the existence of a geometric similarity scaling of the wall expansion history for three geometrically scaled tests (3- and 6-inch ID cylinders with 1/4- and 1/2-inch walls respectively, 3- and 6-inch ID cylinders with 1/2- and 1-inch walls and 3- and 6-inch ID cylinders with 1- and 2-inch walls respectively). We find that the wall velocity histories for each of the three scaled tests, when plotted directly against time relative to start of main motion of the wall, are similar over a certain range of wall velocities without any geometric based rescaling in time. The range of wall velocities where the overlap occurs increases as the ratio of the wall thickness to inner diameter decreases. In conclusion, this is in contrast to ideal high explosives, where the outer wall velocity histories are only similar when the geometric scale factor (in this case a factor of 2) is applied to the wall velocity motion.« less

  15. Dynamics of High Sound-Speed Metal Confiners Driven By Non-Ideal High-Explosive Detonation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Short, Mark; Jackson, Scott I.

    Here, the results of 14 tests examining the behavior of aluminum (Al) conifners driven by non-ideal ANFO detonation in a cylinder test configuration are presented. In each test, the measured detonation phase velocity is slower than the aluminum sound speed. Thus, in the detonation reference frame, the ow in the Al is both shockless and subsonic. The tests involve: 3-inch inner diameter (ID) cylinders with Al wall thicknesses of 1/4, 3/8, 1/2, 1 and 2 inches; a 4-inch ID cylinder with a 1/2-inch Al wall thickness; and 6-inch ID cylinders with Al wall thicknesses of 1/2, 1 and 2 inches.more » The ANFO detonation velocity is seen to increase with increasing wall thickness for both the 3- and 6-inch ID tests, with no limiting velocity reached for the wall thicknesses used. The motion of the outer Al wall due to precursor elastic waves in the Al running ahead of the detonation is also measured at various axial locations along the cylinders. It is found that the magnitude of the outer wall motion due to the precursor elastic waves is small, while the associated wall motion is unsteady and decays in amplitude as the elastic disturbances move further ahead of the detonation front. The variations in the expansion history of the main outer wall motion of the cylinders are presented for increasing wall thickness at fixed ID, and for increasing cylinder inner diameter at a fixed wall thickness. Finally, we also explore the existence of a geometric similarity scaling of the wall expansion history for three geometrically scaled tests (3- and 6-inch ID cylinders with 1/4- and 1/2-inch walls respectively, 3- and 6-inch ID cylinders with 1/2- and 1-inch walls and 3- and 6-inch ID cylinders with 1- and 2-inch walls respectively). We find that the wall velocity histories for each of the three scaled tests, when plotted directly against time relative to start of main motion of the wall, are similar over a certain range of wall velocities without any geometric based rescaling in time. The range of wall velocities where the overlap occurs increases as the ratio of the wall thickness to inner diameter decreases. In conclusion, this is in contrast to ideal high explosives, where the outer wall velocity histories are only similar when the geometric scale factor (in this case a factor of 2) is applied to the wall velocity motion.« less

  16. Effects of curvature on rarefied gas flows between rotating concentric cylinders

    NASA Astrophysics Data System (ADS)

    Dongari, Nishanth; White, Craig; Scanlon, Thomas J.; Zhang, Yonghao; Reese, Jason M.

    2013-05-01

    The gas flow between two concentric rotating cylinders is considered in order to investigate non-equilibrium effects associated with the Knudsen layers over curved surfaces. We investigate the nonlinear flow physics in the near-wall regions using a new power-law (PL) wall-scaling approach. This PL model incorporates Knudsen layer effects in near-wall regions by taking into account the boundary limiting effects on the molecular free paths. We also report new direct simulation Monte Carlo results covering a wide range of Knudsen numbers and accommodation coefficients, and for various outer-to-inner cylinder radius ratios. Our simulation data are compared with both the classical slip flow theory and the PL model, and we find that non-equilibrium effects are not only dependent on Knudsen number and accommodation coefficient but are also significantly affected by the surface curvature. The relative merits and limitations of both theoretical models are explored with respect to rarefaction and curvature effects. The PL model is able to capture some of the nonlinear trends associated with Knudsen layers up to the early transition flow regime. The present study also illuminates the limitations of classical slip flow theory even in the early slip flow regime for higher curvature test cases, although the model does exhibit good agreement throughout the slip flow regime for lower curvature cases. Torque and velocity profile comparisons also convey that a good prediction of integral flow properties does not necessarily guarantee the accuracy of the theoretical model used, and it is important to demonstrate that field variables are also predicted satisfactorily.

  17. Carbon-concentrating mechanisms in seagrasses.

    PubMed

    Larkum, Anthony William D; Davey, Peter A; Kuo, John; Ralph, Peter J; Raven, John A

    2017-06-01

    Seagrasses are unique angiosperms that carry out growth and reproduction submerged in seawater. They occur in at least three families of the Alismatales. All have chloroplasts mainly in the cells of the epidermis. Living in seawater, the supply of inorganic carbon (Ci) to the chloroplasts is diffusion limited, especially under unstirred conditions. Therefore, the supply of CO2 and bicarbonate across the diffusive boundary layer on the outer side of the epidermis is often a limiting factor. Here we discuss the evidence for mechanisms that enhance the uptake of Ci into the epidermal cells. Since bicarbonate is plentiful in seawater, a bicarbonate pump might be expected; however, the evidence for such a pump is not strongly supported. There is evidence for a carbonic anhydrase outside the outer plasmalemma. This, together with evidence for an outward proton pump, suggests the possibility that local acidification leads to enhanced concentrations of CO2 adjacent to the outer tangential epidermal walls, which enhances the uptake of CO2, and this could be followed by a carbon-concentrating mechanism (CCM) in the cytoplasm and/or chloroplasts. The lines of evidence for such an epidermal CCM are discussed, including evidence for special 'transfer cells' in some but not all seagrass leaves in the tangential inner walls of the epidermal cells. It is concluded that seagrasses have a CCM but that the case for concentration of CO2 at the site of Rubisco carboxylation is not proven. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. In situ Raman study on single- and double-walled carbon nanotubes as a function of lithium insertion.

    PubMed

    Kim, Yoong Ahm; Kojima, Masahito; Muramatsu, Hiroyuki; Umemoto, Souichiro; Watanabe, Takaaki; Yoshida, Kazuto; Sato, Keigo; Ikeda, Takuya; Hayashi, Takuya; Endo, Morinobu; Terrones, Mauricio; Dresselhaus, Mildred S

    2006-05-01

    We investigated the electrochemical lithium ion (Li(+)) insertion/desertion behavior on highly pure and bundled single- and double-walled carbon nanotubes (SWNTs and DWNTs) using an in situ Raman technique. In general, two storage sites could host Li(+) in SWNT and DWNT bundles when varying an external potential: a) the outer surface sites, and b) the interstitial spaces within the bundles. The most sensitive changes in the tangential mode (TM) of the Raman spectra upon doping with Li(+) can be divided into two regions. The first region was found from 2.8 to 1.0 V (the coverage of Li(+) on the outer surface of a bundled nanotube) and was characterized by the loss of resonant conditions via partial charge transfer, where the G(+) line of the SWNT and the TM of the outer tube of DWNTs experienced a highly depressed intensity, but remained almost constant in frequency. The appearance of a Breit-Wigner-Fano (BWF) profile provided strong evidence of metallic inner tubes within DWNTs. The second region was observed when the applied potentials ranged from 0.9 to 0 V and was characterized by Li(+) diffusion into the interstitial sites of the bundled nanotube material. This phenomenon invoked a large downshift of the G(-) band in SWNTs, and a small downshift of the TM of the inner tube of DWNTs caused by expansion of the C--C bonds due to the charge transferred to the nanotubes, and the disappearance of the BWF profile through the screening effect of the interstitial Li(+) layers.

  19. Differential growth of pavement cells of Arabidopsis thaliana leaf epidermis as revealed by microbead labeling.

    PubMed

    Elsner, Joanna; Lipowczan, Marcin; Kwiatkowska, Dorota

    2018-02-01

    In numerous vascular plants, pavement cells of the leaf epidermis are shaped like a jigsaw-puzzle piece. Knowledge about the subcellular pattern of growth that accompanies morphogenesis of such a complex shape is crucial for studies of the role of the cytoskeleton, cell wall and phytohormones in plant cell development. Because the detailed growth pattern of the anticlinal and periclinal cell walls remains unknown, our aim was to measure pavement cell growth at a subcellular resolution. Using fluorescent microbeads applied to the surface of the adaxial leaf epidermis of Arabidopsis thaliana as landmarks for growth computation, we directly assessed the growth rates for the outer periclinal and anticlinal cell walls at a subcellular scale. We observed complementary tendencies in the growth pattern of the outer periclinal and anticlinal cell walls. Central portions of periclinal walls were characterized by relatively slow growth, while growth of the other wall portions was heterogeneous. Local growth of the periclinal walls accompanying lobe development after initiation was relatively fast and anisotropic, with maximal extension usually in the direction along the lobe axis. This growth pattern of the periclinal walls was complemented by the extension of the anticlinal walls, which was faster on the lobe sides than at the tips. Growth of the anticlinal and outer periclinal walls of leaf pavement cells is heterogeneous. The growth of the lobes resembles cell elongation via diffuse growth rather than tip growth. © 2018 Botanical Society of America.

  20. Turbine bucket for use in gas turbine engines and methods for fabricating the same

    DOEpatents

    Garcia-Crespo, Andres

    2014-06-03

    A turbine bucket for use with a turbine engine. The turbine bucket includes an airfoil that extends between a root end and a tip end. The airfoil includes an outer wall that defines a cavity that extends from the root end to the tip end. The outer wall includes a first ceramic matrix composite (CMC) substrate that extends a first distance from the root end to the tip end. An inner wall is positioned within the cavity. The inner wall includes a second CMC substrate that extends a second distance from the root end towards the tip end that is different than the first distance.

  1. Radiation and phase change of lithium fluoride in an annulus

    NASA Technical Reports Server (NTRS)

    Lund, Kurt O.

    1993-01-01

    A one-dimensional thermal model is developed to evaluate the effect of radiation on the phase change of lithium-fluoride (LiF) in an annular canister under gravitational and microgravitational conditions. Specified heat flux at the outer wall of the canister models focused solar flux; adiabatic and convective conditions are considered for the inner wall. A two-band radiation model is used for the combined-mode heat transfer within the canister, and LiF optical properties relate metal surface properties in vacuum to those in LiF. For axial gravitational conditions, the liquid LiF remains in contact with the two bounding walls, whereas a void gap is used at the outer wall to model possible microgravitational conditions. For the adiabatic cases, exact integrals are obtained for the time required for complete melting of the LiF. Melting was found to occur primarily from the outer wall in the 1-g model, whereas it occurred primarily from the inner wall in the mu-g model. For the convective cases, partially melted steady-state conditions and fully melted conditions are determined to depend on the source flux level, with radiation extending the melting times.

  2. Outer layer effects in wind-farm boundary layers: Coriolis forces and boundary layer height

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2015-11-01

    In LES studies of wind-farm boundary layers, scale separation between the inner and outer region of the atmospheric boundary layer (ABL) is frequently assumed, i.e., wind turbines are presumed to fall within the inner layer and are not affected by outer layer effects. However, modern wind turbine and wind farm design tends towards larger rotor diameters and farm sizes, which means that outer layer effects will become more important. In a prior study, it was already shown for fully-developed wind farms that the ABL height influences the power performance. In this study, we use the in-house LES code SP-Wind to investigate the importance of outer layer effects on wind-farm boundary layers. In a suite of LES cases, the ABL height is varied by imposing a capping inversion with varying inversion strengths. Results indicate the growth of an internal boundary layer (IBL), which is limited in cases with low inversion layers. We further find that flow deceleration combined with Coriolis effects causes a change in wind direction throughout the farm. This effect increases with decreasing boundary layer height, and can result in considerable turbine wake deflection near the end of the farm. The authors are supported by the ERC (ActiveWindFarms, grant no: 306471). Computations were performed on VSC infrastructiure (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI.

  3. Simulations of turbulent asymptotic suction boundary layers

    NASA Astrophysics Data System (ADS)

    Bobke, Alexandra; Örlü, Ramis; Schlatter, Philipp

    2016-02-01

    A series of large-eddy simulations of a turbulent asymptotic suction boundary layer (TASBL) was performed in a periodic domain, on which uniform suction was applied over a flat plate. Three Reynolds numbers (defined as ratio of free-stream and suction velocity) of Re = 333, 400 and 500 and a variety of domain sizes were considered in temporal simulations in order to investigate the turbulence statistics, the importance of the computational domain size, the arising flow structures as well as temporal development length required to achieve the asymptotic state. The effect of these two important parameters was assessed in terms of their influence on integral quantities, mean velocity, Reynolds stresses, higher order statistics, amplitude modulation and spectral maps. While the near-wall region up to the buffer region appears to scale irrespective of Re and domain size, the parameters of the logarithmic law (i.e. von Kármán and additive coefficient) decrease with increasing Re, while the wake strength decreases with increasing spanwise domain size and vanishes entirely once the spanwise domain size exceeds approximately two boundary-layer thicknesses irrespective of Re. The wake strength also reduces with increasing simulation time. The asymptotic state of the TASBL is characterised by surprisingly large friction Reynolds numbers and inherits features of wall turbulence at numerically high Re. Compared to a turbulent boundary layer (TBL) or a channel flow without suction, the components of the Reynolds-stress tensor are overall reduced, but exhibit a logarithmic increase with decreasing suction rates, i.e. increasing Re. At the same time, the anisotropy is increased compared to canonical wall-bounded flows without suction. The reduced amplitudes in turbulence quantities are discussed in light of the amplitude modulation due to the weakened larger outer structures. The inner peak in the spectral maps is shifted to higher wavelength and the strength of the outer peak is much less than for TBLs. An additional spatial simulation was performed, in order to relate the simulation results to wind tunnel experiments, which - in accordance with the results from the temporal simulation - indicate that a truly TASBL is practically impossible to realise in a wind tunnel. Our unique data set agrees qualitatively with existing literature results for both numerical and experimental studies, and at the same time sheds light on the fact why the asymptotic state could not be established in a wind tunnel experiment, viz. because experimental studies resemble our simulation results from too small simulation boxes or insufficient development times.

  4. ACUTE ZONAL OCCULT OUTER RETINOPATHY: Structural and Functional Analysis Across the Transition Zone Between Healthy and Diseased Retina.

    PubMed

    Duncker, Tobias; Lee, Winston; Jiang, Fan; Ramachandran, Rithambara; Hood, Donald C; Tsang, Stephen H; Sparrow, Janet R; Greenstein, Vivienne C

    2018-01-01

    To assess structure and function across the transition zone (TZ) between relatively healthy and diseased retina in acute zonal occult outer retinopathy. Six patients (6 eyes; age 22-71 years) with acute zonal occult outer retinopathy were studied. Spectral-domain optical coherence tomography, fundus autofluorescence, near-infrared reflectance, color fundus photography, and fundus perimetry were performed and images were registered to each other. The retinal layers of the spectral-domain optical coherence tomography scans were segmented and the thicknesses of two outer retinal layers, that is, the total receptor and outer segment plus layers, and the retinal nerve fiber layer were measured. All eyes showed a TZ on multimodal imaging. On spectral-domain optical coherence tomography, the TZ was in the nasal retina at varying distances from the fovea. For all eyes, it was associated with loss of the ellipsoid zone band, significant thinning of the two outer retinal layers, and in three eyes with thickening of the retinal nerve fiber layer. On fundus autofluorescence, all eyes had a clearly demarcated peripapillary area of abnormal fundus autofluorescence delimited by a border of high autofluorescence; the latter was associated with loss of the ellipsoid zone band and with a change from relatively normal to markedly decreased or nonrecordable visual sensitivity on fundus perimetry. The results of multimodal imaging clarified the TZ in acute zonal occult outer retinopathy. The TZ was outlined by a distinct high autofluorescence border that correlated with loss of the ellipsoid zone band on spectral-domain optical coherence tomography. However, in fundus areas that seemed healthy on fundus autofluorescence, thinning of the outer retinal layers and thickening of the retinal nerve fiber layer were observed near the TZ. The TZ was also characterized by a decrease in visual sensitivity.

  5. Sucrose Synthase Is Associated with the Cell Wall of Tobacco Pollen Tubes1[W

    PubMed Central

    Persia, Diana; Cai, Giampiero; Del Casino, Cecilia; Faleri, Claudia; Willemse, Michiel T.M.; Cresti, Mauro

    2008-01-01

    Sucrose synthase (Sus; EC 2.4.1.13) is a key enzyme of sucrose metabolism in plant cells, providing carbon for respiration and for the synthesis of cell wall polymers and starch. Since Sus is important for plant cell growth, insights into its structure, localization, and features are useful for defining the relationships between nutrients, growth, and cell morphogenesis. We used the pollen tube of tobacco (Nicotiana tabacum) as a cell model to characterize the main features of Sus with regard to cell growth and cell wall synthesis. Apart from its role during sexual reproduction, the pollen tube is a typical tip-growing cell, and the proper construction of its cell wall is essential for correct shaping and direction of growth. The outer cell wall layer of pollen tubes consists of pectins, but the inner layer is composed of cellulose and callose; both polymers require metabolic precursors in the form of UDP-glucose, which is synthesized by Sus. We identified an 88-kD polypeptide in the soluble, plasma membrane and Golgi fraction of pollen tubes. The protein was also found in association with the cell wall. After purification, the protein showed an enzyme activity similar to that of maize (Zea mays) Sus. Distribution of Sus was affected by brefeldin A and depended on the nutrition status of the pollen tube, because an absence of metabolic sugars in the growth medium caused Sus to distribute differently during tube elongation. Analysis by bidimensional electrophoresis indicated that Sus exists as two isoforms, one of which is phosphorylated and more abundant in the cytoplasm and cell wall and the other of which is not phosphorylated and is specific to the plasma membrane. Results indicate that the protein has a role in the construction of the extracellular matrix and thus in the morphogenesis of pollen tubes. PMID:18344420

  6. Spectral analysis of near-wall turbulence in channel flow at Reτ=4200 with emphasis on the attached-eddy hypothesis

    NASA Astrophysics Data System (ADS)

    Agostini, Lionel; Leschziner, Michael

    2017-01-01

    Direct numerical simulation data for channel flow at a friction Reynolds number of 4200, generated by Lozano-Durán and Jiménez [J. Fluid Mech. 759, 432 (2014), 10.1017/jfm.2014.575], are used to examine the properties of near-wall turbulence within subranges of eddy-length scale. Attention is primarily focused on the intermediate layer (mesolayer) covering the logarithmic velocity region within the range of wall-scaled wall-normal distance of 80-1500. The examination is based on a number of statistical properties, including premultiplied and compensated spectra, the premultiplied derivative of the second-order structure function, and three scalar parameters that characterize the anisotropic or isotropic state of the various length-scale subranges. This analysis leads to the delineation of three regions within the map of wall-normal-wise premultiplied spectra, each characterized by distinct turbulence properties. A question of particular interest is whether the Townsend-Perry attached-eddy hypothesis (AEH) can be shown to be valid across the entire mesolayer, in contrast to the usual focus on the outer portion of the logarithmic-velocity layer at high Reynolds numbers, which is populated with very-large-scale motions. This question is addressed by reference to properties in the premultiplied scalewise derivative of the second-order structure function (PMDS2) and joint probability density functions of streamwise-velocity fluctuations and their streamwise and spanwise derivatives. This examination provides evidence, based primarily on the existence of a plateau region in the PMDS2, for the qualified validity of the AEH right down the lower limit of the logarithmic velocity range.

  7. New insight into the disinfection mechanism of Fusarium monoliforme and Aspergillus niger by TiO2 photocatalyst under low intensity UVA light.

    PubMed

    Pokhum, Chonlada; Viboonratanasri, Duangamon; Chawengkijwanich, Chamorn

    2017-11-01

    Titanium dioxide (TiO 2) photocatalytic reaction has great potential for the disinfection of harmful pathogens. However, the disinfection mechanisms of TiO 2 photocatalysis are not yet well-known for fungi and protozoa. In this work, the photocatalytic disinfection mechanism of Fusarium monoliforme and Aspergillus niger under low intensity UVA light (365nm, <10W/m 2 ) was studied at the ultrastructural level. Photocatalytic treatments showed that the photocatalytic oxidation of 10% TiO 2 based paint was efficacious in the complete disinfection of F. monoliforme under low intensity UVA light. No growth of F. monoliforme was observed on agar plate in the subsequent dark. Transmission electron microscopy (TEM) of F. monoliforme exposed to TiO 2 photocatalysis treatment showed a distinct damage to electron-dense outer cell wall, but not to an underlying electron-transparent layer cell wall. The TEM image revealed that the UVA-light only did not damage cell wall, cell membrane and cellular organelles. Unlike, A. niger was more sensitive to UVA-light. Serious destructions of cell membrane and cellular organelles were shown in A. niger exposed to UVA-light only and photocatalytic treatments. However, morphological change in A. niger cell wall was only observed in photocatalytic treatment. Changes to the outermost melanin like layer and cell wall of A. niger spore due to photocatalytic treatment were greatly apparent while the intracellular organelles of A. niger spore were not affected. Therefore, regrowth of A. niger on agar plate was expected from the germination of A. niger spore in the subsequent dark. These observations give a better understanding of the photocatalytic disinfection mechanism toward fungi. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    DOE PAGES

    Izumi, N.; Meezan, N. B.; Divol, L.; ...

    2016-08-12

    The high fuel capsule compression required for indirect drive inertial confinement fusion (ICF) requires careful control of the X-raydrive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagation and hencethe X-raydrive symmetry especially at thefinal stage of the drive pulse. In order to quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Finally, we discuss details of the experiment andmore » the technique of spectrally selectivex-ray imaging.« less

  9. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izumi, N., E-mail: izumi2@llnl.gov; Meezan, N. B.; Divol, L.

    The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the techniquemore » of spectrally selective x-ray imaging are discussed.« less

  10. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izumi, N.; Meezan, N. B.; Divol, L.

    The high fuel capsule compression required for indirect drive inertial confinement fusion (ICF) requires careful control of the X-raydrive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagation and hencethe X-raydrive symmetry especially at thefinal stage of the drive pulse. In order to quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Finally, we discuss details of the experiment andmore » the technique of spectrally selectivex-ray imaging.« less

  11. [Oocyst structure and problem of coccidian taxonomy].

    PubMed

    Beĭer, T B; Svezhova, N V; Sidorenko, N V

    2001-01-01

    A comparative ultrastructural study was made of both thin- and thick-walled oocysts of Cryptosporidium parvum. According to the authors' findings, all the oocysts in C. parvum should be considered as thin-walled, since their walls have been composed of a single membrane or of two, closely apposed membranes without any additional substance in between. Despite the presence of two types of wall-forming bodies (WFB) in the maturing macrogamete or zygote, there is no evidence of their involvement in oocyst wall formation. In this concern, the function and destiny of WFB in C. parvum oocysts still remain obscure. Similar structure of the oocysts wall was reported elsewhere for thin-walled oocysts of fish coccidia of the genera Goussia and Eimeria. In C. parvum, the "thick-walled" oocysts differ from oocysts with thin walls in the availability in the former of a single sporocyst. The sporocyst wall consists of two unequal layers: a thin outer layer and a thicker inner one, in which a characteristic suture line is occasionally seen. By this feature the thick-walled oocysts of C. parvum bear similarities with oocysts of the cyst-forming coccidia (Cystoisospora, Toxoplasma, Sarcocystis) and of the genus Goussia: in all these the valves making up the sporocyst wall are joint just along the suture line. The literary and the authors' own data make it possible to suppose that the suture detected in C. parvum oocysts is located in the sporocyst wall, joining its valves, rather than in the oocyst wall proper, known to be composed of one or two, closely apposed unit membranes. Again, the availability of a suture (or sutures) in the sporocyst hardly provides enough reason to relate C. parvum with either cyst-forming, or fish coccidia, since this structure itself may be of a convergency character, rather than of systematic value. This may be substantiated, at least in part, by the authors' previous findings (Beyer, Sidorenko, 1984) of a similar structure, originally referred to as a "slit channel", in the intraerythrocytic capsule around gamont stage of haemogregarines--the adeleid coccidia of the genus Karyolysus. The suture-like structure could have originated in the evolution independently in different groups of parasitic protozoa to serve eventually as a suitable mechanism for immediate separation of elements involved in protective formation harbouring different developmental stages, including, for example, sporozoites in the eimeriid coccidia, or gamonts in the adeleid coccidia.

  12. Poly(ADP-ribose) polymerase inhibition combined with irradiation: A dual treatment concept to prevent neointimal hyperplasia after endarterectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beller, Carsten J.; Kosse, Jens; Radovits, Tamas

    2006-11-01

    Purpose: In a rat model of endarterectomy we investigated the potential role of the peroxynitrite-poly(ADP-ribose) polymerase (PARP) pathway in neointima formation and the effects of irradiation, pharmacologic inhibition of PARP, or combined pharmacologic inhibition of PARP and irradiation on vascular remodeling. Methods and Materials: Carotid endarterectomy was performed by incision of the left carotid artery with removal of intima in Sprague-Dawley rats. Six groups were studied: sham-operated rats (n = 10), control endarterectomized rats (n = 10), or endarterectomized rats irradiated with 15 Gy (n = 10), or treated with PARP inhibitor, INO-1001 (5 mg/kg/day) (n = 10), or withmore » combined treatment with INO-1001 and irradiation with 5 Gy (n = 10) or with 15 Gy (n = 10). After 21 days, neointima formation and vascular remodeling were assessed. Results: Neointima formation after endarterectomy was inhibited by postoperative irradiation with 15 Gy and was attenuated by PARP inhibition. However, in parallel to inhibition of neointimal hyperplasia, activation of the peroxynitrite-PARP pathway in the outer vessel wall layers was triggered by postoperative irradiation. Combined pharmacologic PARP inhibition and irradiation with 15 Gy significantly reduced both neointimal hyperplasia and activation of the peroxynitrite-PARP pathway in the outer vessel wall layers. Combination of PARP inhibition and irradiation with 5 Gy was less effective than both PARP inhibition or irradiation with 15 Gy alone. Conclusions: We conclude, that combined PARP inhibition and irradiation with 15 Gy may be a new dual strategy for prevention of restenosis after surgical vessel reconstruction: combining the strong antiproliferative effect of irradiation and ameliorating irradiation-induced side effects caused by excessive PARP activation.« less

  13. Protecting peroxidase activity of multilayer enzyme-polyion films using outer catalase layers.

    PubMed

    Lu, Haiyun; Rusling, James F; Hu, Naifei

    2007-12-27

    Films constructed layer-by-layer on electrodes with architecture {protein/hyaluronic acid (HA)}n containing myoglobin (Mb) or horseradish peroxidase (HRP) were protected against protein damage by H2O2 by using outer catalase layers. Peroxidase activity for substrate oxidation requires activation by H2O2, but {protein/HA}n films without outer catalase layers are damaged slowly and irreversibly by H2O2. The rate and extent of damage were decreased dramatically by adding outer catalase layers to decompose H2O2. Comparative studies suggest that protection results from catalase decomposing a fraction of the H2O2 as it enters the film, rather than by an in-film diffusion barrier. The outer catalase layers controlled the rate of H2O2 entry into inner regions of the film, and they biased the system to favor electrocatalytic peroxide reduction over enzyme damage. Catalase-protected {protein/HA}n films had an increased linear concentration range for H2O2 detection. This approach offers an effective way to protect biosensors from damage by H2O2.

  14. Changes in Inner and Outer Retinal Layer Thicknesses after Vitrectomy for Idiopathic Macular Hole: Implications for Visual Prognosis

    PubMed Central

    Hashimoto, Yuki; Saito, Wataru; Fujiya, Akio; Yoshizawa, Chikako; Hirooka, Kiriko; Mori, Shohei; Noda, Kousuke; Ishida, Susumu

    2015-01-01

    Purpose To investigate sequential post-operative thickness changes in inner and outer retinal layers in eyes with an idiopathic macular hole (MH). Methods Retrospective case series. Twenty-four eyes of 23 patients who had received pars plana vitrectomy (PPV) for the closure of MH were included in the study. Spectral domain optical coherence tomography C-scan was used to automatically measure the mean thickness of the inner and outer retinal layers pre-operatively and up to 6 months following surgery. The photoreceptor outer segment (PROS) length was measured manually and was used to assess its relationship with best-corrected visual acuity (BCVA). Results Compared with the pre-operative thickness, the inner layers significantly thinned during follow-up (P = 0.02), particularly in the parafoveal (P = 0.01), but not perifoveal, area. The post-operative inner layer thinning ranged from the ganglion cell layer to the inner plexiform layer (P = 0.002), whereas the nerve fiber layer was unaltered. Outer layer thickness was significantly greater post-operatively (P = 0.002), and especially the PROS lengthened not only in the fovea but also in the parafovea (P < 0.001). Six months after surgery, BCVA was significantly correlated exclusively with the elongated foveal PROS (R = 0.42, P = 0.03), but not with any of the other thickness parameters examined. Conclusions Following PPV for MH, retinal inner layers other than the nerve fiber layer thinned, suggestive of subclinical thickening in the inner layers where no cyst was evident pre-operatively. In contrast, retinal outer layer thickness significantly increased, potentially as a result of PROS elongation linking tightly with favorable visual prognosis in MH eyes. PMID:26291526

  15. Foveomacular schisis in juvenile X-linked retinoschisis: an optical coherence tomography study.

    PubMed

    Yu, Jia; Ni, Yingqin; Keane, Pearse A; Jiang, Chunhui; Wang, Wenji; Xu, Gezhi

    2010-06-01

    To explore the structural features of juvenile X-linked retinoschisis using spectral-domain optical coherence tomography (OCT). Retrospective, observational cross-sectional study. Eighteen male patients (34 eyes) who were diagnosed with juvenile X-linked retinoschisis at the Eye & ENT Hospital of Fudan University over an 18-month period were included. Their OCT images, which were obtained using spectral-domain OCT (Cirrus HD-OCT; Carl Zeiss Meditec), were analyzed. The anatomic location of the schisis cavity in juvenile X-linked retinoschisis was characterized by direct inspection of OCT images. On OCT, the schisis cavity was visible at the fovea in all 34 eyes, and it was associated with increased retinal thickness. Schisis was present at the retinal nerve fiber layer in 4 eyes, at the inner nuclear layer in 29 eyes, and at the outer nuclear layer/outer plexiform layer in 22 eyes. In most cases, widespread foveomacular schisis was detected using OCT; however, in 9 eyes (6 patients), the schisis was confined to the fovea. Schisis of the inner nuclear layer and outer nuclear layer/outer plexiform layer almost always involved the foveal center, but retinal nerve fiber layer schisis was seen only in the parafoveal area. Despite conventional wisdom, in patients with X-linked retinoschisis, the schisis cavity can occur in a number of different layers of the neurosensory retina (retinal nerve fiber layer, inner nuclear layer, and outer nuclear layer/outer plexiform layer). In addition, different forms of schisis may affect different locations in the macula (foveal vs parafoveal), and, in most eyes, the schisis involves the entire foveomacular region. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Periplasmal Physics: The Rotational Dynamics of Spirochetal Flagella

    NASA Astrophysics Data System (ADS)

    Huber, Greg

    2012-02-01

    Spirochetes are distinguished by the location of their flagella, which reside within the periplasm: the tiny space between the bacterial cell wall and the outer membrane. In Borrelia burgdorferi/ (the causative agent of Lyme Disease), rotation of the flagella leads to cellular undulations that drive swimming. Exactly how these shape changes arise due to the forces and torques acting between the flagella and the cell body is unknown. By applying low-Reynolds number hydrodynamic theory to the motion of an elastic flagellum rotating in the periplasm, we show that the flagella are most likely separated from the bacterial cell wall by a lubricating layer of fluid. We obtain analytical solutions for the force and torque on the rotating flagellum through lubrication analysis, as well as through scaling analysis, and find results are in close agreement numerical simulations. (Joint work with J. Yang and C.W. Wolgemuth.)

  17. [CALCULATION OF RADIATION LOADS ON THE ANTHROPOMORPHIC PHANTOM ONBOARD THE SPACE STATION IN THE CASE OF ADDITIONAL SHIELDING].

    PubMed

    Kartashov, D A; Shurshakov, V A

    2015-01-01

    The paper presents the results of calculating doses from space ionizing radiation for a modeled orbital station cabin outfitted with an additional shield aimed to reduce radiation loads on cosmonaut. The shield is a layer with the mass thickness of -6 g/cm2 (mean density = 0.62 g/cm3) that covers the outer cabin wall and consists of wet tissues and towels used by cosmonauts for hygienic purposes. A tissue-equivalent anthropomorphic phantom imitates human body. Doses were calculated for the standard orbit of the International space station (ISS) with consideration of the longitudinal and transverse phantom orientation relative to the wall with or without the additional shield. Calculation of dose distribution in the human body improves prediction of radiation loads. The additional shield reduces radiation exposure of human critical organs by -20% depending on their depth and body spatial orientation in the ISS compartment.

  18. Palaeo-adaptive properties of the xylem of Metasequoia: mechanical/hydraulic compromises.

    PubMed

    Jagels, Richard; Visscher, George E; Lucas, John; Goodell, Barry

    2003-07-01

    The xylem of Metasequoia glyptostroboides Hu et Cheng is characterized by very low density (average specific gravity = 0.27) and tracheids with relatively large dimensions (length and diameter). The microfibril angle in the S2 layer of tracheid walls is large, even in outer rings, suggesting a cambial response to compressive rather than tensile stresses. In some cases, this compressive stress is converted to irreversible strain (plastic deformation), as evidenced by cell wall corrugations. The heartwood is moderately decay resistant, helping to prevent Brazier buckling. These xylem properties are referenced to the measured bending properties of modulus of rupture and modulus of elasticity, and compared with other low-to-moderate density conifers. The design strategy for Metasequoia is to produce a mechanically weak but hydraulically efficient xylem that permits rapid height growth and crown development to capture and dominate a wet site environment. The adaptability of these features to a high-latitude Eocene palaeoenvironment is discussed.

  19. Gas turbine engine combustor can with trapped vortex cavity

    DOEpatents

    Burrus, David Louis; Joshi, Narendra Digamber; Haynes, Joel Meier; Feitelberg, Alan S.

    2005-10-04

    A gas turbine engine combustor can downstream of a pre-mixer has a pre-mixer flowpath therein and circumferentially spaced apart swirling vanes disposed across the pre-mixer flowpath. A primary fuel injector is positioned for injecting fuel into the pre-mixer flowpath. A combustion chamber surrounded by an annular combustor liner disposed in supply flow communication with the pre-mixer. An annular trapped dual vortex cavity located at an upstream end of the combustor liner is defined between an annular aft wall, an annular forward wall, and a circular radially outer wall formed therebetween. A cavity opening at a radially inner end of the cavity is spaced apart from the radially outer wall. Air injection first holes are disposed through the forward wall and air injection second holes are disposed through the aft wall. Fuel injection holes are disposed through at least one of the forward and aft walls.

  20. Two stage serial impingement cooling for isogrid structures

    DOEpatents

    Lee, Ching-Pang; Morrison, Jay A.

    2014-09-09

    A system for cooling a wall (24) of a component having an outer surface with raised ribs (12) defining a structural pocket (10), including: an inner wall (26) within the structural pocket and separating the wall outer surface within the pocket into a first region (28) outside of the inner wall and a second region (40) enclosed by the inner wall; a plate (14) disposed atop the raised ribs and enclosing the structural pocket, the plate having a plate impingement hole (16) to direct cooling air onto an impingement cooled area (38) of the first region; a cap having a skirt (50) in contact with the inner wall, the cap having a cap impingement hole (20) configured to direct the cooling air onto an impingement cooled area (44) of the second region, and; a film cooling hole (22) formed through the wall in the second region.

  1. Measurements of scalar released from point sources in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Talluru, K. M.; Hernandez-Silva, C.; Philip, J.; Chauhan, K. A.

    2017-04-01

    Measurements of velocity and concentration fluctuations for a horizontal plume released at several wall-normal locations in a turbulent boundary layer (TBL) are discussed in this paper. The primary objective of this study is to establish a systematic procedure to acquire accurate single-point concentration measurements for a substantially long time so as to obtain converged statistics of long tails of probability density functions of concentration. Details of the calibration procedure implemented for long measurements are presented, which include sensor drift compensation to eliminate the increase in average background concentration with time. While most previous studies reported measurements where the source height is limited to, {{s}z}/δ ≤slant 0.2 , where s z is the wall-normal source height and δ is the boundary layer thickness, here results of concentration fluctuations when the plume is released in the outer layer are emphasised. Results of mean and root-mean-square (r.m.s.) profiles of concentration for elevated sources agree with the well-accepted reflected Gaussian model (Fackrell and Robins 1982 J. Fluid. Mech. 117). However, there is clear deviation from the reflected Gaussian model for source in the intermittent region of TBL particularly at locations higher than the source itself. Further, we find that the plume half-widths are different for the mean and r.m.s. concentration profiles. Long sampling times enabled us to calculate converged probability density functions at high concentrations and these are found to exhibit exponential distribution.

  2. Selective Internal Heat Distribution in Modified Trombe Wall

    NASA Astrophysics Data System (ADS)

    Szyszka, Jerzy; Kogut, Janusz; Skrzypczak, Izabela; Kokoszka, Wanda

    2017-12-01

    At present, the requirements for thermal insulation of the external walls in buildings are being increased. There is a need to reduce energy consumption for heating rooms during the winter season. This may be achieved by increasing the thermal resistance of the outer partitions, using solutions that utilize either recuperation or solar radiation. The most popular systems include either solar collectors, or heat pump links or ground exchangers. Trombe walls (TW) are a very promising passive heating system, which requires little or no effort to operate, and may be very convenient in different climate conditions. A typical TW consists of a masonry wall painted a dark, heat absorbing paint colour and faced with a single or double layer of glass. The principle of operation is based on the photothermal conversion of solar radiation. There are various modifications of TW. They may improve the energy efficiency in relation to the climate conditions in which they operate. The hybrid solutions are also known. The efficiency of walls is related to the use of proper materials. In TW, the compromise should be sought between the thermal resistance and the ability to distribute heat from the absorbed energy of solar radiation. The paper presents an overview of the most commonly used solutions and discusses its own concept dedicated to the climate conditions of Central Europe.

  3. Apparatus for observing a hostile environment

    DOEpatents

    Nance, Thomas A.; Boylston, Micah L.; Robinson, Casandra W.; Sexton, William C.; Heckendorn, Frank M.

    2000-01-01

    An apparatus is provided for observing a hostile environment, comprising a housing and a camera capable of insertion within the housing. The housing is a double wall assembly with an inner and outer wall with an hermetically sealed chamber therebetween. A housing for an optical system used to observe a hostile environment is provided, comprising a transparent, double wall assembly. The double wall assembly has an inner wall and an outer wall with an hermetically sealed chamber therebetween. The double wall assembly has an opening and a void area in communication with the opening. The void area of the housing is adapted to accommodate the optical system within said void area. An apparatus for protecting an optical system used to observe a hostile environment is provided comprising a housing; a tube positioned within the housing; and a base for supporting the housing and the tube. The housing comprises a double wall assembly having an inner wall and an outerwall with an hermetically sealed chamber therebetween. The tube is adapted to house the optical system therein.

  4. Multilayer article having stabilized zirconia outer layer and chemical barrier layer

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor); Lee, Kang N. (Inventor)

    2004-01-01

    A multilayer article includes a substrate that includes at least one of a ceramic compound and a Si-containing metal alloy. An outer layer includes stabilized zirconia. Intermediate layers are located between the outer layer and the substrate and include a mullite-containing layer and a chemical barrier layer. The mullite-containing layer includes 1) mullite or 2) mullite and an alkaline earth metal aluminosilicate. The chemical barrier layer is located between the mullite-containing layer and the outer layer. The chemical barrier layer includes at least one of mullite, hafnia, hafnium silicate and rare earth silicate (e.g., at least one of RE.sub.2 SiO.sub.5 and RE.sub.2 Si.sub.2 O.sub.7 where RE is Sc or Yb). The multilayer article is characterized by the combination of the chemical barrier layer and by its lack of a layer consisting essentially of barium strontium aluminosilicate between the mullite-containing layer and the chemical barrier layer. Such a barium strontium aluminosilicate layer may undesirably lead to the formation of a low melting glass or unnecessarily increase the layer thickness with concomitant reduced durability of the multilayer article. In particular, the chemical barrier layer may include at least one of hafnia, hafnium silicate and rare earth silicate.

  5. Numerical simulation of microcarrier motion in a rotating wall vessel bioreactor.

    PubMed

    Ju, Zhi-Hao; Liu, Tian-Qing; Ma, Xue-Hu; Cui, Zhan-Feng

    2006-06-01

    To analyze the forces of rotational wall vessel (RWV) bioreactor on small tissue pieces or microcarrier particles and to determine the tracks of microcarrier particles in RWV bioreactor. The motion of the microcarrier in the rotating wall vessel (RWV) bioreactor with both the inner and outer cylinders rotating was modeled by numerical simulation. The continuous trajectory of microcarrier particles, including the possible collision with the wall was obtained. An expression between the minimum rotational speed difference of the inner and outer cylinders and the microcarrier particle or aggregate radius could avoid collisions with either wall. The range of microcarrier radius or tissue size, which could be safely cultured in the RWV bioreactor, in terms of shear stress level, was determined. The model works well in describing the trajectory of a heavier microcarrier particle in rotating wall vessel.

  6. Optical monitoring system for a turbine engine

    DOEpatents

    Lemieux, Dennis H; Smed, Jan P; Williams, James P; Jonnalagadda, Vinay

    2013-05-14

    The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.

  7. Tornado type wind turbines

    DOEpatents

    Hsu, Cheng-Ting

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  8. Elaiophores in Gomesa bifolia (Sims) M.W. Chase & N.H. Williams (Oncidiinae: Cymbidieae: Orchidaceae): structure and oil secretion

    PubMed Central

    Aliscioni, Sandra S.; Torretta, Juan P.; Bello, Mariano E.; Galati, Beatriz G.

    2009-01-01

    Background and Aims Oils are an unusual floral reward in Orchidaceae, being produced by specialized glands called elaiophores. Such glands have been described in subtribe Oncidiinae for a few species. The aims of the present study were to identify the presence of elaiophores in Gomesa bifolia, to study their structure and to understand how the oil is secreted. Additionally, elaiophores of G. bifolia were compared with those of related taxa within the Oncidiinae. Methods Elaiophores were identified using Sudan III. Their structure was examined by using light, scanning electron and transmission electron microscopy. Key Results Secretion of oils was from the tips of callus protrusions. The secretory cells each had a large, centrally located nucleus, highly dense cytoplasm, abundant plastids containing lipid globules associated with starch grains, numerous mitochondria, an extensive system of rough and smooth endoplasmatic reticulum, and electron-dense dictyosomes. The outer tangential walls were thick, with a loose cellulose matrix and a few, sparsely distributed inconspicuous cavities. Electron-dense structures were observed in the cell wall and formed a lipid layer that covered the cuticle of the epidermal cells. The cuticle as viewed under the scanning electron microscope was irregularly rugose. Conclusions The elaiophores of G. bifolia are of the epithelial type. The general structure of the secretory cells resembles that described for other species of Oncidiinae, but some unique features were encountered for this species. The oil appears to pass through the outer tangential wall and the cuticle, covering the latter without forming cuticular blisters. PMID:19692391

  9. Article having an improved platinum-aluminum-hafnium protective coating

    NASA Technical Reports Server (NTRS)

    Nagaraj, Bangalore Aswatha (Inventor); Williams, Jeffrey Lawrence (Inventor)

    2005-01-01

    An article protected by a protective coating has a substrate and a protective coating having an outer layer deposited upon the substrate surface and a diffusion zone formed by interdiffusion of the outer layer and the substrate. The protective coating includes platinum, aluminum, no more than about 2 weight percent hafnium, and substantially no silicon. The outer layer is substantially a single phase.

  10. Numerical Comparison of Active Acoustic and Structural Noise Control in a Stiffened Double Wall Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1996-01-01

    The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.

  11. Analysis of the interaction between Bacillus coagulans and Bacillus thuringiensis S-layers and calcium ions by XRD, light microscopy, and FTIR.

    PubMed

    Babolmorad, Ghazal; Emtiazi, Giti; Emamzadeh, Rahman

    2014-05-01

    S-layer is a self-assemble regularly crystalline surface that covers major cell wall component of many bacteria and archaea and exhibits a high metal-binding capacity. We have studied the effect of the calcium ions and type of solid support (glass or mica) on the structure of the S-layers from Bacillus coagulans HN-68 and Bacillus thuringiensis MH14 upon simple methods based on light microscopy and AFM. Furthermore, the Fourier transform infrared spectroscopy (FTIR) study is indicated that the calcium-S-layer interaction occurred mainly through the carboxylate groups of the side chains of aspartic acid (Asp) and glutamic acid (Glu) and nitrogen atoms of Lys, Asn, and histidine (His) amino acids and N-H groups of the peptide backbone. Studied FTIR revealed that inner faces of S-layer are mainly negative, and outer faces of S-layer are mainly positive. Probably, calcium ions with positive charges bound to the carboxyl groups of Glu and Asp. Accordingly, calcium ions are anchored in the space between the inner faces of S-layer with negative charge and the surface of mica with negative charge. This leads to regular arrangement of the S-layer subunits.

  12. Outer Retinal Tubulation in Advanced Age-Related Macular Degeneration: Optical Coherence Tomographic Findings Correspond to Histology

    PubMed Central

    Schaal, Karen B.; Freund, K. Bailey; Litts, Katie M.; Zhang, Yuhua; Messinger, Jeffrey D.; Curcio, Christine A.

    2014-01-01

    Purpose To compare optical coherence tomography (OCT) and histology of outer retinal tubulation (ORT) secondary to advanced age-related macular degeneration (AMD) in patients and in post-mortem specimens, with particular attention to the basis of the hyper-reflective border of ORT. Method A private referral practice (imaging) and an academic research laboratory (histology) collaborated on two retrospective case series. High-resolution OCT raster scans of 43 eyes (34 patients) manifesting ORT secondary to advanced AMD were compared to high-resolution histological sections through the fovea and superior perifovea of donor eyes (13 atrophic AMD and 40 neovascular AMD) preserved ≤4 hours after death. Results ORT seen on OCT corresponded to histologic findings of tubular structures comprised largely of cones lacking outer segments (OS) and lacking inner segments (IS). Four phases of cone degeneration were histologically distinguishable in ORT lumenal walls, nascent, mature, degenerate, and end-stage (IS and OS; IS only; no IS; no photoreceptors and only Müller cells forming external limiting membrane, ELM, respectively). Mitochondria, which are normally long and bundled within IS ellipsoids, were small and scattered within shrunken IS and cell bodies of surviving cones. A lumenal border was delimited by an ELM. ORT observed in closed and open configurations were distinguishable from cysts and photoreceptor islands on both OCT and histology. Hyper-reflective lumenal material seen on OCT represents trapped retinal pigment epithelium (RPE) and non-RPE cells. Conclusions The defining OCT features of ORT are location in the outer nuclear layer (ONL), a hyper-reflective band differentiating it from cysts, and RPE that is either dysmorphic or absent. ORT histologic and OCT findings corresponded in regard to composition, location, shape, and stages of formation. The reflectivity of ORT lumenal walls on OCT apparently does not require an OS or an IS/OS junction, indicating an independent reflectivity source, possibly mitochondria, in the IS. PMID:25635579

  13. Magnetic and electronic properties of single-walled Mo2C nanotube: a first-principles study

    NASA Astrophysics Data System (ADS)

    Jalil, Abdul; Sun, Zhongti; Wang, Dayong; Wu, Xiaojun

    2018-04-01

    The structural, electronic, and magnetic properties of single-walled Mo2C nanotubes are investigated by using first-principles calculations. We establish that single-walled Mo2C nanotubes can be rolled up from a graphene-like Mo2C monolayer with H- or T-type phase, i.e. H-Mo2C and T-Mo2C nanotubes. The armchair-type T-Mo2C nanotubes are more energetically stable than H-Mo2C nanotubes with the same diameter, while zigzag-type H-Mo2C nanotubes are more energetically stable than T-Mo2C nanotubes. In particular, (8, 0) H-Mo2C nanotube are more stable than Mo2C monolayer due to structural deformation. All Mo2C nanotubes are magnetic metals, independent of their chirality, and the magnetic moments of Mo atoms in the outer layer are larger than the inner. The ionic and metallic bonds in Mo2C nanotubes and delocalized electrons around Mo atoms lead to the versatile electronic and magnetic properties in them, endowing them potential applications in catalysts and electronics.

  14. Magnetic and electronic properties of single-walled Mo2C nanotube: a first-principles study.

    PubMed

    Jalil, Abdul; Sun, Zhongti; Wang, Dayong; Wu, Xiaojun

    2018-04-18

    The structural, electronic, and magnetic properties of single-walled Mo 2 C nanotubes are investigated by using first-principles calculations. We establish that single-walled Mo 2 C nanotubes can be rolled up from a graphene-like Mo 2 C monolayer with H- or T-type phase, i.e. H-Mo 2 C and T-Mo 2 C nanotubes. The armchair-type T-Mo 2 C nanotubes are more energetically stable than H-Mo 2 C nanotubes with the same diameter, while zigzag-type H-Mo 2 C nanotubes are more energetically stable than T-Mo 2 C nanotubes. In particular, (8, 0) H-Mo 2 C nanotube are more stable than Mo 2 C monolayer due to structural deformation. All Mo 2 C nanotubes are magnetic metals, independent of their chirality, and the magnetic moments of Mo atoms in the outer layer are larger than the inner. The ionic and metallic bonds in Mo 2 C nanotubes and delocalized electrons around Mo atoms lead to the versatile electronic and magnetic properties in them, endowing them potential applications in catalysts and electronics.

  15. Structure-based design of diverse inhibitors of Mycobacterium tuberculosis N-acetylglucosamine-1-phosphate uridyltransferase: combined molecular docking, dynamic simulation, and biological activity.

    PubMed

    Soni, Vijay; Suryadevara, Priyanka; Sriram, Dharmarajan; Kumar, Santhosh; Nandicoori, Vinay Kumar; Yogeeswari, Perumal

    2015-07-01

    Persistent nature of Mycobacterium tuberculosis is one of the major factors which make the drug development process monotonous against this organism. The highly lipophilic cell wall, which constituting outer mycolic acid and inner peptidoglycan layers, acts as a barrier for the drugs to enter the bacteria. The rigidity of the cell wall is imparted by the peptidoglycan layer, which is covalently linked to mycolic acid by arabinogalactan. Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) serves as the starting material in the biosynthesis of this peptidoglycan layers. This UDP-GlcNAc is synthesized by N-acetylglucosamine-1-phosphate uridyltransferase (GlmU(Mtb)), a bi-functional enzyme with two functional sites, acetyltransferase site and uridyltransferase site. Here, we report design and screening of nine inhibitors against UTP and NAcGlc-1-P of uridyltransferase active site of glmU(Mtb). Compound 4 was showing good inhibition and was selected for further analysis. The isothermal titration calorimetry (ITC) experiments showed the binding energy pattern of compound 4 to the uridyltransferase active site is similar to that of substrate UTP. In silico molecular dynamics (MD) simulation studies, for compound 4, carried out for 10 ns showed the protein-compound complex to be stable throughout the simulation with relative rmsd in acceptable range. Hence, these compounds can serve as a starting point in the drug discovery processes against Mycobacterium tuberculosis.

  16. Joint segmentation of lumen and outer wall from femoral artery MR images: Towards 3D imaging measurements of peripheral arterial disease.

    PubMed

    Ukwatta, Eranga; Yuan, Jing; Qiu, Wu; Rajchl, Martin; Chiu, Bernard; Fenster, Aaron

    2015-12-01

    Three-dimensional (3D) measurements of peripheral arterial disease (PAD) plaque burden extracted from fast black-blood magnetic resonance (MR) images have shown to be more predictive of clinical outcomes than PAD stenosis measurements. To this end, accurate segmentation of the femoral artery lumen and outer wall is required for generating volumetric measurements of PAD plaque burden. Here, we propose a semi-automated algorithm to jointly segment the femoral artery lumen and outer wall surfaces from 3D black-blood MR images, which are reoriented and reconstructed along the medial axis of the femoral artery to obtain improved spatial coherence between slices of the long, thin femoral artery and to reduce computation time. The developed segmentation algorithm enforces two priors in a global optimization manner: the spatial consistency between the adjacent 2D slices and the anatomical region order between the femoral artery lumen and outer wall surfaces. The formulated combinatorial optimization problem for segmentation is solved globally and exactly by means of convex relaxation using a coupled continuous max-flow (CCMF) model, which is a dual formulation to the convex relaxed optimization problem. In addition, the CCMF model directly derives an efficient duality-based algorithm based on the modern multiplier augmented optimization scheme, which has been implemented on a GPU for fast computation. The computed segmentations from the developed algorithm were compared to manual delineations from experts using 20 black-blood MR images. The developed algorithm yielded both high accuracy (Dice similarity coefficients ≥ 87% for both the lumen and outer wall surfaces) and high reproducibility (intra-class correlation coefficient of 0.95 for generating vessel wall area), while outperforming the state-of-the-art method in terms of computational time by a factor of ≈ 20. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Liesegang rings in renal cyst fluid.

    PubMed

    Katz, L B; Ehya, H

    1990-01-01

    Peculiar ring-like structures identified as Liesegang rings (LRs) were found in renal cyst fluid from three patients with benign renal cysts. They ranged in size from 5 to 820 mu. Most had a double-layer outer wall with equally spaced radial cross-striations and an amorphous central nidus. Special stains were performed in one case, and the results are discussed. Reports of LRs in cystic or inflamed tissues have recently appeared in the literature. Some LRs have been mistaken for eggs or mature components of the giant kidney worm, Dioctophyma renale. We propose that cytologic assessment of renal cyst fluid in conjunction with histologic examination decreases the likelihood of misdiagnosis of LRs.

  18. TEST-HOLE CONSTRUCTION FOR A NEUTRONIC REACTOR

    DOEpatents

    Ohlinger, L.A.; Seitz, F.; Young, G.J.

    1959-02-17

    Test-hole construction is described for a reactor which provides safe and ready access to the neutron flux region for specimen materials which are to be irradiated therein. An elongated tubular thimble adapted to be inserted in the access hole through the wall of the reactor is constructed of aluminum and is provided with a plurality of holes parallel to the axis of the thimble for conveying the test specimens into position for irradiation, and a conduit for the circulation of coolant. A laminated shield formed of alternate layers of steel and pressed wood fiber is disposed lengthwise of the thimble near the outer end thereof.

  19. Large-Eddy-Simulation of a flow over a submerged rigid canopy

    NASA Astrophysics Data System (ADS)

    Monti, Alessandro; Omidyeganeh, Mohammad; Pinelli, Alfredo

    2017-11-01

    We have performed a wall-resolved Large-Eddy-Simulation of flow over a shallow submerged rigid canopy (H / h = 4 ; H and h are the open channel and the canopy heights respectively) in a transitional/dense regime (Nepf ARFM 44, 2011), at low Reynolds number (Reb =Ubulk H / ν = 6000). An immersed boundary method (Favier et al. JCP 261, 2013) has been adopted to represent filamentous rigid elements of the canopy. The presence of the permeable and porous canopy induces a typical inflection point in the mean velocity profile, depicting two separated and developed layers, outer boundary layer and in-canopy uniform flow. The aim of the work is to explore and unravel the mechanisms of the interaction between the fluid flow and the rigid canopy by identifying the physical parameters that govern the mixing mechanisms within the different flow layers and by exploring the impact of the sweep/ejection events at the canopy edge. The results show that the flow is characterised by large scale stream- and span-wise vortices and regions of different dynamics that affect also the filamentous layer, hence the mixing mechanisms.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, J.C.; Reiss, R.J.; Rica, A.F.

    There is disclosed an aseptic flexible walled container having a rigid fitment member cooperative with an aseptic filling apparatus and including a neck, outer flanges surrounding the neck, a frangible membrane and an outer end rim receptive of an hermetically sealed lid. The neck is formed with an internal chamferred seating shoulder for fluid-tight engagement with a fill tube. One outer flange cooperates with clamping jaws of the aseptic filling apparatus for detachably sealing the fitment to a sterilizing chamber and placing it in position for insertion of the filling tube which ruptures the membrane and permits the aseptic introductionmore » of product to the container's interior. The other outer flange is secured to an opening in a wall of the flexible container. The joined fitment and container are presterilized prior to filling. Selected materials for the multi-ply container walls and the fitment permit the container to withstand gamma ray and other sterilization treatment, heat and pressure while maintaining required strength. After the container is aseptically filled, such as with flowable food product, the fill tube is withdrawn and a lid is hermetically sealed onto the rim of the fitment. A heat shield adjacent a container wall surrounds the fitment to protect the container from excessive heat generated by the associated filling apparatus during filling.« less

  1. Inverse heat conduction estimation of inner wall temperature fluctuations under turbulent penetration

    NASA Astrophysics Data System (ADS)

    Guo, Zhouchao; Lu, Tao; Liu, Bo

    2017-04-01

    Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional (1D) and the two-dimensional (2D) inverse heat conduction problem (IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem (DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method (SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases: (1) when the maximum disturbance of temperature of fluid inside the pipe was 3°C, (2) when the maximum disturbance of temperature of fluid inside the pipe was 30°C, (3) when the maximum disturbance of temperature of fluid inside the pipe was 160°C, and (4) when the fluid temperatures inside the pipe were random from 50°C to 210°C.

  2. NUCLEAR SUPERHEATER FOR BOILING WATER REACTOR

    DOEpatents

    Holl, R.J.; Klecker, R.W.; Graham, C.B.

    1962-05-15

    A description is given of a boiling water reactor having a superheating region integral with the core. The core consists essentially of an annular boiling region surrounding an inner superheating region. Both regions contain fuel elements and are separated by a cylindrical wall, perforations being provided in the lower portion of the cylindrical wall to permit circulation of a common water moderator between the two regions. The superheater region comprises a plurality of tubular fuel assemblies through which the steam emanating from the boiling region passes to the steam outlet. Each superheater fuel assembly has an outer double-walled cylinder, the double walls being concentrically spaced and connected together at their upper ends but open at the bottom to provide for differential thermal expansion of the inner and outer walls. Gas is entrapped in the annulus between the walls which acts as an insulating space between the fissionable material inside and the moderator outside. (AEC)

  3. Retinal Arterioles in Hypo-, Normo-, and Hypertensive Subjects Measured Using Adaptive Optics.

    PubMed

    Hillard, Jacob G; Gast, Thomas J; Chui, Toco Y P; Sapir, Dan; Burns, Stephen A

    2016-08-01

    Small artery and arteriolar walls thicken due to elevated blood pressure. Vascular wall thickness show a correlation with hypertensive subject history and risk for stroke and cardiovascular events. The inner and outer diameter of retinal arterioles from less than 10 to over 150 μm were measured using a multiply scattered light adaptive optics scanning laser ophthalmoscope (AOSLO). These measurements were made on three populations, one with habitual blood pressures less than 100/70 mm Hg, one with normal blood pressures without medication, and one with managed essential hypertension. The wall to lumen ratio was largest for the smallest arterioles for all three populations. Data from the hypotensive group had a linear relationship between outer and inner diameters ( r 2 = 0.99) suggesting a similar wall structure in individuals prior to elevated blood pressures. Hypertensive subjects fell below the 95% confidence limits for the hypotensive relationship and had larger wall to lumen ratios and the normotensive group results fell between the other two groups. High-resolution retinal imaging of subjects with essential hypertension showed a significant decrease in vessel inner diameter for a given outer diameter, and increases in wall to lumen ratio and wall cross-sectional areas over the entire range of vessel diameters and suggests that correcting for vessel size may improve the ability to identify significant vascular changes. High-resolution imaging allows precise measurement of vasculature and by comparing results across risk populations may allow improved identification of individuals undergoing hypertensive arterial wall remodeling.

  4. Honeycomb vs. Foam: Evaluating a Potential Upgrade to ISS Module Shielding for Micrometeoroids and Orbital Debris

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Hedman, Troy; Christiansen, Eric L.

    2009-01-01

    The presence of a honeycomb core in a multi-wall shielding configuration for protection against micrometeoroid and orbital debris (MMOD) particle impacts at hypervelocity is generally considered to be detrimental as the cell walls act to restrict fragment cloud expansion, creating a more concentrated load on the shield rear wall. However, mission requirements often prevent the inclusion of a dedicated MMOD shield, and as such, structural honeycomb sandwich panels are amongst the most prevalent shield types. Open cell metallic foams are a relatively new material with novel mechanical and thermal properties that have shown promising results in preliminary hypervelocity impact shielding evaluations. In this study, an ISS-representative MMOD shielding configuration has been modified to evaluate the potential performance enhancement gained through the substitution of honeycomb for open cell foam. The baseline shielding configuration consists of a double mesh outer layer, two honeycomb sandwich panels, and an aluminum rear wall. In the modified configuration the two honeycomb cores are replaced by open-cell foam. To compensate for the heavier core material, facesheets have been removed from the second sandwich panel in the modified configuration. A total of 19 tests on the double layer honeycomb and double layer foam configurations are reported. For comparable mechanical and thermal performance, the foam modifications were shown to provide a 15% improvement in critical projectile diameter at low velocities (i.e. 3 km/s) and a 3% increase at high velocities (i.e. 7 km/s) for normal impact. With increasing obliquity, the performance enhancement was predicted to increase, up to a 29% improvement at 60 (low velocity). Ballistic limit equations have been developed for the new configuration, and consider the mass of each individual shield component in order to maintain validity in the event of minor configuration modifications. Previously identified weaknesses of open cell foams for hypervelocity impact shielding such as large projectile diameters, low velocities, and high degrees of impact obliquity have all been investigated, and found to be negligible for the double-layer configuration.

  5. Flexible Mechanical Conveyors for Regolith Extraction and Transport

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.; Vollmer, Hubert J.

    2013-01-01

    A report describes flexible mechanical conveying systems for transporting fine cohesive regolith under microgravity and vacuum conditions. They are totally enclosed, virtually dust-free, and can include enough flexibility in the conveying path to enable an expanded range of extraction and transport scenarios, including nonlinear drill-holes and excavation of enlarged subsurface openings without large entry holes. The design of the conveyors is a modification of conventional screw conveyors such that the central screw-shaft and the outer housing or conveyingtube have a degree of bending flexibility, allowing the conveyors to become nonlinear conveying systems that can convey around gentle bends. The central flexible shaft is similar to those used in common tools like a weed whacker, consisting of multiple layers of tightly wound wires around a central wire core. Utilization of compliant components (screw blade or outer wall) increases the robustness of the conveying, allowing an occasional oversized particle to pass hough the conveyor without causing a jam or stoppage

  6. Thermal reactor. [liquid silicon production from silane gas

    NASA Technical Reports Server (NTRS)

    Levin, H.; Ford, L. B. (Inventor)

    1982-01-01

    A thermal reactor apparatus and method of pyrolyticaly decomposing silane gas into liquid silicon product and hydrogen by-product gas is disclosed. The thermal reactor has a reaction chamber which is heated well above the decomposition temperature of silane. An injector probe introduces the silane gas tangentially into the reaction chamber to form a first, outer, forwardly moving vortex containing the liquid silicon product and a second, inner, rewardly moving vortex containing the by-product hydrogen gas. The liquid silicon in the first outer vortex deposits onto the interior walls of the reaction chamber to form an equilibrium skull layer which flows to the forward or bottom end of the reaction chamber where it is removed. The by-product hydrogen gas in the second inner vortex is removed from the top or rear of the reaction chamber by a vortex finder. The injector probe which introduces the silane gas into the reaction chamber is continually cooled by a cooling jacket.

  7. Outer brain barriers in rat and human development

    PubMed Central

    Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456

  8. Outer brain barriers in rat and human development.

    PubMed

    Brøchner, Christian B; Holst, Camilla B; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer.

  9. Exit chimney joint and method of forming the joint for closed circuit steam cooled gas turbine nozzles

    DOEpatents

    Burdgick, Steven Sebastian; Burns, James Lee

    2002-01-01

    A nozzle segment for a gas turbine includes inner and outer band portions and a vane extending between the band portions. The inner and outer band portions are each divided into first and second plenums separated by an impingement plate. Cooling steam is supplied to the first cavity for flow through the apertures to cool the outer nozzle wall. The steam flows through a leading edge cavity in the vane into the first cavity of the inner band portion for flow through apertures of the impingement plate to cool the inner nozzle wall. Spent cooling steam flows through a plurality of cavities in the vane, exiting through an exit chimney in the outer band. The exit chimney is secured at its inner end directly to the nozzle vane wall surrounding the exit cavities, to the margin of the impingement plate at a location intermediate the ends of the exit chimney and to margins of an opening through the cover whereby each joint is externally accessible for joint formation and for subsequent inspection.

  10. Active flow control insight gained from a modified integral boundary layer equation

    NASA Astrophysics Data System (ADS)

    Seifert, Avraham

    2016-11-01

    Active Flow Control (AFC) can alter the development of boundary layers with applications (e.g., reducing drag by separation delay or separating the boundary layers and enhancing vortex shedding to increase drag). Historically, significant effects of steady AFC methods were observed. Unsteady actuation is significantly more efficient than steady. Full-scale AFC tests were conducted with varying levels of success. While clearly relevant to industry, AFC implementation relies on expert knowledge with proven intuition and or costly and lengthy computational efforts. This situation hinders the use of AFC while simple, quick and reliable design method is absent. An updated form of the unsteady integral boundary layer (UIBL) equations, that include AFC terms (unsteady wall transpiration and body forces) can be used to assist in AFC analysis and design. With these equations and given a family of suitable velocity profiles, the momentum thickness can be calculated and matched with an outer, potential flow solution in 2D and 3D manner to create an AFC design tool, parallel to proven tools for airfoil design. Limiting cases of the UIBL equation can be used to analyze candidate AFC concepts in terms of their capability to modify the boundary layers development and system performance.

  11. Experimental Tests of Nonlocal Rheology in Dense Granular Flows

    NASA Astrophysics Data System (ADS)

    Tang, Zhu; Brzinski, Ted; Shearer, Michael; Daniels, Karen

    Several nonlocal granular rheology models have been proposed to address shortcomings in local rheology models. One such model, developed by Kamrin & Koval, is based on extending a local Bagnold-type granular flow law by including a Laplacian term that accounts for the grain size and cooperative effects. We perform experiments to test this model in a quasi-2D annular shear geometry with a fixed outer wall and a rotating inner wall. We obtain the speed profile by particle tracking. We measure the inner wall torque, and calculate the pressure and shear stress on the outer wall using deformable laser-cut leaf springs. This allows us to calculate the relationship between the stress ratio μ and the inertial number I at different inner wall rotation speeds and packing fractions. The results are compared with nonlocal models.

  12. Plasma confinement system and methods for use

    DOEpatents

    Jarboe, Thomas R.; Sutherland, Derek

    2017-09-05

    A plasma confinement system is provided that includes a confinement chamber that includes one or more enclosures of respective helicity injectors. The one or more enclosures are coupled to ports at an outer radius of the confinement chamber. The system further includes one or more conductive coils aligned substantially parallel to the one or more enclosures and a further set of one or more conductive coils respectively surrounding portions of the one or more enclosures. Currents may be provided to the sets of conductive coils to energize a gas within the confinement chamber into a plasma. Further, a heat-exchange system is provided that includes an inner wall, an intermediate wall, an outer wall, and pipe sections configured to carry coolant through cavities formed by the walls.

  13. Annular vortex combustor

    DOEpatents

    Nieh, Sen; Fu, Tim T.

    1992-01-01

    An apparatus for burning coal water fuel, dry ultrafine coal, pulverized l and other liquid and gaseous fuels including a vertically extending outer wall and an inner, vertically extending cylinder located concentrically within the outer wall, the annnular space between the outer wall and the inner cylinder defining a combustion chamber and the all space within the inner cylinder defining an exhaust chamber. Fuel and atomizing air are injected tangentially near the bottom of the combustion chamber and secondary air is introduced at selected points along the length of the combustion chamber. Combustion occurs along the spiral flow path in the combustion chamber and the combined effects of centrifugal, gravitational and aerodynamic forces cause particles of masses or sizes greater than the threshold to be trapped in a stratified manner until completely burned out. Remaining ash particles are then small enough to be entrained by the flue gas and exit the system via the exhaust chamber in the opposite direction.

  14. Photoprotective substance occurs primarily in outer layers of fish skin

    USGS Publications Warehouse

    Fabacher, D.L.; Little, E.E.

    1998-01-01

    Methanol extracts of dorsal skin layers, eyes, gills, and livers from ultraviolet-B (UVB) radiation-sensitive and UVB-tolerant species of freshwater fish were examined for a substance that appears to be photoprotective. Significantly larger amounts of this substance were found in extracts of outer dorsal skin layers from both UVB-sensitive and UVB-tolerant fish when compared with extracts of inner dorsal skin layers. This substance occurred in minor amounts or was not detected in eye, gill, and liver extracts. The apparent primary function of this substance in fish is to protect the cells in outer dorsal skin layers from harmful levels of UVB radiation.

  15. Photoprotective substance occurs primarily in outer layers of fish skin.

    PubMed

    Fabacher, D L; Little, E E

    1998-01-01

    Methanol extracts of dorsal skin layers, eyes, gills, and livers from ultraviolet-B (UVB) radiation-sensitive and UVB-tolerant species of freshwater fish were examined for a substance that appears to be photoprotective. Significantly larger amounts of this substance were found in extracts of outer dorsal skin layers from both UVB-sensitive and UVB-tolerant fish when compared with extracts of inner dorsal skin layers. This substance occurred in minor amounts or was not detected in eye, gill, and liver extracts. The apparent primary function of this substance in fish is to protect the cells in outer dorsal skin layers from harmful levels of UVB radiation.

  16. Shields for Enhanced Protection Against High-Speed Debris

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Kerr, Justin H.

    2003-01-01

    A report describes improvements over the conventional Whipple shield (two thin, spaced aluminum walls) for protecting spacecraft against high-speed impacts of orbiting debris. The debris in question arise mainly from breakup of older spacecraft. The improved shields include exterior bumper layers composed of hybrid fabrics woven from combinations of ceramic fibers and high-density metallic wires or, alternatively, completely metallic outer layers composed of high-strength steel or copper wires. These shields are designed to be light in weight, yet capable of protecting against orbital debris with mass densities up to about 9 g/cm3, without generating damaging secondary debris particles. As yet another design option, improved shields can include sparsely distributed wires made of shape-memory metals that can be thermally activated from compact storage containers to form shields of predetermined shape upon arrival in orbit. The improved shields could also be used to augment shields installed previously.

  17. Shields for Enhanced Protection Against High-Speed Debris

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Kerr, Justin H.

    2003-01-01

    A report describes improvements over the conventional Whipple shield (two thin, spaced aluminum walls) for protecting spacecraft against high-speed impacts of orbiting debris. The debris in question arises mainly from breakup of older spacecraft. The improved shields include exterior "bumper" layers composed of hybrid fabrics woven from combinations of ceramic fibers and high-density metallic wires or, alternatively, completely metallic outer layers composed of high-strength steel or copper wires. These shields are designed to be light in weight, yet capable of protecting against orbital debris with mass densities up to about 9 g/cubic cm, without generating damaging secondary debris particles. As yet another design option, improved shields can include sparsely distributed wires made of shape memory metals that can be thermally activated from compact storage containers to form shields of predetermined shape upon arrival in orbit. The improved shields could also be used to augment shields installed previously.

  18. Airfoil for a gas turbine engine

    DOEpatents

    Liang, George [Palm City, FL

    2011-05-24

    An airfoil is provided for a turbine of a gas turbine engine. The airfoil comprises: an outer structure comprising a first wall including a leading edge, a trailing edge, a pressure side, and a suction side; an inner structure comprising a second wall spaced from the first wall and at least one intermediate wall; and structure extending between the first and second walls so as to define first and second gaps between the first and second walls. The second wall and the at least one intermediate wall define at least one pressure side supply cavity and at least one suction side supply cavity. The second wall may include at least one first opening near the leading edge of the first wall. The first opening may extend from the at least one pressure side supply cavity to the first gap. The second wall may further comprise at least one second opening near the trailing edge of the outer structure. The second opening may extend from the at least one suction side supply cavity to the second gap. The first wall may comprise at least one first exit opening extending from the first gap through the pressure side of the first wall and at least one second exit opening extending from the second gap through the suction side of the second wall.

  19. Compressible turbulent channel flow with impedance boundary conditions

    NASA Astrophysics Data System (ADS)

    Scalo, Carlo; Bodart, Julien; Lele, Sanjiva K.

    2015-03-01

    We have performed large-eddy simulations of isothermal-wall compressible turbulent channel flow with linear acoustic impedance boundary conditions (IBCs) for the wall-normal velocity component and no-slip conditions for the tangential velocity components. Three bulk Mach numbers, Mb = 0.05, 0.2, 0.5, with a fixed bulk Reynolds number, Reb = 6900, have been investigated. For each Mb, nine different combinations of IBC settings were tested, in addition to a reference case with impermeable walls, resulting in a total of 30 simulations. The adopted numerical coupling strategy allows for a spatially and temporally consistent imposition of physically realizable IBCs in a fully explicit compressible Navier-Stokes solver. The IBCs are formulated in the time domain according to Fung and Ju ["Time-domain impedance boundary conditions for computational acoustics and aeroacoustics," Int. J. Comput. Fluid Dyn. 18(6), 503-511 (2004)]. The impedance adopted is a three-parameter damped Helmholtz oscillator with resonant angular frequency, ωr, tuned to the characteristic time scale of the large energy-containing eddies. The tuning condition, which reads ωr = 2πMb (normalized with the speed of sound and channel half-width), reduces the IBCs' free parameters to two: the damping ratio, ζ, and the resistance, R, which have been varied independently with values, ζ = 0.5, 0.7, 0.9, and R = 0.01, 0.10, 1.00, for each Mb. The application of the tuned IBCs results in a drag increase up to 300% for Mb = 0.5 and R = 0.01. It is shown that for tuned IBCs, the resistance, R, acts as the inverse of the wall-permeability and that varying the damping ratio, ζ, has a secondary effect on the flow response. Typical buffer-layer turbulent structures are completely suppressed by the application of tuned IBCs. A new resonance buffer layer is established characterized by large spanwise-coherent Kelvin-Helmholtz rollers, with a well-defined streamwise wavelength λx, traveling downstream with advection velocity cx = λx Mb. They are the effect of intense hydro-acoustic instabilities resulting from the interaction of high-amplitude wall-normal wave propagation (at the tuned frequency fr = ωr/2π = Mb) with the background mean velocity gradient. The resonance buffer layer is confined near the wall by structurally unaltered outer-layer turbulence. Results suggest that the application of hydrodynamically tuned resonant porous surfaces can be effectively employed in achieving flow control.

  20. Quality improvement of laminated board made from oil palm trunk at various outer layer using phenol formaldehyde adhesive

    NASA Astrophysics Data System (ADS)

    Hartono, R.; Sucipto, T.

    2018-02-01

    Characteristic of laminated board from oil palm trunk (OPT) is very low in quality. The effort to improved it’s quality done by using the outer layer from high density wood. The purpose of this experiment was to analyzed the effects of the outer layer on physical and mechanical properties of OPT and to obtain optimum treatment to fulfills JAS 234:2003. All of laminated board was made of 3 layers, and for the middle layer was made by densified-OPT. Then for the outer layer was made of sengon and meranti wood. The sample size was 5 cm (width) × 3 cm (thick) × 45 cm (length). The various outer layer of laminated board were A (OPT/densified OPT/OPT); B (Sengon/densified OPT/OPT); C (Sengon/densified OPT/sengon); D (Meranti/densified OPT/OPT) and E (Meranti/densified OPT/meranti). The results showed that the moisture content, density, thickness swelling, delamination, MOR and MOE were 6.10-8.48%; 0.40-0.63 g/cm3; 6.43-13.20%; 0%; 168.79-438.29 kg/cm2 and 30115-100454 kg/cm2, respectively. The moisture content and delamination fulfills JAS 234:2003, while density and thickness swelling did not fulfill standard. Whereas for MOR and MOE value, only type D and E that fulfill standard. There are strongth relationship between density and mechanical properties, such as MOR and MOE value. The optimum treatment in this reseach to made laminated board made from OPT was type D that using the meranti as outer layer.

  1. Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Wollack, Edward

    2012-01-01

    A fabrication process has been developed for cryogenic in-line filtering for the bias and readout of ultrasensitive cryogenic bolometers for millimeter and submillimeter wavelengths. The design is a microstripline filter that cuts out, or strongly attenuates, frequencies (10 50 GHz) that can be carried by wiring staged at cryogenic temperatures. The filter must have 100-percent transmission at DC and low frequencies where the bias and readout lines will carry signal. The fabrication requires the encapsulation of superconducting wiring in a dielectric-metal envelope with precise electrical characteristics. Sufficiently thick insulation layers with high-conductivity metal layers fully surrounding a patterned superconducting wire in arrayable formats have been demonstrated. A degenerately doped silicon wafer has been chosen to provide a metallic ground plane. A metallic seed layer is patterned to enable attachment to the ground plane. Thick silicon dioxide films are deposited at low temperatures to provide tunable dielectric isolation without degrading the metallic seed layer. Superconducting wiring is deposited and patterned using microstripline filtering techniques to cut out the relevant frequencies. A low Tc superconductor is used so that it will attenuate power strongly above the gap frequency. Thick dielectric is deposited on top of the circuit, and then vias are patterned through both dielectric layers. A thick conductive film is deposited conformally over the entire circuit, except for the contact pads for the signal and bias attachments to complete the encapsulating ground plane. Filters are high-aspect- ratio rectangles, allowing close packing in one direction, while enabling the chip to feed through the wall of a copper enclosure. The chip is secured in the copper wall using a soft metal seal to make good thermal and electrical contact to the outer shield.

  2. Spatial variability in T-tubule and electrical remodeling of left ventricular epicardium in mouse hearts with transgenic Gαq overexpression-induced pathological hypertrophy

    PubMed Central

    Tao, Wen; Shi, Jianjian; Dorn, Gerald W.; Wei, Lei; Rubart, Michael

    2012-01-01

    Pathological left ventricular hypertrophy (LVH) is consistently associated with prolongation of the ventricular action potentials. A number of previous studies, employing various experimental models of hypertrophy, have revealed marked differences in the effects of hypertrophy on action potential duration (APD) between myocytes from endocardial and epicardial layers of the LV free wall. It is not known, however, whether pathological LVH is also accompanied by redistribution of APD among myocytes from the same layer in the LV free wall. In the experiments here, LV epicardial action potential remodeling was examined in a mouse model of decompensated LVH, produced by cardiac-restricted transgenic Gαq overexpression. Confocal linescanning-based optical recordings of propagated action potentials from individual in situ cardiomyocytes across the outer layer of the anterior LV epicardium demonstrated spatially non-uniform action potential prolongation in transgenic hearts, giving rise to alterations in spatial dispersion of epicardial repolarization. Local density and distribution of anti-Cx43 mmune reactivity in Gαq hearts were unchanged compared to wild-type hearts, suggesting preservation of intercellular coupling. Confocal microscopy also revealed heterogeneous disorganization of T-tubules in epicardial cardiomyocytes in situ. These data provide evidence of the existence of significant electrical and structural heterogeneity within the LV epicardial layer of hearts with transgenic Gαq overexpression-induced hypertrophy, and further support the notion that a small portion of electrically well connected LV tissue can maintain dispersion of action potential duration through heterogeneity in the activities of sarcolemmal ionic currents that control repolarization. It remains to be examined whether other experimental models of pathological LVH, including pressure overload LVH, similarly exhibit alterations in T-tubule organization and/or dispersion of repolarization within distinct layers of LV myocardium. PMID:22728217

  3. Solar heating and cooling diode module

    DOEpatents

    Maloney, Timothy J.

    1986-01-01

    A high efficiency solar heating system comprising a plurality of hollow modular units each for receiving a thermal storage mass, the units being arranged in stacked relation in the exterior frame of a building, each of the units including a port for filling the unit with the mass, a collector region and a storage region, each region having inner and outer walls, the outer wall of the collector region being oriented for exposure to sunlight for heating the thermal storage mass; the storage region having an opening therein and the collector region having a corresponding opening, the openings being joined for communicating the thermal storage mass between the storage and collector regions by thermosiphoning; the collector region being disposed substantially below and in parallel relation to the storage region in the modular unit; and the inner wall of the collector region of each successive modular unit in the stacked relation extending over the outer wall of the storage region of the next lower modular unit in the stacked relation for reducing heat loss from the system. Various modifications and alternatives are disclosed for both heating and cooling applications.

  4. Final Report For The Erosion And Corrosion Analysis Of Waste Transfer Primary Pipeline Sections From 241-SY Tank Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, J. S.; Wyrwas, R. B.; Cooke, G. A.

    Three sections of primary transfer pipeline removed from the 241-SY Tank Farm in Hanford's 200 West area, labeled as SN-285, SN-286, and SN-278, were analyzed for the presence and amount of corrosion and erosion on the inside surface of the transfer pipe. All three sections of pipe, ranging in length between 6 and 8 in., were received at the 222-S Laboratory still in the pipe-in-pipe assembly. The annular spaces were filled with urethane foam injected into the pipes for as low as reasonably achievable (ALARA) purposes. The 3-in. primary transfer pipes were first separated from the outer encasement, 6-in. pipes.more » The pipes were cut into small sections, or coupons, based upon the results of a non-destructive pipe wall thickness measurement which used an ultrasonic transducer. Following removal of the foam, the coupons were subjected to a series of analytical methods utilizing both optical microscopy and scanning electron microscopy to obtain erosion and corrosion information. The ultrasonic transducer analysis of the SN-285 primary pipe did not show any thinned locations in the pipe wall which were outside the expected range for the 3-in. schedule 40 pipe of 216 mils. A coupon was cut from the thinnest area on the pipe, and analysis of the inside surface, which was in contact with the tank waste, revealed a continuous layer of corrosion ~ 100 11m (4 mils) thick under a semi-continuous layer of tank waste residue ~ 20 11m (1 mil) thick. This residue layer was composed of an amorphous phase rich in chromium, magnesium, calcium, and chlorine. Small pits were detected throughout the inside pipe surface with depths up to ~ 50 11m (2 mils). Similarly, the SN-286 primary pipe did not show, by the ultrasonic transducer measurements, any thinned locations in the pipe wall which were outside the expected range for this pipe. Analysis of the coupon cut from the pipe section showed the presence of a tank waste layer containing sodium aluminate and phases rich in iron, calcium, and chromium. This layer was removed by a cleaning process that left a pipe surface continuous in iron oxide/hydroxide (corrosion) with pockets of aluminum oxide, possibly gibbsite. The corrosion layer was ~ 50 11m (2 mil) thick over non-continuous pits less than ~ 50 11m deep (2 mils). Small particles of aluminum oxide were also detected under the corrosion layer. The ultrasonic transducer analysis of SN-278, like the previous primary pipes, did not reveal any noticeable thinning of the pipe wall. Analysis of the coupon cut from the pipe showed that the inside surface had a layer of tank waste residue that was partially detached from the pipe wall. This layer was easily scraped from the surface and was composed of two separate layers. The underlying layer was ~ 350 11m (14 mils) thick and composed of a cementation of small aluminum oxide (probably gibbsite) particles. A thinner layer on top of the aluminum oxide layer was rich in carbon and chlorine. Scattered pitting was observed on the inside pipe surface with one pit as deep as 200 11m (8 mils).« less

  5. Multi-functional carbon microspheres with double shell layers for flame retardant poly (ethylene terephthalate)

    NASA Astrophysics Data System (ADS)

    Xue, Baoxia; Niu, Mei; Yang, Yongzhen; Bai, Jie; Song, Yinghao; Peng, Yun; Liu, Xuguang

    2018-03-01

    Carbon microspheres (CMSs) as a core material had been coated by two capsule walls: an inorganic material of magnesium hydroxide (MH) as inner shell layer and an organic material of poly (ethylene terephthalate) (PET) as outer shell layer. MH coating CMSs (MCMSs) were fabricated by liquid phase deposition method, then grafted 3-Aminopropyltriethoxysilane (APTS) to obtain the Si-MCMSs. Microencapsulated Si-MCMSs (PMCMSs) was prepared by in situ polymerization method. Morphology structure, dispersion, flame retardant and other properties of PMCMSs have been investigated. A series of PET blends were prepared by melt compounding. The results showed that MH and PET as two layers were coated on CMSs surface with the optimal thickness of about 70 nm. The PMCMSs owned better dispersion in PET matrix. Compared with MCMSs/PET composites, the mechanical property of PMCMSs/PET composites had significantly increased because of the strong interface binding force between PMCMSs and PET matrix. Moreover, PMCMSs was proved to be an effective flame retardant. For PMCMSs/PET with 2 wt% PMCMSs, the limiting oxygen index (LOI) value increased from 21.0% (pristine PET) to 27.2%, and the peak heat release rate (pk-HRR) decreased from 513.22 kW/m2 to 352.14 kW/m2. The decreased smoke production rate (SPR) and total smoke production (TSP) values demonstrated PMCMSs suppressed the smoke production. The increased Fire performance index (FPI) value illustrated PMCMSs significantly reduced the fire risk of PET. Overall, the two capsular walls endowed the PMCMSs/PET composites with good mechanical and flame-retardant properties.

  6. Biomechanical properties of the layered oesophagus and its remodelling in experimental type-1 diabetes.

    PubMed

    Yang, Jian; Zhao, Jingbo; Liao, Donghua; Gregersen, Hans

    2006-01-01

    Passive biomechanical properties in term of the stress-strain relationship and the shear modulus were studied in separated muscle layer and mucosa-submucosa layer in the oesophagus of normal and STZ (streptozotocin)-induced diabetic rats. The mucosa-submucosa and muscle layers were separated using microsurgery and studied in vitro using a self-developed test machine. Stepwise elongation and inflation plus continuous twist were applied to the samples. A constitutive equation based on a strain energy function was used for the stress-strain analysis. Five material constants were obtained for both layers. The mucosa-submucosa layer was significantly stiffer than the muscle layer in longitudinal, circumferential and circumferential-longitudinal shear direction. The mechanical constants of the oesophagus show that the oesophageal wall was anisotropic, the stiffness in the longitudinal direction was higher than in the circumferential direction in the intact oesophagus (P < 0.001) and in the muscle layer (P < 0.05). Diabetes-induced pronounced increase in the outer perimeter, inner perimeter and lumen area in both the muscle and mucosa-submucosa layer. The growth of the mucosa-submucosa layer (P < 0.001) was more pronounced than the muscle layer (P < 0.05). Furthermore, the circumferential stiffness of the mucosa-submucosa layer increased 28 days after STZ treatment. In conclusion, the oesophagus is a non-homogeneous anisotropic tube. Thus, the mechanical properties differed between layers as well as in different directions. Morphological and biomechanical remodelling is prominent in the diabetic oesophagus.

  7. 49 CFR 193.2167 - Covered systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES... impounding system is prohibited except for concrete wall designed tanks where the concrete wall is an outer...

  8. Seamless metal-clad fiber-reinforced organic matrix composite structures and process for their manufacture

    NASA Technical Reports Server (NTRS)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1990-01-01

    A metallic outer sleeve is provided which is capable of enveloping a hollow metallic inner member having continuous reinforcing fibers attached to the distal end thereof. The inner member is then introduced into outer sleeve until inner member is completely enveloped by outer sleeve. A liquid matrix member is then injected into space between inner member and outer sleeve. A pressurized heat transfer medium is flowed through the inside of inner member, thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. The novelty of this invention resides in the development of a efficient method of producing seamless metal clad fiber reinforced organic matrix composite structures.

  9. Spectral domain optical coherence tomography imaging in optic disk pit associated with outer retinal dehiscence

    PubMed Central

    Wong, Chee Wai; Wong, Doric; Mathur, Ranjana

    2014-01-01

    A 37-year-old Bangladeshi male presented with an inferotemporal optic disk pit and serous macular detachment in the left eye. Imaging with spectral domain optical coherence tomography (OCT) revealed a multilayer macular schisis pattern with a small subfoveal outer retinal dehiscence. This case illustrates a rare phenotype of optic disk maculopathy with macular schisis and a small outer retinal layer dehiscence. Spectral domain OCT was a useful adjunct in delineating the retinal layers in optic disk pit maculopathy, and revealed a small area of outer retinal layer dehiscence that could only have been detected on high-resolution OCT. PMID:25349471

  10. Study on the new technology of removing gangue and retaining roadway in complicated roof condition

    NASA Astrophysics Data System (ADS)

    Chen, Yanhao; Jiang, Cong

    2018-04-01

    This article in view of the complex roof conditions was carried on study about the new technology of removing gangue and retaining roadway, and tells a method of progressive reinforced concrete wall segment with gangue to keep the roadway, the roadway beside the support system is mainly composed of the lining, waste rock wall and the outer wall, the wall and the outer wall of concrete material width to build the strength of the progressive type filling body, waste rock wall with woven bag with waste rock assembled, paragraphs geological survey on the actual distance should be based on working face. This method relies on the interior of the gangue wall to make the pressure control and allow the roof to sink. In this paper, the finite deformation control of the roof is realized by the gangue wall and the high strength filling body. This method has the characteristics of low entry cost, good forming of roadway, high security and good stability, and can be applied to complex geological conditions such as hard roof.

  11. First-principles calculation of the geometric and electronic structure of the Be(0001) surface

    NASA Astrophysics Data System (ADS)

    Feibelman, Peter J.

    1992-07-01

    Linearized-augmented-plane-wave calculations for a nine-layer Be(0001) slab agree with the unusual experimental finding of a substantial outer-layer expansion relative to the truncated bulk lattice. They imply that the separation between the outer two layers should be 3.9% larger than in the bulk, while the second- to third-layer separation should be 2.2% larger. The surface expansion is accompanied by demotion of pσ to s electrons on outer-layer Be's. The surface Be's loss of three neighbors makes the energy cost of s- to pσ-electron promotion, which is necessary for the formation of strong bonds to the next layer down, less profitable than in the bulk.

  12. Evolution of Initial Atmospheric Corrosion of Carbon Steel in an Industrial Atmosphere

    NASA Astrophysics Data System (ADS)

    Pan, Chen; Han, Wei; Wang, Zhenyao; Wang, Chuan; Yu, Guocai

    2016-12-01

    The evolution of initial corrosion of carbon steel exposed to an industrial atmosphere in Shenyang, China, has been investigated by gravimetric, XRD, SEM/EDS and electrochemical techniques. The kinetics of the corrosion process including the acceleration and deceleration processes followed the empirical equation D = At n . The rust formed on the steel surface was bi-layered, comprised of an inner and outer layer. The outer layer was formed within the first 245 days and had lower iron content compared to the inner layer. However, the outer layer disappeared after 307 days of exposure, which is considered to be associated with the depletion of Fe3O4. The evolution of the rust layer formed on the carbon steel has also been discussed.

  13. Annual Research Briefs, 1998

    NASA Technical Reports Server (NTRS)

    Spinks, Debra (Compiler)

    1998-01-01

    The topics contained in this progress report are direct numerical simulation of turbulent non-premixed combustion with realistic chemistry; LES of non-premixed turbulent reacting flows with conditional source term estimation; measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets; direct simulation of a jet diffusion flame; on the use of interpolating wavelets in the direct numerical simulation of combustion; on the use of a dynamically adaptive wavelet collocation algorithm in DNS (direct numerical simulation) of non-premixed turbulent combustion; 2D simulations of Hall thrusters; computation of trailing-edge noise at low mach number using LES and acoustic analogy; weakly nonlinear modeling of the early stages of bypass transition; interactions between freestream turbulence and boundary layers; interfaces at the outer boundaries of turbulent motions; largest scales of turbulent wall flows; the instability of streaks in near-wall turbulence; an implementation of the v(sup 2) - f model with application to transonic flows; heat transfer predictions in cavities; a structure-based model with stropholysis effects; modeling a confined swirling coaxial jet; subgrid-scale models based on incremental unknowns for large eddy simulations; subgrid scale modeling taking the numerical error into consideration; towards a near-wall model for LES of a separated diffuser flow; on the feasibility of merging LES with RANS (Reynolds Averaging Numerical simulation) for the near-wall region of attached turbulent flows; large-eddy simulation of a separated boundary layer; numerical study of a channel flow with variable properties; on the construction of high order finite difference schemes on non-uniform meshes with good conservation properties; development of immersed boundary methods for complex geometries; and particle methods for micro and macroscale flow simulations.

  14. Accurate quantification of local changes for carotid arteries in 3D ultrasound images using convex optimization-based deformable registration

    NASA Astrophysics Data System (ADS)

    Cheng, Jieyu; Qiu, Wu; Yuan, Jing; Fenster, Aaron; Chiu, Bernard

    2016-03-01

    Registration of longitudinally acquired 3D ultrasound (US) images plays an important role in monitoring and quantifying progression/regression of carotid atherosclerosis. We introduce an image-based non-rigid registration algorithm to align the baseline 3D carotid US with longitudinal images acquired over several follow-up time points. This algorithm minimizes the sum of absolute intensity differences (SAD) under a variational optical-flow perspective within a multi-scale optimization framework to capture local and global deformations. Outer wall and lumen were segmented manually on each image, and the performance of the registration algorithm was quantified by Dice similarity coefficient (DSC) and mean absolute distance (MAD) of the outer wall and lumen surfaces after registration. In this study, images for 5 subjects were registered initially by rigid registration, followed by the proposed algorithm. Mean DSC generated by the proposed algorithm was 79:3+/-3:8% for lumen and 85:9+/-4:0% for outer wall, compared to 73:9+/-3:4% and 84:7+/-3:2% generated by rigid registration. Mean MAD of 0:46+/-0:08mm and 0:52+/-0:13mm were generated for lumen and outer wall respectively by the proposed algorithm, compared to 0:55+/-0:08mm and 0:54+/-0:11mm generated by rigid registration. The mean registration time of our method per image pair was 143+/-23s.

  15. The Functional Anatomy of Nerves Innervating the Ventral Grooved Blubber of Fin Whales (Balaenoptera Physalus).

    PubMed

    Vogl, Wayne; Petersen, Hannes; Adams, Arlo; Lillie, Margo A; Shadwick, Robert E

    2017-11-01

    Nerves that supply the floor of the oral cavity in rorqual whales are extensible to accommodate the dramatic changes in tissue dimensions that occur during "lunge feeding" in this group. We report here that the large nerves innervating the muscle component of the ventral grooved blubber (VGB) in fin whales are branches of cranial nerve VII (facial nerve). Therefore, the muscles of the VGB are homologous to second branchial arch derived muscles, which in humans include the muscles of "facial expression." We speculate, based on the presence of numerous foramina on the dorsolateral surface of the mandibular bones, that general sensation from the VGB likely is carried by branches of the mandibular division (V3) of cranial nerve V (trigeminal nerve), and that these small branches travel in the lipid-rich layer directly underlying the skin. We show that intercostal and phrenic nerves, which are not extensible, have a different wall and nerve core morphology than the large VGB nerves that are branches of VII. Although these VGB nerves are known to have two levels of waviness, the intercostal and phrenic nerves have only one in which the nerve fascicles in the nerve core are moderately wavy. In addition, the VGB nerves have inner and outer parts to their walls with numerous large elastin fibers in the outer part, whereas intercostal and phrenic nerves have single walls formed predominantly of collagen. Our results illustrate that overall nerve morphology depends greatly on location and the forces to which the structures are exposed. Anat Rec, 300:1963-1972, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Novel insights on the structure and composition of pseudostomata of Sphagnum.

    PubMed

    Merced, Amelia

    2015-03-01

    The occurrence of stomata on sporophytes of mosses and hornworts is congruent with a single origin in land plants. Although true stomata are absent in early-divergent mosses, Sphagnum has specialized epidermal cells, pseudostomata, that partially separate but do not open to the inside. This research examined two competing hypotheses that explain the origin of pseudostomata: (1) they are modified stomata, or (2) they evolved from epidermal cells independently from stomata.• Capsule anatomy and ultrastructure of pseudostomata were studied using light and electron microscopy, including immunolocalization of pectins.• Cell walls in pseudostomata are thin, two-layered, and rich in pectins, similar to young moss stomata, including the presence of cuticle on exterior walls. Outer and ventral walls have a thick cuticle that suggests that initial separation of ventral walls involves cuticle deposition as in true stomata. Further mechanical separation between ventral walls does not form a pore and occurs as the capsule dries.• As in moss stomata, pseudostomata wall architecture and behavior facilitate capsule dehydration, shape change, and dehiscence, supporting a common function. The divergent structure and fate of pseudostomata may be explained by the retention of Sphagnum sporophytes within protective leaves until nearly mature. Ultrastructural and immunocytological data suggest that pseudostomata are related to stomata but do not conclusively support either hypothesis. Solving the relationship of early land plants is critical to understanding stomatal evolution. Pseudostomata are structurally and anatomically unique, but their relationship to true stomata remains to be determined. © 2015 Botanical Society of America, Inc.

  17. Redundant Bearing Assembly

    NASA Technical Reports Server (NTRS)

    Wright, Jay M.

    1995-01-01

    Proposed redundant bearing assembly consists of two modified ball or roller bearings, one held by other. Outer race of inner bearing press-fit into inner race of outer bearing. Within each bearing, side walls of inner and outer races extended radially toward each other leaving only small gap. In assembly, one bearing continues to allow free rotation when other fails. Bearing wear monitored by examination of gaps between races. In alternative design, inner race of outer bearing and outer race of inner bearing manufactured as single piece.

  18. Turbine airfoil with controlled area cooling arrangement

    DOEpatents

    Liang, George

    2010-04-27

    A gas turbine airfoil (10) includes a serpentine cooling path (32) with a plurality of channels (34,42,44) fluidly interconnected by a plurality of turns (38,40) for cooling the airfoil wall material. A splitter component (50) is positioned within at least one of the channels to bifurcate the channel into a pressure-side channel (46) passing in between the outer wall (28) and the inner wall (30) of the pressure side (24) and a suction-side channel (48) passing in between the outer wall (28) and the inner wall (30) of the suction side (26) longitudinally downstream of an intermediate height (52). The cross-sectional area of the pressure-side channel (46) and suction-side channel (48) are thereby controlled in spite of an increasing cross-sectional area of the airfoil along its longitudinal length, ensuring a sufficiently high mach number to provide a desired degree of cooling throughout the entire length of the airfoil.

  19. Compact neutron imaging system using axisymmetric mirrors

    DOEpatents

    Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E

    2014-05-27

    A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.

  20. Defects in intracellular trafficking of fungal cell wall synthases lead to aberrant host immune recognition.

    PubMed

    Esher, Shannon K; Ost, Kyla S; Kohlbrenner, Maria A; Pianalto, Kaila M; Telzrow, Calla L; Campuzano, Althea; Nichols, Connie B; Munro, Carol; Wormley, Floyd L; Alspaugh, J Andrew

    2018-06-01

    The human fungal pathogen, Cryptococcus neoformans, dramatically alters its cell wall, both in size and composition, upon entering the host. This cell wall remodeling is essential for host immune avoidance by this pathogen. In a genetic screen for mutants with changes in their cell wall, we identified a novel protein, Mar1, that controls cell wall organization and immune evasion. Through phenotypic studies of a loss-of-function strain, we have demonstrated that the mar1Δ mutant has an aberrant cell surface and a defect in polysaccharide capsule attachment, resulting in attenuated virulence. Furthermore, the mar1Δ mutant displays increased staining for exposed cell wall chitin and chitosan when the cells are grown in host-like tissue culture conditions. However, HPLC analysis of whole cell walls and RT-PCR analysis of cell wall synthase genes demonstrated that this increased chitin exposure is likely due to decreased levels of glucans and mannans in the outer cell wall layers. We observed that the Mar1 protein differentially localizes to cellular membranes in a condition dependent manner, and we have further shown that the mar1Δ mutant displays defects in intracellular trafficking, resulting in a mislocalization of the β-glucan synthase catalytic subunit, Fks1. These cell surface changes influence the host-pathogen interaction, resulting in increased macrophage activation to microbial challenge in vitro. We established that several host innate immune signaling proteins are required for the observed macrophage activation, including the Card9 and MyD88 adaptor proteins, as well as the Dectin-1 and TLR2 pattern recognition receptors. These studies explore novel mechanisms by which a microbial pathogen regulates its cell surface in response to the host, as well as how dysregulation of this adaptive response leads to defective immune avoidance.

  1. Cell-wall recycling and synthesis in Escherichia coli and Pseudomonas aeruginosa - their role in the development of resistance.

    PubMed

    Dhar, Supurna; Kumari, Hansi; Balasubramanian, Deepak; Mathee, Kalai

    2018-01-01

    The bacterial cell-wall that forms a protective layer over the inner membrane is called the murein sacculus - a tightly cross-linked peptidoglycan mesh unique to bacteria. Cell-wall synthesis and recycling are critical cellular processes essential for cell growth, elongation and division. Both de novo synthesis and recycling involve an array of enzymes across all cellular compartments, namely the outer membrane, periplasm, inner membrane and cytoplasm. Due to the exclusivity of peptidoglycan in the bacterial cell-wall, these players are the target of choice for many antibacterial agents. Our current understanding of cell-wall biochemistry and biogenesis in Gram-negative organisms stems mostly from studies of Escherichia coli. An incomplete knowledge on these processes exists for the opportunistic Gram-negative pathogen, Pseudomonas aeruginosa. In this review, cell-wall synthesis and recycling in the various cellular compartments are compared and contrasted between E. coli and P. aeruginosa. Despite the fact that there is a remarkable similarity of these processes between the two bacterial species, crucial differences alter their resistance to β-lactams, fluoroquinolones and aminoglycosides. One of the common mediators underlying resistance is the amp system whose mechanism of action is closely associated with the cell-wall recycling pathway. The activation of amp genes results in expression of AmpC β-lactamase through its cognate regulator AmpR which further regulates multi-drug resistance. In addition, other cell-wall recycling enzymes also contribute to antibiotic resistance. This comprehensive summary of the information should spawn new ideas on how to effectively target cell-wall processes to combat the growing resistance to existing antibiotics.

  2. Structure measurements in a synthetic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Arakeri, Jaywant H.

    1987-09-01

    Extensive hot-wire measurements have been made to determine the structure of the large eddy in a synthejc turbulent boundary layer on a flat-plate model. The experiments were carried out in a wind tunnel at a nominal free-stream velocity of 12 m/s. The synthetic turbulent boundary layer had a hexagonal pattern of eddies and a ratio of streamwise scale to spanwise scale of 3.2:1. The measured celerity of the large eddy was 84.2 percent of the free-stream velocity. There was some loss of coherence, but very little distortion, as the eddies moved downstream. Several mean properties of the synthetic boundary layer were found to agree quite well with the mean properties of a natural turbulent boundary layer at the same Reynolds number. The large eddy is composed of a pair of primary counter-rotating vortices about five [...] long in the streamwise direction and about one [...] apart in the spanwise direction, where [...] is the mean boundary-layer thickness. The sense of the primary pair is such as to pump fluid away from the wall in the region between the vortices. A secondary pair of counter-rotating streamwise vortices, having a sense opposite to that of the primary pair, is observed outside of and slightly downstream from the primary vortices. Both pairs of vortices extend across the full thickness of the boundary layer and are inclined at a shallow angle to the surface of the flat plate. The data show that the mean vorticity vectors are not tangential to the large-eddy vortices. In fact, the streamwise and normal vorticity components that signal the presence of the eddy are of the same order of magnitude. Definite signatures are obtained in terms of the mean skin-friction coefficient and the mean wake parameter averaged at constant phase. Velocities induced by the vortices are partly responsible for entrainment of irrotational fluid, for transport of momentum, for generation of Reynolds stresses, and for maintenance of streamwise and normal vorticity in the outer flow. A stretching mechanism is important in matching spanwise vorticity close to the wall to variations in turbulent shearing stress. Regions where the stretching term is large coincide with regions of large wall shearing stress and large turbulence production.

  3. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2009-01-01

    During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.

  4. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  5. A fluid model for Helicobacter pylori

    NASA Astrophysics Data System (ADS)

    Reigh, Shang-Yik; Lauga, Eric

    2015-11-01

    Swimming microorganisms and self-propelled nanomotors are often found in confined environments. The bacterium Helicobacter pylori survives in the acidic environment of the human stomach and is able to penetrate gel-like mucus layers and cause infections by locally changing the rheological properties of the mucus from gel-like to solution-like. In this talk we propose an analytical model for the locomotion of Helicobacter pylori as a confined spherical squirmer which generates its own confinement. We solve analytically the flow field around the swimmer, and derive the swimming speed and energetics. The role of the boundary condition in the outer wall is discussed. An extension of our model is also proposed for other biological and chemical swimmers. Newton Trust.

  6. Histochemistry and ultrastructure of the metacercarial cysts of blackspot trematodes Uvulifer ambloplitis and Neascus pyriformis.

    PubMed

    Wittrock, D D; Bruce, C S; Johnson, A D

    1991-06-01

    Cysts of Uvulifer ambloplitis from green sunfish, Lepomis cyanellus, and Neascus pyriformis from red shiners, Notropis lutrensis, were studied with light-level histochemistry and scanning and transmission electron microscopy. Cysts of both species are bilayered, consisting of an outer host capsule and an inner parasite cyst; the space between these layers is filled with a viscous material. The outer portion of the host capsule of both species is composed of fibrocytes, melanin granules, and collagen fibrils, and the inner portion of layers of flattened fibrocytes. The parasite cyst of U. ambloplitis is formed of 2 layers, an outer dense layer and an inner light layer, whereas the parasite cyst of N. pyriformis is made of 3 layers. A thin outer light-staining layer is present in addition to the 2 layers observed in U. ambloplitis. Results of histochemical staining were the same for both species. The host capsule stained positively for proteins and neutral and acid mucopolysaccharides. The viscous material was positive for neutral and acid mucopolysaccharides but not for proteins. The parasite cyst gave a strong positive reaction for neutral mucopolysaccharides but was negative for acid mucopolysaccharides and proteins.

  7. Laminate armor and related methods

    DOEpatents

    Chu, Henry S; Lillo, Thomas M; Zagula, Thomas M

    2013-02-26

    Laminate armor and methods of manufacturing laminate armor. Specifically, laminate armor plates comprising a commercially pure titanium layer and a titanium alloy layer bonded to the commercially pure titanium outer layer are disclosed, wherein an average thickness of the titanium alloy inner layer is about four times an average thickness of the commercially pure titanium outer layer. In use, the titanium alloy layer is positioned facing an area to be protected. Additionally, roll-bonding methods for manufacturing laminate armor plates are disclosed.

  8. Display of fungal hydrophobin on the Pichia pastoris cell surface and its influence on Candida antarctica lipase B

    PubMed Central

    Wang, Pan; He, Jie; Sun, Yufei; Reynolds, Matthew; Zhang, Li; Han, Shuangyan; Liang, Shuli; Sui, Haixin; Lin, Ying

    2016-01-01

    To modify the Pichia pastoris cell surface, two classes of hydrophobins, SC3 from Schizophyllum commune and HFBI from Trichoderma reesei, were separately displayed on the cell wall. There was an observable increase in the hydrophobicity of recombinant strains. Candida antarctica lipase B (CALB) was then co-displayed on the modified cells, generating strains GS115/SC3-61/CALB-51 and GS115/HFBI-61/CALB-51. Interestingly, the hydrolytic and synthetic activities of strain GS115/HFBI-61/CALB-51 increased by 37% and 109%, respectively, but decreased by 26% and 43%, respectively, in strain GS115/SC3-61/CALB-51 compared with the hydrophobin-minus recombinant strain GS115/CALB-GCW51. The amount of glycerol by-product from the transesterification reaction adsorbed on the cell surface was significantly decreased following hydrophobin modification, removing the glycerol barrier and allowing substrates to access the active sites of lipases. Electron micrographs indicated that the cell wall structures of both recombinant strains appeared altered, including changes to the inner glucan layer and outer mannan layer. These results suggest that the display of hydrophobins can change the surface structure and hydrophobic properties of P. pastoris, and affect the catalytic activities of CALB displayed on the surface of P. pastoris cells. PMID:26969039

  9. Cystic echinococcosis due to Echinococcus equinus in a horse from southern Germany.

    PubMed

    Blutke, Andreas; Hamel, Dietmar; Hüttner, Marion; Gehlen, Heidrun; Romig, Thomas; Pfister, Kurt; Hermanns, Walter

    2010-05-01

    In Europe, cystic echinococcosis is rare in horses and is mostly diagnosed at slaughter or postmortem examination. Equine cystic echinococcosis can be caused by various Echinococcus taxa, but only Echinococcus equinus (the "horse strain") is known to produce fertile cysts. In Europe, E. equinus appears to be endemic in Great Britain, Ireland, Spain, and Italy and has sporadically been reported in Belgium and Switzerland. The present report describes the first case of a molecularly confirmed E. equinus infection in a horse foaled and raised in Germany. The 19-year-old mare was presented for examination of inappetence, emaciation, and respiratory symptoms. X-ray radiographs of the thorax showed 2 well-circumscribed tumor-like masses, each approximately 10 cm in diameter in the caudal lung field. The horse was euthanized as its condition rapidly deteriorated. Necropsy revealed 2 thick-walled hydatid cysts, each 7-8 cm in diameter in the lung. The tri-layered cyst walls consisted of an outer adventitial layer, a laminated acellular intermediate layer, and an inner germinal membrane. Grossly, the cysts contained a clear, amber liquid with hydatid sand. Light microscopy of the hydatid sand revealed free protoscoleces, intact and ruptured brood capsules, calcareous corpuscles, and debris. Samples of protoscoleces underwent molecular characterization, and the diagnosis of E. equinus was confirmed by restriction fragment length polymorphism-polymerase chain reaction and sequence analysis of the complete mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit 1 gene.

  10. Blade for a gas turbine

    DOEpatents

    Liang, George

    2010-10-26

    A blade is provided for a gas turbine. The blade comprises a main body comprising a cooling fluid entrance channel; a cooling fluid collector in communication with the cooling fluid entrance channel; a plurality of side channels extending through an outer wall of the main body and communicating with the cooling fluid collector and a cooling fluid cavity; a cooling fluid exit channel communicating with the cooling fluid cavity; and a plurality of exit bores extending from the cooling fluid exit channel through the main body outer wall.

  11. Silica-forming articles having engineered surfaces to enhance resistance to creep sliding under high-temperature loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipkin, Don Mark; Johnson, Curtis Alan; Meschter, Peter Joel

    An article includes a silicon-containing region; at least one outer layer overlying a surface of the silicon-containing region; and a constituent layer on the surface of the silicon-containing region and between and contacting the silicon-containing region and the at least one outer layer, the constituent layer being formed by constituents of the silicon-containing region and being susceptible to creep within an operating environment of the article, wherein the silicon-containing region defines a plurality of channels and a plurality of ridges that interlock within the plurality of channels are formed in the silicon-containing region to physically interlock the at least onemore » outer layer with the silicon-containing region through the constituent layer.« less

  12. Palaeo‐adaptive Properties of the Xylem of Metasequoia: Mechanical/Hydraulic Compromises

    PubMed Central

    JAGELS, RICHARD; VISSCHER, GEORGE E.; LUCAS, JOHN; GOODELL, BARRY

    2003-01-01

    The xylem of Metasequoia glyptostroboides Hu et Cheng is characterized by very low density (average specific gravity = 0·27) and tracheids with relatively large dimensions (length and diameter). The microfibril angle in the S2 layer of tracheid walls is large, even in outer rings, suggesting a cambial response to compressive rather than tensile stresses. In some cases, this compressive stress is converted to irreversible strain (plastic deformation), as evidenced by cell wall corrugations. The heartwood is moderately decay resistant, helping to prevent Brazier buckling. These xylem properties are referenced to the measured bending properties of modulus of rupture and modulus of elasticity, and compared with other low‐to‐moderate density conifers. The design strategy for Metasequoia is to produce a mechanically weak but hydraulically efficient xylem that permits rapid height growth and crown development to capture and dominate a wet site environment. The adaptability of these features to a high‐latitude Eocene palaeoenvironment is discussed. PMID:12763758

  13. Calibrating pressure switch

    NASA Technical Reports Server (NTRS)

    Smith, N. J. (Inventor)

    1968-01-01

    A pressure switch assembly comprising a body portion and a switch mechanism having a contact element operable between opposite limit positions is described. A diaphragm chamber is provided in the body portion which mounts therein a system diaphragm and a calibration diaphragm which are of generally the same configuration and having outer faces conforming to the inner and outer walls of the diaphragm chamber. The space between the inner faces of the diaphragms defines a first chamber section and the space between the outer face of one of the diaphragms and the outer wall of the diaphragm chamber defines a second chamber section. The body portion includes a system pressure port communicating with one of the chamber sections and a calibration pressure port communicating with the other chamber section. An actuator connected to one of the diaphragms and the contact element of the switch operates upon pressure change in the diaphragm sections to move said contact element between limit positions.

  14. Nozzle cavity impingement/area reduction insert

    DOEpatents

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane

    2002-01-01

    A turbine vane segment is provided that has inner and outer walls spaced from one another, a vane extending between the inner and outer walls and having leading and trailing edges and pressure and suction sides, the vane including discrete leading edge, intermediate, aft and trailing edge cavities between the leading and trailing edges and extending lengthwise of the vane for flowing a cooling medium; and an insert sleeve within at least one of the cavities and spaced from interior wall surfaces thereof. The insert sleeve has an inlet for flowing the cooling medium into the insert sleeve and has impingement holes defined in first and second walls thereof that respectively face the pressure and suction sides of the vane. The impingement holes of at least one of those first and second walls are defined along substantially only a first, upstream portion thereof, whereby the cooling flow is predominantly impingement cooling along a first region of the insert wall corresponding to the first, upstream portion and the cooling flow is predominantly convective cooling along a second region corresponding to a second, downstream portion of the at least one wall of the insert sleeve.

  15. Hybrid Cryogenic Tank Construction and Method of Manufacture Therefor

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2011-01-01

    A lightweight, high-pressure cryogenic tank construction includes an inner layer comprising a matrix of fiber and resin suitable for cryogenic use. An outer layer in intimate contact with the inner layer provides support of the inner layer, and is made of resin composite. The tank is made by placing a fiber preform on a mandrel and infusing the preform with the resin. The infused preform is then encapsulated within the outer layer.

  16. Orbital exenteration after transarterial embolization in a patient with Wyburn-Mason syndrome: pathological findings.

    PubMed

    Matsuo, Toshihiko; Yanai, Hiroyuki; Sugiu, Kenji; Tominaga, Susumu; Kimata, Yoshihiro

    2008-01-01

    We present the pathological findings at orbital exenteration in a patient with Wyburn-Mason syndrome who underwent transarterial embolization. A 31-year-old man with a 10-year history of gradual exacerbation of left exophthalmos and left cheek swelling was found to have facial and orbital arteriovenous malformations on the left side. There was no vascular malformation in the brain. The feeding arteries derived from the left internal maxillary artery, facial artery, and ophthalmic artery. He underwent several courses of transarterial embolization of the feeding arteries from the left internal maxillary artery and then from the facial artery, resulting in no reduction of the arteriovenous malformation. He finally elected to undergo ophthalmic artery embolization in the expectation of a reduction and with the understanding that he would lose sight in his left eye. Two years later, he requested lid-sparing orbital exenteration and reconstruction with cutaneous flap transfer and prosthesis for cosmetic reasons. Pathologically, orbital vascular channels of varying sizes were filled with embolizing glue and had degenerating vascular wall cells surrounded by inflammatory cell infiltration. The central retinal artery in the optic nerve was also filled with the embolizing glue, and the retina lost the ganglion cell layer and inner nuclear layer but maintained the outer nuclear layer and outer segments. Marked anastomoses and hence incomplete embolization among the feeding arteries of facial and orbital vascular malformations in Wyburn-Mason syndrome do not respond well to attempts at feeding vessel embolization, which result in unsuccessful closure of the malformation.

  17. A two-layer multiple-time-scale turbulence model and grid independence study

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1989-01-01

    A two-layer multiple-time-scale turbulence model is presented. The near-wall model is based on the classical Kolmogorov-Prandtl turbulence hypothesis and the semi-empirical logarithmic law of the wall. In the two-layer model presented, the computational domain of the conservation of mass equation and the mean momentum equation penetrated up to the wall, where no slip boundary condition has been prescribed; and the near wall boundary of the turbulence equations has been located at the fully turbulent region, yet very close to the wall, where the standard wall function method has been applied. Thus, the conservation of mass constraint can be satisfied more rigorously in the two-layer model than in the standard wall function method. In most of the two-layer turbulence models, the number of grid points to be used inside the near-wall layer posed the issue of computational efficiency. The present finite element computational results showed that the grid independent solutions were obtained with as small as two grid points, i.e., one quadratic element, inside the near wall layer. Comparison of the computational results obtained by using the two-layer model and those obtained by using the wall function method is also presented.

  18. Mineralogy and chemistry of massive sulfide deposits from the Juan de Fuca Ridge.

    USGS Publications Warehouse

    Koski, R.A.; Clague, D.A.; Oudin, E.

    1984-01-01

    Two types of massive sulphide were dredged from one of the six vent sites located in the axial valley of the southern Juan de Fuca ridge. Type A samples are angular slabs of dark grey Zn-rich sulphide with interlayers and a thin, partly-oxidized crust of Fe-sulphide. These layered sulphide aggregates appear to be fragments of a sulphide wall enclosing an active hydrothermal vent. The outer sulphide wall is composed of colloform Fe sulphide and Fe-poor sphalerite deposited under low-T conditions when sea-water and hydrothermal fluid mix above the discharge point. Inside the wall the intensifying hydrothermal sytem deposits a higher-T assemblage of granular Fe-rich sphalerite, wurtzite, pyrite and minor Cu-Fe sulphide. Type B sulphide samples are sub-rounded, spongy-textured fragments composed almost entirely of dendritic aggregates of pale Fe-poor colloform sphalerite and opaline silica. This type of sulphide is deposited in settings peripheral to sites of focused discharge and in open spaces by moderate- to low-T fluid discharging at a slow but variable rate; the fluid becomes increasingly oxidizing, resulting in late-stage deposits of hematite, baryte and sulphur.-L.di H.

  19. Formation of ZrO{sub 2} in coating on Mg–3 wt.%Al–1 wt.%Zn alloy via plasma electrolytic oxidation: Phase and structure of zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kang Min; Kim, Yeon Sung; Yang, Hae Woong

    2015-01-15

    An investigation of the coating structure formed on Mg–3 wt.%Al–1 wt.%Zn alloy sample subjected to plasma electrolytic oxidation was examined by field-emission transmission electron microscopy. The plasma electrolytic oxidation process was conducted in a phosphoric acid electrolyte containing K{sub 2}ZrF{sub 6} for 600 s. Microstructural observations showed that the coating consisting of MgO, MgF{sub 2}, and ZrO{sub 2} phases was divided into three distinctive parts, the barrier, intermediate, and outer layers. Nanocrystalline MgO and MgF{sub 2} compounds were observed mainly in the barrier layer of ~ 1 μm thick near to the substrate. From the intermediate to outer layers, variousmore » ZrO{sub 2} polymorphs appeared due to the effects of the plasma arcing temperature on the phase transition of ZrO{sub 2} compounds during the plasma electrolytic oxidation process. In the outer layer, MgO compound grew in the form of a dendrite-like structure surrounded by cubic ZrO{sub 2}. - Highlights: • The barrier layer containing MgO and MgF{sub 2} was observed near to the Mg substrate. • In the intermediate layer, m-, t-, and o-ZrO{sub 2} compounds were additionally detected. • The outer layer contained MgO with the dendrite-like structure surrounded by c-ZrO{sub 2}. • The grain sizes of compounds in oxide layer increased from barrier to outer layer.« less

  20. Glomus perpusillum, a new arbuscular mycorrhizal fungus.

    PubMed

    Błaszkowski, Janusz; Kovács, Gábor M; Balázs, Tímea

    2009-01-01

    A new arbuscular mycorrhizal fungal species of genus Glomus, G. perpusillum (Glomeromycota), forming small, hyaline spores is described and illustrated. Spores of G. perpusillum were formed in hypogeous aggregates and occasionally inside roots. They are globose to subglobose, (10-)24(-30) microm diam, rarely egg-shaped, oblong to irregular, 18-25 x 25-63 microm. The single spore wall of G. perpusillum consists of two permanent layers: a finely laminate, semiflexible to rigid outer layer and a flexible to semiflexible inner layer. The inner layer becomes plastic and frequently contracts in spores crushed in PVLG-based mountants and stains reddish white to grayish red in Melzer's reagent. Glomus perpusillum was associated with roots of Ammophila arenaria colonizing sand dunes of the Mediterranean Sea adjacent to Calambrone, Italy, and this is the only site of its occurrence known to date. In single-species cultures with Plantago lanceolata as host plant, G. perpusillum formed vesicular-arbuscular mycorrhiza. Phylogenetic analyses of partial SSU sequences of nrDNA placed the species in Glomus group A with no affinity to its subgroups. The sequences of G. perpusillum unambiguously separated from the sequences of described Glomus species and formed a distinct clade together with in planta arbuscular mycorrhizal fungal sequences found in alpine plants.

  1. OmpA: A Flexible Clamp for Bacterial Cell Wall Attachment.

    PubMed

    Samsudin, Firdaus; Ortiz-Suarez, Maite L; Piggot, Thomas J; Bond, Peter J; Khalid, Syma

    2016-12-06

    The envelope of Gram-negative bacteria is highly complex, containing separate outer and inner membranes and an intervening periplasmic space encompassing a peptidoglycan (PGN) cell wall. The PGN scaffold is anchored non-covalently to the outer membrane via globular OmpA-like domains of various proteins. We report atomically detailed simulations of PGN bound to OmpA in three different states, including the isolated C-terminal domain (CTD), the full-length monomer, or the complete full-length dimeric form. Comparative analysis of dynamics of OmpA CTD from different bacteria helped to identify a conserved PGN-binding mode. The dynamics of full-length OmpA, embedded within a realistic representation of the outer membrane containing full-rough (Ra) lipopolysaccharide, phospholipids, and cardiolipin, suggested how the protein may provide flexible mechanical support to the cell wall. An accurate model of the heterogeneous bacterial cell envelope should facilitate future efforts to develop antibacterial agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Multi-modality nanoparticles having optically responsive shape

    DOEpatents

    Chen, Fanqing; Bouchard, Louis-Serge

    2015-05-19

    In certain embodiments novel nanoparticles (nanowontons) are provided that are suitable for multimodal imaging and/or therapy. In one embodiment, the nanoparticles include a first biocompatible (e.g., gold) layer, an inner core layer (e.g., a non-biocompatible material), and a biocompatible (e.g., gold) layer. The first gold layer includes a concave surface that forms a first outer surface of the layered nanoparticle. The second gold layer includes a convex surface that forms a second outer surface of the layered nanoparticle. The first and second gold layers encapsulate the inner core material layer. Methods of fabricating such nanoparticles are also provided.

  3. Magnetic Compression Experiment at General Fusion with Simulation Results

    NASA Astrophysics Data System (ADS)

    Dunlea, Carl; Khalzov, Ivan; Hirose, Akira; Xiao, Chijin; Fusion Team, General

    2017-10-01

    The magnetic compression experiment at GF was a repetitive non-destructive test to study plasma physics applicable to Magnetic Target Fusion compression. A spheromak compact torus (CT) is formed with a co-axial gun into a containment region with an hour-glass shaped inner flux conserver, and an insulating outer wall. External coil currents keep the CT off the outer wall (levitation) and then rapidly compress it inwards. The optimal external coil configuration greatly improved both the levitated CT lifetime and the rate of shots with good compressional flux conservation. As confirmed by spectrometer data, the improved levitation field profile reduced plasma impurity levels by suppressing the interaction between plasma and the insulating outer wall during the formation process. We developed an energy and toroidal flux conserving finite element axisymmetric MHD code to study CT formation and compression. The Braginskii MHD equations with anisotropic heat conduction were implemented. To simulate plasma / insulating wall interaction, we couple the vacuum field solution in the insulating region to the full MHD solution in the remainder of the domain. We see good agreement between simulation and experiment results. Partly funded by NSERC and MITACS Accelerate.

  4. Localization of Cell Wall Polysaccharides in Normal and Compression Wood of Radiata Pine: Relationships with Lignification and Microfibril Orientation1

    PubMed Central

    Donaldson, Lloyd A.; Knox, J. Paul

    2012-01-01

    The distribution of noncellulosic polysaccharides in cell walls of tracheids and xylem parenchyma cells in normal and compression wood of Pinus radiata, was examined to determine the relationships with lignification and cellulose microfibril orientation. Using fluorescence microscopy combined with immunocytochemistry, monoclonal antibodies were used to detect xyloglucan (LM15), β(1,4)-galactan (LM5), heteroxylan (LM10 and LM11), and galactoglucomannan (LM21 and LM22). Lignin and crystalline cellulose were localized on the same sections used for immunocytochemistry by autofluorescence and polarized light microscopy, respectively. Changes in the distribution of noncellulosic polysaccharides between normal and compression wood were associated with changes in lignin distribution. Increased lignification of compression wood secondary walls was associated with novel deposition of β(1,4)-galactan and with reduced amounts of xylan and mannan in the outer S2 (S2L) region of tracheids. Xylan and mannan were detected in all lignified xylem cell types (tracheids, ray tracheids, and thick-walled ray parenchyma) but were not detected in unlignified cell types (thin-walled ray parenchyma and resin canal parenchyma). Mannan was absent from the highly lignified compound middle lamella, but xylan occurred throughout the cell walls of tracheids. Using colocalization measurements, we confirmed that polysaccharides containing galactose, mannose, and xylose have consistent correlations with lignification. Low or unsubstituted xylans were localized in cell wall layers characterized by transverse cellulose microfibril orientation in both normal and compression wood tracheids. Our results support the theory that the assembly of wood cell walls, including lignification and microfibril orientation, may be mediated by changes in the amount and distribution of noncellulosic polysaccharides. PMID:22147521

  5. Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes

    DOE PAGES

    Tran, Huy Nam; Blancon, Jean-Christophe Robert; Arenal, Raul; ...

    2017-05-08

    The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett.108, 117404 (2012)]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modesmore » permit to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.« less

  6. Premixing direct injector

    DOEpatents

    Johnson, Thomas Edward [Greer, SC; Stevenson, Christian Xavier [Inman, SC; York, William David [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC

    2012-04-17

    A fuel injection nozzle comprises a body member having an upstream wall opposing a downstream wall, a baffle member having an upstream surface and a downstream surface, a first chamber, a second chamber, a fuel inlet communicative with the first chamber operative to emit a first gas into the first chamber, and a plurality of mixing tubes, each of the mixing tubes having a tube inner surface, a tube outer surface, a first inlet communicative with an aperture in the upstream wall operative to receive a second gas, a second inlet communicative with the tube outer surface and the tube inner surface operative to translate the first gas into the mixing tube, a mixing portion operative to mix the first gas and the second gas, and an outlet communicative with an aperture in the downstream wall operative to emit the mixed first and second gasses.

  7. Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tran, H. N.; Blancon, J.-C.; Arenal, R.; Parret, R.; Zahab, A. A.; Ayari, A.; Vallée, F.; Del Fatti, N.; Sauvajol, J.-L.; Paillet, M.

    2017-05-01

    The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett. 108, 117404 (2012), 10.1103/PhysRevLett.108.117404]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modes permits us to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.

  8. Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, Huy Nam; Blancon, Jean-Christophe Robert; Arenal, Raul

    The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett.108, 117404 (2012)]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modesmore » permit to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.« less

  9. Direct Numerical Simulation of Flows over an NACA-0012 Airfoil at Low and Moderate Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2017-01-01

    Direct numerical simulations (DNS) of flow over an NACA-0012 airfoil are performed at a low and a moderate Reynolds numbers of Re(sub c)=50 times10(exp 3) and 1times 10(exp 6). The angles of attack are 5 and 15 degrees at the low and the moderate Reynolds number cases respectively. The three-dimensional unsteady compressible Navier-Stokes equations are solved using higher order compact schemes. The flow field in the low Reynolds number case consists of a long separation bubble near the leading-edge region and an attached boundary layer on the aft part of the airfoil. The shear layer that formed in the separated region persisted up to the end of the airfoil. The roles of the turbulent diffusion, advection, and dissipation terms in the turbulent kinetic-energy balance equation change as the boundary layer evolves over the airfoil. In the higher Reynolds number case, the leading-edge separation bubble is very small in length and in height. A fully developed turbulent boundary layer is observed in a short distance downstream of the reattachment point. The boundary layer velocity near the wall gradually decreases along the airfoil. Eventually, the boundary layer separates near the trailing edge. The Reynolds stresses peak in the outer part of the boundary layer and the maximum amplitude also gradually increases along the chord.

  10. Material with core-shell structure

    DOEpatents

    Luhrs, Claudia [Rio Rancho, NM; Richard, Monique N [Ann Arbor, MI; Dehne, Aaron [Maumee, OH; Phillips, Jonathan [Rio Rancho, NM; Stamm, Kimber L [Ann Arbor, MI; Fanson, Paul T [Brighton, MI

    2011-11-15

    Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.

  11. Automatic lumen and outer wall segmentation of the carotid artery using deformable three-dimensional models in MR angiography and vessel wall images.

    PubMed

    van 't Klooster, Ronald; de Koning, Patrick J H; Dehnavi, Reza Alizadeh; Tamsma, Jouke T; de Roos, Albert; Reiber, Johan H C; van der Geest, Rob J

    2012-01-01

    To develop and validate an automated segmentation technique for the detection of the lumen and outer wall boundaries in MR vessel wall studies of the common carotid artery. A new segmentation method was developed using a three-dimensional (3D) deformable vessel model requiring only one single user interaction by combining 3D MR angiography (MRA) and 2D vessel wall images. This vessel model is a 3D cylindrical Non-Uniform Rational B-Spline (NURBS) surface which can be deformed to fit the underlying image data. Image data of 45 subjects was used to validate the method by comparing manual and automatic segmentations. Vessel wall thickness and volume measurements obtained by both methods were compared. Substantial agreement was observed between manual and automatic segmentation; over 85% of the vessel wall contours were segmented successfully. The interclass correlation was 0.690 for the vessel wall thickness and 0.793 for the vessel wall volume. Compared with manual image analysis, the automated method demonstrated improved interobserver agreement and inter-scan reproducibility. Additionally, the proposed automated image analysis approach was substantially faster. This new automated method can reduce analysis time and enhance reproducibility of the quantification of vessel wall dimensions in clinical studies. Copyright © 2011 Wiley Periodicals, Inc.

  12. Defining the Hook Region Anatomy of the Guinea Pig Cochlea for Modeling of Inner Ear Surgery.

    PubMed

    Lo, Jonathon; Sale, Phillip; Wijewickrema, Sudanthi; Campbell, Luke; Eastwood, Hayden; O'leary, Stephen John

    2017-07-01

    The aim of this study was to describe the hook region anatomy of the guinea pig cochlea to identify the optimal surgical approach for cochlear implantation and to determine what anatomical structures are at risk. Animal studies investigating hearing loss after cochlear implantation surgery are currently constrained by the lack of a reproducible implantation model. Guinea pig cochleae were imaged using thin-sheet laser imaging microscopy. Images were stitched, reconstructed, and segmented for analysis. Insertion vectors were determined by tracing their paths to the outer wall and converting to Cartesian coordinates. Spherical surface and multiplane views were generated to analyze outer wall and radial forces of the insertion vector. Thin-sheet laser imaging microscopy enabled quantitative, whole specimen analysis of the soft and bony tissue relationships of the complex cochlear hook region in any desired plane without loss of image quality. Round window or cochleostomy approaches in the anteroinferior plane avoided direct damage to cochlear structures. Cochleostomy approach had large interindividual variability of angular depth and outer wall forces but predictable radial force. The guinea pig hook region and lower basal turn have similar structural relationships to humans. Careful cochleostomy placement is essentially for minimizing cochlear trauma and for ensuring a straight insertion vector that successfully advances around the outer wall. Experiments with guinea pigs that control for the surgical approach are likely to provide useful insights into the aetiology and the development of therapies directed at postimplantation hearing loss.

  13. Erosion resistant elbow for solids conveyance

    DOEpatents

    Everett, J.W.

    1984-10-23

    An elbow and process for fabrication for use in particulate material conveyancing comprises a curved outer pipe, a curved inner pipe having the same radius of curvature as the outer pipe, concentric with and internal to the outer pipe, comprising an outer layer comprised of a first material and an inner layer comprised of a second material wherein said first material is characterized by high erosion resistance when impinged by particulate material and wherein said second material is characterized by high tensile strength and flexibility, and an inner pipe supporting means for providing support to said inner pipe, disposed between said inner pipe and said outer pipe. 4 figs.

  14. Erosion resistant elbow for solids conveyance

    DOEpatents

    Everett, James W.

    1984-10-23

    An elbow and process for fabrication for use in particulate material conveyancing comprising a curved outer pipe, a curved inner pipe having the same radius of curvature as the outer pipe, concentric with and internal to the outer pipe, comprising an outer layer comprised of a first material and an inner layer comprised of a second material wherein said first material is characterized by high erosion resistance when impinged by particulate material and wherein said second material is characterized by high tensile strength and flexibility, and an inner pipe supporting means for providing support to said inner pipe, disposed between said inner pipe and said outer pipe.

  15. Erosion resistant elbow for solids conveyance

    DOEpatents

    Not Available

    An elvow and process for fabrication for use in particulate material conveying comprising a curved outer pipe, a curved inner pipe having the same radius of curvature as the outer pipe, concentric with and internal to the outer pipe, comprising an outer layer comprised of a first material and an inner layer comprised of a second material wherein said first material is characterized by high erosion resistance when impinged by particulate material and wherein said second material is characterized by high tensile strength and flexibility, and an inner pipe supporting means for providing support to said inner pipe, disposed between said inner pipe and said outer pipe. 4 figures.

  16. Quantification of photoreceptor layer thickness in different macular pathologies using ultrahigh-resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Drexler, Wolfgang; Hermann, Boris; Unterhuber, Angelika; Sattmann, Harald; Wirtitsch, Matthias; Stur, Michael; Scholda, Christoph; Ergun, Erdem; Anger, Elisabeth; Ko, Tony H.; Schubert, Christian; Ahnelt, Peter K.; Fujimoto, James G.; Fercher, Adolf F.

    2004-07-01

    In vivo ultrahigh resolution ophthalmic OCT has been performed in more than 300 eyes of 200 patients with several retinal pathologies, demonstrating unprecedented visualization of all major intraretinal layers, in particular the photoreceptor layer. Visualization as well as quantification of the inner and outer segment of the photoreceptor layer especially in the foveal region has been acvhieved. In normal subjects the photoreceptor layer thickness in the center of the fovea is about of 90 μm, approximately equally distributed to the inner and the outer photoreceptor segment. In the parafoveal region this thickness is reduced to ~50 μm (~30 μm for the inner and ~20 μm for the outer segment). This is in good agreement with well known increase of cone outer segments in the central foveal region. Photoreceptor layer impairment in different macular pathologies like macular hole, central serous chorioretinopathy, age related macular degeneration, foveomacular dystrophies, Stargardt dystrophy as well as retinitis pigmentosa has been investigated. Photoreceptor layer loss significantly correlated with visual acuity (R2 = 0.6, p < 0.001) and microperimetry findings for the first time in 22 eyes with Stargardt dystrophy. Visualization and quantification of photoreceptor inner and outer segment using ultrahigh resolution OCT has the potential to improve early ophthalmic diagnosis, contributes to a better understanding of pathogenesis of retinal diseases as well as might have impact in the development and monitoring of novel therapy approaches.

  17. Effect of the geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells.

    PubMed

    Sun, Lidong; Zhang, Sam; Sun, Xiaowei; He, Xiaodong

    2010-07-01

    Highly ordered TiO2 nanotube arrays are superior photoanodes for dye-sensitized solar cells (DSSCs) due to reduced intertube connections, vectorial electron transport, suppressed electron recombination, and enhanced light scattering. Performance of the cells is greatly affected by tube geometry, such as wall thickness, length, inner diameter and intertube spacing. In this paper, effect of geometry on the photovoltaic characteristics of DSSCs is reviewed. The nanotube wall has to be thick enough for a space charge layer to form for faster electron transportation and reduced recombination. When the tube wall is too thin to support the space charge layer, electron transport in the nanotubes will be hindered and reduced to that similar in a typical nanoparticle photoanode, and recombination will easily take place. Length of the nanotubes also plays a role: longer tube length is desired because of more dye loading, however, tube length longer than the electron diffusion length results in low collecting efficiency, which in turn, results in low short-circuit current density and thus low overall conversion efficiency. The tube inner diameter (pore size) affects the conversion efficiency through effective surface area, i.e., larger pore size gives rise to smaller surface area for dye adsorption, which results in low short-circuit current density under the same light soaking. Another issue that may seriously affect the conversion efficiency is whether each of the tube stands alone (free from connecting to the neighboring tubes) to facilitate infiltration of dye and fully use the outer surface area.

  18. The complex chemistry of outflow cavity walls exposed: the case of low-mass protostars

    NASA Astrophysics Data System (ADS)

    Drozdovskaya, Maria N.; Walsh, Catherine; Visser, Ruud; Harsono, Daniel; van Dishoeck, Ewine F.

    2015-08-01

    Complex organic molecules are ubiquitous companions of young low-mass protostars. Recent observations suggest that their emission stems, not only from the traditional hot corino, but also from offset positions. In this work, 2D physicochemical modelling of an envelope-cavity system is carried out. Wavelength-dependent radiative transfer calculations are performed and a comprehensive gas-grain chemical network is used to simulate the physical and chemical structure. The morphology of the system delineates three distinct regions: the cavity wall layer with time-dependent and species-variant enhancements; a torus rich in complex organic ices, but not reflected in gas-phase abundances and the remaining outer envelope abundant in simpler solid and gaseous molecules. Strongly irradiated regions, such as the cavity wall layer, are subject to frequent photodissociation in the solid phase. Subsequent recombination of the photoproducts leads to frequent reactive desorption, causing gas-phase enhancements of several orders of magnitude. This mechanism remains to be quantified with laboratory experiments. Direct photodesorption is found to be relatively inefficient. If radicals are not produced directly in the icy mantle, the formation of complex organics is impeded. For efficiency, a sufficient number of FUV photons needs to penetrate the envelope, and elevated cool dust temperatures need to enable grain-surface radical mobility. As a result, a high stellar luminosity and a sufficiently wide cavity favour chemical complexity. Furthermore within this paradigm, complex organics are demonstrated to have unique lifetimes and be grouped into early (formaldehyde, ketene, methanol, formic acid, methyl formate, acetic acid and glycolaldehyde) and late (acetaldehyde, dimethyl ether and ethanol) species.

  19. Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Filacchione, G; De Sanctis, M C; Capaccioni, F; Raponi, A; Tosi, F; Ciarniello, M; Cerroni, P; Piccioni, G; Capria, M T; Palomba, E; Bellucci, G; Erard, S; Bockelee-Morvan, D; Leyrat, C; Arnold, G; Barucci, M A; Fulchignoni, M; Schmitt, B; Quirico, E; Jaumann, R; Stephan, K; Longobardo, A; Mennella, V; Migliorini, A; Ammannito, E; Benkhoff, J; Bibring, J P; Blanco, A; Blecka, M I; Carlson, R; Carsenty, U; Colangeli, L; Combes, M; Combi, M; Crovisier, J; Drossart, P; Encrenaz, T; Federico, C; Fink, U; Fonti, S; Ip, W H; Irwin, P; Kuehrt, E; Langevin, Y; Magni, G; McCord, T; Moroz, L; Mottola, S; Orofino, V; Schade, U; Taylor, F; Tiphene, D; Tozzi, G P; Beck, P; Biver, N; Bonal, L; Combe, J-Ph; Despan, D; Flamini, E; Formisano, M; Fornasier, S; Frigeri, A; Grassi, D; Gudipati, M S; Kappel, D; Mancarella, F; Markus, K; Merlin, F; Orosei, R; Rinaldi, G; Cartacci, M; Cicchetti, A; Giuppi, S; Hello, Y; Henry, F; Jacquinod, S; Reess, J M; Noschese, R; Politi, R; Peter, G

    2016-01-21

    Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet's formation.

  20. EVALUATION OF THE DURABILITY OF THE STRUCTURAL CONCRETE OF REACTOR BUILDINGS AT SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, A.; Reigel, M.

    2011-02-28

    The Department of Energy (DOE) intends to close 100-150 facilities in the DOE complex using an in situ decommissioning (ISD) strategy that calls for grouting the below-grade interior volume of the structure and leaving the above-grade interior open or demolishing it and disposing of it in the slit trenches in E Area. These closures are expected to persist and remain stable for centuries, but there are neither facility-specific monitoring approaches nor studies on the rate of deterioration of the materials used in the original construction or on the ISD components added during closure (caps, sloped roofs, etc). This report willmore » focus on the evaluation of the actual aging/degradation of the materials of construction used in the ISD structures at Savannah River Site (SRS) above grade, specifically P & R reactor buildings. Concrete blocks (six 2 to 5 ton blocks) removed from the outer wall of the P Reactor Building were turned over to SRNL as the first source for concrete cores. Larger cores were received as a result of grouting activities in P and R reactor facilities. The cores were sectioned and evaluated using microscopy, x-ray diffraction (XRD), ion chromatography (IC) and thermal analysis. Scanning electron microscopy shows that the aggregate and cement phases present in the concrete are consistent with the mix design and no degradation mechanisms are evident at the aggregate-cement interfaces. Samples of the cores were digested and analyzed for chloride ingress as well as sulfate attack. The concentrations of chloride and sulfate ions did not exceed the limits of the mix design and there is no indication of any degradation due to these mechanisms. Thermal analysis on samples taken along the longitudinal axis of the cores show that there is a 1 inch carbonation layer (i.e., no portlandite) present in the interior wall of the reactor building and a negligible carbonation layer in the exterior wall. A mixed layer of carbonate and portlandite extends deeper into the interior (2-3 inches) and exterior (1-2 inches) walls. This is more extensive than measured in previous SRS structures. Once the completely carbonated layer reaches the rebar that is approximately 2-3 inches into the concrete wall, the steel is susceptible to corrosion. The growth rate of the carbonated layer was estimated from current observations and previous studies. Based on the estimated carbonation rate, the steel rebar should be protected from carbonation induced corrosion for at least another 100 years. If degradation of these structures is dominated by the carbonation mechanism, the length of time before water intrusion is expected into the process room of P-reactor is estimated to be between 425-675 years.« less

  1. SERS as analytical tool for detection of bacteria

    NASA Astrophysics Data System (ADS)

    Cialla, Dana; Rösch, Petra; Möller, Robert; Popp, Jürgen

    2007-07-01

    The detection of single bacteria should be improved by lowering the acquisition time via the application of SERS (surface enhanced Raman spectroscopy). Nano structured colloids or surfaces consisting of gold or silver can be used as SERS active substrates. However, for biological applications mostly gold is used as SERS active substrate since silver is toxic for bacterial cells. Furthermore, the application of gold as a SERS-active substrate allows the usage of Raman excitation wavelengths in the red part of the electromagnetic spectrum. For the SERS investigations on bacteria different colloids (purchased and self prepared, preaggregated and non-aggregated) are chosen as SERS active substrates. The application of different gold colloids under gently mixing conditions to prevent the bacterial damage allowed the recording of reproducible SERS spectra of bacteria. The SERS spectra of B. pumilus are dominated by contributions of ingredients of the outer cell wall, e.g. the peptidoglycan layer. SEM images of the coated bacteria demonstrate the incomplete adsorption most probably due to variations within the binding affinities between different outer cell components and the gold colloids.

  2. A unified EM approach to bladder wall segmentation with coupled level-set constraints

    PubMed Central

    Han, Hao; Li, Lihong; Duan, Chaijie; Zhang, Hao; Zhao, Yang; Liang, Zhengrong

    2013-01-01

    Magnetic resonance (MR) imaging-based virtual cystoscopy (VCys), as a non-invasive, safe and cost-effective technique, has shown its promising virtue for early diagnosis and recurrence management of bladder carcinoma. One primary goal of VCys is to identify bladder lesions with abnormal bladder wall thickness, and consequently a precise segmentation of the inner and outer borders of the wall is required. In this paper, we propose a unified expectation-maximization (EM) approach to the maximum-a-posteriori (MAP) solution of bladder wall segmentation, by integrating a novel adaptive Markov random field (AMRF) model and the coupled level-set (CLS) information into the prior term. The proposed approach is applied to the segmentation of T1-weighted MR images, where the wall is enhanced while the urine and surrounding soft tissues are suppressed. By introducing scale-adaptive neighborhoods as well as adaptive weights into the conventional MRF model, the AMRF model takes into account the local information more accurately. In order to mitigate the influence of image artifacts adjacent to the bladder wall and to preserve the continuity of the wall surface, we apply geometrical constraints on the wall using our previously developed CLS method. This paper not only evaluates the robustness of the presented approach against the known ground truth of simulated digital phantoms, but further compares its performance with our previous CLS approach via both volunteer and patient studies. Statistical analysis on experts’ scores of the segmented borders from both approaches demonstrates that our new scheme is more effective in extracting the bladder wall. Based on the wall thickness calibrated from the segmented single-layer borders, a three-dimensional virtual bladder model can be constructed and the wall thickness can be mapped on to the model, where the bladder lesions will be eventually detected via experts’ visualization and/or computer-aided detection. PMID:24001932

  3. Airfoil shape for a turbine nozzle

    DOEpatents

    Burdgick, Steven Sebastian; Patik, Joseph Francis; Itzel, Gary Michael

    2002-01-01

    A first-stage nozzle vane includes an airfoil having a profile according to Table I. The annulus profile of the hot gas path is defined in conjunction with the airfoil profile and the profile of the inner and outer walls by the Cartesian coordinate values given in Tables I and II, respectively. The airfoil is a three-dimensional bowed design, both in the airfoil body and in the trailing edge. The airfoil is steam and air-cooled by flowing cooling mediums through cavities extending in the vane between inner and outer walls.

  4. Ionic polymer-metal composite actuators based on triple-layered polyelectrolytes composed of individually functionalized layers.

    PubMed

    Lee, Jang-Woo; Yoo, Young-Tai; Lee, Jae Yeol

    2014-01-22

    Ionic polymer-metal composite (IPMC) actuators based on two types of triple-layered Nafion composite membranes were prepared via consecutive solution recasting and electroless plating methods. The triple-layered membranes are composed of a Nafion layer containing an amphiphilic organic molecule (10-camphorsulfonic acid; CSA) in the middle section (for fast and large ion conduction) and two Nafion/modified inorganic composite layers in the outer sections (for large accumulation/retention of mobile ions). For construction of the two types of IPMCs, sulfonated montmorillonite (MMT) and polypyrrole (PPy)-coated alumina fillers were incorporated into the outer layers. Both the triple-layered IPMCs exhibited 42% higher tip displacements at the maximum deflections with a negligible back-relaxation, 50-74% higher blocking forces, and more rapid responses under 3 V dc, compared with conventional single-layered Nafion-IPMCs. Improvements in cyclic displacement under a rectangular voltage input of 3 V at 1 Hz were also made in the triple-layered configurations. Compared with single-layered IPMCs consisting of the identical compositions with the respective outer composite layers, the bending rates and energy efficiencies of both the triple-layered IPMCs were significantly higher, although the blocking forces were a bit lower. These remarkable improvements were attributed to higher capacitances and Young's moduli as well as a more efficient transport of mobile ions and water through the middle layer (Nafion/CSA) and a larger accumulation/retention of the mobile species in the outer functionalized inorganic composite layers. Especially, the triple-layered IPMC with the PPy-modified alumina registered the best actuation performance among all the samples, including a viable actuation even at a low voltage of 1.5 V due to involving efficient redox reactions of PPy with the aid of hygroscopic alumina.

  5. Retinal single-layer analysis with optical coherence tomography shows inner retinal layer thinning in Huntington's disease as a potential biomarker.

    PubMed

    Gulmez Sevim, Duygu; Unlu, Metin; Gultekin, Murat; Karaca, Cagatay

    2018-02-12

    There have been ongoing clinical trials of therapeutic agents in Huntington's disease (HD) which requires development of reliable biomarkers of disease progression. There have been studies in the literature with conflicting results on the involvement of retina in HD, and up to date there is not a study evaluating the single retinal layers in HD. We aimed to evaluate the specific retinal changes in HD and their usability as potential disease progression markers. This cross-sectional study used spectral-domain optical coherence tomography with automatic segmentation to measure peripapillary retinal nerve fiber layer (pRNFL) thickness and the thickness and volume of retinal layers in foveal scans of 15 patients with HD and 15 age- and sex-matched controls. Genetic testing results, disease duration, HD disease burden scores and Unified HD Rating Scales motor scores were acquired for the patients. Temporal pRNFL, macular RNFL (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer and outer plexiform layer thicknesses and IPL, retinal pigment epithelium and outer macular volume were found lower in HD compared to controls, while outer nuclear layer and outer retinal layer thickness were increased (p < 0.05). We found significant correlations between inner retinal layer thicknesses, most significantly with mRNFL and GCL and disease progression markers. The outcomes of this study points out that retinal layers, most significantly mRNFL and GCL, are strongly correlated with the disease progression in HD and could serve as useful biomarkers for disease progression.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazzarella, Ricardo; Slocum, Alexander H.; Doherty, Tristan

    Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus,more » the intermediate layer can serve as a current collector for the electrochemical cell.« less

  7. Electrochemical cells and methods of manufacturing the same

    DOEpatents

    Bazzarella, Ricardo; Slocum, Alexander H; Doherty, Tristan; Cross, III, James C

    2015-11-03

    Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus, the intermediate layer can serve as a current collector for the electrochemical cell.

  8. NUCLEAR POWER PLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preece, G.E.; Bell, F.R.

    1963-06-26

    A protective arrangement is designed for shielding the environment and for preventing the leakage of radioactive gases from a ship nuclear power plant. In this arrangement, the core has inner and outer pressure vessels and a biological shielding around the outer pressure vessel. The shielding comprises a series of steel cylindrical shells immersed in water, and its inner wall may comprise part of the outer pressure vessel. (D.L.C.)

  9. Debris Impact Detection Instrument for Crewed Modules

    NASA Technical Reports Server (NTRS)

    Opiela, J.; Corsaro, R.; Giovanes, F.; Lio, J.-C.

    2012-01-01

    When micrometeoroid or debris impacts occur on a space habitat, crew members need to be quickly informed of the likely extent of damage, and be directed to the impact location for possible repairs. This is especially important because the outer walls of pressurized volumes are often not easily accessible, blocked by racks or cabinets. The goal of the Habitat Particle Impact Monitoring System (HIMS) is to develop a fully automated, end-to-end particle impact detection system for crewed space exploration modules. The HIMS uses multiple passive, thin film piezo-polymer vibration sensors to detect impacts on a surface, and computer processing of the acoustical signals to characterize the impacts. Development and demonstration of the HIMS is proceeding in concert with NASA's Habitat Demonstration Unit (HDU) Project. The HDU Project is designed to develop and test various technologies, configurations, and operational concepts for exploration habitats. This paper describes the HIMS development, initial testing, and HDU integration efforts. Initial tests of the system on the HDU were conducted at NASA s 2010 and 2011 Desert Research and Technologies Studies (Desert-RATS or D-RATS). The HDU lab module, as seen from above, has an open circular floorplan divided into eight wedge-shaped Segments. The side wall of the module -- the surface used for this technology demonstration -- is a hard fiberglass composite covered with a layer of sprayed-on foam insulation. Four sensor locations were assigned near the corners of a rectangular pattern on the wall of one segment of the HDU lab module. The flat, self-adhesive sensors were applied to the module during its initial outfitting. To study the influence of the wall s construction (thickness and materials), three sets of four sensors were installed at different layer depths: on the interior of the module s wall, on the exterior of the same wall, and on the exterior of the foam insulation. The signal produced when a vibration passes through a sensor is first sent through a pre-amplifier. The amplified signal then is sent to the data acquisition and data processing systems. The vibration data from the sensors are then processed and reduced to a form suitable for presentation to the crew.

  10. Thermal barriers for compartments

    DOEpatents

    Kreutzer, Cory J.; Lustbader, Jason A.

    2017-10-17

    An aspect of the present disclosure is a thermal barrier that includes a core layer having a first surface, a second surface, and a first edge, and a first outer layer that includes a third surface and a second edge, where the third surface substantially contacts the first surface, the core layer is configured to minimize conductive heat transfer through the barrier, and the first outer layer is configured to maximize reflection of light away from the barrier.

  11. Absorbent product and articles made therefrom

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multilayer absorbent product for use in contact with the skin to absorb fluids is described. The product has a water pervious facing layer for contacting the skin, and a first fibrous wicking layer overlaying the water pervious layer. A first container section is defined by inner and outer layers of a water pervious wicking material in between a first absorbent mass and a second container section defined by inner and outer layers of a water pervious wicking material between what is disposed a second absorbent mass, and a liquid impermeable/gas permeable layer overlaying the second fibrous wicking layer.

  12. Citizen's dosimeter

    DOEpatents

    Klemic, Gladys [Naperville, IL; Bailey, Paul [Chicago, IL; Breheny, Cecilia [Yonkers, NY

    2008-09-02

    The present invention relates to a citizen's dosimeter. More specifically, the invention relates to a small, portable, personal dosimetry device designed to be used in the wake of a event involving a Radiological Dispersal Device (RDD), Improvised Nuclear Device (IND), or other event resulting in the contamination of large area with radioactive material or where on site personal dosimetry is required. The card sized dosimeter generally comprises: a lower card layer, the lower card body having an inner and outer side; a upper card layer, the layer card having an inner and outer side; an optically stimulated luminescent material (OSLM), wherein the OSLM is sandwiched between the inner side of the lower card layer and the inner side of the upper card layer during dosimeter radiation recording, a shutter means for exposing at least one side of the OSLM for dosimeter readout; and an energy compensation filter attached to the outer sides of the lower and upper card layers.

  13. 7. DETAIL VIEW, LOOKING SOUTHWEST OF MASONRY PIER OUTER END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL VIEW, LOOKING SOUTHWEST OF MASONRY PIER OUTER END AT HEADGATES, WITH WEST INTAKE CHANNEL WALL BEYOND - Dundee Canal, Headgates, Guardlock & Uppermost Section, 250 feet northeast of Randolph Avenue, opposite & in line with East Clifton Avenue, Clifton, Passaic County, NJ

  14. HISTOLOGY OF GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION: A Multilayer Approach.

    PubMed

    Li, Miaoling; Huisingh, Carrie; Messinger, Jeffrey; Dolz-Marco, Rosa; Ferrara, Daniela; Freund, K Bailey; Curcio, Christine A

    2018-05-03

    To systematically characterize histologic features of multiple chorioretinal layers in eyes with geographic atrophy, or complete retinal pigment epithelium (RPE) and outer retinal atrophy, secondary to age-related macular degeneration, including Henle fiber layer and outer nuclear layer; and to compare these changes to those in the underlying RPE-Bruch membrane-choriocapillaris complex and associated extracellular deposits. Geographic atrophy was delimited by the external limiting membrane (ELM) descent towards Bruch membrane. In 13 eyes, histologic phenotypes and/or thicknesses of Henle fiber layer, outer nuclear layer, underlying supporting tissues, and extracellular deposits at four defined locations on the non-atrophic and atrophic sides of the ELM descent were assessed and compared across other tissue layers, with generalized estimating equations and logit models. On the non-atrophic side of the ELM descent, distinct Henle fiber layer and outer nuclear layer became dyslaminated, cone photoreceptor inner segment myoids shortened, photoreceptor nuclei and mitochondria translocated inward, and RPE was dysmorphic. On the atrophic side of the ELM descent, all measures of photoreceptor health declined to zero. Henle fiber layer/outer nuclear layer thickness halved, and only Müller cells remained, in the absence of photoreceptors. Sub-RPE deposits remained, Bruch membrane thinned, and choriocapillaris density decreased. The ELM descent sharply delimits an area of marked gliosis and near-total photoreceptor depletion clinically defined as Geographic atrophy (or outer retinal atrophy), indicating severe and potentially irreversible tissue damage. Degeneration of supporting tissues across this boundary is gradual, consistent with steady age-related change and suggesting that RPE and Müller cells subsequently respond to a threshold of stress. Novel clinical trial endpoints should be sought at age-related macular degeneration stages before intense gliosis and thick deposits impede therapeutic intervention.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  15. STRUCTURAL ASSESSMENT OF HYPERAUTOFLUORESCENT RING IN PATIENTS WITH RETINITIS PIGMENTOSA

    PubMed Central

    LIMA, LUIZ H.; CELLA, WENER; GREENSTEIN, VIVIENNE C.; WANG, NAN-KAI; BUSUIOC, MIHAI; THEODORE SMITH, R.; YANNUZZI, LAWRENCE A.; TSANG, STEPHEN H.

    2009-01-01

    Purpose To analyze the retinal structure underlying the hyperautofluorescent ring visible on fundus autofluorescence in patients with retinitis pigmentosa. Methods Twenty-four eyes of 13 patients with retinitis pigmentosa, aged 13 years to 67 years, were studied. The integrity of the photoreceptor cilia, also known as the inner/outer segment junction of the photoreceptors, the outer nuclear layer, and retinal pigment epithelium, was evaluated outside, across, and inside the ring with spectral-domain optical coherence tomography (OCT). Results Inside the foveal area, fundus autofluorescence did not detect abnormalities. Outside the ring, fundus autofluorescence revealed hypoautofluorescence compatible with the photoreceptor/retinal pigment epithelium degeneration. Spectral-domain OCT inside the ring, in the area of normal foveal fundus autofluorescence, revealed an intact retinal structure in all eyes and total retinal thickness values that were within normal limits. Across the ring, inner/outer segment junction disruption was observed and the outer nuclear layer was decreased in thickness in a centrifugal direction in all eyes. Outside the hyperautofluorescent ring, the inner/outer segment junction and the outer nuclear layer appeared to be absent and there were signs of retinal pigment epithelium degeneration. Conclusion Disruption of the inner/outer segment junction and a decrease in outer retinal thickness were found across the central hyperautofluorescent ring seen in retinitis pigmentosa. Outer segment phagocytosis by retinal pigment epithelium is necessary for the formation of an hyperautofluorescent ring. PMID:19584660

  16. Offshore platform structure intended to be installed in arctic waters, subjected to drifting icebergs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kure, G.; Jenssen, D.N.; Naesje, K.

    1984-09-11

    An offshore platform structure, particularly intended to be installed in waters where drifting iceberg frequently appear, the platform structure being intended to be founded in a sea bed and comprises a substructure, a superstructure rigidly affixed to the substructure and extending vertically up above the sea level supporting a deck superstructure at its upper end. The horizontal cross-sectional area of the substructure is substantially greater than tath of the superstructure. The substructure rigidly supports a fender structure, the fender structure comprising an outer peripherally arranged wall and an inner cylindrical wall the inner and outer wall being rigidly interconnected bymore » means of a plurality of vertical and/or horizontal partition walls, dividing the fender structure into a plurality of cells or compartlents. The fender structure is arranged in spaced relation with respect to the superstructure.« less

  17. Layered seal for turbomachinery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarawate, Neelesh Nandkumar; Morgan, Victor John; Weber, David Wayne

    2015-11-20

    The present application provides seal assemblies for reducing leakages between adjacent components of turbomachinery. The seal assemblies may include outer shims, and at least a portion of the outer shims may be substantially impervious. At least one of the outer shims may be configured for sealing engagement with seal slots of the adjacent components. The seal assemblies may also include at least one of an inner shim and a filler layer positioned between the outer shims. The at least one inner shim may be substantially solid and the at least one filler layer may be relatively porous. The seal assembliesmore » may be sufficiently flexible to account for misalignment between the adjacent components, sufficiently stiff to meet assembly requirements, and sufficiently robust to operating meet requirements associated with turbomachinery.« less

  18. Gradient of structural traits drives hygroscopic movements of scarious bracts surrounding Helichrysum bracteatum capitulum.

    PubMed

    Borowska-Wykret, Dorota; Rypien, Aleksandra; Dulski, Mateusz; Grelowski, Michal; Wrzalik, Roman; Kwiatkowska, Dorota

    2017-06-01

    The capitulum of Helichrysum bracteatum is surrounded by scarious involucral bracts that perform hygroscopic movements leading to bract bending toward or away from the capitulum, depending on cell wall water status. The present investigation aimed at explaining the mechanism of these movements. Surface strain and bract shape changes accompanying the movements were quantified using the replica method. Dissection experiments were used to assess the contribution of different tissues in bract deformation. Cell wall structure and composition were examined with the aid of light and electron microscopy as well as confocal Raman spectroscopy. At the bract hinge (organ actuator) longitudinal strains at opposite surfaces differ profoundly. This results in changes of hinge curvature that drive passive displacement of distal bract portions. The distal portions in turn undergo nearly uniform strain on both surfaces and also minute shape changes. The hinge is built of sclerenchyma-like abaxial tissue, parenchyma and adaxial epidermis with thickened outer walls. Cell wall composition is rather uniform but tissue fraction occupied by cell walls, cell wall thickness, compactness and cellulose microfibril orientation change gradually from abaxial to adaxial hinge surface. Dissection experiments show that the presence of part of the hinge tissues is enough for movements. Differential strain at the hinge is due to adaxial-abaxial gradient in structural traits of hinge tissues and cell walls. Thus, the bract hinge of H. bracteatum is a structure comprising gradually changing tissues, from highly resisting to highly active, rather than a bi-layered structure with distinct active and resistance parts, often ascribed for hygroscopically moving organs. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  19. Developmental anatomy and immunocytochemistry reveal the neo-ontogenesis of the leaf tissues of Psidium myrtoides (Myrtaceae) towards the globoid galls of Nothotrioza myrtoidis (Triozidae).

    PubMed

    Carneiro, Renê G S; Oliveira, Denis C; Isaias, Rosy M S

    2014-12-01

    The temporal balance between hyperplasia and hypertrophy, and the new functions of different cell lineages led to cell transformations in a centrifugal gradient that determines the gall globoid shape. Plant galls develop by the redifferentiation of new cell types originated from those of the host plants, with new functional and structural designs related to the composition of cell walls and cell contents. Variations in cell wall composition have just started to be explored with the perspective of gall development, and are herein related to the histochemical gradients previously detected on Psidium myrtoides galls. Young and mature leaves of P. myrtoides and galls of Nothotrioza myrtoidis at different developmental stages were analysed using anatomical, cytometrical and immunocytochemical approaches. The gall parenchyma presents transformations in the size and shape of the cells in distinct tissue layers, and variations of pectin and protein domains in cell walls. The temporal balance between tissue hyperplasia and cell hypertrophy, and the new functions of different cell lineages led to cell transformations in a centrifugal gradient, which determines the globoid shape of the gall. The distribution of cell wall epitopes affected cell wall flexibility and rigidity, towards gall maturation. By senescence, it provided functional stability for the outer cortical parenchyma. The detection of the demethylesterified homogalacturonans (HGAs) denoted the activity of the pectin methylesterases (PMEs) during the senescent phase, and was a novel time-based detection linked to the increased rigidity of the cell walls, and to the gall opening. Current investigation firstly reports the influence of immunocytochemistry of plant cell walls over the development of leaf tissues, determining their neo-ontogenesis towards a new phenotype, i.e., the globoid gall morphotype.

  20. Peeling the onion: the outer layers of Cryptococcus neoformans.

    PubMed

    Agustinho, Daniel P; Miller, Liza C; Li, Lucy X; Doering, Tamara L

    2018-01-01

    Cryptococcus neoformans is an opportunistic fungal pathogen that is ubiquitous in the environment. It causes a deadly meningitis that is responsible for over 180,000 deaths worldwide each year, including 15% of all AIDS-related deaths. The high mortality rates for this infection, even with treatment, suggest a need for improved therapy. Unique characteristics of C. neoformans may suggest directions for drug discovery. These include features of three structures that surround the cell: the plasma membrane, the cell wall around it, and the outermost polysaccharide capsule. We review current knowledge of the fundamental biology of these fascinating structures and highlight open questions in the field, with the goal of stimulating further investigation that will advance basic knowledge and human health.

  1. Peeling the onion: the outer layers of Cryptococcus neoformans

    PubMed Central

    Agustinho, Daniel P; Miller, Liza C; Li, Lucy X; Doering, Tamara L

    2018-01-01

    Cryptococcus neoformans is an opportunistic fungal pathogen that is ubiquitous in the environment. It causes a deadly meningitis that is responsible for over 180,000 deaths worldwide each year, including 15% of all AIDS-related deaths. The high mortality rates for this infection, even with treatment, suggest a need for improved therapy. Unique characteristics of C. neoformans may suggest directions for drug discovery. These include features of three structures that surround the cell: the plasma membrane, the cell wall around it, and the outermost polysaccharide capsule. We review current knowledge of the fundamental biology of these fascinating structures and highlight open questions in the field, with the goal of stimulating further investigation that will advance basic knowledge and human health. PMID:29742198

  2. Sintered Lining for Heat-Pipe Evaporator

    NASA Technical Reports Server (NTRS)

    Ernst, D. M.; Eastman, G. Y.

    1985-01-01

    Hotspots eliminated by lining inner wall. Distribution of heat transfer liquid in heat-pipe evaporator improved by lining inner wall with layer of sintered metal. Sintered layer takes place of layer of screen wick formerly sintered or bonded to wall. Since sintered layer always full of liquid, no hotspot of type that previously arose where former screen wick did not fit properly against wall.

  3. Origin, differentiation and functional ultrastructure of egg envelopes in the cestode Echinococcus multilocularis Leuckart, 1863 (Cyclophyllidea: Taeniidae).

    PubMed

    Świderski, Zdzisław; Miquel, Jordi; Azzouz-Maache, Samira; Pétavy, Anne-Françoise

    2017-07-01

    The origin, differentiation and functional ultrastructure of oncospheral or egg envelopes in Echinococcus multilocularis Leuckart, 1863 were studied by transmission electron microscopy (TEM) and cytochemistry. The purpose of our study is to describe the formation of the four primary embryonic envelopes, namely vitelline capsule, outer envelope, inner envelope and oncospheral membrane, and their transformation into the oncospheral or egg envelopes surrounding the mature hexacanth. This transformation takes place in the preoncospheral phase of embryonic development. The vitelline capsule and oncospheral membrane are thin membranes, while the outer and inner envelopes are thick cytoplasmic layers formed by two specific types of blastomeres: the outer envelope by cytoplasmic fusion of two macromeres and the inner envelope by cytoplasmic fusion of three mesomeres. Both outer and inner envelopes are therefore cellular in origin and syncytial in nature. During the advanced phase of embryonic development, the outer and inner envelopes undergo great modifications. The outer envelope remains as a metabolically active layer involved in the storage of glycogen and lipids for the final stages of egg development and survival. The inner envelope is the most important protective layer because of its thick layer of embryophoric blocks that assures oncospheral protection and survival. This embryophore is the principal layer of mature eggs, affording physical and physiological protection for the differentiated embryo or oncosphere, since the outer envelope is stripped from the egg before it is liberated. The embryophore is very thick and impermeable, consisting of polygonal blocks of an inert keratin-like protein held together by a cementing substance. The embryophore therefore assures extreme resistance of eggs, enabling them to withstand a wide range of environmental temperatures and physicochemical conditions.

  4. Large-Eddy Simulations of Fully Developed Turbulent Channel and Pipe Flows with Smooth and Rough Walls

    NASA Astrophysics Data System (ADS)

    Saito, Namiko

    Studies in turbulence often focus on two flow conditions, both of which occur frequently in real-world flows and are sought-after for their value in advancing turbulence theory. These are the high Reynolds number regime and the effect of wall surface roughness. In this dissertation, a Large-Eddy Simulation (LES) recreates both conditions over a wide range of Reynolds numbers Retau = O(102) - O(108) and accounts for roughness by locally modeling the statistical effects of near-wall anisotropic fine scales in a thin layer immediately above the rough surface. A subgrid, roughness-corrected wall model is introduced to dynamically transmit this modeled information from the wall to the outer LES, which uses a stretched-vortex subgrid-scale model operating in the bulk of the flow. Of primary interest is the Reynolds number and roughness dependence of these flows in terms of first and second order statistics. The LES is first applied to a fully turbulent uniformly-smooth/rough channel flow to capture the flow dynamics over smooth, transitionally rough and fully rough regimes. Results include a Moody-like diagram for the wall averaged friction factor, believed to be the first of its kind obtained from LES. Confirmation is found for experimentally observed logarithmic behavior in the normalized stream-wise turbulent intensities. Tight logarithmic collapse, scaled on the wall friction velocity, is found for smooth-wall flows when Re tau ≥ O(106) and in fully rough cases. Since the wall model operates locally and dynamically, the framework is used to investigate non-uniform roughness distribution cases in a channel, where the flow adjustments to sudden surface changes are investigated. Recovery of mean quantities and turbulent statistics after transitions are discussed qualitatively and quantitatively at various roughness and Reynolds number levels. The internal boundary layer, which is defined as the border between the flow affected by the new surface condition and the unaffected part, is computed, and a collapse of the profiles on a length scale containing the logarithm of friction Reynolds number is presented. Finally, we turn to the possibility of expanding the present framework to accommodate more general geometries. As a first step, the whole LES framework is modified for use in the curvilinear geometry of a fully-developed turbulent pipe flow, with implementation carried out in a spectral element solver capable of handling complex wall profiles. The friction factors have shown favorable agreement with the superpipe data, and the LES estimates of the Karman constant and additive constant of the log-law closely match values obtained from experiment.

  5. Laser pumping of thyristors for fast high current rise-times

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.

    2013-06-11

    An optically triggered semiconductor switch includes an anode metallization layer; a cathode metallization layer; a semiconductor between the anode metallization layer and the cathode metallization layer and a photon source. The semiconductor includes at least four layers of alternating doping in the form P-N-P-N, in which an outer layer adjacent to the anode metallization layer forms an anode and an outer layer adjacent the cathode metallization layer forms a cathode and in which the anode metallization layer has a window pattern of optically transparent material exposing the anode layer to light. The photon source emits light having a wavelength, with the light from the photon source being configured to match the window pattern of the anode metallization layer.

  6. Development of sputtered techniques for thrust chambers

    NASA Technical Reports Server (NTRS)

    Mullaly, J. R.; Hecht, R. J.; Schmid, T. E.; Torrey, C. T.

    1975-01-01

    Techniques and materials were developed and evaluated for the fabrication and coating of advanced, long life, regeneratively cooled thrust chambers. Materials were analyzed as fillers for sputter application of OFHC copper as a closeout layer to channeled inner structures; of the materials evaluated, aluminum was found to provide the highest bond strength and to be the most desirable for chamber fabrication. The structures and properties were investigated of thick sputtered OFHC copper, 0.15 Zr-Cu, Al2O3,-Cu, and SiC-Cu. Layered structures of OFHC copper and 0.15 Zr-Cu were investigated as means of improving chamber inner wall fatigue life. The evaluation of sputtered Ti-5Al-2.5Sn, NASA IIb-11, aluminum and Al2O3-Al alloys as high strength chamber outer jackets was performed. Techniques for refurbishing degraded thrust chambers with OFHC copper and coating thrust chambers with protective ZrO2 and graded ZrO2-copper thermal barrier coatings were developed.

  7. En face spectral domain optical coherence tomography analysis of lamellar macular holes.

    PubMed

    Clamp, Michael F; Wilkes, Geoff; Leis, Laura S; McDonald, H Richard; Johnson, Robert N; Jumper, J Michael; Fu, Arthur D; Cunningham, Emmett T; Stewart, Paul J; Haug, Sara J; Lujan, Brandon J

    2014-07-01

    To analyze the anatomical characteristics of lamellar macular holes using cross-sectional and en face spectral domain optical coherence tomography. Forty-two lamellar macular holes were retrospectively identified for analysis. The location, cross-sectional length, and area of lamellar holes were measured using B-scans and en face imaging. The presence of photoreceptor inner segment/outer segment disruption and the presence or absence of epiretinal membrane formation were recorded. Forty-two lamellar macular holes were identified. Intraretinal splitting occurred within the outer plexiform layer in 97.6% of eyes. The area of intraretinal splitting in lamellar holes did not correlate with visual acuity. Eyes with inner segment/outer segment disruption had significantly worse mean logMAR visual acuity (0.363 ± 0.169; Snellen = 20/46) than in eyes without inner segment/outer segment disruption (0.203 ± 0.124; Snellen = 20/32) (analysis of variance, P = 0.004). Epiretinal membrane was present in 34 of 42 eyes (81.0%). En face imaging allowed for consistent detection and quantification of intraretinal splitting within the outer plexiform layer in patients with lamellar macular holes, supporting the notion that an area of anatomical weakness exists within Henle's fiber layer, presumably at the synaptic connection of these fibers within the outer plexiform layer. However, the en face area of intraretinal splitting did not correlate with visual acuity, disruption of the inner segment/outer segment junction was associated with significantly worse visual acuity in patients with lamellar macular holes.

  8. A two-layered mechanical model of the rat esophagus. Experiment and theory

    PubMed Central

    Fan, Yanhua; Gregersen, Hans; Kassab, Ghassan S

    2004-01-01

    Background The function of esophagus is to move food by peristaltic motion which is the result of the interaction of the tissue forces in the esophageal wall and the hydrodynamic forces in the food bolus. The structure of the esophagus is layered. In this paper, the esophagus is treated as a two-layered structure consisting of an inner collagen-rich submucosa layer and an outer muscle layer. We developed a model and experimental setup for determination of elastic moduli in the two layers in circumferential direction and related the measured elastic modulus of the intact esophagus to the elastic modulus computed from the elastic moduli of the two layers. Methods Inflation experiments were done at in vivo length and pressure-diameters relations were recorded for the rat esophagus. Furthermore, the zero-stress state was taken into consideration. Results The radius and the strain increased as function of pressure in the intact as well as in the individual layers of the esophagus. At pressures higher than 1.5 cmH2O the muscle layer had a larger radius and strain than the mucosa-submucosa layer. The strain for the intact esophagus and for the muscle layer was negative at low pressures indicating the presence of residual strains in the tissue. The stress-strain curve for the submucosa-mucosa layer was shifted to the left of the curves for the muscle layer and for the intact esophagus at strains higher than 0.3. The tangent modulus was highest in the submucosa-mucosa layer, indicating that the submucosa-mucosa has the highest stiffness. A good agreement was found between the measured elastic modulus of the intact esophagus and the elastic modulus computed from the elastic moduli of the two separated layers. PMID:15518591

  9. On the effect of computed tomography resolution to distinguish between abdominal aortic aneurysm wall tissue and calcification: A proof of concept.

    PubMed

    Barrett, H E; Cunnane, E M; O Brien, J M; Moloney, M A; Kavanagh, E G; Walsh, M T

    2017-10-01

    The purpose of this study is to determine the optimal target CT spatial resolution for accurately imaging abdominal aortic aneurysm (AAA) wall characteristics, distinguishing between tissue and calcification components, for an accurate assessment of rupture risk. Ruptured and non-ruptured AAA-wall samples were acquired from eight patients undergoing open surgical aneurysm repair upon institutional review board approval and informed consent was obtained from all patients. Physical measurements of AAA-wall cross-section were made using scanning electron microscopy. Samples were scanned using high resolution micro-CT scanning. A resolution range of 15.5-155μm was used to quantify the influence of decreasing resolution on wall area measurements, in terms of tissue and calcification. A statistical comparison between the reference resolution (15.5μm) and multi-detector CT resolution (744μm) was also made. Electron microscopy examination of ruptured AAAs revealed extremely thin outer tissue structure <200μm in radial distribution which is supporting the aneurysm wall along with large areas of adjacent medial calcifications far greater in area than the tissue layer. The spatial resolution of 155μm is a significant predictor of the reference AAA-wall tissue and calcification area measurements (r=0.850; p<0.001; r=0.999; p<0.001 respectively). The tissue and calcification area at 155μm is correct within 8.8%±1.86 and 26.13%±9.40 respectively with sensitivity of 87.17% when compared to the reference. The inclusion of AAA-wall measurements, through the use of high resolution-CT will elucidate the variations in AAA-wall tissue and calcification distributions across the wall which may help to leverage an improved assessment of AAA rupture risk. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Automatic plaque characterization and vessel wall segmentation in magnetic resonance images of atherosclerotic carotid arteries

    NASA Astrophysics Data System (ADS)

    Adame, Isabel M.; van der Geest, Rob J.; Wasserman, Bruce A.; Mohamed, Mona; Reiber, Johan H. C.; Lelieveldt, Boudewijn P. F.

    2004-05-01

    Composition and structure of atherosclerotic plaque is a primary focus of cardiovascular research. In vivo MRI provides a meanse to non-invasively image and assess the morphological features of athersclerotic and normal human carotid arteries. To quantitatively assess the vulnerability and the type of plaque, the contours of the lumen, outer boundary of the vessel wall and plaque components, need to be traced. To achieve this goal, we have developed an automated contou detection technique, which consists of three consecutive steps: firstly, the outer boundary of the vessel wall is detected by means of an ellipse-fitting procedure in order to obtain smoothed shapes; secondly, the lumen is segnented using fuzzy clustering. Thre region to be classified is that within the outer vessel wall boundary obtained from the previous step; finally, for plaque detection we follow the same approach as for lumen segmentation: fuzzy clustering. However, plaque is more difficult to segment, as the pixel gray value can differ considerably from one region to another, even when it corresponds to the same type of tissue. That makes further processing necessary. All these three steps might be carried out combining information from different sequences (PD-, T2-, T1-weighted images, pre- and post-contrast), to improve the contour detection. The algorithm has been validated in vivo on 58 high-resolution PD and T1 weighted MR images (19 patients). The results demonstrate excellent correspondence between automatic and manual area measurements: lumen (r=0.94), outer (r=0.92), and acceptable for fibrous cap thickness (r=0.76).

  11. A rapid and low noise switch from RANS to WMLES on curvilinear grids with compressible flow solvers

    NASA Astrophysics Data System (ADS)

    Deck, Sébastien; Weiss, Pierre-Elie; Renard, Nicolas

    2018-06-01

    A turbulent inflow for a rapid and low noise switch from RANS to Wall-Modelled LES on curvilinear grids with compressible flow solvers is presented. It can be embedded within the computational domain in practical applications with WMLES grids around three-dimensional geometries in a flexible zonal hybrid RANS/LES modelling context. It relies on a physics-motivated combination of Zonal Detached Eddy Simulation (ZDES) as the WMLES technique together with a Dynamic Forcing method processing the fluctuations caused by a Zonal Immersed Boundary Condition describing roughness elements. The performance in generating a physically-sound turbulent flow field with the proper mean skin friction and turbulent profiles after a short relaxation length is equivalent to more common inflow methods thanks to the generation of large-scale streamwise vorticity by the roughness elements. Comparisons in a low Mach-number zero-pressure-gradient flat-plate turbulent boundary layer up to Reθ = 6 100 reveal that the pressure field is dominated by the spurious noise caused by the synthetic turbulence methods (Synthetic Eddy Method and White Noise injection), contrary to the new low-noise approach which may be used to obtain the low-frequency component of wall pressure and reproduce its intermittent nature. The robustness of the method is tested in the flow around a three-element airfoil with WMLES in the upper boundary layer near the trailing edge of the main element. In spite of the very short relaxation distance allowed, self-sustainable resolved turbulence is generated in the outer layer with significantly less spurious noise than with the approach involving White Noise. The ZDES grid count for this latter test case is more than two orders of magnitude lower than the Wall-Resolved LES requirement and a unique mesh is involved, which is much simpler than some multiple-mesh strategies devised for WMLES or turbulent inflow.

  12. Small hydrogen/oxygen rocket flowfield behavior from heat flux measurements

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1993-01-01

    The mixing and heat transfer phenomena in small rocket flow fields with fuel film cooling is not well understood. An instrumented, water-cooled chamber with a gaseous hydrogen/gaseous oxygen injector was used to gather steady-state inner and outer wall temperature profiles. The chamber was tested at 414 kPa (60 psia) chamber pressure, from mixture ratios of 3.41 to 8.36. Sixty percent of the fuel was used for film cooling. These temperature profiles were used as boundary conditions in a finite element analysis program, MSC/NASTRAN, to calculate the local radial and axial heat fluxes in the chamber wall. The normal heat fluxes were then calculated and used as a diagnostic of the rocket's flow field behavior. The normal heat fluxes determined were on the order of 1.0 to 3.0 MW/meters squared (0.6 to 1.8 Btu/sec-inches squared). In the cases where mixture ratio was 5 or above, there was a sharp local heat flux maximum in the barrel section of the chamber. This local maximum seems to indicate a reduction or breakdown of the fuel film cooling layer, possibly due to increased mixing in the shear layer between the film and core flows. However, the flow was thought to be completely laminar, as the throat Reynolds numbers were below 50,000 for all the cases. The increased mixing in the shear layer in the higher mixture ratio cases appeared not to be due to the transition of the flow from laminar to turbulent, but rather due to increased reactions between the hydrogen film and oxidizer-rich core flows.

  13. Geometric Constraints and the Anatomical Interpretation of Twisted Plant Organ Phenotypes

    PubMed Central

    Weizbauer, Renate; Peters, Winfried S.; Schulz, Burkhard

    2011-01-01

    The study of plant mutants with twisting growth in axial organs, which normally grow straight in the wild-type, is expected to improve our understanding of the interplay among microtubules, cellulose biosynthesis, cell wall structure, and organ biomechanics that control organ growth and morphogenesis. However, geometric constraints based on symplastic growth and the consequences of these geometric constraints concerning interpretations of twisted-organ phenotypes are currently underestimated. Symplastic growth, a fundamental concept in plant developmental biology, is characterized by coordinated growth of adjacent cells based on their connectivity through cell walls. This growth behavior implies that in twisting axial organs, all cell files rotate in phase around the organ axis, as has been illustrated for the Arabidopsis spr1 and twd1 mutants in this work. Evaluating the geometry of such organs, we demonstrate that a radial gradient in cell elongation and changes in cellular growth anisotropy must occur in twisting organs out of geometric necessity alone. In-phase rotation of the different cell layers results in a decrease of length and angle toward organ axis from the outer cell layers inward. Additionally, the circumference of each cell layer increases in twisting organs, which requires compensation through radial expansion or an adjustment of cell number. Therefore, differential cell elongation and growth anisotropy cannot serve as arguments for or against specific hypotheses regarding the molecular cause of twisting growth. We suggest instead, that based on mathematical modeling, geometric constraints in twisting organs are indispensable for the explanation of the causal connection of molecular and biomechanical processes in twisting as well as normal organs. PMID:22645544

  14. 75 FR 18882 - Certain Footwear: Recommendations For Modifying the Harmonized Tariff Schedule of the United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... featuring outer soles of rubber or plastic to which a layer of textile material has been added. DATES: May... the HTSUS relating to certain footwear featuring outer soles of rubber or plastics to which a layer of...

  15. Comparison of secondary flows and boundary-layer accumulations in several turbine nozzles

    NASA Technical Reports Server (NTRS)

    Kofskey, Milton G; Allen, Hubert W; Herzig, Howard Z

    1953-01-01

    An investigation was made of losses and secondary flows in three different turbine nozzle configurations in annular cascade. Appreciable outer shroud loss cores (passage vortices) were found to exist at the discharge of blades which had thickened suction surface boundary layers near the outer shroud. Blade designs having thinner boundary layers did not show such outer shroud loss cores, but indicated greater inward radial flow of low momentum air, in the wake loss is to this extent an indication of the presence or absence of radial flow. The blade wake was a combination of profile loss and low momentum air from the outer shroud, and the magnitude of the wake loss is to this extent an indication of the presence or absence of radial flow. At a high Mach number, shock-boundary-layer thickening on the blade suction surfaces provided an additional radial flow path for low momentum air, which resulted in large inner shroud loss regions accompanied by large deviations from design values of discharge angle. (author)

  16. Light absorption and plasmon – exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, B I; Tyshkunova, E S; Kondorskiy, A D

    2015-12-31

    Optical properties of hybrid rod-like nanoparticles, consisting of a gold core, an intermediate passive organic layer (spacer) and outer layer of ordered molecular cyanine dye aggregates, are experimentally and theoretically investigated. It is shown that these dyes can form not only ordered J-aggregates but also H-aggregates (differing by the packing angle of dye molecules in an aggregate and having other spectral characteristics) in the outer shell of the hybrid nanostructure. Absorption spectra of synthesised three-layer nanorods are recorded, and their sizes are determined. The optical properties of the composite nanostructures under study are found to differ significantly, depending on themore » type of the molecular aggregate formed in the outer shell. The experimental data are quantitatively explained based on computer simulation using the finite-difference time-domain (FDTD) method, and characteristic features of the plasmon – exciton interaction in the systems under study are revealed. (nanophotonics)« less

  17. Ceramic gas turbine shroud

    DOEpatents

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  18. Electrochemical cells and methods of manufacturing the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazzarella, Ricardo; Slocum, Alexander H.; Doherty, Tristan

    2016-07-26

    Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus,more » the intermediate layer can serve as a current collector for the electrochemical cell.« less

  19. 16 CFR 1610.34 - Only uncovered or exposed parts of wearing apparel to be tested.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... procedures set forth in § 1610.6. (b) If the outer layer of plastic film or plastic-coated fabric of a...—Standard for the Flammability of Vinyl Plastic Film. If the outer layer adheres to all or a portion of one... characteristics of the film or coating, the uncovered or exposed layer shall be tested in accordance with part...

  20. 16 CFR 1610.34 - Only uncovered or exposed parts of wearing apparel to be tested.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... procedures set forth in § 1610.6. (b) If the outer layer of plastic film or plastic-coated fabric of a...—Standard for the Flammability of Vinyl Plastic Film. If the outer layer adheres to all or a portion of one... characteristics of the film or coating, the uncovered or exposed layer shall be tested in accordance with part...

Top