Sample records for outer-sphere surface complexes

  1. Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peak, Derek

    2008-06-09

    Sorption processes at the mineral/water interface typically control the mobility and bioaccessibility of many inorganic contaminants such as oxyanions. Selenium is an important micronutrient for human and animal health, but at elevated concentrations selenium toxicity is a concern. The objective of this study was to determine the bonding mechanisms of selenate (SeO{sub 4}{sup 2-}) and selenite (SeO{sub 3}{sup 2-}) on hydrous aluminum oxide (HAO) over a wide range of reaction pH using extended X-ray absorption fine structure (EXAFS) spectroscopy. Additionally, selenate adsorption on corundum ({alpha}-Al{sub 2}O{sub 3}) was studied to determine if adsorption mechanisms change as the aluminum oxide surfacemore » structure changes. The overall findings were that selenite forms a mixture of outer-sphere and inner-sphere bidentate-binuclear (corner-sharing) surface complexes on HAO, selenate forms primarily outer-sphere surface complexes on HAO, and on corundum selenate forms outer-sphere surface complexes at pH 3.5 but inner-sphere monodentate surface complexes at pH 4.5 and above. It is possible that the lack of inner-sphere complex formation at pH 3.5 is caused by changes in the corundum surface at low pH or secondary precipitate formation. The results are consistent with a structure-based reactivity for metal oxides, wherein hydrous metal oxides form outer-sphere complexes with sulfate and selenate, but inner-sphere monodentate surface complexes are formed between sulfate and selenate and {alpha}-Me{sub 2}O{sub 3}.« less

  2. Outer-sphere Pb(II) adsorbed at specific surface sites on single crystal α-alumina

    USGS Publications Warehouse

    Bargar, John R.; Towle, Steven N.; Brown, Gordon E.; Parks, George A.

    1996-01-01

    Solvated Pb(II) ions were found to adsorb as structurally well-defined outer-sphere complexes at specific sites on the α-Al2O3 (0001) single crystal surface, as determined by grazing-incidence X-ray absorption fine structure (GI-XAFS) measurements. The XAFS results suggest that the distance between Pb(II) adions and the alumina surface is approximately 4.2 Å. In contrast, Pb(II) adsorbs as more strongly bound inner-sphere complexes on α-Al2O3 (102). The difference in reactivities of the two alumina surfaces has implications for modeling surface complexation reactions of contaminants in natural environments, catalysis, and compositional sector zoning of oxide crystals.

  3. In situ spectroscopic evidence for neptunium(V)-carbonate inner-sphere and outer-sphere ternary surface complexes on hematite surfaces.

    PubMed

    Arai, Yuji; Moran, P B; Honeyman, B D; Davis, J A

    2007-06-01

    Np(V) surface speciation on hematite surfaces at pH 7-9 under pC2 = 10(-3.45) atm was investigated using X-ray absorption spectroscopy (XAS). In situ XAS analyses suggest that bis-carbonato inner-sphere and tris-carbonato outer-sphere ternary surface species coexist at the hematite-water interface at pH 7-8.8, and the fraction of outer-sphere species gradually increases from 27 to 54% with increasing pH from 7 to 8.8. The results suggest that the heretofore unknown Np(V)-carbonato ternary surface species may be important in predicting the fate and transport of Np(V) in the subsurface environment down gradient of high-level nuclear waste respositories.

  4. Macroscopic and microscopic investigation of Ni(II) sequestration on diatomite by batch, XPS, and EXAFS techniques.

    PubMed

    Sheng, Guodong; Yang, Shitong; Sheng, Jiang; Hu, Jun; Tan, Xiaoli; Wang, Xiangke

    2011-09-15

    Sequestration of Ni(II) on diatomite as a function of time, pH, and temperature was investigated by batch, XPS, and EXAFS techniques. The ionic strength-dependent sorption at pH < 7.0 was consistent with outer-sphere surface complexation, while the ionic strength-independent sorption at pH = 7.0-8.6 was indicative of inner-sphere surface complexation. EXAFS results indicated that the adsorbed Ni(II) consisted of ∼6 O at R(Ni-O) ≈ 2.05 Å. EXAFS analysis from the second shell suggested that three phenomena occurred at the diatomite/water interface: (1) outer-sphere and/or inner-sphere complexation; (2) dissolution of Si which is the rate limiting step during Ni uptake; and (3) extensive growth of surface (co)precipitates. Under acidic conditions, outer-sphere complexation is the main mechanism controlling Ni uptake, which is in good agreement with the macroscopic results. At contact time of 1 h or 1 day or pH = 7.0-8.0, surface coprecipitates occur concurrently with inner-sphere complexes on diatomite surface, whereas at contact time of 1 month or pH = 10.0, surface (co)precipitates dominate Ni uptake. Furthermore, surface loading increases with temperature increasing, and surface coprecipitates become the dominant mechanism at elevated temperature. The results are important to understand Ni interaction with minerals at the solid-water interface, which is helpful to evaluate the mobility of Ni(II) in the natural environment.

  5. Adsorption of Selenium and Strontium on Goethite: EXAFS Study and Surface Complexation Modeling of the Ternary Systems.

    PubMed

    Nie, Zhe; Finck, Nicolas; Heberling, Frank; Pruessmann, Tim; Liu, Chunli; Lützenkirchen, Johannes

    2017-04-04

    Knowledge of the geochemical behavior of selenium and strontium is critical for the safe disposal of radioactive wastes. Goethite, as one of the most thermodynamically stable and commonly occurring natural iron oxy-hydroxides, promisingly retains these elements. This work comprehensively studies the adsorption of Se(IV) and Sr(II) on goethite. Starting from electrokinetic measurements, the binary and ternary adsorption systems are investigated and systematically compared via batch experiments, EXAFS analysis, and CD-MUSIC modeling. Se(IV) forms bidentate inner-sphere surface complexes, while Sr(II) is assumed to form outer-sphere complexes at low and intermediate pH and inner-sphere complexes at high pH. Instead of a direct interaction between Se(IV) and Sr(II), our results indicate an electrostatically driven mutual enhancement of adsorption. Adsorption of Sr(II) is promoted by an average factor of 5 within the typical groundwater pH range from 6 to 8 for the concentration range studied here. However, the interaction between Se(IV) and Sr(II) at the surface is two-sided, Se(IV) promotes Sr(II) outer-sphere adsorption, but competes for inner-sphere adsorption sites at high pH. The complexity of surfaces is highlighted by the inability of adsorption models to predict isoelectric points without additional constraints.

  6. Geochemical conditions and the occurrence of selected trace elements in groundwater basins used for public drinking-water supply, Desert and Basin and Range hydrogeologic provinces, 2006-11: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Wright, Michael T.; Fram, Miranda S.; Belitz, Kenneth

    2015-01-01

    Concentrations of strontium, which exists primarily in a cationic form (Sr2+), were not significantly correlated with either groundwater age or pH. Strontium concentrations showed a strong positive correlation with total dissolved solids (TDS). Dissolved constituents, such as Sr, that interact with mineral surfaces through outer-sphere complexation become increasingly soluble with increasing TDS concentrations of groundwater. Boron concentrations also showed a significant positive correlation with TDS, indicating the B may interact to a large degree with mineral surfaces through outer-sphere complexation.

  7. Uranyl adsorption and surface speciation at the imogolite-water interface: Self-consistent spectroscopic and surface complexation models

    USGS Publications Warehouse

    Arai, Y.; McBeath, M.; Bargar, J.R.; Joye, J.; Davis, J.A.

    2006-01-01

    Macro- and molecular-scale knowledge of uranyl (U(VI)) partitioning reactions with soil/sediment mineral components is important in predicting U(VI) transport processes in the vadose zone and aquifers. In this study, U(VI) reactivity and surface speciation on a poorly crystalline aluminosilicate mineral, synthetic imogolite, were investigated using batch adsorption experiments, X-ray absorption spectroscopy (XAS), and surface complexation modeling. U(VI) uptake on imogolite surfaces was greatest at pH ???7-8 (I = 0.1 M NaNO3 solution, suspension density = 0.4 g/L [U(VI)]i = 0.01-30 ??M, equilibration with air). Uranyl uptake decreased with increasing sodium nitrate concentration in the range from 0.02 to 0.5 M. XAS analyses show that two U(VI) inner-sphere (bidentate mononuclear coordination on outer-wall aluminol groups) and one outer-sphere surface species are present on the imogolite surface, and the distribution of the surface species is pH dependent. At pH 8.8, bis-carbonato inner-sphere and tris-carbonato outer-sphere surface species are present. At pH 7, bis- and non-carbonato inner-sphere surface species co-exist, and the fraction of bis-carbonato species increases slightly with increasing I (0.1-0.5 M). At pH 5.3, U(VI) non-carbonato bidentate mononuclear surface species predominate (69%). A triple layer surface complexation model was developed with surface species that are consistent with the XAS analyses and macroscopic adsorption data. The proton stoichiometry of surface reactions was determined from both the pH dependence of U(VI) adsorption data in pH regions of surface species predominance and from bond-valence calculations. The bis-carbonato species required a distribution of surface charge between the surface and ?? charge planes in order to be consistent with both the spectroscopic and macroscopic adsorption data. This research indicates that U(VI)-carbonato ternary species on poorly crystalline aluminosilicate mineral surfaces may be important in controlling U(VI) mobility in low-temperature geochemical environments over a wide pH range (???5-9), even at the partial pressure of carbon dioxide of ambient air (pCO2 = 10-3.45 atm). ?? 2006 Elsevier Inc. All rights reserved.

  8. Modeling the binding of fulvic acid by goethite: the speciation of adsorbed FA molecules

    NASA Astrophysics Data System (ADS)

    Filius, Jeroen D.; Meeussen, Johannes C. L.; Lumsdon, David G.; Hiemstra, Tjisse; van Riemsdijk, Willem H.

    2003-04-01

    Under natural conditions, the adsorption of ions at the solid-water interface may be strongly influenced by the adsorption of organic matter. In this paper, we describe the adsorption of fulvic acid (FA) by metal(hydr)oxide surfaces with a heterogeneous surface complexation model, the ligand and charge distribution (LCD) model. The model is a self-consistent combination of the nonideal competitive adsorption (NICA) equation and the CD-MUSIC model. The LCD model can describe simultaneously the concentration, pH, and salt dependency of the adsorption with a minimum of only three adjustable parameters. Furthermore, the model predicts the coadsorption of protons accurately for an extended range of conditions. Surface speciation calculations show that almost all hydroxyl groups of the adsorbed FA molecules are involved in outer sphere complexation reactions. The carboxylic groups of the adsorbed FA molecule form inner and outer sphere complexes. Furthermore, part of the carboxylate groups remain noncoordinated and deprotonated.

  9. Electron-transfer reactions of cobalt(III) complexes. 1. The kinetic investigation of the reduction of various surfactant cobalt(III) complexes by iron(II) in surface active ionic liquids

    NASA Astrophysics Data System (ADS)

    Nagaraj, Karuppiah; Senthil Murugan, Krishnan; Thangamuniyandi, Pilavadi; Sakthinathan, Subramanian

    2015-05-01

    The kinetics of outer sphere electron transfer reaction of surfactant cobalt(III) complex ions, cis-[Co(en)2(C12H25NH2)2]3+ (1), cis-[Co(dp)2(C12H25NH2)2]3+ (2), cis-[Co(trien)(C12H25NH2)2]3+ (3), cis-[Co(bpy)2(C12H25NH2)2]3+ (4) and cis-[Co(phen)2(C12H25NH2)2]3+ (5) (en: ethylenediamine, dp: diaminopropane, trien : triethylenetetramine, bpy: 2,2‧-bipyridyl, phen: 1,10-phenanthroline and C12H25NH2 : dodecylamine) have been interrogated by Fe2+ ion in ionic liquid (1-butyl-3-methylimidazoliumbromide) medium at different temperatures (298, 303, 308, 313, 318 and 323 K) by the spectrophotometry method under pseudo first order conditions using an excess of the reductant. Experimentally the reactions were found to be of second order and the electron transfer as outer sphere. The second order rate constant for the electron transfer reaction in ionic liquids was found to increase with increase in the concentration of all these surfactant cobalt(III) complexes. Among these complexes (from en to phen ligand), complex containing the phenanthroline ligand rate is higher compared to other complexes. By assuming the outer sphere mechanism, the results have been explained based on the presence of aggregated structures containing cobalt(III) complexes at the surface of ionic liquids formed by the surfactant cobalt(III) complexes in the reaction medium. The activation parameters (enthalpy of activation ΔH‡ and entropy of activation ΔS‡) of the reaction have been calculated which substantiate the kinetics of the reaction.

  10. Molecular Dynamics Simulations of the Interfacial Region between Boehmite and Gibbsite Basal Surfaces and High Ionic Strength Aqueous Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Zhizhang; Ilton, Eugene S.; Prange, Micah P.

    Classical molecular dynamics (MD) simulations were used to study the interactions of up to 2 M NaCl and NaNO3 aqueous solutions with the presumed inert boehmite (010) and gibbsite (001) surfaces. The force field parameters used in these simulations were validated against density functional theory calculations of Na+ and Cl- hydrated complexes adsorbed at the boehmite (010) surface. In all the classical MD simulations and regardless of the ionic strength or the nature of the anion, Na+ ions were found to preferably form inner-sphere complexes over outer-sphere complexes at the aluminum (oxy)hydroxide surfaces, adsorbing closer to the surface than bothmore » water molecules and anions. In contrast, Cl- ions were distributed almost equally between inner- and outer-sphere positions. The resulting asymmetry in adsorption strengths offers molecular-scale evidence for the observed isoelectric point (IEP) shift to higher pH at high ionic strength for aluminum (oxy)hydroxides. As such, the MD simulations also provided clear evidence against the assumption that the basal surfaces of boehmite and gibbsite are inert to background electrolytes. Finally, the MD simulations indicated that, although the adsorption behavior of Na+ in NaNO3 and NaCl solutions was similar, the different affinities of NO3- and Cl- for the aluminum (oxy)hydroxide surfaces might have macroscopic consequences, such as difference in the sensitivity of the IEP to the electrolyte concentration.« less

  11. Red mud carbonation using carbon dioxide: Effects of carbonate and calcium ions on goethite surface properties and settling.

    PubMed

    Liang, Gaojie; Chen, Wenmi; Nguyen, Anh V; Nguyen, Tuan A H

    2018-05-01

    Carbonation using CO 2 appears as an attractive solution for disposing of red mud suspensions, an aluminum industry hazardous waste since it also offers an option for CO 2 sequestration. Here we report the novel findings that CO 3 2- together with Ca 2+ can significantly affect the surface properties and settling of goethite, a major component of red mud. Specifically, their effects on the goethite surface chemistry, colloidal interaction forces and settling in alkaline solutions are investigated. The surface potential becomes more negative by the formation of carbonate inner-sphere complexes on goethite surface. It is consistent with the strong repulsion, decreased particle size and settling velocity with increased carbonate concentrations as measured by atomic force microscopy, particle size analysis, and particle settling. Adding Ca 2+ that forms outer-sphere complexes with pre-adsorbed carbonate changes goethite surface charge negligibly. Changing repulsion to the attraction between goethite surfaces by increasing calcium dosage indicates the surface bridging, in accordance with the increased settling velocity. The adverse effect of carbonate on goethite flocculation is probably due to its specific chemisorption and competition with flocculants. By forming outer-sphere complexes together with the flocculant-calcium bridging effect, calcium ions can eliminate the negative influence of carbonate and improve the flocculation of goethite particles. These findings contribute to a better understanding of goethite particle interaction with salt ions and flocculants in controlling the particle behavior in the handling processes, including the red mud carbonation. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. On the anomalous adsorption of [Pd(edta)]2- at the water/Goethite interface: spectroscopic evidence for two types of surface complexes.

    PubMed

    Kaplun, Marina; Nordin, Agneta; Persson, Per

    2008-01-15

    The structure of palladium(II) ethylenediaminetetraacetate (edta) in aqueous solutions and its adsorption on the surface of goethite (alpha-FeOOH) were studied using extended X-ray absorption fine structure spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy. The obtained results show that in aqueous solutions, Pd-edta exists as a 1:1 complex, [Pd(edta)]2-, with edta acting as a quadridentate ligand. On the surface of goethite, [Pd(edta)]2- forms two different types of complexes over a pH range of 3.40-8.12. At pH < 5, [Pd(edta)]2- adsorbs as an outer-sphere species with possible hydrogen bonding. At higher pH values, the formation of inner-sphere complexes of the cation-type sets in after a cleavage of one glycinate ring and the formation of an (edta)Pd-O-Fe linkage.

  13. Tungsten species in natural ferromanganese oxides related to its different behavior from molybdenum in oxic ocean

    NASA Astrophysics Data System (ADS)

    Kashiwabara, Teruhiko; Takahashi, Yoshio; Marcus, Matthew A.; Uruga, Tomoya; Tanida, Hajime; Terada, Yasuko; Usui, Akira

    2013-04-01

    The tungsten (W) species in marine ferromanganese oxides were investigated by wavelength dispersive XAFS method. We found that the W species are in distorted Oh symmetry in natural ferromanganese oxides. The host phase of W is suggested to be Mn oxides by μ-XRF mapping. We also found that the W species forms inner-sphere complexes in hexavalent state and distorted Oh symmetry on synthetic ferrihydrite, goethite, hematite, and δ-MnO2. The molecular-scale information of W indicates that the negatively-charged WO42- ion mainly adsorbs on the negatively-charged Mn oxides phase in natural ferromanganese oxides due to the strong chemical interaction. In addition, preferential adsorption of lighter W isotopes is expected based on the molecular symmetry of the adsorbed species, implying the potential significance of the W isotope systems similar to Mo. Adsorption experiments of W on synthetic ferrihydrite and δ-MnO2 were also conducted. At higher equilibrium concentration, W exhibits behaviors similar to Mo on δ-MnO2 due to their formations of inner-sphere complexes. On the other hand, W shows a much larger adsorption on ferrihydrite than Mo. This is due to the formation of the inner- and outer-sphere complexes for W and Mo on ferrihydrite, respectively. Considering the lower equilibrium concentration such as in oxic seawater, however, the enrichment of W into natural ferromanganese oxides larger than Mo may be controlled by the different stabilities of their inner-sphere complexes on the Mn oxides. These two factors, (i) the stability of inner-sphere complexes on the Mn oxides and (ii) the mode of attachment on ferrihydrite (inner- or outer-sphere complex), are the causes of the different behaviors of W and Mo on the surface of the Fe/Mn (oxyhydr)oxides.

  14. Inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model

    NASA Astrophysics Data System (ADS)

    Ridley, Moira K.; Hiemstra, Tjisse; van Riemsdijk, Willem H.; Machesky, Michael L.

    2009-04-01

    Acid-base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multi-component mineral-aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise, molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488-508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca 2+ and Sr 2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 1 1 0 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Předota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Bénézeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile-water interface: linking molecular and macroscopic properties. Langmuir20, 4954-4969]. Our CD modeling results are consistent with these adsorbed configurations provided adsorbed cation charge is allowed to be distributed between the surface (0-plane) and Stern plane (1-plane). Additionally, a complete description of our titration data required inclusion of outer-sphere binding, principally for Cl - which was common to all solutions, but also for Rb + and K +. These outer-sphere species were treated as point charges positioned at the Stern layer, and hence determined the Stern layer capacitance value. The modeling results demonstrate that a multi-component suite of experimental data can be successfully rationalized within a CD and MUSIC model using a Stern-based description of the EDL. Furthermore, the fitted CD values of the various inner-sphere complexes of the mono- and divalent ions can be linked to the microscopic structure of the surface complexes and other data found by spectroscopy as well as molecular dynamics (MD). For the Na + ion, the fitted CD value points to the presence of bidenate inner-sphere complexation as suggested by a recent MD study. Moreover, its MD dominance quantitatively agrees with the CD model prediction. For Rb +, the presence of a tetradentate complex, as found by spectroscopy, agreed well with the fitted CD and its predicted presence was quantitatively in very good agreement with the amount found by spectroscopy.

  15. inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, Mora K.; Hiemstra, T; Van Riemsdijk, Willem H.

    Acid base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multicomponent mineral aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise,more » molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488 508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca2+ and Sr2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 110 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Pr edota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Be ne zeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile water interface: linking molecular and macroscopic properties. Langmuir 20, 4954 4969]. Our CD modeling results are consistent with these adsorbed configurations provided adsorbed cation charge is allowed to be distributed between the surface (0-plane) and Stern plane (1-plane). Additionally, a complete description of our titration data required inclusion of outer-sphere binding, principally for Cl which was common to all solutions, but also for Rb+ and K+. These outer-sphere species were treated as point charges positioned at the Stern layer, and hence determined the Stern layer capacitance value. The modeling results demonstrate that a multi-component suite of experimental data can be successfully rationalized within a CD and MUSIC model using a Stern-based description of the EDL. Furthermore, the fitted CD values of the various inner-sphere complexes of the mono- and divalent ions can be linked to the microscopic structure of the surface complexes and other data found by spectroscopy as well as molecular dynamics (MD). For the Na+ ion, the fitted CD value points to the presence of bidenate inner-sphere complexation as suggested by a recent MD study. Moreover, its MD dominance quantitatively agrees with the CD model prediction. For Rb+, the presence of a tetradentate complex, as found by spectroscopy, agreed well with the fitted CD and its predicted presence was quantitatively in very good agreement with the amount found by spectroscopy.« less

  16. Molecular Simulation of Cesium Adsorption at the Basal Surface of Phyllosilicate Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerisit, Sebastien N.; Okumura, Masahiko; Rosso, Kevin M.

    2016-08-16

    A better understanding of the thermodynamics of radioactive cesium uptake at the surfaces of phyllosilicate minerals is needed to understand mechanisms of its selective adsorption and help guide the development of practical and inexpensive decontamination techniques. In this work, molecular dynamics simulations were carried out to determine the thermodynamics of adsorption of Cs + at the basal surface of six 2:1 phyllosilicate minerals, namely pyrophyllite, illite, muscovite, phlogopite, celadonite, and margarite. These minerals were selected to isolate the effects of the magnitude of the permanent layer charge (≤ 2), its location (tetrahedral versus octahedral sheet), and the structure of themore » octahedral sheet (dioctahedral versus trioctahedral). Good agreement was obtained with experiment in terms of the hydration free energy of Cs + and the structure and thermodynamics of Cs + adsorption at the muscovite basal surface, for which published data were available for comparison. With the exception of pyrophyllite, which did not exhibit an inner-sphere free energy minimum, all phyllosilicate minerals showed similar behavior with respect to Cs + adsorption; notably, Cs + adsorption was predominantly inner-sphere whereas outer-sphere adsorption was very weak with the simulations predicting the formation of an extended outer-sphere complex. For a given location of the layer charge, the free energy of adsorption as an inner-sphere complex was found to vary linearly with the magnitude of the layer charge. For a given location and magnitude of the layer charge, adsorption at phlogopite (trioctahedral sheet structure) was much less favorable than at muscovite (dioctahedral sheet structure) due to the electrostatic repulsion between the adsorbed Cs + and the hydrogen atom of the hydroxyl group directly below the six-membered siloxane ring cavity. For a given magnitude of the layer charge and structure of the octahedral sheet, adsorption at celadonite (layer charge located in the octahedral sheet) was favored over muscovite (layer charge located in the tetrahedral sheet) due to the increased distance with surface potassium ions.« less

  17. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide

    USGS Publications Warehouse

    Balistrieri, L.S.; Chao, T.T.

    1990-01-01

    This work compares and models the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide). Selenium adsorption on these oxides is examined as a function of pH, particle concentration, oxidation state, and competing anion concentration in order to assess how these factors might influence the mobility of selenium in the environment. The data indicate that 1. 1) amorphous iron oxyhydroxide has a greater affinity for selenium than manganese dioxide, 2. 2) selenite [Se(IV)] adsorption increases with decreasing pH and increasing particle concentration and is stronger than selenate [Se(VI)] adsorption on both oxides, and 3. 3) selenate does not adsorb on manganese dioxide. The relative affinity of selenate and selenite for the oxides and the lack of adsorption of selenate on a strongly acidic surface suggests that selenate forms outer-sphere complexes while selenite forms inner-sphere complexes with the surfaces. The data also indicate that the competition sequence of other anions with respect to selenite adsorption at pH 7.0 is phosphate > silicate > molybdate > fluoride > sulfate on amorphous iron oxyhydroxide and molybdate ??? phosphate > silicate > fluoride > sulfate on manganese dioxide. The adsorption of phosphate, molybdate, and silicate on these oxides as a function of pH indicates that the competition sequences reflect the relative affinities of these anions for the surfaces. The Triple Layer surface complexation model is used to provide a quantitative description of these observations and to assess the importance of surface site heterogeneity on anion adsorption. The modeling results suggest that selenite forms binuclear, innersphere complexes with amorphous iron oxyhydroxide and monodentate, inner-sphere complexes with manganese dioxide and that selenate forms outer-sphere, monodentate complexes with amorphous iron oxyhydroxide. The heterogeneity of the oxide surface sites is reflected in decreasing equilibrium constants for selenite with increasing adsorption density and both experimental observations and modeling results suggest that manganese dioxide has fewer sites of higher energy for selenite adsorption than amorphous iron oxyhydroxide. Modeling and interpreting the adsorption of phosphate, molybdate, and silicate on the oxides are made difficult by the lack of constraint in choosing surface species and the fact that equally good fits can be obtained with different surface species. Finally, predictions of anion competition using the model results from single adsorbate systems are not very successful because the model does not account for surface site heterogeneity. Selenite adsorption data from a multi-adsorbate system could be fit if the equilibrium constant for selenite is decreased with increasing anion adsorption density. ?? 1990.

  18. Comparison of cation adsorption by isostructural rutile and cassiterite.

    PubMed

    Machesky, Michael; Wesolowski, David; Rosenqvist, Jörgen; Předota, Milan; Vlcek, Lukas; Ridley, Moira; Kohli, Vaibhav; Zhang, Zhan; Fenter, Paul; Cummings, Peter; Lvov, Serguei; Fedkin, Mark; Rodriguez-Santiago, Victor; Kubicki, James; Bandura, Andrei

    2011-04-19

    Macroscopic net proton charging curves for powdered rutile and cassiterite specimens with the (110) crystal face predominant, as a function of pH in RbCl and NaCl solutions, trace SrCl(2) in NaCl, and trace ZnCl(2) in NaCl and Na Triflate solutions, are compared to corresponding molecular-level information obtained from static DFT optimizations and classical MD simulations, as well as synchrotron X-ray methods. The similarities and differences in the macroscopic charging behavior of rutile and cassiterite largely reflect the cation binding modes observed at the molecular level. Cation adsorption is primarily inner-sphere on both isostructural (110) surfaces, despite predictions that outer-sphere binding should predominate on low bulk dielectric constant oxides such as cassiterite (ε(bulk) ≈ 11). Inner-sphere adsorption is also significant for Rb(+) and Na(+) on neutral surfaces, whereas Cl(-) binding is predominately outer-sphere. As negative surface charge increases, relatively more Rb(+), Na(+), and especially Sr(2+) are bound in highly desolvated tetradentate fashion on the rutile (110) surface, largely accounting for enhanced negative charge development relative to cassiterite. Charging curves in the presence of Zn(2+) are very steep but similar for both oxides, reflective of Zn(2+) hydrolysis (and accompanying proton release) during the adsorption process, and the similar binding modes for ZnOH(+) on both surfaces. These results suggest that differences in cation adsorption between high and low bulk dielectric constant oxides are more subtly related to the relative degree of cation desolvation accompanying inner-sphere binding (i.e., more tetradentate binding on rutile), rather than distinct inner- and outer-sphere adsorption modes. Cation desolvation may be favored at the rutile (110) surface in part because inner-sphere water molecules are bound further from and less tightly than on the cassiterite (110) surface. Hence, their removal upon inner-sphere cation binding is relatively more favorable. © 2011 American Chemical Society

  19. Macroscopic and molecular-scale assessment of soil lead contamination impacted by seasonal dove hunting activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Y.; Tappero, R.; Rick, A.R.

    Environmental contamination of lead (Pb) in soils and sediments poses serious threats to human and ecological health. The objective of this study is to investigate the effect of seasonal dove sports hunting activities on Pb contamination in acid forest soils. A grid sampling method was used to investigate the spatial distribution of Pb contamination in surface soils. Soils were analyzed for total metal(loid) concentration and characterized for physicochemical properties and mineralogy. Adsorption isotherm experiments were also conducted to understand the reactivity and retention capacity of Pb(II) in soils. Finally, synchrotron-based X-ray microprobe and X-ray absorption spectroscopy were used to understandmore » the chemical speciation of Pb that controls the retention/release mechanisms of Pb in soils. There was no excessive accumulation of Pb at the site. However, the concentration of Pb in surface soils was greater than the background level (<16 mg kg{sup -1}). The contamination level of Pb was as high as 67 mg kg{sup -1} near a patch of corn field where lime was frequently applied. A microfocused X-ray microprobe analysis showed the presence of Pb pellet fragments that predominantly contain oxidized Pb(II), suggesting that oxidative dissolution was occurring in soils. Dissolved Pb(II) can be readily retained in soils up to {approx}3,600 mg kg{sup -1} via inner-sphere and outer-sphere surface complexation on carbon and aluminol functional groups of soil components, suggesting that partitioning reactions control the concentration of Pb in soil solution. The fate of Pb is likely to be controlled by (1) oxidative dissolution process of Pb(0) pellets and (2) the release of outer-sphere and/or inner-sphere Pb surface complexes in humic substances and aluminosilicate/Al oxyhydroxides. Although no remedial actions are immediately required, the long-term accumulation of Pb in soils should be carefully monitored in protecting ecosystem and water quality at the dove hunting field.« less

  20. New insights into hydrosilylation of unsaturated carbon-heteroatom (C═O, C═N) bonds by rhenium(V)-dioxo complexes.

    PubMed

    Huang, Liangfang; Wang, Wenmin; Wei, Xiaoqin; Wei, Haiyan

    2015-04-23

    The hydrosilylation of unsaturated carbon-heteroatom (C═O, C═N) bonds catalyzed by high-valent rhenium(V)-dioxo complex ReO2I(PPh3)2 (1) were studied computationally to determine the underlying mechanism. Our calculations revealed that the ionic outer-sphere pathway in which the organic substrate attacks the Si center in an η(1)-silane rhenium adduct to prompt the heterolytic cleavage of the Si-H bond is the most energetically favorable process for rhenium(V)-dioxo complex 1 catalyzed hydrosilylation of imines. The activation energy of the turnover-limiting step was calculated to be 22.8 kcal/mol with phenylmethanimine. This value is energetically more favorable than the [2 + 2] addition pathway by as much as 10.0 kcal/mol. Moreover, the ionic outer-sphere pathway competes with the [2 + 2] addition mechanism for rhenium(V)-dioxo complex 1 catalyzing the hydrosilylation of carbonyl compounds. Furthermore, the electron-donating group on the organic substrates would induce a better activity favoring the ionic outer-sphere mechanistic pathway. These findings highlight the unique features of high-valent transition-metal complexes as Lewis acids in activating the Si-H bond and catalyzing the reduction reactions.

  1. Self-assembled clusters of spheres related to spherical codes.

    PubMed

    Phillips, Carolyn L; Jankowski, Eric; Marval, Michelle; Glotzer, Sharon C

    2012-10-01

    We consider the thermodynamically driven self-assembly of spheres onto the surface of a central sphere. This assembly process forms self-limiting, or terminal, anisotropic clusters (N-clusters) with well-defined structures. We use Brownian dynamics to model the assembly of N-clusters varying in size from two to twelve outer spheres and free energy calculations to predict the expected cluster sizes and shapes as a function of temperature and inner particle diameter. We show that the arrangements of outer spheres at finite temperatures are related to spherical codes, an ideal mathematical sequence of points corresponding to the densest possible sphere packings. We demonstrate that temperature and the ratio of the diameters of the inner and outer spheres dictate cluster morphology. We present a surprising result for the equilibrium structure of a 5-cluster, for which the square pyramid arrangement is preferred over a more symmetric structure. We show this result using Brownian dynamics, a Monte Carlo simulation, and a free energy approximation. Our results suggest a promising way to assemble anisotropic building blocks from constituent colloidal spheres.

  2. Structure and reactivity of oxalate surface complexes on lepidocrocite derived from infrared spectroscopy, DFT-calculations, adsorption, dissolution and photochemical experiments

    NASA Astrophysics Data System (ADS)

    Borowski, Susan C.; Biswakarma, Jagannath; Kang, Kyounglim; Schenkeveld, Walter D. C.; Hering, Janet G.; Kubicki, James D.; Kraemer, Stephan M.; Hug, Stephan J.

    2018-04-01

    Oxalate, together with other ligands, plays an important role in the dissolution of iron(hdyr)oxides and the bio-availability of iron. The formation and properties of oxalate surface complexes on lepidocrocite were studied with a combination of infrared spectroscopy (IR), density functional theory (DFT) calculations, dissolution, and photochemical experiments. IR spectra measured as a function of time, concentration, and pH (50-200 μM oxalate, pH 3-7) showed that several surface complexes are formed at different rates and in different proportions. Measured spectra could be separated into three contributions described by Gaussian line shapes, with frequencies that agreed well with the theoretical frequencies of three different surface complexes: an outer-sphere complex (OS), an inner-sphere monodentate mononuclear complex (MM), and a bidentate mononuclear complex (BM) involving one O atom from each carboxylate group. At pH 6, OS was formed at the highest rate. The contribution of BM increased with decreasing pH. In dissolution experiments, lepidocrocite was dissolved at rates proportional to the surface concentration of BM, rather than to the total adsorbed concentration. Under UV-light (365 nm), BM was photolyzed at a higher rate than MM and OS. Although the comparison of measured spectra with calculated frequencies cannot exclude additional possible structures, the combined results allowed the assignment of three main structures with different reactivities consistent with experiments. The results illustrate the importance of the surface speciation of adsorbed ligands in dissolution and photochemical reactions.

  3. Hemoglobin and Myoglobin as Reducing Agents in Biological Systems. Redox Reactions of Globins with Copper and Iron Salts and Complexes.

    PubMed

    Postnikova, G B; Shekhovtsova, E A

    2016-12-01

    In addition to reversible O2 binding, respiratory proteins of the globin family, hemoglobin (Hb) and myoglobin (Mb), participate in redox reactions with various metal complexes, including biologically significant ones, such as those of copper and iron. HbO 2 and MbO 2 are present in cells in large amounts and, as redox agents, can contribute to maintaining cell redox state and resisting oxidative stress. Divalent copper complexes with high redox potentials (E 0 , 200-600 mV) and high stability constants, such as [Cu(phen) 2 ] 2+ , [Cu(dmphen) 2 ] 2+ , and CuDTA oxidize ferrous heme proteins by the simple outer-sphere electron transfer mechanism through overlapping π-orbitals of the heme and the copper complex. Weaker oxidants, such as Cu2+, CuEDTA, CuNTA, CuCit, CuATP, and CuHis (E 0 ≤ 100-150 mV) react with HbO 2 and MbO 2 through preliminary binding to the protein with substitution of the metal ligands with protein groups and subsequent intramolecular electron transfer in the complex (the site-specific outer-sphere electron transfer mechanism). Oxidation of HbO 2 and MbO 2 by potassium ferricyanide and Fe(3) complexes with NTA, EDTA, CDTA, ATP, 2,3-DPG, citrate, and pyrophosphate PP i proceeds mainly through the simple outer-sphere electron transfer mechanism via the exposed heme edge. According to Marcus theory, the rate of this reaction correlates with the difference in redox potentials of the reagents and their self-exchange rates. For charged reagents, the reaction may be preceded by their nonspecific binding to the protein due to electrostatic interactions. The reactions of LbO 2 with carboxylate Fe complexes, unlike its reactions with ferricyanide, occur via the site-specific outer-sphere electron transfer mechanism, even though the same reagents oxidize structurally similar MbO 2 and cytochrome b 5 via the simple outer-sphere electron transfer mechanism. Of particular biological interest is HbO 2 and MbO 2 transformation into met-forms in the presence of small amounts of metal ions or complexes (catalysis), which, until recently, had been demonstrated only for copper compounds with intermediate redox potentials. The main contribution to the reaction rate comes from copper binding to the "inner" histidines, His97 (0.66 nm from the heme) that forms a hydrogen bond with the heme propionate COO - group, and the distal His64. The affinity of both histidines for copper is much lower than that of the surface histidines residues, and they are inaccessible for modification with chemical reagents. However, it was found recently that the high-potential Fe(3) complex, potassium ferricyanide (400 mV), at a 5 to 20% of molar protein concentration can be an efficient catalyst of MbO 2 oxidation into metMb. The catalytic process includes binding of ferrocyanide anion in the region of the His119 residue due to the presence there of a large positive local electrostatic potential and existence of a "pocket" formed by Lys16, Ala19, Asp20, and Arg118 that is sufficient to accommodate [Fe(CN) 6 ] 4- . Fast, proton-assisted reoxidation of the bound ferrocyanide by oxygen (which is required for completion of the catalytic cycle), unlike slow [Fe(CN) 6 ] 4- oxidation in solution, is provided by the optimal location of neighboring protonated His113 and His116, as it occurs in the enzyme active site.

  4. Terahertz plasmon and surface-plasmon modes in hollow nanospheres

    PubMed Central

    2012-01-01

    We present a theoretical study of the electronic subband structure and collective electronic excitation associated with plasmon and surface plasmon modes in metal-based hollow nanosphere. The dependence of the electronic subband energy on the sample parameters of the hollow nanosphere is examined. We find that the subband states with different quantum numbers l degenerate roughly when the outer radius of the sphere is r2 ≥ 100 nm. In this case, the energy spectrum of a sphere is mainly determined by quantum number n. Moreover, the plasmon and surface plasmon excitations can be achieved mainly via inter-subband transitions from occupied subbands to unoccupied subbands. We examine the dependence of the plasmon and surface-plasmon frequencies on the shell thickness d and the outer radius r2 of the sphere using the standard random-phase approximation. We find that when a four-state model is employed for calculations, four branches of the plasmon and surface plasmon oscillations with terahertz frequencies can be observed, respectively. PMID:23092121

  5. Thermodynamic stability in elastic systems: Hard spheres embedded in a finite spherical elastic solid.

    PubMed

    Solano-Altamirano, J M; Goldman, Saul

    2015-12-01

    We determined the total system elastic Helmholtz free energy, under the constraints of constant temperature and volume, for systems comprised of one or more perfectly bonded hard spherical inclusions (i.e. "hard spheres") embedded in a finite spherical elastic solid. Dirichlet boundary conditions were applied both at the surface(s) of the hard spheres, and at the outer surface of the elastic solid. The boundary conditions at the surface of the spheres were used to describe the rigid displacements of the spheres, relative to their initial location(s) in the unstressed initial state. These displacements, together with the initial positions, provided the final shape of the strained elastic solid. The boundary conditions at the outer surface of the elastic medium were used to ensure constancy of the system volume. We determined the strain and stress tensors numerically, using a method that combines the Neuber-Papkovich spherical harmonic decomposition, the Schwartz alternating method, and Least-squares for determining the spherical harmonic expansion coefficients. The total system elastic Helmholtz free energy was determined by numerically integrating the elastic Helmholtz free energy density over the volume of the elastic solid, either by a quadrature, or a Monte Carlo method, or both. Depending on the initial position of the hard sphere(s) (or equivalently, the shape of the un-deformed stress-free elastic solid), and the displacements, either stationary or non-stationary Helmholtz free energy minima were found. The non-stationary minima, which involved the hard spheres nearly in contact with one another, corresponded to lower Helmholtz free energies, than did the stationary minima, for which the hard spheres were further away from one another.

  6. Synthesis, crystal structures and Hirshfeld surface analyses of two new Salen type nickel/sodium heteronuclear complexes

    NASA Astrophysics Data System (ADS)

    Mahlooji, Niloofar; Behzad, Mahdi; Tarahhomi, Atekeh; Maroney, Michael; Rudbari, Hadi Amiri; Bruno, Giuseppe; Ghanbari, Bahram

    2016-04-01

    Two new heteronuclear Nickel(II)/Sodium(I) complexes of a side-off compartmental Schiff base ligand were synthesized and characterized by spectroscopic methods. Crystal structures of both of the complexes were also obtained. The Schiff base ligand was synthesized from the condensation of meso-1,2-diphenyl-1,2-ethylenediamine with 2-hydroxy-3-methoxybenzaldehyde. In both of the complexes the Ni(II) ion is coordinated to the inner N2O2 coordination sphere with square-planar geometry and the Na(I) ion is coordinated to the outer O2 O2‧ coordination sphere. In Complex (1) with general formula [Ni(L)Na(CH3OH)(ClO4)] the sodium ion is seven coordinated while in (2) with general formula [{Ni(L)Na(OH2)}2(μ-Ni(CN)4)] the sodium ion is six coordinated. Intermolecular interactions in two studied complexes were analyzed using 3D Hirshfeld surfaces and corresponding 2D fingerprint plots. This analysis showed that the H … H and C … H/H … C contacts for both structures (altogether 67.5% of total Hirshfeld surface area for (1) and 77.6% for (2)) and the O … H/H … O (24.2%) for (1) and the N … H/H … N (8.1%) contacts for (2) were the characteristic intermolecular contacts in the related crystal structures.

  7. Preliminary investigation of phosphorus adsorption onto two types of iron oxide-organic matter complexes.

    PubMed

    Yan, Jinlong; Jiang, Tao; Yao, Ying; Lu, Song; Wang, Qilei; Wei, Shiqiang

    2016-04-01

    Iron oxide (FeO) coated by natural organic matter (NOM) is ubiquitous. The associations of minerals with organic matter (OM) significantly changes their surface properties and reactivity, and thus affect the environmental fate of pollutants, including nutrients (e.g., phosphorus (P)). In this study, ferrihydrite/goethite-humic acid (FH/GE-HA) complexes were prepared and their adsorption characteristics on P at various pH and ionic strength were investigated. The results indicated that the FeO-OM complexes showed a decreased P adsorption capacity in comparison with bare FeO. The maximum adsorption capacity (Qmax) decreased in the order of FH (22.17 mg/g)>FH-HA (5.43 mg/g)>GE (4.67 mg/g)>GE-HA (3.27 mg/g). After coating with HA, the amorphous FH-HA complex still showed higher P adsorption than the crystalline GE-HA complex. The decreased P adsorption observed might be attributed to changes of the FeO surface charges caused by OM association. The dependence of P adsorption on the specific surface area of adsorbents suggests that the FeO component in the complexes is still the main contributor for the adsorption surfaces. The P adsorptions on FeO-HA complexes decreased with increasing initial pH or decreasing initial ionic strength. A strong dependence of P adsorption on ionic strength and pH may demonstrate that outer-sphere complexes between the OM component on the surface and P possibly coexist with inner-sphere surface complexes between the FeO component and P. Therefore, previous over-emphasis on the contributions of original minerals to P immobilization possibly over-estimates the P loading capacity of soils, especially in humic-rich areas. Copyright © 2015. Published by Elsevier B.V.

  8. The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques.

    PubMed

    Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong; Pan, Min

    2017-09-28

    Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R² > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II) adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X₂Cd) at low pH and inner-sphere surface complexation sites (SOCd⁺ and (SO)₂CdOH - species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water-mineral interface.

  9. Quantum mechanical calculation of aqueuous uranium complexes: carbonate, phosphate, organic and biomolecular species

    PubMed Central

    Kubicki, James D; Halada, Gary P; Jha, Prashant; Phillips, Brian L

    2009-01-01

    Background Quantum mechanical calculations were performed on a variety of uranium species representing U(VI), U(V), U(IV), U-carbonates, U-phosphates, U-oxalates, U-catecholates, U-phosphodiesters, U-phosphorylated N-acetyl-glucosamine (NAG), and U-2-Keto-3-doxyoctanoate (KDO) with explicit solvation by H2O molecules. These models represent major U species in natural waters and complexes on bacterial surfaces. The model results are compared to observed EXAFS, IR, Raman and NMR spectra. Results Agreement between experiment and theory is acceptable in most cases, and the reasons for discrepancies are discussed. Calculated Gibbs free energies are used to constrain which configurations are most likely to be stable under circumneutral pH conditions. Reduction of U(VI) to U(IV) is examined for the U-carbonate and U-catechol complexes. Conclusion Results on the potential energy differences between U(V)- and U(IV)-carbonate complexes suggest that the cause of slower disproportionation in this system is electrostatic repulsion between UO2 [CO3]35- ions that must approach one another to form U(VI) and U(IV) rather than a change in thermodynamic stability. Calculations on U-catechol species are consistent with the observation that UO22+ can oxidize catechol and form quinone-like species. In addition, outer-sphere complexation is predicted to be the most stable for U-catechol interactions based on calculated energies and comparison to 13C NMR spectra. Outer-sphere complexes (i.e., ion pairs bridged by water molecules) are predicted to be comparable in Gibbs free energy to inner-sphere complexes for a model carboxylic acid. Complexation of uranyl to phosphorus-containing groups in extracellular polymeric substances is predicted to favor phosphonate groups, such as that found in phosphorylated NAG, rather than phosphodiesters, such as those in nucleic acids. PMID:19689800

  10. Characterisation of FAP-1 expression and CD95 mediated apoptosis in the A818-6 pancreatic adenocarcinoma differentiation system.

    PubMed

    Winterhoff, Boris J N; Arlt, Alexander; Duttmann, Angelika; Ungefroren, Hendrik; Schäfer, Heiner; Kalthoff, Holger; Kruse, Marie-Luise

    2012-03-01

    The present study investigated the expression and localisation of FAP-1 (Fas associated phosphatase-1) and CD95 in a 3D differentiation model in comparison to 2D monolayers of the pancreatic adenocarcinoma cell line A818-6. Under non-adherent growth conditions, A818-6 cells differentiate into 3D highly organised polarised epithelial hollow spheres, resembling duct-like structures. A818-6 cells showed a differentiation-dependent FAP-1 localisation. Cells grown as 2D monolayers revealed FAP-1 staining in a juxtanuclear cisternal position, as well as localisation in the nucleus. After differentiation into hollow spheres, FAP-1 was relocated towards the actin cytoskeleton beneath the outer plasma membrane of polarised cells and no further nuclear localisation was observed. CD95 surface staining was found only in a subset of A818-6 monolayer cells, while differentiated hollow spheres appeared to express CD95 in all cells of a given sphere. We rarely observed co-localisation of CD95 and FAP-1 in A818-6 monolayer cells, but strong co-localisation beneath the outer plasma membrane in polarised cells. Analysis of surface expression by flow cytometry revealed that only a subset (36%) of monolayer cells showed CD95 surface expression, and after induction of hollow spheres, CD95 presentation at the outer plasma membrane was reduced to 13% of hollow spheres. Induction of apoptosis by stimulation with agonistic anti-CD95 antibodies, resulted in increased caspase activity in both, monolayer cells and hollow spheres. Knock down of FAP-1 mRNA in A818-6 monolayer cells did not alter resposiveness to CD95 agonistic antibodies. These data suggested that CD95 signal transduction was not affected by FAP-1 expression in A818-6 monolayer cells. In differentiated 3D hollow spheres, we found a polarisation-induced co-localisation of CD95 and FAP-1. A tight control of receptor surface representation and signalling induced apoptosis ensures controlled removal of individual cells instead of a "snowball effect" of apoptotic events. Copyright © 2011 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  11. Sorption properties of Th(IV) on the raw diatomite--effects of contact time, pH, ionic strength and temperature.

    PubMed

    Sheng, Guodong; Hu, Jun; Wang, Xiangke

    2008-10-01

    Diatomite has a number of unique physicochemical properties and has diversified industrial uses. Natural diatomite has been tested as a potential sorbent for the removal of Th(IV) from aqueous solutions. The results indicate that sorption of Th(IV) is strongly dependent on ionic strength at pH<3, and is independent of ionic strength at pH>3. Outer-sphere complexation or ion exchange may be the main sorption mechanism of Th(IV) to diatomite at low pH values, whereas the sorption of Th(IV) at pH>3 is mainly dominated by inner-sphere complexation or precipitation. The competition for Th(IV) between aqueous or surface adsorbed anions (e.g., herein ClO(4)(-), NO(3)(-) and Cl(-)) and surface functional groups of diatomite is important for Th(IV) sorption. The thermodynamic data (DeltaH(0), DeltaS(0), DeltaG(0)) are calculated from the temperature-dependent sorption isotherms. The results suggest that sorption process of Th(IV) on diatomite is spontaneous and endothermic.

  12. Reaction of Hydroquinone with Hematite I. Study of Adsorption by Electrochemical-Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stack, Andrew G; Eggleston, Carrick M; Engelhard, Mark H

    2004-06-15

    The reaction of hematite with quinones and the quinone moieties of larger molecules may be an important factor in limiting the rate ofreductive dissolution, especially by iron-reducing bacteria. Here, the electrochemical and physical properties of hydroquinone adsorbed on hematite surfaces at pH 2.5–3 were investigated with cyclic voltammetry (CV), electrochemical-scanning tunneling microscopy (EC-STM), and X-ray photoelectron spectroscopy (XPS). An oxidation peak for hydroquinone was observed in the CV experiments, as well as (photo)reduction of iron and decomposition of the solvent. The EC-STM results indicate that hydroquinone sometimes forms an ordered monolayer with ~1.1 H₂/nm², but can be fairly disordered (especiallymore » when viewed at larger scales). XPS results indicate that hydroquinone and benzoquinone are retained at the interface in increasing amounts as the reaction proceeds, but reduced iron is not observed. These results suggest that quinones do not adsorb by an inner-sphere complex where adsorbate–surface interactions determine the adsorbate surface structure, but rather in an outer-sphere complex where interactions among the adsorbate molecules dominate.« less

  13. Reaction of hydroquinone with hematite I. Study of asdsorption by electrochemical-scanning tunneling microscopy and X-ray photoelectron spectroscopy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stack, Andrew G; Eggleston, Carrick M; Engelhard, Mark H

    2003-12-01

    The reaction of hematite with quinones and the quinone moieties of larger molecules may be an important factor in limiting the rate of reductive dissolution, especially by iron-reducing bacteria. Here, the electrochemical and physical properties of hydroquinone adsorbed on hematite surfaces at pH 2.5-3 were investigated with cyclic voltammetry (CV), electrochemical-scanning tunneling microscopy (EC-STM), and X-ray photoelectron spectroscopy (XPS). An oxidation peak for hydroquinone was observed in the CV experiments, as well as (photo)reduction of iron and decomposition of the solvent. The EC-STM results indicate that hydroquinone sometimes forms an ordered monolayer with {approx}1.1 QH{sub 2}/nm{sup 2}, but can bemore » fairly disordered (especially when viewed at larger scales). XPS results indicate that hydroquinone and benzoquinone are retained at the interface in increasing amounts as the reaction proceeds, but reduced iron is not observed. These results suggest that quinones do not adsorb by an inner-sphere complex where adsorbate-surface interactions determine the adsorbate surface structure, but rather in an outer-sphere complex where interactions among the adsorbate molecules dominate.« less

  14. The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques

    PubMed Central

    Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong

    2017-01-01

    Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II) adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X2Cd) at low pH and inner-sphere surface complexation sites (SOCd+ and (SO)2CdOH− species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water–mineral interface. PMID:28956849

  15. NiO/NiWO4 Composite Yolk-Shell Spheres with Nanoscale NiO Outer Layer for Ultrasensitive and Selective Detection of Subppm-level p-Xylene.

    PubMed

    Kim, Tae-Hyung; Kwak, Chang-Hoon; Lee, Jong-Heun

    2017-09-20

    NiO/NiWO 4 composite yolk-shell spheres with a nanoscale NiO outer layer were prepared using one-pot ultrasonic spray pyrolysis and their gas sensing characteristics were studied. The NiO/NiWO 4 yolk-shell spheres exhibited an extremely high response to 5 ppm p-xylene (ratio of resistance to gas and air = 343.5) and negligible cross-responses to 5 ppm ethanol, ammonia, carbon monoxide, hydrogen, and benzene, whereas pure NiO yolk-shell spheres showed very low responses and selectivity to all the analyte gases. The detection limit for p-xylene was as low as 22.7 ppb. This ultrasensitive and selective detection of p-xylene is attributed to a synergistic catalytic effect between NiO and NiWO 4 , high gas accessibility with large specific surface area, and increased chemiresistive variation due to the formation of a heterojunction. The NiO/NiWO 4 yolk-shell spheres with a thin NiO outer layer can be used to detect subppm-level p-xylene in a highly sensitive and selective manner for monitoring indoor air pollution.

  16. Surface complexation of carboxylate adheres Cryptosporidium parvum öocysts to the hematite-water interface

    USGS Publications Warehouse

    Gao, X.; Metge, D.W.; Ray, C.; Harvey, R.W.; Chorover, J.

    2009-01-01

    The interaction of viable Cryptosporidium parvum öocysts at the hematite (α-Fe2O3)−water interface was examined over a wide range in solution chemistry using in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Spectra for hematite-sorbed öocysts showed distinct changes in carboxylate group vibrations relative to spectra obtained in the absence of hematite, indicative of direct chemical bonding between carboxylate groups and Fe metal centers of the hematite surface. The data also indicate that complexation modes vary with solution chemistry. In NaCl solution, öocysts are bound to hematite via monodentate and binuclear bidentate complexes. The former predominates at low pH, whereas the latter becomes increasingly prevalent with increasing pH. In a CaCl2 solution, only binuclear bidentate complexes are observed. When solution pH is above the point of zero net proton charge (PZNPC) of hematite, öocyst surface carboxylate groups are bound to the mineral surface via outer-sphere complexes in both electrolyte solutions.

  17. Comparative adsorption of Eu(III) and Am(III) on TPD.

    PubMed

    Fan, Q H; Zhao, X L; Ma, X X; Yang, Y B; Wu, W S; Zheng, G D; Wang, D L

    2015-09-01

    Comparative adsorption behaviors of Eu(III) and Am(III) on thorium phosphate diphosphate (TPD), i.e., Th4(PO4)4P2O7, have been studied using a batch approach and surface complexation model (SCM) in this study. The results showed that Eu(III) and Am(III) adsorption increased to a large extent with the increase in TPD dose. Strong pH-dependence was observed in both Eu(III) and Am(III) adsorption processes, suggesting that inner-sphere complexes (ISCs) were possibly responsible for the adsorption of Eu(III) and Am(III). Meanwhile, the adsorption of Eu(III) and Am(III) decreased to a different extent with the increase in ion strength, which was possibly related to outer-sphere complexes and/or ion exchange. In the presence of fulvic acid (FA), the adsorption of Eu(III) and Am(III) showed high enhancement mainly due to the ternary surface complexes of TPD-FA-Eu(3+) and TPD-FA-Am(3+). The SCM showed that one ion exchange (≡S3Am/Eu) and two ISCs (≡(XO)2Am/EuNO3 and ≡(YO)2Am/EuNO3) seemed more reasonable to quantitatively describe the adsorption edges of both Eu(III) and Am(III). Our findings obviously showed that Eu(III) could be a good analogue to study actinide behaviors in practical terms. However, it should be kept in mind that there are still obvious differences between the characteristics of Eu(III) and Am(III) in some special cases, for instance, the complex ability with organic matter and adsorption affinity to a solid surface.

  18. Kinetics and mechanism of electron transfer reaction of single and double chain surfactant cobalt(III) complex by Fe2+ ions in liposome (dipalmitoylphosphotidylcholine) vesicles: effects of phase transition

    NASA Astrophysics Data System (ADS)

    Nagaraj, Karuppiah; Senthil Murugan, Krishnan; Thangamuniyandi, Pilavadi

    2015-05-01

    In this study, we report the kinetics of reduction reactions of single and double chain surfactant cobalt(III) complexes of octahedral geometry, cis-[Co(en)2(4AMP)(DA)](ClO4)3 and cis-[Co(dmp)2(C12H25NH2)2](ClO4)3 (en = ethylenediamine, dmp = 1,3-diaminopropane, 4AMP = 4-aminopropane, C12H25NH2 = dodecylamine) by Fe2+ ion in dipalmitoylphosphotidylcholine (DPPC) vesicles at different temperatures under pseudo first-order conditions. The kinetics of these reactions is followed by spectrophotometry method. The reactions are found to be second order and the electron transfer is postulated as outer sphere. The remarkable findings in the present investigation are that, below the phase transition temperature of DPPC, the rate decreases with an increase in the concentration of DPPC, while above the phase transition temperature the rate increases with an increase in the concentration of DPPC. The main driving force for this phenomenon is considered to be the intervesicular hydrophobic interaction between vesicles surface and hydrophobic part of the surfactant complexes. Besides, comparing the values of rate constants of these outer-sphere electron transfer reactions in the absence and in the presence of DPPC, the rate constant values in the presence of DPPC are always found to be greater than in the absence of DPPC. This is ascribed to the double hydrophobic fatty acid chain in the DPPC that gives the molecule an overall tubular shape due to the intervesicular hydrophobic interaction between vesicles surface and hydrophobic part of the surfactant complexes more suitable for vesicle aggregation which facilitates lower activation energy, and consequently higher rate is observed in the presence of DPPC. The activation parameters (ΔS# and ΔH#) of the reactions at different temperatures have been calculated which corroborate the kinetics of the reaction.

  19. Simulations of the kinematic dynamo onset of spherical Couette flows with smooth and rough boundaries.

    PubMed

    Finke, K; Tilgner, A

    2012-07-01

    We study numerically the dynamo transition of an incompressible electrically conducting fluid filling the gap between two concentric spheres. In a first series of simulations, the fluid is driven by the rotation of a smooth inner sphere through no-slip boundary conditions, whereas the outer sphere is stationary. In a second series a volume force intended to simulate a rough surface drives the fluid next to the inner sphere within a layer of thickness one-tenth of the gap width. We investigate the effect of the boundary layer thickness on the dynamo threshold in the turbulent regime. The simulations show that the boundary forcing simulating the rough surface lowers the necessary rotation rate, which may help to improve spherical dynamo experiments.

  20. Mutual effects of copper and phosphate on their interaction with γ-Al2O3: combined batch macroscopic experiments with DFT calculations.

    PubMed

    Ren, Xuemei; Yang, Shitong; Tan, Xiaoli; Chen, Changlun; Sheng, Guodong; Wang, Xiangke

    2012-10-30

    The mutual effects of Cu(II) and phosphate on their interaction with γ-Al(2)O(3) are investigated by using batch experiments combined with density functional theory (DFT) calculations. The results of batch experiments show that coexisting phosphate promotes the retention of Cu(II) on γ-Al(2)O(3), whereas phosphate retention is not affected by coexisting Cu(II) at low initial phosphate concentrations (≤ 3.6 mg P/L). Cu-phosphate aqueous complexes control Cu(II) retention through the formation of type B ternary surface complexes (where phosphate bridges γ-Al(2)O(3) and Cu(II)) at pH 5.5. This deduction is further supported by the results of DFT calculations. More specifically, the DFT calculation results indicate that the type B ternary surface complexes prefer to form outer-sphere or monodentate inner-sphere binding mode under our experimental conditions. The enhancement of phosphate retention on γ-Al(2)O(3) in the presence of Cu(II) at high initial phosphate concentrations (>3.6 mg P/L) may be attributed to the formation of 1:2 Cu(II)-phosphate species and/or surface precipitates. Understanding the mutual effects of phosphate and Cu(II) on their mobility and transport in mineral/water environments is more realistic to design effective remediation strategies for reducing their negative impacts on aquatic/terrestrial environments. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The mechanism of enantioselective ketone reduction with Noyori and Noyori–Ikariya bifunctional catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dub, Pavel A.; Gordon, John C.

    2016-03-21

    The catalytic hydrogenation of prochiral ketones with second and third-row transition metal complexes bearing chelating chiral ligands containing at least one N–H functionality has achieved unparalleled performance, delivering, in the best cases, chiral alcohols with up to 99.9% ee using extremely small catalyst loadings (~10 -5 mol%). Hence the efficacy of this reaction has closely approached that of natural enzymatic systems and the reaction itself has become one of the most efficient artificial catalytic reactions developed to date. This paper describes the current level of understanding of the mechanism of enantioselective hydrogenation and transfer hydrogenation of aromatic ketones with pioneeringmore » prototypes of bifunctional catalysts, the Noyori and Noyori–Ikariya complexes. Finally, analysis presented herein expands the concept of “metal–ligand cooperation”, redefines the term “cooperative ligand” and introduces “H –/H + outer-sphere hydrogenation” as a novel paradigm in outer-sphere hydrogenation.« less

  2. Surface reactions of iron - enriched smectites: adsorption and transformation of hydroxy fatty acids and phenolic acids

    NASA Astrophysics Data System (ADS)

    Polubesova, Tamara; Olshansky, Yaniv; Eldad, Shay; Chefetz, Benny

    2014-05-01

    Iron-enriched smectites play an important role in adsorption and transformation of soil organic components. Soil organo-clay complexes, and in particular humin contain hydroxy fatty acids, which are derived from plant biopolymer cutin. Phenolic acids belong to another major group of organic acids detected in soil. They participate in various soil processes, and are of concern due to their allelopathic activity. We studied the reactivity of iron-enriched smectites (Fe(III)-montmorillonite and nontronite) toward both groups of acids. We used fatty acids- 9(10),16-dihydroxypalmitic acid (diHPA), isolated from curtin, and 9,10,16-trihydroxypalmitic acid (triHPA); the following phenolic acids were used: ferulic, p-coumaric, syringic, and vanillic. Adsorption of both groups of acids was measured. The FTIR spectra of fatty acid-mineral complexes indicated inner-sphere complexation of fatty acids with iron-enriched smectites (versus outer-sphere complexation with Ca(II)-montmorillonite). The LC-MS results demonstrated enhanced esterification of fatty acids on the iron-enriched smectite surfaces (as compared to Ca(II)-montmorillonite). This study suggests that fatty acids can be esterified on the iron-enriched smectite surfaces, which results in the formation of stable organo-mineral complexes. These complexes may serve as a model for the study of natural soil organo-clay complexes and humin. The reaction of phenolic acids with Fe(III)-montmorillonite demonstrated their oxidative transformation by the mineral surfaces, which was affected by molecular structure of acids. The following order of their transformation was obtained: ferulic >syringic >p-coumaric >vanillic. The LC-MS analysis demonstrated the presence of dimers, trimers, and tetramers of ferulic acid on the surface of Fe(III)-montmorillonite. Oxidation and transformation of ferulic acid were more intense on the surface of Fe(III)-montmorillonite as compared to Fe(III) in solution due to stronger complexation on the Fe(III)-motnomrillonite surface. Our study demonstrate the importance of iron-enriched minerals for the abiotic formation of humic materials and for the transformation of aromatic (phenolic) pollutants.

  3. Molecular simulation of structure and diffusion at smectite-water interfaces: Using expanded clay interlayers as model nanopores

    DOE PAGES

    Greathouse, Jeffery A.; Hart, David; Bowers, Geoffrey M.; ...

    2015-07-20

    In geologic settings relevant to a number of extraction and potential sequestration processes, nanopores bounded by clay mineral surfaces play a critical role in the transport of aqueous species. Solution structure and dynamics at clay–water interfaces are quite different from their bulk values, and the spatial extent of this disruption remains a topic of current interest. We have used molecular dynamics simulations to investigate the structure and diffusion of aqueous solutions in clay nanopores approximately 6 nm thick, comparing the effect of clay composition with model Na-hectorite and Na-montmorillonite surfaces. In addition to structural properties at the interface, water andmore » ion diffusion coefficients were calculated within each aqueous layer at the interface, as well as in the central bulk-like region of the nanopore. The results show similar solution structure and diffusion properties at each surface, with subtle differences in sodium adsorption complexes and water structure in the first adsorbed layer due to different arrangements of layer hydroxyl groups in the two clay models. Interestingly, the extent of surface disruption on bulk-like solution structure and diffusion extends to only a few water layers. Additionally, a comparison of sodium ion residence times confirms similar behavior of inner-sphere and outer-sphere surface complexes at each clay surface, but ~1% of sodium ions adsorb in ditrigonal cavities on the hectorite surface. Thus, the presence of these anhydrous ions is consistent with highly immobile anhydrous ions seen in previous nuclear magnetic resonance spectroscopic measurements of hectorite pastes.« less

  4. Speciation of aqueous Ni(II)-carboxylate and Ni(II)-fulvic acid solutions: Combined ATR-FTIR and XAFS analysis

    NASA Astrophysics Data System (ADS)

    Strathmann, Timothy J.; Myneni, Satish C. B.

    2004-09-01

    Aqueous solutions containing Ni(II) and a series of structurally related carboxylic acids were analyzed using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Ni K-edge X-ray absorption fine structure spectroscopy (XAFS). XAFS spectra were also collected for solutions containing Ni 2+ and chelating ligands (ethylenediaminetetraacetic acid, nitrilotriacetic acid (NTA)) as well as soil fulvic acid. Limited spectral changes are observed for aqueous Ni(II) complexes with monocarboxylates (formate, acetate) and long-chain polycarboxylates (succinate, tricarballylate), where individual donor groups are separated by multiple bridging methylene groups. These spectral changes indicate weak interactions between Ni(II) and carboxylates, and the trends are similar to some earlier reports for crystalline Ni(II)-acetate solids, for which X-ray crystallography studies have indicated monodentate Ni(II)-carboxylate coordination. Nonetheless, electrostatic or outer-sphere coordination cannot be ruled out for these complexes. However, spectral changes observed for short-chain dicarboxylates (oxalate, malonate) and carboxylates that contain an alcohol donor group adjacent to one of the carboxylate groups (lactate, malate, citrate) demonstrate inner-sphere metal coordination by multiple donor groups. XAFS spectral fits of Ni(II) solutions containing soil fulvic acid are consistent with inner-sphere Ni(II) coordination by one or more carboxylate groups, but spectra are noisy and outer-sphere modes of coordination cannot be ruled out. These molecular studies refine our understanding of the interactions between carboxylates and weakly complexing divalent transition metals, such as Ni(II).

  5. Enhanced adsorption of Eu(III) on mesoporous Al2O3/expanded graphite composites investigated by macroscopic and microscopic techniques.

    PubMed

    Sun, Yubing; Chen, Changlun; Tan, Xiaoli; Shao, Dadong; Li, Jiaxing; Zhao, Guixia; Yang, Shubin; Wang, Qi; Wang, Xiangke

    2012-11-21

    Mesoporous Al(2)O(3) was intercalated into an expanded graphite (EG) interlayer to prepare mesoporous Al(2)O(3)/EG composites. The basal spacing of mesoporous Al(2)O(3)/EG composites was enlarged as compared to raw graphite from the X-ray diffraction analysis. The massive surface functional groups and wedge-shaped pores were observed in terms of potentiometric acid-base titration analysis and scanning electron microscope, respectively. The pH-dependent adsorption of Eu(III) on mesoporous Al(2)O(3)/EG composites was evidently independent of ionic strength. The maximum adsorption capacity of Eu(III) on mesoporous Al(2)O(3)/EG composites at pH 6.0 and T = 293 K was calculated to be 5.14 mg g(-1). Desorption kinetics and cyclic operation results showed that mesoporous Al(2)O(3)/EG composites presented high hydrothermal stability in aqueous solution. The thermodynamic parameters suggested that Eu(III) adsorption on mesoporous Al(2)O(3)/EG composites is an endothermic and a spontaneous process. The decrease of Eu-O bond distance with the increasing pH demonstrated that the adsorption mechanism between Eu(III) and mesoporous Al(2)O(3)/EG composites would shift from outer-sphere surface complexation to inner-sphere surface complexation in terms of extended X-ray absorption fine structure spectroscopy analysis.

  6. Background electrolytes and pH effects on selenate adsorption using iron-impregnated granular activated carbon and surface binding mechanisms.

    PubMed

    Zhang, Ning; Gang, Daniel Dianchen; McDonald, Louis; Lin, Lian-Shin

    2018-03-01

    Iron-impregnated granular activated carbon (Fe-GAC) has been shown effective for selenite adsorptive removal from aqueous solutions, but similar effectiveness was not observed with selenate. This study examined the effects of background electrolytes and pH on selenate adsorption on to Fe-GAC, and surface bindings to elucidate the selenate adsorption mechanisms. The decrease magnitude of selenate adsorption capacity under three background electrolytes followed the order: LiCl > NaCl > KCl, as ionic strength increased from 0.01 to 0.1 M. Larger adsorption capacity differences among the three electrolytes were observed under the higher ionic strengths (0.05 and 0.1 M) than those under 0.01 M. Multiplet peak fittings of high resolution X-ray photoelectron spectra for O1s and Fe2p 3/2 indicated the presence of iron (III) on adsorbent surface. pH variations during the adsorbent preparation within 3-8 in NaCl solutions did not cause appreciable changes in the iron redox state and composition. Raman spectra showed the formation of both monodentate and bidentate inner sphere complexes under pHs <7 and a mixture of outer sphere and inner sphere complexes at pH 8. These results explained the lower selenate adsorption under alkaline conditions. Mechanisms for monodentate and bidentate formations and a stable six-member ring structure were proposed. Two strategies were recommended for modifying Fe-GAC preparation procedure to enhance the selenate adsorption: (1) mixed-metal oxide coatings to increase the point of zero charge (pH zpc ); and (2) ferrous iron coating to initially reduce selenate followed by selenite adsorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Synthetic vaccines.

    PubMed

    Lerner, R A

    1983-02-01

    Synthetic vaccines are designed with the help of computer-graphics programs. These displays generated by Arthur J. Olson of the Research Institute of Scripps Clinic show a method whereby parts of a viral protein that are on the surface of a virus, and therefore accessible to antibodies, can be identified. The backbone of the surface domain of the protein on the outer shell of the tomato bushy-stunt virus is displayed (1) on the basis of coordinates determined by Stephen C. Harrison of Harvard University and his colleagues. A single peptide of the protein is picked out in yellow, with the side chains of its component amino acids indicated in atomic detail (2). The peptide is enlarged and a sphere representing a water molecule is displayed (3). The sphere is rolled around the peptide to generate a map of the surface accessible to water (4); it does so, following an algorithm developed by Michael L. Connolly, by placing a dot at each point of its closest contact with the peptide, taking account of the sphere's own van der Waals radius (zone of influence, in effect) and that of each atom of the peptide and the rest of the protein. A similar-dot-surface map is generated to show what parts of the peptide are still accessible to water when three copies of the protein are associated in an array on the surface of the virus (5) and when four such arrays (out of 60) are in position on the outer surface of the virus (6).

  8. Use of high temperature insulation for ceramic matrix composites in gas turbines

    DOEpatents

    Morrison, Jay Alan; Merrill, Gary Brian; Ludeman, Evan McNeil; Lane, Jay Edgar

    2001-01-01

    A ceramic composition for insulating components, made of ceramic matrix composites, of gas turbines is provided. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere and the arrangement of spheres is such that the composition is dimensionally stable and chemically stable at a temperature of approximately 1600.degree. C. A stationary vane of a gas turbine comprising the composition of the present invention bonded to the outer surface of the vane is provided. A combustor comprising the composition bonded to the inner surface of the combustor is provided. A transition duct comprising the insulating coating bonded to the inner surface of the transition is provided. Because of abradable properties of the composition, a gas turbine blade tip seal comprising the composition also is provided. The composition is bonded to the inside surface of a shroud so that a blade tip carves grooves in the composition so as to create a customized seal for the turbine blade tip.

  9. Sphere based fluid systems

    NASA Technical Reports Server (NTRS)

    Elleman, Daniel D. (Inventor); Wang, Taylor G. (Inventor)

    1989-01-01

    Systems are described for using multiple closely-packed spheres. In one system for passing fluid, a multiplicity of spheres lie within a container, with all of the spheres having the same outside diameter and with the spheres being closely nested in one another to create multiple interstitial passages of a known size and configuration and smooth walls. The container has an inlet and outlet for passing fluid through the interstitial passages formed between the nested spheres. The small interstitial passages can be used to filter out material, especially biological material such as cells in a fluid, where the cells can be easily destroyed if passed across sharp edges. The outer surface of the spheres can contain a material that absorbs a constitutent in the flowing fluid, such as a particular contamination gas, or can contain a catalyst to chemically react the fluid passing therethrough, the use of multiple small spheres assuring a large area of contact of these surfaces of the spheres with the fluid. In a system for storing and releasing a fluid such as hydrogen as a fuel, the spheres can include a hollow shell containing the fluid to be stored, and located within a compressable container that can be compressed to break the shells and release the stored fluid.

  10. Rb + adsorption at the quartz(101)-aqueous interface: comparison of resonant anomalous x-ray reflectivity with ab initio calculations

    DOE PAGES

    Bellucci, Francesco; Lee, Sang Soo; Kubicki, James D.; ...

    2015-01-29

    We study adsorption of Rb + to the quartz(101)–aqueous interface at room temperature with specular X-ray reflectivity, resonant anomalous X-ray reflectivity, and density functional theory. The interfacial water structures observed in deionized water and 10 mM RbCl solution at pH 9.8 were similar, having a first water layer at height of 1.7 ± 0.1 Å above the quartz surface and a second layer at 4.8 ± 0.1 Å and 3.9 ± 0.8 Å for the water and RbCl solutions, respectively. The adsorbed Rb + distribution is broad and consists of presumed inner-sphere (IS) and outer-sphere (OS) complexes at heights ofmore » 1.8 ± 0.1 and 6.4 ± 1.0 Å, respectively. Projector-augmented planewave density functional theory (DFT) calculations of potential configurations for neutral and negatively charged quartz(101) surfaces at pH 7 and 12, respectively, reveal a water structure in agreement with experimental results. These DFT calculations also show differences in adsorbed speciation of Rb + between these two conditions. At pH 7, the lowest energy structure shows that Rb + adsorbs dominantly as an IS complex, whereas at pH 12 IS and OS complexes have equivalent energies. The DFT results at pH 12 are generally consistent with the two site Rb distribution observed from the X-ray data at pH 9.8, albeit with some differences that are discussed. In conclusion, surface charge estimated on the basis of the measured total Rb + coverage was -0.11 C/m 2, in good agreement with the range of the surface charge magnitudes reported in the literature.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hailin; Li, Ping; Wang, Zheming

    Boehmite (γ-AlOOH) was synthesized to selectively adsorb V(V) from K 2CrO 4-KVO 3-H 2O solutions with highly concentrated Cr(VI) and low concentration V(V). The synthesized γ-AlOOH has a BET surface area of 433.2 m 2/g and an average pore size of 3.5 nm. It possesses a maximum adsorption capacity of V(V) of 1.53 mmol/g from K 2CrO 4-KVO 3-H 2O solutions. The adsorption of V(V) onto γ-AlOOH follows the Langmuir isotherm model and pseudo-second-order kinetics equation by forming innersphere complexes while the Cr(VI) adsorption forms both inner-sphere and outer-sphere chromate complexes depending on solution pH. The γ-AlOOH was further synthesizedmore » in situ by adding HNO 3 into the K 2CrO 4-KAlO 2- KVO 3-H 2O solutions and then used for synchronous adsorption of V(V) and Cr(VI), resulting in increased adsorption capacity of V(V) of 2.88 mmol/g and decreased adsorption capacity of Cr(VI) to 0.073 mmol/g, respectively. In the latter process, adsorption pH values were adjustable, and adsorption reached equilibrium instantaneously, supporting a novel in situ synthesis and adsorption integration strategy with adjustable surface charge of adsorbent and disappearance of diffusion effect.« less

  12. Enrofloxacin sorption on smectite clays: effects of pH, cations, and humic acid.

    PubMed

    Yan, Wei; Hu, Shan; Jing, Chuanyong

    2012-04-15

    Enrofloxacin (ENR) occurs widely in natural waters because of its extensive use as a veterinary chemotherapeutic agent. To improve our understanding of the interaction of this emerging contaminant with soils and sediments, sorption of ENR on homoionic smectites and kaolinite was studied as a function of pH, ionic strength, exchangeable cations, and humic acid concentration. Batch experiments and in situ ATR-FTIR analysis suggested multiple sorption mechanisms. Cation exchange was a major contributor to the sorption of cationic ENR species on smectite. The decreased ENR sorption with increasing ionic strength indicated the formation of outer-sphere complexes. Exchangeable cations significantly influenced the sorption capacity, and the observed order was Cs

  13. Insight into the adsorption of tetracycline onto amino and amino-Fe3+ gunctionalized mesoporous silica: Effect of functionalized groups.

    PubMed

    Zhang, Ziyang; Li, Haiyan; Liu, Huijuan

    2018-03-01

    In order to study the influences of functionalized groups onto the adsorption of tetracycline, we prepared a series of amino and amino-Fe 3+ complex mesoporous silica adsorbents with diverse content of amino and Fe 3+ groups (named N,N-SBA15 and Fe-N,N-SBA15). The resulting mesoporous silica adsorbents were fully characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and N 2 adsorption/desorption isotherms. Furthermore, the effects of functionalized groups on the removal of TC were investigated. The results showed that the periodic ordered structure of SBA-15 was maintained after modification of amino/Fe 3+ groups. The functionalized amino groups decreased the adsorption capacity while the coordinated Fe 3+ increased the adsorption capacity. The adsorption kinetics of TC fitted pseudo-second-order model well and the equilibrium was achieved quickly. The adsorption isotherms fitted the Langmuir model well and with the Fe 3+ content increased from 3.93% to 8.26%, the Q max of the adsorbents increased from 102 to 188mmol/kg. The solution pH affected the adsorption of TC onto amino complex adsorbents slightly while influenced the adsorption onto Fe-amine complex adsorbents greatly. The adsorption of TC on SBA15 and N,N-SBA15 may be related to the formation of outer-sphere surface complexes, while the adsorption of TC onto Fe-N,N-SBA15 was mainly attributed to the inner-sphere surface complexes. This study could offer potential materials that have excellent adsorption behavior for environmental remediation and suggested useful information for the preparing other adsorbents in environmental applications. Copyright © 2017. Published by Elsevier B.V.

  14. Multishell inertial confinement fusion target

    DOEpatents

    Holland, James R.; Del Vecchio, Robert M.

    1984-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reaction accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  15. Multishell inertial confinement fusion target

    DOEpatents

    Holland, James R.; Del Vecchio, Robert M.

    1987-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reactions accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  16. The adsorption behavior of U(VI) on granite.

    PubMed

    Fan, Q H; Hao, L M; Wang, C L; Zheng, Z; Liu, C L; Wu, W S

    2014-03-01

    The effects of pH, counter ions and temperature on the adsorption of U(VI) on Beishan granite (BsG) were investigated in the presence and absence of fulvic acid (FA) and humic acid (HA). The adsorption edge of U(VI) on BsG suggested that U(VI) adsorption was mainly controlled by ion exchange and outer-sphere complexation at low pH, whereas inner-sphere complex was the dominant adsorption species in the pH range of 4.0-9.0. Above pH 9.0, Na2U2O7 might play an important role in the rise of U(VI) adsorption again. Counter ions such as Cl(-), SO4(2-) and PO4(3-) can provoke U(VI) adsorption on BsG to some extent, which was directly correlated to the complexing ability of U(VI)-ligand. More noticeably, the large enhancement of U(VI) adsorption in the presence of phosphate can be attributed to the ternary complex formation (BsG-PO4-UO2), precipitation ((UO2)3(PO4)2(s)) and secondary phase (Na-autunite). Both FA and HA can slightly increase U(VI) adsorption at low pH, whereas they strongly inhibited U(VI) adsorption at high pH range. Artificial synthesized granite (AsG) prepared in the laboratory is impossible to use as an analogue of natural granite because of the large difference in the adsorption and surface properties.

  17. Solvent extraction: the coordination chemistry behind extractive metallurgy.

    PubMed

    Wilson, A Matthew; Bailey, Phillip J; Tasker, Peter A; Turkington, Jennifer R; Grant, Richard A; Love, Jason B

    2014-01-07

    The modes of action of the commercial solvent extractants used in extractive hydrometallurgy are classified according to whether the recovery process involves the transport of metal cations, M(n+), metalate anions, MXx(n-), or metal salts, MXx into a water-immiscible solvent. Well-established principles of coordination chemistry provide an explanation for the remarkable strengths and selectivities shown by most of these extractants. Reagents which achieve high selectivity when transporting metal cations or metal salts into a water-immiscible solvent usually operate in the inner coordination sphere of the metal and provide donor atom types or dispositions which favour the formation of particularly stable neutral complexes that have high solubility in the hydrocarbons commonly used in recovery processes. In the extraction of metalates, the structures of the neutral assemblies formed in the water-immiscible phase are usually not well defined and the cationic reagents can be assumed to operate in the outer coordination spheres. The formation of secondary bonds in the outer sphere using, for example, electrostatic or H-bonding interactions are favoured by the low polarity of the water-immiscible solvents.

  18. Strong and weak adsorptions of polyelectrolyte chains onto oppositely charged spheres

    NASA Astrophysics Data System (ADS)

    Cherstvy, A. G.; Winkler, R. G.

    2006-08-01

    We investigate the complexation of long thin polyelectrolyte (PE) chains with oppositely charged spheres. In the limit of strong adsorption, when strongly charged PE chains adapt a definite wrapped conformation on the sphere surface, we analytically solve the linear Poisson-Boltzmann equation and calculate the electrostatic potential and the energy of the complex. We discuss some biological applications of the obtained results. For weak adsorption, when a flexible weakly charged PE chain is localized next to the sphere in solution, we solve the Edwards equation for PE conformations in the Hulthén potential, which is used as an approximation for the screened Debye-Hückel potential of the sphere. We predict the critical conditions for PE adsorption. We find that the critical sphere charge density exhibits a distinctively different dependence on the Debye screening length than for PE adsorption onto a flat surface. We compare our findings with experimental measurements on complexation of various PEs with oppositely charged colloidal particles. We also present some numerical results of the coupled Poisson-Boltzmann and self-consistent field equation for PE adsorption in an assembly of oppositely charged spheres.

  19. Grid-Sphere Electrodes for Contact with Ionospheric Plasma

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.; Poe, Garrett D.

    2010-01-01

    Grid-sphere electrodes have been proposed for use on the positively biased end of electrodynamic space tethers. A grid-sphere electrode is fabricated by embedding a wire mesh in a thin film from which a spherical balloon is formed. The grid-sphere electrode would be deployed from compact stowage by inflating the balloon in space. The thin-film material used to inflate the balloon is formulated to vaporize when exposed to the space environment. This would leave the bare metallic spherical grid electrode attached to the tether, which would present a small cross-sectional area (essentially, the geometric wire shadow area only) to incident neutral atoms and molecules. Most of the neutral particles, which produce dynamic drag when they impact a surface, would pass unimpeded through the open grid spaces. However, partly as a result of buildup of a space charge inside the grid-sphere, and partially, the result of magnetic field effects, the electrode would act almost like a solid surface with respect to the flux of electrons. The net result would be that grid-sphere electrodes would introduce minimal aerodynamic drag, yet have effective electrical-contact surface areas large enough to collect multiampere currents from the ionospheric plasma that are needed for operation of electrodynamic tethers. The vaporizable-balloon concept could also be applied to the deployment of large radio antennas in outer space.

  20. Interaction of ribonucleotides with oxide and silicate minerals under varying environmental conditions

    NASA Astrophysics Data System (ADS)

    Feuillie, C.; Sverjensky, D. A.; Hazen, R. M.

    2013-12-01

    Large quantities of nucleic acids are found in natural environments, released after the death of an organism and subsequent cell lysis [1]. Nucleic acids are known to adsorb on mineral surfaces [2, 3, 4], which protect them from degradation, whether enzymatic [5, 6] or UV-mediated [7]. It may then contribute to the extracellular genetic pool available in soils to microorganisms for horizontal gene transfers [8]. In order to better understand the behaviour of extracellular nucleic acids in soils, we have investigated the interactions between nucleotides, 5'-GMP, 5'-CMP, 5'-AMP and 5'-UMP, and α-alumina as a model compound for Al in six-fold coordination in soil minerals. We carried out batch adsorption experiments over a wide range of pH, ionic strength and surface loading. Alumina adsorbs high amounts of nucleotides > 2 μmol/m2. In similar environmental conditions, swelling clays such as nontronite and montmorillonite adsorb less than 0.1 μmol/m2 if the total surface area is taken under consideration. However, if only the edges of clay particles are considered, the amount of nucleotides adsorbed reaches values between 1.2 and 2 μmol/m2 [9], similar to the alumina and consistent with ';oxide-like' surface sites on the edges of the clay particles. Surface complexation modeling enabled us to predict the speciation of the surface species on the alumina, as well as the stoichiometry and thermodynamic equilibrium constants for the adsorption of nucleotides. We used the extended triple-layer model (ETLM), that takes into account the electrical work linked to the desorption of chemisorbed water molecules during the formation of inner-sphere complexes. Two surface species are thought to form on the surface of corundum: a monodentate inner-sphere complex, dominant at pH < 7.5, and a bidentate outer-sphere complex, dominant at higher pH. Both complexes involve interactions between the negatively charged phosphate group and the positively charged surface of alumina. Our results provide a better understanding of how nucleic acids attach to mineral surfaces under varying environmental conditions in soil environments. Moreover, the predicted configuration of nucleotide surface species, bound via the phosphate group, could have implications for the abiotic formation and concentration of nucleic acids in the context of the origin of life. References : [1] Lorenz and Wackernagel (1987), Applied and environmental microbial., 2948-2952 [2] Ferris (2005), Reviews in mineralogy & geochemistry 59, 187-210 [3] Cleaves H.J. et al. (2011), Chemosphere 83, 1560-1567 [4] Arora & Kamaluddin (2009), Astrobiology 9, 165-171 [5] Cai et al. (2006), Environ. Sci. Technol. 40 (9), 2971-2976 [6] Franchi and Gallori (2005),Gene 346, 205-214 [7] Scappini et al. (2004), International Journal of Astrobiology 3(1), 17-19 [8] Levy-Booth et al. (2007), Soil Biol. Biochem. 39, 2977-2991. [9] Feuillie et al. (2013), Geochimica et Cosmochimica Acta (in press)

  1. Contact and Impact Dynamic Modeling Capabilities of LS-DYNA for Fluid-Structure Interaction Problems

    DTIC Science & Technology

    2010-12-02

    rigid sphere in a vertical water entry,” Applied Ocean Research, 13(1), pp. 43-48. Monaghan, J.J., 1994. “ Simulating free surface flows with SPH ...The kinematic free surface condition was used to determine the intersection between the free surface and the body in the outer flow domain...and the results were compared with analytical and numerical predictions. The predictive capability of ALE and SPH features of LS-DYNA for simulation

  2. Polynuclear Speciation of Trivalent Cations near the Surface of an Electrolyte Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bera, Mrinal K.; Antonio, Mark R.

    Despite long-standing efforts, there is no agreed upon structural model for electrolyte solutions at air-liquid interfaces. We report the simultaneous detection of the near-surface and bulk coordination environments of a trivalent metal cation (europium) in an aqueous solution by use of X-ray absorption spectroscopy. Within the first few nanometers of the liquid surface, the cations exhibit oxygen coordination typical of inner-sphere hydration of an aquated Eu3+ cation. Beyond that, outer-sphere ion-ion correlations are observed that are otherwise not present in the bulk electrolyte. The combination of near-surface and bulk sensitivities to probe metal ion speciation in electrolyte solutions is achievedmore » by detecting electron-yield and X-ray fluorescence signals from an inverted pendant drop. The results provide new knowledge about the near-surface chemistry of aqueous solutions of relevance to aerosols and ion transport processes in chemical separations and biological systems.« less

  3. Mechanisms of boron removal from hydraulic fracturing wastewater by aluminum electrocoagulation.

    PubMed

    Sari, Mutiara Ayu; Chellam, Shankararaman

    2015-11-15

    Boron uptake from highly saline hydraulic fracturing wastewater by freshly precipitated amorphous Al(OH)3 precipitates is due to ligand exchange and complexation with surface hydroxyl groups. Consequently, aluminum electrocoagulation can be a feasible approach to remove boron from flowback/produced water. Actual hydraulic fracturing wastewater containing ∼120mg/L boron from the Eagle Ford shale play was employed. Electrocoagulation was performed over a range of aluminum dosages (0-1350mg/L), pH 6.4 and 8, and high current densities (20-80mA/cm(2)) using a cylindrical aluminum anode encompassed by a porous cylindrical 316-stainless steel cathode. Direct measurements of boron uptake along with its chemical state and coordination were made using Attenuated Total Reflection-Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-Ray Photoelectron Spectroscopy. Boron removal increased monotonically with aluminum dosage and was higher at pH 8, but remained relatively constant at ⩾20mA/cm(2). Chloride ions induced anodic pitting and super-Faradaic (131% efficiency) aluminum dissolution and their electrooxidation produced free chlorine. ATR-FTIR suggested outer-sphere and inner-sphere complexation of trigonal B(OH)3 with Al(OH)3, which was confirmed by the BO bond shifting toward lower binding energies in XPS. Severe AlO interferences precluded evidence for tetrahedral B(OH)4(-) complexation. No evidence for co-precipitation was obtained. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Synthesis of hollow silica spheres with hierarchical shell structure by the dual action of liquid indium microbeads in vapor-liquid-solid growth.

    PubMed

    Wang, Jian-Tao; Wang, Hui; Ou, Xue-Mei; Lee, Chun-Sing; Zhang, Xiao-Hong

    2011-07-05

    Geometry-based adhesion arising from hierarchical surface structure enables microspheres to adhere to cells strongly, which is essential for inorganic microcapsules that function as drug delivery or diagnostic imaging agents. However, constructing a hierarchical structure on the outer shell of the products via the current microcapsule synthesis method is difficult. This work presents a novel approach to fabricating hollow microspheres with a hierarchical shell structure through the vapor-liquid-solid (VLS) process in which liquid indium droplets act as both templates for the formation of silica capsules and catalysts for the growth of hierarchical shell structure. This hierarchical shell structure offers the hollow microsphere an enhanced geometry-based adhesion. The results provide a facile method for fabricating hollow spheres and enriching their function through tailoring the geometry of their outer shells. © 2011 American Chemical Society

  5. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  6. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors.

    PubMed

    Shen, Laifa; Yu, Le; Yu, Xin-Yao; Zhang, Xiaogang; Lou, Xiong Wen David

    2015-02-02

    Despite the significant advancement in preparing metal oxide hollow structures, most approaches rely on template-based multistep procedures for tailoring the interior structure. In this work, we develop a new generally applicable strategy toward the synthesis of mixed-metal-oxide complex hollow spheres. Starting with metal glycerate solid spheres, we show that subsequent thermal annealing in air leads to the formation of complex hollow spheres of the resulting metal oxide. We demonstrate the concept by synthesizing highly uniform NiCo2O4 hollow spheres with a complex interior structure. With the small primary building nanoparticles, high structural integrity, complex interior architectures, and enlarged surface area, these unique NiCo2O4 hollow spheres exhibit superior electrochemical performances as advanced electrode materials for both lithium-ion batteries and supercapacitors. This approach can be an efficient self-templated strategy for the preparation of mixed-metal-oxide hollow spheres with complex interior structures and functionalities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Outer-Sphere Direction in Iridium C-H Borylation

    PubMed Central

    Roosen, Philipp C.; Kallepalli, Venkata A.; Chattopadhyay, Buddhadeb; Singleton, Daniel A.; Maleczka, Robert E.; Smith, Milton R.

    2013-01-01

    The NHBoc group affords ortho selective C–H borylations in arenes and alkenes. Experimental and computational studies support an outer sphere mechanism where the N–H proton hydrogen bonds to a boryl ligand oxygen. The regioselectivities are unique and complement those of directed ortho metalations. PMID:22703452

  8. Preparation of Geophysical Fluid Flow Experiments With The Rotating Spherical Gap Flow Model In Space

    NASA Astrophysics Data System (ADS)

    Egbers, C.

    The'GeoFlow' is an ESA experiment planned for the Fluid Science Laboratory on ISS under the scientific coordination (PI) of the Department of Aerodynamics and Fluid Mechanics (LAS) at the Brandenburg Technical University (BTU) of Cottbus, Germany. The objective of the experiment is to study thermal convection in the gap between two concentric rotating (full) spheres. A central symmetric force field simi- lar to the gravity field acting on planets can be produced by applying a high voltage between inner and outer sphere using the dielectrophoretic effect (rotating capacitor). To counter the unidirectional gravity under terrestrial conditions, this experiment re- quires a microgravity environment. The parameters of the experiment are chosen in analogy to the thermal convective motions in the outer core of the Earth. In analogy to geophysical motions in the Earth`s liquid core the experiment can rotate as solid body as well as differential (inner to outer). Thermal convection is produced by heat- ing the inner sphere and cooling the outer ones. Furtheron, the variation of radius ratio between inner and outer sphere is foreseen as a parameter variation. The flows to be investigated will strongly depend on the gap width and on the Prandtl number.

  9. Adenosine/guanosine-3',5'-bis-phosphates as biocompatible and selective Zn2+-ion chelators. Characterization and comparison with adenosine/guanosine-5'-di-phosphate.

    PubMed

    Sayer, Alon Haim; Blum, Eliav; Major, Dan Thomas; Vardi-Kilshtain, Alexandra; Levi Hevroni, Bosmat; Fischer, Bilha

    2015-04-28

    Although involved in various physiological functions, nucleoside bis-phosphate analogues and their metal-ion complexes have been scarcely studied. Hence, here, we explored the solution conformation of 2′-deoxyadenosine- and 2′-deoxyguanosine-3′,5′-bisphosphates, 3 and 4, d(pNp), as well as their Zn(2+)/Mg(2+) binding sites and binding-modes (i.e. inner- vs. outer-sphere coordination), acidity constants, stability constants of their Zn(2+)/Mg(2+) complexes, and their species distribution. Analogues 3 and 4, in solution, adopted a predominant Southern ribose conformer (ca. 84%), gg conformation around C4'-C5' and C5'-O5' bonds, and glycosidic angle in the anti-region (213-270°). (1)H- and (31)P-NMR experiments indicated that Zn(2+)/Mg(2+) ions coordinated to P5' and P3' groups of 3 and 4 but not to N7 nitrogen atom. Analogues 3 and 4 formed ca. 100-fold more stable complexes with Zn(2+)vs. Mg(2+)-ions. Complexes of 3 and 4 with Mg(2+) at physiological pH were formed in minute amounts (11% and 8%, respectively) vs. Zn(2+) complexes (46% and 44%). Stability constants of Zn(2+)/Mg(2+) complexes of analogues 3 and 4 (log KML(M) = 4.65-4.75/2.63-2.79, respectively) were similar to those of the corresponding complexes of ADP and GDP (log KML(M) = 4.72-5.10/2.95-3.16, respectively). Based on the above findings, we hypothesized that the unexpectedly low log K values of Zn(2+)-d(pNp) as compared to Zn(2+)-NDP complexes, are possibly due to formation of outer-sphere coordination in the Zn(2+)-d(pNp) complex vs. inner-sphere in the NDP-Zn(2+) complex, in addition to loss of chelation to N7 nitrogen atom in Zn(2+)-d(pNp). Indeed, explicit solvent molecular dynamics simulations of 1 and 3 for 100 ns supported this hypothesis.

  10. Effect of humic acid on nickel(II) sorption to Ca-montmorillonite by batch and EXAFS techniques study.

    PubMed

    Hu, Jun; Tan, Xiaoli; Ren, Xuemei; Wang, Xiangke

    2012-09-21

    The influence of humic acid (HA) on Ni(II) sorption to Ca-montmorillonite was examined by using a combination of batch sorption experiments and extended X-ray absorption fine structure (EXAFS) spectroscopy technique. The sorption of Ni(II) on HA-montmorillonite hybrids is strongly dependent on pH and temperature. At low pH, the sorption of Ni(II) is mainly dominated by Ni-HA-montmorillonite and outer-sphere surface complexation. The EXAFS results indicate that the first coordination shell of Ni(II) consists of ∼6 O atoms at the interatomic distances of ∼2.04 Å in an octahedral structure. At high pH, binary Ni-montmorillonite surface complexation is the dominant sorption mechanism. EXAFS analysis indicates the formation of mononuclear complexes located at the edges of Ca-montmorillonite platelets at pH 7.5, while a Ni-Al layered double hydroxide (LDH) phase at the Ca-montmorillonite surface formed with pH 8.5. At pH 10.0, the dissolved HA-Ni(II) complexation inhibits the precipitation of Ni hydroxide, and Ni-Al LDH phase forms. The rise of temperature increases the sorption capacity of Ni(II), and promotes Ni-Al LDH phase formation and the growth of crystallites. The results are important to evaluate the physicochemical behavior of Ni(II) in the natural environment.

  11. Dust modeling of the combined ALMA and SPHERE datasets of HD 163296. Is HD 163296 really a Meeus group II disk?

    NASA Astrophysics Data System (ADS)

    Muro-Arena, G. A.; Dominik, C.; Waters, L. B. F. M.; Min, M.; Klarmann, L.; Ginski, C.; Isella, A.; Benisty, M.; Pohl, A.; Garufi, A.; Hagelberg, J.; Langlois, M.; Menard, F.; Pinte, C.; Sezestre, E.; van der Plas, G.; Villenave, M.; Delboulbé, A.; Magnard, Y.; Möller-Nilsson, O.; Pragt, J.; Rabou, P.; Roelfsema, R.

    2018-06-01

    Context. Multiwavelength observations are indispensable in studying disk geometry and dust evolution processes in protoplanetary disks. Aims: We aim to construct a three-dimensional model of HD 163296 that is capable of reproducing simultaneously new observations of the disk surface in scattered light with the SPHERE instrument and thermal emission continuum observations of the disk midplane with ALMA. We want to determine why the spectral energy distribution of HD 163296 is intermediary between the otherwise well-separated group I and group II Herbig stars. Methods: The disk was modeled using the Monte Carlo radiative transfer code MCMax3D. The radial dust surface density profile was modeled after the ALMA observations, while the polarized scattered light observations were used to constrain the inclination of the inner disk component and turbulence and grain growth in the outer disk. Results: While three rings are observed in the disk midplane in millimeter thermal emission at 80, 124, and 200 AU, only the innermost of these is observed in polarized scattered light, indicating a lack of small dust grains on the surface of the outer disk. We provide two models that are capable of explaining this difference. The first model uses increased settling in the outer disk as a mechanism to bring the small dust grains on the surface of the disk closer to the midplane and into the shadow cast by the first ring. The second model uses depletion of the smallest dust grains in the outer disk as a mechanism for decreasing the optical depth at optical and near-infrared wavelengths. In the region outside the fragmentation-dominated regime, such depletion is expected from state-of-the-art dust evolution models. We studied the effect of creating an artificial inner cavity in our models, and conclude that HD 163296 might be a precursor to typical group I sources.

  12. Adsorption of MCPA on goethite and humic acid-coated goethite.

    PubMed

    Iglesias, A; López, R; Gondar, D; Antelo, J; Fiol, S; Arce, F

    2010-03-01

    Anionic pesticides are adsorbed on the mineral oxide fraction of the soil surface but considerably less on the organic fraction, so that the presence of organic matter causes a decrease in the amount of pesticide adsorbed, and may affect the mechanism of adsorption. In the present study we investigated the adsorption of the weak acid pesticide MCPA on the surface of goethite and of humic acid-coated goethite, selected as models of the mineral oxide fraction and organic components present in soil systems. Adsorption of the anionic form of the pesticide on goethite fitted an S-type isotherm and the amount adsorbed increased as the ionic strength decreased and the pH of the medium decreased. Application of the charge distribution multi site complexation model (CD-MUSIC model) enabled interpretation of the results, which suggested the formation of inner and outer sphere complexes between the pesticide and the singly-coordinated surface sites of goethite. Less pesticide was adsorbed on the humic acid-coated goethite than on the bare goethite and the pattern fitted an L-type isotherm, which indicates a change in the mechanism of adsorption. Simplified calculations with the CD-MUSIC model enabled interpretation of the results, which suggested that the pesticide molecules form the same type of surface complexes as in the previous case. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  13. Electrohydrodynamics of a compound vesicle under an AC electric field

    NASA Astrophysics Data System (ADS)

    Priti Sinha, Kumari; Thaokar, Rochish M.

    2017-07-01

    Compound vesicles are relevant as simplified models for biological cells as well as in technological applications such as drug delivery. Characterization of these compound vesicles, especially the inner vesicle, remains a challenge. Similarly their response to electric field assumes importance in light of biomedical applications such as electroporation. Fields lower than that required for electroporation cause electrodeformation in vesicles and can be used to characterize their mechanical and electrical properties. A theoretical analysis of the electrohydrodynamics of a compound vesicle with outer vesicle of radius R o and an inner vesicle of radius λ {{R}o} , is presented. A phase diagram for the compound vesicle is presented and elucidated using detailed plots of electric fields, free charges and electric stresses. The electrohydrodynamics of the outer vesicle in a compound vesicle shows a prolate-sphere and prolate-oblate-sphere shape transitions when the conductivity of the annular fluid is greater than the outer fluid, and vice-versa respectively, akin to single vesicle electrohydrodynamics reported in the literature. The inner vesicle in contrast shows sphere-prolate-sphere and sphere-prolate-oblate-sphere transitions when the inner fluid conductivity is greater and smaller than the annular fluid, respectively. Equations and methodology are provided to determine the bending modulus and capacitance of the outer as well as the inner membrane, thereby providing an easy way to characterize compound vesicles and possibly biological cells.

  14. Propagation of a shock wave in a radiating spherically symmetric distribution of matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, L.; Nunez, L.

    1987-08-01

    A method used to study the evolution of radiating spheres reported by Herrera et al. (1980) is extended to the case in which the sphere is divided in two regions by a shock wave front. The equations of state at both sides of the shock are different, and the solutions are matched on it via the Rankine-Hugoniot conditions. The outer-region metric is matched with a Vaidya solution on the boundary surface of the sphere. As an example of the procedure, two known solutions for radiating systems are considered. The matter distribution is free of singularities everywhere within the sphere andmore » a Gaussian-like pulse is assumed to carry out a fraction of the total mass. Exploding models are then obtained. Finally, the results are discussed in the light of recent work on gravitational collapse and supernovae. 29 references.« less

  15. Distribution pattern of rare earth ions between water and montmorillonite and its relation to the sorbed species of the ions.

    PubMed

    Takahashi, Yoshio; Tada, Akisa; Shimizu, Hiroshi

    2004-09-01

    REE (rare earth element) distribution coefficients (Kd) between the aqueous phase and montmorillonite surface were obtained to investigate the relation between the REE distribution patterns and the species of REE sorbed on the solid-water interface. It was shown that the features in the REE patterns, such as the slope of the REE patterns, the tetrad effect, and the Y/Ho ratio, were closely related to the REE species at the montmorillonite-water interface. In a binary system (REE-montmorillonite) below pH 5, three features (a larger Kd value for a lighter REE, the absence of the tetrad effect, and the Y/Ho ratio being unchanged from its initial value) suggest that hydrated REE are directly sorbed as an outer-sphere complex at the montmorillonite-water interface. Above pH 5.5, the features in the REE patterns, the larger Kd value for heavier REE, the M-type tetrad effect, and the reduced Y/Ho ratio, showed the formation of an inner-sphere complex of REE with -OH group at the montmorillonite surface. In addition, the REE patterns in the presence of humic acid at pH 5.9 were also studied, where the REE patterns became flat, suggesting that the humate complex is dominant as both dissolved and sorbed species of REE in the ternary system. All of these results were consistent with the spectroscopic data (laser-induced fluorescence spectroscopy) showing the local structure of Eu(III) conducted in the same experimental system. The present results suggest that the features in the REE distribution patterns include information on the REE species at the solid-water interface.

  16. NH NMR shifts of new structurally characterized fac-[Re(CO)3(polyamine)]n+ complexes probed via outer-sphere hydrogen-bonding interactions to anions, including the paramagnetic [Re(IV)Br6]2- anion.

    PubMed

    Perera, Theshini; Marzilli, Patricia A; Fronczek, Frank R; Marzilli, Luigi G

    2010-06-21

    fac-[Re(I)(CO)(3)L](n) complexes serve as models for short-lived fac-[(99m)Tc(I)(CO)(3)L](n) imaging tracers (L = tridentate ligands forming two five-membered chelate rings defining the L face). Dangling groups on L, needed to achieve desirable biodistribution, complicate the NMR spectra, which are not readily understood. Using less complicated L, we found that NH groups (exo-NH) projecting toward the L face sometimes showed an upfield shift attributable to steric shielding of the exo-NH group from the solvent by the chelate rings. Our goal is to advance our ability to relate these spectral features to structure and solution properties. To investigate whether exo-NH groups in six-membered rings exhibit the same effect and whether the presence of dangling groups alters the effect, we prepared new fac-[Re(CO)(3)L](n+) complexes that allow direct comparisons of exo-NH shifts for six-membered versus five-membered chelate rings. New complexes were structurally characterized with the following L: dipn [N-3-(aminopropyl)-1,3-propanediamine], N'-Medipn (3,3'-diamino-N-methyldipropylamine), N,N-Me(2)dipn (N,N-dimethyldipropylenetriamine), aepn [N-2-(aminoethyl)-1,3-propanediamine], trpn [tris-(3-aminopropyl)amine], and tren [tris-(2-aminoethyl)amine]. In DMSO-d(6), the upfield exo-NH signals were exhibited by all complexes, indicating that the rings sterically shield the exo-NH groups from bulky solvent molecules. This interpretation was supported by exo-NH signal shift changes caused by added halide and [ReBr(6)](2-) anions, consistent with outer-sphere hydrogen-bond interactions between these anions and the exo-NH groups. For fac-[Re(CO)(3)(dipn)]PF(6) in acetonitrile-d(3), the exo-NH signal shifted further downfield in the series, Cl(-) > Br(-) > I(-), and the plateau in the shift change required a lower concentration for smaller anions. These results are consistent with steric shielding of the exo-NH groups by the chelate rings. Nevertheless, despite its size, the shape and charge of [ReBr(6)](2-) allowed the dianion to induce large upfield paramagnetic shifts of the exo-NH signal of fac-[Re(CO)(3)(dipn)]PF(6). This dianion shows promise as an outer-sphere hydrogen-bonding paramagnetic shift reagent.

  17. Facet-Dependent Cr(VI) Adsorption of Hematite Nanocrystals.

    PubMed

    Huang, Xiaopeng; Hou, Xiaojing; Song, Fahui; Zhao, Jincai; Zhang, Lizhi

    2016-02-16

    In this study, the adsorption process of Cr(VI) on the hematite facets was systematically investigated with synchrotron-based Cr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, density-functional theory calculation, and surface complexation models. Structural model fitting of EXAFS spectroscopy suggested that the interatomic distances of Cr-Fe were, respectively, 3.61 Å for the chromate coordinated hematite nanoplates with exposed {001} facets, 3.60 and 3.30 Å for the chromate coordinated hematite nanorods with exposed {001} and {110} facets, which were characteristic of inner-sphere complexation. In situ ATR-FTIR spectroscopy analysis confirmed the presence of two inner-sphere surface complexes with C3ν and C2ν symmetry, while the C3ν and C2ν species were assigned to monodentate and bidentate inner-sphere surface complexes with average Cr-Fe interatomic distances of 3.60 and 3.30 Å, respectively. On the basis of these experimental and theoretical results, we concluded that HCrO4(-) as dominated Cr(VI) species was adsorbed on {001} and {110} facets in inner-sphere monodentate mononuclear and bidentate binuclear configurations, respectively. Moreover, the Cr(VI) adsorption performance of hematite facets was strongly dependent on the chromate complexes formed on the hematite facets.

  18. Increasing the rate of hydrogen oxidation without increasing the overpotential: A bio-inspired iron molecular electrocatalyst with an outer coordination sphere proton relay

    DOE PAGES

    Darmon, Jonathan M.; Kumar, Neeraj; Hulley, Elliott B.; ...

    2015-03-05

    Oxidation of hydrogen (H₂) to protons and electrons for energy production in fuel cells is catalyzed by platinum, but its low abundance and high cost present drawbacks to widespread adoption. Precisely controlled proton delivery and removal is critical in hydrogenase enzymes in nature that catalyze H₂ oxidation using earth-abundant metals (iron and nickel). Here we report a synthetic iron complex, (Cp C5F4N)Fe(P EtN (CH2)3NMe2PEt)(Cl), that serves as a precatalyst for the oxidation of H₂, with turnover frequencies of 290 s⁻¹ in fluorobenzene, under 1 atm of H₂ using 1,4-diazabicyclo[2.2.2]octane (DABCO) as the exogenous base. The cooperative effect of the primary,more » secondary and outer coordination spheres for moving protons in this remarkably fast catalyst emphasizes the key role of pendant amines in mimicking the functionality of the proton pathway in the hydrogenase enzymes.« less

  19. Porous Ceramic Spheres From Cation Exchange Beads

    NASA Technical Reports Server (NTRS)

    Dynys, Fred

    2005-01-01

    This document is a slide presentation that examines the use of a simple templating process to produce hollow ceramic spheres with a pore size of 1 to 10 microns. Using ion exchange process it was determined that the method produces porous ceramic spheres with a unique structure: (i.e., inner sphere surrounded by an outer sphere.)

  20. Structures and Properties of As(OH)3 Adsorption Complexes on Hydrated Mackinawite (FeS) Surfaces: A DFT-D2 Study

    PubMed Central

    2017-01-01

    Reactive mineral–water interfaces exert control on the bioavailability of contaminant arsenic species in natural aqueous systems. However, the ability to accurately predict As surface complexation is limited by the lack of molecular-level understanding of As–water–mineral interactions. In the present study, we report the structures and properties of the adsorption complexes of arsenous acid (As(OH)3) on hydrated mackinawite (FeS) surfaces, obtained from density functional theory (DFT) calculations. The fundamental aspects of the adsorption, including the registries of the adsorption complexes, adsorption energies, and structural parameters are presented. The FeS surfaces are shown to be stabilized by hydration, as is perhaps to be expected because the adsorbed water molecules stabilize the low-coordinated surface atoms. As(OH)3 adsorbs weakly at the water–FeS(001) interface through a network of hydrogen-bonded interactions with water molecules on the surface, with the lowest-energy structure calculated to be an As–up outer-sphere complex. Compared to the water–FeS(001) interface, stronger adsorption was calculated for As(OH)3 on the water–FeS(011) and water–FeS(111) interfaces, characterized by strong hybridization between the S-p and O-p states of As(OH)3 and the surface Fe-d states. The As(OH)3 molecule displayed a variety of chemisorption geometries on the water–FeS(011) and water–FeS(111) interfaces, where the most stable configuration at the water–FeS(011) interface is a bidentate Fe–AsO–Fe complex, but on the water–FeS(111) interface, a monodentate Fe–O–Fe complex was found. Detailed information regarding the adsorption mechanisms has been obtained via projected density of states (PDOS) and electron density difference iso-surface analyses and vibrational frequency assignments of the adsorbed As(OH)3 molecule. PMID:28233994

  1. Characterization of diatomite and its application for the retention of radiocobalt: role of environmental parameters.

    PubMed

    Sheng, Guodong; Dong, Huaping; Li, Yimin

    2012-11-01

    Clay minerals have been extensively studied because of their strong sorption and complexation ability. In this work, diatomite was characterized by using acid-base titration. Retention of radionuclide (60)Co(II) from aqueous solution by sorption onto diatomite was investigated by using batch technique under various environmental conditions such as pH, ionic strength, humic acid (HA), fulvic acid (FA), and temperature. The results indicated that the sorption of Co(II) onto diatomite was strongly dependent on pH. At low pH value, the sorption of Co(II) was dominated by outer-sphere surface complexation and ion exchange with Na(+)/H(+) on diatomite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH value. The D-R model fitted the sorption isotherms better than the Langmuir and Freundlich models. The thermodynamic parameters (ΔH(0), ΔS(0) and ΔG(0)) calculated from the temperature-dependent sorption isotherms suggested that the sorption of Co(II) was an endothermic and spontaneous process. In addition, diatomite showed higher sorption capacity than that of lots of the sorbents reported in the literatures we surveyed. From the results of Co(II) removal by diatomite, the optimum reaction conditions can be obtained for the maximum removal of Co(II) from water. It is clear that the best pH values of the system to remove Co(II) from solution by using diatomite are 7-8. Considering the low cost and effective disposal of Co(II)-contaminated wastewaters, the best condition for Co(II) removal is at room temperature and solid content of 0.5 g/L. The results might be important for assessing the potential of practical application of diatomite in Co(II) and related radionuclide pollution management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Equatorial symmetry of Boussinesq convective solutions in a rotating spherical shell allowing rotation of the inner and outer spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Keiji; Takehiro, Shin-ichi; Yamada, Michio

    2014-08-15

    We investigate properties of convective solutions of the Boussinesq thermal convection in a moderately rotating spherical shell allowing the respective rotation of the inner and outer spheres due to the viscous torque of the fluid. The ratio of the inner and outer radii of the spheres, the Prandtl number, and the Taylor number are fixed to 0.4, 1, and 500{sup 2}, respectively. The Rayleigh number is varied from 2.6 × 10{sup 4} to 3.4 × 10{sup 4}. In this parameter range, the behaviours of obtained asymptotic convective solutions are almost similar to those in the system whose inner and outermore » spheres are restricted to rotate with the same constant angular velocity, although the difference is found in the transition process to chaotic solutions. The convective solution changes from an equatorially symmetric quasi-periodic one to an equatorially symmetric chaotic one, and further to an equatorially asymmetric chaotic one, as the Rayleigh number is increased. This is in contrast to the transition in the system whose inner and outer spheres are assumed to rotate with the same constant angular velocity, where the convective solution changes from an equatorially symmetric quasi-periodic one, to an equatorially asymmetric quasi-periodic one, and to equatorially asymmetric chaotic one. The inner sphere rotates in the retrograde direction on average in the parameter range; however, it sometimes undergoes the prograde rotation when the convective solution becomes chaotic.« less

  3. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membranes. Use of cobalt as a paramagnetic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, A.C.

    1982-01-01

    The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and the authors have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, butmore » proton release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. They suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.« less

  4. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membranes: use of cobalt as a paramagnetic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, A.C.

    1982-09-28

    The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and we have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, but protonmore » release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All (i.e., 13% + 54% + 32% = 99%) of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. We suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.« less

  5. Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: results from molecular simulations.

    PubMed

    Greathouse, Jeffery A; Cygan, Randall T

    2006-06-15

    Molecular dynamics simulations were performed to provide a systematic study of aqueous uranyl adsorption onto the external surface of 2:1 dioctahedral clays. Our understanding of this key process is critical in predicting the fate of radioactive contaminants in natural groundwaters. These simulations provide atomistic detail to help explain experimental trends in uranyl adsorption onto natural media containing smectite clays. Aqueous uranyl concentrations ranged from 0.027 to 0.162 M. Sodium ions and carbonate ions (0.027-0.243 M) were also present in the aqueous regions to more faithfully model a stream of uranyl-containing groundwater contacting a mineral system comprised of Na-smectite. No adsorption occurred near the pyrophyllite surface, and there was little difference in uranyl adsorption onto the beidellite and montmorillonite, despite the difference in location of clay layer charge between the two. At low uranyl concentration, the pentaaquouranyl complex dominates in solution and readily adsorbs to the clay basal plane. At higher uranyl (and carbonate) concentrations, the mono(carbonato) complex forms in solution, and uranyl adsorption decreases. Sodium adsorption onto beidellite occurred both as inner- and outer-sphere surface complexes, again with little effect on uranyl adsorption. Uranyl surface complexes consisted primarily of the pentaaquo cation (85%) and to a lesser extent the mono(carbonato) species (15%). Speciation diagrams of the aqueous region indicate that the mono(carbonato)uranyl complex is abundant at high ionic strength. Oligomeric uranyl complexes are observed at high ionic strength, particularly near the pyrophyllite and montmorillonite surfaces. Atomic density profiles of water oxygen and hydrogen atoms are nearly identical near the beidellite and montmorillonite surfaces. Water structure therefore appears to be governed by the presence of adsorbed ions and not by the location of layer charge associated with the substrate. The water oxygen density near the pyrophyllite surface is similar to the other cases, but the hydrogen density profile indicates reduced hydrogen bonding between adsorbed water molecules and the surface.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Versino, Daniele; Brock, Jerry Steven

    In this manuscript we describe test cases for the dynamic sphere problem in presence of finite deformations. The spherical shell in exam is made of a homogeneous, isotropic or transverse isotropic material and elastic and elastic-plastic material behaviors are considered. Twenty cases, (a) to (t), are thus defined combining material types and boundary conditions. The inner surface radius, the outer surface radius and the material's density are kept constant for all the considered test cases and their values are r i = 10mm, r o = 20mm and p = 1000Kg/m 3 respectively.

  7. Molecular-Scale Study of Aspartate Adsorption on Goethite and Competition with Phosphate.

    PubMed

    Yang, Yanli; Wang, Shengrui; Xu, Yisheng; Zheng, Binghui; Liu, Jingyang

    2016-03-15

    Knowledge of the interfacial interactions between aspartate and minerals, especially its competition with phosphate, is critical to understanding the fate and transport of amino acids in the environment. Adsorption reactions play important roles in the mobility, bioavailability, and degradation of aspartate and phosphate. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) measurements and density functional theory (DFT) calculations were used to investigate the interfacial structures and their relative contributions in single-adsorbate and competition systems. Our results suggest three dominant mechanisms for aspartate: bidentate inner-sphere coordination involving both α- and γ-COO(-), outer-sphere complexation via electrostatic attraction and H-bonding between aspartate NH2 and goethite surface hydroxyls. The interfacial aspartate is mainly governed by pH and is less sensitive to changes of ionic strength and aspartate concentration. The phosphate competition significantly reduces the adsorption capacity of aspartate on goethite. Whereas phosphate adsorption is less affected by the presence of aspartate, including the relative contributions of diprotonated monodentate, monoprotonated bidentate, and nonprotonated bidentate structures. The adsorption process facilitates the removal of bioavailable aspartate and phosphate from the soil solution as well as from the sediment pore water and the overlying water.

  8. Preparation of Geophysical Fluid Flow Experiments ( GeoFlow ) in the Fluid Science Laboratory on ISS

    NASA Astrophysics Data System (ADS)

    Egbers, C.

    The ,,GeoFlow" is an ESA experiment planned for the Fluid Science Laboratory on ISS under the scientific coordination (PI) of the Department of Aerodynamics and Fluidmechanics (LAS) at the Brandenburg Technical University (BTU) of Cottbus, Germany. The objective of the experiment is to study thermal convection in the gap between two concentric rotating (full) spheres. A central symmetric force field similar to the gravity field acting on planets can be produced by applying a high voltage between inner and outer sphere using the dielectrophoretic effect (rotating capacitor). To counter the unidirectional gravity under terrestrial conditions, this experiment requires a microgravity environment. The parameters of the experiment are chosen in analogy to the thermal convective motions in the outer core of the Earth. In analogy to geophysical motions in the Earth's liquid core the exp eriment can rotate as solid body as well as differential (inner to outer). Thermal convection is produced by heating the inner sphere and cooling the outer ones. Furtheron, the variation of radius ratio between inner and outer sphere is foreseen as a parameter variation. The flows to be investigated will strongly depend on the gap width and on the Prandtl number. Results of preparatory experiments and numerical simulation of the space experiment will be presented. Funding from DLR under grant 50 WM 0122 is greatfully ackwnoledged.

  9. Comparison of group transfer, inner sphere and outer sphere electron transfer mechanisms for organometallic complexes

    NASA Astrophysics Data System (ADS)

    Our studies of reactions of metal carbonyl cations and anions have shown that metal carbonyl cations can catalyze CO exchange reactions on metal carbonyl anions. This result provides further evidence for a mechanism involving attack of the metal carbonyl anion on a carbon of the metal carbonyl cation in CO(exp 2+) transfer reactions. Reaction of metal carbonyl anions with metal carbonyl halides is a common approach to formation of metal-metal bonds. We have begun to use kinetic data and product analysis to understand the formation of homobimetallic versus heterobimetallic products in such reactions. Initial data indicate a nucleophilic attack, possibly through a ring-slippage mechanism.

  10. Outer-sphere interaction of aluminum and gallium solvates with competitive anions in 1,2-propanediol solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrosyants, S.P.; Buslaeva, E.R.

    1986-04-01

    The interaction of aluminum and gallium solvates with ..pi..-acid ligand in 1,2-propanediol solutions has been investigated. The formation of associates of hexacoordinate aluminum solvates depends on the solvation of the anions in the bulk of the solution or on the faces of the solvento complexes. In the case of gallium the association of the solvates with the anions is determined by two factors: the existence of a configurational equilibrium for the solvento complexes and the preferential solvation of the competitive ..pi..-acid ligands.

  11. Method for producing small hollow spheres

    DOEpatents

    Rosencwaig, Allen; Koo, Jackson C.; Dressler, John L.

    1981-01-01

    A method for producing small hollow spheres of glass having an outer diameter ranging from about 100.mu. to about 500.mu. with a substantially uniform wall thickness in the range of about 0.5-20.mu.. The method involves introducing aqueous droplets of a glass-forming solution into a long vertical drop oven or furnace having varying temperature regions. In one embodiment, one of the temperature regions is lower than both the preceeding region and the subsequent region. One region utilizes a temperature of at least 200.degree. C. higher than the melting point of the glass-forming material in the solution and, for example, may be at least 3 times higher than the temperature of the preceeding region. In addition, there is a sharp temperature gradient between these regions. As each droplet of solution passes through a first region it forms into a gel membrane having a spherical shape and encapsulates the rest of the drop retained in the elastic outer surface and the water entrapped within diffuses rapidly through the thin gel membrane which causes more of the glass-forming material to go out of solution and is incorporated into the gel membrane causing it to grow in size and become hollow. thus produced hollow glass sphere has a sphericity, concentricity, and wall uniformity of better than 5%. The sphere is capable of retaining material of up to at least 100 atmospheres therein over long periods of time. In one embodiment.

  12. Theoretical Elastic Stress Distributions Arising from Discontinuities and Edge Loads in Several Shell-Type Structures

    NASA Technical Reports Server (NTRS)

    Johns, Robert H.; Orange, Thomas W.

    1961-01-01

    The deformation and complete stress distribution are determined for each of the following edge loaded thin shells of revolution: (1) a right circular cylinder, (2) a frustum of a right circular cone, and (3) a portion of a sphere. The locations of the maximum circumferential and meridional stresses on both the inner and outer surfaces are also found. The basic equations for the above were selected from the published literature on the subject and expanded to produce to resultant-stress equations in closed from where practicable to do so. Equations are also developed for the discontinuity shear force and bending moment at each of the following junction: (1) axial change of thickness in a circular cylinder, (2) axial change of thickness in a cone, (3) change of thickness in a portion of a sphere, (4) a cylinder and a cone, (5) a cylinder and a portion of a sphere(6) a cylinder and a flat head, and (7) a cone and a portion of a sphere.

  13. General Method for the Synthesis of Hollow Mesoporous Carbon Spheres with Tunable Textural Properties.

    PubMed

    Mezzavilla, Stefano; Baldizzone, Claudio; Mayrhofer, Karl J J; Schüth, Ferdi

    2015-06-17

    A versatile synthetic procedure to prepare hollow mesoporous carbon spheres (HMCS) is presented here. This approach is based on the deposition of a homogeneous hybrid polymer/silica composite shell on the outer surface of silica spheres through the surfactant-assisted simultaneous polycondensation of silica and polymer precursors in a colloidal suspension. Such composite materials can be further processed to give hollow mesoporous carbon spheres. The flexibility of this method allows for independent control of the morphological (i.e., core diameter and shell thickness) and textural features of the carbon spheres. In particular, it is demonstrated that the size of the pores within the mesoporous shell can be precisely tailored over an extended range (2-20 nm) by simply adjusting the reaction conditions. In a similar fashion, also the specific carbon surface area as well as the total shell porosity can be tuned. Most importantly, the textural features can be adjusted without affecting the dimension or the morphology of the spheres. The possibility to directly modify the shell textural properties by varying the synthetic parameters in a scalable process represents a distinct asset over the multistep hard-templating (nanocasting) routes. As an exemplary application, Pt nanoparticles were encapsulated in the mesoporous shell of HMCS. The resulting Pt@HMCS catalyst showed an enhanced stability during the oxygen reduction reaction, one of the most important reactions in electrocatalysis. This new synthetic procedure could allow the expansion, perhaps even beyond the lab-scale, of advanced carbon nanostructured supports for applications in catalysis.

  14. Selenium adsorption to aluminum-based water treatment residuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ippolito, James A.; Scheckel, Kirk G.; Barbarick, Ken A.

    2009-09-02

    Aluminum-based water treatment residuals (WTR) can adsorb water- and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 h in selenate or selenite solutions at pH values of 5-9, and then analyzed for selenium content. Selenate and selenite adsorption edges were unaffected across the pH range studied. Selenate adsorbed on to WTR, reference mineral phases, and amorphous aluminum hydroxide occurred as outer sphere complexes (relatively loosely bound), while selenite adsorption was identified as inner-sphere complexation (relatively tightly bound). Selenite sorption to WTR inmore » an anoxic environment reduced Se(IV) to Se(0), and oxidation of Se(0) or Se(IV) appeared irreversible once sorbed to WTR. Al-based WTR could play a favorable role in sequestering excess Se in affected water sources.« less

  15. Molecular binding mechanisms of aqueous cadmium and lead to siderophores, bacteria and mineral surfaces

    NASA Astrophysics Data System (ADS)

    Mishra, Bhoopesh

    Recent studies have shown that diverse groups of bacteria adsorb metals to similar extents and uptake can be modeled using a universal adsorption model. In this study, XAFS has been used to resolve whether binding sites determined for single species systems are responsible for adsorption in more complex natural bacterial assemblages. Results obtained from a series of XAFS experiments on pure Gram positive and Gram negative bacterial strains and consortia of bacteria as a function of pH and Cd loading suggests that every bacterial strain has a complex physiology and they are all slightly different from each other. Nevertheless from the metal adsorption chemistry point of view, the main difference between them lies in the site ratio of three fundamental sites only - carboxyl, phosphoryl and sulfide. Two completely different consortia of bacteria (obtained from natural river water, and soil system with severe organic contamination) were successfully modeled in the pH range 3.4--7.8 using the EXAFS models developed for single species systems. Results thus obtained can potentially have very high impact on the modeling of the complex bacterial systems in realistic geological settings, leading to further refinement and development of robust remediation strategies for metal contamination at macroscopic level. In another study, solution speciation of Pb and Cd with DFO-B has been examined using a combination of techniques (ICP, TOC, thermodynamic modeling and XAFS). Results indicate that Pb does not complex with DFO-B at all until about pH 3.5, but forms a totally caged structure at pH 7.5. At intermediate pH conditions, mixture of species (one and two hydroxamate groups complexed) is formed. Cd on the other hand, does not complex until pH 5, forms intermediate complexes at pH 8 and is totally chelated at pH 9. Further studies were conducted for Pb sorption to mineral surface kaolinite with and without DFO-B. In the absence of DFO-B, results suggest outer sphere and inner sphere sorption of Pb on kaolinite surface at acidic and circumneutral pH conditions respectively. In the presence of DFO-B, bulk sorption studies indicated that Pb sorption is enhanced in the presence of DFO-B around pH 6 and inhibited above pH 6.5. This was confirmed by x-ray fluorescence measurements. Extended XAFS study clearly indicated unwrapping of DFO-B molecule at the surface. Our study has unambiguously recognized it as a "Type A" ternary complex ("Type A" complex means surface-metal-ligand type of interaction). Taken together, bulk adsorption measurements and XAFS experiments represent a powerful approach for determining and modeling metal speciation and adsorption.

  16. Effect of grain-coating mineralogy on nitrate and sulfate storage in the unsaturated zone

    USGS Publications Warehouse

    Reilly, T.J.; Fishman, N.S.; Baehr, A.L.

    2009-01-01

    Unsaturated-zone sediments and the chemistry of shallow groundwater underlying a small (???8-km2) watershed were studied to identify the mechanisms responsible for anion storage within the Miocene Bridgeton Formation and weathered Coastal Plain deposits in southern New Jersey. Lower unsaturated-zone sediments and shallow groundwater samples were collected and concentrations of selected ions (including NO3- and SO42-) from 11 locations were determined. Grain size, sorting, and color of the lower unsaturated-zone sediments were determined and the mineralogy of these grains and the composition of coatings were analyzed by petrographic examination, scanning electron microscopy and energy dispersive analysis of x-rays, and quantitative whole-rock x-ray diffraction. The sediment grains, largely quartz and chert (80-94% w/w), are coated with a very fine-grained (<20 ??m), complex mixture of kaolinite, halloysite, goethite, and possibly gibbsite and lepidocrocite. The mineral coatings are present as an open fabric, resulting in a large surface area in contact with pore water. Significant correlations between the amount of goethite in the grain coatings and the concentration of sediment-bound SO42- were observed, indicative of anion sorption. Other mineral-chemical relations indicate that negatively charged surfaces and competition with SO 42- results in exclusion of NO3- from inner sphere exchange sites. The observed NO3- storage may be a result of matrix forces within the grain coatings and outer sphere complexation. The results of this study indicate that the mineralogy of grain coatings can have demonstrable effects on the storage of NO 3- and SO42- in the unsaturated zone. ?? Soil Science Society of America. All rights reserved.

  17. Interactions between Silicon Oxide Nanoparticles (SONPs) and U(VI) Contaminations: Effects of pH, Temperature and Natural Organic Matters

    PubMed Central

    Wu, Hanyu; Li, Ping; Pan, Duoqiang; Yin, Zhuoxin; Fan, Qiaohui; Wu, Wangsuo

    2016-01-01

    The interactions between contaminations of U(VI) and silicon oxide nanoparticles (SONPs), both of which have been widely used in modern industry and induced serious environmental challenge due to their high mobility, bioavailability, and toxicity, were studied under different environmental conditions such as pH, temperature, and natural organic matters (NOMs) by using both batch and spectroscopic approaches. The results showed that the accumulation process, i.e., sorption, of U(VI) on SONPs was strongly dependent on pH and ionic strength, demonstrating that possible outer- and/or inner-sphere complexes were controlling the sorption process of U(VI) on SONPs in the observed pH range. Humic acid (HA), one dominated component of NOMs, bounded SONPs can enhance U(VI) sorption below pH~4.5, whereas restrain at high pH range. The reversible sorption of U(VI) on SONPs possibly indicated that the outer-sphere complexes were prevalent at pH 5. However, an irreversible interaction of U(VI) was observed in the presence of HA (Fig 1). It was mainly due to the ternary SONPs-HA-U(VI) complexes (Type A Complexes). After SONPs adsorbed U(VI), the particle size in suspension was apparently increased from ~240 nm to ~350 nm. These results showed that toxicity of both SONPs and U(VI) will decrease to some extent after the interaction in the environment. These findings are key for providing useful information on the possible mutual interactions among different contaminants in the environment. PMID:26930197

  18. Complexation of carboxylate on smectite surfaces.

    PubMed

    Liu, Xiandong; Lu, Xiancai; Zhang, Yingchun; Zhang, Chi; Wang, Rucheng

    2017-07-19

    We report a first principles molecular dynamics (FPMD) study of carboxylate complexation on clay surfaces. By taking acetate as a model carboxylate, we investigate its inner-sphere complexes adsorbed on clay edges (including (010) and (110) surfaces) and in interlayer space. Simulations show that acetate forms stable monodentate complexes on edge surfaces and a bidentate complex with Ca 2+ in the interlayer region. The free energy calculations indicate that the complexation on edge surfaces is slightly more stable than in interlayer space. By integrating pK a s and desorption free energies of Al coordinated water calculated previously (X. Liu, X. Lu, E. J. Meijer, R. Wang and H. Zhou, Geochim. Cosmochim. Acta, 2012, 81, 56-68; X. Liu, J. Cheng, M. Sprik, X. Lu and R. Wang, Geochim. Cosmochim. Acta, 2014, 140, 410-417), the pH dependence of acetate complexation has been revealed. It shows that acetate forms inner-sphere complexes on (110) in a very limited mildly acidic pH range while it can complex on (010) in the whole common pH range. The results presented in this study form a physical basis for understanding the geochemical processes involving clay-organics interactions.

  19. In situ spectroscopic identification of neptunium(V) inner-sphere complexes on the hematite-water interface.

    PubMed

    Müller, Katharina; Gröschel, Annett; Rossberg, André; Bok, Frank; Franzen, Carola; Brendler, Vinzenz; Foerstendorf, Harald

    2015-02-17

    Hematite plays a decisive role in regulating the mobility of contaminants in rocks and soils. The Np(V) reactions at the hematite-water interface were comprehensively investigated by a combined approach of in situ vibrational spectroscopy, X-ray absorption spectroscopy and surface complexation modeling. A variety of sorption parameters such as Np(V) concentration, pH, ionic strength, and the presence of bicarbonate was considered. Time-resolved IR spectroscopic sorption experiments at the iron oxide-water interface evidenced the formation of a single monomer Np(V) inner-sphere sorption complex. EXAFS provided complementary information on bidentate edge-sharing coordination. In the presence of atmospherically derived bicarbonate the formation of the bis-carbonato inner-sphere complex was confirmed supporting previous EXAFS findings.1 The obtained molecular structure allows more reliable surface complexation modeling of recent and future macroscopic data. Such confident modeling is mandatory for evaluating water contamination and for predicting the fate and migration of radioactive contaminants in the subsurface environment as it might occur in the vicinity of a radioactive waste repository or a reprocessing plant.

  20. An Isotopic Exchange Kinetic Model to Assess the Speciation of Metal Available Pool in Soil: The Case of Nickel.

    PubMed

    Zelano, I O; Sivry, Y; Quantin, C; Gélabert, A; Maury, A; Phalyvong, K; Benedetti, M F

    2016-12-06

    In this study an innovative approach is proposed to predict the relative contribution of each mineral phase to the total metal availability in soils, which, in other words, could be called the available metal fractionation. Through the use of isotopic exchange kinetics (IEK) performed on typical Ni bearing phases (i.e., two types of serpentines, chlorite, smectite, goethite, and hematite) the isotopic exchange and metal-solid interaction processes are connected, considering both the thermodynamic and kinetic aspects. Results of Ni IEK experiments on mineral phases are fitted with a pseudo-first order kinetic model. For each Ni bearing phase, this allows to (i) determine the number and size of exchangeable pools (E Ni(i) ), (ii) assess their corresponding kinetic constants (k (i) ), and (iii) discuss the mechanism of Ni isotopic exchange at mineral surfaces. It is shown that all the phases investigated, with the only exception of hematite, present at least two distinct reactive pools with significantly different k (i) values. Results suggest also that metal involved in outer-sphere complexes would display isotopic exchange between 100 and 1000 times faster than metal involved in inner-sphere complexes, and that the presence of high and low affinity sites may influence the rate of isotopic exchange up to 1 order of magnitude. Moreover, the method developed represents a tool to predict and estimate Ni mobility and availability in natural soil samples on the basis of soil mineral composition, providing information barely obtained with other techniques.

  1. Peroxide-modified titanium dioxide: a chemical analog of putative Martian soil oxidants

    NASA Technical Reports Server (NTRS)

    Quinn, R. C.; Zent, A. P.

    1999-01-01

    Hydrogen peroxide chemisorbed on titanium dioxide (peroxide-modified titanium dioxide) is investigated as a chemical analog to the putative soil oxidants responsible for the chemical reactivity seen in the Viking biology experiments. When peroxide-modified titanium dioxide (anatase) was exposed to a solution similar to the Viking labeled release (LR) experiment organic medium, CO2 gas was released into the sample cell headspace. Storage of these samples at 10 degrees C for 48 hr prior to exposure to organics resulted in a positive response while storage for 7 days did not. In the Viking LR experiment, storage of the Martian surface samples for 2 sols (approximately 49 hr) resulted in a positive response while storage for 141 sols essentially eliminated the initial rapid release of CO2. Heating the peroxide-modified titanium dioxide to 50 degrees C prior to exposure to organics resulted in a negative response. This is similar to, but not identical to, the Viking samples where heating to approximately 46 degrees C diminished the response by 54-80% and heating to 51.5 apparently eliminated the response. When exposed to water vapor, the peroxide-modified titanium dioxide samples release O2 in a manner similar to the release seen in the Viking gas exchange experiment (GEx). Reactivity is retained upon heating at 50 degrees C for three hours, distinguishing this active agent from the one responsible for the release of CO2 from aqueous organics. The release of CO2 by the peroxide-modified titanium dioxide is attributed to the decomposition of organics by outer-sphere peroxide complexes associated with surface hydroxyl groups, while the release of O2 upon humidification is attributed to more stable inner-sphere peroxide complexes associated with Ti4+ cations. Heating the peroxide-modified titanium dioxide to 145 degrees C inhibited the release of O2, while in the Viking experiments heating to this temperature diminished but did not eliminated the response. Although the thermal stability of the titanium-peroxide complexes in this work is lower than the stability seen in the Viking experiments, it is expected that similar types of complexes will form in titanium containing minerals other than anatase and the stability of these complexes will vary with surface hydroxylation and mineralogy.

  2. Active Hydrogenation Catalyst with a Structured, Peptide-Based Outer-Coordination Sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Avijita; Buchko, Garry W.; Reback, Matthew L.

    2012-10-05

    The synthesis, catalytic activity, and structural features of a rhodium-based hydrogenation catalyst containing a phosphine ligand coupled to a 14-residue peptide are reported. Both CD and NMR spectroscopy show that the peptide adopts a helical structure in 1:1:1 TFE/MeCN/H2O that is maintained when the peptide is attached to the ligand and when the ligand is attached to the metal complex. The metal complex hydrogenates aqueous solutions of 3-butenol to 1-butanol at 360 ± 50 turnovers/Rh/h at 294 K. This peptide- based catalyst represents a starting point for developing and characterizing a peptide-based outer-coordination sphere that can be used to introducemore » enzyme-like features into molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (AJ, JCL and WJS), the Office of Science Early Career Research Program through the Office of Basic Energy Sciences (GWB, MLR and WJS). Part of the research was conducted at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by U.S. Department of Energy’s Office of Biolog-ical and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.« less

  3. Dynamic domains of the Derviche Tourneur sodium experiment: Simulations of a spherical magnetized Couette flow

    NASA Astrophysics Data System (ADS)

    Kaplan, E. J.; Nataf, H.-C.; Schaeffer, N.

    2018-03-01

    The Derviche Tourneur sodium experiment, a spherical Couette magnetohydrodynamics experiment with liquid sodium as the medium and a dipole magnetic field imposed from the inner sphere, recently underwent upgrades to its diagnostics to better characterize the flow and induced magnetic fields with global rotation. In tandem with the upgrades, a set of direct numerical simulations were run to give a more complete view of the fluid and magnetic dynamics at various rotation rates of the inner and outer spheres. These simulations reveal several dynamic regimes, determined by the Rossby number. At positive differential rotation there is a regime of quasigeostrophic flow, with low levels of fluctuations near the outer sphere. Negative differential rotation shows a regime of what appear to be saturated hydrodynamic instabilities at low negative differential rotation, followed by a regime where filamentary structures develop at low latitudes and persist over five to ten differential rotation periods as they drift poleward. We emphasize that all these coherent structures emerge from turbulent flows. At least some of them seem to be related to linear instabilities of the mean flow. The simulated flows can produce the same measurements as those that the physical experiment can take, with signatures akin to those found in the experiment. This paper discusses the relation between the internal velocity structures of the flow and their magnetic signatures at the surface.

  4. The unexpected mechanism underlying the high-valent mono-oxo-rhenium(V) hydride catalyzed hydrosilylation of C=N functionalities: insights from a DFT study.

    PubMed

    Wang, Jiandi; Wang, Wenmin; Huang, Liangfang; Yang, Xiaodi; Wei, Haiyan

    2015-04-07

    In this study, we theoretically investigated the mechanism underlying the high-valent mono-oxo-rhenium(V) hydride Re(O)HCl2(PPh3)2 (1) catalyzed hydrosilylation of C=N functionalities. Our results suggest that an ionic S(N)2-Si outer-sphere pathway involving the heterolytic cleavage of the Si-H bond competes with the hydride pathway involving the C=N bond inserted into the Re-H bond for the rhenium hydride (1) catalyzed hydrosilylation of the less steric C=N functionalities (phenylmethanimine, PhCH=NH, and N-phenylbenzylideneimine, PhCH=NPh). The rate-determining free-energy barriers for the ionic outer-sphere pathway are calculated to be ∼28.1 and 27.6 kcal mol(-1), respectively. These values are slightly more favorable than those obtained for the hydride pathway (by ∼1-3 kcal mol(-1)), whereas for the large steric C=N functionality of N,1,1-tri(phenyl)methanimine (PhCPh=NPh), the ionic outer-sphere pathway (33.1 kcal mol(-1)) is more favorable than the hydride pathway by as much as 11.5 kcal mol(-1). Along the ionic outer-sphere pathway, neither the multiply bonded oxo ligand nor the inherent hydride moiety participate in the activation of the Si-H bond. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers

    DOE PAGES

    Greathouse, Jeffery A.; Cygan, Randall T.; Fredrich, Joanne T.; ...

    2016-01-20

    In this study, the diffusion of water and ions in the interlayer region of smectite clay minerals represents a direct probe of the type and strength of clay–fluid interactions. Interlayer diffusion also represents an important link between molecular simulation and macroscopic experiments. Here we use molecular dynamics simulation to investigate trends in cation and water diffusion in montmorillonite interlayers, looking specifically at the effects of layer charge, interlayer cation and cation charge (sodium or calcium), water content, and temperature. For Na-montmorillonite, the largest increase in ion and water diffusion coefficients occurs between the one-layer and two-layer hydrates, corresponding to themore » transition from inner-sphere to outer-sphere surface complexes. Calculated activation energies for ion and water diffusion in Na-montmorillonite are similar to each other and to the water hydrogen bond energy, suggesting the breaking of water–water and water–clay hydrogen bonds as a likely mechanism for interlayer diffusion. A comparison of interlayer diffusion with that of bulk electrolyte solutions reveals a clear trend of decreasing diffusion coefficient with increasing electrolyte concentration, and in most cases the interlayer diffusion results are nearly coincident with the corresponding bulk solutions. Trends in electrical conductivities computed from the ion diffusion coefficients are also compared.« less

  6. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2018-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  7. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2016-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  8. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2014-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  9. Formation of mixed organic layers by stepwise electrochemical reduction of diazonium compounds.

    PubMed

    Santos, Luis; Ghilane, Jalal; Lacroix, Jean Christophe

    2012-03-28

    This work describes the formation of a mixed organic layer covalently attached to a carbon electrode. The strategy adopted is based on two successive electrochemical reductions of diazonium salts. First, bithiophene phenyl (BTB) diazonium salt is reduced using host/guest complexation in a water/cyclodextrin (β-CD) solution. The resulting layer consists of grafted BTB oligomers and cyclodextrin that can be removed from the surface. The electrochemical response of several outer-sphere redox probes on such BTB/CD electrodes is close to that of a diode, thanks to the easily p-dopable oligo(BTB) moieties. When CD is removed from the surface, pinholes are created and this diode like behavior is lost. Following this, nitrophenyl (NP) diazonium is reduced to graft a second component. Electrochemical study shows that upon grafting NP insulating moieties, the diode-like behavior of the layer is restored which demonstrates that NP is grafted predominately in the empty spaces generated by β-CD desorption. As a result, a mixed BTB/NP organic layer covalently attached to a carbon electrode is obtained using a stepwise electrochemical reduction of two diazonium compounds.

  10. Stern Layer Structure and Energetics at Mica-Water Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourg, Ian C.; Lee, Sang Soo; Fenter, Paul

    2017-04-11

    The screening of surface charge by dissolved ions at solid liquid interfaces in the region of interfacial fluid known as the electrical double layer (EDL)-plays a recurrent role in surface science, from ion adsorption to colloidal mechanics to the transport properties of nanoporous media. A persistent unknown in theories of EDL-related phenomena is the structure of the Stern layer, the near-surface portion of the EDL where water molecules and adsorbed ions form specific short-range interactions with surface atoms. Here, we describe a set of synchrotron X-ray reflectivity (XRR) experiments and molecular dynamics (MD) simulations carried out under identical conditions formore » a range of 0.1 M alkali chloride (Li-, Na-, K-, Rb-, or CsCl) solutions on the basal surface of muscovite mica, a mineral isostructural to phyllosilicate clay minerals and one of the most widely studied reference surfaces in interfacial science. Our XRR and MD simulation results provide a remarkably consistent view of the structure and energetics of the Stern layer, with some discrepancy on the fraction of the minor outer-sphere component of Rb and on the adsorption energetics of Li. The results of both techniques, along with surface complexation model calculations, provide insight into the sensitivity of water structure and ion adsorption to surface topography and the type of adsorbed counterion.« less

  11. Surface complexation model for multisite adsorption of copper(II) onto kaolinite

    NASA Astrophysics Data System (ADS)

    Peacock, Caroline L.; Sherman, David M.

    2005-08-01

    We measured the adsorption of Cu(II) onto kaolinite from pH 3-7 at constant ionic strength. EXAFS spectra show that Cu(II) adsorbs as (CuO 4H n) n-6 and binuclear (Cu 2O 6H n) n-8 inner-sphere complexes on variable-charge ≡AlOH sites and as Cu 2+ on ion exchangeable ≡X-H + sites. Sorption isotherms and EXAFS spectra show that surface precipitates have not formed at least up to pH 6.5. Inner-sphere complexes are bound to the kaolinite surface by corner-sharing with two or three edge-sharing Al(O,OH) 6 polyhedra. Our interpretation of the EXAFS data are supported by ab initio (density functional theory) geometries of analog clusters simulating Cu complexes on the {110} and {010} crystal edges and at the ditrigonal cavity sites on the {001}. Having identified the bidentate (≡AlOH) 2Cu(OH) 20, tridentate (≡Al 3O(OH) 2)Cu 2(OH) 30 and ≡X-Cu 2+ surface complexes, the experimental copper(II) adsorption data can be fit to the reactions

  12. Rotational Splittings of Acoustic Modes in an Experimental Model of a Planetary Core

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Stone, D.; Lathrop, D. P.

    2014-12-01

    Planetary zonal flows can be probed in principle using the tools of helioseismology. We explore this technique using laboratory experiments where the measurement of zonal flows is also of geophysical relevance. The experiments are carried out in a device with a geometry similar to that of Earth's core. It consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter inner sphere. Air between the inner sphere and outer shell is used as the working fluid. A turbulent shear flow is driven in the air by independently rotating the inner sphere and outer shell. Acoustic modes are excited in the vessel with a speaker, and microphones are used to measure the rotational splittings of these modes. The radial profile of azimuthal velocities is inferred from these splittings, in an approach analogous to that used in helioseismology to determine solar velocity profiles. By varying the inner and outer rotation rates, different turbulent states can be investigated. Comparison is made to previous experimental investigations of turbulent spherical Couette flow. These experiments also serve as a test of this diagnostic, which may be used in the future in liquid sodium experiments, providing information on zonal flows in hydromagnetic experiments.

  13. Acoustic scattering by arbitrary distributions of disjoint, homogeneous cylinders or spheres.

    PubMed

    Hesford, Andrew J; Astheimer, Jeffrey P; Waag, Robert C

    2010-05-01

    A T-matrix formulation is presented to compute acoustic scattering from arbitrary, disjoint distributions of cylinders or spheres, each with arbitrary, uniform acoustic properties. The generalized approach exploits the similarities in these scattering problems to present a single system of equations that is easily specialized to cylindrical or spherical scatterers. By employing field expansions based on orthogonal harmonic functions, continuity of pressure and normal particle velocity are directly enforced at each scatterer using diagonal, analytic expressions to eliminate the need for integral equations. The effect of a cylinder or sphere that encloses all other scatterers is simulated with an outer iterative procedure that decouples the inner-object solution from the effect of the enclosing object to improve computational efficiency when interactions among the interior objects are significant. Numerical results establish the validity and efficiency of the outer iteration procedure for nested objects. Two- and three-dimensional methods that employ this outer iteration are used to measure and characterize the accuracy of two-dimensional approximations to three-dimensional scattering of elevation-focused beams.

  14. From Rising Bubble to RNA/DNA and Bacteria

    NASA Astrophysics Data System (ADS)

    Marks, Roman; Cieszyńska, Agata; Wereszka, Marzena; Borkowski, Wojciech

    2017-04-01

    In this study we have focused on the movement of rising bubbles in a salty water body. Experiments reviled that free buoyancy movement of bubbles forces displacement of ions, located on the outer side of the bubble wall curvatures. During the short moment of bubble passage, all ions in the vicinity of rising bubble, are separated into anions that are gathered on the bubble upper half sphere and cations that slip along the bottom concave half-sphere of a bubble and develop a sub-bubble vortex. The principle of ions separation bases on the differences in displacement resistance. In this way, relatively heavier and larger, thus more resistant to displacement anions are gathered on the rising bubble upper half sphere, while smaller and lighter cations are assembled on the bottom half sphere and within the sub-bubble vortex. The acceleration of motion generates antiparallel rotary of bi-ionic domains, what implies that anions rotate in clockwise (CW) and cationic in counter-clockwise (CCW) direction. Then, both rotational systems may undergo splicing and extreme condensing by bi-pirouette narrowing of rotary. It is suggested that such double helix motion of bi-ionic domains creates RNA/DNA molecules. Finally, when the bubble reaches the water surface it burst and the preprocessed RNA/DNA matter is ejected into the droplets. Since that stage, droplet is suspended in positively charged troposphere, thus the cationic domain is located in the droplet center, whilst negative ions are attracted to configure the outer areola. According to above, the present study implies that the rising bubbles in salty waters may incept synergistic processing of matter resulting in its rotational/spherical organization that led to assembly of RNA/DNA molecules and bacteria cells.

  15. Fabrication of sub-micrometer-sized jingle bell-shaped hollow spheres from multilayered core-shell particles.

    PubMed

    Gu, Shunchao; Kondo, Tomohiro; Mine, Eiichi; Nagao, Daisuke; Kobayashi, Yoshio; Konno, Mikio

    2004-11-01

    Jingle bell-shaped hollow spheres were fabricated starting from multilayered particles composed of a silica core, a polystyrene inner shell, and a titania outer shell. Composite particles of silica core-polystyrene shell, synthesized by coating a 339-nm-sized silica core with a polystyrene shell of thickness 238 nm in emulsion polymerization, were used as core particles for a succeeding titania-coating. A sol-gel method was employed to form the titania outer shell with a thickness of 37 nm. The inner polystyrene shell in the multilayered particles was removed by immersing them in tetrahydrofuran. These successive procedures could produce jingle bell-shaped hollow spheres that contained a silica core in the titania shell.

  16. Incorporation of polyoxotungstate complexes in silica spheres and in situ formation of tungsten trioxide nanoparticles.

    PubMed

    Zhao, Yuanyuan; Fan, Haimei; Li, Wen; Bi, Lihua; Wang, Dejun; Wu, Lixin

    2010-09-21

    In this paper, we demonstrated a new convenient route for in situ fabrication of well separated small sized WO(3) nanoparticles in silica spheres, through a predeposition of surfactant encapsulated polyoxotungates as tungsten source, and followed by a calcination process. In a typical procedure, selected polyoxotungates with different charges were enwrapped with dioctadecyldimethylammonium cations through electrostatic interaction. Elemental analysis, thermogravimetric analysis, and spectral characterization confirmed the formation of prepared complexes with the anticipated chemical structure. The complexes were then phase-transferred into aqueous solution that predissolved surfactant cetyltrimethylammonium bromide, and finally incorporated into silica spheres through a joint sol-gel reaction with tetraethyl orthosilicate in a well dispersed state under the protection of organic layer for polyoxotungates from the alkaline reaction condition. Transmission electron microscopic images illustrated the well dispersed WO(3) nanoparticles in the size range of ca. 2.2 nm in the silica spheres after the calcination at 465 °C. The sizes of both the silica spheres and WO(3) nanoparticles could be adjusted independently through changing the doping content to a large extent. Meanwhile, the doped polyoxotungate complexes acted as the template for the mesoporous structure in silica spheres after the calcination. Along with the increase of doping content and surfactant, the mesopore size changed little (2.0-2.9 nm), but the specific surface areas increased quite a lot. Importantly, the WO(3)-nanoparticle-doped silica spheres displayed an interesting photovoltaic property, which is favorable for the funtionalization of these nanomaterials.

  17. Experimental and Theoretical Approaches for the Surface Interaction between Copper and Activated Sludge Microorganisms at Molecular Scale

    NASA Astrophysics Data System (ADS)

    Luo, Hong-Wei; Chen, Jie-Jie; Sheng, Guo-Ping; Su, Ji-Hu; Wei, Shi-Qiang; Yu, Han-Qing

    2014-11-01

    Interactions between metals and activated sludge microorganisms substantially affect the speciation, immobilization, transport, and bioavailability of trace heavy metals in biological wastewater treatment plants. In this study, the interaction of Cu(II), a typical heavy metal, onto activated sludge microorganisms was studied in-depth using a multi-technique approach. The complexing structure of Cu(II) on microbial surface was revealed by X-ray absorption fine structure (XAFS) and electron paramagnetic resonance (EPR) analysis. EPR spectra indicated that Cu(II) was held in inner-sphere surface complexes of octahedral coordination with tetragonal distortion of axial elongation. XAFS analysis further suggested that the surface complexation between Cu(II) and microbial cells was the distorted inner-sphere coordinated octahedra containing four short equatorial bonds and two elongated axial bonds. To further validate the results obtained from the XAFS and EPR analysis, density functional theory calculations were carried out to explore the structural geometry of the Cu complexes. These results are useful to better understand the speciation, immobilization, transport, and bioavailability of metals in biological wastewater treatment plants.

  18. A study on adsorption mechanism of organoarsenic compounds on ferrihydrite by XAFS

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Takahashi, Y.; Yamaguchi, N.

    2013-04-01

    Anthropogenic organoarsenic compounds which were used such as agrochemicals, pesticides, and herbicides can have a potential as a source of arsenic pollution in water. In the process, the adsorption of arsenic onto mineral surface in soil may play an important role to affect arsenic distribution in solid-water interface. However, adsorption structures of organoarsenic compounds on the iron-(oxyhydr)oxides are not well known. In this study, extended X-ray absorption fine structure (EXAFS) spectroscopy was employed to know the adsorption structure of methyl- and phenyl-substituted organoarsenic compounds (methylarsonic acid (MMA), dimethylarsinic acid (DMA), phenylarsonic acid (PAA), and diphenylarsinic acid (DPAA) onto ferrihydrite which can be a strong adsorbent of arsenic. EXAFS analysis suggests that the formation of inner-sphere surface complex for all organoarsenic compounds with ferrihydrite regardless of the organic functional groups and the number of substitution. The As-Fe distances are around 3.27 , which suggests both mono-and bi-dentate inner-sphere complexes by DFT calculations. The corresponding coordination numbers (CNs) are less than two, suggesting that coexistence of both structures of inner-sphere complexes.

  19. Mechanisms and Rates of U(VI) Reduction by Fe(II) in Homogeneous Aqueous Solution and the Role of U(V) Disproportionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Richard N.; Rosso, Kevin M.

    Molecular-level pathways in the aqueous redox transformation of uranium by iron remain unclear, despite the importance of this knowledge for predicting uranium transport and distribution in natural and engineered environments. As the relative importance of homogeneous versus heterogeneous pathways is difficult to probe experimentally, here we apply computational molecular simulation to isolate rates of key one electron transfer reactions in the homogeneous pathway. By comparison to experimental observations the role of the heterogeneous pathway also becomes clear. Density functional theory (DFT) and Marcus theory calculations for all primary monomeric species at pH values ≤7 show for UO22+ and its hydrolysismore » species UO2OH+ and UO2(OH)20 that reduction by Fe2+ is thermodynamically favorable, though kinetically limited for UO22+. An inner-sphere encounter complex between UO2OH+ and Fe2+ was the most stable for the first hydrolysis species and displayed an electron transfer rate constant ket = 4.3 × 103 s-1. Three stable inner- and outer-sphere encounter complexes between UO2(OH)20 and Fe2+ were found, with electron transfer rate constants ranging from ket = 7.6 × 102 to 7.2 × 104 s-1. Homogeneous reduction of these U(VI) hydrolysis species to U(V) is, therefore, predicted to be facile. In contrast, homogeneous reduction of UO2+ by Fe2+ was found to be thermodynamically unfavorable, suggesting the possible importance of U(V)-U(V) disproportionation as a route to U(IV). Calculations on homogeneous disproportionation, however, while yielding a stable outer-sphere U(V)-U(V) encounter complex, indicate that this electron transfer reaction is not feasible at circumneutral pH. Protonation of both axial O atoms of acceptor U(V) (i.e., by H3O+) was found to be a prerequisite to stabilize U(IV), consistent with the experimental observation that the rate of this reaction is inversely correlated with pH. Thus, despite prevailing notions that U(V) is rapidly eliminated by homogeneous disproportionation, this pathway is irrelevant at environmental conditions.« less

  20. Monte Carlo simulation of Hamaker nanospheres coated with dipolar particles

    NASA Astrophysics Data System (ADS)

    Meyra, Ariel G.; Zarragoicoechea, Guillermo J.; Kuz, Victor A.

    2012-01-01

    Parallel tempering Monte Carlo simulation is carried out in systems of N attractive Hamaker spheres dressed with n dipolar particles, able to move on the surface of the spheres. Different cluster configurations emerge for given values of the control parameters. Energy per sphere, pair distribution functions of spheres and dipoles as function of temperature, density, external electric field, and/or the angular orientation of dipoles are used to analyse the state of aggregation of the system. As a consequence of the non-central interaction, the model predicts complex structures like self-assembly of spheres by a double crown of dipoles. This interesting result could be of help in understanding some recent experiments in colloidal science and biology.

  1. Inhibition and oxygen activation in copper amine oxidases.

    PubMed

    Shepard, Eric M; Dooley, David M

    2015-05-19

    Copper-containing amine oxidases (CuAOs) use both copper and 2,4,5-trihydroxyphenylalanine quinone (TPQ) to catalyze the oxidative deamination of primary amines. The CuAO active site is highly conserved and comprised of TPQ and a mononuclear type II copper center that exhibits five-coordinate, distorted square pyramidal coordination geometry with histidine ligands and equatorially and axially bound water in the oxidized, resting state. The active site is buried within the protein, and CuAOs from various sources display remarkable diversity with respect to the composition of the active site channel and cofactor accessibility. Structural and mechanistic factors that influence substrate preference and inhibitor sensitivity and selectivity have been defined. This Account summarizes the strategies used to design selective CuAO inhibitors based on active site channel characteristics, leading to either enhanced steric fits or the trapping of reactive electrophilic products. These findings provide a framework to support the future development of candidate molecules aimed at minimizing the negative side effects associated with drugs containing amine functionalities. This is vital given the existence of human diamine oxidase and vascular adhesion protein-1, which have distinct amine substrate preferences and are associated with different metabolic processes. Inhibition of these enzymes by antifungal or antiprotozoal agents, as well as classic monoamine oxidase (MAO) inhibitors, may contribute to the adverse side effects associated with drug treatment. These observations provide a rationale for the limited clinical value associated with certain amine-containing pharmaceuticals and emphasize the need for more selective AO inhibitors. This Account also discusses the novel roles of copper and TPQ in the chemistry of O2 activation and substrate oxidation. Reduced CuAOs exist in a redox equilibrium between the Cu(II)-TPQAMQ (aminoquinol) and Cu(I)-TPQSQ (semiquinone). Elucidating the roles of Cu(I), TPQSQ, and TPQAMQ in O2 activation, for example, distinguishing inner-sphere versus outer-sphere electron transfer mechanisms, has been actively investigated since the discovery of TPQSQ in 1991 and has only recently been clarified. Kinetics and spectroscopic studies encompassing metal substitution, stopped-flow and temperature-jump relaxation methods, and oxygen kinetic isotope experiments have provided strong support for an inner-sphere electron transfer step from Cu(I) to O2. Data for two enzymes support a mechanism wherein O2 prebinds to a three-coordinate Cu(I) site, yielding a [Cu(II)(η(1)-O2(-1))](+) intermediate, with H2O2 generated from ensuing rate-determining proton coupled electron transfer from TPQSQ. While kinetics data from the cobalt-substituted yeast enzyme indicated that O2 is reduced through an outer-sphere process involving TPQAMQ, new findings with a bacterial CuAO demonstrate that both the Cu(II) and Co(II) forms of the enzyme operate via parallel mechanisms involving metal-superoxide intermediates. Structural observations of a coordinated TPQSQ-Cu(I) complex in two CuAOs supports previous indications that Cu(II)/(I) ligand substitution chemistry may be mechanistically relevant. Substantial evidence indicates that rapid and reversible inner-sphere reduction of O2 at a three-coordinate Cu(I) site occurs, but the existence of a coordinated semiquinone in some AOs suggests that, in these enzymes, an outer-sphere reaction between O2 and TPQSQ may also be possible, since this is expected to be energetically favorable compared with outer-sphere electron transfer from TPQAMQ to O2.

  2. Heat insulating device for low temperature liquefied gas storage tank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, T.; Nishimoto, T.; Sawada, K.

    1978-05-02

    Hitachi Shipbuilding and Engineering Co., Ltd.'s insulation method for spherical LNG containers solves various problems associated with insulating a sphere's three-dimensional curved surface; equalizing the thickness of the insulation, insulating the junctions between insulation blocks, and preventing seawater or LNG from penetrating the insulation barrier in the event of a rupture in the tank and ship's hull. The design incorporates a number of blocks or plates of rigid foam-insulating material bonded to the outer wall; seats for receiving pressing jigs for the bonding operation are secured to the outer wall in the joints between the insulating blocks. The joints aremore » filled with soft synthetic foam (embedding the seats), a moistureproof layer covers the insulating blocks and joints, and a waterproof material covers the moistureproof layer.« less

  3. On the Concentration Gradient across a Spherical Source Washed by Slow Flow

    PubMed Central

    Jaffe, Lionel

    1965-01-01

    A model has been numerically analyzed to help interpret the orienting effects of flow upon cells. The model is a sphere steadily and uniformly emitting a diffusible stuff into a medium otherwise free of it and moving past with Stokes flow. Its properties depend primarily upon the Peclet number, Pe, equal to a · v∞/D, i.e., the sphere's radius, a, times the free stream speed, v∞, over the stuff's diffusion constant, D. As Pe rises, and washing becomes more effective, the average surface concentration, C̄s a falls (Figs. 2 and 5) and the residual material becomes relatively concentrated on the sphere's lee pole (Figs. 2 and 4). Specifically, as Pe rises from 0.1 to 1, the relative concentration gradient, G, rises from 0.7 to 5.0 per cent and to the point where it is rising at about 8 per cent per decade; by Pe 1000, G = 22.1 per cent. From Pe 1 through 1000, G/(1 - C̄s a), or the gradient per concentration deficiency remains at about 26 per cent suggesting that G approaches a ceiling of about 26 per cent. Also from Pe 1 through 1000, the average mass transfer co-efficient nearly equals that previously calculated for spheres maintaining constant surface concentration instead of flux. The complete differential equation without approximations, the Gauss-Seidel method, and an approximation for the outer boundary condition were used. PMID:14268954

  4. Distribution and mobility of lead (Pb), copper (Cu), zinc (Zn), and antimony (Sb) from ammunition residues on shooting ranges for small arms located on mires.

    PubMed

    Mariussen, Espen; Johnsen, Ida Vaa; Strømseng, Arnljot Einride

    2017-04-01

    An environmental survey was performed on shooting ranges for small arms located on minerotrophic mires. The highest mean concentrations of Pb (13 g/kg), Cu (5.2 g/kg), Zn (1.1 g/kg), and Sb (0.83 g/kg) in the top soil were from a range located on a poor minerotrophic and acidic mire. This range had also the highest concentrations of Pb, Cu, Zn, and Sb in discharge water (0.18 mg/L Pb, 0.42 mg/L Cu, 0.63 mg/L Zn, and 65 μg/L Sb) and subsurface soil water (2.5 mg/L Pb, 0.9 mg/L Cu, 1.6 mg/L Zn, and 0.15 mg/L Sb). No clear differences in the discharge of ammunition residues between the mires were observed based on the characteristics of the mires. In surface water with high pH (pH ~7), there was a trend with high concentrations of Sb and lower relative concentrations of Cu and Pb. The relatively low concentrations of ammunition residues both in the soil and soil water, 20 cm below the top soil, indicates limited vertical migration in the soil. Channels in the mires, made by plant roots or soil layer of less decomposed materials, may increase the rate of transport of contaminated surface water into deeper soil layers and ground water. A large portion of both Cu and Sb were associated to the oxidizable components in the peat, which may imply that these elements form inner-sphere complexes with organic matter. The largest portion of Pb and Zn were associated with the exchangeable and pH-sensitive components in the peat, which may imply that these elements form outer-sphere complexes with the peat.

  5. Evaluating the role of acidic, basic, and polar amino acids and dipeptides on a molecular electrocatalyst for H 2 oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boralugodage, Nilusha Priyadarshani; Arachchige, Rajith Jayasingha; Dutta, Arnab

    Amino acids and peptides have been shown to have a significant influence on the H2 production and oxidation reactivity of Ni(P R 2N R’ 2) 2, where P R 2N R’ 2 = 1,5-diaza-3,7-diphosphacyclooctane, R is either phenyl (Ph) or cyclohexyl (Cy), and R’ is either an amino acid or peptide. Most recently, the Ni(P Cy 2Naminoacid 2) 2 complexes (CyAA) have shown enhanced H 2 oxidation rates, water solubility, and in the case of arginine (CyArg) and phenylalanine (CyPhe), electrocatalytic reversibility. Both the backbone –COOH and side chain interactions were shown to be critical to catalytic performance. Here wemore » further investigate the roles of the outer coordination sphere by evaluating amino acids with acidic, basic, and hydrophilic side chains, as well as dipeptides which combine multiple successful features from previous complexes. Six new complexes were prepared, three containing single amino acids: aspartic acid (CyAsp), lysine (CyLys), and serine (CySer) and three containing dipeptides: glycine-phenylalanine (Cy(GlyPhe)), phenylalanine-glycine (Cy(PheGly)), and aspartic acid-phenylananine (Cy(AspPhe)). The resulting catalytic performance demonstrates that complexes need both interactions between side chain and –COOH groups for fast, efficient catalysis. The fastest of all of the catalysts, Cy(AspPhe), had both of these features, while the other dipeptide complexes with an amide replacing the -COOH were both slower; however, the amide group was demonstrated to participate in the proton pathway when side chain interactions are present to position it. Both the hydrophilic and basic side chains, notably lacking in side chain interactions, significantly increased the overpotential, with only modest increases in TOF. Of all of the complexes, only CyAsp was reversible at room temperature, and only in water, the first of these complexes to demonstrate room temperature reversibility in water. These results continue to provide and solidify design rules for controlling reactivity and efficiency of Ni(P 2N 2) 2 complexes with the outer coordination sphere.« less

  6. The WD40 Protein BamB Mediates Coupling of BAM Complexes into Assembly Precincts in the Bacterial Outer Membrane.

    PubMed

    Gunasinghe, Sachith D; Shiota, Takuya; Stubenrauch, Christopher J; Schulze, Keith E; Webb, Chaille T; Fulcher, Alex J; Dunstan, Rhys A; Hay, Iain D; Naderer, Thomas; Whelan, Donna R; Bell, Toby D M; Elgass, Kirstin D; Strugnell, Richard A; Lithgow, Trevor

    2018-05-29

    The β-barrel assembly machinery (BAM) complex is essential for localization of surface proteins on bacterial cells, but the mechanism by which it functions is unclear. We developed a direct stochastic optical reconstruction microscopy (dSTORM) methodology to view the BAM complex in situ. Single-cell analysis showed that discrete membrane precincts housing several BAM complexes are distributed across the E. coli surface, with a nearest neighbor distance of ∼200 nm. The auxiliary lipoprotein subunit BamB was crucial for this spatial distribution, and in situ crosslinking shows that BamB makes intimate contacts with BamA and BamB in neighboring BAM complexes within the precinct. The BAM complex precincts swell when outer membrane protein synthesis is maximal, visual proof that the precincts are active in protein assembly. This nanoscale interrogation of the BAM complex in situ suggests a model whereby bacterial outer membranes contain highly organized assembly precincts to drive integral protein assembly. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. 1H NMR study of inclusion compounds of phenylurea derivatives in β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Dupuy, N.; Barbry, D.; Bria, M.; Marquis, S.; Vrielynck, L.; Kister, J.

    2005-04-01

    Proton nuclear magnetic resonance spectroscopy ( 1H NMR), which has become an important tool for the study "in situ" of β-cyclodextrin (β-CD) complexes, was used to study and structurally characterize the inclusion complexes formed between β-CD and isoproturon, fenuron, monuron and diuron. The high variation of the chemical shifts from the proton located inside the cavity (H-3, H-5 and H-6) coupled with the non variation of the one located outer sphere of the β-CD (H-1, H-2 and H-4) provided clear evidence of the inclusion phenomena. Two-dimensional rotating frame Overhauser effect spectroscopy (ROESY) experiments were carried out to further support the proposed inclusion mode.

  8. Use of beam deflection to control an electron beam wire deposition process

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Hafley, Robert A. (Inventor)

    2013-01-01

    A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.

  9. Assessing the contributions of surface waves and complex rays to far-field Mie scattering by use of the Debye series

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.; Lock, James A.

    1991-01-01

    The contributions of complex rays and the secondary radiation shed by surface waves to scattering by a dielectric sphere are calculated in the context of the Debye series expansion of the Mie scattering amplitudes. Also, the contributions of geometrical rays are reviewed and compared with the Debye series. Interference effects between surface waves, complex waves, and geometrical waves are calculated, and the possibility of observing these interference effects is discussed. Experimental data supporting the observation of a surface wave-geometrical pattern is presented.

  10. Phosphate uptake studies of cross-linked chitosan bead materials.

    PubMed

    Mahaninia, Mohammad H; Wilson, Lee D

    2017-01-01

    A systematic experimental study is reported that provides a molecular based understanding of cross-linked chitosan beads and their adsorption properties in aqueous solution containing phosphate dianion (HPO 4 2- ) species. Synthetically modified chitosan using epichlorohydrin and glutaraldehyde cross-linkers result in surface modified beads with variable hydrophile-lipophile character and tunable HPO 4 2- uptake properties. The kinetic and thermodynamic adsorption properties of cross-linked chitosan beads with HPO 4 2- species were studied in aqueous solution. Complementary structure and physicochemical characterization of chitosan beads via potentiometry, Raman spectroscopy, DSC, and dye adsorption measurements was carried out to establish structure-property relationships. The maximum uptake (Q m ) of bead systems with HPO 4 2- at equilibrium was 52.1mgg -1 ; whereas, kinetic uptake results for chitosan bead/phosphate systems are relatively rapid (0.111-0.113min -1 ) with an intraparticle diffusion rate-limiting step. The adsorption process follows a multi-step pathway involving inner- and outer-sphere complexes with significant changes in hydration. Phosphate uptake strongly depends on the composition and type of cross-linker used for preparation of chitosan beads. The adsorption isotherms and structural characterization of bead systems illustrate the role of surface charge, hydrophile-lipophile balance, adsorption site accessibility, and hydration properties of the chitosan bead surface. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Backscattering from frost on icy satellites in the outer solar system

    NASA Technical Reports Server (NTRS)

    Verbiscer, Anne; Helfenstein, Paul; Veverka, Joseph

    1990-01-01

    Two extreme models are presented of how frost and ice might be intermixed on a typical satellite surface: areal and intimate mixing. Applying such models to selected representative satellite data, it is found that the frost component of the surfaces of these outer satellites must itself be backscattering, unlike its terrestrial counterpart. The difference may arise because frost particles can have much more complex internal textures under the low-temperature and low-gravity conditions of the outer satellites than is the case on earth.

  12. A new 3D multi-fluid dust model: a study of the effects of activity and nucleus rotation on the dust grains' behavior in the cometary environment

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M. R.; Toth, G.; Fougere, N.; Tenishev, V.; Huang, Z.; Jia, X.; Hansen, K. C.; Gombosi, T. I.; Bieler, A. M.; Rubin, M.

    2016-12-01

    Cometary dust observations may deepen our understanding of the role of dust in the formation of comets and in altering the cometary environment. Models including dust grains are in demand to interpret observations and test hypotheses. Several existing models have taken into account the gas-dust interaction, varying sizes of dust grains and the cometary gravitational force. In this work, we develop a multi-fluid dust model based on BATS-R-US in the University of Michigan's Space Weather Modeling Framework (SWMF). This model not only incorporates key features of previous dust models, but also has the capability of simulating time-dependent phenomena. Since the model is running in the rotating comet reference frame with a real shaped nucleus in the computational domain, the fictitious centrifugal and Coriolis forces are included. The boundary condition on the nucleus surface can be set according to the distribution of activity and the solar illumination. The Sun, which drives sublimation and the radiation pressure force, revolves around the comet in this frame. A newly developed numerical mesh is also used to resolve the real shaped nucleus in the center and to facilitate prescription of the outer boundary conditions that accommodate the rotating frame. The inner part of the grid is a box composed of Cartesian cells and the outer surface is a smooth sphere, with stretched cells filled in between the box and the sphere. The effects of the rotating nucleus and the activity region on the surface are discussed and preliminary results are presented. This work has been partially supported by grant NNX14AG84G from the NASA Planetary Atmospheres Program, and US Rosetta contracts JPL #1266313, JPL #1266314 and JPL #1286489.

  13. Hard sphere packings within cylinders.

    PubMed

    Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick

    2016-03-07

    Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chunya; Skelton, Adam A.; Chen, Mingjun

    Here the binding of a negatively charged residue, aspartic acid (Asp) in tripeptide arginine-glycine-aspartic acid, onto a negatively charged hydroxylated rutile (110) surface in aqueous solution, containing divalent (Mg 2+, Ca 2+, or Sr 2+) or monovalent (Na +, K +, or Rb +) cations, was studied by molecular dynamics (MD) simulations. The results indicate that ionic radii and charges will significantly affect the hydration, adsorption geometry, and distance of cations from the rutile surface, thereby regulating the Asp/rutile binding mode. The adsorption strength of monovalent cations on the rutile surface in the order Na + > K + >more » Rb + shows a “reverse” lyotropic trend, while the divalent cations on the same surface exhibit a “regular” lyotropic behavior with decreasing crystallographic radii (the adsorption strength of divalent cations: Sr 2+ > Ca 2+ > Mg 2+). The Asp side chain in NaCl, KCl, and RbCl solutions remains stably H-bonded to the surface hydroxyls and the inner-sphere adsorbed compensating monovalent cations act as a bridge between the COO – group and the rutile, helping to “trap” the negatively charged Asp side chain on the negatively charged surface. In contrast, the mediating divalent cations actively participate in linking the COO– group to the rutile surface; thus the Asp side chain can remain stably on the rutile (110) surface, even if it is not involved in any hydrogen bonds with the surface hydroxyls. Inner- and outer-sphere geometries are all possible mediation modes for divalent cations in bridging the peptide to the rutile surface.« less

  15. Polarized XANES and EXAFS spectroscopic investigation into copper(II) complexes on vermiculite

    NASA Astrophysics Data System (ADS)

    Furnare, Luca J.; Vailionis, Arturas; Strawn, Daniel G.

    2005-11-01

    Interaction of heavy metals with clay minerals can dominate solid-solution reactions in soil, controlling the fate of the metals in the environment. In this study we used powdered and polarized extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray absorption near edge spectroscopy (XANES) to investigate Cu sorbed on Llano vermiculite and compare the results to reported Cu sorption mechanism on Wyoming (WY) smectite and reduced South African (SA) vermiculite. Analysis of the Cu K-edge spectra revealed that Cu sorbed on Llano vermiculite at high ionic strength ( I) has the greatest degree of covalent bond character, followed by Cu sorbed on montmorillonite at high I, and Cu sorbed on reduced SA vermiculite at high I. Cu sorbed on clay minerals at low I has the least covalent character. EXAFS data from Cu sorbed Ca- and K-equilibrated Llano vermiculites showed the presence of a second-shell Al, Si, or Mg backscatterer at 3.02 Å. This distance is consistent with Cu sorbing via a corner-sharing monodentate or bidentate bond. Polarized XANES and EXAFS results revealed that the angle between the Cu atom and the mineral sorption sites is 68° with respect to the [001] direction. From the bond angle and the persistence of the second-shell backscatterer when the interlayer is collapsed (K-equilibration), we conclude that Cu adsorption on the Llano vermiculite is not occurring in the interlayer but rather Cu is adsorbing onto the edges of the vermiculite. Results from this research provide evidence that Cu forms inner-sphere and outer-sphere complexes on clay minerals, and does not form the vast multinuclear surface precipitates that have been observed for Co, Zn, and Ni.

  16. Deconvolution of Raman spectroscopic signals for electrostatic, H-bonding, and inner-sphere interactions between ions and dimethyl phosphate in solution

    PubMed Central

    Christian, Eric L; Anderson, Vernon E.; Harris, Michael E

    2011-01-01

    Quantitative analysis of metal ion-phosphodiester interactions is a significant experimental challenge due to the complexities introduced by inner-sphere, outer-sphere (H-bonding with coordinated water), and electrostatic interactions that are difficult to isolate in solution studies. Here, we provide evidence that inner-sphere, H-bonding and electrostatic interactions between ions and dimethyl phosphate can be deconvoluted through peak fitting in the region of the Raman spectrum for the symmetric stretch of non-bridging phosphate oxygens (νsPO 2-). An approximation of the change in vibrational spectra due to different interaction modes is achieved using ions capable of all or a subset of the three forms of metal ion interaction. Contribution of electrostatic interactions to ion-induced changes to the Raman νsPO2- signal could be modeled by monitoring attenuation of νsPO2- in the presence of tetramethylammonium, while contribution of H-bonding and inner-sphere coordination could be approximated from the intensities of altered νsPO2- vibrational modes created by an interaction with ammonia, monovalent or divalent ions. A model is proposed in which discrete spectroscopic signals for inner-sphere, H-bonding, and electrostatic interactions are sufficient to account for the total observed change in νsPO2- signal due to interaction with a specific ion capable of all three modes of interaction. Importantly, the quantitative results are consistent with relative levels of coordination predicted from absolute electronegativity and absolute hardness of alkali and alkaline earth metals. PMID:21334281

  17. A Mechanistic Investigation of the Gold(III)-Catalyzed Hydrofurylation of C-C Multiple Bonds.

    PubMed

    Hossein Bagi, Amin; Khaledi, Yousef; Ghari, Hossein; Arndt, Sebastian; Hashmi, A Stephen K; Yates, Brian F; Ariafard, Alireza

    2016-11-09

    The gold-catalyzed direct functionalization of aromatic C-H bonds has attracted interest for constructing organic compounds which have application in pharmaceuticals, agrochemicals, and other important fields. In the literature, two major mechanisms have been proposed for these catalytic reactions: inner-sphere syn-addition and outer-sphere anti-addition (Friedel-Crafts-type mechanism). In this article, the AuCl 3 -catalyzed hydrofurylation of allenyl ketone, vinyl ketone, ketone, and alcohol substrates is investigated with the aid of density functional theory calculations, and it is found that the corresponding functionalizations are best rationalized in terms of a novel mechanism called "concerted electrophilic ipso-substitution" (CEIS) in which the gold(III)-furyl σ-bond produced by furan auration acts as a nucleophile and attacks the protonated substrate via an outer-sphere mechanism. This unprecedented mechanism needs to be considered as an alternative plausible pathway for gold(III)-catalyzed arene functionalization reactions in future studies.

  18. Marcus equation

    DOE R&D Accomplishments Database

    1998-09-21

    In the late 1950s to early 1960s Rudolph A. Marcus developed a theory for treating the rates of outer-sphere electron-transfer reactions. Outer-sphere reactions are reactions in which an electron is transferred from a donor to an acceptor without any chemical bonds being made or broken. (Electron-transfer reactions in which bonds are made or broken are referred to as inner-sphere reactions.) Marcus derived several very useful expressions, one of which has come to be known as the Marcus cross-relation or, more simply, as the Marcus equation. It is widely used for correlating and predicting electron-transfer rates. For his contributions to the understanding of electron-transfer reactions, Marcus received the 1992 Nobel Prize in Chemistry. This paper discusses the development and use of the Marcus equation. Topics include self-exchange reactions; net electron-transfer reactions; Marcus cross-relation; and proton, hydride, atom and group transfers.

  19. Estimation of the outer-sphere contribution to the activation volume for electron exchange reactions using the mean spherical approximation

    NASA Astrophysics Data System (ADS)

    Takagi, Hideo D.; Swaddle, Thomas W.

    1996-01-01

    The outer-sphere contribution to the volume of activation of homogeneous electron exchange reactions is estimated for selected solvents on the basis of the mean spherical approximation (MSA), and the calculated values are compared with those estimated by the Strank-Hush-Marcus (SHM) theory and with activation volumes obtained experimentally for the electron exchange reaction between tris(hexafluoroacetylacetonato)ruthenium(III) and -(II) in acetone, acetonitrile, methanol and chloroform. The MSA treatment, which recognizes the molecular nature of the solvent, does not improve significantly upon the continuous-dielectric SHM theory, which represents the experimental data adequately for the more polar solvents.

  20. Torsional Alfvén Waves in a Dipolar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Nataf, H. C.; Tigrine, Z.; Cardin, P.; Schaeffer, N.

    2017-12-01

    The discovery of torsional Alfvén waves in the Earth's core (Gillet et al, 2010) is a strong motivation for investigating the properties of these waves. Here, we report on the first experimental study of such waves. Alfvén waves are difficult to excite and observe in liquid metals because of their high magnetic diffusivity. Nevertheless, we obtained clear signatures of such diffusive waves in our DTS experiment. In this setup, some 40 liters of liquid sodium are contained between a ro = 210 mm-radius stainless steel outer shell, and a ri = 74 mm-radius copper inner sphere. Both spherical boundaries can rotate independently around a common vertical axis. The inner sphere shells a strong permanent magnet, which produces a nearly dipolar magnetic field whose intensity falls from 175 mT at ri to 8 mT at ro in the equatorial plane. We excite Alfvén waves in the liquid sodium by applying a sudden jerk of the inner sphere. To study the effect of global rotation, which leads to the formation of geostrophic torsional Alfvén waves, we spin the experiment at rotation rates fo = fi up to 15 Hz. The Alfvén wave produces a clear azimuthal magnetic signal on magnetometers installed in a sleeve inside the fluid. We also probe the associated azimuthal velocity field using ultrasound Doppler velocimetry. Electric potentials at the surface of the outer sphere turn out to be very revealing as well. In parallel, we use the XSHELLS magnetohydrodynamics spherical code to model torsional Alfvén waves in the experimental conditions, and beyond. We explore both linear and non-linear regimes. We observe a strong excitation of inertial waves in the equatorial plane, where the wave transits from a region of strong magnetic field to a region dominated by rotation (see figure of meridian map of azimuthal velocity). These novel observations should help deciphering the dynamics of Alfvén waves in planetary cores.

  1. Influence of the shell thickness and charge distribution on the effective interaction between two like-charged hollow spheres.

    PubMed

    Angelescu, Daniel G; Caragheorgheopol, Dan

    2015-10-14

    The mean-force and the potential of the mean force between two like-charged spherical shells were investigated in the salt-free limit using the primitive model and Monte Carlo simulations. Apart from an angular homogeneous distribution, a discrete charge distribution where point charges localized on the shell outer surface followed an icosahedral arrangement was considered. The electrostatic coupling of the model system was altered by the presence of mono-, trivalent counterions or small dendrimers, each one bearing a net charge of 9 e. We analyzed in detail how the shell thickness and the radial and angular distribution of the shell charges influenced the effective interaction between the shells. We found a sequence of the potential of the mean force similar to the like-charged filled spheres, ranging from long-range purely repulsive to short-range purely attractive as the electrostatic coupling increased. Both types of potentials were attenuated and an attractive-to-repulsive transition occurred in the presence of trivalent counterions as a result of (i) thinning the shell or (ii) shifting the shell charge from the outer towards the inner surface. The potential of the mean force became more attractive with the icosahedrally symmetric charge model, and additionally, at least one shell tended to line up with 5-fold symmetry axis along the longest axis of the simulation box at the maximum attraction. The results provided a basic framework of understanding the non-specific electrostatic origin of the agglomeration and long-range assembly of the viral nanoparticles.

  2. A new aerodynamic integral equation based on an acoustic formula in the time domain

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1984-01-01

    An aerodynamic integral equation for bodies moving at transonic and supersonic speeds is presented. Based on a time-dependent acoustic formula for calculating the noise emanating from the outer portion of a propeller blade travelling at high speed (the Ffowcs Williams-Hawking formulation), the loading terms and a conventional thickness source terms are retained. Two surface and three line integrals are employed to solve an equation for the loading noise. The near-field term is regularized using the collapsing sphere approach to obtain semiconvergence on the blade surface. A singular integral equation is thereby derived for the unknown surface pressure, and is amenable to numerical solutions using Galerkin or collocation methods. The technique is useful for studying the nonuniform inflow to the propeller.

  3. Chemodynamics of aquatic metal complexes: from small ligands to colloids.

    PubMed

    Van Leeuwen, Herman P; Buffle, Jacques

    2009-10-01

    Recent progress in understanding the formation/dissociation kinetics of aquatic metal complexes with complexants in different size ranges is evaluated and put in perspective, with suggestions for further studies. The elementary steps in the Eigen mechanism, i.e., diffusion and dehydration of the metal ion, are reviewed and further developed. The (de)protonation of both the ligand and the coordinating metal ion is reconsidered in terms of the consequences for dehydration rates and stabilities of the various outer-sphere complexes. In the nanoparticulate size range, special attention is given to the case of fulvic ligands, for which the impact of electrostatic interactions is especially large. In complexation with colloidal ligands (hard, soft, and combination thereof) the diffusive transport of metal ions is generally a slower step than in the case of complexation with small ligands in a homogeneous solution. The ensuing consequences for the chemodynamics of colloidal complexes are discussed in detail and placed in a generic framework, encompassing the complete range of ligand sizes.

  4. Nodulation outer proteins: double-edged swords of symbiotic rhizobia

    USDA-ARS?s Scientific Manuscript database

    Rhizobia are nitrogen-fixing bacteria that establish a nodule symbiosis with legumes. Nodule formation is the result of a complex bacterial infection process, which depends on signals and surface determinants produced by both symbiotic partners. Among them, rhizobial nodulation outer proteins (Nops)...

  5. Molecular insight into the nanoconfined calcite–solution interface

    PubMed Central

    Diao, Yijue; Espinosa-Marzal, Rosa M.

    2016-01-01

    Little is known about the influence of nanoconfinement on calcium carbonate mineralization. Here, colloidal probe atomic force microscopy is used to confine the calcite–solution interface with a silica microsphere and to measure Derjaguin–Landau–Verwey–Overbeek (DLVO) and non-DLVO forces as a function of the calcium concentration, also after charge reversal of both surfaces occurs. Through the statistical analysis of the oscillatory component of a strong hydration force, the subnanometer interfacial structure of the confined atomically flat calcite is resolved in aqueous solution. By applying a mechanical work, both water and hydrated counterions are squeezed out from the nanoconfined solution, leaving the calcite surface more negatively charged than the analogous unconfined surfaces. Layer size and applied work allow a distinction between the hydration states of the counterions in the Stern layer; we propose counterions to be inner- and outer-sphere calcium ions, with a population of inner-sphere calcium ions larger than on unconfined calcite surfaces. It is also shown that the composition of the nanoconfined solution can be tuned by varying calcium concentration. This is a fundamental study of DLVO and hydration forces, and of their connection, on atomically flat calcite. More broadly, our work scrutinizes the greatly unexplored relation between surface science and confined mineralization, with implications for diverse areas of inquiry, such as nanoconfined biomineralization, CO2 sequestration in porous aquifers, and pressure solution and crystallization in confined hydrosystems. PMID:27790988

  6. Mechanism of Electrophilic Fluorination with Pd(IV): Fluoride Capture and Subsequent Oxidative Fluoride Transfer†, ‡

    PubMed Central

    Brandt, Jochen R.; Lee, Eunsung; Boursalian, Gregory B.

    2013-01-01

    Electrophilic fluorinating reagents derived from fluoride are desirable for the synthesis of 18F-labeled molecules for positron emission tomography (PET). Here, we study the mechanism by which a Pd(IV)-complex captures fluoride and subsequently transfers it to nucleophiles. The intermediate Pd(IV)-F is formed with high rates even at the nano- to micromolar fluoride concentrations typical for radiosyntheses with 18F due to fast formation of an outer-sphere complex between fluoride and Pd(IV). The subsequent fluorine transfer from the Pd(IV)-F complex is proposed to proceed through an unusual SET/fluoride transfer/SET mechanism. The findings detailed in this manuscript provide a theoretical foundation suitable for addressing a more general approach for electrophilic fluorination with high specific activity 18F PET imaging. PMID:24376910

  7. Spectroscopic identification of binary and ternary surface complexes of Np(V) on gibbsite.

    PubMed

    Gückel, Katharina; Rossberg, André; Müller, Katharina; Brendler, Vinzenz; Bernhard, Gert; Foerstendorf, Harald

    2013-12-17

    For the first time, detailed molecular information on the Np(V) sorption species on amorphous Al(OH)3 and crystalline gibbsite was obtained by in situ time-resolved Attenuated Total Reflection Fourier-Transform Infrared (ATR FT-IR) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. The results consistently demonstrate the formation of mononuclear inner sphere complexes of the NpO2(+) ion irrespective of the prevailing atmospheric condition. The impact of the presence of atmospheric equivalent added carbonate on the speciation in solution and on the surfaces becomes evident from vibrational data. While the 1:1 aqueous carbonato species (NpO2CO3(-)) was found to become predominant in the circumneutral pH range, it is most likely that this species is sorbed onto the gibbsite surface as a ternary inner sphere surface complex where the NpO2(+) moiety is directly coordinated to the functional groups of the gibbsite's surface. These findings are corroborated by results obtained from EXAFS spectroscopy providing further evidence for a bidentate coordination of the Np(V) ion on amorphous Al(OH)3. The identification of the Np(V) surface species on gibbsite constitutes a basic finding for a comprehensive description of the dissemination of neptunium in groundwater systems.

  8. Interactions of solvent with the heme region of methemoglobin and fluoro-methemoglobin.

    PubMed

    Koenig, S H; Brown, R D; Lindstrom, T R

    1981-06-01

    It is now more than 20 years since Davidson and collaborators (1957, Biochim. Biophys, Acta. 26:370-373; J. Mol. Biol. 1:190-191) applied the theoretical ideas of Bloembergen et al. (1948. Phys. Rev. 73:679-712) on outer sphere magnetic relaxation of solvent protons to studies of solutions of methemoglobin. From then on, there has been debate regarding the relative contributions to paramagnetic solvent proton relaxation by inner sphere (ligand-exchange) effects and by outer sphere (diffusional) effects in methemoglobin solutions. Gupta and Mildvan (1975. J. Biol. Chem 250:146-253) extended the early measurements, attributed the relatively small paramagnetic effects to exchange with solvent of the water ligand of the heme-Fe3+ ion, and interpreted their data to indicate cooperativity and an alkaline Bohr effect in the presence of inositol hexaphosphate. They neglected the earlier discussions entirely, and made no reference to outer sphere effects. We have measured the relaxation rate of solvent protons as a function of magnetic field for solutions of methemoglobin, under a variety of conditions of pH and temperature, and have given careful consideration to the relatively large diamagnetic corrections that are necessary by making analogous measurements on oxyhemoglobin, carbonmonoxyhemoglobin, and cyano- and azide-methemoglobin. (The latter two, because of their short electronic relaxation times, behave as though diamagnetic). We show that the paramagnetic contribution to solvent relaxation can be dominated by outer sphere effects, a result implying that many conclusions, including those of Gupta and Mildvan, require reexamination. Finally, we present data for fluoro-methemoglobin, which relaxes solvent protons an order of magnitude better than does methemoglobin. Here one has a startling breakdown of the dogma that has been the basis for interpreting many ligand-replacement studies; in contrast to the prevailing view that replacement of a water ligand of a protein-bound paramagnetic ion by another ligand should decrease relaxation rates, replacement of H2O by F- increases the relaxation rate drastically. The data can all be reconciled, however, with what is anticipated from knowledge of ligand interactions in the heme region.

  9. An ultrasensitive hollow-silica-based biosensor for pathogenic Escherichia coli DNA detection.

    PubMed

    Ariffin, Eda Yuhana; Lee, Yook Heng; Futra, Dedi; Tan, Ling Ling; Karim, Nurul Huda Abd; Ibrahim, Nik Nuraznida Nik; Ahmad, Asmat

    2018-03-01

    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10 -12 -1.0×10 -2 μM, with a low detection limit of 8.17×10 -14 μM (R 2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.

  10. Adsorption of Cu(II) to Bacillus subtilis: A pH-dependent EXAFS and thermodynamic modelling study

    NASA Astrophysics Data System (ADS)

    Moon, Ellen M.; Peacock, Caroline L.

    2011-11-01

    Bacteria are very efficient sorbents of trace metals, and their abundance in a wide variety of natural aqueous systems means biosorption plays an important role in the biogeochemical cycling of many elements. We measured the adsorption of Cu(II) to Bacillus subtilis as a function of pH and surface loading. Adsorption edge and XAS experiments were performed at high bacteria-to-metal ratio, analogous to Cu uptake in natural geologic and aqueous environments. We report significant Cu adsorption to B. subtilis across the entire pH range studied (pH ˜2-7), with adsorption increasing with pH to a maximum at pH ˜6. We determine directly for the first time that Cu adsorbs to B. subtilis as a (CuO 5H n) n-8 monodentate, inner-sphere surface complex involving carboxyl surface functional groups. This Cu-carboxyl complex is able to account for the observed Cu adsorption across the entire pH range studied. Having determined the molecular adsorption mechanism of Cu to B. subtilis, we have developed a new thermodynamic surface complexation model for Cu adsorption that is informed by and consistent with EXAFS results. We model the surface electrostatics using the 1p K basic Stern approximation. We fit our adsorption data to the formation of a monodentate, inner-sphere tbnd RCOOCu + surface complex. In agreement with previous studies, this work indicates that in order to accurately predict the fate and mobility of Cu in complex biogeochemical systems, we must incorporate the formation of Cu-bacteria surface complexes in reactive transport models. To this end, this work recommends log K tbnd RCOOCu + = 7.13 for geologic and aqueous systems with generally high B. subtilis-to-metal ratio.

  11. High photocatalytic activity of hierarchical SiO2@C-doped TiO2 hollow spheres in UV and visible light towards degradation of rhodamine B.

    PubMed

    Zhang, Ying; Chen, Juanrong; Hua, Li; Li, Songjun; Zhang, Xuanxuan; Sheng, Weichen; Cao, Shunsheng

    2017-10-15

    Ongoing research activities are targeted to explore high photocatalytic activity of TiO 2 -based photocatalysts for the degradation of environmental contaminants under UV and visible light irradiation. In this work, we devise a facile, cost-effective technique to in situ synthesize hierarchical SiO 2 @C-doped TiO 2 (SCT) hollow spheres for the first time. This strategy mainly contains the preparation of monodisperse cationic polystyrene spheres (CPS), sequential deposition of inner SiO 2 , the preparation of the sandwich-like CPS@SiO 2 @CPS particles, and formation of outer TiO 2 . After the one-step removal of CPS templates by calcination at 450°C, hierarchical SiO 2 @C-doped TiO 2 hollow spheres are in situ prepared. The morphology, hierarchical structure, and properties of SCT photocatalyst were characterized by TEM. SEM, STEM Mapping, BET, XRD, UV-vis spectroscopy, and XPS. Results strongly confirm the carbon doping in the outer TiO 2 lattice of SCT hollow spheres. When the as-synthesized SCT hollow spheres were employed as a photocatalyst for the degradation of Rhodamine B under visible-light and ultraviolet irradiation, the SCT photocatalyst exhibits a higher photocatalytic activity than commercial P25, effectively overcoming the limitations of poorer UV activity for many previous reported TiO 2 -based photocatalysts due to doping. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Optimizing conditions for utilization of an H 2 oxidation catalyst with outer coordination sphere functionalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Arnab; Ginovska, Bojana; Raugei, Simone

    2016-01-01

    Hydrogenase enzymes use abundant metals such as nickel and iron to efficiently interconvert H2 and protons. In this work, we demonstrate that a Ni-based catalyst can exceed the rates of enzymes with only slightly higher overpotentials using [Ni(PCy2Narginine2)2]7, containing an amino acid-based outer coordination sphere. Under conditions of high pressure, elevated temperature, and aqueous acidic solutions, conditions similar to those found in fuel cells, this electrocatalyst exhibits the fastest H2 oxidation reported to date for any homogeneous catalyst (TOF 1.1×106 s-1) operating at a moderate overpotential (240 mV). Control experiments demonstrate that both the appended outer coordination sphere and watermore » are important to achieve this impressive catalytic performance. This work was funded by the Office of Science Early Career Research Program through the US Department of Energy, Office of Science, Office of Basic Energy Sciences (AD, WJS), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (JASR) located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US Department of Energy.« less

  13. Effect of humic acids on the adsorption of paraquat by goethite.

    PubMed

    Brigante, Maximiliano; Zanini, Graciela; Avena, Marcelo

    2010-12-15

    The adsorption of the herbicide paraquat (PQ(2+)) on goethite and on the binary system humic acid-goethite has been studied in batch experiments by performing adsorption isotherms under different conditions of pH, supporting electrolyte concentration and temperature. The results were completed with capillary electrophoresis (CE) in order to measure the binding isotherm between PQ(2+) and humic acid (HA) molecules in solution. PQ(2+) adsorption is negligible on the bare goethite surface but important on the HA-goethite adsorbent. In this last case, the adsorption increases by increasing pH and decreasing electrolyte concentration. There are no significant effects of temperature on the adsorption. The adsorption takes place by direct binding of PQ(2+) to adsorbed HA molecules leading to the formation of surface species of the type goethite-HA-PQ(2+). The results are consistent with a mechanism where PQ(2+) binds negatively charged groups of HA (carboxylates and phenolates) forming ionic pairs or outer-sphere complexes. Since goethite in nature usually contains adsorbed HA molecules, it may act as a good adsorbent for cationic herbicides. This will not only benefit the deactivation of the herbicides but also reduce their leaching and transport through groundwater. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Surface complexation studied via combined grazing-incidence EXAFS and surface diffraction: Arsenate on hematite (0001) and (10-12)

    USGS Publications Warehouse

    Waychunas, G.; Trainor, T.; Eng, P.; Catalano, J.; Brown, G.; Davis, J.; Rogers, J.; Bargar, J.

    2005-01-01

    X-ray diffraction [crystal-truncation-rod (CTR)] studies of the surface structure of moisture-equilibrated hematite reveal sites for complexation not present on the bulk oxygen-terminated surface, and impose constraints on the types of inner-sphere sorption topologies. We have used this improved model of the hematite surface to analyze grazing-incidence EXAFS results for arsenate sorption on the c(0001) and r(10-12) surfaces measured in two electric vector polarizations. This work shows that the reconfiguration of the surface under moist conditions is responsible for an increased adsorption density of arsenate complexes on the (0001) surface relative to predicted ideal termination, and an abundance of "edge-sharing" bidentate complexes on both studied surfaces. We consider possible limitations on combining the methods due to differing surface sensitivities, and discuss further analysis possibilities using both methods. ?? Springer-Verlag 2005.

  15. The complex that inserts lipopolysaccharide into the bacterial outer membrane forms a two-protein plug-and-barrel.

    PubMed

    Freinkman, Elizaveta; Chng, Shu-Sin; Kahne, Daniel

    2011-02-08

    The cell surfaces of Gram-negative bacteria are composed of lipopolysaccharide (LPS). This glycolipid is found exclusively in the outer leaflet of the asymmetric outer membrane (OM), where it forms a barrier to the entry of toxic hydrophobic molecules into the cell. LPS typically contains six fatty acyl chains and up to several hundred sugar residues. It is biosynthesized in the cytosol and must then be transported across two membranes and an aqueous intermembrane space to the cell surface. These processes are required for the viability of most Gram-negative organisms. The integral membrane β-barrel LptD and the lipoprotein LptE form an essential complex in the OM, which is necessary for LPS assembly. It is not known how this complex translocates large, amphipathic LPS molecules across the OM to the outer leaflet. Here, we show that LptE resides within the LptD β-barrel both in vitro and in vivo. LptD/E associate via an extensive interface; in one specific interaction, LptE contacts a predicted extracellular loop of LptD through the lumen of the β-barrel. Disrupting this interaction site compromises the biogenesis of LptD. This unprecedented two-protein plug-and-barrel architecture suggests how LptD/E can insert LPS from the periplasm directly into the outer leaflet of the OM to establish the asymmetry of the bilayer.

  16. Subdominant outer membrane antigens in anaplasma marginale: conservation, antigenicity, and protective capacity using recombinant protein

    USDA-ARS?s Scientific Manuscript database

    Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a well- defined surface protein complex reproducibly induce protective immunity. However, there are seve...

  17. A modular, energy-based approach to the development of nickel containing molecular electrocatalysts for hydrogen production and oxidation.

    PubMed

    Shaw, Wendy J; Helm, Monte L; DuBois, Daniel L

    2013-01-01

    This review discusses the development of molecular electrocatalysts for H2 production and oxidation based on nickel. A modular approach is used in which the structure of the catalyst is divided into first, second, and outer coordination spheres. The first coordination sphere consists of the ligands bound directly to the metal center, and this coordination sphere can be used to control such factors as the presence or absence of vacant coordination sites, redox potentials, hydride donor abilities and other important thermodynamic parameters. The second coordination sphere includes functional groups such as pendent acids or bases that can interact with bound substrates such as H2 molecules and hydride ligands, but that do not form strong bonds with the metal center. These functional groups can play diverse roles such as assisting the heterolytic cleavage of H2, controlling intra- and intermolecular proton transfer reactions, and providing a physical pathway for coupling proton and electron transfer reactions. By controlling both the hydride donor ability of the catalysts using the first coordination sphere and the proton donor abilities of the functional groups in the second coordination sphere, catalysts can be designed that are biased toward H2 production, oxidation, or bidirectional (catalyzing both H2 oxidation and production). The outer coordination sphere is defined as that portion of the catalytic system that is beyond the second coordination sphere. This coordination sphere can assist in the delivery of protons and electrons to and from the catalytically active site, thereby adding another important avenue for controlling catalytic activity. Many features of these simple catalytic systems are good models for enzymes, and these simple systems provide insights into enzyme function and reactivity that may be difficult to probe in enzymes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Tob38, a novel essential component in the biogenesis of β-barrel proteins of mitochondria

    PubMed Central

    Waizenegger, Thomas; Habib, Shukry J; Lech, Maciej; Mokranjac, Dejana; Paschen, Stefan A; Hell, Kai; Neupert, Walter; Rapaport, Doron

    2004-01-01

    Insertion of β-barrel proteins into the outer membrane of mitochondria is mediated by the TOB complex. Known constituents of this complex are Tob55 and Mas37. We identified a novel component, Tob38. It is essential for viability of yeast and the function of the TOB complex. Tob38 is exposed on the surface of the mitochondrial outer membrane. It interacts with Mas37 and Tob55 and is associated with Tob55 even in the absence of Mas37. The Tob38–Tob55 core complex binds precursors of β-barrel proteins and facilitates their insertion into the outer membrane. Depletion of Tob38 results in strongly reduced levels of Tob55 and Mas37 and the residual proteins no longer form a complex. Tob38-depleted mitochondria are deficient in the import of β-barrel precursor proteins, but not of other outer membrane proteins or proteins of other mitochondrial subcompartments. We conclude that Tob38 has a crucial function in the biogenesis of β-barrel proteins of mitochondria. PMID:15205677

  19. A New 3D Multi-fluid Dust Model: A Study of the Effects of Activity and Nucleus Rotation on Dust Grain Behavior at Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M.; Toth, G.; Tenishev, V.; Fougere, N.; Jia, X.; Rubin, M.; Huang, Z.; Hansen, K.; Gombosi, T.

    2017-11-01

    Improving our capability to interpret observations of cometary dust is necessary to deepen our understanding of the role of dust in the formation of comets and in altering the cometary environments. Models including dust grains are in demand to interpret observations and test hypotheses. Several existing models have taken into account the gas-dust interaction, varying sizes of dust grains and the cometary gravitational force. In this work, we develop a multi-fluid dust model based on the BATS-R-US code. This model not only incorporates key features of previous dust models, but also has the capability of simulating time-dependent phenomena. Since the model is run in the rotating comet reference frame, the centrifugal and Coriolis forces are included. The boundary conditions on the nucleus surface can be set according to the distribution of activity and the solar illumination. The Sun revolves around the comet in this frame. A newly developed numerical mesh is also used to resolve the real-shaped nucleus in the center and to facilitate prescription of the outer boundary conditions that accommodate the rotating frame. The inner part of the mesh is a box composed of Cartesian cells and the outer surface is a smooth sphere, with stretched cells filled in between the box and the sphere. Our model achieved comparable results to the Direct Simulation Monte Carlo method and the Rosetta/OSIRIS observations. It is also applied to study the effects of the rotating nucleus and the cometary activity and offers interpretations of some dust observations of comet 67P/Churyumov-Gerasimenko.

  20. Proteins required for lipopolysaccharide assembly in Escherichia coli form a transenvelope complex.

    PubMed

    Chng, Shu-Sin; Gronenberg, Luisa S; Kahne, Daniel

    2010-06-08

    The viability of Gram-negative organisms is dependent on the proper placement of lipopolysaccharide (LPS) in the outer leaflet of its outer membrane. LPS is synthesized inside the cell and transported to the surface by seven essential lipopolysaccharide transport (Lpt) proteins. How these proteins cooperate to transport LPS is unknown. We show that these Lpt proteins can be found in a membrane fraction that contains inner and outer membranes and that they copurify. This constitutes the first evidence that the Lpt proteins form a transenvelope complex. We suggest that this protein bridge provides a route for LPS transport across the cell envelope.

  1. Improved method for producing small hollow spheres

    DOEpatents

    Rosencwaig, A.; Koo, J.C.; Dressler, J.L.

    An improved method and apparatus for producing small hollow spheres of glass having an outer diameter ranging from about 100..mu.. to about 500..mu.. with a substantially uniform wall thickness in the range of about 0.5 to 20..mu.. are described. The method involves introducing aqueous droplets of a glass-forming solution into a long vertical drop oven or furnace having varying temperature regions.

  2. Cs-137 immobilization in C-S-H gel nanopores.

    PubMed

    Duque-Redondo, Eduardo; Kazuo, Yamada; López-Arbeloa, Iñigo; Manzano, Hegoi

    2018-04-04

    Cementation is a widespread technique to immobilize nuclear waste due to the low leachability of cementitious materials. The capacity of calcium silicate hydrate (C-S-H), the main component of cement, to retain radionuclide Cs has been empirically studied at the macroscale, yet the specific molecular scale mechanisms that govern the retention have not been determined. In this work, we employed molecular dynamics simulations to investigate the adsorption and diffusivity of Cs into a C-S-H gel nanopore. From the simulations, it was possible to distinguish three types of Cs adsorption configurations on the C-S-H: an inner-sphere surface site where Cs is strongly bound, an outer-sphere surface site where Cs is loosely bound, and Cs free in the nanopore. For each configuration, we determined the sorption energy, and the diffusion coefficients, up to two orders of magnitude lower than in bulk water due to the effect of nanoconfinement in the worst case scenario. It has also proved that Cs cannot displace the intrinsic Ca from the C-S-H surface, and we calculated the binding strength and the residence time of the cations in the surface adsorption sites. Finally, we quantified the average number of adsorption sites per nm2 of the C-S-H surface. All these results are the first insights into Cs retention in cement at the molecular scale and will be useful to build macroscopic diffusion models and devise cement formulations to improve radionuclide Cs retention from spent nuclear fuel.

  3. Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hydr)oxides: Possible structural control

    NASA Astrophysics Data System (ADS)

    Pokrovsky, O. S.; Viers, J.; Emnova, E. E.; Kompantseva, E. I.; Freydier, R.

    2008-04-01

    This work is aimed at quantifying the main environmental factors controlling isotope fractionation of Cu during its adsorption from aqueous solutions onto common organic (bacteria, algae) and inorganic (oxy(hydr)oxide) surfaces. Adsorption of Cu on aerobic rhizospheric ( Pseudomonas aureofaciens CNMN PsB-03) and phototrophic aquatic ( Rhodobacter sp. f-7bl, Gloeocapsa sp. f-6gl) bacteria, uptake of Cu by marine ( Skeletonema costatum) and freshwater ( Navicula minima, Achnanthidium minutissimum and Melosira varians) diatoms, and Cu adsorption onto goethite (FeOOH) and gibbsite (AlOOH) were studied using a batch reaction as a function of pH, copper concentration in solution and time of exposure. Stable isotopes of copper in selected filtrates were measured using Neptune multicollector ICP-MS. Irreversible incorporation of Cu in cultured diatom cells at pH 7.5-8.0 did not produce any isotopic shift between the cell and solution (Δ 65/63Cu(solid-solution)) within ±0.2‰. Accordingly, no systematic variation was observed during Cu adsorption on anoxygenic phototrophic bacteria ( Rhodobacter sp.), cyanobacteria ( Gloeocapsa sp.) or soil aerobic exopolysaccharide (EPS)-producing bacteria ( P. aureofaciens) in circumneutral pH (4-6.5) and various exposure times (3 min to 48 h): Δ 65Cu(solid-solution) = 0.0 ± 0.4‰. In contrast, when Cu was adsorbed at pH 1.8-3.5 on the cell surface of soil the bacterium P. aureofacienshaving abundant or poor EPS depending on medium composition, yielded a significant enrichment of the cell surface in the light isotope (Δ 65Cu (solid-solution) = -1.2 ± 0.5‰). Inorganic reactions of Cu adsorption at pH 4-6 produced the opposite isotopic offset: enrichment of the oxy(hydr)oxide surface in the heavy isotope with Δ 65Cu(solid-solution) equals 1.0 ± 0.25‰ and 0.78 ± 0.2‰ for gibbsite and goethite, respectively. The last result corroborates the recent works of Mathur et al. [Mathur R., Ruiz J., Titley S., Liermann L., Buss H. and Brantley S. (2005) Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim. Cosmochim. Acta69, 5233-5246] and Balistrieri et al. [Balistrieri L. S., Borrok D. M., Wanty R. B. and Ridley W. I. (2008) Fractionation of Cu and Zn isotopes during adsorption onto amorhous Fe(III) oxyhydroxide: experimental mixing of acid rock drainage and ambient river water. Geochim. Cosmochim. Acta72, 311-328] who reported heavy Cu isotope enrichment onto amorphous ferric oxyhydroxide and on metal hydroxide precipitates on the external membranes of Fe-oxidizing bacteria, respectively. Although measured isotopic fractionation does not correlate with the relative thermodynamic stability of surface complexes, it can be related to their structures as found with available EXAFS data. Indeed, strong, bidentate, inner-sphere complexes presented by tetrahedrally coordinated Cu on metal oxide surfaces are likely to result in enrichment of the heavy isotope on the surface compared to aqueous solution. The outer-sphere, monodentate complex, which is likely to form between Cu 2+ and surface phosphoryl groups of bacteria in acidic solutions, has a higher number of neighbors and longer bond distances compared to inner-sphere bidentate complexes with carboxyl groups formed on bacterial and diatom surfaces in circumneutral solutions. As a result, in acidic solution, light isotopes become more enriched on bacterial surfaces (as opposed to the surrounding aqueous medium) than they do in neutral solution. Overall, the results of the present study demonstrate important isotopic fractionation of copper in both organic and inorganic systems and provide a firm basis for using Cu isotopes for tracing metal transport in earth-surface aquatic systems. It follows that both adsorption on oxides in a wide range of pH values and adsorption on bacteria in acidic solutions are capable of producing a significant (up to 2.5-3‰ (±0.1-0.15‰)) isotopic offset. At the same time, Cu interaction with common soil and aquatic bacteria, as well as marine and freshwater diatoms, at 4 < pH < 8 yields an isotopic shift of only ±0.2-0.3‰, which is not related to Cu concentration in solution, surface loading, the duration of the experiment, or the type of aquatic microorganisms.

  4. Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems.

    PubMed

    Cheng, Hefa; Hu, Yuanan; Luo, Jian; Xu, Bin; Zhao, Jianfu

    2009-06-15

    Acid mine drainage (AMD) is often accompanied with elevated concentrations of arsenic, in the forms of arsenite, As(III), and/or arsenate, As(V), due to the high affinity of arsenic for sulfide mineral ores. This review summarizes the major geochemical processes controlling the release, speciation, fate, and distribution of inorganic arsenic in mine drainage and natural systems. Arsenic speciation depends highly on redox potential and pH of the solution, and arsenite can be oxidized to the less toxic arsenate form. Homogeneous oxidation of arsenite occurs rather slowly while its heterogeneous oxidation on mineral surfaces can greatly enhance the reaction rates. Little evidence suggests that precipitation reaction limits the concentrations of arsenic in natural water, while co-precipitation may lead to rapid arsenic removal when large amount of iron hydroxides precipitate out of the aqueous phase upon neutralization of the mine drainage. Both arsenate and arsenite adsorb on common metal oxides and clay minerals through formation of inner-sphere and/or outer-sphere complexes, controlling arsenic concentration in natural water bodies. Arsenite adsorbs less strongly than arsenate in the typical pH range of natural water and is more mobile. Part of the adsorbed arsenic species can be exchanged by common anions (e.g., PO(4)(3-) and SO(4)(2-)), especially phosphate, which leads to their re-mobilization. Understanding the geochemistry of arsenic is helpful for predicting its mobility and fate in AMD and natural systems, and for designing of cost-effective remediation/treatment strategies to reduce the occurrence and risk of arsenic contamination.

  5. PICsar: Particle in cell pulsar magnetosphere simulator

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail A.

    2016-07-01

    PICsar simulates the magnetosphere of an aligned axisymmetric pulsar and can be used to simulate other arbitrary electromagnetics problems in axisymmetry. Written in Fortran, this special relativistic, electromagnetic, charge conservative particle in cell code features stretchable body-fitted coordinates that follow the surface of a sphere, simplifying the application of boundary conditions in the case of the aligned pulsar; a radiation absorbing outer boundary, which allows a steady state to be set up dynamically and maintained indefinitely from transient initial conditions; and algorithms for injection of charged particles into the simulation domain. PICsar is parallelized using MPI and has been used on research problems with 1000 CPUs.

  6. Promoting the Adsorption of Metal Ions on Kaolinite by Defect Sites: A Molecular Dynamics Study

    PubMed Central

    Li, Xiong; Li, Hang; Yang, Gang

    2015-01-01

    Defect sites exist abundantly in minerals and play a crucial role for a variety of important processes. Here molecular dynamics simulations are used to comprehensively investigate the adsorption behaviors, stabilities and mechanisms of metal ions on defective minerals, considering different ionic concentrations, defect sizes and contents. Outer-sphere adsorbed Pb2+ ions predominate for all models (regular and defective), while inner-sphere Na+ ions, which exist sporadically only at concentrated solutions for regular models, govern the adsorption for all defective models. Adsorption quantities and stabilities of metal ions on kaolinite are fundamentally promoted by defect sites, thus explaining the experimental observations. Defect sites improve the stabilities of both inner- and outer-sphere adsorption, and (quasi) inner-sphere Pb2+ ions emerge only at defect sites that reinforce the interactions. Adsorption configurations are greatly altered by defect sites but respond weakly by changing defect sizes or contents. Both adsorption quantities and stabilities are enhanced by increasing defect sizes or contents, while ionic concentrations mainly affect adsorption quantities. We also find that adsorption of metal ions and anions can be promoted by each other and proceeds in a collaborative mechanism. Results thus obtained are beneficial to comprehend related processes for all types of minerals. PMID:26403873

  7. Effects of sulfate ligand on uranyl carbonato surface species on ferrihydrite surfaces

    USGS Publications Warehouse

    Arai, Yuji; Fuller, C.C.

    2012-01-01

    Understanding uranium (U) sorption processes in permeable reactive barriers (PRB) are critical in modeling reactive transport for evaluating PRB performance at the Fry Canyon demonstration site in Utah, USA. To gain insight into the U sequestration mechanism in the amorphous ferric oxyhydroxide (AFO)-coated gravel PRB, U(VI) sorption processes on ferrihydrite surfaces were studied in 0.01 M Na2SO4 solutions to simulate the major chemical composition of U-contaminatedgroundwater (i.e., [SO42-]~13 mM L-1) at the site. Uranyl sorption was greater at pH 7.5 than that at pH 4 in both air- and 2% pCO2-equilibrated systems. While there were negligible effects of sulfate ligands on the pH-dependent U(VI) sorption (<24 h) in both systems, X-ray absorption spectroscopy (XAS) analysis showed sulfate ligand associated U(VI) surface species at the ferrihydrite–water interface. In air-equilibrated systems, binary and mono-sulfate U(VI) ternary surface species co-existed at pH 5.43. At pH 6.55–7.83, a mixture of mono-sulfate and bis-carbonato U(VI) ternary surface species became more important. At 2% pCO2, there was no contribution of sulfate ligands on the U(VI) ternary surface species. Instead, a mixture of bis-carbonato inner-sphere (38%) and tris-carbonato outer-sphere U(VI) ternary surface species (62%) was found at pH 7.62. The study suggests that the competitive ligand (bicarbonate and sulfate) coordination on U(VI) surface species might be important in evaluating the U solid-state speciation in the AFO PRB at the study site where pCO2 fluctuates between 1 and 2 pCO2%.

  8. Effects of sulfate ligand on uranyl carbonato surface species on ferrihydrite surfaces.

    PubMed

    Arai, Yuji; Fuller, C C

    2012-01-01

    Understanding uranium (U) sorption processes in permeable reactive barriers (PRB) are critical in modeling reactive transport for evaluating PRB performance at the Fry Canyon demonstration site in Utah, USA. To gain insight into the U sequestration mechanism in the amorphous ferric oxyhydroxide (AFO)-coated gravel PRB, U(VI) sorption processes on ferrihydrite surfaces were studied in 0.01 M Na(2)SO(4) solutions to simulate the major chemical composition of U-contaminated groundwater (i.e., [SO(4)(2-)] ~13 mM L(-1)) at the site. Uranyl sorption was greater at pH 7.5 than that at pH 4 in both air- and 2% pCO(2)-equilibrated systems. While there were negligible effects of sulfate ligands on the pH-dependent U(VI) sorption (<24 h) in both systems, X-ray absorption spectroscopy (XAS) analysis showed sulfate ligand associated U(VI) surface species at the ferrihydrite-water interface. In air-equilibrated systems, binary and mono-sulfate U(VI) ternary surface species co-existed at pH 5.43. At pH 6.55-7.83, a mixture of mono-sulfate and bis-carbonato U(VI) ternary surface species became more important. At 2% pCO(2), there was no contribution of sulfate ligands on the U(VI) ternary surface species. Instead, a mixture of bis-carbonato inner-sphere (38%) and tris-carbonato outer-sphere U(VI) ternary surface species (62%) was found at pH 7.62. The study suggests that the competitive ligand (bicarbonate and sulfate) coordination on U(VI) surface species might be important in evaluating the U solid-state speciation in the AFO PRB at the study site where pCO(2) fluctuates between 1 and 2 pCO(2)%. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Collection, processing and error analysis of Terrestrial Laser Scanning data from fluvial gravel surfaces

    NASA Astrophysics Data System (ADS)

    Hodge, R.; Brasington, J.; Richards, K.

    2009-04-01

    The ability to collect 3D elevation data at mm-resolution from in-situ natural surfaces, such as fluvial and coastal sediments, rock surfaces, soils and dunes, is beneficial for a range of geomorphological and geological research. From these data the properties of the surface can be measured, and Digital Terrain Models (DTM) can be constructed. Terrestrial Laser Scanning (TLS) can collect quickly such 3D data with mm-precision and mm-spacing. This paper presents a methodology for the collection and processing of such TLS data, and considers how the errors in this TLS data can be quantified. TLS has been used to collect elevation data from fluvial gravel surfaces. Data were collected from areas of approximately 1 m2, with median grain sizes ranging from 18 to 63 mm. Errors are inherent in such data as a result of the precision of the TLS, and the interaction of factors including laser footprint, surface topography, surface reflectivity and scanning geometry. The methodology for the collection and processing of TLS data from complex surfaces like these fluvial sediments aims to minimise the occurrence of, and remove, such errors. The methodology incorporates taking scans from multiple scanner locations, averaging repeat scans, and applying a series of filters to remove erroneous points. Analysis of 2.5D DTMs interpolated from the processed data has identified geomorphic properties of the gravel surfaces, including the distribution of surface elevations, preferential grain orientation and grain imbrication. However, validation of the data and interpolated DTMs is limited by the availability of techniques capable of collecting independent elevation data of comparable quality. Instead, two alternative approaches to data validation are presented. The first consists of careful internal validation to optimise filter parameter values during data processing combined with a series of laboratory experiments. In the experiments, TLS data were collected from a sphere and planes with different reflectivities to measure the accuracy and precision of TLS data of these geometrically simple objects. Whilst this first approach allows the maximum precision of TLS data from complex surfaces to be estimated, it cannot quantify the distribution of errors within the TLS data and across the interpolated DTMs. The second approach enables this by simulating the collection of TLS data from complex surfaces of a known geometry. This simulated scanning has been verified through systematic comparison with laboratory TLS data. Two types of surface geometry have been investigated: simulated regular arrays of uniform spheres used to analyse the effect of sphere size; and irregular beds of spheres with the same grain size distribution as the fluvial gravels, which provide a comparable complex geometry to the field sediment surfaces. A series of simulated scans of these surfaces has enabled the magnitude and spatial distribution of errors in the interpolated DTMs to be quantified, as well as demonstrating the utility of the different processing stages in removing errors from TLS data. As well as demonstrating the application of simulated scanning as a technique to quantify errors, these results can be used to estimate errors in comparable TLS data.

  10. Superficial Macromolecular Arrays on the Cell Wall of Spirillum putridiconchylium

    PubMed Central

    Beveridge, T. J.; Murray, R. G. E.

    1974-01-01

    Electron microscopy of the cell envelope of Spirillum putridiconchylium, using negatively stained, thin-sectioned, and replicated freeze-etched preparations, showed two superficial wall layers forming a complex macromolecular pattern on the external surface. The outer structured layer was a linear array of particles overlying an inner tetragonal array of larger subunits. They were associated in a very regular fashion, and the complex was bonded to the outer, pitted surface of the lipopolysaccharide tripartite layer of the cell wall. The relationship of the components of the two structured layers was resolved with the aid of optical diffraction, combined with image filtering and reconstruction and linear and rotary integration techniques. The outer structural layer consisted of spherical 1.5-nm units set in double lines determined by the size and arrangement of 6- by 3-nm inner structural layer subunits, which bore one outer structural layer unit on each outer corner. The total effect of this arrangement was a double-ridged linear structure that was evident in surface replicas and negatively stained fragments of the whole wall. The packing of these units was not square but skewed by 2° off the perpendicular so that the “unit array” described by optical diffraction and linear integration appeared to be a deformed tetragon. The verity of the model was checked by using a photographically reduced image to produce an optical diffraction pattern for comparison with that of the actual layers. The correspondence was nearly perfect. Images PMID:4137219

  11. Investigation and application of multiple reactions between molybdoniobium heteropoly acid and di- or trimethylthionines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirzoyam, F.B.; Karapetyan, A.A.

    1986-03-01

    This paper presents the results of the study and use of reactions of molybdoniobic acid (MNA) with di- and trimethylthiones (DMT and TMT, respectively). It was found that light absorption of acetone solutions of the products of outer-sphere interaction between MNA and DMT or TMT enabled the determination of optimum acidity for MNA formation. Reaction between TMT and MNA gives two different compounds containing two and five associated dye cations, different in molar extinction coefficient and optimum reaction acidity (pH 0.05-0.25 and 0.35-0.90). Formation of the 6th and 8th molybdenum series with an identical composition of the outer sphere ismore » shown. A highly sensitive photometric method for determining niobium has been developed.« less

  12. Chemoselective Hydrogenation of Aldehydes under Mild, Base-Free Conditions: Manganese Outperforms Rhenium

    PubMed Central

    2018-01-01

    Several hydride Mn(I) and Re(I) PNP pincer complexes were applied as catalysts for the homogeneous chemoselective hydrogenation of aldehydes. Among these, [Mn(PNP-iPr)(CO)2(H)] was found to be one of the most efficient base metal catalysts for this process and represents a rare example which permits the selective hydrogenation of aldehydes in the presence of ketones and other reducible functionalities, such as C=C double bonds, esters, or nitriles. The reaction proceeds at room temperature under base-free conditions with catalyst loadings between 0.1 and 0.05 mol% and a hydrogen pressure of 50 bar (reaching TONs of up to 2000). A mechanism which involves an outer-sphere hydride transfer and reversible PNP ligand deprotonation/protonation is proposed. Analogous isoelectronic and isostructural Re(I) complexes were only poorly active. PMID:29755828

  13. Water Surface Impact and Ricochet of Deformable Elastomeric Spheres

    NASA Astrophysics Data System (ADS)

    Hurd, Randy C.

    Soft and deformable silicone rubber spheres ricochet from a water surface when rigid spheres and disks (or skipping stones) cannot. This dissertation investigates why these objects are able to skip so successfully. High speed cameras allow us to see that these unique spheres deform significantly as they impact the water surface, flattening into pancake-like shapes with greater area. Though the water entry behavior of deformable spheres deviates from that of rigid spheres, our research shows that if this deformation is accounted for, their behavior can be predicted from previously established methods. Soft spheres skip more easily because they deform significantly when impacting the water surface. We present a diagram which enables the prediction of a ricochet from sphere impact conditions such as speed and angle. Experiments and mathematical representations of the sphere skipping both show that these deformable spheres skip more readily because deformation momentarily increases sphere area and produces an attack angle with the water which is favorable to skipping. Predictions from our mathematical representation of sphere skipping agree strongly with observations from experiments. Even when a sphere was allowed to skip multiple times in the laboratory, the mathematical predictions show good agreement with measured impact conditions through subsequent skipping events. While studying multiple impact events in an outdoor setting, we discovered a previously unidentified means of skipping, which is unique to deformable spheres. This new skipping occurs when a relatively soft sphere first hits the water at a high speed and low impact angle and the sphere begins to rotate very quickly. This quick rotation causes the sphere to stretch into a shape similar to an American football and maintain this shape while it spins. The sphere is observed to move nearly parallel with the water surface with the tips of this "football" dipping into the water as it rotates and the sides passing just over the surface. This sequence of rapid impact events give the impression that the sphere is walking across the water surface.

  14. Surface gloss and color perception of 3D objects.

    PubMed

    Xiao, Bei; Brainard, David H

    2008-01-01

    Two experiments explore the color perception of objects in complex scenes. The first experiment examines the color perception of objects across variation in surface gloss. Observers adjusted the color appearance of a matte sphere to match that of a test sphere. Across conditions we varied the body color and glossiness of the test sphere. The data indicate that observers do not simply match the average light reflected from the test. Indeed, the visual system compensates for the physical effect of varying the gloss, so that appearance is stabilized relative to what is predicted by the spatial average. The second experiment examines how people perceive color across locations on an object. We replaced the test sphere with a soccer ball that had one of its hexagonal faces colored. Observers were asked to adjust the match sphere have the same color appearance as this test patch. The test patch could be located at either an upper or lower location on the soccer ball. In addition, we varied the surface gloss of the entire soccer ball (including the test patch). The data show that there is an effect of test patch location on observers' color matching, but this effect is small compared to the physical change in the average light reflected from the test patch across the two locations. In addition, the effect of glossy highlights on the color appearance of the test patch was consistent with the results from Experiment 1.

  15. Surface gloss and color perception of 3D objects

    PubMed Central

    Xiao, Bei; Brainard, David H.

    2008-01-01

    Two experiments explore the color perception of objects in complex scenes. The first experiment examines the color perception of objects across variation in surface gloss. Observers adjusted the color appearance of a matte sphere to match that of a test sphere. Across conditions we varied the body color and glossiness of the test sphere. The data indicate that observers do not simply match the average light reflected from the test. Indeed, the visual system compensates for the physical effect of varying the gloss, so that appearance is stabilized relative to what is predicted by the spatial average. The second experiment examines how people perceive color across locations on an object. We replaced the test sphere with a soccer ball that had one of its hexagonal faces colored. Observers were asked to adjust the match sphere have the same color appearance as this test patch. The test patch could be located at either an upper or lower location on the soccer ball. In addition, we varied the surface gloss of the entire soccer ball (including the test patch). The data show that there is an effect of test patch location on observers’ color matching, but this effect is small compared to the physical change in the average light reflected from the test patch across the two locations. In addition, the effect of glossy highlights on the color appearance of the test patch was consistent with the results from Experiment 1. PMID:18598406

  16. Interaction of NaOH solutions with silica surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimsza, Jessica M.; Jones, Reese E.; Criscenti, Louise J.

    Sodium adsorption on silica surfaces depends on the solution counter-ion. Here, we use NaOH solutions to investigate basic environments. Sodium adsorption on hydroxylated silica surfaces from NaOH solutions were investigated through molecular dynamics with a dissociative force field, allowing for the development of secondary molecular species. Furthermore, across the NaOH concentrations (0.01 M – 1.0 M), ~50% of the Na + ions were concentrated in the surface region, developing silica surface charges between –0.01 C/m 2 (0.01 M NaOH) and –0.76 C/m 2 (1.0 M NaOH) due to surface site deprotonation. Five inner-sphere adsorption complexes were identified, including monodentate, bidentate,more » and tridentate configurations and two additional structures, with Na + ions coordinated by bridging oxygen and hydroxyl groups or water molecules. Coordination of Na + ions by bridging oxygen atoms indicates partial or complete incorporation of Na + ions into the silica surface. Residence time analysis identified that Na + ions coordinated by bridging oxygen atoms stayed adsorbed onto the surface four times longer than the mono/bi/tridentate species, indicating formation of relatively stable and persistent Na + ion adsorption structures. Such inner-sphere complexes form only at NaOH concentrations of > 0.5 M. Na + adsorption and lifetimes have implications for the stability of silica surfaces.« less

  17. Interaction of NaOH solutions with silica surfaces

    DOE PAGES

    Rimsza, Jessica M.; Jones, Reese E.; Criscenti, Louise J.

    2018-01-16

    Sodium adsorption on silica surfaces depends on the solution counter-ion. Here, we use NaOH solutions to investigate basic environments. Sodium adsorption on hydroxylated silica surfaces from NaOH solutions were investigated through molecular dynamics with a dissociative force field, allowing for the development of secondary molecular species. Furthermore, across the NaOH concentrations (0.01 M – 1.0 M), ~50% of the Na + ions were concentrated in the surface region, developing silica surface charges between –0.01 C/m 2 (0.01 M NaOH) and –0.76 C/m 2 (1.0 M NaOH) due to surface site deprotonation. Five inner-sphere adsorption complexes were identified, including monodentate, bidentate,more » and tridentate configurations and two additional structures, with Na + ions coordinated by bridging oxygen and hydroxyl groups or water molecules. Coordination of Na + ions by bridging oxygen atoms indicates partial or complete incorporation of Na + ions into the silica surface. Residence time analysis identified that Na + ions coordinated by bridging oxygen atoms stayed adsorbed onto the surface four times longer than the mono/bi/tridentate species, indicating formation of relatively stable and persistent Na + ion adsorption structures. Such inner-sphere complexes form only at NaOH concentrations of > 0.5 M. Na + adsorption and lifetimes have implications for the stability of silica surfaces.« less

  18. Scalable synthesis of Na3V2(PO4)(3)/C porous hollow spheres as a cathode for Na-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, JF; Luo, C; Gao, T

    2015-01-01

    Na3V2(PO4)(3) (NVP) has been considered as a very promising cathode material for sodium-ion batteries (SIBs) due to its typical NASICON structure, which provides an open and three dimensional (3D) framework for Na+ migration. However, the low electronic conductivity of NVP limits its rate capability and cycling ability. In this study, carbon coated hollow structured NVP/C composites are synthesized via a template-free and scalable ultrasonic spray pyrolysis process, where the carbon coated NVP particles are uniformly decorated on the inner and outer surfaces of the porous hollow carbon spheres. When evaluated as a cathode material for SIBs, the unique NVP/C porousmore » hollow sphere cathode delivers an initial discharge capacity of 99.2 mA h g(-1) and retains 89.3 mA h g(-1) after 300 charge/discharge cycles with a very low degradation rate of 0.035% per cycle. For comparison, the NVP/C composite, prepared by the traditional sol-gel method, delivers a lower initial discharge capacity of 97.4 mA h g(-1) and decreases significantly to 71.5 mA h g(-1) after 300 cycles. The superior electrochemical performance of NVP/C porous hollow spheres is attributed to their unique porous, hollow and spherical structures, as well as the carbon-coating layer, which provides a high contact area between electrode/electrolyte, high electronic conductivity, and high mechanical strength.« less

  19. Relaxometry, luminescence measurements, electrophoresis, and animal biodistribution of lanthanide(III) complexes of some polyaza macrocyclic acetates containing pyridine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, W.D.; Sherry, A.D.; Kiefer, G.E.

    Four Gd{sup 3+} complexes [Gd(BP2A){sup +}, Gd(PC2A){sup +}, Gd(PCTA){sup 0}, and Gd(BPO4A){sup {minus}}] with polyazamacrocyclic ligands that contain a pyridine moiety were prepared and examined for possible use as MRI contrast enhancement agents. The authors estimated the number of inner sphere water molecules (q{sub Gd}) for the Gd{sup 3+} complexes from the values of q found for the Tb{sup 3+} and/or Eu{sup 3+} complexes by luminescence lifetime measurements. It was estimated that q{sub Gd} = 3.5, 3.3, 2.4, and 0.2 for Gd(BP2A){sup +}, Gd(PC2A){sup +}, Gd(PCTA){sup 0}, and Gd(BPO4A){sup {minus}}, respectively. The inner sphere relaxivities (r{sub 1,inner}) of these tetraazamore » macrocyclic complexes were higher than that of Gd(DOTA){sup {minus}} [i.e. 6.79 for Gd(BP2A){sup +}, 6.21 for Gd(PC2A){sup +}, and 4.60 for Gd(PCTA){sup 0} mM{sup {minus}1}s{sup {minus}1} at 40 MHz and 25{degrees}C], but the normalized relaxivities per q{sub Gd} (1.94, 1.88, and 1.92 mM{sup {minus}1}s{sup {minus}1}, respectively) were comparable to that of Gd(DOTA){sup {minus}}. A quantitative treatment of the NMRD profiles based on Solomon-Bloembergen-Morgan theory, using the NMRD profile of Gd(BPO4A){sup {minus}} to correct for an outer sphere contribution, showed that the complexes exhibit characteristics similar to that of Gd(DOTA){sup {minus}} but with shorter electronic relaxation times. Tissue biodistribution results using radioactive {sup 153}Sm and {sup 159}Gd complexes in rats indicate that the cationic [{sup 153}Sm-(BP2A){sup +} and {sup 153}Sm(PC2A){sup +}] complexes accumulate preferably in the bone tissue while the neutral [{sup 153}Sm-(PCTA){sup 0}] and anionic [{sup 153}Sm(BPO4A){sup {minus}}] complexes appear to have renal clearances similar to those of other low molecular weight contrast agents [i.e. Gd(DTPA){sup 2{minus}} and Gd(DOTA){sup {minus}}].« less

  20. Foam morphology, frustration and topological defects in a Negatively curved Hele-Shaw geometry

    NASA Astrophysics Data System (ADS)

    Mughal, Adil; Schroeder-Turk, Gerd; Evans, Myfanwy

    2014-03-01

    We present preliminary simulations of foams and single bubbles confined in a narrow gap between parallel surfaces. Unlike previous work, in which the bounding surfaces are flat (the so called Hele-Shaw geometry), we consider surfaces with non-vanishing Gaussian curvature. We demonstrate that the curvature of the bounding surfaces induce a geometric frustration in the preferred order of the foam. This frustration can be relieved by the introduction of topological defects (disclinations, dislocations and complex scar arrangements). We give a detailed analysis of these defects for foams confined in curved Hele-Shaw cells and compare our results with exotic honeycombs, built by bees on surfaces of varying Gaussian curvature. Our simulations, while encompassing surfaces of constant Gaussian curvature (such as the sphere and the cylinder), focus on surfaces with negative Gaussian curvature and in particular triply periodic minimal surfaces (such as the Schwarz P-surface and the Schoen's Gyroid surface). We use the results from a sphere-packing algorithm to generate a Voronoi partition that forms the basis of a Surface Evolver simulation, which yields a realistic foam morphology.

  1. Heterogeneous Catalysis for Thermochemical Conversion Publications |

    Science.gov Websites

    pentagons is an upside-down Y shape and H2 +with a sideways Y shape with two lines at the base. A gold arrow a photo of woody biomass. In the center is a diamond shape composed of four outer triangle sections blue spheres. In the upper left is a large molecule shape made up of a hexagon of black spheres

  2. Testing giant planet formation in the transitional disk of SAO 206462 using deep VLT/SPHERE imaging

    NASA Astrophysics Data System (ADS)

    Maire, A.-L.; Stolker, T.; Messina, S.; Müller, A.; Biller, B. A.; Currie, T.; Dominik, C.; Grady, C. A.; Boccaletti, A.; Bonnefoy, M.; Chauvin, G.; Galicher, R.; Millward, M.; Pohl, A.; Brandner, W.; Henning, T.; Lagrange, A.-M.; Langlois, M.; Meyer, M. R.; Quanz, S. P.; Vigan, A.; Zurlo, A.; van Boekel, R.; Buenzli, E.; Buey, T.; Desidera, S.; Feldt, M.; Fusco, T.; Ginski, C.; Giro, E.; Gratton, R.; Hubin, N.; Lannier, J.; Le Mignant, D.; Mesa, D.; Peretti, S.; Perrot, C.; Ramos, J. R.; Salter, G.; Samland, M.; Sissa, E.; Stadler, E.; Thalmann, C.; Udry, S.; Weber, L.

    2017-05-01

    Context. The SAO 206462 (HD 135344B) disk is one of the few known transitional disks showing asymmetric features in scattered light and thermal emission. Near-infrared scattered-light images revealed two bright outer spiral arms and an inner cavity depleted in dust. Giant protoplanets have been proposed to account for the disk morphology. Aims: We aim to search for giant planets responsible for the disk features and, in the case of non-detection, to constrain recent planet predictions using the data detection limits. Methods: We obtained new high-contrast and high-resolution total intensity images of the target spanning the Y to the K bands (0.95-2.3 μm) using the VLT/SPHERE near-infrared camera and integral field spectrometer. Results: The spiral arms and the outer cavity edge are revealed at high resolutions and sensitivities without the need for aggressive image post-processing techniques, which introduce photometric biases. We do not detect any close-in companions. For the derivation of the detection limits on putative giant planets embedded in the disk, we show that the knowledge of the disk aspect ratio and viscosity is critical for the estimation of the attenuation of a planet signal by the protoplanetary dust because of the gaps that these putative planets may open. Given assumptions on these parameters, the mass limits can vary from 2-5 to 4-7 Jupiter masses at separations beyond the disk spiral arms. The SPHERE detection limits are more stringent than those derived from archival NaCo/L' data and provide new constraints on a few recent predictions of massive planets (4-15 MJ) based on the spiral density wave theory. The SPHERE and ALMA data do not favor the hypotheses on massive giant planets in the outer disk (beyond 0.6''). There could still be low-mass planets in the outer disk and/or planets inside the cavity. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 095.C-0298 and 090.C-0443.

  3. Dissecting Escherichia coli Outer Membrane Biogenesis Using Differential Proteomics

    PubMed Central

    Martorana, Alessandra M.; Motta, Sara; Di Silvestre, Dario; Falchi, Federica; Dehò, Gianni; Mauri, Pierluigi; Sperandeo, Paola; Polissi, Alessandra

    2014-01-01

    The cell envelope of Gram-negative bacteria is a complex multi-layered structure comprising an inner cytoplasmic membrane and an additional asymmetric lipid bilayer, the outer membrane, which functions as a selective permeability barrier and is essential for viability. Lipopolysaccharide, an essential glycolipid located in the outer leaflet of the outer membrane, greatly contributes to the peculiar properties exhibited by the outer membrane. This complex molecule is transported to the cell surface by a molecular machine composed of seven essential proteins LptABCDEFG that form a transenvelope complex and function as a single device. While advances in understanding the mechanisms that govern the biogenesis of the cell envelope have been recently made, only few studies are available on how bacterial cells respond to severe envelope biogenesis defects on a global scale. Here we report the use of differential proteomics based on Multidimensional Protein Identification Technology (MudPIT) to investigate how Escherichia coli cells respond to a block of lipopolysaccharide transport to the outer membrane. We analysed the envelope proteome of a lptC conditional mutant grown under permissive and non permissive conditions and identified 123 proteins whose level is modulated upon LptC depletion. Most such proteins belong to pathways implicated in cell envelope biogenesis, peptidoglycan remodelling, cell division and protein folding. Overall these data contribute to our understanding on how E. coli cells respond to LPS transport defects to restore outer membrane functionality. PMID:24967819

  4. The contour-buildup algorithm to calculate the analytical molecular surface.

    PubMed

    Totrov, M; Abagyan, R

    1996-01-01

    A new algorithm is presented to calculate the analytical molecular surface defined as a smooth envelope traced out by the surface of a probe sphere rolled over the molecule. The core of the algorithm is the sequential build up of multi-arc contours on the van der Waals spheres. This algorithm yields substantial reduction in both memory and time requirements of surface calculations. Further, the contour-buildup principle is intrinsically "local", which makes calculations of the partial molecular surfaces even more efficient. Additionally, the algorithm is equally applicable not only to convex patches, but also to concave triangular patches which may have complex multiple intersections. The algorithm permits the rigorous calculation of the full analytical molecular surface for a 100-residue protein in about 2 seconds on an SGI indigo with R4400++ processor at 150 Mhz, with the performance scaling almost linearly with the protein size. The contour-buildup algorithm is faster than the original Connolly algorithm an order of magnitude.

  5. Competitive sorption of carbonate and arsenic to hematite: combined ATR-FTIR and batch experiments.

    PubMed

    Brechbühl, Yves; Christl, Iso; Elzinga, Evert J; Kretzschmar, Ruben

    2012-07-01

    The competitive sorption of carbonate and arsenic to hematite was investigated in closed-system batch experiments. The experimental conditions covered a pH range of 3-7, arsenate concentrations of 3-300 μM, and arsenite concentrations of 3-200 μM. Dissolved carbonate concentrations were varied by fixing the CO(2) partial pressure at 0.39 (atmospheric), 10, or 100 hPa. Sorption data were modeled with a one-site three plane model considering carbonate and arsenate surface complexes derived from ATR-FTIR spectroscopy analyses. Macroscopic sorption data revealed that in the pH range 3-7, carbonate was a weak competitor for both arsenite and arsenate. The competitive effect of carbonate increased with increasing CO(2) partial pressure and decreasing arsenic concentrations. For arsenate, sorption was reduced by carbonate only at slightly acidic to neutral pH values, whereas arsenite sorption was decreased across the entire pH range. ATR-FTIR spectra indicated the predominant formation of bidentate binuclear inner-sphere surface complexes for both sorbed arsenate and sorbed carbonate. Surface complexation modeling based on the dominant arsenate and carbonate surface complexes indicated by ATR-FTIR and assuming inner-sphere complexation of arsenite successfully described the macroscopic sorption data. Our results imply that in natural arsenic-contaminated systems where iron oxide minerals are important sorbents, dissolved carbonate may increase aqueous arsenite concentrations, but will affect dissolved arsenate concentrations only at neutral to alkaline pH and at very high CO(2) partial pressures. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Structural, luminescence, thermodynamic and theoretical studies on mononuclear complexes of Eu(III) with pyridine monocarboxylate-N-oxides in aqueous solution

    NASA Astrophysics Data System (ADS)

    Dumpala, Rama Mohana Rao; Rawat, Neetika; Boda, Anil; Ali, Sk. Musharaf; Tomar, B. S.

    2018-02-01

    The mononuclear complexes formed by Eu(III) with three isomeric pyridine monocarboxylate-N-oxides namely picolinic acid-N-oxide (PANO), nicotinic acid-N-oxide (NANO) and isonicotinic acid-N-oxide (IANO) in aqueous solutions were studied by potentiometry, luminescence spectroscopy and isothermal titration calorimetry (ITC) to determine the speciation, coordination, luminescence properties and thermodynamic parameters of the complexes formed during the course of the reaction. More stable six membered chelate complexes with stoichiometry (MLi, i = 1-4) are formed by Eu(III) with PANO while non chelating ML and ML2 complexes are formed by NANO and IANO. The stability of Eu(III) complexes follow the order PANO > IANO > NANO. The ITC studies inferred an endothermic and innersphere complex formation of Eu(III)-PANO and Eu(III)-IANO whereas an exothermic and outer-sphere complex formation for Eu(III)-NANO. The luminescence life time data further supported the ITC results. Density functional theoretical calculations were carried out to optimize geometries of the complexes and to estimate the energies, structural parameters (bond distances, bond angles) and charges on individual atoms of the same. Theoretical approximations are found to be in good agreement with the experimental observations.

  7. The Limitations of an Exclusively Colloidal View of Protein Solution Hydrodynamics and Rheology

    PubMed Central

    Sarangapani, Prasad S.; Hudson, Steven D.; Migler, Kalman B.; Pathak, Jai A.

    2013-01-01

    Proteins are complex macromolecules with dynamic conformations. They are charged like colloids, but unlike colloids, charge is heterogeneously distributed on their surfaces. Here we overturn entrenched doctrine that uncritically treats bovine serum albumin (BSA) as a colloidal hard sphere by elucidating the complex pH and surface hydration-dependence of solution viscosity. We measure the infinite shear viscosity of buffered BSA solutions in a parameter space chosen to tune competing long-range repulsions and short-range attractions (2 mg/mL ≤ [BSA] ≤ 500 mg/mL and 3.0 ≤ pH ≤ 7.4). We account for surface hydration through partial specific volume to define volume fraction and determine that the pH-dependent BSA intrinsic viscosity never equals the classical hard sphere result (2.5). We attempt to fit our data to the colloidal rheology models of Russel, Saville, and Schowalter (RSS) and Krieger-Dougherty (KD), which are each routinely and successfully applied to uniformly charged suspensions and to hard-sphere suspensions, respectively. We discover that the RSS model accurately describes our data at pH 3.0, 4.0, and 5.0, but fails at pH 6.0 and 7.4, due to steeply rising solution viscosity at high concentration. When we implement the KD model with the maximum packing volume fraction as the sole floating parameter while holding the intrinsic viscosity constant, we conclude that the model only succeeds at pH 6.0 and 7.4. These findings lead us to define a minimal framework for models of crowded protein solution viscosity wherein critical protein-specific attributes (namely, conformation, surface hydration, and surface charge distribution) are addressed. PMID:24268154

  8. Navier-Stokes structure of merged layer flow on the spherical nose of a space vehicle

    NASA Technical Reports Server (NTRS)

    Jain, A. C.; Woods, G. H.

    1988-01-01

    Hypersonic merged layer flow on the forepart of a spherical surface of a space vehicle has been investigated on the basis of the full steady-state Navier-Stokes equations using slip and temperature jump boundary conditions at the surface and free-stream conditions far from the surface. The shockwave-like structure was determined as part of the computations. Using an equivalent body concept, computations were carried out under conditions that the Aeroassist Flight Experiment (AFE) Vehicle would encounter at 15 and 20 seconds in its flight path. Emphasis was placed on understanding the basic nature of the flow structure under low density conditions. Particular attention was paid to the understanding of the structure of the outer shockwave-like region as the fluid expands around the sphere. Plots were drawn for flow profiles and surface characteristics to understand the role of dissipation processes in the merged layer of the spherical nose of the vehicle.

  9. Complex Refractive Index of Ice Fog at a Radio Wavelength of 3 mm

    DTIC Science & Technology

    1974-10-01

    particles on mirror surface 55 41. Liberally dusting mirror with 3-// polystyrene dust produces almost no effect 56 —" -.-.—-- ■ .■..^„^-^aa...spheres, as Debye (1929) did in his original theory. The rotation of these spheres in a viscous medium is opposed by forces related by Stoke’s law to...given by a relation of the form ,_ C „D/kT E/RT Z 0 where R k ■ M.C \\s only slightly temperature dependent, and n/w is the average time required by

  10. "Outer-sphere to inner-sphere" redox cycling for ultrasensitive immunosensors.

    PubMed

    Akanda, Md Rajibul; Choe, Yu-Lim; Yang, Haesik

    2012-01-17

    This paper reports chemical-chemical (CC) and electrochemical-chemical-chemical (ECC) redox cycling, for use in ultrasensitive biosensor applications. A triple chemical amplification approach using an enzymatic reaction, CC redox cycling, and ECC redox cycling is applied toward electrochemical immunosensors of cardiac troponin I. An enzymatic reaction, in which alkaline phosphatase converts 4-aminophenyl phosphate to 4-aminophenol (AP), triggers CC redox cycling in the presence of an oxidant and a reductant, and electrochemical signals are measured with ECC redox cycling after an incubation period of time in an air-saturated solution. To obtain high, selective, and reproducible redox cycling without using redox enzymes, two redox reactions [the reaction between AP and the oxidant and the reaction between the oxidized form of AP (4-quinone imine, QI) and the reductant] should be fast, but an unwanted reaction between the oxidant and reductant should be very slow. Because species that undergo outer-sphere reactions (OSR-philic species) react slowly with species that undergo inner-sphere reactions (ISR-philic species), highly OSR-philic Ru(NH(3))(6)(3+) and highly ISR-philic tris(2-carboxyethyl)phosphine (TCEP) are chosen as the oxidant and reductant, respectively. The OSR- and ISR-philic QI/AP couple allows fast redox reactions with both the OSR-philic Ru(NH(3))(6)(3+) and the ISR-philic TCEP. Highly OSR-philic indium-tin oxide (ITO) electrodes minimize unwanted electrochemical reactions with highly ISR-philic species. Although the formal potential of the Ru(NH(3))(6)(3+)/Ru(NH(3))(6)(2+) couple is lower than that of the QI/AP couple, the endergonic reaction between Ru(NH(3))(6)(3+) and AP is driven by the highly exergonic reaction between TCEP and QI (via a coupled reaction mechanism). Overall, the "outer-sphere to inner-sphere" redox cycling in the order of highly OSR-philic ITO, highly OSR-philic Ru(NH(3))(6)(3+)/Ru(NH(3))(6)(2+) couple, OSR- and ISR-philic QI/AP couple, and highly ISR-philic TCEP allows high, selective, and reproducible signal amplification. The electrochemical data obtained by chronocoulometry permit a lower detection limits than those obtained by cyclic voltammetry. The detection limit of an immunosensor for troponin I in serum, calculated from the anodic charges in chronocoulometry, is ca. 10 fg/mL.

  11. Application of identifying transmission spheres for spherical surface testing

    NASA Astrophysics Data System (ADS)

    Han, Christopher B.; Ye, Xin; Li, Xueyuan; Wang, Quanzhao; Tang, Shouhong; Han, Sen

    2017-06-01

    We developed a new application on Microsoft Foundation Classes (MFC) to identify correct transmission spheres (TS) for Spherical Surface Testing (SST). Spherical surfaces are important optical surfaces, and the wide application and high production rate of spherical surfaces necessitates an accurate and highly reliable measuring device. A Fizeau Interferometer is an appropriate tool for SST due to its subnanometer accuracy. It measures the contour of a spherical surface using a common path, which is insensitive to the surrounding circumstances. The Fizeau Interferometer transmits a wide laser beam, creating interference fringes from re-converging light from the transmission sphere and the test surface. To make a successful measurement, the application calculates and determines the appropriate transmission sphere for the test surface. There are 3 main inputs from the test surfaces that are utilized to determine the optimal sizes and F-numbers of the transmission spheres: (1) the curvatures (concave or convex), (2) the Radii of Curvature (ROC), and (3) the aperture sizes. The application will firstly calculate the F-numbers (i.e. ROC divided by aperture) of the test surface, secondly determine the correct aperture size of a convex surface, thirdly verify that the ROC of the test surface must be shorter than the reference surface's ROC of the transmission sphere, and lastly calculate the percentage of area that the test surface will be measured. However, the amount of interferometers and transmission spheres should be optimized when measuring large spherical surfaces to avoid requiring a large amount of interferometers and transmission spheres for each test surface. Current measuring practices involve tedious and potentially inaccurate calculations. This smart application eliminates human calculation errors, optimizes the selection of transmission spheres (including the least number required) and interferometer sizes, and increases efficiency.

  12. Minimal proton channel enables H2 oxidation and production with a water-soluble nickel-based catalyst.

    PubMed

    Dutta, Arnab; Lense, Sheri; Hou, Jianbo; Engelhard, Mark H; Roberts, John A S; Shaw, Wendy J

    2013-12-11

    Hydrogenase enzymes use first-row transition metals to interconvert H2 with protons and electrons, reactions that are important for the storage and recovery of energy from intermittent sources such as solar, hydroelectric, and wind. Here we present Ni(P(Cy)2N(Gly)2)2, a water-soluble molecular electrocatalyst with the amino acid glycine built into the diphosphine ligand framework. Proton transfer between the outer coordination sphere carboxylates and the second coordination sphere pendant amines is rapid, as observed by cyclic voltammetry and FTIR spectroscopy, indicating that the carboxylate groups may participate in proton transfer during catalysis. This complex oxidizes H2 (1-33 s(-1)) at low overpotentials (150-365 mV) over a range of pH values (0.1-9.0) and produces H2 under identical solution conditions (>2400 s(-1) at pH 0.5). Enzymes employ proton channels for the controlled movement of protons over long distances-the results presented here demonstrate the effects of a simple two-component proton channel in a synthetic molecular electrocatalyst.

  13. In vitro and in vivo study of the application of volvox spheres to co-culture vehicles in liver tissue engineering.

    PubMed

    Chang, Siou Han; Huang, Han Hsiang; Kang, Pei Leun; Wu, Yu Chian; Chang, Ming-Huang; Kuo, Shyh Ming

    2017-11-01

    Volvox sphere is a biomimetic concept of a natural Volvox, wherein a large outer sphere contains smaller inner spheres, which can encapsulate cells and provide a double-layer three-dimensional environment for culturing cells. This study simultaneously encapsulated rat mesenchymal stem cells (MSCs) and AML12 hepatocytes in volvox spheres and extensively evaluated the effects of various culturing modes on cell functions and fates. The results showed that compared with a static flask culture, MSCs encapsulated in volvox spheres differentiated into hepatocyte-like cells with a 2-fold increase in albumin (ALB) expression and a 2.5-fold increase in cytokeratin 18 expression in a dynamic bioreactor. Moreover, the restorative effects of volvox spheres encapsulating cells on retrorsine-exposed CCl 4 -induced liver injuries in rats were evaluated. The data presented significant reductions in AST and ALT levels after the implantation of volvox spheres encapsulating both MSCs and AML12 hepatocytes in vivo. In contrast to the negative control group, histopathological analysis demonstrated liver repair and formation of the new liver tissue in groups implanted with volvox spheres containing cells. These results demonstrate that liver cells implanted with volvox spheres encapsulating both MSCs and AML12 hepatocytes promote liver repair and liver tissue regeneration in liver failure caused by necrotizing agents such as retrorsine and CCl 4 . Hence, volvox spheres encapsulating MSCs and liver cells can be a promising and clinically effective therapy for liver injury. In this study, we used a volvox sphere, which is a unique design that mimics the natural Volvox, that consists of a large outer sphere that contains smaller inner spheres, which provide a three-dimensional environment to culture cells. The purpose of this study is to co-culture mesenchymal stem cells (MSCs) and AML12 liver cells in volvox spheres and evaluate two different culture methods, dynamic bioreactor and static culture flask,on the cultured cells. In addition, we aimed to evaluate the restorative effects of volvox spheres encapsulating MSCs and/or AML12 liver cells on rats with retrorsine-exposed CCl 4 -induced liver injuries. The results showed that MSCs encapsulated in volvox spheres differentiated into hepatocyte-like cells with a 2-fold increase in albumin expression and a 2.5-fold increase in cytokeratin 18 expression ina dynamic bioreactor. Moreover, the data presented significant reductions in AST and ALT levels after the implantation of volvox spheres encapsulating both MSCs and AML12 hepatocytes in vivo. In contrast to the negative control group, histopathological analysis demonstrated liver repair and formation of new liver tissue in groups implanted with volvox spheres containing cells. These results demonstrate that liver cells implanted with volvox spheres encapsulating both MSCs and AML12 hepatocytes promote liver repair and liver tissue regeneration in liver failure caused by necrotizing agents such as retrorsine and CCl 4 . Hence, volvox spheres encapsulating MSCs and liver cells can be a promising and clinically effective therapy for liver injury. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Adsorption of fatty acids on iron (hydr)oxides from aqueous solutions.

    PubMed

    Chernyshova, Irina V; Ponnurangam, Sathish; Somasundaran, Ponisseril

    2011-08-16

    The interaction of iron (hydr)oxides with fatty acids is related to many industrial and natural processes. To resolve current controversies about the adsorption configurations of fatty acids and the conditions of the maximum hydrophobicity of the minerals, we perform a detailed study of the adsorption of sodium laurate (dodecanoate) on 150 nm hematite (α-Fe(2)O(3)) particles as a model system. The methods used include in situ FTIR spectroscopy, ex situ X-ray photoelectron spectroscopy (XPS), measurements of the adsorption isotherm and contact angle, as well as the density functional theory (DFT) calculations. We found that the laurate adlayer is present as a mixture of inner-sphere monodentate mononuclear (ISMM) and outer-sphere (OS) hydration shared complexes independent of the solution pH. Protonation of the OS complexes does not influence the conformational order of the surfactant tails. One monolayer, which is filled through the growth of domains and is reached at the micellization/precipitation edge of laurate, makes the particles superhydrophobic. These results contradict previous models of the fatty acid adsorption and suggest new interpretation of literature data. Finally, we discovered that the fractions of both the OS laurate and its molecular form increase in D(2)O, which can be used for interpreting complex spectra. We discuss shortcomings of vibrational spectroscopy in determining the interfacial coordination of carboxylate groups. This work advances the current understanding of the oxide-carboxylate interactions and the research toward improving performance of fatty acids as surfactants, dispersants, lubricants, and anticorrosion reagents.

  15. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe 2O 3 nanoparticles

    DOE PAGES

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; ...

    2015-10-27

    Disorder among surface spins largely dominates the magnetic response of ultrafine magnetic particle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8±0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and becomes frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point tomore » highly frustrated surface spins that rearrange much more slowly than interior spins with bulk coordination. Monte Carlo simulations of a hollow particle reproducing the experimental morphology corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Lastly, our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.« less

  16. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    PubMed Central

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-01-01

    Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8 ± 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and become frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures. PMID:26503506

  17. BamA POTRA Domain Interacts with a Native Lipid Membrane Surface.

    PubMed

    Fleming, Patrick J; Patel, Dhilon S; Wu, Emilia L; Qi, Yifei; Yeom, Min Sun; Sousa, Marcelo Carlos; Fleming, Karen G; Im, Wonpil

    2016-06-21

    The outer membrane of Gram-negative bacteria is an asymmetric membrane with lipopolysaccharides on the external leaflet and phospholipids on the periplasmic leaflet. This outer membrane contains mainly β-barrel transmembrane proteins and lipidated periplasmic proteins (lipoproteins). The multisubunit protein β-barrel assembly machine (BAM) catalyzes the insertion and folding of the β-barrel proteins into this membrane. In Escherichia coli, the BAM complex consists of five subunits, a core transmembrane β-barrel with a long periplasmic domain (BamA) and four lipoproteins (BamB/C/D/E). The BamA periplasmic domain is composed of five globular subdomains in tandem called POTRA motifs that are key to BAM complex formation and interaction with the substrate β-barrel proteins. The BAM complex is believed to undergo conformational cycling while facilitating insertion of client proteins into the outer membrane. Reports describing variable conformations and dynamics of the periplasmic POTRA domain have been published. Therefore, elucidation of the conformational dynamics of the POTRA domain in full-length BamA is important to understand the function of this molecular complex. Using molecular dynamics simulations, we present evidence that the conformational flexibility of the POTRA domain is modulated by binding to the periplasmic surface of a native lipid membrane. Furthermore, membrane binding of the POTRA domain is compatible with both BamB and BamD binding, suggesting that conformational selection of different POTRA domain conformations may be involved in the mechanism of BAM-facilitated insertion of outer membrane β-barrel proteins. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores

    NASA Astrophysics Data System (ADS)

    Yang, Guomin; Neretnieks, Ivars; Holmboe, Michael

    2017-08-01

    During the last four decades, numerous studies have been directed to the swelling smectite-rich clays in the context of high-level radioactive waste applications and waste-liners for contaminated sites. The swelling properties of clay mineral particles arise due to hydration of the interlayer cations and the diffuse double layers formed near the negatively charged montmorillonite (MMT) surfaces. To accurately study the cation hydration in the interlayer nanopores of MMT, solvent-solute and solvent-clay surface interactions (i.e., the solvation effects and the shape effects) on the atomic level should be taken into account, in contrast to many recent electric double layer based methodologies using continuum models. Therefore, in this research we employed fully atomistic simulations using classical molecular dynamics (MD) simulations, the software package GROMACS along with the CLAYFF forcefield and the SPC/E water model. We present the ion distributions and the deformation of the hydrated coordination structures, i.e., the hydration shells of Na+ and Ca2+ in the interlayer, respectively, for MMT in the first-layer, the second-layer, the third-layer, the fourth-layer, and the fifth-layer (1W, 2W, 3W, 4W, and 5W) hydrate states. Our MD simulations show that Na+ in Na-MMT nanopores have an affinity to the ditrigonal cavities of the clay layers and form transient inner-sphere complexes at about 3.8 Å from clay midplane at water contents less than the 5W hydration state. However, these phenomena are not observed in Ca-MMT regardless of swelling states. For Na-MMT, each Na+ is coordinated to four water molecules and one oxygen atom of the clay basal-plane in the first hydration shell at the 1W hydration state, and with five to six water molecules in the first hydration shell within a radius of 3.1 Å at all higher water contents. In Ca-MMT, however each Ca2+ is coordinated to approximately seven water molecules in the first hydration shell at the 1W hydration state and about eight water molecules in the first hydration shell within a radius of 3.3 Å at all higher hydration states. Moreover, the MD results show that the complete hydration shells are nearly spherical with an orthogonal coordination sphere. They could only be formed when the basal spacing d001 ≥ 18.7 Å, i.e., approximately, the interlayer separation h ≥ 10 Å. Comparison between DFT and MD simulations shows that DFT failed to reproduce the outer-sphere complexes in the Stern-layer (within ˜5.0 Å from the clay basal-plane), observed in the MD simulations.

  19. Moon (Form-Origin)

    NASA Astrophysics Data System (ADS)

    Tsiapas, Elias

    2016-04-01

    When the Earth was formed, it was in a state of burning heat. As time went by, temperature on the planet's surface was falling due to radiation and heat transfer, and various components (crusts) began taking solid form at the Earth's poles. The formation of crusts took place at the Earth's poles, because the stirring of burning and fluid masses on the surface of the Earth was significantly slighter there than it was on the equator. Due to centrifugal force and Coriolis Effect, these solid masses headed towards the equator; those originating from the North Pole followed a south-western course, while those originating from the South Pole followed a north-western course and there they rotated from west to east at a lower speed than the underlying burning and liquid earth, because of their lower initial linear velocity, their solid state and inertia. Because inertia is proportional to mass, the initially larger solid body swept all new solid ones, incorporating them to its western side. The density of the new solid masses was higher, because the components on the surface would freeze and solidify first, before the underlying thicker components. As a result, the western side of the initial islet of solid rocks submerged, while the east side elevated. . As a result of the above, this initial islet began to spin in reverse, and after taking on the shape of a sphere, it formed the "heart" of the Moon. The Moon-sphere, rolling on the equator, would sink the solid rocks that continued to descend from the Earth's poles. The sinking rocks partially melted because of higher temperatures in the greater depths that the Moon descended to, while part of the rocks' mass bonded with the Moon and also served as a heat-insulating material, preventing the descended side of the sphere from melting. Combined with the Earth's liquid mass that covered its emerging eastern surface, new sphere-shaped shells were created, with increased density and very powerful structural cohesion. During the above mentioned process, the thick clouds surrounding Earth-Moon were causing heavy storms and on the outer surface of the rolling Moon, wherever small cavities - or pockets - existed, these would fill up with water. Then, due to the Moon's changing tilt, these pockets were sealed by sediments and as a result, small water tanks are scattered on the successive layers of the Moon, from its centre to its surface. . As this sphere (the Moon) continued to grow, the Earth-Moon system was displaying a double-planet image. The Moon's reverse rolling velocity increased according to the increase of its mass and volume. As the temperature on the surface of the Earth continued to fall, a larger number of bigger sized solid masses were descending from the poles towards the equator, and the Moon could no longer aggregate them. The gathering and interference of solid rocks of great mass acted as the catapult on which the Moon bounced off the Earth and was put into orbit around it.

  20. Moon (Form-Origin)

    NASA Astrophysics Data System (ADS)

    Tsiapas, Elias; Soumelidou, Despina; Tsiapas, Christos

    2017-04-01

    When the Earth was formed, it was in a state of burning heat. As time went by, temperature on the planet's surface was falling due to radiation and heat transfer, and various components (crusts) began taking solid form at the Earth's poles. The formation of crusts took place at the Earth's poles, because the stirring of burning and fluid masses on the surface of the Earth was significantly slighter there than it was on the equator. Due to centrifugal force and Coriolis Effect, these solid masses headed towards the equator; those originating from the North Pole followed a south-western course, while those originating from the South Pole followed a north-western course and there they rotated from west to east at a lower speed than the underlying burning and liquid earth, because of their lower initial linear velocity, their solid state and inertia. Because inertia is proportional to mass, the initially larger solid body swept all new solid ones, incorporating them to its western side. The density of the new solid masses was higher, because the components on the surface would freeze and solidify first, before the underlying thicker components. As a result, the western side of the initial islet of solid rocks submerged, while the east side elevated. . As a result of the above, this initial islet began to spin in reverse, and after taking on the shape of a sphere, it formed the "heart" of the Moon. The Moon-sphere, rolling on the equator, would sink the solid rocks that continued to descend from the Earth's poles. The sinking rocks partially melted because of higher temperatures in the greater depths that the Moon descended to, while part of the rocks' mass bonded with the Moon and also served as a heat-insulating material, preventing the descended side of the sphere from melting. Combined with the Earth's liquid mass that covered its emerging eastern surface, new sphere-shaped shells were created, with increased density and very powerful structural cohesion. During the above mentioned process, the thick clouds surrounding Earth-Moon were causing heavy storms and on the outer surface of the rolling Moon, wherever small cavities - or pockets - existed, these would fill up with water. Then, due to the Moon's changing tilt, these pockets were sealed by sediments and as a result, small water tanks are scattered on the successive layers of the Moon, from its centre to its surface. . As this sphere (the Moon) continued to grow, the Earth-Moon system was displaying a double-planet image. The Moon's reverse rolling velocity increased according to the increase of its mass and volume. As the temperature on the surface of the Earth continued to fall, a larger number of bigger sized solid masses were descending from the poles towards the equator, and the Moon could no longer aggregate them. The gathering and interference of solid rocks of great mass acted as the catapult on which the Moon bounced off the Earth and was put into orbit around it.

  1. Moon (Form-Origin)

    NASA Astrophysics Data System (ADS)

    Tsiapas, Elias

    2015-04-01

    When the Earth was formed, it was in a state of burning heat. As time went by, temperature on the planet's surface was falling due to radiation and heat transfer, and various components (crusts) began taking solid form at the Earth's poles. The formation of crusts took place at the Earth's poles, because the stirring of burning and fluid masses on the surface of the Earth was significantly slighter there than it was on the equator. Due to centrifugal force and Coriolis Effect, these solid masses headed towards the equator; those originating from the North Pole followed a south-western course, while those originating from the South Pole followed a north-western course and there they rotated from west to east at a lower speed than the underlying burning and liquid earth, because of their lower initial linear velocity, their solid state and inertia. Because inertia is proportional to mass, the initially larger solid body swept all new solid ones, incorporating them to its western side. The density of the new solid masses was higher, because the components on the surface would freeze and solidify first, before the underlying thicker components. As a result, the western side of the initial islet of solid rocks submerged, while the east side elevated. . As a result of the above, this initial islet began to spin in reverse, and after taking on the shape of a sphere, it formed the "heart" of the Moon. The Moon-sphere, rolling on the equator, would sink the solid rocks that continued to descend from the Earth's poles. The sinking rocks partially melted because of higher temperatures in the greater depths that the Moon descended to, while part of the rocks' mass bonded with the Moon and also served as a heat-insulating material, preventing the descended side of the sphere from melting. Combined with the Earth's liquid mass that covered its emerging eastern surface, new sphere-shaped shells were created, with increased density and very powerful structural cohesion. During the above mentioned process, the thick clouds surrounding Earth-Moon were causing heavy storms and on the outer surface of the rolling Moon, wherever small cavities - or pockets - existed, these would fill up with water. Then, due to the Moon's changing tilt, these pockets were sealed by sediments and as a result, small water tanks are scattered on the successive layers of the Moon, from its centre to its surface. . As this sphere (the Moon) continued to grow, the Earth-Moon system was displaying a double-planet image. The Moon's reverse rolling velocity increased according to the increase of its mass and volume. As the temperature on the surface of the Earth continued to fall, a larger number of bigger sized solid masses were descending from the poles towards the equator, and the Moon could no longer aggregate them. The gathering and interference of solid rocks of great mass acted as the catapult on which the Moon bounced off the Earth and was put into orbit around it.

  2. Moon (Form-Origin)

    NASA Astrophysics Data System (ADS)

    Tsiapas, Elias

    2014-05-01

    When the Earth was formed, it was in a state of burning heat. As time went by, temperature on the planet's surface was falling due to radiation and heat transfer, and various components (crusts) began taking solid form at the Earth's poles. The formation of crusts took place at the Earth's poles, because the stirring of burning and fluid masses on the surface of the Earth was significantly slighter there than it was on the equator. Due to centrifugal force and Coriolis Effect, these solid masses headed towards the equator; those originating from the North Pole followed a south-western course, while those originating from the South Pole followed a north-western course and there they rotated from west to east at a lower speed than the underlying burning and liquid earth, because of their lower initial linear velocity, their solid state and inertia. Because inertia is proportional to mass, the initially larger solid body swept all new solid ones, incorporating them to its western side. The density of the new solid masses was higher, because the components on the surface would freeze and solidify first, before the underlying thicker components. As a result, the western side of the initial islet of solid rocks submerged, while the east side elevated. . As a result of the above, this initial islet began to spin in reverse, and after taking on the shape of a sphere, it formed the "heart" of the Moon. The Moon-sphere, rolling on the equator, would sink the solid rocks that continued to descend from the Earth's poles. The sinking rocks partially melted because of higher temperatures in the greater depths that the Moon descended to, while part of the rocks' mass bonded with the Moon and also served as a heat-insulating material, preventing the descended side of the sphere from melting. Combined with the Earth's liquid mass that covered its emerging eastern surface, new sphere-shaped shells were created, with increased density and very powerful structural cohesion. During the above mentioned process, the thick clouds surrounding Earth-Moon were causing heavy storms and on the outer surface of the rolling Moon, wherever small cavities - or pockets - existed, these would fill up with water. Then, due to the Moon's changing tilt, these pockets were sealed by sediments and as a result, small water tanks are scattered on the successive layers of the Moon, from its centre to its surface. . As this sphere (the Moon) continued to grow, the Earth-Moon system was displaying a double-planet image. The Moon's reverse rolling velocity increased according to the increase of its mass and volume. As the temperature on the surface of the Earth continued to fall, a larger number of bigger sized solid masses were descending from the poles towards the equator, and the Moon could no longer aggregate them. The gathering and interference of solid rocks of great mass acted as the catapult on which the Moon bounced off the Earth and was put into orbit around it..

  3. Curious case of gravitational lensing by binary black holes: A tale of two photon spheres, new relativistic images, and caustics

    NASA Astrophysics Data System (ADS)

    Patil, Mandar; Mishra, Priti; Narasimha, D.

    2017-01-01

    Binary black holes have been in the limelight of late due to the detection of gravitational waves from coalescing compact binaries in the events GW150914 and GW151226. In this paper we study gravitational lensing by the binary black holes modeled as an equal mass Majumdar-Papapetrou dihole metric and show that this system displays features that are quite unprecedented and absent in any other lensing configuration investigated so far in the literature. We restrict our attention to the light rays which move on the plane midway between the two identical black holes, which allows us to employ various techniques developed for the equatorial lensing in the spherically symmetric spacetimes. If distance between the two black holes is below a certain threshold value, then the system admits two photon spheres. As in the case of a single black hole, infinitely many relativistic images are formed due to the light rays which turn back from the region outside the outer (unstable) photon sphere, all of which lie beyond a critical angular radius with respect to the lens. However, in the presence of the inner (stable) photon sphere, the effective potential after admitting minimum turns upwards and blows up for the smaller values of radii and the light rays that enter the outer photon sphere can turn back, leading to the formation of a new set of infinitely many relativistic images, all of which lie below the critical radius from the lens mentioned above. As the distance between the two black holes is increased, two photon spheres approach one another, merge and eventually disappear. In the absence of the photon sphere, apart from the formation of a finite number of discrete relativistic images, the system remarkably admits a radial caustic, which has never been observed in the context of relativistic lensing before. Thus the system of the binary black hole admits novel features both in the presence and absence of photon spheres. We discuss possible observational signatures and implications of the binary black hole lensing.

  4. Improved AFM Mapping of ICF Target Surfaces

    NASA Astrophysics Data System (ADS)

    Olson, D. K.; Drake, T.; Frey, D.; Huang, H.; Stephens, R. B.

    2003-10-01

    Targets for Inertial Confinement Fusion (ICF) research are made from spherical shells with very strict requirements on surface smoothness. Hydrodynamic instabilities are amplified by the presence of surface defects, greatly reducing the gain of ICF targets. Sub-micron variations in the surface can be examined using an Atomic Force Microscope. The current sphere mapping assembly at General Atomics is designed to trace near the equator of a rotating sphere under the AFM head. Spheres are traced on three mutually orthogonal planes. The ˜10 mm piezo-electric actuator range limits how far off the equator we can scan spheres of millimeter diameter. Because only a small fraction of the target's surface can be covered, localized high-mode defects are difficult to detect. In order to meet the needs of ICF research, we need to scan more surface area of the sphere with the AFM. By integrating an additional stepping motor to the sphere mapping assembly, we will be able to recenter the piezo driver of the AFM while mapping. This additional ability allows us to increase the amount of the sphere's surface we are able to scan with the AFM by extending the range of the AFM from the sphere's equator.

  5. Investigation of mechanism and critical parameters for removal of arsenic from water using Zr-TiO2 composite.

    PubMed

    Anđelković, I; Amaizah, N R R; Marković, S B; Stanković, D; Marković, M; Kuzmanović, D; Roglić, G

    2017-09-01

    Using the microwave-hydrothermal method for the synthesis of composite, high surface density of hydroxyl groups, as an active adsorption sites for arsenic, was obtained. Adsorption mechanisms of As(III) and As(V) onto zirconium-doped titanium dioxide (Zr-TiO 2 ) were investigated and proposed using macroscopic and microscopic methods. Obtained results are suggesting inner-sphere and outer-sphere adsorption mechanisms for As(III) and As(V), respectively. This allowed us to identify parameters that are critical for the successful removal of arsenic from water, which is essential information for further optimization of the removal process. The composite was further applied for the removal of As(III) and As(V) from water in a dynamic flow through the reactor. Column study proved that the removal of both arsenic species below the value recommended by WHO can be achieved. Elution of As(III) and As(V) from the composite can be done by using small amounts of 0.01 M NaOH solution resulting in preconcentration of arsenic species and possible multiple usage of composite.

  6. Sorption of Metal Ions on Clay Minerals.

    PubMed

    Schlegel; Charlet; Manceau

    1999-12-15

    The mechanism of Co uptake from aqueous solution onto hectorite (a magnesian smectite) and its impact on the stability of this clay mineral were investigated as a function of Co concentration (TotCo = 20 to 200 µM, 0.3 M NaNO(3)) and ionic strength (0.3 and 0.01 M NaNO(3), TotCo = 100 µM) by combining kinetics measurements and Co K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The morphology of the sorbent phase was characterized by atomic force microscopy (AFM) and consists of lath-type particles bounded by large basal planes and layer edges. At low ionic strength (0.01 M NaNO(3)), important Co uptake occurred within the first 5 min of reaction, consistent with Co adsorption on exchange sites of hectorite basal planes. Thereafter, the sorption rate dramatically decreased. In contrast, at high ionic strength (0.3 M NaNO(3)), Co uptake rate was much slower within the first 5 min and afterward higher than at 0.01 M NaNO(3), consistent with Co adsorption on specific surface sites located on the edges of hectorite. Time-dependent isotherms for Co uptake at high ionic strength indicated the existence of several sorption mechanisms having distinct equilibration times. The dissolution of hectorite was monitored before and after Co addition. A congruent dissolution regime was observed prior to Co addition. Just after Co addition, an excess release of Mg relatively to congruent dissolution rates occurred at both high and low ionic strengths. At high ionic strength, this excess release nearly equaled the amount of sorbed Co. The dissolution rate of hectorite then decreased at longer Co sorption times. EXAFS spectra of hectorite reacted with Co at high and low ionic strengths and for reaction times longer than 6 h, exhibited similar features, suggesting that the local structural environments of Co atoms are similar. Spectral simulations revealed the occurrence of approximately 2 Mg and approximately 2 Si neighboring cations at interatomic distances characteristic of edge-sharing linkages between Co and Mg octahedra and corner-sharing linkages between Co octahedra and Si tetrahedra, respectively. This local structure is characteristic of inner sphere mononuclear surface complexes at layer edges of hectorite platelets. The occurrence of these complexes even at low ionic strength apparently conflicts with kinetics results, as exchangeable divalent cations are known to form outer sphere surface complexes. To clarify this issue, the amount of Co adsorbed on exchange sites was calculated from the solute Co concentration, assuming that cation exchange was always at equilibrium. These calculations showed that sorbed Co was transferred within 48 h from exchange sites to edge sorption sites. Copyright 1999 Academic Press.

  7. RadBall Technology Testing and MCNP Modeling of the Tungsten Collimator.

    PubMed

    Farfán, Eduardo B; Foley, Trevor Q; Coleman, J Rusty; Jannik, G Timothy; Holmes, Christopher J; Oldham, Mark; Adamovics, John; Stanley, Steven J

    2010-01-01

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall(™), which can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. RadBall(™) consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly more opaque, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner, which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation matrix provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. RadBall(™) has no power requirements and can be positioned in tight or hard-to reach locations. The RadBall(™) technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This study focuses on the RadBall(™) testing and modeling accomplished at SRNL.

  8. RadBall™ Technology Testing and MCNP Modeling of the Tungsten Collimator

    PubMed Central

    Farfán, Eduardo B.; Foley, Trevor Q.; Coleman, J. Rusty; Jannik, G. Timothy; Holmes, Christopher J.; Oldham, Mark; Adamovics, John; Stanley, Steven J.

    2010-01-01

    The United Kingdom’s National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall™, which can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. RadBall™ consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly more opaque, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner, which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation matrix provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. RadBall™ has no power requirements and can be positioned in tight or hard-to reach locations. The RadBall™ technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This study focuses on the RadBall™ testing and modeling accomplished at SRNL. PMID:21617740

  9. Reservoir computer predictions for the Three Meter magnetic field time evolution

    NASA Astrophysics Data System (ADS)

    Perevalov, A.; Rojas, R.; Lathrop, D. P.; Shani, I.; Hunt, B. R.

    2017-12-01

    The source of the Earth's magnetic field is the turbulent flow of liquid metal in the outer core. Our experiment's goal is to create Earth-like dynamo, to explore the mechanisms and to understand the dynamics of the magnetic and velocity fields. Since it is a complicated system, predictions of the magnetic field is a challenging problem. We present results of mimicking the three Meter experiment by a reservoir computer deep learning algorithm. The experiment is a three-meter diameter outer sphere and a one-meter diameter inner sphere with the gap filled with liquid sodium. The spheres can rotate up to 4 and 14 Hz respectively, giving a Reynolds number near to 108. Two external electromagnets apply magnetic fields, while an array of 31 external and 2 internal Hall sensors measure the resulting induced fields. We use this magnetic probe data to train a reservoir computer to predict the 3M time evolution and mimic waves in the experiment. Surprisingly accurate predictions can be made for several magnetic dipole time scales. This shows that such a complicated MHD system's behavior can be predicted. We gratefully acknowledge support from NSF EAR-1417148.

  10. Cryo-electron microscopy study of bacteriophage T4 displaying anthrax toxin proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fokine, Andrei; Bowman, Valorie D.; Battisti, Anthony J.

    2007-10-25

    The bacteriophage T4 capsid contains two accessory surface proteins, the small outer capsid protein (Soc, 870 copies) and the highly antigenic outer capsid protein (Hoc, 155 copies). As these are dispensable for capsid formation, they can be used for displaying proteins and macromolecular complexes on the T4 capsid surface. Anthrax toxin components were attached to the T4 capsid as a fusion protein of the N-terminal domain of the anthrax lethal factor (LFn) with Soc. The LFn-Soc fusion protein was complexed in vitro with Hoc{sup -}Soc{sup -}T4 phage. Subsequently, cleaved anthrax protective antigen heptamers (PA63){sub 7} were attached to the exposedmore » LFn domains. A cryo-electron microscopy study of the decorated T4 particles shows the complex of PA63 heptamers with LFn-Soc on the phage surface. Although the cryo-electron microscopy reconstruction is unable to differentiate on its own between different proposed models of the anthrax toxin, the density is consistent with a model that had predicted the orientation and position of three LFn molecules bound to one PA63 heptamer.« less

  11. Monostatic lidar/radar invisibility using coated spheres.

    PubMed

    Zhai, Peng-Wang; You, Yu; Kattawar, George W; Yang, Ping

    2008-02-04

    The Lorenz-Mie theory is revisited to explicitly include materials whose permeability is different from unity. The expansion coefficients of the scattered field are given for light scattering by both homogeneous and coated spheres. It is shown that the backscatter is exactly zero if the impedance of the spherical particles is equal to the intrinsic impedance of the surrounding medium. If spherical particles are sufficiently large, the zero backscatter can be explained as impedance matching using the asymptotic expression for the radar backscattering cross section. In the case of a coated sphere, the shell can be regarded as a cloak if the product of the thickness and the imaginary part of the refractive index of the outer shell is large.

  12. Optical trapping forces of a focused azimuthally polarized Bessel-Gaussian beam on a double-layered sphere

    NASA Astrophysics Data System (ADS)

    Wu, F. P.; Zhang, B.; Liu, Z. L.; Tang, Y.; Zhang, N.

    2017-12-01

    We calculate the trapping forces exerted by a highly focused Bessel-Gaussian beam on a double-layered sphere by means of vector diffraction integral, T-matrix method and Maxwell stress tensor integral. The Bessel-Gaussian beam is azimuthally polarized. Numerical results predicate that the double-layered sphere with air core can be stably trapped in three-dimensions. The trapping forces and efficiencies are dependent on the refraction index and size of the inner core. The trapping efficiency can be optimized by choosing the refraction indices of the inner core and outer layer. Our computational method can be easily modified for other laser beams and particles with arbitrary geometries and multilayers.

  13. Electron transfer reactivity of the aqueous iron(IV)–oxo complex. Outer-sphere vs proton-coupled electron transfer

    DOE PAGES

    Bataineh, Hajem; Pestovsky, Oleg; Bakac, Andreja

    2016-06-18

    Here, the kinetics of oxidation of organic and inorganic reductants by aqueous iron(IV) ions, Fe IV(H 2O) 5O 2+ (hereafter Fe IV aqO 2+), are reported. The substrates examined include several water-soluble ferrocenes, hexachloroiridate(III), polypyridyl complexes M(NN) 3 2+ (M = Os, Fe and Ru; NN = phenanthroline, bipyridine and derivatives), HABTS–/ABTS 2–, phenothiazines, Co II(dmgBF 2) 2, macrocyclic nickel(II) complexes, and aqueous cerium(III). Most of the reductants were oxidized cleanly to the corresponding one-electron oxidation products, with the exception of phenothiazines which produced the corresponding oxides in a single-step reaction, and polypyridyl complexes of Fe(II) and Ru(II) that generatedmore » ligand-modified products. Fe IV aqO 2+ oxidizes even Ce(III) (E 0 in 1 M HClO 4 = 1.7 V) with a rate constant greater than 10 4 M –1 s –1. In 0.10 M aqueous HClO 4 at 25 °C, the reactions of Os(phen) 3 2+ (k = 2.5 × 10 5 M –1 s –1), IrCl 6 3– (1.6 × 10 6), ABTS 2– (4.7 × 10 7), and Fe(cp)(C 5H 4CH 2OH) (6.4 × 10 7) appear to take place by outer sphere electron transfer (OSET). The rate constants for the oxidation of Os(phen) 3 2+ and of ferrocenes remained unchanged in the acidity range 0.05 < [H+] < 0.10 M, ruling out prior protonation of Fe IV aqO 2+ and further supporting the OSET assignment. A fit to Marcus cross-relation yielded a composite parameter (log k 22 + E 0 Fe/0.059) = 17.2 ± 0.8, where k 22 and E 0 Fe are the self-exchange rate constant and reduction potential, respectively, for the Fe IV aqO 2+/Fe III aqO + couple. Comparison with literature work suggests k 22 < 10 –5 M –1 s –1 and thus E 0(Fe IV aqO 2+/Fe III aqO +) > 1.3 V. For proton-coupled electron transfer, the reduction potential is estimated at E 0 (Fe IV aqO 2+, H +/Fe III aqOH 2+) ≥ 1.95 V.« less

  14. The Shadow Knows: Using Shadows to Investigate the Structure of the Pretransitional Disk of HD 100453

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael

    2017-03-20

    We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y , J , and K 1 bands that reveals an inner gap (9–18 au), an outer disk (18–39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using themore » Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45°) and their major axes, PA = 140° east of north for the outer disk, and 100° for the inner disk. We find an outer-disk inclination of 25° ± 10° from face-on, in broad agreement with the Wagner et al. measurement of 34°. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.« less

  15. The Shadow Knows: Using Shadows to Investigate the Structure of the Pretransitional Disk of HD 100453

    NASA Astrophysics Data System (ADS)

    Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael; Wagner, Kevin; Muto, Takayuki; Hashimoto, Jun; Follette, Katherine; Grady, Carol A.; Fukagawa, Misato; Hasegawa, Yasuhiro; Kluska, Jacques; Kraus, Stefan; Mayama, Satoshi; McElwain, Michael W.; Oh, Daehyon; Tamura, Motohide; Uyama, Taichi; Wisniewski, John P.; Yang, Yi

    2017-03-01

    We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y, J, and K1 bands that reveals an inner gap (9-18 au), an outer disk (18-39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using the Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45°) and their major axes, PA = 140° east of north for the outer disk, and 100° for the inner disk. We find an outer-disk inclination of 25° ± 10° from face-on, in broad agreement with the Wagner et al. measurement of 34°. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.

  16. The Shadow Knows: Using Shadows to Investigate the Structure of the Pretransitional Disk of HD 100453

    NASA Technical Reports Server (NTRS)

    Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael; Wagner, Kevin; Muto, Takayuki; Hashimoto, Jun; Follette, Katherine; Grady, Carol A.; Fukagawa, Misato; Hasegawa, Yasuhiro; hide

    2017-01-01

    We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y, J, and K1 bands that reveals an inner gap (9-18 au), an outer disk (18-39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using the Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45deg) and their major axes, PA = 140deg east of north for the outer disk, and 100deg for the inner disk. We find an outer-disk inclination of 25deg +/- 10deg from face-on, in broad agreement with the Wagner et al. measurement of 34deg. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.

  17. Ruthenium(II) Complexes Containing Lutidine-Derived Pincer CNC Ligands: Synthesis, Structure, and Catalytic Hydrogenation of C-N bonds.

    PubMed

    Hernández-Juárez, Martín; López-Serrano, Joaquín; Lara, Patricia; Morales-Cerón, Judith P; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2015-05-11

    A series of Ru complexes containing lutidine-derived pincer CNC ligands have been prepared by transmetalation with the corresponding silver-carbene derivatives. Characterization of these derivatives shows both mer and fac coordination of the CNC ligands depending on the wingtips of the N-heterocyclic carbene fragments. In the presence of tBuOK, the Ru-CNC complexes are active in the hydrogenation of a series of imines. In addition, these complexes catalyze the reversible hydrogenation of phenantridine. Detailed NMR spectroscopic studies have shown the capability of the CNC ligand to be deprotonated and get involved in ligand-assisted activation of dihydrogen. More interestingly, upon deprotonation, the Ru-CNC complex 5 e(BF4 ) is able to add aldimines to the metal-ligand framework to yield an amido complex. Finally, investigation of the mechanism of the hydrogenation of imines has been carried out by means of DFT calculations. The calculated mechanism involves outer-sphere stepwise hydrogen transfer to the C-N bond assisted either by the pincer ligand or a second coordinated H2 molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Measurement of steep aspheric surfaces using improved two-wavelength phase-shifting interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Liqiong; Wang, Shaopu; Hu, Yao; Hao, Qun

    2017-10-01

    Optical components with aspheric surfaces can improve the imaging quality of optical systems, and also provide extra advantages such as lighter weight, smaller volume and simper structure. In order to satisfy these performance requirements, the surface error of aspheric surfaces, especially high departure aspheric surfaces must be measured accurately and conveniently. The major obstacle of traditional null-interferometry for aspheric surface under test is that specific and complex null optics need to be designed to fully compensate for the normal aberration of the aspheric surface under test. However, non-null interferometry partially compensating for the aspheric normal aberration can test aspheric surfaces without specific null optics. In this work, a novel non-null test approach of measuring the deviation between aspheric surfaces and the best reference sphere by using improved two-wavelength phase shifting interferometer is described. With the help of the calibration based on reverse iteration optimization, we can effectively remove the retrace error and thus improve the accuracy. Simulation results demonstrate that this method can measure the aspheric surface with the departure of over tens of microns from the best reference sphere, which introduces approximately 500λ of wavefront aberration at the detector.

  19. Triassico: A Sphere Positioning System for Surface Studies with IBA Techniques

    NASA Astrophysics Data System (ADS)

    Fontana, Cristiano L.; Doyle, Barney L.

    We propose here a novel device, called the Triassico, to microscopically study the entire surface of millimeter-sized spheres. The sphere dimensions can be as small as 1 mm, and the upper limit defined only by the power and by the mechanical characteristics of the motors used. Three motorized driving rods are arranged so an equilateral triangle is formed by the rod's axes, on such a triangle the sphere sits. Movement is achieved by rotating the rods with precise relative speeds and by exploiting the friction between the sphere and the rods surfaces. The sphere can be held in place by gravity or by an opposing trio of rods. By rotating the rods with specific relative angular velocities, a net torque can be exerted on the sphere which then rotates. No repositioning of the sphere or of the motors is needed to cover the full surface with the investigating tools. An algorithm was developed to position the sphere at any arbitrary polar and azimuthal angle. The algorithm minimizes the number of rotations needed by the rods, in order to efficiently select a particular position on the sphere surface. A prototype Triassico was developed for the National Ignition Facility, of the Lawrence Livermore National Laboratory (Livermore, California, USA), as a sphere manipulation apparatus for ion microbeam analysis at Sandia National Laboratories (Albuquerque, NM, USA) of Xe-doped DT inertial confinement fusion fuel spheres. Other applications span from samples orientation, ball bearing manufacturing, or jewelry.

  20. Uranium(VI) adsorption to ferrihydrite: Application of a surface complexation model

    USGS Publications Warehouse

    Waite, T.D.; Davis, J.A.; Payne, T.E.; Waychunas, G.A.; Xu, N.

    1994-01-01

    A study of U(VI) adsorption by ferrihydrite was conducted over a wide range of U(VI) concentrations, pH, and at two partial pressures of carbon dioxide. A two-site (strong- and weak-affinity sites, FesOH and FewOH, respectively) surface complexation model was able to describe the experimental data well over a wide range of conditions, with only one species formed with each site type: an inner-sphere, mononuclear, bidentate complex of the type (FeO2)UO2. The existence of such a surface species was supported by results of uranium EXAFS spectroscopy performed on two samples with U(VI) adsorption density in the upper range observed in this study (10 and 18% occupancy of total surface sites). Adsorption data in the alkaline pH range suggested the existence of a second surface species, modeled as a ternary surface complex with UO2CO30 binding to a bidentate surface site. Previous surface complexation models for U(VI) adsorption have proposed surface species that are identical to the predominant aqueous species, e.g., multinuclear hydrolysis complexes or several U(VI)-carbonate complexes. The results demonstrate that the speciation of adsorbed U(VI) may be constrained by the coordination environment at the surface, giving rise to surface speciation for U(VI) that is significantly less complex than aqueous speciation.

  1. Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling.

    PubMed

    Wang, Zimeng; Lee, Sung-Woo; Catalano, Jeffrey G; Lezama-Pacheco, Juan S; Bargar, John R; Tebo, Bradley M; Giammar, Daniel E

    2013-01-15

    The mobility of hexavalent uranium in soil and groundwater is strongly governed by adsorption to mineral surfaces. As strong naturally occurring adsorbents, manganese oxides may significantly influence the fate and transport of uranium. Models for U(VI) adsorption over a broad range of chemical conditions can improve predictive capabilities for uranium transport in the subsurface. This study integrated batch experiments of U(VI) adsorption to synthetic and biogenic MnO(2), surface complexation modeling, ζ-potential analysis, and molecular-scale characterization of adsorbed U(VI) with extended X-ray absorption fine structure (EXAFS) spectroscopy. The surface complexation model included inner-sphere monodentate and bidentate surface complexes and a ternary uranyl-carbonato surface complex, which was consistent with the EXAFS analysis. The model could successfully simulate adsorption results over a broad range of pH and dissolved inorganic carbon concentrations. U(VI) adsorption to synthetic δ-MnO(2) appears to be stronger than to biogenic MnO(2), and the differences in adsorption affinity and capacity are not associated with any substantial difference in U(VI) coordination.

  2. New configuration for efficient and durable copper coating on the outer surface of a tube

    DOE PAGES

    Ahmad, Irfan; Chapman, Steven F.; Velas, Katherine M.; ...

    2017-03-27

    A well-adhered copper coating on stainless steel power coupler parts is required in superconducting radio frequency (SRF) accelerators. Radio frequency power coupler parts are complex, tubelike stainless steel structures, which require copper coating on their outer and inner surfaces. Conventional copper electroplating sometimes produces films with inadequate adhesion strength for SRF applications. Electroplating also requires a thin nickel strike layer under the copper coating, whose magnetic properties can be detrimental to SRF applications. Coaxial energetic deposition (CED) and sputtering methods have demonstrated efficient conformal coating on the inner surfaces of tubes but coating the outer surface of a tube ismore » challenging because these coating methods are line of sight. When the substrate is off axis and the plasma source is on axis, only a small section of the substrate’s outer surface is exposed to the source cathode. The conventional approach is to rotate the tube to achieve uniformity across the outer surface. This method results in poor film thickness uniformity and wastes most of the source plasma. Alameda Applied Sciences Corporation (AASC) has developed a novel configuration called hollow external cathode CED (HEC-CED) to overcome these issues. HEC-CED produces a film with uniform thickness and efficiently uses all eroded source material. Furthermore, the Cu film deposited on the outside of a stainless steel tube using the new HEC-CED configuration survived a high pressure water rinse adhesion test. HEC-CED can be used to coat the outside of any cylindrical structure.« less

  3. New configuration for efficient and durable copper coating on the outer surface of a tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Irfan; Chapman, Steven F.; Velas, Katherine M.

    A well-adhered copper coating on stainless steel power coupler parts is required in superconducting radio frequency (SRF) accelerators. Radio frequency power coupler parts are complex, tubelike stainless steel structures, which require copper coating on their outer and inner surfaces. Conventional copper electroplating sometimes produces films with inadequate adhesion strength for SRF applications. Electroplating also requires a thin nickel strike layer under the copper coating, whose magnetic properties can be detrimental to SRF applications. Coaxial energetic deposition (CED) and sputtering methods have demonstrated efficient conformal coating on the inner surfaces of tubes but coating the outer surface of a tube ismore » challenging because these coating methods are line of sight. When the substrate is off axis and the plasma source is on axis, only a small section of the substrate’s outer surface is exposed to the source cathode. The conventional approach is to rotate the tube to achieve uniformity across the outer surface. This method results in poor film thickness uniformity and wastes most of the source plasma. Alameda Applied Sciences Corporation (AASC) has developed a novel configuration called hollow external cathode CED (HEC-CED) to overcome these issues. HEC-CED produces a film with uniform thickness and efficiently uses all eroded source material. Furthermore, the Cu film deposited on the outside of a stainless steel tube using the new HEC-CED configuration survived a high pressure water rinse adhesion test. HEC-CED can be used to coat the outside of any cylindrical structure.« less

  4. Nanoscale Hollow Spheres: Microemulsion-Based Synthesis, Structural Characterization and Container-Type Functionality

    PubMed Central

    Gröger, Henriette; Kind, Christian; Leidinger, Peter; Roming, Marcus; Feldmann, Claus

    2010-01-01

    A wide variety of nanoscale hollow spheres can be obtained via a microemulsion approach. This includes oxides (e.g., ZnO, TiO2, SnO2, AlO(OH), La(OH)3), sulfides (e.g., Cu2S, CuS) as well as elemental metals (e.g., Ag, Au). All hollow spheres are realized with outer diameters of 10−60 nm, an inner cavity size of 2−30 nm and a wall thickness of 2−15 nm. The microemulsion approach allows modification of the composition of the hollow spheres, fine-tuning their diameter and encapsulation of various ingredients inside the resulting “nanocontainers”. This review summarizes the experimental conditions of synthesis and compares them to other methods of preparing hollow spheres. Moreover, the structural characterization and selected properties of the as-prepared hollow spheres are discussed. The latter is especially focused on container-functionalities with the encapsulation of inorganic salts (e.g., KSCN, K2S2O8, KF), biomolecules/bioactive molecules (e.g., phenylalanine, quercetin, nicotinic acid) and fluorescent dyes (e.g., rhodamine, riboflavin) as representative examples. PMID:28883333

  5. Coordinate measuring machine test standard apparatus and method

    DOEpatents

    Bieg, L.F.

    1994-08-30

    A coordinate measuring machine test standard apparatus and method are disclosed which includes a rotary spindle having an upper phase plate and an axis of rotation, a kinematic ball mount attached to the phase plate concentric with the axis of rotation of the phase plate, a groove mounted at the circumference of the phase plate, and an arm assembly which rests in the groove. The arm assembly has a small sphere at one end and a large sphere at the other end. The small sphere may be a coordinate measuring machine probe tip and may have variable diameters. The large sphere is secured in the kinematic ball mount and the arm is held in the groove. The kinematic ball mount includes at least three mounting spheres and the groove is an angular locating groove including at least two locking spheres. The arm may have a hollow inner core and an outer layer. The rotary spindle may be a ratio reducer. The device is used to evaluate the measuring performance of a coordinate measuring machine for periodic recertification, including 2 and 3 dimensional accuracy, squareness, straightness, and angular accuracy. 5 figs.

  6. Coordinate measuring machine test standard apparatus and method

    DOEpatents

    Bieg, Lothar F.

    1994-08-30

    A coordinate measuring machine test standard apparatus and method which iudes a rotary spindle having an upper phase plate and an axis of rotation, a kinematic ball mount attached to the phase plate concentric with the axis of rotation of the phase plate, a groove mounted at the circumference of the phase plate, and an arm assembly which rests in the groove. The arm assembly has a small sphere at one end and a large sphere at the other end. The small sphere may be a coordinate measuring machine probe tip and may have variable diameters. The large sphere is secured in the kinematic ball mount and the arm is held in the groove. The kinematic ball mount includes at least three mounting spheres and the groove is an angular locating groove including at least two locking spheres. The arm may have a hollow inner core and an outer layer. The rotary spindle may be a ratio reducer. The device is used to evaluate the measuring performance of a coordinate measuring machine for periodic recertification, including 2 and 3 dimensional accuracy, squareness, straightness, and angular accuracy.

  7. Rational design of interfacial properties of ferric (hydr)oxide nanoparticles by adsorption of fatty acids from aqueous solutions.

    PubMed

    Ponnurangam, Sathish; Chernyshova, Irina V; Somasundaran, Ponisseril

    2012-07-24

    Notwithstanding the great practical importance, still open are the questions how, why, and to what extent the size, morphology, and surface charge of metal (hydr)oxide nanoparticles (NPs) affect the adsorption form, adsorption strength, surface density, and packing order of organic (bio)molecules containing carboxylic groups. In this article, we conclusively answer these questions for a model system of ferric (hydr)oxide NPs and demonstrate applicability of the established relationships to manipulating their hydrophobicity and dispersibility. Employing in situ Fourier transform infrared (FTIR) spectroscopy and adsorption isotherm measurements, we study the interaction of 150, 38, and 9 nm hematite (α-Fe(2)O(3)) and ∼4 nm 2-line ferrihydrite with sodium laurate (dodecanoate) in water. We discover that, independent of morphology, an increase in size of the ferric (hydr)oxide NPs significantly improves their adsorption capacity and affinity toward fatty acids. This effect favors the formation of bilayers, which in turn promotes dispersibility of the larger NPs in water. At the same time, the local order in self-assembled monolayer (SAM) strongly depends on the morphological compatibility of the NP facets with the geometry-driven well-packed arrangements of the hydrocarbon chains as well as on the ratio of the chemisorbed to the physically adsorbed carboxylate groups. Surprisingly, the geometrical constraints can be removed, and adsorption capacity can be increased by negatively polarizing the NPs due to promotion of the outer-sphere complexes of the fatty acid. We interpret these findings and discuss their implications for the nanotechnological applications of surface-functionalized metal (hydr)oxide NPs.

  8. Surface similarity-based molecular query-retrieval

    PubMed Central

    Singh, Rahul

    2007-01-01

    Background Discerning the similarity between molecules is a challenging problem in drug discovery as well as in molecular biology. The importance of this problem is due to the fact that the biochemical characteristics of a molecule are closely related to its structure. Therefore molecular similarity is a key notion in investigations targeting exploration of molecular structural space, query-retrieval in molecular databases, and structure-activity modelling. Determining molecular similarity is related to the choice of molecular representation. Currently, representations with high descriptive power and physical relevance like 3D surface-based descriptors are available. Information from such representations is both surface-based and volumetric. However, most techniques for determining molecular similarity tend to focus on idealized 2D graph-based descriptors due to the complexity that accompanies reasoning with more elaborate representations. Results This paper addresses the problem of determining similarity when molecules are described using complex surface-based representations. It proposes an intrinsic, spherical representation that systematically maps points on a molecular surface to points on a standard coordinate system (a sphere). Molecular surface properties such as shape, field strengths, and effects due to field super-positioningcan then be captured as distributions on the surface of the sphere. Surface-based molecular similarity is subsequently determined by computing the similarity of the surface-property distributions using a novel formulation of histogram-intersection. The similarity formulation is not only sensitive to the 3D distribution of the surface properties, but is also highly efficient to compute. Conclusion The proposed method obviates the computationally expensive step of molecular pose-optimisation, can incorporate conformational variations, and facilitates highly efficient determination of similarity by directly comparing molecular surfaces and surface-based properties. Retrieval performance, applications in structure-activity modeling of complex biological properties, and comparisons with existing research and commercial methods demonstrate the validity and effectiveness of the approach. PMID:17634096

  9. Competition Between Co(NH3)63+ and Inner Sphere Mg2+ Ions in the HDV Ribozyme

    PubMed Central

    Gong, Bo; Chen, Jui-Hui; Bevilacqua, Philip C.; Golden, Barbara L.; Carey, Paul R.

    2009-01-01

    Divalent cations play critical structural and functional roles in many RNAs. While the hepatitis delta virus (HDV) ribozyme can undergo self-cleavage in the presence of molar concentrations of monovalent cations, divalent cations such as Mg2+ are required for efficient catalysis under physiological conditions. Moreover, the cleavage reaction can be inhibited with Co(NH3)63+, an analog of Mg(H2O)62+. Here, the binding of Mg2+ and Co(NH3)63+ to the HDV ribozyme are studied by Raman microscopic analysis of crystals. Raman difference spectra acquired at different metal ion conditions reveal changes in the ribozyme. When Mg2+ alone is introduced to the ribozyme, inner sphere coordination of Mg(H2O)x2+ (x≤5) to non-bridging PO2− oxygen, and changes in base stretches and phosphodiester group conformation are observed. In addition, binding of Mg2+ induces deprotonation of a cytosine assigned to the general acid C75, consistent with solution studies. When Co(NH3)63+ alone is introduced, deprotonation of C75 is again observed, as are distinctive changes in base vibrational ring modes and phosphodiester backbone conformation. In contrast to Mg2+ binding, Co(NH3)63+ binding does not perturb PO2− group vibrations, consistent with its ability to make only outer sphere contacts. Surprisingly, competitive binding studies reveal that Co(NH3)63+ ions displace some inner sphere-coordinated magnesium species, including ions coordinated to PO2− groups or the N7 of a guanine, likely G1 at the active site. These observations contrast with the tenet that Co(NH3)63+ ions displace only outer sphere magnesium ions. Overall, our data support two classes of inner sphere Mg2+-PO2− binding sites: sites that Co(NH3)63+ can displace, and others it cannot. PMID:19888753

  10. Component with inspection-facilitating features

    DOEpatents

    Marra, John J; Zombo, Paul J

    2014-02-11

    A turbine airfoil can be formed with features to facilitate measurement of its wall thickness. An outer wall of the airfoil can include an outer surface and an inner surface. The outer surface of the airfoil can have an outer inspection target surface, and the inner surface of the airfoil can have an inner inspection target surface. The inner and outer target surfaces can define substantially flat regions in surfaces that are otherwise highly contoured. The inner and outer inspection target surfaces can be substantially aligned with each other. The inner and outer target surfaces can be substantially parallel to each other. As a result of these arrangements, a highly accurate measurement of wall thickness can be obtained. In one embodiment, the outer inspection target surface can be defined by an innermost surface of a groove formed in the outer surface of the outer wall of the airfoil.

  11. A two-dimensional phase separation on the spherical surface of the metallic glass Au55Pb22.5Sb22.5

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Johnson, W. L.

    1982-01-01

    Recent experiments indicate that a phase separation in a spherical sample of the metallic glass Au55Pb22.5Sb22.5 occurs near the surface of the sphere. This strongly suggests either a contribution of surface-free energy to the decomposition process or a possible influence of near surface impurities absorbed during synthesis of the sphere. The surface phase separation has been studied as a function of cooling rate of the sphere. At high cooling rates (small sphere sizes), the surface separation disappears altogether suggesting that the surface of the parent liquid droplet is initially homogeneous.

  12. Using snowflake surface-area-to-volume ratio to model and interpret snowfall triple-frequency radar signatures

    NASA Astrophysics Data System (ADS)

    Gergely, Mathias; Cooper, Steven J.; Garrett, Timothy J.

    2017-10-01

    The snowflake microstructure determines the microwave scattering properties of individual snowflakes and has a strong impact on snowfall radar signatures. In this study, individual snowflakes are represented by collections of randomly distributed ice spheres where the size and number of the constituent ice spheres are specified by the snowflake mass and surface-area-to-volume ratio (SAV) and the bounding volume of each ice sphere collection is given by the snowflake maximum dimension. Radar backscatter cross sections for the ice sphere collections are calculated at X-, Ku-, Ka-, and W-band frequencies and then used to model triple-frequency radar signatures for exponential snowflake size distributions (SSDs). Additionally, snowflake complexity values obtained from high-resolution multi-view snowflake images are used as an indicator of snowflake SAV to derive snowfall triple-frequency radar signatures. The modeled snowfall triple-frequency radar signatures cover a wide range of triple-frequency signatures that were previously determined from radar reflectivity measurements and illustrate characteristic differences related to snow type, quantified through snowflake SAV, and snowflake size. The results show high sensitivity to snowflake SAV and SSD maximum size but are generally less affected by uncertainties in the parameterization of snowflake mass, indicating the importance of snowflake SAV for the interpretation of snowfall triple-frequency radar signatures.

  13. Procedure for measuring simultaneously the solar and visible properties of glazing with complex internal or external structures.

    PubMed

    Gentle, A R; Smith, G B

    2014-10-20

    Accurate solar and visual transmittances of materials in which surfaces or internal structures are complex are often not easily amenable to standard procedures with laboratory-based spectrophotometers and integrating spheres. Localized "hot spots" of intensity are common in such materials, so data on small samples is unreliable. A novel device and simple protocols have been developed and undergone validation testing. Simultaneous solar and visible transmittance and reflectance data have been acquired for skylight components and multilayer polycarbonate roof panels. The pyranometer and lux sensor setups also directly yield "light coolness" in lumens/watt. Sample areas must be large, and, although mainly in sheet form, some testing has been done on curved panels. The instrument, its operation, and the simple calculations used are described. Results on a subset of diffuse and partially diffuse materials with no hot spots have been cross checked using 150 mm integrating spheres with a spectrophotometer and the Air Mass 1.5 spectrum. Indications are that results are as good or better than with such spheres for transmittance, but reflectance techniques need refinement for some sample types.

  14. Redox Transformations of As and Se at the Surfaces of Natural and Synthetic Ferric Nontronites: Role of Structural and Adsorbed Fe(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilgen, Anastasia G.; Kruichak, Jessica N.; Artyushkova, Kateryna

    Adsorption and redox transformations on clay mineral surfaces are prevalent in surface environments. We examined the redox reactivity of iron Fe(II)/Fe(III) associated with natural and synthetic ferric nontronites. Specifically, we assessed how Fe(II) residing in the octahedral sheets, or Fe(II) adsorbed at the edge sites alters redox activity of nontronites. To probe the redox activity we used arsenic (As) and selenium (Se). Activation of both synthetic and natural ferric nontronites was. observed following the introduction of Fe(II) into predominantly-Fe(III) octahedral sheets or through the adsorption of Fe(II) onto the mineral surface. The oxidation of As(III) to As(V) was observed viamore » catalytic (oxic conditions) and, to a lesser degree, via direct (anoxic conditions) pathways. We provide experimental evidence for electron transfer from As(III) to Fe(111) at the natural and synthetic nontronite surfaces, and illustrate that only a fraction of structural Fe(III) is accessible for redox transformations. We show that As adsorbed onto natural and synthetic nontronites forms identical adsorption complexes, namely inner-sphere binuclear bidentate. In conclusion, we show that the formation of an inner-sphere adsorption complex may be a necessary step for the redox transformation via catalytic or direct oxidation pathways.« less

  15. Redox Transformations of As and Se at the Surfaces of Natural and Synthetic Ferric Nontronites: Role of Structural and Adsorbed Fe(II)

    DOE PAGES

    Ilgen, Anastasia G.; Kruichak, Jessica N.; Artyushkova, Kateryna; ...

    2017-08-29

    Adsorption and redox transformations on clay mineral surfaces are prevalent in surface environments. We examined the redox reactivity of iron Fe(II)/Fe(III) associated with natural and synthetic ferric nontronites. Specifically, we assessed how Fe(II) residing in the octahedral sheets, or Fe(II) adsorbed at the edge sites alters redox activity of nontronites. To probe the redox activity we used arsenic (As) and selenium (Se). Activation of both synthetic and natural ferric nontronites was. observed following the introduction of Fe(II) into predominantly-Fe(III) octahedral sheets or through the adsorption of Fe(II) onto the mineral surface. The oxidation of As(III) to As(V) was observed viamore » catalytic (oxic conditions) and, to a lesser degree, via direct (anoxic conditions) pathways. We provide experimental evidence for electron transfer from As(III) to Fe(111) at the natural and synthetic nontronite surfaces, and illustrate that only a fraction of structural Fe(III) is accessible for redox transformations. We show that As adsorbed onto natural and synthetic nontronites forms identical adsorption complexes, namely inner-sphere binuclear bidentate. In conclusion, we show that the formation of an inner-sphere adsorption complex may be a necessary step for the redox transformation via catalytic or direct oxidation pathways.« less

  16. High-voltage R-F feedthrough bushing

    DOEpatents

    Grotz, G.F.

    1982-09-03

    Described is a multi-element, high voltage radio frequency bushing for transmitting rf energy to an antenna located in a vacuum container. The bushing includes a center conductor of complex geometrical shape, an outer coaxial shield conductor, and a thin-walled hollow truncated cone insulator disposed between central and outer conductors. The shape of the center conductor, which includes a reverse curvature portion formed of a radially inwardly directed shoulder and a convex portion, controls the uniformity of the axial surface gradient on the insulator cone. The outer shield has a first substantially cylindrical portion and a second radially inwardly extending truncated cone portion.

  17. High voltage RF feedthrough bushing

    DOEpatents

    Grotz, Glenn F.

    1984-01-01

    Described is a multi-element, high voltage radio frequency bushing for trmitting RF energy to an antenna located in a vacuum container. The bushing includes a center conductor of complex geometrical shape, an outer coaxial shield conductor, and a thin-walled hollow truncated cone insulator disposed between central and outer conductors. The shape of the center conductor, which includes a reverse curvature portion formed of a radially inwardly directed shoulder and a convex portion, controls the uniformity of the axial surface gradient on the insulator cone. The outer shield has a first substantially cylindrical portion and a second radially inwardly extending truncated cone portion.

  18. Diagnosis of a Poorly Performing Liquid Hydrogen Bulk Storage Sphere

    NASA Technical Reports Server (NTRS)

    Krenn, Angela G.

    2011-01-01

    There are two 850,000 gallon Liquid Hydrogen (LH2) storage spheres used to support the Space Shuttle Program; one residing at Launch Pad A and the other at Launch Pad B. The LH2 Sphere at Pad B has had a high boiloff rate since being brought into service in the 1960's. The daily commodity loss was estimated to be approximately double that of the Pad A sphere, and well above the minimum required by the sphere's specification. Additionally, after being re-painted in the late 1990's a "cold spot" appeared on the outer sphere which resulted in a poor paint bond, and mold formation. Thermography was used to characterize the area, and the boiloff rate was continually evaluated. All evidence suggested that the high boiloff rate was caused by an excessive heat leak into the inner sphere due to an insulation void in the annulus. Pad B was recently taken out of Space Shuttle program service which provided a unique opportunity to diagnose the sphere's poor performance. The sphere was drained and inerted, and then opened from the annular relief device on the top where a series of boroscoping operations were accomplished. Boroscoping revealed a large Perlite insulation void in the region of the sphere where the cold spot was apparent. Perlite was then trucked in and off-loaded into the annular void region until the annulus was full. The sphere has not yet been brought back into service.

  19. Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A.; Jackson, George

    2018-04-01

    A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.

  20. Synthesis and enhanced humidity detection response of nanoscale Au-particle-decorated ZnS spheres

    PubMed Central

    2014-01-01

    We successfully prepared Au-nanoparticle-decorated ZnS (ZnS-Au) spheres by sputtering Au ultrathin films on surfaces of hydrothermally synthesized ZnS spheres and subsequently postannealed the samples in a high-vacuum atmosphere. The Au nanoparticles were distributed on ZnS surfaces without substantial aggregation. The Au nanoparticle diameter range was 5 to 10 nm. Structural information showed that the surface of the annealed ZnS-Au spheres became more irregular and rough. A humidity sensor constructed using the Au-nanoparticle-decorated ZnS spheres demonstrated a substantially improved response to the cyclic change in humidity from 11% relative humidity (RH) to 33% to 95% RH at room temperature. The improved response was associated with the enhanced efficiency of water molecule adsorption onto the surfaces of the ZnS because of the surface modification of the ZnS spheres through noble-metal nanoparticle decoration. PMID:25520595

  1. Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement.

    PubMed

    Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A; Jackson, George

    2018-04-28

    A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.

  2. A molecularly based theory for electron transfer reorganization energy.

    PubMed

    Zhuang, Bilin; Wang, Zhen-Gang

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule's permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  3. The Silent Canyon caldera complex: a three-dimensional model based on drill-hole stratigraphy and gravity inversion

    USGS Publications Warehouse

    McKee, Edwin H.; Hildenbrand, Thomas G.; Anderson, Megan L.; Rowley, Peter D.; Sawyer, David A.

    1999-01-01

    The structural framework of Pahute Mesa, Nevada, is dominated by the Silent Canyon caldera complex, a buried, multiple collapse caldera complex. Using the boundary surface between low density Tertiary volcanogenic rocks and denser granitic and weakly metamorphosed sedimentary rocks (basement) as the outer fault surfaces for the modeled collapse caldera complex, it is postulated that the caldera complex collapsed on steeply- dipping arcuate faults two, possibly three, times following eruption of at least two major ash-flow tuffs. The caldera and most of its eruptive products are now deeply buried below the surface of Pahute Mesa. Relatively low-density rocks in the caldera complex produce one of the largest gravity lows in the western conterminous United States. Gravity modeling defines a steep sided, cup-shaped depression as much as 6,000 meters (19,800 feet) deep that is surrounded and floored by denser rocks. The steeply dipping surface located between the low-density basin fill and the higher density external rocks is considered to be the surface of the ring faults of the multiple calderas. Extrapolation of this surface upward to the outer, or topographic rim, of the Silent Canyon caldera complex defines the upper part of the caldera collapse structure. Rock units within and outside the Silent Canyon caldera complex are combined into seven hydrostratigraphic units based on their predominant hydrologic characteristics. The caldera structures and other faults on Pahute Mesa are used with the seven hydrostratigraphic units to make a three-dimensional geologic model of Pahute Mesa using the "EarthVision" (Dynamic Graphics, Inc.) modeling computer program. This method allows graphic representation of the geometry of the rocks and produces computer generated cross sections, isopach maps, and three-dimensional oriented diagrams. These products have been created to aid in visualizing and modeling the ground-water flow system beneath Pahute Mesa.

  4. Equilibrium location for spherical DNA and toroidal cyclodextrin

    NASA Astrophysics Data System (ADS)

    Sarapat, Pakhapoom; Baowan, Duangkamon; Hill, James M.

    2018-05-01

    Cyclodextrin comprises a ring structure composed of glucose molecules with an ability to form complexes of certain substances within its central cavity. The compound can be utilised for various applications including food, textiles, cosmetics, pharmaceutics, and gene delivery. In gene transfer, the possibility of forming complexes depends upon the interaction energy between cyclodextrin and DNA molecules which here are modelled as a torus and a sphere, respectively. Our proposed model is derived using the continuum approximation together with the Lennard-Jones potential, and the total interaction energy is obtained by integrating over both the spherical and toroidal surfaces. The results suggest that the DNA prefers to be symmetrically situated about 1.2 Å above the centre of the cyclodextrin to minimise its energy. Furthermore, an optimal configuration can be determined for any given size of torus and sphere.

  5. Macroscopic and Microscopic Investigation of U(VI) and Eu(III) Adsorption on Carbonaceous Nanofibers.

    PubMed

    Sun, Yubing; Wu, Zhen-Yu; Wang, Xiangxue; Ding, Congcong; Cheng, Wencai; Yu, Shu-Hong; Wang, Xiangke

    2016-04-19

    The adsorption mechanism of U(VI) and Eu(III) on carbonaceous nanofibers (CNFs) was investigated using batch, IR, XPS, XANES, and EXAFS techniques. The pH-dependent adsorption indicated that the adsorption of U(VI) on the CNFs was significantly higher than the adsorption of Eu(III) at pH < 7.0. The maximum adsorption capacity of the CNFs calculated from the Langmuir model at pH 4.5 and 298 K for U(VI) and Eu(III) were 125 and 91 mg/g, respectively. The CNFs displayed good recyclability and recoverability by regeneration experiments. Based on XPS and XANES analyses, the enrichment of U(VI) and Eu(III) was attributed to the abundant adsorption sites (e.g., -OH and -COOH groups) of the CNFs. IR analysis further demonstrated that -COOH groups were more responsible for U(VI) adsorption. In addition, the remarkable reducing agents of the R-CH2OH groups were responsible for the highly efficient adsorption of U(VI) on the CNFs. The adsorption mechanism of U(VI) on the CNFs at pH 4.5 was shifted from inner- to outer-sphere surface complexation with increasing initial concentration, whereas the surface (co)precipitate (i.e., schoepite) was observed at pH 7.0 by EXAFS spectra. The findings presented herein play an important role in the removal of radionuclides on inexpensive and available carbon-based nanoparticles in environmental cleanup applications.

  6. orbis (sphaera), circulus, via, iter, orbita -- on the terminological identification of the essential paradigm change in astronomy by Johannes Kepler. (German Title: orbis (sphaera), circulus, via, iter, orbita} -- zur terminologischen Kennzeichnung des wesentlichsten Paradigmawechsels in der Astronomie durch Johannes Kepler)

    NASA Astrophysics Data System (ADS)

    Krafft, Fritz

    2011-08-01

    The use of modern terminology hinders to understand historical astronomical texts and often misleads the reader. Therefore, this study tries to reconstruct the ideas of the way the planets seem to move against the sphere of fixed stars in a non-teleological manner, that means in the original view and with original terms. The study proceeds historically and explains: (1) Aristotle's system of homocentric spheres being hollow spheres of ether turning equally round the earth in the centre of the world, a number of which makes the apparatus of the movement of a planet which produces its apparently unequal motion. (2) Ptolemy's reductionistic system of geometric circles (eccentric deferents, epicycles etc.), which are indeed great circles on non-concentric hollow spheres, whereupon they turn around equally. The space which they take up in all is surrounded by an inner and an outer concentric spherical surface and makes the sphere of the planet. (3) John's of Sacrobosco transferring of the geometric astronomy to the Latin of Middle Ages and the commentators' precision of the Greek-Latin terms. (4) The tradition of the "Theorica planetarum" which makes this geometry physics by allotting every partial moving to a partial material hollow sphere (with spherical surfaces of different centricity) or full sphere of an epicycle (orbes particulares or partialis), a number of which makes the entire sphere of each planet (orbis totalis or totus). - Copernicus also stood within this tradition, except that his entire spheres differ from the earlier ones in size or thickness (because he eliminated the partly very big synodic epicycles and allocated their effect as a mere parallactic one to the yearly moving of the earth) and in the great intervening spaces between each other (a result of measuring the true distances of the planets on the basis of these parallactic effects). (5) Tycho Brahe's refutation of the unchangingness and unpermeableness and therefore solidity of all etherial spheres, what had been the fundamental condition for creating the indirect ways of the planets in all astronomical systems with partial or entire spheres engaging one another. It was particularly Kepler who recognizes that as a result celestial physics requires a complete change. (6) Kepler's replacement of celestial physics. He did not think any more that the apparent (unequal) way of a planet indirectly results from the combination of several equal movements of etherial partial and entire spheres. His planets move their true and real way caused directly by the joint effect of two corporal forces moving the planets both around the sun and to and from it, which latter makes the planet's speed indeed naturally unequal. For this "real way" he coins in late 1604 the specific term "orbita" (the modern "orbit", the German "Bahn". This term then little by little replaced the former non-specific, general description of the apparent or real way (as "via, iter, ambitus, circulus, circuitus" etc.), and Kepler used it increasingly from its introduction (initially frequently joined to a describing definition of this "way") up to the exclusive use in the fifth book of the "Epitome", after this "orbita" had changed its shape from a perfect eccentric circle to an oval and finally an elliptic form. This way Kepler marks the paradigm change of astronomy caused by himself also terminologically.

  7. Specific surface area of overlapping spheres in the presence of obstructions

    NASA Astrophysics Data System (ADS)

    Jenkins, D. R.

    2013-02-01

    This study considers the random placement of uniform sized spheres, which may overlap, in the presence of another set of randomly placed (hard) spheres, which do not overlap. The overlapping spheres do not intersect the hard spheres. It is shown that the specific surface area of the collection of overlapping spheres is affected by the hard spheres, such that there is a minimum in the specific surface area as a function of the relative size of the two sets of spheres. The occurrence of the minimum is explained in terms of the break-up of pore connectivity. The configuration can be considered to be a simple model of the structure of a porous composite material. In particular, the overlapping particles represent voids while the hard particles represent fillers. Example materials are pervious concrete, metallurgical coke, ice cream, and polymer composites. We also show how the material properties of such composites are affected by the void structure.

  8. Specific surface area of overlapping spheres in the presence of obstructions.

    PubMed

    Jenkins, D R

    2013-02-21

    This study considers the random placement of uniform sized spheres, which may overlap, in the presence of another set of randomly placed (hard) spheres, which do not overlap. The overlapping spheres do not intersect the hard spheres. It is shown that the specific surface area of the collection of overlapping spheres is affected by the hard spheres, such that there is a minimum in the specific surface area as a function of the relative size of the two sets of spheres. The occurrence of the minimum is explained in terms of the break-up of pore connectivity. The configuration can be considered to be a simple model of the structure of a porous composite material. In particular, the overlapping particles represent voids while the hard particles represent fillers. Example materials are pervious concrete, metallurgical coke, ice cream, and polymer composites. We also show how the material properties of such composites are affected by the void structure.

  9. Relationship between macular ganglion cell complex thickness and macular outer retinal thickness: a spectral-domain optical coherence tomography study.

    PubMed

    Kita, Yoshiyuki; Kita, Ritsuko; Takeyama, Asuka; Anraku, Ayako; Tomita, Goji; Goldberg, Ivan

    2013-01-01

    To assess the relationship between macular ganglion cell complex and macular outer retinal thicknesses. Case-control study. Forty-two normal eyes and 91 eyes with primary open-angle glaucoma were studied. Spectral-domain optical coherence tomography (RTVue-100) was used to measure the macular ganglion cell complex and macular outer retinal thickness. Ganglion cell complex to outer retinal thickness ratio was also calculated. The relationships between the ganglion cell complex and outer retinal thicknesses and between the ganglion cell complex to outer retinal thickness ratio and outer retinal thickness were evaluated. There was a positive correlation between ganglion cell complex and outer retinal thicknesses in the normal group and the glaucoma group (r = 0.53, P < 0.001 and r = 0.42, P < 0.001, respectively). In that respect, there was no correlation between ganglion cell complex to outer retinal thickness ratio and outer retinal thickness in the both groups (r = -0.07, P = 0.657, and r = 0.04, P = 0.677, respectively). The ganglion cell complex to outer retinal thickness ratio was 55.65% in the normal group, 45.07% in the glaucoma group. This difference was statistically significant. The ganglion cell complex thickness may be affected by outer retinal thickness, and there is individual variation in the outer retinal thickness. Therefore, when determining the ganglion cell complex, it seems necessary to consider the outer retinal thickness as well. We propose the ratio as a suitable parameter to account for individual variations in outer retinal thickness. © 2013 The Authors. Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  10. Volumes and surface areas of pendular rings

    USGS Publications Warehouse

    Rose, W.

    1958-01-01

    A packing of spheres is taken as a suitable model of porous media. The packing may be regular and the sphere size may be uniform, but in general, both should be random. Approximations are developed to give the volumes and surface areas of pendular rings that exist at points of sphere contact. From these, the total free volume and interfacial specific surface area are derived as expressive of the textural character of the packing. It was found that the log-log plot of volumes and surface areas of pendular rings vary linearly with the angle made by the line joining the sphere centers and the line from the center of the largest sphere to the closest edge of the pendular ring. The relationship, moreover, was found not to be very sensitive to variation in the size ratio of the spheres in contact. It also was found that the addition of pendular ring material to various sphere packings results in an unexpected decrease in the surface area of the boundaries that confine the resulting pore space. ?? 1958 The American Institute of Physics.

  11. Physical State of Ices in the Outer Solar System. Revised

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Comparison of the identity and abundances of ices observed around protostars and those associated with comets clearly suggests that comets preserve the heritage of the interstellar materials that aggregated to form them. However, the ability to identify these same species on icy satellites in the outer solar system is a complex function of the composition of the original ices, their subsequent thermal histories, and their exposure to various radiation environments. Our ability to identify the ices currently present on objects in the outer solar system relies upon observational and laboratory, and theoretical efforts. To date there is ample observational evidence for crystalline water ice throughout the outer solar system. In addition, there is growing evidence that amorphous ice may be present on some bodies. More volatile ices, e.g. N2, CH4. CO, and other species, e.g. ammonia hydrate, are identified on objects lying at and beyond Uranus. Both photolysis and radiolysis play important roles in altering the original surfaces due to chemical reactions and erosion of the surface. Ultraviolet photolysis appears to dominate alteration of the upper few hundred Angstroms, although sputtering the surface can sometimes be a significantly competitative process; dominating on icy surfaces embedded in a strong planetary magnetospheric field. There is growing observational evidence that the by-products of photolysis and radiolysis, suggested on a theoretical basis, are present on icy surfaces.

  12. Electric-field-induced forces between two surfaces filled with an insulating liquid: the role of adsorbed water

    NASA Astrophysics Data System (ADS)

    Wang, Yong Jian; Xu, Zuli; Sheng, Ping; Tong, Penger

    2014-06-01

    A systematic study of the electric-field-induced forces between a solid glass sphere and a flat gold-plated substrate filled with an insulating liquid has been carried out. Using atomic force microscopy, we measure the electrostatic force f(s, V) between the sphere and substrate as a function of the surface separation s and applied voltage V. The measured f(s, V) is found to be well described by an equation for a conducting sphere. Further force measurements for the "wet" porous glass spheres filled with an aqueous solution of urea and the dried porous glass spheres filled with (dry) air suggest that there is a water layer of a few nanometers in thickness adsorbed on the hydrophilic glass surface under ambient conditions. This adsorbed water layer is more conductive than the dielectric core of the glass sphere, making the sphere surface to be at a potential close to that of the cantilever electrode. As a result, the electric field is strongly concentrated in the gap region between the glass sphere and gold-plate substrate and thus their electrostatic attraction is enhanced. This surface conductivity effect is further supported by the thermal gravimetric analysis (TGA) and force response measurements to a time-dependent electric field. The experiment clearly demonstrates that the adsorption of a conductive water layer on a hydrophilic surface plays a dominant role in determining the electrostatic interaction between the dielectric sphere and substrate.

  13. Heat capacity of a self-gravitating spherical shell of radiations

    NASA Astrophysics Data System (ADS)

    Kim, Hyeong-Chan

    2017-10-01

    We study the heat capacity of a static system of self-gravitating radiations analytically in the context of general relativity. To avoid the complexity due to a conical singularity at the center, we excise the central part and replace it with a regular spherically symmetric distribution of matters of which specifications we are not interested in. We assume that the mass inside the inner boundary and the locations of the inner and the outer boundaries are given. Then, we derive a formula relating the variations of physical parameters at the outer boundary with those at the inner boundary. Because there is only one free variation at the inner boundary, the variations at the outer boundary are related, which determines the heat capacity. To get an analytic form for the heat capacity, we use the thermodynamic identity δ Srad=β δ Mrad additionally, which is derived from the variational relation of the entropy formula with the restriction that the mass inside the inner boundary does not change. Even if the radius of the inner boundary of the shell goes to zero, in the presence of a central conical singularity, the heat capacity does not go to the form of the regular sphere. An interesting discovery is that another legitimate temperature can be defined at the inner boundary which is different from the asymptotic one β-1.

  14. Magnesium-binding architectures in RNA crystal structures: validation, binding preferences, classification and motif detection

    PubMed Central

    Zheng, Heping; Shabalin, Ivan G.; Handing, Katarzyna B.; Bujnicki, Janusz M.; Minor, Wladek

    2015-01-01

    The ubiquitous presence of magnesium ions in RNA has long been recognized as a key factor governing RNA folding, and is crucial for many diverse functions of RNA molecules. In this work, Mg2+-binding architectures in RNA were systematically studied using a database of RNA crystal structures from the Protein Data Bank (PDB). Due to the abundance of poorly modeled or incorrectly identified Mg2+ ions, the set of all sites was comprehensively validated and filtered to identify a benchmark dataset of 15 334 ‘reliable’ RNA-bound Mg2+ sites. The normalized frequencies by which specific RNA atoms coordinate Mg2+ were derived for both the inner and outer coordination spheres. A hierarchical classification system of Mg2+ sites in RNA structures was designed and applied to the benchmark dataset, yielding a set of 41 types of inner-sphere and 95 types of outer-sphere coordinating patterns. This classification system has also been applied to describe six previously reported Mg2+-binding motifs and detect them in new RNA structures. Investigation of the most populous site types resulted in the identification of seven novel Mg2+-binding motifs, and all RNA structures in the PDB were screened for the presence of these motifs. PMID:25800744

  15. The protoplanetary system HD 100546 in Hα polarized light from SPHERE/ZIMPOL. A bar-like structure across the disk gap?

    NASA Astrophysics Data System (ADS)

    Mendigutía, I.; Oudmaijer, R. D.; Garufi, A.; Lumsden, S. L.; Huélamo, N.; Cheetham, A.; de Wit, W. J.; Norris, B.; Olguin, F. A.; Tuthill, P.

    2017-12-01

    Context. HD 100546 is one of the few known pre-main-sequence stars that may host a planetary system in its disk. Aims: This work aims to contribute to our understanding of HD 100546 by analyzing new polarimetric images with high spatial resolution. Methods: Using VLT/SPHERE/ZIMPOL with two filters in Hα and the adjacent continuum, we have probed the disk gap and the surface layers of the outer disk, covering a region <500 mas (<55 au at 109 pc) from the central star, at an angular resolution of 20 mas. Results: Our data show an asymmetry: the SE and NW regions of the outer disk are more polarized than the SW and NE regions. This asymmetry can be explained from a preferential scattering angle close to 90° and is consistent with previous polarization images. The outer disk in our observations extends from 13 ± 2 to 45 ± 9 au, with a position angle and inclination of 137 ± 5° and 44 ± 8°, respectively. The comparison with previous estimates suggests that the disk inclination could increase with the stellocentric distance, although the different measurements are still consistent within the error bars. In addition, no direct signature of the innermost candidate companion is detected from the polarimetric data, confirming recent results that were based on intensity imagery. We set an upper limit to its mass accretion rate <10-8 M⊙ yr-1 for a substellar mass of 15 MJup. Finally, we report the first detection (>3σ) of a 20 au bar-like structure that crosses the gap through the central region of HD 100546. Conclusions: In the absence of additional data, it is tentatively suggested that the bar could be dust dragged by infalling gas that radially flows from the outer disk to the inner region. This could represent an exceptional case in which a small-scale radial inflow is observed in a single system. If this scenario is confirmed, it could explain the presence of atomic gas in the inner disk that would otherwise accrete on to the central star on a timescale of a few months/years, as previously indicated from spectro-interferometric data, and could be related with additional (undetected) planets.

  16. Image method for induced surface charge from many-body system of dielectric spheres

    NASA Astrophysics Data System (ADS)

    Qin, Jian; de Pablo, Juan J.; Freed, Karl F.

    2016-09-01

    Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)3ɛ, where a is the sphere radius, R the average inter-sphere separation, and ɛ the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.

  17. IImage method for induced surface charge from many-body system of dielectric spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Jian; de Pablo, Juan J.; Freed, Karl F.

    2016-09-28

    Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)(3) epsilon, where a is the sphere radius, R the average inter-sphere separation,more » and. the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.« less

  18. GAUGING APPARATUS

    DOEpatents

    Ruggles, C.A.

    1957-08-27

    A swinging arm gage designed to measure radial angles, tapering, sloping, or arcuate concave surfaces is described. The principle of the swinging arm gage is that in any spherical system, radii and radial lines established by them pass through the center of the sphere. Thus if an arm be made to pivot at the sphere center, the path of the swinging end can be guided by a can so set as to establish the proper center angle, and dial indicators on the arm can be zeroed on a master object, angular and dimensional manufacturing errors can be determined on a duplicate object. This device makes possible a considerable saving of time in measuring complex arcuate contours.

  19. Combining Sequential Extractions and X-ray Absorption Spectroscopy for Quantitative and Qualitative Zinc Speciation in Soil

    NASA Astrophysics Data System (ADS)

    Bauer, Tatiana; Minkina, Tatiana; Batukaev, Abdulmalik; Nevidomskaya, Dina; Burachevskaya, Marina; Tsitsuashvili, Viktoriya; Urazgildieva, Kamilya

    2017-04-01

    The combined use of X-ray absorption spectrometry and extractive fractionation is an effective approach for studying the interaction of metal ions with soil compounds and identifying the phases-carriers of metals in soil and their stable fixation. These studies were carried out using the technique of X-ray absorption spectroscopy and chemical extractive fractionation. In a model experiment the samples taken in Calcic Chernozem were artificially contaminated with higher portion of Zn(NO3)2 (2000 mg/kg). The metal were incubated in soil samples for 2 year. The samples of soil mineral and organic phases (calcite, kaolinite, bentonite, humic acids) were saturated with Zn2+ from a solution of nitrate salts of metal. The total content of Zn in soil and soil various phases was determined using the X-ray fluorescence method. Extended X-ray absorption fine structure (EXAFS) Zn was measured at the Structural Materials Science beamline of the Kurchatov Center for Synchrotron Radiation. Sequential fractionation of Zn in soil conducted by Tessier method (Tessier et al., 1979) which determining 5 fractions of metals in soil: exchangeable, bound to Fe-Mn oxide, bound to carbonate, bound to the organic matter, and bound to silicate (residual). This methodology has so far more than 4000 citations (Web of Science), which demonstrates the popularity of this approach. Much Zn compounds are contained in uncontaminated soils in stable primary and secondary silicates inherited from the parental rocks (67% of the total concentrations in all fractions), which is a regional trait of soils in the fore-Caucasian plain. Extracted fractionation of metal compounds in soil samples, artificially contaminated with Zn salts, indicates the priority holding of Zn2+ ions by silicates, carbonates and Fe-Mn oxides. The Zn content significantly increases in the exchangeable fraction. Atomic structure study of the soil various phases saturated with Zn2+ ion by using (XANES) X-ray absorption spectroscopy allowed the determination of mechanism of metal ions interaction with soil phases and the resulting types of chemical bonds. Interaction with soil components modifies the electron structure of the metal ions themselves. The soil contamination with Zn is accompanied by decreasing the stable connection between metal and soil components. Interacting with humic acids in chernozem, the Zn2+ ion is coordinated by functional groups and ligands and forms unstable outer-sphere complexes. Zinc included into octahedral structures of layered minerals and hydro(oxides) can be inner-and outer-sphere adsorbed. The Zn2+ ions enable to replace Ca2+ ions in octahedral positions being coordinated with carbonate ions as ligands, thus forming absorbed complexes at the surface of mineral calcite. This work was supported by grant of the Russian Scientific Foundation № 16-14-10217.

  20. Superspace models for S-3

    NASA Astrophysics Data System (ADS)

    McKeon, D. G. C.

    2003-11-01

    The simplest supersymmetric extension of the group SO(4) is discussed. The superalgebra is realized in a superspace whose Bosonic subspace is the surface of a sphere S-3 embedded in four-dimensional Euclidean space. By using Fermionic coordinates in this superspace, which are chiral symplectic Majorana spinors, it proves possible to devise superfield models involving a complex scalar, a pair of chiral symplectic Majorana spinors, and a complex auxiliary scalar. Kinetic terms involve operators that are isometry generators on S-3.

  1. Electrocatalytic Oxidation of Formate with Nickel Diphosphane Dipeptide Complexes. Effect of Ligands Modified with Amino Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galan, Brandon R.; Reback, Matthew L.; Jain, Avijita

    2013-09-03

    A series of nickel bis-diphosphine complexes with dipeptides appended to the ligands were investigated for the catalytic oxidation of formate. Typical rates of ~7 s -1 were found, similar to the parent complex (~8 s -1), with amino acid size and positioning contributing very little to rate or operating potential. Hydroxyl functionalities did result in lower rates, which were recovered by protecting the hydroxyl group. The results suggest that the overall dielectric introduced by the dipeptides does not play an important role in catalysis, but free hydroxyl groups do influence activity suggesting contributions from intra- or intermolecular interactions. These observationsmore » are important in developing a fundamental understanding of the affect that an enzyme-like outer coordination sphere can have upon molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (BRG, AJ, AMA, WJS), the US DOE Basic Energy Sciences, Physical Bioscience program (MLR). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  2. Shadows cast on the transition disk of HD 135344B. Multiwavelength VLT/SPHERE polarimetric differential imaging

    NASA Astrophysics Data System (ADS)

    Stolker, T.; Dominik, C.; Avenhaus, H.; Min, M.; de Boer, J.; Ginski, C.; Schmid, H. M.; Juhasz, A.; Bazzon, A.; Waters, L. B. F. M.; Garufi, A.; Augereau, J.-C.; Benisty, M.; Boccaletti, A.; Henning, Th.; Langlois, M.; Maire, A.-L.; Ménard, F.; Meyer, M. R.; Pinte, C.; Quanz, S. P.; Thalmann, C.; Beuzit, J.-L.; Carbillet, M.; Costille, A.; Dohlen, K.; Feldt, M.; Gisler, D.; Mouillet, D.; Pavlov, A.; Perret, D.; Petit, C.; Pragt, J.; Rochat, S.; Roelfsema, R.; Salasnich, B.; Soenke, C.; Wildi, F.

    2016-11-01

    Context. The protoplanetary disk around the F-type star HD 135344B (SAO 206462) is in a transition stage and shows many intriguing structures both in scattered light and thermal (sub-)millimeter emission which are possibly related to planet formation processes. Aims: We aim to study the morphology and surface brightness of the disk in scattered light to gain insight into the innermost disk regions, the formation of protoplanets, planet-disk interactions traced in the surface and midplane layers, and the dust grain properties of the disk surface. Methods: We have carried out high-contrast polarimetric differential imaging (PDI) observations with VLT/SPHERE and obtained polarized scattered light images with ZIMPOL in the R and I-bands and with IRDIS in the Y and J-bands. The scattered light images and surface brightness profiles are used to study in detail structures in the disk surface and brightness variations. We have constructed a 3D radiative transfer model to support the interpretation of several detected shadow features. Results: The scattered light images reveal with unprecedented angular resolution and sensitivity the spiral arms as well as the 25 au cavity of the disk. Multiple shadow features are discovered on the outer disk with one shadow only being present during the second observation epoch. A positive surface brightness gradient is observed in the stellar irradiation corrected (r2-scaled) images in southwest direction possibly due to an azimuthally asymmetric perturbation of the temperature and/or surface density by the passing spiral arms. The disk integrated polarized flux, normalized to the stellar flux, shows a positive trend towards longer wavelengths which we attribute to large (2πa ≳ λ) aggregate dust grains in the disk surface. Part of the non-azimuthal polarization signal in the Uφ image of the J-band observation can be attributed to multiple scattering in the disk. Conclusions: The detected shadow features and their possible variability have the potential to provide insight into the structure of and processes occurring in the innermost disk regions. Possible explanations for the presence of the shadows include a 22° misaligned inner disk, a warped disk region that connects the inner disk with the outer disk, and variable or transient phenomena such as a perturbation of the inner disk or an asymmetric accretion flow. The spiral arms are best explained by one or multiple protoplanets in the exterior of the disk although no gap is detected beyond the spiral arms up to 1.''0. Based on observations collected at the European Southern Observatory, Chile, ESO No. 095.C-0273(A) and 095.C-0273(D).

  3. Proteins required for lipopolysaccharide assembly in Escherichia coli form a trans-envelope complex†

    PubMed Central

    Chng, Shu-Sin; Gronenberg, Luisa S.; Kahne, Daniel

    2010-01-01

    The viability of Gram-negative organisms is dependent on the proper placement of lipopolysaccharide (LPS) in the outer leaflet of its outer membrane. LPS is synthesized inside the cell and transported to the surface by seven essential Lpt proteins. How these proteins cooperate to transport LPS is unknown. We show that these Lpt proteins can be found in a membrane fraction that contains inner and outer membranes, and that they co-purify. This constitutes the first evidence that the Lpt proteins form a trans-envelope complex. We suggest that this protein bridge provides a route for LPS transport across the cell envelope. PMID:20446753

  4. Oil exudation and histological structures of duck egg yolks during brining.

    PubMed

    Lai, K M; Chung, W H; Jao, C L; Hsu, K C

    2010-04-01

    Changes in oil exudation and histological structures of salted duck egg yolks during brining up to 5 wk were investigated. During brining, the salt contents of albumen, exterior yolk (hardened portion), and interior yolk (soft or liquid portion) gradually increased accompanied by slight decreases in moisture content. The hardening ratio of salted egg yolks increased rapidly to about 60% during the first week of brining and then reached 100% at the end of brining. After brining, part of the lipids in salted egg yolk became free due to the structural changes of low-density lipoprotein induced by dehydration and increase of salt content, and more free lipids in salted egg yolk were released after the cooking process. With the brining time increased up to 5 wk, the outer region of the cooked salted yolk gradually changed into dark brown, brown, orange, and then dark brown, whereas the center region changed into light yellow, yellow, dark yellow, and then yellow again. The microstructures of cooked salted egg yolks showed that the yolk spheres in the outer and middle regions retained their original shape, with some shrinking and being packed more loosely when brining time increased, and the exuded oil filled the space between the spheres. Furthermore, the yolk spheres in the center region transformed to a round shape but still showed granulation after 4 wk of brining, whereas they were mostly disrupted after 2 to 5 wk of brining. One of the most important characteristics of cooked salted egg yolks, gritty texture, contributed to oil exudation and granulated yolk spheres were observed at the brining time of 4 wk.

  5. An analytical method for computing atomic contact areas in biomolecules.

    PubMed

    Mach, Paul; Koehl, Patrice

    2013-01-15

    We propose a new analytical method for detecting and computing contacts between atoms in biomolecules. It is based on the alpha shape theory and proceeds in three steps. First, we compute the weighted Delaunay triangulation of the union of spheres representing the molecule. In the second step, the Delaunay complex is filtered to derive the dual complex. Finally, contacts between spheres are collected. In this approach, two atoms i and j are defined to be in contact if their centers are connected by an edge in the dual complex. The contact areas between atom i and its neighbors are computed based on the caps formed by these neighbors on the surface of i; the total area of all these caps is partitioned according to their spherical Laguerre Voronoi diagram on the surface of i. This method is analytical and its implementation in a new program BallContact is fast and robust. We have used BallContact to study contacts in a database of 1551 high resolution protein structures. We show that with this new definition of atomic contacts, we generate realistic representations of the environments of atoms and residues within a protein. In particular, we establish the importance of nonpolar contact areas that complement the information represented by the accessible surface areas. This new method bears similarity to the tessellation methods used to quantify atomic volumes and contacts, with the advantage that it does not require the presence of explicit solvent molecules if the surface of the protein is to be considered. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.

  6. Outer brain barriers in rat and human development

    PubMed Central

    Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456

  7. Outer brain barriers in rat and human development.

    PubMed

    Brøchner, Christian B; Holst, Camilla B; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer.

  8. Modulation of Active Site Electronic Structure by the Protein Matrix to Control [NiFe] Hydrogenase Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Dayle MA; Raugei, Simone; Squier, Thomas C.

    2014-09-30

    Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni–Fe cluster in the catalytically active Ni-C state. There aremore » correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.« less

  9. Modulation of active site electronic structure by the protein matrix to control [NiFe] hydrogenase reactivity.

    PubMed

    Smith, Dayle M A; Raugei, Simone; Squier, Thomas C

    2014-11-21

    Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni-Fe cluster in the catalytically active Ni-C state. There are correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.

  10. Mitochondrial Protein Synthesis, Import, and Assembly

    PubMed Central

    Fox, Thomas D.

    2012-01-01

    The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes. PMID:23212899

  11. Distal [FeS]-Cluster Coordination in [NiFe]-Hydrogenase Facilitates Intermolecular Electron Transfer

    PubMed Central

    Petrenko, Alexander; Stein, Matthias

    2017-01-01

    Biohydrogen is a versatile energy carrier for the generation of electric energy from renewable sources. Hydrogenases can be used in enzymatic fuel cells to oxidize dihydrogen. The rate of electron transfer (ET) at the anodic side between the [NiFe]-hydrogenase enzyme distal iron–sulfur cluster and the electrode surface can be described by the Marcus equation. All parameters for the Marcus equation are accessible from Density Functional Theory (DFT) calculations. The distal cubane FeS-cluster has a three-cysteine and one-histidine coordination [Fe4S4](His)(Cys)3 first ligation sphere. The reorganization energy (inner- and outer-sphere) is almost unchanged upon a histidine-to-cysteine substitution. Differences in rates of electron transfer between the wild-type enzyme and an all-cysteine mutant can be rationalized by a diminished electronic coupling between the donor and acceptor molecules in the [Fe4S4](Cys)4 case. The fast and efficient electron transfer from the distal iron–sulfur cluster is realized by a fine-tuned protein environment, which facilitates the flow of electrons. This study enables the design and control of electron transfer rates and pathways by protein engineering. PMID:28067774

  12. Hemispherical map for the human brain cortex

    NASA Astrophysics Data System (ADS)

    Tosun, Duygu; Prince, Jerry L.

    2001-07-01

    Understanding the function of the human brain cortex is a primary goal in human brain mapping. Methods to unfold and flatten the cortical surface for visualization and measurement have been described in previous literature; but comparison across multiple subjects is still difficult because of the lack of a standard mapping technique. We describe a new approach that maps each hemisphere of the cortex to a portion of a sphere in a standard way, making comparison of anatomy and function across different subjects possible. Starting with a three-dimensional magnetic resonance image of the brain, the cortex is segmented and represented as a triangle mesh. Defining a cut around the corpus collosum identifies the left and right hemispheres. Together, the two hemispheres are mapped to the complex plane using a conformal mapping technique. A Mobius transformation, which is conformal, is used to transform the points on the complex plane so that a projective transformation maps each brain hemisphere onto a spherical segment comprising a sphere with a cap removed. We determined the best size of the spherical cap by minimizing the relative area distortion between hemispherical maps and original cortical surfaces. The relative area distortion between the hemispherical maps and the original cortical surfaces for fifteen human brains is analyzed.

  13. Finite Element in Angle Unit Sphere Meshing for Charged Particle Transport.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Mario Ivan; Drumm, Clifton R.

    Finite element in angle formulations of the charged particle transport equation require the discretization of the unit sphere. In Sceptre, a three-dimensional surface mesh of a sphere is transformed into a two-dimensional mesh. Projection of a sphere onto a two-dimensional surface is well studied with map makers spending the last few centuries attempting to create maps that preserve proportion and area. Using these techniques, various meshing schemes for the unit sphere were investigated.

  14. Consolidation of metallic hollow spheres by electric sintering

    NASA Astrophysics Data System (ADS)

    Mironov, V.; Tatarinov, A.; Lapkovsky, V.

    2017-07-01

    This paper considers peculiarities of the technology of production of structures from metallic hollow spheres (MHS) using magnetic fields and electric sintering. In these studies, the raw material was MHS obtained by burning of polystyrene balls coated by carbon steel. MHS had an outer diameter of 3-5 mm and a steel wall thickness of 70-120 microns. Pulsed current generators were used for electric sintering of MHS to obtain different spatial structures. Since MHS have small strength, the compressive pressure during sintering should be minimal. To improve the adhesion strength and reduce the required energy for sintering, hollow spheres were coated with copper by ion-plasma sputtering in vacuum. The coating thickness was 10-15 microns. The ferromagnetic properties of MHS allowed using of magnet fields for orientation of the spheres in the structures, as well as using of perforated tapes acting as orienting magnetic cores. Ultrasonic testing of MHS structures has been tried using through propagation of ultrasound in low kilohertz frequency range. Sensitivity of the propagation parameters to water filling of inter-spheres space and sintering temperature was demonstrated.

  15. The composition and origin of the C, P, and D asteroids - Water as a tracer of thermal evolution in the outer belt

    NASA Technical Reports Server (NTRS)

    Jones, Thomas D.; Lebofsky, Larry A.; Lewis, John S.; Marley, Mark S.

    1990-01-01

    A telescopic and laboratory investigation of water distribution among low albedo asteroids in the outer belt, using the 3-micron reflectance absorption of molecular H2O and structural OH ions (coincident with the 3-micron spectral signature of meteorite and asteroid hydrated silicates) shows that 66 percent of the C-class asteroids in the sample have hydrated silicate surfaces. In conjunction with the apparently anhydrous P and D surfaces, this pronounced hydration difference between C-class asteroids and the more distant P and D classes points to an original outer belt asteroid composition of anhydrous silicates, water ice, and complex organic material. Early solar-wind induction heating of protoasteroids, declining in intensity with distance from the sun, is conjectured to have produced the observed diminution of hydrated silicate abundance.

  16. Mars - A planet with a complex surface evolution

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Coradini, M.

    1975-01-01

    The surface of Mars has evolved to its present form through a complex sequence of tectonism and associated volcanism, impact processes, water erosion, mass movements, and wind action. The diversity of geological processes active in past Martian history far exceeded most predictions. By the same token, predictions of processes modifying the satellites of the outer planets may fall far short of the true range of phenomena. A summary of present though with regard to Martian surface evolution is presented to serve as a case in point of the value of imagery and topography data in making interpretations of geological histories.

  17. Ceramic Spheres From Cation Exchange Beads

    NASA Technical Reports Server (NTRS)

    Dynys, F. W.

    2003-01-01

    Porous ZrO2 and hollow TiO2 spheres were synthesized from a strong acid cation exchange resin. Spherical cation exchange beads, polystyrene based polymer, were used as a morphological-directing template. Aqueous ion exchange reaction was used to chemically bind (ZrO)(2+) ions to the polystyrene structure. The pyrolysis of the polystyrene at 600 C produces porous ZrO2 spheres with a surface area of 24 sq m/g with a mean sphere size of 42 microns. Hollow TiO2 spheres were synthesized by using the beads as a micro-reactor. A direct surface reaction - between titanium isopropoxide and the resin beads forms a hydrous TiO2 shell around the polystyrene core. The pyrolysis of the polystyrene core at 600 C produces hollow anatase spheres with a surface area of 42 sq m/g with a mean sphere size of 38 microns. The formation of ceramic spheres was studied by XRD, SEM and B.E.T. nitrogen adsorption measurements.

  18. Electrostatic theory of the assembly of PAMAM dendrimers and DNA.

    PubMed

    Perico, Angelo

    2016-05-01

    The electrostatic interactions mediated by counterions between a cationic PAMAM dendrimer, modelized as a sphere of radius and cationic surface charge highly increasing with generation, and a DNA, modelized as an anionic elastic line, are analytically calculated in the framework of condensation theory. Under these interactions the DNA is wrapped around the sphere. For excess phosphates relative to dendrimer primary amines, the free energy of the DNA-dendrimer complex displays an absolute minimum when the complex is weakly negatively overcharged. This overcharging opposes gene delivery. For a highly positive dendrimer and a DNA fixed by experimental conditions to a number of phosphates less than the number of dendrimer primary amines, excess amine charges, the dendrimer may at the same time bind stably DNA and interact with negative cell membranes to activate cell transfection in fair agreement with molecular simulations and experiments. © 2016 Wiley Periodicals, Inc.

  19. Spontaneous light emission in complex nanostructures

    NASA Astrophysics Data System (ADS)

    Blanco, L. A.; García de Abajo, F. J.

    2004-05-01

    The spontaneous emission of an excited atom surrounded by different materials is studied in the framework of a semiclassical approach, where the transition dipole moment acts as the source of the emission field. The emission in the presence of semiinfinite media, metallic nanorings, spheres, gratings, and other complex geometries is investigated. Strong emission enhancement effects are obtained in some of these geometries associated to the excitation of plasmons (e.g., in nanorings or spheres). Furthermore, the emission is shown to take place only along narrow angular distributions when the atom is located inside a low-index dielectric and near its planar surface, or when metallic nanogratings are employed at certain resonant wave lengths. In particular, axially symmetric gratings made of real silver metal are considered, and both emission rate enhancement and focused far-field emission are achieved simultaneously when the grating is decorated with further nanostructures.

  20. Research Of The Influence Of Reftinskii SDPP’S Ash On The Processes Of Cement Stone’S Structure Forming

    NASA Astrophysics Data System (ADS)

    Zimakova, G. A.; Solonina, V. A.; Zelig, M. P.

    2017-01-01

    The article describes the experimental research of cement stone. Cement stone forming involves highly dispersive mineral additive - ground ash. It is stated that the substitution of some part of cement with activated ash leaves cement strength high. This is possible due to the activity of ash in structure forming processes. Activation of ash provides the increase in its puzzolanic activity, complete hydration processes. it is stated that ash grinding leads to a selective crystallization hydrated neoformations. Their morthology is different on outer and inner surfaces of ash spheres. The usage of ash can provide cement economy on condition that rheological characteristics of concrete stay constant. Besides, the usage of ash will improve physical and mechanic characteristics of cement stone and concrete.

  1. The range and valence of a real Smirnov function

    NASA Astrophysics Data System (ADS)

    Ferguson, Timothy; Ross, William T.

    2018-02-01

    We give a complete description of the possible ranges of real Smirnov functions (quotients of two bounded analytic functions on the open unit disk where the denominator is outer and such that the radial boundary values are real almost everywhere on the unit circle). Our techniques use the theory of unbounded symmetric Toeplitz operators, some general theory of unbounded symmetric operators, classical Hardy spaces, and an application of the uniformization theorem. In addition, we completely characterize the possible valences for these real Smirnov functions when the valence is finite. To do so we construct Riemann surfaces we call disk trees by welding together copies of the unit disk and its complement in the Riemann sphere. We also make use of certain trees we call valence trees that mirror the structure of disk trees.

  2. Discrete Surface Evolution and Mesh Deformation for Aircraft Icing Applications

    NASA Technical Reports Server (NTRS)

    Thompson, David; Tong, Xiaoling; Arnoldus, Qiuhan; Collins, Eric; McLaurin, David; Luke, Edward; Bidwell, Colin S.

    2013-01-01

    Robust, automated mesh generation for problems with deforming geometries, such as ice accreting on aerodynamic surfaces, remains a challenging problem. Here we describe a technique to deform a discrete surface as it evolves due to the accretion of ice. The surface evolution algorithm is based on a smoothed, face-offsetting approach. We also describe a fast algebraic technique to propagate the computed surface deformations into the surrounding volume mesh while maintaining geometric mesh quality. Preliminary results presented here demonstrate the ecacy of the approach for a sphere with a prescribed accretion rate, a rime ice accretion, and a more complex glaze ice accretion.

  3. The influence of size and charge of chitosan/polyglutamic acid hollow spheres on cellular internalization, viability and blood compatibility.

    PubMed

    Dash, Biraja C; Réthoré, Gildas; Monaghan, Michael; Fitzgerald, Kathleen; Gallagher, William; Pandit, Abhay

    2010-11-01

    Polymeric hollow spheres can be tailored as efficient carriers of various therapeutic molecules due to their tunable properties. However, the entry of these synthetic vehicles into cells, their cell viability and blood compatibility depend on their physical and chemical properties e.g. size, surface charge. Herein, we report the effect of size and surface charge on cell viability and cellular internalization behaviour and their effect on various blood components using chitosan/polyglutamic acid hollow spheres as a model system. Negatively charged chitosan/polyglutamic acid hollow spheres of various sizes 100, 300, 500 and 1000 nm were fabricated using a template based method and covalently surface modified using linear polyethylene glycol and methoxyethanol amine to create a gradient of surface charge from negative to neutrally charged spheres respectively. The results here suggest that both size and surface charge have a significant influence on the sphere's behaviour, most prominently on haemolysis, platelet activation, plasma recalcification time, cell viability and internalization over time. Additionally, cellular internalization behaviour and viability was found to vary with different cell types. These results are in agreement with those of inorganic spheres and liposomes, and can serve as guidelines for tailoring polymeric solid spheres for specific desired applications in biological and pharmaceutical fields, including the design of nanometer to submicron-sized delivery vehicles. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Periplasmic orientation of nascent lipid A in the inner membrane of an Escherichia coli LptA mutant

    PubMed Central

    Ma, Bing; Reynolds, C. Michael; Raetz, Christian R. H.

    2008-01-01

    The core-lipid A domain of Escherichia coli lipopolysaccharide (LPS) is synthesized on the inner surface of the inner membrane (IM) and flipped to its outer surface by the ABC transporter MsbA. Recent studies with deletion mutants implicate the periplasmic protein LptA, the cytosolic protein LptB, and the IM proteins LptC, LptF, and LptG in the subsequent transport of nascent LPS to the outer membrane (OM), where the LptD/LptE complex flips LPS to the outer surface. We have isolated a temperature-sensitive mutant (MB1) harboring the S22C and Q111P substitutions in LptA. MB1 stops growing after 30 min at 42°C. 32Pi and [35S]methionine labeling show that export of newly synthesized phospholipids and proteins is not severely impaired, but export of LPS is defective. Using the lipid A 1-phosphatase LpxE as a periplasmic IM marker and the lipid A 3-O-deacylase PagL as an OM marker, we show that core-lipid A reaches the periplasmic side of the IM at 42°C in MB1 but not the outer surface of the OM. Electron microscopy of MB1 reveals dense periplasmic material and a smooth OM at 42°C, consistent with a role for LptA in shuttling LPS across the periplasm. PMID:18768814

  5. Periplasmic orientation of nascent lipid A in the inner membrane of an Escherichia coli LptA mutant.

    PubMed

    Ma, Bing; Reynolds, C Michael; Raetz, Christian R H

    2008-09-16

    The core-lipid A domain of Escherichia coli lipopolysaccharide (LPS) is synthesized on the inner surface of the inner membrane (IM) and flipped to its outer surface by the ABC transporter MsbA. Recent studies with deletion mutants implicate the periplasmic protein LptA, the cytosolic protein LptB, and the IM proteins LptC, LptF, and LptG in the subsequent transport of nascent LPS to the outer membrane (OM), where the LptD/LptE complex flips LPS to the outer surface. We have isolated a temperature-sensitive mutant (MB1) harboring the S22C and Q111P substitutions in LptA. MB1 stops growing after 30 min at 42 degrees C. (32)P(i) and [(35)S]methionine labeling show that export of newly synthesized phospholipids and proteins is not severely impaired, but export of LPS is defective. Using the lipid A 1-phosphatase LpxE as a periplasmic IM marker and the lipid A 3-O-deacylase PagL as an OM marker, we show that core-lipid A reaches the periplasmic side of the IM at 42 degrees C in MB1 but not the outer surface of the OM. Electron microscopy of MB1 reveals dense periplasmic material and a smooth OM at 42 degrees C, consistent with a role for LptA in shuttling LPS across the periplasm.

  6. Ball assisted device for analytical surface sampling

    DOEpatents

    ElNaggar, Mariam S; Van Berkel, Gary J; Covey, Thomas R

    2015-11-03

    A system for sampling a surface includes a sampling probe having a housing and a socket, and a rolling sampling sphere within the socket. The housing has a sampling fluid supply conduit and a sampling fluid exhaust conduit. The sampling fluid supply conduit supplies sampling fluid to the sampling sphere. The sampling fluid exhaust conduit has an inlet opening for receiving sampling fluid carried from the surface by the sampling sphere. A surface sampling probe and a method for sampling a surface are also disclosed.

  7. The role of counter ions in nano-hematite synthesis: Implications for surface area and selenium adsorption capacity.

    PubMed

    Lounsbury, Amanda W; Yamani, Jamila S; Johnston, Chad P; Larese-Casanova, Philip; Zimmerman, Julie B

    2016-06-05

    Nano metal oxides are of interest for aqueous selenium (Se) remediation, and as such, nano-hematite (nα-Fe2O3) was examined for use as a Se adsorbent. The effect of surface area on adsorption was also studied. nα-Fe2O3 particles were synthesized from Fe(NO3)3 and FeCl3 via forced hydrolysis. The resulting particles have similar sizes, morphologies, aggregate size, pore size, and PZC. The nα-Fe2O3 from FeCl3 (nα-Fe2O3-C) differs from the nα-Fe2O3 from Fe(NO3)3 (nα-Fe2O3-N) with a ∼25±2m(2)/g greater surface area. Selenite Se(IV) adsorption capacity on nα-Fe2O3 has a qmax ∼17mg/g for the freeze-dried and re-suspended nα-Fe2O3. The Δqmax for nα-Fe2O3 from Fe(NO3)3 and FeCl3 that remained in suspension was 4.6mg/g. For selenate Se(VI), the freeze-dried and re-suspended particles realize a Δqmax= 1.5mg/g for nα-Fe2O3 from Fe(NO3)3 and FeCl3. The nα-Fe2O3 from Fe(NO3)3 and FeCl3 that remained in suspension demonstrated Se(VI) Δqmax=5.4mg/g. In situ ATR-FTIR isotherm measurements completed for Se(VI) at a pH 6 suggest that Se(VI) forms primarily outer-sphere complexes with nα-Fe2O3 synthesized from both salts. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Surface phenomena and the evolution of radiating fluid spheres in general relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, L.; Jimenez, J.; Esculpi, M.

    1989-10-01

    A method used to study the evolution of radiating spheres (Herrera, Jimenez, and Ruggeri) is extended to the case in which surface phenomena are taken into account. The equations have been integrated numerically for a model derived from the Schwarzschild interior solution, bringing out the effects of surface tension on the evolution of the spheres. 17 refs.

  9. Water and Volatiles in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Grasset, O.; Castillo-Rogez, J.; Guillot, T.; Fletcher, L. N.; Tosi, F.

    2017-10-01

    Space exploration and ground-based observations have provided outstanding evidence of the diversity and the complexity of the outer solar system. This work presents our current understanding of the nature and distribution of water and water-rich materials from the water snow line to the Kuiper Belt. This synthesis is timely, since a thorough exploration of at least one object in each region of the outer solar system has now been achieved. Next steps, starting with the Juno mission now in orbit around Jupiter, will be more focused on understanding the processes at work than on describing the general characteristics of each giant planet systems. This review is organized in three parts. First, the nature and the distribution of water and volatiles in giant and intermediary planets are described from their inner core to their outer envelopes. A special focus is given to Jupiter and Saturn, which are much better understood than the two ice giants (Uranus and Neptune) thanks to the Galileo and Cassini missions. Second, the icy moons will be discussed. Space missions and ground-based observations have revealed the variety of icy surfaces in the outer system. While Europa, Enceladus, and maybe Titan present past or even active tectonic and volcanic activities, many other moons have been dead worlds for more than 3 billion years. Ice compositions found at these bodies are also complex and it is now commonly admitted that icy surfaces are never composed of pure ices. A detailed review of the distribution of non-ice materials on the surfaces and in the tenuous atmospheres of the moons is proposed, followed by a more focused discussion on the nature and the characteristics of the liquid layers trapped below the cold icy crusts that have been suggested in the icy Galilean moons, and in Enceladus, Dione, and Titan at Saturn. Finally, the recent observations collected by Dawn at Ceres and New Horizons at Pluto, as well as the state of knowledge of other transneptunian objects, are summarized, and complete this overview of the nature and distribution of ice-rich material in the outer solar system.

  10. Laboratory Experiments to Study Spherical, Iron Oxide Concretion Growth Without Solid Nuclei: Implications for Understanding Meridiani "Blueberries"

    NASA Astrophysics Data System (ADS)

    Ormö, J.; Souza-Egipsy, V.; Chan, M. A.; Park, A. J.; Stich, M.; Komatsu, G.

    2006-03-01

    Spherical hematite concretions can form without a nucleus. Self-organized zones of super-saturated solution cause spherical precipitates of amorphous iron-hydroxide. Diffusion of Fe ions towards the outer perimeter of the amorphous sphere forms a rind, which then grows inwards.

  11. Controlled superficial assembly of DNA-amorphous calcium phosphate nanocomposite spheres for surface-mediated gene delivery.

    PubMed

    Oyane, Ayako; Araki, Hiroko; Nakamura, Maki; Shimizu, Yoshiki; Shubhra, Quazi T H; Ito, Atsuo; Tsurushima, Hideo

    2016-05-01

    Surface-mediated gene delivery systems have many potential applications in tissue engineering. We recently fabricated an assembly consisting of DNA-amorphous calcium phosphate (DNA-ACP) nanocomposite spheres on a polymer substrate via coprecipitation in a labile supersaturated calcium phosphate (CaP) solution and demonstrated the assembly's high gene delivery efficacy. In this study, we conducted a detailed investigation of the coprecipitation process in solution and revealed that the negatively charged DNA molecules were immobilized in the ACP spheres during the initial stage of coprecipitation and functioned as both sphere-dispersing and size-regulating agents. As a result, the DNA-ACP nanocomposites grew into size-regulated submicrospheres in solution and assembled onto the substrate via gravity sedimentation. The assembled nanocomposite spheres were chemically anchored to the substrate surface through an intermediate layer of CaP-based nanoparticles that was formed heterogeneously at the substrate surface. The coprecipitation conditions, i.e., coprecipitation time and Ca and P concentrations in solution, greatly affected the state of assembly of the nanocomposite spheres, thereby influencing the gene expression level of the cells cultured on the substrate. Increasing the number density and decreasing the size of the nanocomposite spheres did not always increase the assembly's gene delivery efficacy (per surface area of the substrate) due to adverse effects on cellular viability. As demonstrated herein, controlling the coprecipitation conditions is important for designing a cell-stimulating and biocompatible scaffold surface consisting of an assembly of DNA-ACP nanocomposite spheres. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Ice chemistry on outer solar system bodies: Carboxylic acids, nitriles, and urea detected in refractory residues produced from the UV photolysis of N{sub 2}:CH{sub 4}:CO-containing ices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Materese, Christopher K.; Cruikshank, Dale P.; Sandford, Scott A.

    Radiation processing of the surface ices of outer solar system bodies may result in the production of new chemical species even at low temperatures. Many of the smaller, more volatile molecules that are likely produced by the photolysis of these ices have been well characterized by laboratory experiments. However, the more complex refractory material formed in these experiments remains largely uncharacterized. In this work, we present a series of laboratory experiments in which low-temperature (15-20 K) N{sub 2}:CH{sub 4}:CO ices in relative proportions 100:1:1 are subjected to UV irradiation, and the resulting materials are studied with a variety of analyticalmore » techniques including infrared spectroscopy, X-ray absorption near-edge structure spectroscopy, gas chromatography coupled with mass spectrometry, and high-resolution mass spectroscopy. Despite the simplicity of the reactants, these experiments result in the production of a highly complex mixture of molecules from relatively low-mass volatiles (tens of daltons) to high-mass refractory materials (hundreds of daltons). These products include various carboxylic acids, nitriles, and urea, which are also expected to be present on the surface of outer solar system bodies, including Pluto and other transneptunian objects. If these compounds occur in sufficient concentrations in the ices of outer solar system bodies, their characteristic bands may be detectable in the near-infrared spectra of these objects.« less

  13. A novel approach for fabricating NiO hollow spheres for gas sensors

    NASA Astrophysics Data System (ADS)

    Kuang, Chengwei; Zeng, Wen; Ye, Hong; Li, Yanqiong

    2018-03-01

    Hollow spheres are usually fabricated by hard template methods or soft template methods with soft surfactants, which is quiet tedious and time-consuming. In this paper, NiO hollow spheres with fluffy surface were successfully synthesized by a facile hydrothermal method and subsequent calcination, where bubbles acted as the template. NiO hollow spheres exhibited excellent gas sensing performances, which results from its hollow structure and high specific surface area. In addition, a possible evolution mechanism of NiO hollow spheres was proposed based on experimental results.

  14. Anti-gravity device

    NASA Technical Reports Server (NTRS)

    Palsingh, S. (Inventor)

    1975-01-01

    An educational toy useful in demonstrating fundamental concepts regarding the laws of gravity is described. The device comprises a sphere 10 of radius r resting on top of sphere 12 of radius R. The center of gravity of sphere 10 is displaced from its geometrical center by distance D. The dimensions are so related that D((R+r)/r) is greater than r. With the center of gravity of sphere 10 lying on a vertical line, the device is in equilibrium. When sphere 10 is rolled on the surface of sphere 12 it will return to its equilibrium position upon release. This creates an illusion that sphere 10 is defying the laws of gravity. In reality, due to the above noted relationship of D, R, and r, the center of gravity of sphere 10 rises from its equilibrium position as it rolls a short distance up or down the surface of sphere 12.

  15. Synthesis and the crystal and molecular structures of (H{sub 3}L . Cl)[CoCl{sub 4}] and H{sub 2}L[CuBr{sub 4}] (L is 2,4,6-Tri(N,N-dimethylamino)methylphenol)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalchukova, O. V., E-mail: okovalchukova@mail.ru; Stash, A. I.; Strashnova, S. B.

    2010-05-15

    The complex compounds (H{sub 3}L . Cl)[CoCl{sub 4}] (I) and H{sub 2}L[CuBr{sub 4}] (II), where L is 2,4,6-tri(N,N-dimethylamino)methylphenol, were isolated in the crystalline state and studied by X-ray diffraction. The organic cations were found to be outer-sphere ligands. All three nitrogen atoms of the tertiary amino groups are protonated. In compound I, the H{sub 3}L{sup 3+} cation exists as the cis tautomer. In compound II, the H{sub 2}L{sup 2+} dication exists as the trans isomer. In the crystal structure, the dications are arranged in layers via hydrogen bonds.

  16. Direct Observation of the BCC (100) Plane in Thin Films of Sphere-forming Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul

    2010-03-01

    In sphere-forming diblock copolymers, periodic arrays of spheres are arranged in a body-centred cubic (BCC) lattice structure in bulk. However, in thin films different surface morphologies were observed as a function of the film thickness, and the transition from the hexagonal array to the BCC (110) arrangement of spheres on film surfaces was located with respect to the increase of the film thickness. Here we report the first direct observation of the BCC (100) plane in thin films of poly (styrene-b-methyl methacrylate) diblock copolymers on homogeneous substrates. By balancing the surface energies of both blocks, the lower energy BCC (100) plane corresponding to a square arrangement of half spheres, formed on film surfaces when the film thickness was commensurate with the spacing, L100, between (100) planes or greater than 2 L100. A hexagonal arrangement of spheres was only observed when the thickness was less than 2 L100 and incommensurate with 1 L100. Monte Carlo (MC) simulation confirmed our experimental observation and was used to investigate the transition of the arrangement of spheres as a function of the film thickness.

  17. Copper(II) adsorption on the kaolinite(001) surface: Insights from first-principles calculations and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Ping; Wang, Juan

    2016-12-01

    The adsorption behavior of Cu(II) on the basal hydroxylated kaolinite(001) surface in aqueous environment was investigated by first-principles calculations and molecular dynamics simulations. Structures of possible monodentate and bidentate inner-sphere adsorption complexes of Cu(II) were examined, and the charge transfer and bonding mechanism were analyzed. Combining the binding energy of complex, the radial distribution function of Cu(II) with oxygen and the extended X-ray absorption fine structure data, monodentate complex on site of surface oxygen with ;upright; hydrogen and bidentate complex on site of two oxygens (one with ;upright; hydrogen and one with ;lying; hydrogen) of single Al center have been found to be the major adsorption species of Cu(II). Both adsorption species are four-coordinated with a square planar geometry. The distribution of surface hydroxyls with ;lying; hydrogen around Cu(II) plays a key role in the structure and stability of adsorption complex. Upon the Mulliken population analysis and partial density of states, charge transfer occurs with Cu(II) accepting some electrons from both surface oxygens and aqua oxygens, and the bonding Cu 3d-O 2p state filling is primarily responsible for the strong covalent interaction of Cu(II) with surface oxygen.

  18. Ultrastructure of the embryonic snake skin and putative role of histidine in the differentiation of the shedding complex.

    PubMed

    Alibardi, Lorenzo

    2002-02-01

    The morphogenesis and ultrastructure of the epidermis of snake embryos were studied at progressive stages of development through hatching to determine the time and modality of differentiation of the shedding complex. Scales form as symmetric epidermal bumps that become slanted and eventually very overlapped. During the asymmetrization of the bumps, the basal cells of the forming outer surface of the scale become columnar, as in an epidermal placode, and accumulate glycogen. Small dermal condensations are sometimes seen and probably represent primordia of the axial dense dermis of the growing tip of scales. Deep, dense, and superficial loose dermal regions are formed when the epidermis is bilayered (periderm and basal epidermis) and undifferentiated. Glycogen and lipids decrease from basal cells to differentiating suprabasal cells. On the outer scale surface, beneath the peridermis, a layer containing dense granules and sparse 25-30-nm thick coarse filaments is formed. The underlying clear layer does not contain keratohyalin-like granules but has a rich cytoskeleton of intermediate filaments. Small denticles are formed and they interdigitate with the oberhautchen spinulae formed underneath. On the inner scale surface the clear layer contains dense granules, coarse filaments, and does not form denticles with the aspinulated oberhautchen. On the inner side surface the oberhautchen only forms occasional spinulae. The sloughing of the periderm and embryonic epidermis takes place in ovo 5-6 days before hatching. There follow beta-, mesos-, and alpha-layers, not yet mature before hatching. No resting period is present but a new generation is immediately produced so that at 6-10 h posthatching an inner generation and a new shedding complex are forming beneath the outer generation. The first shedding complex differentiates 10-11 days before hatching. In hatchlings 6-10 h old, tritiated histidine is taken up in the epidermis 4 h after injection and is found mainly in the shedding complex, especially in the apposed membranes of the clear layer and oberhautchen cells. This indicates that a histidine-rich protein is produced in preparation for shedding, as previously seen in lizard epidermis. The second shedding (first posthatching) takes place at 7-9 days posthatching. It is suggested that the shedding complex in lepidosaurian reptiles has evolved after the production of a histidine-rich protein and of a beta-keratin layer beneath the former alpha-layer. Copyright 2002 Wiley-Liss, Inc.

  19. Deuterium Labeling Strategies for Creating Contrast in Structure-Function Studies of Model Bacterial Outer Membranes Using Neutron Reflectometry.

    PubMed

    Le Brun, Anton P; Clifton, Luke A; Holt, Stephen A; Holden, Peter J; Lakey, Jeremy H

    2016-01-01

    Studying the outer membrane of Gram-negative bacteria is challenging due to the complex nature of its structure. Therefore, simplified models are required to undertake structure-function studies of processes that occur at the outer membrane/fluid interface. Model membranes can be created by immobilizing bilayers to solid supports such as gold or silicon surfaces, or as monolayers on a liquid support where the surface pressure and fluidity of the lipids can be controlled. Both model systems are amenable to having their structure probed by neutron reflectometry, a technique that provides a one-dimensional depth profile through a membrane detailing its thickness and composition. One of the strengths of neutron scattering is the ability to use contrast matching, allowing molecules containing hydrogen and those enriched with deuterium to be highlighted or matched out against the bulk isotopic composition of the solvent. Lipopolysaccharides, a major component of the outer membrane, can be isolated for incorporation into model membranes. Here, we describe the deuteration of lipopolysaccharides from rough strains of Escherichia coli for incorporation into model outer membranes, and how the use of deuterated materials enhances structural analysis of model membranes by neutron reflectometry. © 2016 Elsevier Inc. All rights reserved.

  20. Effect of humic acid preloading on phosphate adsorption onto zirconium-modified zeolite.

    PubMed

    Lin, Jianwei; Zhang, Zhe; Zhan, Yanhui

    2017-05-01

    A zirconium-modified zeolite (ZrMZ) was prepared, and then, humic acid (HA) was immobilized on the ZrMZ surface to prepare HA-loaded ZrMZ (HA-ZrMZ). The obtained ZrMZ and HA-ZrMZ were characterized by energy dispersive X-ray spectroscopy, elemental analyzer, N 2 adsorption/desorption isotherms, pH at the point of zero charge, and X-ray photoelectron spectroscopy. The adsorption characteristics of phosphate on ZrMZ and HA-ZrMZ were comparatively investigated in batch mode. The adsorption mechanism of phosphate on ZrMZ and HA-ZrMZ was investigated by ionic strength effect and 31 P nuclear magnetic resonance. The mechanism for phosphate adsorption onto ZrMZ was the formation of inner-sphere phosphate complexes at the solid/solution interface. The preloading of HA on ZrMZ reduced the phosphate adsorption capacity, and the more the HA loading amount, the lower the phosphate adsorption capacity. However, the preloading of HA on ZrMZ did not change the phosphate adsorption mechanism; i.e., the formation of inner-sphere phosphate surface complexes was still responsible for the adsorption of phosphate on HA-ZrMZ. The decreased phosphate adsorption capacity for ZrMZ after HA coating could be attributed to the fact that the coating of HA on ZrMZ reduced the amount of binding active sites available for phosphate adsorption, changed the adsorbent surface charges, and reduced the specific surface areas and pore volumes of ZrMZ.

  1. Electromagnetic Energy Localization and Characterization of Composites

    DTIC Science & Technology

    2013-01-01

    polyhedrons ), and [39] (spheres and a complex yet symmetric structure). With time-domain EM analysis, regular shapes, such as cubes, spheres, and regular...spheres), [40] (spheres, crosses, cylinders, and polyhedrons ), and [41] (spheres and cylinders); and 3-D random mixtures using a frequency-domain finite...element method [42] ( polyhedrons ), and [43], [44] (spheres). Such steady-state analyses are limited as they, for example, do not capture temporal

  2. Output-increasing, protective cover for a solar cell

    DOEpatents

    Hammerbacher, Milfred D.

    1995-11-21

    A flexible cover (14) for a flexible solar cell (12) protects the cell from the ambient and increases the cell's efficiency. The cell(12)includes silicon spheres (16) held in a flexible aluminum sheet matrix (20,22). The cover (14) is a flexible, protective layer (60) of light-transparent material having a relatively flat upper, free surface (64) and an irregular opposed surface (66). The irregular surface (66) includes first portions (68) which conform to the polar regions (31R) of the spheres (16) and second convex (72) or concave (90) portions (72 or 90) which define spaces (78) in conjunction with the reflective surface (20T) of one aluminum sheet (20). Without the cover (14) light (50) falling on the surface (20T) between the spheres (16) is wasted, that is, it does not fall on a sphere (16). The surfaces of the second portions are non-parallel to the direction of the otherwise wasted light (50), which fact, together with a selected relationship between the refractive indices of the cover and the spaces, result in sufficient diffraction of the otherwise wasted light (50) so that about 25% of it is reflected from the surface (20T) onto a sphere (16).

  3. Discrimination of Inner- and Outer-Sphere Electrode Reactions by Cyclic Voltammetry Experiments

    ERIC Educational Resources Information Center

    Tanimoto, Sachiko; Ichimura, Akio

    2013-01-01

    A laboratory experiment for undergraduate students who are studying homogeneous and heterogeneous electron-transfer reactions is described. Heterogeneous or electrode reaction kinetics can be examined by using the electrochemical reduction of three Fe[superscript III]/Fe[superscript II] redox couples at platinum and glassy carbon disk electrodes.…

  4. Outer-Sphere Contributions to the Electronic Structure of Type Zero Copper Proteins

    PubMed Central

    Lancaster, Kyle M.; Zaballa, María-Eugenia; Sproules, Stephen; Sundararajan, Mahesh; DeBeer, Serena; Richards, John H.; Vila, Alejandro J.; Neese, Frank; Gray, Harry B.

    2016-01-01

    Bioinorganic canon states that active-site thiolate coordination promotes rapid electron transfer (ET) to and from type 1 copper proteins. In recent work, we have found that copper ET sites in proteins also can be constructed without thiolate ligation (called “type zero” sites). Here we report multifrequency electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopic data together with density functional theory (DFT) and spectroscopy-oriented configuration interaction (SORCI) calculations for type zero Pseudomonas aeruginosa azurin variants. Wild-type (type 1) and type zero copper centers experience virtually identical ligand fields. Moreover, O-donor covalency is enhanced in type zero centers relative that in the C112D (type 2) protein. At the same time, N-donor covalency is reduced in a similar fashion to type 1 centers. QM/MM and SORCI calculations show that the electronic structures of type zero and type 2 are intimately linked to the orientation and coordination mode of the carboxylate ligand, which in turn is influenced by outer-sphere hydrogen bonding. PMID:22563915

  5. Formation of aggregated nanoparticle spheres through femtosecond laser surface processing

    NASA Astrophysics Data System (ADS)

    Tsubaki, Alfred T.; Koten, Mark A.; Lucis, Michael J.; Zuhlke, Craig; Ianno, Natale; Shield, Jeffrey E.; Alexander, Dennis R.

    2017-10-01

    A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20-100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) analysis. There is a distinct difference in the density of nanoparticles between concentric rings of the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters nanoparticles together and low-density layers form when nanoparticles redeposit while the laser ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that retarded oxidation, and amorphous, fully oxidized nanoparticles.

  6. The electromagnetic radiation from simple sources in the presence of a homogeneous dielectric sphere

    NASA Technical Reports Server (NTRS)

    Mason, V. B.

    1973-01-01

    In this research, the effect of a homogeneous dielectric sphere on the electromagnetic radiation from simple sources is treated as a boundary value problem, and the solution is obtained by the technique of dyadic Green's functions. Exact representations of the electric fields in the various regions due to a source located inside, outside, or on the surface of a dielectric sphere are formulated. Particular attention is given to the effect of sphere size, source location, dielectric constant, and dielectric loss on the radiation patterns and directivity of small spheres (less than 5 wavelengths in diameter) using the Huygens' source excitation. The computed results are found to closely agree with those measured for waveguide-excited plexiglas spheres. Radiation patterns for an extended Huygens' source and for curved electric dipoles located on the sphere's surface are also presented. The resonance phenomenon associated with the dielectric sphere is studied in terms of the modal representation of the radiated fields. It is found that when the sphere is excited at certain frequencies, much of the energy is radiated into the sidelobes. The addition of a moderate amount of dielectric loss, however, quickly attenuates this resonance effect. A computer program which may be used to calculate the directivity and radiation pattern of a Huygens' source located inside or on the surface of a lossy dielectric sphere is listed.

  7. GRAVITATIONAL ACCRETION OF PARTICLES ONTO MOONLETS EMBEDDED IN SATURN's RINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasui, Yuki; Ohtsuki, Keiji; Daisaka, Hiroshi, E-mail: y.yasui@whale.kobe-u.ac.jp, E-mail: ohtsuki@tiger.kobe-u.ac.jp

    2014-12-20

    Using a local N-body simulation, we examine gravitational accretion of ring particles onto moonlet cores in Saturn's rings. We find that gravitational accretion of particles onto moonlet cores is unlikely to occur in the C ring and probably difficult in the inner B ring as well provided that the cores are rigid water ice. Dependence of particle accretion on ring thickness changes when the radial distance from the planet and/or the density of particles is varied: the former determines the size of the core's Hill radius relative to its physical size, while the latter changes the effect of self-gravity ofmore » accreted particles. We find that particle accretion onto high-latitude regions of the core surface can occur even if the rings' vertical thickness is much smaller than the core radius, although redistribution of particles onto the high-latitude regions would not be perfectly efficient in outer regions of the rings such as the outer A ring, where the size of the core's Hill sphere in the vertical direction is significantly larger than the core's physical radius. Our results suggest that large boulders recently inferred from observations of transparent holes in the C ring are not formed locally by gravitational accretion, while propeller moonlets in the A ring would be gravitational aggregates formed by particle accretion onto dense cores. Our results also imply that the main bodies of small satellites near the outer edge of Saturn's rings may have been formed in rather thin rings.« less

  8. RESOLVING THE PLANET-HOSTING INNER REGIONS OF THE LkCa 15 DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thalmann, C.; Garufi, A.; Quanz, S. P.

    2016-09-10

    LkCa 15 hosts a pre-transitional disk as well as at least one accreting protoplanet orbiting in its gap. Previous disk observations have focused mainly on the outer disk, which is cleared inward of ∼50 au. The planet candidates, on the other hand, reside at orbital radii around 15 au, where disk observations have been unreliable until recently. Here, we present new J -band imaging polarimetry of LkCa 15 with SPHERE IRDIS, yielding the most accurate and detailed scattered-light images of the disk to date down to the planet-hosting inner regions. We find what appear to be persistent asymmetric structures inmore » the scattering material at the location of the planet candidates, which could be responsible at least for parts of the signals measured with sparse-aperture masking. These images further allow us to trace the gap edge in scattered light at all position angles and search the inner and outer disks for morphological substructure. The outer disk appears smooth with slight azimuthal variations in polarized surface brightness, which may be due to shadowing from the inner disk or a two-peaked polarized phase function. We find that the near-side gap edge revealed by polarimetry matches the sharp crescent seen in previous ADI imaging very well. Finally, the ratio of polarized disk to stellar flux is more than six times larger in the J -band than in the RI bands.« less

  9. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    PubMed

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  10. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts.

    PubMed

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei; Cleemann, Lars N; Xing, Wei; Bjerrum, Niels J; Li, Qingfeng

    2014-04-01

    Nonprecious metal catalysts for the oxygen reduction reaction are the ultimate materials and the foremost subject for low-temperature fuel cells. A novel type of catalysts prepared by high-pressure pyrolysis is reported. The catalyst is featured by hollow spherical morphologies consisting of uniform iron carbide (Fe3 C) nanoparticles encased by graphitic layers, with little surface nitrogen or metallic functionalities. In acidic media the outer graphitic layers stabilize the carbide nanoparticles without depriving them of their catalytic activity towards the oxygen reduction reaction (ORR). As a result the catalyst is highly active and stable in both acid and alkaline electrolytes. The synthetic approach, the carbide-based catalyst, the structure of the catalysts, and the proposed mechanism open new avenues for the development of ORR catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Distance Measurement on an Endogenous Membrane Transporter in E. coli Cells and Native Membranes Using EPR Spectroscopy.

    PubMed

    Joseph, Benesh; Sikora, Arthur; Bordignon, Enrica; Jeschke, Gunnar; Cafiso, David S; Prisner, Thomas F

    2015-05-18

    Membrane proteins may be influenced by the environment, and they may be unstable in detergents or fail to crystallize. As a result, approaches to characterize structures in a native environment are highly desirable. Here, we report a novel general strategy for precise distance measurements on outer membrane proteins in whole Escherichia coli cells and isolated outer membranes. The cobalamin transporter BtuB was overexpressed and spin-labeled in whole cells and outer membranes and interspin distances were measured to a spin-labeled cobalamin using pulse EPR spectroscopy. A comparative analysis of the data reveals a similar interspin distance between whole cells, outer membranes, and synthetic vesicles. This approach provides an elegant way to study conformational changes or protein-protein/ligand interactions at surface-exposed sites of membrane protein complexes in whole cells and native membranes, and provides a method to validate outer membrane protein structures in their native environment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Mercury(II) removal from aqueous solutions and wastewaters using a novel cation exchanger derived from coconut coir pith and its recovery.

    PubMed

    Anirudhan, T S; Divya, L; Ramachandran, M

    2008-09-15

    A new adsorbent (PGCP-COOH) having carboxylate functional group at the chain end was synthesized by grafting poly(hydroxyethylmethacrylate) onto coconut coir pith, CP (a coir industry-based lignocellulosic residue), using potassium peroxydisulphate as an initiator and in the presence of N,N'-methylenebisacrylamide as a cross-linking agent. The adsorbent was characterized with the help of infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and potentiometric titrations. The ability of PGCP-COOH to remove Hg(II) from aqueous solutions was assessed using batch adsorption technique under kinetic and equilibrium conditions. Adsorbent exhibits very high adsorption potential for Hg(II) and more than 99.0% removal was achieved in the pH range 5.5-8.0. Adsorption process was found to follow first-order-reversible kinetics. An increase of ionic strength of the medium caused a decrease in metal removal, indicating the occurrence of outer-sphere surface complex mechanism. The equilibrium data were fitted well by the Freundlich isotherm model (R(2)=0.99; chi(2)=1.81). The removal efficiency was tested using chlor-alkali industry wastewater. Adsorption isotherm experiments were also conducted for comparison using a commercial carboxylate-functionalized ion exchanger, Ceralite IRC-50. Regeneration experiments were tried for four cycles and results indicate a capacity loss of <9.0%.

  13. Turbine airfoil with outer wall thickness indicators

    DOEpatents

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  14. Method for the preparation of carbon fiber from polyolefin fiber precursor

    DOEpatents

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2017-11-28

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  15. OUTWARD MOTION OF POROUS DUST AGGREGATES BY STELLAR RADIATION PRESSURE IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tazaki, Ryo; Nomura, Hideko, E-mail: rtazaki@kusastro.kyoto-u.ac.jp

    2015-02-01

    We study the dust motion at the surface layer of protoplanetary disks. Dust grains in the surface layer migrate outward owing to angular momentum transport via gas-drag force induced by the stellar radiation pressure. In this study we calculate the mass flux of the outward motion of compact grains and porous dust aggregates by the radiation pressure. The radiation pressure force for porous dust aggregates is calculated using the T-Matrix Method for the Clusters of Spheres. First, we confirm that porous dust aggregates are forced by strong radiation pressure even if they grow to be larger aggregates, in contrast tomore » homogeneous and spherical compact grains, for which radiation pressure efficiency becomes lower when their sizes increase. In addition, we find that the outward mass flux of porous dust aggregates with monomer size of 0.1 μm is larger than that of compact grains by an order of magnitude at the disk radius of 1 AU, when their sizes are several microns. This implies that large compact grains like calcium-aluminum-rich inclusions are hardly transported to the outer region by stellar radiation pressure, whereas porous dust aggregates like chondritic-porous interplanetary dust particles are efficiently transported to the comet formation region. Crystalline silicates are possibly transported in porous dust aggregates by stellar radiation pressure from the inner hot region to the outer cold cometary region in the protosolar nebula.« less

  16. Structural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method

    PubMed Central

    Bender, P.; Bogart, L. K.; Posth, O.; Szczerba, W.; Rogers, S. E.; Castro, A.; Nilsson, L.; Zeng, L. J.; Sugunan, A.; Sommertune, J.; Fornara, A.; González-Alonso, D.; Barquín, L. Fernández; Johansson, C.

    2017-01-01

    The structural and magnetic properties of magnetic multi-core particles were determined by numerical inversion of small angle scattering and isothermal magnetisation data. The investigated particles consist of iron oxide nanoparticle cores (9 nm) embedded in poly(styrene) spheres (160 nm). A thorough physical characterisation of the particles included transmission electron microscopy, X-ray diffraction and asymmetrical flow field-flow fractionation. Their structure was ultimately disclosed by an indirect Fourier transform of static light scattering, small angle X-ray scattering and small angle neutron scattering data of the colloidal dispersion. The extracted pair distance distribution functions clearly indicated that the cores were mostly accumulated in the outer surface layers of the poly(styrene) spheres. To investigate the magnetic properties, the isothermal magnetisation curves of the multi-core particles (immobilised and dispersed in water) were analysed. The study stands out by applying the same numerical approach to extract the apparent moment distributions of the particles as for the indirect Fourier transform. It could be shown that the main peak of the apparent moment distributions correlated to the expected intrinsic moment distribution of the cores. Additional peaks were observed which signaled deviations of the isothermal magnetisation behavior from the non-interacting case, indicating weak dipolar interactions. PMID:28397851

  17. Exploring the electrochemical performance of graphitic paste electrodes: graphene vs. graphite.

    PubMed

    Figueiredo-Filho, Luiz C S; Brownson, Dale A C; Gómez-Mingot, Maria; Iniesta, Jesús; Fatibello-Filho, Orlando; Banks, Craig E

    2013-11-07

    We report the fabrication, characterisation (SEM, TEM, XPS and Raman spectroscopy) and electrochemical implementation of a graphene paste electrode. The paste electrodes utilised are constructed by simply mixing graphene with mineral oil (which acts as a binder) prior to loading the resultant paste into a piston-driven polymeric-tubing electrode-shell, where this electrode configuration allows for rapid renewal of the electrode surface. The fabricated paste electrode is electrochemically characterised using both inner-sphere and outer-sphere redox probes, namely potassium ferrocyanide(ii), hexaammine-ruthenium(iii) chloride and hexachloroiridate(iii), in addition to the biologically relevant and electroactive analytes, l-ascorbic acid (AA) and uric acid (UA). Comparisons are made with a graphite paste alternative and the benefits of graphene implementation as a paste electrode within electrochemistry are explored, as well as the characterisation of their electroanalytical performances. We reveal no observable differences in the electrochemical performance and thus suggest that there are no advantages of using graphene over graphite in the fabrication of paste electrodes. Such work is highly important and informative for those working in the field of electroanalysis where electrochemistry can provide portable, rapid, reliable and accurate sensing protocols (bringing the laboratory into the field), with particular relevance to those searching for new electrode materials.

  18. A hybrid 3D SEM reconstruction method optimized for complex geologic material surfaces.

    PubMed

    Yan, Shang; Adegbule, Aderonke; Kibbey, Tohren C G

    2017-08-01

    Reconstruction methods are widely used to extract three-dimensional information from scanning electron microscope (SEM) images. This paper presents a new hybrid reconstruction method that combines stereoscopic reconstruction with shape-from-shading calculations to generate highly-detailed elevation maps from SEM image pairs. The method makes use of an imaged glass sphere to determine the quantitative relationship between observed intensity and angles between the beam and surface normal, and the detector and surface normal. Two specific equations are derived to make use of image intensity information in creating the final elevation map. The equations are used together, one making use of intensities in the two images, the other making use of intensities within a single image. The method is specifically designed for SEM images captured with a single secondary electron detector, and is optimized to capture maximum detail from complex natural surfaces. The method is illustrated with a complex structured abrasive material, and a rough natural sand grain. Results show that the method is capable of capturing details such as angular surface features, varying surface roughness, and surface striations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    PubMed Central

    Bai, Da-Chang; Yu, Fei-Le; Wang, Wan-Ying; Chen, Di; Li, Hao; Liu, Qing-Rong; Ding, Chang-Hua; Chen, Bo; Hou, Xue-Long

    2016-01-01

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of β-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a (syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. Mechanistic studies by both experiments and density functional theory (DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism—nucleophilic attack of enolate oxygen on Palladium followed by C–C bond-forming [3,3']-reductive elimination. PMID:27283477

  20. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Da -Chang; Yu, Fei -Le; Wang, Wan -Ying

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of beta-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a ( syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. As a result, mechanisticmore » studies by both experiments and density functional theory ( DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination.« less

  1. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    DOE PAGES

    Bai, Da -Chang; Yu, Fei -Le; Wang, Wan -Ying; ...

    2016-06-10

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of beta-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a ( syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. As a result, mechanisticmore » studies by both experiments and density functional theory ( DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination.« less

  2. Type IX secretion: the generation of bacterial cell surface coatings involved in virulence, gliding motility and the degradation of complex biopolymers.

    PubMed

    Veith, Paul D; Glew, Michelle D; Gorasia, Dhana G; Reynolds, Eric C

    2017-10-01

    The Type IX secretion system (T9SS) is present in over 1000 sequenced species/strains of the Fibrobacteres-Chlorobi-Bacteroidetes superphylum. Proteins secreted by the T9SS have an N-terminal signal peptide for translocation across the inner membrane via the SEC translocon and a C-terminal signal for secretion across the outer membrane via the T9SS. Nineteen protein components of the T9SS have been identified including three, SigP, PorX and PorY that are involved in regulation. The inner membrane proteins PorL and PorM and the outer membrane proteins PorK and PorN interact and a complex comprising PorK and PorN forms a large ring structure of 50 nm in diameter. PorU, PorV, PorQ and PorZ form an attachment complex on the cell surface of the oral pathogen, Porphyromonas gingivalis. P. gingivalis T9SS substrates bind to PorV suggesting that after translocation PorV functions as a shuttle protein to deliver T9SS substrates to the attachment complex. The PorU component of the attachment complex is a novel Gram negative sortase which catalyses the cleavage of the C-terminal signal and conjugation of the protein substrates to lipopolysaccharide, anchoring them to the cell surface. This review presents an overview of the T9SS focusing on the function of T9SS substrates and machinery components. © 2017 John Wiley & Sons Ltd.

  3. Space filling minimal surfaces and sphere packings

    NASA Astrophysics Data System (ADS)

    Elser, Veit

    1994-05-01

    A space filling minimal surface is defined to be any embedded minimal surface without boundary with the property that the area and genus enclosed by any large spherical region scales in proportion to the volume of the region. The triply periodic minimal surfaces are one realization, but not necessarily the only one. By using the genus per unit volume of the surface, a meaningful comparison of surface areas can be made even in cases where there is no unit cell. Of the known periodic minimal surfaces this measure of the surface area is smallest for Schoen's FRD surface. This surface is one of several that is closely related to packings of spheres. Its low area is largely due to the fact that the corresponding sphere packing (fcc) has the maximal kissing number.

  4. The structure of the Caenorhabditis elegans manganese superoxide dismutase MnSOD-3-azide complex

    DOE PAGES

    Hunter, Gary J.; Trinh, Chi H.; Bonetta, Rosalin; ...

    2015-08-27

    C. elegans MnSOD-3 has been implicated in the longevity pathway and its mechanism of catalysis is relevant to the aging process and carcinogenesis. The structures of MnSOD-3 provide unique crystallographic evidence of a dynamic region of the tetrameric interface (residues 41–54). We have determined the structure of the MnSOD-3-azide complex to 1.77-Å resolution. The analysis of this complex shows that the substrate analog, azide, binds end-on to the manganese center as a sixth ligand and that it ligates directly to a third and new solvent molecule also positioned within interacting distance to the His30 and Tyr34 residues of the substratemore » access funnel. This is the first structure of a eukaryotic MnSOD-azide complex that demonstrates the extended, uninterrupted hydrogen-bonded network that forms a proton relay incorporating three outer sphere solvent molecules, the substrate analog, the gateway residues, Gln142, and the solvent ligand. This configuration supports the formation and release of the hydrogen peroxide product in agreement with the 5-6-5 catalytic mechanism for MnSOD. The high product dissociation constant k₄ of MnSOD-3 reflects low product inhibition making this enzyme efficient even at high levels of superoxide.« less

  5. Molecular Chaperone Hsp70/Hsp90 Prepares the Mitochondrial Outer Membrane Translocon Receptor Tom71 for Preprotein Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jingzhi; Qian, Xinguo; Hu, Junbin

    2010-11-03

    The preproteins targeted to the mitochondria are transported through the translocase of the outer membrane complex. Tom70/Tom71 is a major surface receptor of the translocase of the outer membrane complex for mitochondrial preproteins. The preproteins are escorted to Tom70/Tom71 by molecular chaperones Hsp70 and Hsp90. Here we present the high resolution crystal structures of Tom71 and the protein complexes between Tom71 and the Hsp70/Hsp90 C terminus. The crystal structures indicate that Tom70/Tom71 may exhibit two distinct states. In the closed state, the N-terminal domain of Tom70/Tom71 partially blocks the preprotein-binding pocket. In the open state, the N-terminal domain moves away,more » and the preprotein-binding pocket is fully exposed. The complex formation between the C-terminal EEVD motif of Hsp70/Hsp90 and Tom71 could lock Tom71 in the open state where the preprotein-binding pocket of Tom71 is ready to receive preproteins. The interactions between Hsp70/Hsp90 and Tom71 N-terminal domain generate conformational changes that may increase the volume of the preprotein-binding pocket. The complex formation of Hsp70/Hsp90 and Tom71 also generates significant domain rearrangement within Tom71, which may position the preprotein-binding pocket closer to Hsp70/Hsp90 to facilitate the preprotein transfer from the molecular chaperone to Tom71. Therefore, molecular chaperone Hsp70/Hsp90 may function to prepare the mitochondrial outer membrane receptor Tom71 for preprotein loading.« less

  6. Kinetic Monte Carlo Simulations and Molecular Conductance Measurements of the Bacterial Decaheme Cytochrome MtrF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, H. S.; Pirbadian, S.; Nakano, Aiichiro

    2014-09-05

    Microorganisms overcome the considerable hurdle of respiring extracellular solid substrates by deploying large multiheme cytochrome complexes that form 20 nanometer conduits to traffic electrons through the periplasm and across the cellular outer membrane. Here we report the first kinetic Monte Carlo simulations and single-molecule scanning tunneling microscopy (STM) measurements of the Shewanella oneidensis MR-1 outer membrane decaheme cytochrome MtrF, which can perform the final electron transfer step from cells to minerals and microbial fuel cell anodes. We find that the calculated electron transport rate through MtrF is consistent with previously reported in vitro measurements of the Shewanella Mtr complex, asmore » well as in vivo respiration rates on electrode surfaces assuming a reasonable (experimentally verified) coverage of cytochromes on the cell surface. The simulations also reveal a rich phase diagram in the overall electron occupation density of the hemes as a function of electron injection and ejection rates. Single molecule tunneling spectroscopy confirms MtrF's ability to mediate electron transport between an STM tip and an underlying Au(111) surface, but at rates higher than expected from previously calculated heme-heme electron transfer rates for solvated molecules.« less

  7. Amorphous silica as a versatile supermolecular ligand for Ni(II) amine complexes: toward interfacial molecular recognition.

    PubMed

    Boujday, Souhir; Lambert, Jean-François; Che, Michel

    2004-07-19

    Selective adsorption of Ni(II) amine complexes used as precursors for supported catalysts was studied on amorphous silica surfaces. The nature of the adsorption sites was probed by [Ni(en)(dien) (H2O)]2+, [Ni(en)2(H2O)2]2+, and [Ni(dien)(H2O)3]2+ (en = ethylenediamine, dien = diethylenetriamine), which respectively contain one, two, and three labile aqua ligands. The silica surface acts as a mono- or polydentate ligand that can substitute the aqua ligands of the Ni(II) complexes in an inner-sphere adsorption mechanism. Room-temperature adsorption isotherms indicate that each nickel complex selects a limited number of adsorption sites; different sites are recognised by the three complexes, even though they have the same charge and comparable sizes. Several spectroscopic techniques (UV/Vis/NIR, EXAFS, and 29Si NMR) were used to confirm the selective character of the interaction of Ni(II) amine complexes with the silica surface. The specific sites include both silanol/silanolate groups in the same number as the original labile ligands and other surface groups that probably act as hydrogen-bond acceptors. These two types of groups cooperate to result in interfacial molecular-recognition phenomena with interactional complementarity.

  8. Complex Waves on 1D, 2D, and 3D Periodic Arrays of Lossy and Lossless Magnetodielectric Spheres

    DTIC Science & Technology

    2010-05-16

    magnetic) dipole field. The radius of the spheres is denoted by a, and t he relative permittivity and permeability of the spheres are denoted by fr and...1-’" respectively, where fr and I-’r are in general complex. We denote the separation between the centers of adjacent spheres by d, take the z axis...fT and JJ.’i-ff become reciprocals) , both (~fT and J.’’i- fr should approach the value of + 1. However, a little t.hought and numerical examples

  9. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells.

    PubMed

    Gentil, Solène; Lalaoui, Noémie; Dutta, Arnab; Nedellec, Yannig; Cosnier, Serge; Shaw, Wendy J; Artero, Vincent; Le Goff, Alan

    2017-02-06

    A biomimetic nickel bis-diphosphine complex incorporating the amino acid arginine in the outer coordination sphere was immobilized on modified carbon nanotubes (CNTs) through electrostatic interactions. The functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H 2 /2 H + interconversion from pH 0 to 9, with catalytic preference for H 2 oxidation at all pH values. The high activity of the complex over a wide pH range allows us to integrate this bio-inspired nanomaterial either in an enzymatic fuel cell together with a multicopper oxidase at the cathode, or in a proton exchange membrane fuel cell (PEMFC) using Pt/C at the cathode. The Ni-based PEMFC reaches 14 mW cm -2 , only six-times-less as compared to full-Pt conventional PEMFC. The Pt-free enzyme-based fuel cell delivers ≈2 mW cm -2 , a new efficiency record for a hydrogen biofuel cell with base metal catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Peroxydisulfate activation by [RuII(tpy)(pic)(H2O)]+. Kinetic, mechanistic and anti-microbial activity studies.

    PubMed

    Chatterjee, Debabrata; Banerjee, Priyabrata; Bose, Jagadeesh C K; Mukhopadhyay, Sudit

    2012-03-07

    The oxidation of [Ru(II)(tpy)(pic)H(2)O](+) (tpy = 2,2',6',2''-terpyridine; pic(-) = picolinate) by peroxidisulfate (S(2)O(8)(2-)) as precursor oxidant has been investigated kinetically by UV-VIS, IR and EPR spectroscopy. The overall oxidation of Ru(II)- to Ru(IV)-species takes place in a consecutive manner involving oxidation of [Ru(II)(tpy)(pic)H(2)O](+) to [Ru(III)(tpy)(pic)(OH)](+), and its further oxidation of to the ultimate product [Ru(IV)(tpy)(pic)(O)](+) complex. The time course of the reaction was followed as a function of [S(2)O(8)(2-)], ionic strength (I) and temperature. Kinetic data and activation parameters are interpreted in terms of an outer-sphere electron transfer mechanism. Anti-microbial activity of Ru(II)(tpy)(pic)H(2)O](+) complex by inhibiting the growth of Escherichia coli DH5α in presence of peroxydisulfate has been explored, and the results of the biological studies have been discussed in terms of the [Ru(IV)(tpy)(pic)(O)](+) mediated cleavage of chromosomal DNA of the bacteria.

  11. Efficient chemoenzymatic dynamic kinetic resolution of 1-heteroaryl ethanols.

    PubMed

    Vallin, Karl S A; Wensbo Posaric, David; Hamersak, Zdenko; Svensson, Mats A; Minidis, Alexander B E

    2009-12-18

    The scope and limitation of the combined ruthenium-lipase induced dynamic kinetic resolution (DKR) through O-acetylation of racemic heteroaromatic secondary alcohols, i.e., 1-heteroaryl substituted ethanols, was investigated. After initial screening of reaction conditions, Candida antarctica lipase B (Novozyme 435, N435) together with 4-chloro-phenylacetate as acetyl-donor for kinetic resolution (KR), in conjunction with the ruthenium-based Shvo catalyst for substrate racemization in toluene at 80 degrees C, enabled DKR with high yields and stereoselectivity of various 1-heteroaryl ethanols, such as oxadiazoles, isoxazoles, 1H-pyrazole, or 1H-imidazole. In addition, DFT calculations based on a simplified catalyst complex model for the catalytic (de)hydrogenation step are in agreement with the previously reported outer sphere mechanism. These results support the further understanding of the mechanistic aspects behind the difference in reactivity of 1-heteroaryl substituted ethanols in comparison to reference substrates, as often referred to in the literature.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darmon, Jonathan M.; Kumar, Neeraj; Hulley, Elliott B.

    Oxidation of hydrogen (H₂) to protons and electrons for energy production in fuel cells is catalyzed by platinum, but its low abundance and high cost present drawbacks to widespread adoption. Precisely controlled proton delivery and removal is critical in hydrogenase enzymes in nature that catalyze H₂ oxidation using earth-abundant metals (iron and nickel). Here we report a synthetic iron complex, (Cp C5F4N)Fe(P EtN (CH2)3NMe2PEt)(Cl), that serves as a precatalyst for the oxidation of H₂, with turnover frequencies of 290 s⁻¹ in fluorobenzene, under 1 atm of H₂ using 1,4-diazabicyclo[2.2.2]octane (DABCO) as the exogenous base. The cooperative effect of the primary,more » secondary and outer coordination spheres for moving protons in this remarkably fast catalyst emphasizes the key role of pendant amines in mimicking the functionality of the proton pathway in the hydrogenase enzymes.« less

  13. (18-Crown-6)potassium [(1,2,5,6-η)-cyclo-octa-1,5-diene][(1,2,3,4-η)-naph-tha-lene]-ferrate(-I).

    PubMed

    Brennessel, William W; Ellis, John E

    2012-10-01

    The title salt, [K(C(12)H(24)O(6))][Fe(C(8)H(12))(C(10)H(8))], is the only known naphthalene complex containing iron in a formally negative oxidation state. Each (naphthalene)(1,5-cod)ferrate(-I) anion is in contact with one (18-crown-6)potassium cation via K⋯C contacts to the outer four carbon atoms of the naphthalene ligand (cod = 1,5-cyclo-octa-diene, 18-crown-6 = 1,4,7,10,13,16-hexa-oxacyclo-octa-deca-ne). When using the midpoints of the coordinating olefin bonds, the overall geometry of the coordination sphere around iron can be best described as distorted tetra-hedral. The naphthalene fold angle between the plane of the iron-coordinating butadiene unit and the plane containing the exo-benzene moiety is 19.2 (1)°.

  14. Fabrication of hexagonal star-shaped and ring-shaped patterns arrays by Mie resonance sphere-lens-lithography

    NASA Astrophysics Data System (ADS)

    Liu, Xianchao; Wang, Jun; Li, Ling; Gou, Jun; Zheng, Jie; Huang, Zehua; Pan, Rui

    2018-05-01

    Mie resonance sphere-lens-lithography has proved to be a good candidate for fabrication of large-area tunable surface nanopattern arrays. Different patterns on photoresist surface are obtained theoretically by adjusting optical coupling among neighboring spheres with different gap sizes. The effect of light reflection from the substrate on the pattern produced on the photoresist with a thin thickness is also discussed. Sub-micron hexagonal star-shaped and ring-shaped patterns arrays are achieved with close-packed spheres arrays and spheres arrays with big gaps, respectively. Changing of star-shaped vertices is induced by different polarization of illumination. Experimental results agree well with the simulation. By using smaller resonance spheres, sub-400 nm star-shaped and ring-shaped patterns can be realized. These tunable patterns are different from results of previous reports and have enriched pattern morphology fabricated by sphere-lens-lithography, which can find application in biosensor and optic devices.

  15. Asteroid Bennu Temperature Maps for OSIRIS-REx Spacecraft and Instrument Thermal Analyses

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.; Emery, Josh; Delbo, Marco

    2014-01-01

    A thermophysical model has been developed to generate asteroid Bennu surface temperature maps for OSIRIS-REx spacecraft and instrument thermal design and analyses at the Critical Design Review (CDR). Two-dimensional temperature maps for worst hot and worst cold cases are used in Thermal Desktop to assure adequate thermal design margins. To minimize the complexity of the Bennu geometry in Thermal Desktop, it is modeled as a sphere instead of the radar shape. The post-CDR updated thermal inertia and a modified approach show that the new surface temperature predictions are more benign. Therefore the CDR Bennu surface temperature predictions are conservative.

  16. Swirling structure for mixing two concentric fluid flows at nozzle outlet

    DOEpatents

    Mensink, Daniel L.

    1993-01-01

    A nozzle device for causing two fluids to mix together. In particular, a spray nozzle comprise two hollow, concentric housings, an inner housing and an outer housing. The inner housing has a channel formed therethrough for a first fluid. Its outer surface cooperates with the interior surface of the outer housing to define the second channel for a second fluid. The outer surface of the inner housing and the inner surface of the outer housing each carry a plurality of vanes that interleave but do not touch, each vane of one housing being between two vanes of the other housing. The vanes are curved and the inner surface of the outer housing and the outer surface of the inner housing converge to narrow the second channel. The shape of second channel results in a swirling, accelerating second fluid that will impact the first fluid just past the end of the nozzle where mixing will take place.

  17. Forming MOFs into spheres by use of molecular gastronomy methods.

    PubMed

    Spjelkavik, Aud I; Aarti; Divekar, Swapnil; Didriksen, Terje; Blom, Richard

    2014-07-14

    A novel method utilizing hydrocolloids to prepare nicely shaped spheres of metal-organic frameworks (MOFs) has been developed. Microcrystalline CPO-27-Ni particles are dispersed in either alginate or chitosan solutions, which are added dropwise to solutions containing, respectively, either divalent group 2 cations or base that act as gelling agents. Well-shaped spheres are immediately formed, which can be dried into spheres containing mainly MOF (>95 wt %). The spheronizing procedures have been optimized with respect to maximum specific surface area, shape, and particle density of the final sphere. At optimal conditions, well-shaped 2.5-3.5 mm diameter CPO-27-Ni spheres with weight-specific surface areas <10 % lower than the nonformulated CPO-27-Ni precursor, and having sphere densities in the range 0.8 to 0.9 g cm(-3) and particle crushing strengths above 20 N, can be obtained. The spheres are well suited for use in fixed-bed catalytic or adsorption processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Surface speciation of phosphate on goethite as seen by InfraRed Surface Titrations (IRST)

    NASA Astrophysics Data System (ADS)

    Arroyave, Jeison Manuel; Puccia, Virginia; Zanini, Graciela P.; Avena, Marcelo J.

    2018-06-01

    Phosphate adsorption at the metal oxide-water interface has been intensely studied, and the system phosphate-goethite in aqueous media is normally used as a model system with abundant information regarding adsorption-desorption under very different conditions. In spite of this, there is still discussion on whether the main inner-sphere surface complexes that phosphate forms on goethite are monodentate or bidentate. A new spectroscopic technique, InfraRed Surface Titration (IRST), is presented here and used to systematically explore the surface speciation of phosphate on goethite in the pH range 4.5-9.5 at different surface coverages. IRST enabled to construct distribution curves of surface species and distribution curves of dissolved phosphate species. In combination with the CD-MUSIC surface complexation model it was possible to conclude that surface complexes are monodentate. Very accurate distribution curves were obtained, showing a crossing point at pH 5.5 at a surface coverage of 2.0 μmol m-2, with a mononuclear monoprotonated species predominating at pH > 5.5 and a mononuclear diprotonated species prevailing at pH < 5.5. On the contrary, at the low surface coverage of 0.7 μmol m-2 there is no crossing point, with the mononuclear monoprotonated species prevailing at all pH. IRST can become a powerful technique to investigate structure, properties and reactions of any IR-active surface complex at the solid-water interface.

  19. Treatment of As(V) and As(III) by electrocoagulation using Al and Fe electrode.

    PubMed

    Kuan, W H; Hu, C Y; Chiang, M C

    2009-01-01

    A batch electrocoagulation (EC) process with bipolar electrode and potentiodynamic polarization tests with monopolar systems were investigated as methods to explore the effects of electrode materials and initial solution pH on the As(V) and As(III) removal. The results displayed that the system with Al electrode has higher reaction rate during the initial period from 0 to 25 minutes than that of Fe electrode for alkaline condition. The pH increased with the EC time because the As(V) and As(III) removal by either co-precipitation or adsorption resulted in that the OH positions in Al-hydroxide or Fe-hydroxide were substituted by As(V) and As(III). The pH in Fe electrode system elevate higher than that in Al electrode because the As(V) removal substitutes more OH position in Fe-hydroxide than that in Al-hydroxide. EC system with Fe electrode can successfully remove the As(III) but system with Al electrode cannot because As(III) can strongly bind to the surface of Fe-hydroxide with forming inner-sphere species but weakly adsorb to the Al-hydroxide surface with forming outer-sphere species. The acidic solution can destroy the deposited hydroxide passive film then allow the metallic ions liberate into the solution, therefore, the acidic initial solution can enhance the As(V) and As(III) removal. The over potential calculation and potentiodynamic polarization tests reveal that the Fe electrode systems possess higher over potential and pitting potential than that of Al electrode system due to the fast hydrolysis of and the occurrence of Fe-hydroxide passive film.

  20. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    DOEpatents

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  1. Hydrodynamic capture of microswimmers into sphere-bound orbits.

    PubMed

    Takagi, Daisuke; Palacci, Jérémie; Braunschweig, Adam B; Shelley, Michael J; Zhang, Jun

    2014-03-21

    Self-propelled particles can exhibit surprising non-equilibrium behaviors, and how they interact with obstacles or boundaries remains an important open problem. Here we show that chemically propelled micro-rods can be captured, with little change in their speed, into close orbits around solid spheres resting on or near a horizontal plane. We show that this interaction between sphere and particle is short-range, occurring even for spheres smaller than the particle length, and for a variety of sphere materials. We consider a simple model, based on lubrication theory, of a force- and torque-free swimmer driven by a surface slip (the phoretic propulsion mechanism) and moving near a solid surface. The model demonstrates capture, or movement towards the surface, and yields speeds independent of distance. This study reveals the crucial aspects of activity–driven interactions of self-propelled particles with passive objects, and brings into question the use of colloidal tracers as probes of active matter.

  2. The TOC complex: preprotein gateway to the chloroplast.

    PubMed

    Andrès, Charles; Agne, Birgit; Kessler, Felix

    2010-06-01

    Photosynthetic eukaryotes strongly depend on chloroplast metabolic pathways. Most if not all involve nuclear encoded proteins. These are synthesized as cytosolic preproteins with N-terminal, cleavable targeting sequences (transit peptide). Preproteins are imported by a major pathway composed of two proteins complexes: TOC and TIC (Translocon of the Outer and Inner membranes of the Chloroplasts, respectively). These selectively recognize the preproteins and facilitate their transport across the chloroplast envelope. The TOC core complex consists of three types of components, each belonging to a small family: Toc34, Toc75 and Toc159. Toc34 and Toc159 isoforms represent a subfamily of the GTPase superfamily. The members of the Toc34 and Toc159 subfamily act as GTP-dependent receptors at the chloroplast surface and distinct members of each occur in defined, substrate-specific TOC complexes. Toc75, a member of the Omp85 family, is conserved from prokaryotes and functions as the unique protein-conducting channel at the outer membrane. In this review we will describe the current state of knowledge regarding the composition and function of the TOC complex.

  3. Surface structure-dependent pyrite oxidation in relatively dry and moist air: Implications for the reaction mechanism and sulfur evolution

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxi; Xian, Haiyang; Lin, Xiaoju; Tang, Hongmei; Du, Runxiang; Yang, Yiping; Zhu, Runliang; Liang, Xiaoliang; Wei, Jingming; Teng, H. Henry; He, Hongping

    2018-05-01

    Pyrite oxidation not only is environmentally significant in the formation of acid mine (or acid rock) drainage and oxidative acidification of lacustrine sediment but also is a critical stage in geochemical sulfur evolution. The oxidation process is always controlled by the reactivity of pyrite, which in turn is controlled by its surface structure. In this study, the oxidation behavior of naturally existing {1 0 0}, {1 1 1}, and {2 1 0} facets of pyrite was investigated using a comprehensive approach combining X-ray photoelectron spectroscopy, diffuse reflectance Fourier transform infrared spectroscopy, and time-of-flight secondary-ion mass spectrometry with periodic density functional theoretical (DFT) calculations. The experimental results show that (i) the initial oxidation rates of both pyrite {1 1 1} and {2 1 0} are much greater than that of pyrite {1 0 0}; (ii) the initial oxidation rate of pyrite {2 1 0} is greater than that of pyrite {1 1 1} in low relative humidity, which is reversed in high relative humidity; and (iii) inner sphere oxygen-bearing sulfur species are originally generated from surface reactions and then converted to outer sphere species. The facet dependent rate law can be expressed as: r{hkl} =k{hkl}haP0.5(t + 1) - 0.5 , where r{hkl} is the orientation dependent reaction rate, k{hkl} is the orientation dependent rate constant, h is the relative humidity, P is the oxygen partial pressure, and t is the oxidation time in seconds. {1 1 1} is the most sensitive facet for pyrite oxidation. Combined with DFT theoretical investigations, water catalyzed electron transfer is speculated as the rate-limiting step. These findings disclose the structure-reactivity dependence of pyrite, which not only presents new insight into the mechanism of pyrite oxidation but also provides fundamental data to evaluate sulfur speciation evolution, suggesting that the surface structure sensitivity should be considered to estimate the reactivity at the mineral-water interface.

  4. Anomalous optical scattering from intersecting fine particles

    NASA Astrophysics Data System (ADS)

    Paley, Alina V.; Radchik, Alex V.; Smith, Geoffrey B.

    1995-09-01

    There are many areas of science and technology where the scattering of electromagnetic waves by clusters or merging particles are of interest. The merging particles under study might be inclusions in high-density composites, liquid drops, biological cells, macroscopic ceramic particles, etc. As intersecting particles are bounded by a complex physical surface, the problem of scattering from these particles valid for any degree of merging, including touching, and for arbitrary materials of the constituents, has received limited attention. Here we present solutions which are valid and exact in the long wavelength limit compared with the size of intersecting spherical particles and cardioidal particles of similar dimensions. Both shapes are almost coincident everywhere except in the region of intersection. We treat the case when the waves are polarized along the common axis (longitudinal field). The solutions of Laplace's equation are integrals (spheres) or sums (cardioids) over continuous or discrete eigenvalue spectra respectively. The spectral dependencies of the resulting extinction coefficients and the scattering for the spherical and cardioidal particles are quite distinct. There is an enormous difference in the magnitude of absorption responses. Overall the cardioidal particle behaves as if it is almost invisible in terms of effects on the external field for a very broad band of optical frequencies. THe latter result was checked for a number of dielectric permittivities and seems to be universal. It scatters far more weakly than the isolated sphere. In constrast the intersecting sphere has an extinction band which is broad and is much enhanced at longer wavelegnths relative to the simple sphere. This result has significant implications for the design of surfaces with minimum scattering.

  5. Attachment device for an inflatable protective cushion

    DOEpatents

    Nelsen, J.M.; Luna, D.A.; Gwinn, K.W.

    1997-11-18

    An inflatable cushion assembly for use with an inflator comprises an inflatable cushion having an inner surface, outer surface, and at least one protrusion extending from one of the inner or outer surfaces. The inflatable cushion defines an opening between the inner surface and the outer surface for receiving the inflator. An attachment member contacts the one of the inner or outer surfaces adjacent the opening and includes a groove for receiving the protrusion, the attachment member securing the inflator within the opening. 22 figs.

  6. Attachment device for an inflatable protective cushion

    DOEpatents

    Nelsen, J.M.; Luna, D.A.; Gwinn, K.W.

    1998-12-08

    An inflatable cushion assembly for use with an inflator comprises an inflatable cushion having an inner surface, outer surface, and at least one protrusion extending from one of the inner or outer surfaces. The inflatable cushion defines an opening between the inner surface and the outer surface for receiving the inflator. An attachment member contacts the one of the inner or outer surfaces adjacent the opening and includes a groove for receiving the protrusion, the attachment member securing the inflator within the opening. 22 figs.

  7. Aerodynamic Characteristics of a Model of an Inflatable-Sphere Launching Vehicle under Simulated Conditions of Mach Number and Altitude

    NASA Technical Reports Server (NTRS)

    Robinson, Ross B.; Morris, Odell A.

    1960-01-01

    An investigation has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel to determine the aerodynamic characteristics in pitch of a two-stage-rocket model configuration which simulated the last two stages of the launching vehicle for an inflatable sphere. Tests were made through an angle-of-attack range from -6 deg to 18 deg at dynamic pressures of 102 and 255 pounds per square foot with corresponding Mach numbers of 1.89 and 1.98 for the model both with and without a bumper arrangement designed to protect the rocket casing from the outer shell of the vehicle.

  8. A comparative study of the electrostatic potential of fullerene-like structures of Au 32 and Au 42

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Lai; Sun, Xiao-Ping; Shen, Hong-Tao; Hou, Dong-Yan; Zhai, Yu-Chun

    2008-05-01

    By using density functional theory calculations, it is found that the most negative MEP inside the gold cage occurs at the center of the sphere. The largest regions with the most negative MEP outside the sphere are localized in the neighborhood of the bridge sites and the vertex regions of the five-coordinated are more positive. The absolute values of the most negative potentials in both the inner and outer cages as well as the vertex regions of the five-coordinated of Au 32 structure are much larger than those of Au 42, which means Au 32 is preferable for electrophilic attack or nucleophilic processes.

  9. Effect of acoustic streaming on the mass transfer from a sublimating sphere

    NASA Astrophysics Data System (ADS)

    Kawahara, N.; Yarin, A. L.; Brenn, G.; Kastner, O.; Durst, F.

    2000-04-01

    The effect of the acoustic streaming on the mass transfer from the surface of a sphere positioned in an ultrasonic acoustic levitator is studied both experimentally and theoretically. Acoustic levitation using standing ultrasonic waves is an experimental tool for studying the heat and mass transfer from small solid or liquid samples, because it allows an almost steady positioning of a sample at a fixed location in space. However, the levitator introduces some difficulties. One of the main problems with acoustic levitation is that an acoustic streaming is induced near the sample surface, which affects the heat and mass transfer rates, as characterized by increased Nusselt and Sherwood numbers. The transfer rates are not uniform along the sample surface, and the aim of the present study is to quantify the spatial Sherwood number distribution over the surface of a sphere. The experiments are based on the measurement of the surface shape of a sphere layered with a solid substance as a function of time using a charge-coupled device (CCD) camera with backlighting. The sphere used in this research is a glass sphere layered with a volatile solid substance (naphthalene or camphor). The local mass transfer from the surface both with and without an ultrasonic acoustic field is investigated in order to evaluate the effect of the acoustic streaming. The experimental results are compared with predictions following from the theory outlined [A. L. Yarin, M. Pfaffenlehner, and C. Tropea, J. Fluid Mech. 356, 65 (1998); A. L. Yarin, G. Brenn, O. Kastner, D. Rensink, and C. Tropea, ibid. 399, 151 (1999)] which describes the acoustic field and the resulting acoustic streaming, and the mass transfer at the surface of particles and droplets located in an acoustic levitator. The results are also compared with the experimental data and with the theoretical predictions of Burdukov and Nakoryakov [J. Appl. Mech. Tech. Phys. 6, 51 (1965)], which are valid only in the case of spherical particles much smaller than the sound wavelength. Good agreement between experiment and the theory of Yarin et al. is demonstrated. The time-averaged heat and mass transfer rates over a sphere surface are greatest at the sphere's equator and least at its poles in the experiment as predicted by the theory (the ultrasonic standing wave spans the vertical axis passing through the poles). The measured distribution of the mass transfer rate over the sphere surface also agrees with the theoretical predictions, which shows that in strong acoustic fields sublimation (or evaporation) results from the acoustic streaming.

  10. A novel shell-structure cell microcarrier (SSCM) for cell transplantation and bone regeneration medicine.

    PubMed

    Su, Kai; Gong, Yihong; Wang, Chunming; Wang, Dong-An

    2011-06-01

    The present study aims to develop a novel open and hollow shell-structure cell microcarrier (SSCM) to improve the anchorage-dependent cell (ADC) loading efficiency, increase the space for cell proliferation and tissue regeneration, and better propel its therapeutic effects. Gelatin particles were prepared with oil/water/oil (o/w/o) technique and modified by an adjustable surface crosslinking technique and subsequent release of uncrosslinked material. Optical microscopy and scanning electron microscopy (SEM) were utilized to observe the morphologies of the microcarriers. Cell loading tests were performed to evaluate the biocompatibilities and effect on osteogenesis of SSCM. SSCMs were successfully fabricated via the surface technique. The shell-structure could allow the cell to attach and grow on both outer and inner surface of sphere and provide adequate space for cell proliferation and extracellular matrix (ECM) secretion. The cell loading rate, proliferation rate and osteogenesis-related gene expressions on the SSCMs were higher than those on the spherical gelatin microcarriers. The outstanding performance of injectable SSCMs endowed with favorable micro-structure, desirable cytocompatibility and enhanced cell affinity makes them as a good choice as cell delivery vehicle for transplanting therapeutic cells towards the scope of tissue regeneration.

  11. Making More-Complex Molecules Using Superthermal Atom/Molecule Collisions

    NASA Technical Reports Server (NTRS)

    Shortt, Brian; Chutjian, Ara; Orient, Otto

    2008-01-01

    A method of making more-complex molecules from simpler ones has emerged as a by-product of an experimental study in outer-space atom/surface collision physics. The subject of the study was the formation of CO2 molecules as a result of impingement of O atoms at controlled kinetic energies upon cold surfaces onto which CO molecules had been adsorbed. In this study, the O/CO system served as a laboratory model, not only for the formation of CO2 but also for the formation of other compounds through impingement of rapidly moving atoms upon molecules adsorbed on such cold interstellar surfaces as those of dust grains or comets. By contributing to the formation of increasingly complex molecules, including organic ones, this study and related other studies may eventually contribute to understanding of the origins of life.

  12. Effects of elastic bed on hydrodynamic forces for a submerged sphere in an ocean of finite depth

    NASA Astrophysics Data System (ADS)

    Mohapatra, Smrutiranjan

    2017-08-01

    In this paper, we consider a hydroelastic model to examine the radiation of waves by a submerged sphere for both heave and sway motions in a single-layer fluid flowing over an infinitely extended elastic bottom surface in an ocean of finite depth. The elastic bottom is modeled as a thin elastic plate and is based on the Euler-Bernoulli beam equation. The effect of the presence of surface tension at the free-surface is neglected. In such situation, there exist two modes of time-harmonic waves: the one with a lower wavenumber (surface mode) propagates along the free-surface and the other with higher wavenumber (flexural mode) propagates along the elastic bottom surface. Based on the small amplitude wave theory and by using the multipole expansion method, we find the particular solution for the problem of wave radiation by a submerged sphere of finite depth. Furthermore, this method eliminates the need to use large and cumbersome numerical packages for the solution of such problem and leads to an infinite system of linear algebraic equations which are easily solved numerically by any standard technique. The added-mass and damping coefficients for both heave and sway motions are derived and plotted for different submersion depths of the sphere and flexural rigidity of the elastic bottom surface. It is observed that, whenever the sphere nearer to the elastic bed, the added-mass move toward to a constant value of 1, which is approximately twice of the value of added-mass of a moving sphere in a single-layer fluid flowing over a rigid and flat bottom surface.

  13. How Does the Gibbs Inequality Condition Affect the Stability and Detachment of Floating Spheres from the Free Surface of Water?

    PubMed

    Feng, Dong-xia; Nguyen, Anh V

    2016-03-01

    Floating objects on the air-water interfaces are central to a number of everyday activities, from walking on water by insects to flotation separation of valuable minerals using air bubbles. The available theories show that a fine sphere can float if the force of surface tension and buoyancies can support the sphere at the interface with an apical angle subtended by the circle of contact being larger than the contact angle. Here we show that the pinning of the contact line at the sharp edge, known as the Gibbs inequality condition, also plays a significant role in controlling the stability and detachment of floating spheres. Specifically, we truncated the spheres with different angles and used a force sensor device to measure the force of pushing the truncated spheres from the interface into water. We also developed a theoretical modeling to calculate the pushing force that in combination with experimental results shows different effects of the Gibbs inequality condition on the stability and detachment of the spheres from the water surface. For small angles of truncation, the Gibbs inequality condition does not affect the sphere detachment, and hence the classical theories on the floatability of spheres are valid. For large truncated angles, the Gibbs inequality condition determines the tenacity of the particle-meniscus contact and the stability and detachment of floating spheres. In this case, the classical theories on the floatability of spheres are no longer valid. A critical truncated angle for the transition from the classical to the Gibbs inequality regimes of detachment was also established. The outcomes of this research advance our understanding of the behavior of floating objects, in particular, the flotation separation of valuable minerals, which often contain various sharp edges of their crystal faces.

  14. Re-accumulation Scenarios Governing Final Global Shapes of Rubble-Pile Asteroids

    NASA Astrophysics Data System (ADS)

    Hestroffer, Daniel; Tanga, P.; Comito, C.; Paolicchi, P.; Walsh, K.; Richardson, D. C.; Cellino, A.

    2009-05-01

    Asteroids, since the formation of the solar system, are known to have experienced catastrophic collisions, which---depending on the impact energy---can produce a major disruption of the parent body and possibly give birth to asteroid families or binaries [1]. We present a general study of the final shape and dynamical state of asteroids produced by the re-accumulation process following a catastrophic disruption. Starting from a cloud of massive particles (mono-disperse spheres) with given density and velocity distributions, we analyse the final shape, spin state, and angular momentum of the system from numerical integration of a N-body gravitational system (code pkdgrav [2]). The re-accumulation process itself is relatively fast, with a dynamical time corresponding to the spin-period of the final body (several hours). The final global shapes---which are described as tri-axial ellipsoids---exhibit slopes consistent with a degree of shear stress sustained by interlocking particles. We point out a few results: -the final shapes are close to those of hydrostatic equilibrium for incompressible fluids, preferably Maclaurin spheroid rather than Jacobi ellipsoids -for bodies closest to the sequence of hydrostatic equilibrium, there is a direct relation between spin, density and outer shape, suggesting that the outer surface is nearly equipotential -the evolution of the shape during the process follows a track along a gradient of potential energy, without necessarily reaching its minimum -the loose random packing of the particles implies low friction angle and hence fluid-like behaviour, which extends the results of [3]. Future steps of our analysis will include feature refinements of the model initial conditions and re-accumulation process, including impact shakings, realistic velocity distributions, and non equal-sized elementary spheres. References [1] Michel P. et al. 2001. Science 294, 1696 [2] Leinhardt Z.M. et al. 2000. Icarus 146, 133 [3] Richardson D.C. et al. 2005. Icarus 173, 349

  15. A Large Program to derive the shape, cratering history and density of the largest main-belt asteroids

    NASA Astrophysics Data System (ADS)

    Marchis, Franck; Vernazza, Pierre; Marsset, Michael; Hanus, Josef; Carry, Benoit; Birlan, Mirel; Santana-Ros, Toni; Yang, Bin; and the Large Asteroid Survey with SPHERE (LASS)

    2017-10-01

    Asteroids in our solar system are metallic, rocky and/or icy objects, ranging in size from a few meters to a few hundreds of kilometers. Whereas we now possess constraints for the surface composition, albedo and rotation rate for all D≥100 km main-belt asteroids, the 3-D shape, the crater distribution, and the density have only been measured for a very limited number of these bodies (N≤10 for the first two). Characterizing these physical properties would allow us to address entirely new questions regarding the earliest stages of planetesimal formation and their subsequent collisional and dynamical evolution.ESO allocated to our program 152 hours of observations over 4 semesters to carry out disk-resolved observations of 38 large (D≥100 km) main-belt asteroids (sampling the four main compositional classes) at high angular-resolution with VLT/SPHERE throughout their rotation in order to derive their 3-D shape, the size distribution of the largest craters, and their density (PI: P. Vernazza). These measurements will allow investigating for the first time and for a modest amount of observing time the following fundamental questions: (A) Does the asteroid belt effectively hosts a large population of small bodies formed in the outer solar system? (B) Was the collisional environment in the inner solar system (at 2-3 AU) more intense than in the outer solar system (≥5AU)? (C) What was the shape of planetesimals at the end of the accretion process?We will present the goals and objectives of our program in the context of NASA 2014 Strategic Plan and the NSF decadal survey "Vision and Voyages" as well as the first observations and results collected with the SPHERE Extreme AO system. A detailed analysis of the shape modeling will be presented by Hanuš et al. in this session.

  16. Hard Spheres on the Primitive Surface

    NASA Astrophysics Data System (ADS)

    Dotera, Tomonari; Takahashi, Yusuke

    2015-03-01

    Recently hierarchical structures associated with the gyroid in several soft-matter systems have been reported. One of fundamental questions is regular arrangement or tiling on minimal surfaces. We have found certain numbers of hard spheres per unit cell on the gyroid surface are entropically self-organized. Here, new results for the primitive surface are presented. 56/64/72 per unit cell on the primitive minimal surface are entropically self-organized. Numerical evidences for the fluid-solid transition as a function of hard sphere radius are obtained in terms of the acceptance ratio of Monte Carlo moves and order parameters. These arrangements, which are the extensions of the hexagonal arrangement on a flat surface, can be viewed as hyperbolic tiling on the Poincaré disk with a negative Gaussian curvature.

  17. Investigating the role of chain and linker length on the catalytic activity of an H 2 production catalyst containing a β-hairpin peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reback, Matthew L.; Ginovska, Bojana; Buchko, Garry W.

    Building on our recent report of an active H2 production catalyst [Ni(PPh2NProp-peptide)2]2+ (Prop=para-phenylpropionic acid, peptide (R10)=WIpPRWTGPR-NH2, p=D-proline, and P2N=1-aza-3,6-diphosphacycloheptane) that contains structured -hairpin peptides, here we investigate how H2 production is effected by: (1) the length of the hairpin (eight or ten residues) and (2) limiting the flexibility between the peptide and the core complex by altering the length of the linker: para-phenylpropionic acid (three carbons) or para-benzoic acid (one carbon). Reduction of the peptide chain length from ten to eight residues increases or maintains the catalytic current for H2 production for all complexes, suggesting a non-productive steric interaction atmore » longer peptide lengths. While the structure of the hairpin appears largely intact for the complexes, NMR data are consistent with differences in dynamic behavior which may contribute to the observed differences in catalytic activity. Molecular dynamics simulations demonstrate that complexes with a one-carbon linker have the desired effect of restricting the motion of the hairpin relative to the complex; however, the catalytic currents are significantly reduced compared to complexes containing a three-carbon linker as a result of the electron withdrawing nature of the -COOH group. These results demonstrate the complexity and interrelated nature of the outer coordination sphere on catalysis.« less

  18. New constraints on the disk characteristics and companion candidates around T Chamaeleontis with VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Sissa, E.; Langlois, M.; Müller, A.; Ginski, C.; van Holstein, R. G.; Vigan, A.; Mesa, D.; Maire, A.-L.; Henning, Th.; Gratton, R.; Olofsson, J.; van Boekel, R.; Benisty, M.; Biller, B.; Boccaletti, A.; Chauvin, G.; Daemgen, S.; de Boer, J.; Desidera, S.; Dominik, C.; Garufi, A.; Janson, M.; Kral, Q.; Ménard, F.; Pinte, C.; Stolker, T.; Szulágyi, J.; Zurlo, A.; Bonnefoy, M.; Cheetham, A.; Cudel, M.; Feldt, M.; Kasper, M.; Lagrange, A.-M.; Perrot, C.; Wildi, F.

    2017-09-01

    Context. The transition disk around the T Tauri star T Cha possesses a large gap, making it a prime target for high-resolution imaging in the context of planet formation. Aims: We aim to find signs of disk evolutionary processes by studying the disk geometry and the dust grain properties at its surface, and to search for companion candidates. Methods: We analyze a set of VLT/SPHERE data at near-infrared and optical wavelengths. We performed polarimetric imaging of T Cha with IRDIS (1.6 μm) and ZIMPOL (0.5-0.9 μm), and obtained intensity images from IRDIS dual-band imaging with simultaneous spectro-imaging with IFS (0.9-1.3 μm). Results: The disk around T Cha is detected in all observing modes and its outer disk is resolved in scattered light with unprecedented angular resolution and signal-to-noise. The images reveal a highly inclined disk with a noticeable east-west brightness asymmetry. The significant amount of non-azimuthal polarization signal in the Uφ images, with a Uφ/Qφ peak-to-peak value of 14%, is in accordance with theoretical studies on multiple scattering in an inclined disk. Our optimal axisymmetric radiative transfer model considers two coplanar inner and outer disks, separated by a gap of 0.̋28 ( 30 au) in size, which is larger than previously thought. We derive a disk inclination of 69 deg and PA of 114 deg. In order to self-consistently reproduce the intensity and polarimetric images, the dust grains, responsible for the scattered light, need to be dominated by sizes of around ten microns. A point source is detected at an angular distance of 3.5'' from the central star. It is, however, found not to be co-moving. Conclusions: We confirm that the dominant source of emission is forward scattered light from the near edge of the outer disk. Our point source analysis rules out the presence of a companion with mass larger than 8.5 Mjup between 0.̋1 and 0.̋3. The detection limit decreases to 2 Mjup for 0.̋3 to 4.0''. Based on observations made with European Southern Observatory (ESO) telescopes at the Paranal Observatory in Chile, under program IDs 095.C-0298(B), 096.C-0248(B) and 096.C-0248(C).

  19. Lateral release of proteins from the TOM complex into the outer membrane of mitochondria.

    PubMed

    Harner, Max; Neupert, Walter; Deponte, Marcel

    2011-07-15

    The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.

  20. Experimental investigation of burning rates of pure ethanol and ethanol blended fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parag, Shintre; Raghavan, Vasudevan

    2009-05-15

    A fundamental experimental study to determine the burning rates of ethanol and ethanol-blended fossil fuels is presented. Pure liquid ethanol or its blends with liquid fossil fuels such as gasoline or diesel, has been transpired to the surface a porous sphere using an infusion pump. Burning of the fuel takes place on the surface of the porous sphere, which is placed in an air stream blowing upwards with a uniform velocity at atmospheric pressure and temperature under normal gravity conditions. At low air velocities, when ignited, a flame envelopes the sphere. For each sphere size, air stream velocity and fuelmore » type, the fuel feed rate will vary and the same is recorded as the burning rate for that configuration. The flame stand-off distances from the sphere surface are measured by post-processing the digital image of the flame photograph using suitable imaging software. The transition velocity at which the flame moves and establishes itself at the wake region of the sphere has been determined for different diameters and fuel types. Correlations of these parameters are also presented. (author)« less

  1. The Effect of Surface Topography on the Nonlinear Dynamics of Rossby Waves

    NASA Technical Reports Server (NTRS)

    Abarzhi, S. I.; Desjardins, O.; Pitsch, H.

    2003-01-01

    Boussinesq convection in rotating systems attracts a sustained attention of the fluid dynamics community, because it has intricate non-linear dynamics (Cross & Hohenberg 1993) and plays an important role in geophysical and astrophysical applications, such as the motion of the liquid outer core of Earth, the Red Spot in Jupiter, the giant cells in the Sun etc. (Alridge et al. 1990). A fundamental distinction between the real geo- and astrophysical problems and the idealized laboratory studies is that natural systems are inhomogeneous (Alridge et al. 1990). Heterogeneities modulate the flow and influence significantly the dynamics of convective patterns (Alridge et al. 1990; Hide 1971). The effect of modulations on pattern formation and transition to turbulence in Boussinesq convection is far from being completely understood (Cross & Hohenberg 1993; Aranson & Kramer 2002). It is generally accepted that in the liquid outer core of the Earth the transport of the angular momentum and internal heat occurs via thermal Rossby waves (Zhang et al. 2001; Kuang & Bloxham 1999). These waves been visualized in laboratory experiments in rotating liquid-filled spheres and concentric spherical shells (Zhang et al. 2001; Kuang & Bloxham 1999). The basic dynamical features of Rossby waves have been reproduced in a cylindrical annulus, a system much simpler than the spherical ones (Busse & Or 1986; Or & Busse 1987). For convection in a cylindrical annulus, the fluid motion is two-dimensional, and gravity is replaced by a centrifugal force, (Busse & Or 1986; Or & Busse 1987). Hide (1971) has suggested that the momentum and heat transport in the core might be influenced significantly by so-called bumps, which are heterogeneities on the mantle-core boundary. To model the effect of surface topography on the transport of momentum and energy in the liquid outer core of the Earth, Bell & Soward (1996), Herrmann & Busse (1998) and Westerburg & Busse (2001) have studied the nonlinear dynamics of thermal Rossby waves in a cylindrical annulus with azimuthally modulated height.

  2. Containerless low gravity processing of glass forming and immiscible alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. Barry; Briggs, Craig; Robinson, M. B.

    1990-01-01

    Under normal one-g conditions immiscible alloys segregate extensively during solidification due to sedimentation of the more dense of the immiscible liquid phases. Immiscible (hypermonotectic) gold-rhodium alloys were processed in the 100 meter drop tube under low gravity, containerless conditions to determine the feasibility of producing dispersed structures. Three alloy compositions were utilized. Alloys containing 10 percent by volume of the gold-rich hypermonotectic phase exhibited a tendency for the gold-rich liquid to wet the outer surface of the samples. This wetting tendency led to extensive segregation in several cases. Alloys containing 80 and 90 percent by volume of the gold-rich phase possessed completely different microstructures from the 10 percent samples when processed under low-g, containerless conditions. Several samples exhibited microstructures consisting of well dispersed 2 to 3 microns diameter rhodium-rich spheres in a gold-rich matrix.

  3. Low gravity containerless processing of immiscible gold rhodium alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. Barry

    1986-01-01

    Under normal one-g conditions immiscible alloys segregate extensively during solidification due to sedementation of the more dense of the immiscible liquid phases. However, under low-g conditions it should be possible to form a dispersion of the two immiscible liquids and maintain this dispersed structure during solidification. Immiscible (hypermonotectic) gold-rhodium alloys were processed in the Marshall Space Flight Center 105 meter drop tube in order to investigate the influence of low gravity, containerless solidification on their microstructure. Hypermonotectic alloys composed of 65 atomic % rhodium exhibited a tendency for the gold rich liquid to wet the outer surface of the containerless processed samples. This tendency led to extensive segregation in several cases. However, well dispersed microstructures consisting of 2 to 3 micron diameter rhodium-rich spheres in a gold-rich matrix were produced in 23.4 atomic % rhodium alloys. This is one of the best dispersions obtained in research on immiscible alloy-systems to data.

  4. Adsorption-desorption mechanism of phosphate by immobilized nano-sized magnetite layer: interface and bulk interactions.

    PubMed

    Zach-Maor, Adva; Semiat, Raphael; Shemer, Hilla

    2011-11-15

    Phosphate adsorption mechanism by a homogenous porous layer of nano-sized magnetite particles immobilized onto granular activated carbon (nFe-GAC) was studied for both interface and bulk structures. X-ray Photoelectron Spectroscopy (XPS) analysis revealed phosphate bonding to the nFe-GAC predominantly through bidentate surface complexes. It was established that phosphate was adsorbed to the magnetite surface mainly via ligand exchange mechanism. Initially, phosphate was adsorbed by the active sites on the magnetite surface, after which it diffused into the interior of the nano-magnetite layer, as indicated by intraparticle diffusion model. This diffusion process continues regardless of interface interactions, revealing some of the outer magnetite binding sites for further phosphate uptake. Desorption, using NaOH solution, was found to be predominantly a surface reaction, at which hydroxyl ions replace the adsorbed phosphate ions only at the surface outer biding sites. Five successive fix-bed adsorption/regeneration cycles were successfully applied, without significant reduction in the nFe-GAC adsorption capacity and at high regeneration efficiency. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Glomerulonephritis in a ferret with feline coronavirus infection.

    PubMed

    Fujii, Yuta; Tochitani, Tomoaki; Kouchi, Mami; Matsumoto, Izumi; Yamada, Toru; Funabashi, Hitoshi

    2015-09-01

    A male domestic ferret (Mustela putorius furo), which was purchased from outside of Japan at 13 weeks of age, was euthanized at 18 months of age because of poor health. At autopsy, the liver, spleen, and mesenteric lymph node were enlarged, and white foci were observed on the outer surface of the liver. The outer surface of the mesenteric lymph node was dark red. Histologically, granulomas were observed in the liver, spleen, bone marrow, and lymph nodes, composed mainly of aggregated epithelioid macrophages, some of which were positive to an anti-feline coronavirus (FCoV; Alphacoronavirus 1) antibody in immunohistochemistry. Mesangioproliferative glomerulonephritis was observed, and periodic acid-Schiff-positive deposits were observed along glomerular capillary walls. These deposits stained pale red with periodic acid-methenamine silver stain and red with Masson trichrome stain, and were also observed in the mesangial matrix. In affected glomeruli, glomerular capillary walls and mesangial areas were positive for anti-ferret immunoglobulin G. By electron microscopy, subepithelial and mesangial electron-dense deposits were observed consistent with immune complex deposition. The deposition of immune complexes may have been associated with FCoV infection. © 2015 The Author(s).

  6. Sequestration of Sr(II) By Calcium Oxalate - a Batch Uptake Study And EXAFS Analysis of Model Compounds And Reaction Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, D.M.; Johnson, S.B.; Catalano, J.G.

    Calcium oxalate monohydrate (CaC{sub 2}O{sub 4}{center_dot}H{sub 2}O -- abbreviated as CaOx) is produced by two-thirds of all plant families, comprising up to 80 wt.% of the plant tissue and found in many surface environments. It is unclear, however, how CaOx in plants and soils interacts with metal ions and possibly sequesters them. This study examines the speciation of Sr(II){sub aq} following its reaction with CaOx. Batch uptake experiments were conducted over the pH range 4--10, with initial Sr solution concentrations, [Sr]{sub aq}, ranging from 1 x 10{sup -4} to 1 x 10{sup -3} M and ionic strengths ranging of 0.001--0.1more » M, using NaCl as the background electrolyte. Experimental results indicate that Sr uptake is independent of pH and ionic strength over these ranges. After exposure of CaOx to Sr{sub aq} for two days, the solution Ca concentration, [Ca]{sup aq}, increased for all samples relative to the control CaOx suspension (with no Sr added). The amount of Sr{sub aq} removed from solution was nearly equal to the total [Ca]{sup aq} after exposure of CaOx to Sr. These results suggest that nearly 90% of the Sr is removed from solution to a solid phase as Ca is released into solution. We suggest that the other 10% is sequestered through surface adsorption on a solid phase, although we have no direct evidence for this. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the molecular-level speciation of Sr in the reaction products. Deconvolutions of the Sr K-edge EXAFS spectra were performed to identify multi-electron excitation (MEE) features. MEE effects were found to give rise to low-frequency peaks in the Fourier transform before the first shell of oxygen atoms and do not affect EXAFS fitting results. Because of potential problems caused by asymmetric distributions of Sr-O distances when fitting Sr K-edge EXAFS data using the standard harmonic model, we also employed a cumulant expansion model and an asymmetric analytical model to account for anharmonic effects in the EXAFS data. For Sr-bearing phases with low to moderate first-shell (Sr-O pair correlation) anharmonicity, the cumulant expansion model is sufficient for EXAFS fitting; however, for higher degrees of anharmonicity, an analytical model is required. Based on batch uptake results and EXAFS analyses of reaction products, we conclude that Sr is dominantly sequestered by a solid phase at the CaOx surface, likely the result of a dissolution-reprecipitation mechanism, to form SrC{sub 2}O{sub 4} of mixed hydration state (i.e. SrO{sub x}{center_dot}nH{sub 2}O, where n = 0, 1, or 2). Surprisingly, no spectroscopic or XRD evidence was found for a (Sr,Ca)Ox solid solution or for a separate SrCO3 phase. In addition, we found no evidence for Sr(II) inner-sphere sorption complexes on CaOx surfaces based on lack of Sr-Ca second-neighbor pair correlations in the EXAFS spectra, although some type of Sr(II) surface complex (perhaps a type B Sr-oxalate ternary complex or an outer-sphere Sr(II) complex) or some as yet undetected Sr-bearing solid phases are needed to account for approximately 10% of Sr uptake by CaOx. The formation of a hydrated SrOx phase in environments under conditions similar to those of our experiments should retard Sr mobility and could be a significant factor in the biogeochemical cycling of Sr in soils and sediments or in plants and plant litter where CaOx is present.« less

  7. Studies of drag on the nanocomposite superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Brassard, Jean-Denis; Sarkar, D. K.; Perron, Jean

    2015-01-01

    The nanocomposite thin films of stearic acid (SA)-functionalized ZnO nanoparticles incorporated in epoxy polymer matrix have been achieved. The X-ray diffraction (XRD) studies show the formation of zinc stearate on ZnO nanoparticles as the confirmation of SA-functionalization of ZnO nanoparticles in the thin films. Morphological analyses reveal the presence of micro-holes with the presence of irregular nanoparticles. The measured root mean square (rms) roughness of the thin film is found to be 12 ± 1 μm with the adhesion of 5B on both glass and aluminum substrates. The wetting property shows that the surface of the film is superhydrophobic with the contact angle of water of 156 ± 4° having contact angle hysteresis (CAH) of 4 ± 2°. The average terminal velocity in the water of the as-received glass spheres and superhydrophobic spheres were found to be 0.66 ± 0.01 m/s and 0.72 ± 0.01 m/s respectively. Consequently, the calculated average coefficients of the surface drag of the as-received glass sphere and superhydrophobic glass sphere were 2.30 ± 0.01 and 1.93 ± 0.03, respectively. Hence, the drag reduction on the surface of superhydrophobic glass sphere is found to be approximately 16% lower than as-received glass sphere.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasuga, Toshihiro; Shirahata, Mai; Usui, Fumihiko

    Most outer main-belt asteroids have low albedos because of their carbonaceouslike bodies. However, infrared satellite surveys have revealed that some asteroids have high albedos, which may suggest the presence of unusual surface minerals for those primitive objects. We present new near-infrared (1.1–2.5 μm) spectra of four outer main-belt asteroids with albedos ≥ 0.1. The C-complex asteroids (555) Norma and (2542) Calpurnia are featureless and have (50%–60%) amorphous Mg pyroxenes that might explain the high albedos. Asteroids (701) Oriola (which is a C-complex asteroid) and (2670) Chuvashia (a D/T-type or M-type asteroid) show possible broad absorption bands (1.5–2.1 μm). The featuremore » can be reproduced by either Mg-rich amorphous pyroxene (with 50%–60% and 80%–95% Mg, respectively) or orthopyroxene (crystalline silicate), which might be responsible for the high albedos. No absorption features of water ice (near 1.5 and 2.0 μm) are detected in the objects. We discuss the origin of high albedo components in the outer main-belt asteroids and their physical relations to comets.« less

  9. MD studies of electron transfer at ambient and elevated pressures

    NASA Astrophysics Data System (ADS)

    Giles, Alex; Spooner, Jacob; Weinberg, Noham

    2013-06-01

    The effect of pressure on the rate constants of outer-sphere electron transfer reactions has often been described using the Marcus-Hush theory. This theory agrees well with experiment when internal reorganization of the ionic system is negligible, however it does not offer a recipe for calculation of the effects that result from significant solute restructuring. We have recently developed a molecular dynamics technique that accurately describes structural dependence of molecular volumes in non-polar and weakly polar systems. We are now extending this approach to the case of highly polar ionic systems where both solvent and solute restructuring components are important. For this purpose we construct pressure-dependent two-dimensional surfaces for electron transfer reactions in coordinate system composed of interionic distance and Marcus-type solvent polarization coordinate, and use these surfaces to describe pressure effects on reaction kinetics. R.A. Marcus. J. Chem. Phys. 24, 966 (1956); 24, 979 (1956); 26, 867 (1957). Discuss. Faraday Soc. 29, 21 (1960). Faraday Discuss. Chem. Soc. 74, 7 (1982); N.S. Hush. Trans. Faraday Soc. 57, 557 (1961).

  10. Insight into the core-shell structures of Cu-In-S microspheres

    NASA Astrophysics Data System (ADS)

    Wochnik, Angela S.; Frank, Anna; Heinzl, Christoph; Häusler, Jonas; Schneider, Julian; Hoffmann, Ramona; Matich, Sonja; Scheu, Christina

    2013-12-01

    In this study we report about the inner and outer structure of CuInS2 microspheres which might be used e.g. in pastes for simple, low-cost solar cell preparation, as well as in electrodes for light-driven water splitting. The microspheres are synthesized via a mild, template-free solvothermal synthesis route and characterised by electron and focused ion beam microscopy, X-ray diffraction, inductively coupled plasma atomic emission and energy dispersive X-ray spectroscopy. The investigations of cross sections prepared by focused ion beam showed that the spheres consist of compact cores and flaky surface structures. Depending on the reaction time, the core possesses a stoichiometric or Cu-rich chemical composition surrounded by an In-rich shell. The flaky surface always comprises a stoichiometric composition in tetragonal chalcopyrite crystal structure, whereas the other areas additionally show minor contributions of CuS, and CuInS2 in hexagonal wurtzite structure. The presence of different phases can be beneficial for future applications since they offer different absorption behaviour in the visible range.

  11. Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katano, Takahito; Ootani, Akifumi; Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501

    2013-03-22

    Highlights: ► We established a 3D culture system to allow long-term culture of stomach cells. ► In this culture system, gastric epithelial cells grew for about 3 months. ► The cultured cells differentiated into multi-units of the stomach. ► This culture method should be useful for elucidating the cause of gastric diseases. -- Abstract: Compared to the small intestine and colon, little is known about stem cells in the stomach because of a lack of specific stem cell markers and an in vitro system that allows long-term culture. Here we describe a long-term three-dimensional (3D) primary gastric culture system withinmore » the stem cell niche. Glandular stomach cells from neonatal mice cultured in collagen gel yielded expanding sphere-like structures for 3 months. The wall of the gastrospheres consisted of a highly polarized epithelial monolayer with an outer lining of myofibroblasts. The epithelial cells showed a tall columnar cell shape, basal round nuclei, and mucus-filled cytoplasm as well as expression of MUC5AC, indicating differentiation into gastric surface mucous cells. These cells demonstrated the features of fully differentiated gastric surface mucous cells such as microvilli, junctional complexes, and glycogen and secretory granules. Fewer than 1% of cultured epithelial cells differentiated into enteroendocrine cells. Active proliferation of the epithelial cells and many apoptotic cells in the inner lumen revealed the rapid cell turnover in gastrospheres in vitro. This method enables us to investigate the role of signaling between cell–cell and epithelial–mesenchymal interactions in an environment that is extremely similar to the in vivo environment.« less

  12. Swirling structure for mixing two concentric fluid flows at nozzle outlet

    DOEpatents

    Mensink, D.L.

    1993-07-20

    A nozzle device is described for causing two fluids to mix together. In particular, a spray nozzle comprises two hollow, concentric housings, an inner housing and an outer housing. The inner housing has a channel formed therethrough for a first fluid. Its outer surface cooperates with the interior surface of the outer housing to define the second channel for a second fluid. The outer surface of the inner housing and the inner surface of the outer housing each carry a plurality of vanes that interleave but do not touch, each vane of one housing being between two vanes of the other housing. The vanes are curved and the inner surface of the outer housing and the outer surface of the inner housing converge to narrow the second channel. The shape of second channel results in a swirling, accelerating second fluid that will impact the first fluid just past the end of the nozzle where mixing will take place.

  13. Surface speciation of yttrium and neodymium sorbed on rutile: Interpretations using the change distribution model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, Mora K.; Hiemstra, T; Machesky, Michael L.

    2012-01-01

    The adsorption of Y3+ and Nd3+ onto rutile has been evaluated over a wide range of pH (3 11) and surface loading conditions, as well as at two ionic strengths (0.03 and 0.3 m), and temperatures (25 and 50 C). The experimental results reveal the same adsorption behavior for the two trivalent ions onto the rutile surface, with Nd3+ first adsorbing at slightly lower pH values. The adsorption of both Y3+ and Nd3+ commences at pH values below the pHznpc of rutile. The experimental results were evaluated using a charge distribution (CD) and multisite complexation (MUSIC) model, and Basic Sternmore » layer description of the electric double layer (EDL). The coordination geometry of possible surface complexes were constrained by molecular-level information obtained from X-ray standing wave measurements and molecular dynamic (MD) simulation studies. X-ray standing wave measurements showed an inner-sphere tetradentate complex for Y3+ adsorption onto the (110) rutile surface (Zhang et al., 2004b). TheMDsimulation studies suggest additional bidentate complexes may form. The CD values for all surface species were calculated based on a bond valence interpretation of the surface complexes identified by X-ray and MD. The calculated CD values were corrected for the effect of dipole orientation of interfacial water. At low pH, the tetradentate complex provided excellent fits to the Y3+ and Nd3+ experimental data. The experimental and surface complexation modeling results show a strong pH dependence, and suggest that the tetradentate surface species hydrolyze with increasing pH. Furthermore, with increased surface loading of Y3+ on rutile the tetradentate binding mode was augmented by a hydrolyzed-bidentate Y3+ surface complex. Collectively, the experimental and surface complexation modeling results demonstrate that solution chemistry and surface loading impacts Y3+ surface speciation. The approach taken of incorporating molecular-scale information into surface complexation models (SCMs) should aid in elucidating a fundamental understating of ion-adsorption reactions.« less

  14. Surface speciation of yttrium and neodymium sorbed on rutile: Interpretations using the charge distribution model

    NASA Astrophysics Data System (ADS)

    Ridley, Moira K.; Hiemstra, Tjisse; Machesky, Michael L.; Wesolowski, David J.; van Riemsdijk, Willem H.

    2012-10-01

    The adsorption of Y3+ and Nd3+ onto rutile has been evaluated over a wide range of pH (3-11) and surface loading conditions, as well as at two ionic strengths (0.03 and 0.3 m), and temperatures (25 and 50 °C). The experimental results reveal the same adsorption behavior for the two trivalent ions onto the rutile surface, with Nd3+ first adsorbing at slightly lower pH values. The adsorption of both Y3+ and Nd3+ commences at pH values below the pHznpc of rutile. The experimental results were evaluated using a charge distribution (CD) and multisite complexation (MUSIC) model, and Basic Stern layer description of the electric double layer (EDL). The coordination geometry of possible surface complexes were constrained by molecular-level information obtained from X-ray standing wave measurements and molecular dynamic (MD) simulation studies. X-ray standing wave measurements showed an inner-sphere tetradentate complex for Y3+ adsorption onto the (1 1 0) rutile surface (Zhang et al., 2004b). The MD simulation studies suggest additional bidentate complexes may form. The CD values for all surface species were calculated based on a bond valence interpretation of the surface complexes identified by X-ray and MD. The calculated CD values were corrected for the effect of dipole orientation of interfacial water. At low pH, the tetradentate complex provided excellent fits to the Y3+ and Nd3+ experimental data. The experimental and surface complexation modeling results show a strong pH dependence, and suggest that the tetradentate surface species hydrolyze with increasing pH. Furthermore, with increased surface loading of Y3+ on rutile the tetradentate binding mode was augmented by a hydrolyzed-bidentate Y3+ surface complex. Collectively, the experimental and surface complexation modeling results demonstrate that solution chemistry and surface loading impacts Y3+ surface speciation. The approach taken of incorporating molecular-scale information into surface complexation models (SCMs) should aid in elucidating a fundamental understating of ion-adsorption reactions.

  15. Zonal Flow Velocimetry in Spherical Couette Flow using Acoustic Modes

    NASA Astrophysics Data System (ADS)

    Adams, Matthew M.; Mautino, Anthony R.; Stone, Douglas R.; Triana, Santiago A.; Lekic, Vedran; Lathrop, Daniel P.

    2015-11-01

    We present studies of spherical Couette flows using the technique of acoustic mode Doppler velocimetry. This technique uses rotational splittings of acoustic modes to infer the azimuthal velocity profile of a rotating flow, and is of special interest in experiments where direct flow visualization is impractical. The primary experimental system consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter sphere, with air or nitrogen gas serving as the working fluid. The geometry of the system approximates that of the Earth's core, making these studies geophysically relevant. A turbulent shear flow is established in the system by rotating the inner sphere and outer shell at different rates. Acoustic modes of the fluid volume are excited using a speaker and measured via microphones, allowingdetermination of rotational splittings. Preliminary results comparing observed splittings with those predicted by theory are presented. While the majority of these studies were performed in the 60 cm diameter device using nitrogen gas, some work has also been done looking at acoustic modes in the 3 m diameter liquid sodium spherical Couette experiment. Prospects for measuring zonal velocity profiles in a wide variety of experiments are discussed.

  16. Improving scattering layer through mixture of nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells.

    PubMed

    Kim, Chohui; Choi, Hongsik; Kim, Jae Ik; Lee, Sangheon; Kim, Jinhyun; Lee, Woojin; Hwang, Taehyun; Kang, Suji; Moon, Taeho; Park, Byungwoo

    2014-01-01

    A scattering layer is utilized by mixing nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells. Hundred-nanometer-sized ZnO spheres consisting of approximately 35-nm-sized nanoparticles provide not only effective light scattering but also a large surface area. Furthermore, ZnO nanoparticles are added to the scattering layer to facilitate charge transport and increase the surface area as filling up large voids. The mixed scattering layer of nanoparticles and nanoporous spheres on top of the nanoparticle-based electrode (bilayer geometry) improves solar cell efficiency by enhancing both the short-circuit current (J sc) and fill factor (FF), compared to the layer consisting of only nanoparticles or nanoporous spheres.

  17. Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiemstra, T.; Riemsdijk, W.H. van

    1999-02-01

    An important challenge in surface complexation models (SCM) is to connect the molecular microscopic reality to macroscopic adsorption phenomena. This study elucidates the primary factor controlling the adsorption process by analyzing the adsorption and competition of PO{sub 4}, AsO{sub 4}, and SeO{sub 3}. The authors show that the structure of the surface-complex acting in the dominant electrostatic field can be ascertained as the primary controlling adsorption factor. The surface species of arsenate are identical with those of phosphate and the adsorption behavior is very similar. On the basis of the selenite adsorption, The authors show that the commonly used 1pKmore » models are incapable to incorporate in the adsorption modeling the correct bidentate binding mechanism found by spectroscopy. The use of the bidentate mechanism leads to a proton-oxyanion ratio and corresponding pH dependence that are too large. The inappropriate intrinsic charge attribution to the primary surface groups and the condensation of the inner sphere surface complex to a point charge are responsible for this behavior of commonly used 2pK models. Both key factors are differently defined in the charge distributed multi-site complexation (CD-MUSIC) model and are based in this model on a surface structural approach. The CD-MUSIC model can successfully describe the macroscopic adsorption phenomena using the surface speciation and binding mechanisms as found by spectroscopy. The model is also able to predict the anion competition well. The charge distribution in the interface is in agreement with the observed structure of surface complexes.« less

  18. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water.

    PubMed

    Jetly, Aditya; Vakarelski, Ivan U; Thoroddsen, Sigurdur T

    2018-02-28

    We investigate the effect of thin air layers naturally sustained on superhydrophobic surfaces on the terminal velocity and drag force of metallic spheres free falling in water. The surface of 20 mm to 60 mm steel or tungsten-carbide spheres is rendered superhydrophobic by a simple coating process that uses a commercially available hydrophobic agent. By comparing the free fall of unmodified spheres and superhydrophobic spheres in a 2.5 meter tall water tank, it is demonstrated that even a very thin air layer (∼1-2 μm) that covers the freshly dipped superhydrophobic sphere can reduce the drag force on the spheres by up to 80%, at Reynolds numbers from 10 5 to 3 × 10 5 , owing to an early drag crisis transition. This study complements prior investigations on the drag reduction efficiency of model gas layers sustained on heated metal spheres falling in liquid by the Leidenfrost effect. The drag reduction effects are expected to have significant implications for the development of sustainable air-layer-based energy saving technologies.

  19. Scattering characteristics of relativistically moving concentrically layered spheres

    NASA Astrophysics Data System (ADS)

    Garner, Timothy J.; Lakhtakia, Akhlesh; Breakall, James K.; Bohren, Craig F.

    2018-02-01

    The energy extinction cross section of a concentrically layered sphere varies with velocity as the Doppler shift moves the spectral content of the incident signal in the sphere's co-moving inertial reference frame toward or away from resonances of the sphere. Computations for hollow gold nanospheres show that the energy extinction cross section is high when the Doppler shift moves the incident signal's spectral content in the co-moving frame near the wavelength of the sphere's localized surface plasmon resonance. The energy extinction cross section of a three-layer sphere consisting of an olivine-silicate core surrounded by a porous and a magnetite layer, which is used to explain extinction caused by interstellar dust, also depends strongly on velocity. For this sphere, computations show that the energy extinction cross section is high when the Doppler shift moves the spectral content of the incident signal near either of olivine-silicate's two localized surface phonon resonances at 9.7 μm and 18 μm.

  20. Formation of Ordered Arrays of Proteins on Surfaces

    NASA Technical Reports Server (NTRS)

    Lenhoff, A. M.

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. While the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models, with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation and crystal growth.

  1. Multi-phase-field method for surface tension induced elasticity

    NASA Astrophysics Data System (ADS)

    Schiedung, Raphael; Steinbach, Ingo; Varnik, Fathollah

    2018-01-01

    A method, based on the multi-phase-field framework, is proposed that adequately accounts for the effects of a coupling between surface free energy and elastic deformation in solids. The method is validated via a number of analytically solvable problems. In addition to stress states at mechanical equilibrium in complex geometries, the underlying multi-phase-field framework naturally allows us to account for the influence of surface energy induced stresses on phase transformation kinetics. This issue, which is of fundamental importance on the nanoscale, is demonstrated in the limit of fast diffusion for a solid sphere, which melts due to the well-known Gibbs-Thompson effect. This melting process is slowed down when coupled to surface energy induced elastic deformation.

  2. Nano-functionalization of protein microspheres

    NASA Astrophysics Data System (ADS)

    Yoon, Sungkwon; Nichols, William T.

    2014-08-01

    Protein microspheres are promising building blocks for the assembly of complex functional materials. Here we demonstrate a set of three techniques that add functionality to the surface of protein microspheres. In the first technique, a positive surface charge on the protein spheres is deposited by electrostatic adsorption. Negatively charged silica and gold nanoparticle colloids can then electrostatically bind reversibly to the microsphere surface. In the second technique, nanoparticles are covalently anchored to the protein shell using a simple one-pot process. The strong covalent bond between sulfur groups in cysteine in the protein shell irreversibly binds to the gold nanoparticles. In the third technique, surface morphology of the protein microsphere is tuned through hydrodynamic instability at the water-oil interface. This is accomplished through the degree of solubility of the oil phase in water. Taken together these three techniques form a platform to create nano-functionalized protein microspheres, which can then be used as building blocks for the assembly of more complex macroscopic materials.

  3. The ultrahigh precision form measurement of small, steep-sided aspheric moulds, incorporating novel hardware and software developments; Technical Digest

    NASA Astrophysics Data System (ADS)

    Mills, M. W.; Hutchinson, Matthew J.

    2005-05-01

    A variety of consumer applications, eg cellphone camera lenses, optical storage devices, digital cameras, etc, are driving the demand for small, high aspheric departure rotationally-symmetric moulded optics, manufactured both in polymer and glass materials. The mould tools for such components are manufactured by ultra-high precision techniques such as single point diamond turning and ultra-precision grinding, and must be accurate to <1/10μm levels for form, and exhibit nanometric surface finish quality. The aspheric forms of such components' optical surfaces exhibit high departure from best-fit sphere towards their outer edge, which renders this outer region especially critical for optical performance. The high slope of these components at the clear aperture has caused some restrictions on the use of profilometry in the measurement of form across their full diameter. Taylor Hobson designs and manufactures a range of ultra-precision profilometers for use in such industries as aspheric optics fabrication. In order to address the issues described, a new measurement system, Taylor Hobson Form Talysurf PGI 1250, has been developed, which contains new Aspheric Data Fusion Software, as well as Asphero-Diffractive Analysis Software, allowing the entire diametric profile to be analysed to the desired level of accuracy. This development removes the previous limitation of maximum slope for this type of measurement, thus enabling better quality control of high slope, high aspheric departure optics. Measurement data from the Form Talysurf PGI 1250 can be fed back directly to the machine tool, in order to optimize the form of the optical mould.

  4. The ultrahigh precision form measurement of small, steep-sided aspheric moulds, incorporating novel hardware and software developments; Technical Digest

    NASA Astrophysics Data System (ADS)

    Mills, M. W.; Hutchinson, Matthew J.

    2005-05-01

    A variety of consumer applications, eg cellphone camera lenses, optical storage devices, digital cameras, etc, are driving the demand for small, high aspheric departure rotationally-symmetric moulded optics, manufactured both in polymer and glass materials. The mould tools for such components are manufactured by ultra-high precision techniques such as single point diamond turning and ultra-precision grinding, and must be accurate to <1/10μm levels for form, and exhibit nanometric surface finish quality. The aspheric forms of such components" optical surfaces exhibit high departure from best-fit sphere towards their outer edge, which renders this outer region especially critical for optical performance. The high slope of these components at the clear aperture has caused some restrictions on the use of profilometry in the measurement of form across their full diameter. Taylor Hobson designs and manufactures a range of ultra-precision profilometers for use in such industries as aspheric optics fabrication. In order to address the issues described, a new measurement system, Taylor Hobson Form Talysurf PGI 1250, has been developed, which contains new Aspheric Data Fusion Software, as well as Asphero-Diffractive Analysis Software, allowing the entire diametric profile to be analysed to the desired level of accuracy. This development removes the previous limitation of maximum slope for this type of measurement, thus enabling better quality control of high slope, high aspheric departure optics. Measurement data from the Form Talysurf PGI 1250 can be fed back directly to the machine tool, in order to optimize the form of the optical mould.

  5. Design and Synthesis of Hierarchical SiO2@C/TiO2 Hollow Spheres for High-Performance Supercapacitors.

    PubMed

    Zhang, Ying; Zhao, Yan; Cao, Shunsheng; Yin, Zhengliang; Cheng, Li; Wu, Limin

    2017-09-06

    TiO 2 has been widely investigated as an electrode material because of its long cycle life and good durability, but the relatively low theoretical capacity restricts its practical application. Herein, we design and synthesize novel hierarchical SiO 2 @C/TiO 2 (HSCT) hollow spheres via a template-directed method. These unique HSCT hollow spheres combine advantages from both TiO 2 such as cycle stability and SiO 2 with a high accessible area and ionic transport. In particular, the existence of a C layer is able to enhance the electrical conductivity. The SiO 2 layer with a porous structure can increase the ion diffusion channels and accelerate the ion transfer from the outer to the inner layers. The electrochemical measurements demonstrate that the HSCT-hollow-sphere-based electrode manifests a high specific capacitance of 1018 F g -1 at 1 A g -1 which is higher than those for hollow TiO 2 (113 F g -1 ) and SiO 2 /TiO 2 (252 F g -1 ) electrodes, and substantially higher than those of all the previously reported TiO 2 -based electrodes.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang Soo; Fenter, Paul; Nagy, Kathryn L.

    Here, ion exchange at charged solid–liquid interfaces is central to a broad range of chemical and transport phenomena. Real-time observations of adsorption/desorption at the molecular-scale elucidate exchange reaction pathways. Here, we report temporal variation in the distribution of Rb + species at the muscovite (001)–water interface during exchange with Na +. Time-resolved resonant anomalous X-ray reflectivity measurements reveal that Rb + desorption occurs over several tens of seconds during which thermodynamically stable inner-sphere Rb + slowly transforms to less stable outer-sphere Rb + at 25°C. In contrast, Rb + adsorption is about twice as fast, proceeding quickly from Rb +more » in the bulk solution to the stable inner-sphere species. The Arrhenius plot of the adsorption/desorption rate constants measured from 9 to 55°C shows that the pre-exponential factor for desorption is significantly smaller than for adsorption, indicating that this reduced attempt frequency of cation detachment largely explains the slow cation exchange processes at the interface.« less

  7. Real-time observation of cation exchange kinetics and dynamics at the muscovite-water interface

    PubMed Central

    Lee, Sang Soo; Fenter, Paul; Nagy, Kathryn L.; Sturchio, Neil C.

    2017-01-01

    Ion exchange at charged solid–liquid interfaces is central to a broad range of chemical and transport phenomena. Real-time observations of adsorption/desorption at the molecular-scale elucidate exchange reaction pathways. Here we report temporal variation in the distribution of Rb+ species at the muscovite (001)–water interface during exchange with Na+. Time-resolved resonant anomalous X-ray reflectivity measurements at 25 °C reveal that Rb+ desorption occurs over several tens of seconds during which thermodynamically stable inner-sphere Rb+ slowly transforms to a less stable outer-sphere Rb+. In contrast, Rb+ adsorption is about twice as fast, proceeding from Rb+ in the bulk solution to the stable inner-sphere species. The Arrhenius plot of the adsorption/desorption rate constants measured from 9 to 55 °C shows that the pre-exponential factor for desorption is significantly smaller than that for adsorption, indicating that this reduced attempt frequency of cation detachment largely explains the slow cation exchange processes at the interface. PMID:28598428

  8. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  9. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  10. Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors.

    PubMed

    Wilgosz, Karolina; Chen, Xuecheng; Kierzek, Krzysztof; Machnikowski, Jacek; Kalenczuk, Ryszard J; Mijowska, Ewa

    2012-05-29

    Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors.

  11. Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors

    NASA Astrophysics Data System (ADS)

    Wilgosz, Karolina; Chen, Xuecheng; Kierzek, Krzysztof; Machnikowski, Jacek; Kalenczuk, Ryszard J.; Mijowska, Ewa

    2012-05-01

    Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors.

  12. Comic ray flux anisotropies caused by astrospheres

    NASA Astrophysics Data System (ADS)

    Scherer, K.; Strauss, R. D.; Ferreira, S. E. S.; Fichtner, H.

    2016-09-01

    Huge astrospheres or stellar wind bubbles influence the propagation of cosmic rays at energies up to the TeV range and can act as small-scale sinks decreasing the cosmic ray flux. We model such a sink (in 2D) by a sphere of radius 10 pc embedded within a sphere of a radius of 1 kpc. The cosmic ray flux is calculated by means of backward stochastic differential equations from an observer, which is located at r0, to the outer boundary. It turns out that such small-scale sinks can influence the cosmic ray flux at the observer's location by a few permille (i.e. a few 0.1%), which is in the range of the observations by IceCube, Milagro and other large area telescopes.

  13. Structure of colicin I receptor bound to the R-domain of colicin Ia: implications for protein import

    PubMed Central

    Buchanan, Susan K; Lukacik, Petra; Grizot, Sylvestre; Ghirlando, Rodolfo; Ali, Maruf M U; Barnard, Travis J; Jakes, Karen S; Kienker, Paul K; Esser, Lothar

    2007-01-01

    Colicin Ia is a 69 kDa protein that kills susceptible Escherichia coli cells by binding to a specific receptor in the outer membrane, colicin I receptor (70 kDa), and subsequently translocating its channel forming domain across the periplasmic space, where it inserts into the inner membrane and forms a voltage-dependent ion channel. We determined crystal structures of colicin I receptor alone and in complex with the receptor binding domain of colicin Ia. The receptor undergoes large and unusual conformational changes upon colicin binding, opening at the cell surface and positioning the receptor binding domain of colicin Ia directly above it. We modelled the interaction with full-length colicin Ia to show that the channel forming domain is initially positioned 150 Å above the cell surface. Functional data using full-length colicin Ia show that colicin I receptor is necessary for cell surface binding, and suggest that the receptor participates in translocation of colicin Ia across the outer membrane. PMID:17464289

  14. Density and Viscosity Measurement of Liquid FeS at High Pressure and High Temperature Using Synchrotron X-ray

    NASA Astrophysics Data System (ADS)

    Yu, T.; Long, H.; Young, C.; Wang, L.; Chen, J.

    2005-12-01

    From previous experimental and theoretical studies, sulfur has been considered one of the possible light elements in the core that might be responsible for the large density deficit when compared with the theoretical pure Fe core (Ganapathy and Anders, 1974; Ahrens and Jeanloz, 1987). Therefore, understanding the physical properties of liquid FeS will help us reveal the details of the Earth?|s core. This study focused on the liquid state of sulfur in iron due to sulfur?|s lack of amount in the mantle; easiness to alloy with iron; and the predicted 5 wt% ~10 wt% amount of this light element in the core (Ahrens, 1979; Sherman, 1997). Modern development of the multi-anvil high pressure apparatus limits the pressure range of the experiments (<30 GPa). It is somewhat low if comparing with the outer core pressure condition. Therefore, extrapolation of data derived at low pressure range to the condition of the outer core (>130 GPa) has to be applied, and may produce results that are far from the true numbers. However, at the point while the techniques are limited, studying the physical properties of the liquid-phase FeS at relatively low pressures still provides us a better picture of the physical behavior of the outer core comparing with data derived from solid state FeS experiments. Pervious studies on the viscosity of the Fe-FeS system (LeBlanc and Secco, 1996; Dobson et al., 2000; Urakawa et al., 2001; Secco et al., 2002) have presented different values of viscosity numbers with a maximum difference of two orders of magnitude. We have conducted the density measurements of liquid FeS (~36 wt% of S) up to 5.6 GPa in pressure and 1673K in temperature using the in-situ synchrotron-source x-ray absorption setup at Beamline X17B2, NSLS. The viscosity measurements were conducted by the x-ray radiograph technique combined with the falling sphere method. The falling sphere method applied at the experiment is suitable for liquids with viscosities between 10-3 Pa-s and 105 Pa-s (LeBlanc et al., 1999). We used tungsten spheres in our viscosity measurement experiments. We analyzed the sphere falling motion in the sample chamber at high pressure and high temperature. And by applying our density compression curve of liquid FeS to the Stokes?| viscometry method, we were able to derive the viscosity of liquid FeS.

  15. Controlled Redox Chemistry at Cerium within a Tripodal Nitroxide Ligand Framework

    DOE PAGES

    Bogart, Justin A.; Lippincott, Connor A.; Carroll, Patrick J.; ...

    2015-10-27

    Ligand reorganization has been shown to have a profound effect on the outcome of cerium redox chemistry. Through the use of a tethered, tripodal, trianionic nitroxide ligand, [((2-tBuNOH)C 6 H 4 CH 2 ) 3 N] 3- (TriNO x 3- ), controlled redox chemistry at cerium was accomplished, and typically reactive complexes of tetravalent cerium were isolated. These included rare cationic complexes [Ce(TriNO x )thf][BAr F 4 ], in which Ar F =3,5-(CF 3 ) 2 -C 6 H 3 , and [Ce(TriNO x )py][OTf] . A rare complete Ce-halide series, Ce(TriNO x )X, in which X=F - , Clmore » - , Br - , I - , was also synthesized. We explored the solution chemistry of these complexes through detailed solution-phase electrochemistry and 1 H NMR experiments and showed a unique shift in the ratio of species with inner- and outer-sphere anions with size of the anionic X - group. DFT calculations on the series of calculations corroborated the experimental findings. Also, the use of a bulky and strongly donating tethered tripodal nitroxide ligand allowed the controlled redox chemistry at cerium. As a result, rare examples of cationic Ce IV complexes were synthesized and fully characterized. The full Ce-halide series supported by the tripodal ligand framework is also reported (see scheme).« less

  16. Experimental study of the flow in the wake of a stationary sphere immersed in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    van Hout, René; Eisma, Jerke; Elsinga, Gerrit E.; Westerweel, Jerry

    2018-02-01

    In many applications, finite-sized particles are immersed in a turbulent boundary layer (TBL) and it is of interest to study wall effects on the instantaneous shedding of turbulence structures and associated mean velocity and Reynolds stress distributions. Here, 3D flow field dynamics in the wake of a prototypical, small sphere (D+=50 , 692

  17. A reference standard for bidirectional reflection distribution function and bidirectional transmission distribution function measurement

    NASA Technical Reports Server (NTRS)

    Witherow, William K. (Inventor)

    1988-01-01

    A Lambertian reference standard for uniformly scattering a beam of light is constructed of a plate having a planar surface with a layer of glue disposed on the surface. An evenly packed layer of monodisperse spheres is set in the layer, and when the standard is used for bi-directional (BRDF) measurements, the spheres are coated with a layer of highly relective substance, such as gold or silver. When the standard is used for bi-directional transmittance distribution function (BTDF) measurements, the spheres are of a transparent material and are provided with a roughened surface, as by acid etching. In this case, the layer of glue is an optical cement, and the plate is of glass, with the spheres, the layer, and the plate all possessing a similar refractive index.

  18. Simultaneous and continuous stabilization of As and Pb in contaminated solution and soil by a ferrihydrite-gypsum sorbent.

    PubMed

    Kameda, Kentaro; Hashimoto, Yohey; Wang, Shan-Li; Hirai, Yasumasa; Miyahara, Hidetaka

    2017-04-05

    For the increasing need of stabilization both cationic and anionic metal(loid)s simultaneously, we newly developed a metal sorbent (FIXALL), consisting mainly of ferrihydrite and gypsum. The objectives of this study were to determine the molecular mechanisms of Pb and As stabilization in an aqueous system and to examine a simultaneous and long-term (up to 754days) effect on Pb and As stabilization in an anthropogenically contaminated soil using the FIXALL sorbent. When the solution contained a low concentration of Pb (5mgL -1 ), the mechanisms of Pb removal by FIXALL were based chiefly on the formation of inner-sphere surface complex with ferrihydrite. In the highly concentrated Pb solution (1200mgL -1 ), contrarily, the removal of Pb by FIXALL was the direct consequence of the dissolution of gypsum and subsequent precipitation of PbSO 4 , which strengthens the drawback of low capability of ferrihydrite for Pb removal. Regardless of initial concentrations, the primary mechanism of FIXALL for As stabilization is attributed to the formation of inner-sphere surface complex with ferrihydrite. A contaminated soil study demonstrated that FIXALL could decrease the concentration of water soluble As and Pb simultaneously and continuously for 754days without notable changes in their chemical species and soil pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag.

    PubMed

    Xue, Yongjie; Hou, Haobo; Zhu, Shujing

    2009-02-15

    Polluted and contaminated water can often contain more than one heavy metal species. It is possible that the behavior of a particular metal species in a solution system will be affected by the presence of other metals. In this study, we have investigated the adsorption of Cd(II), Cu(II), Pb(II), and Zn(II) onto basic oxygen furnace slag (BOF slag) in single- and multi-element solution systems as a function of pH and concentration, in a background solution of 0.01M NaNO(3). In adsorption edge experiments, the pH was varied from 2.0 to 13.0 with total metal concentration 0.84mM in the single element system and 0.21mM each of Cd(II), Cu(II), Pb(II), and Zn(II) in the multi-element system. The value of pH(50) (the pH at which 50% adsorption occurs) was found to follow the sequence Zn>Cu>Pb>Cd in single-element systems, but Pb>Cu>Zn>Cd in the multi-element system. Adsorption isotherms at pH 6.0 in the multi-element systems showed that there is competition among various metals for adsorption sites on BOF slag. The adsorption and potentiometric titrations data for various slag-metal systems were modeled using an extended constant-capacitance surface complexation model that assumed an ion-exchange process below pH 6.5 and the formation of inner-sphere surface complexes at higher pH. Inner-sphere complexation was more dominant for the Cu(II), Pb(II) and Zn(II) systems.

  20. Surface-complexation synthesis of silica-supported high-loading well-dispersed reducible nano-Co3O4 catalysts using CoIII ammine hydroxo complexes

    NASA Astrophysics Data System (ADS)

    Zhang, Weidong; Pan, Feng; Li, Jinjun; Wang, Zhen; Ding, Wei; Qin, Yi; Wu, Feng

    2018-06-01

    Silica-supported highly dispersed cobalt oxides prepared by adsorption are likely to be poorly reducible Co-phyllosilicates or CoO species. Here we report the synthesis of silica-supported monodispersed spinel nano-Co3O4 catalysts by inner-sphere complexation using CoIII ammine hydroxo complexes as precursors. The precursors were facilely prepared by stirring ammoniacal CoII solutions exposed to air. The cobalt loadings (up to 188 mg/g) and particle sizes (3-10 nm) were tailored by successive complexation-calcination cycles. Such catalysts showed significantly superior reducibility and catalytic activity in complete propane oxidation in comparison to supported Co-phyllosilicates and CoO. A further development of this synthesis process may provide a variety of cobalt-based catalysts for important catalytic applications.

  1. Multisite adsorption of cadmium on goethite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venema, P.; Hiemstra, T.; Riemsdijk, W.H. van

    1996-11-10

    Recently a new general ion adsorption model has been developed for ion binding to mineral surfaces (Hiemstra and van Riemsdijk, 1996). The model uses the Pauling concept of charge distribution (CD) and is an extension of the multi-site complexation (MUSIC) approach. In the CD-MUSIC model the charge of an adsorbing ion that forms an inner sphere complex is distributed over its ligands, which are present in two different electrostatic planes. In this paper the authors have applied the CD-MUSIC model to the adsorption of metal cations, using an extended data set for cadmium adsorbing on goethite. The adsorption of cadmiummore » and the cadmium-proton exchange ratio were measured as function of metal ion concentration, pH, and ionic strength. The data could be described well, taking into account the surface heterogeneity resulting from the presence of two different crystal planes (the dominant 110 face and the minor 021 face). The surface species used in the model are consistent with recent EXAFS data. In accordance with the EXAFS results, high-affinity complexes at the 021 face were used in the model.« less

  2. High-order central ENO finite-volume scheme for hyperbolic conservation laws on three-dimensional cubed-sphere grids

    NASA Astrophysics Data System (ADS)

    Ivan, L.; De Sterck, H.; Susanto, A.; Groth, C. P. T.

    2015-02-01

    A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubed-sphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedral cells with nonplanar cell surfaces, which are handled with high-order accuracy using trilinear geometry representations in the proposed approach. Varying stencil sizes and slope discontinuities in grid lines occur at the boundaries and corners of the six sectors of the cubed-sphere grid where the grid topology is unstructured, and these difficulties are handled naturally with high-order accuracy by the multidimensional least-squares based 3D CENO reconstruction with overdetermined stencils. A rotation-based mechanism is introduced to automatically select appropriate smaller stencils at degenerate block boundaries, where fewer ghost cells are available and the grid topology changes, requiring stencils to be modified. Combining these building blocks results in a finite-volume discretization for conservation laws on 3D cubed-sphere grids that is uniformly high-order accurate in all three grid directions. While solution-adaptivity is natural in the multi-block setting of our code, high-order accurate adaptive refinement on cubed-sphere grids is not pursued in this paper. The 3D CENO scheme is an accurate and robust solution method for hyperbolic conservation laws on general hexahedral grids that is attractive because it is inherently multidimensional by employing a K-exact overdetermined reconstruction scheme, and it avoids the complexity of considering multiple non-central stencil configurations that characterizes traditional ENO schemes. Extensive numerical tests demonstrate fourth-order convergence for stationary and time-dependent Euler and magnetohydrodynamic flows on cubed-sphere grids, and robustness against spurious oscillations at 3D shocks. Performance tests illustrate efficiency gains that can be potentially achieved using fourth-order schemes as compared to second-order methods for the same error level. Applications on extended cubed-sphere grids incorporating a seventh root block that discretizes the interior of the inner sphere demonstrate the versatility of the spatial discretization method.

  3. Transferable ordered ni hollow sphere arrays induced by electrodeposition on colloidal monolayer.

    PubMed

    Duan, Guotao; Cai, Weiping; Li, Yue; Li, Zhigang; Cao, Bingqiang; Luo, Yuanyuan

    2006-04-13

    We report an electrochemical synthesis of two-dimensionally ordered porous Ni arrays based on polystyrene sphere (PS) colloidal monolayer. The morphology can be controlled from bowl-like to hollow sphere-like structure by changing deposition time under a constant current. Importantly, such ordered Ni arrays on a conducting substrate can be transferred integrally to any other desired substrates, especially onto an insulting substrate or curved surface. The magnetic measurements of the two-dimensional hollow sphere array show the coercivity values of 104 Oe for the applied field parallel to the film, and 87 Oe for the applied field perpendicular to the film, which is larger than those of bulk Ni and hollow Ni submicrometer-sized spheres. The formation of hollow sphere arrays is attributed to preferential nucleation on the interstitial sites between PS in the colloidal monolayer and substrate, and growth along PSs' surface. The transferability of the arrays originates from partial contact between the Ni hollow spheres and substrate. Such novel Ni ordered nanostructured arrays with transferability and high magnetic properties should be useful in applications such as data storage, catalysis, and magnetics.

  4. Complexation Enhancement Drives Water-to-Oil Ion Transport: A Simulation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Baofu; Ferru, Geoffroy; Ellis, Ross J.

    We address the structures and energetics of ion solvation in aqueous and organic solutions to understand liquid-liquid ion transport. Atomistic molecular dynamics (MD) simulations with polarizable force field are performed to study the coordination transformations driving lanthanide (Ln(III)) and nitrate ion transport between aqueous and an alkylamide-oil solution. An enhancement of the coordination behavior in the organic phase is achieved in contrast with the aqueous solution. In particular, the coordination number of Ce3+ increases from 8.9 in the aqueous to 9.9 in the organic solutions (from 8 in the aqueous to 8.8 in the organic systems for Yb3+). Moreover, themore » local coordination environ ment changes dramatically. Potential of mean force calculations show that the Ln(III)-ligand coordination interaction strengths follow the order of Ln(III-)nitrate> Ln(III)-water>Ln(III)-DMDBTDMA. They increase 2-fold in the lipophilic environment in comparison to the aqueous phase, and we attribute this to the shedding of the outer solvation shell. Our findings highlight the importance of outer sphere interactions on the competitive solvation energetics that cause ions to migrate between immiscible phases; an essential ingredient for advancing important applications such as rare earth metal separations. Some open questions in simulating the coordination behavior of heavy metals are also addressed.« less

  5. Characterization of the Inner Disk around HD 141569 A from Keck/NIRC2 L-Band Vortex Coronagraphy

    NASA Astrophysics Data System (ADS)

    Mawet, Dimitri; Choquet, Élodie; Absil, Olivier; Huby, Elsa; Bottom, Michael; Serabyn, Eugene; Femenia, Bruno; Lebreton, Jérémy; Matthews, Keith; Gomez Gonzalez, Carlos A.; Wertz, Olivier; Carlomagno, Brunella; Christiaens, Valentin; Defrère, Denis; Delacroix, Christian; Forsberg, Pontus; Habraken, Serge; Jolivet, Aissa; Karlsson, Mikael; Milli, Julien; Pinte, Christophe; Piron, Pierre; Reggiani, Maddalena; Surdej, Jean; Vargas Catalan, Ernesto

    2017-01-01

    HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of HD 141569 A made in the L‧ band (3.8 μm) during the commissioning of the vector vortex coronagraph that has recently been installed in the near-infrared imager and spectrograph NIRC2 behind the W.M. Keck Observatory Keck II adaptive optics system. We used reference point-spread function subtraction, which reveals the innermost disk component from the inner working distance of ≃23 au and up to ≃70 au. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q, N, and 8.6 μm PAH emission reported earlier. We also see an outward progression in dust location from the L‧ band to the H band (Very Large Telescope/SPHERE image) to the visible (Hubble Space Telescope (HST)/STIS image), which is likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST-NICMOS in 1999 (at 406 and 245 au, respectively). We fit our new L‧-band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains and are consistent with the composition of the outer belts. While our image shows a putative very faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses.

  6. Surface term effects on mass estimators

    NASA Astrophysics Data System (ADS)

    Membrado, M.; Pacheco, A. F.

    2016-05-01

    Context. We propose a way of estimating the mass contained in the volume occupied by a sample of galaxies in a virialized system. Aims: We analyze the influence of surface effects and the contribution of the cosmological constant terms on our mass estimations of galaxy systems. Methods: We propose two equations that contain surface terms to estimate galaxy sample masses. When the surface terms are neglected, these equations provide the so-called virial and projected masses. Both equations lead to a single equation that allows sample masses to be estimated without the need for calculating surface terms. Sample masses for some nearest galaxy groups are estimated and compared with virialized masses determined from turn-around radii and results of a spherical infall model. Results: Surface effects have a considerable effect on the mass estimations of the studied galaxy groups. According to our results, they lead sample masses of some groups to being less than half the virial mass estimations and even less than 10% of projected mass estimations. However, the contributions of cosmological constant terms to mass estimations are smaller than 2% for the majority of the virialized groups studied. Our estimations are in agreement with virialized masses calculated from turn-around radii. Virialized masses for complexes were found to be: (8.9 ± 2.8) × 1011 M⊙ for the Milky Way - M 31; (12.5 ± 2.5) × 1011 M⊙ for M 81 - NGC 2403; (21.5 ± 7.7) × 1011 M⊙. for Cantaurs A - M 83; and (7.9 ± 2.6) × 1011 M⊙. for IC 324 - Maffei. Conclusions: The nearest galaxy groups located inside a sphere of 5 Mpc have been addressed to explore the performance of our mass estimator. We have seen that surface effects make mass estimations of galaxy groups rather smaller than both virial and projected masses. In mass calculations, cosmological constant terms can be neglected; nevertheless, the collapse of cold dark matter leading to virialized structures is strongly affected by the cosmological constant. We have also seen that, if mass density were proportional to luminosity density on different scales in the Universe, the 5 Mpc sphere would have a mean density close to that of the sphere region containing galaxies and systems of galaxies; thus, the rest of the sphere could contain regions of low-mass dark halos with similar mass density. This mass density would be about 4.5 times greater than that of the matter background of the Universe at present.

  7. Electron beam selectively seals porous metal filters

    NASA Technical Reports Server (NTRS)

    Snyder, J. A.; Tulisiak, G.

    1968-01-01

    Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.

  8. Measurement of the Casimir Force between Two Spheres

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph L.; Somers, David A. T.; Munday, Jeremy N.

    2018-01-01

    Complex interaction geometries offer a unique opportunity to modify the strength and sign of the Casimir force. However, measurements have traditionally been limited to sphere-plate or plate-plate configurations. Prior attempts to extend measurements to different geometries relied on either nanofabrication techniques that are limited to only a few materials or slight modifications of the sphere-plate geometry due to alignment difficulties of more intricate configurations. Here, we overcome this obstacle to present measurements of the Casimir force between two gold spheres using an atomic force microscope. Force measurements are alternated with topographical scans in the x -y plane to maintain alignment of the two spheres to within approximately 400 nm (˜1 % of the sphere radii). Our experimental results are consistent with Lifshitz's theory using the proximity force approximation (PFA), and corrections to the PFA are bounded using nine sphere-sphere and three sphere-plate measurements with spheres of varying radii.

  9. Effective electromagnetic properties of microheterogeneous materials with surface phenomena

    NASA Astrophysics Data System (ADS)

    Levin, Valery; Markov, Mikhail; Mousatov, Aleksandr; Kazatchenko, Elena; Pervago, Evgeny

    2017-10-01

    In this paper, we present an approach to calculate the complex dielectric permittivity of a micro-heterogeneous medium composed of non-conductive solid inclusions embedded into the conductive liquid continuous host. To take into account the surface effects, we approximate the inclusion by a layered ellipsoid consisting of a dielectric core and an infinitesimally thin outer shell corresponding to an electrical double layer (EDL). To predict the effective complex dielectric permittivity of materials with a high concentration of inclusions, we have modified the Effective Field Method (EFM) for the layered ellipsoidal particles with complex electrical properties. We present the results of complex permittivity calculations for the composites with randomly and parallel oriented ellipsoidal inclusions. To analyze the influence of surface polarization, we have accomplished modeling in a wide frequency range for different existing physic-chemical models of double electrical layer. The results obtained show that the tensor of effective complex permittivity of a micro-heterogeneous medium with surface effects has complicate dependences on the component electrical properties, spatial material texture, and the inclusion shape (ellipsoid aspect ratio) and size. The dispersion of dielectric permittivity corresponds to the frequency dependence for individual inclusion of given size, and does not depend on the inclusion concentration.

  10. Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Fan, Yang; Yang, Xin; Zhu, Bing; Liu, Pei-Fang; Lu, Hai-Ting

    2014-12-01

    The polysaccharide carrageenan is used as a natural precursor to prepare micro-mesoporous carbon spheres. The carbon spheres were synthesized by hydrothermal carbonization of carrageenan, and subsequent chemical activation by KOH at different temperatures. The obtained micro-mesoporous carbon spheres have high surface area (up to 2502 m2 g-1) and large pore volume (up to 1.43 cm3 g-1). Moreover, the micro- and mesoporosity can be finely tuned be modifying the activation temperatures in the range of 700-900 °C. The carbon spheres activated at 900 °C present high specific capacitance of 230 F g-1 at a current density of 1 A g-1 and good ion transport kinetics. The good capacitive performance can be ascribed to the high specific surface area, well-controlled micro- and mesoporosity and narrow pore size distribution.

  11. Solvent-induced synthesis of nitrogen-doped hollow carbon spheres with tunable surface morphology for supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Yuan, Ren-Lu; Zhang, Ning; Ke, Chang-Ce; Ma, Shao-Xia; Zhang, Ru-Liang; Liu, Lei

    2018-04-01

    Nitrogen doped hollow carbon spheres (NHCSs) with tunable surface morphology have been prepared through one-pot carbonization method by using melamine-formaldehyde spheres as template and resorcinol-based resin as carbon precursor in ethanol-water solution. Well-dispersed NHCSs with particle size of 800 nm were obtained and the surface of NHCSs turn from smooth to tough, wrinkled, and finally concave by increasing the ethanol concentration. The fabricated NHCSs possessed high nitrogen content (3.99-4.83%) and hierarchical micro-dual mesoporous structure with surface area range of 265-405 m2 g-1 and total pore volume of 0.18-0.29 cm3 g-1, which contributed to high specific capacitance, excellent rate capability and long cycle life.

  12. Wedge assembly for electrical transformer component spacing

    DOEpatents

    Baggett, Franklin E.; Cage, W. Franklin

    1991-01-01

    A wedge assembly that is easily inserted between two surfaces to be supported thereby, and thereafter expanded to produce a selected spacing between those surfaces. This wedge assembly has two outer members that are substantially identical except that they are mirror images of each other. Oppositely directed faces of these of these outer members are substantially parallel for the purpose of contacting the surfaces to be separated. The outer faces of these outer members that are directed toward each other are tapered so as to contact a center member having complementary tapers on both faces. A washer member is provided to contact a common end of the outer members, and a bolt member penetrates this washer and is threadably received in a receptor of the center member. As the bolt member is threaded into the center member, the center member is drawn further into the gap between the outer members and thereby separates these outer members to contact the surfaces to be separated. In the preferred embodiment, the contacting surfaces of the outer member and the center member are provided with guide elements. The wedge assembly is described for use in separating the secondary windings from the laminations of an electrical power transformer.

  13. Fast RBF OGr for solving PDEs on arbitrary surfaces

    NASA Astrophysics Data System (ADS)

    Piret, Cécile; Dunn, Jarrett

    2016-10-01

    The Radial Basis Functions Orthogonal Gradients method (RBF-OGr) was introduced in [1] to discretize differential operators defined on arbitrary manifolds defined only by a point cloud. We take advantage of the meshfree character of RBFs, which give us a high accuracy and the flexibility to represent complex geometries in any spatial dimension. A large limitation of the RBF-OGr method was its large computational complexity, which greatly restricted the size of the point cloud. In this paper, we apply the RBF-Finite Difference (RBF-FD) technique to the RBF-OGr method for building sparse differentiation matrices discretizing continuous differential operators such as the Laplace-Beltrami operator. This method can be applied to solving PDEs on arbitrary surfaces embedded in ℛ3. We illustrate the accuracy of our new method by solving the heat equation on the unit sphere.

  14. Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors

    PubMed Central

    2012-01-01

    Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors. PMID:22643113

  15. Particle size effect and the mechanism of hematite reduction by the outer membrane cytochrome OmcA of Shewanella oneidensis MR-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Juan; Pearce, Carolyn I.; Shi, Liang

    The cycling of iron at the Earth’s near surface is profoundly influenced by dissimilatory metal reducing microorganisms, and many studies have focused on unraveling electron transfer mechanisms between these bacteria and Fe(III)-(oxyhydr)oxides. However, these efforts have been complicated by the fact that these minerals often occur in the micro- to nanosize regime, and in relevant natural environments as well as in the laboratory are subject to aggregation. The nature of the physical interface between the cellular envelope, the outer-membrane cytochromes responsible for facilitating the interfacial electron transfer step, and these complex mineral particulates is thus difficult to probe. Previous studiesmore » using whole cells have reported reduction rates that do not correlate with particle size. In the present study we isolate the interaction between the decaheme outer-membrane cytochrome OmcA of Shewanella oneidensis and nanoparticulate hematite, examining the reduction rate as a function of particle size and reaction products through detailed characterization of the electron balance and the structure and valence of iron at particle surfaces. By comparison with abiotic reduction via the smaller molecule ascorbic acid, we show that the reduction rate is systematically controlled by the sterically accessible interfacial contact area between OmcA and hematite in particle aggregates; rates increase once pore throat sizes in aggregates become as large as OmcA. Simultaneous measure of OmcA oxidation against Fe(II) release shows a ratio of 1:10, consistent with a cascade OmcA oxidation mechanism heme by heme. X-ray absorption spectroscopies reveal incipient magnetite on the reacted surfaces of the hematite nanoparticles after reaction. The collective findings establish the importance of accessibility of physical contact between the terminal reductases and iron oxide surfaces, and through apparent consistency of observations help reconcile behavior reported at the larger more complex scale of whole cell studies.« less

  16. Particle size effect and the mechanism of hematite reduction by the outer membrane cytochrome OmcA of Shewanella oneidensis MR-1

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Pearce, Carolyn I.; Shi, Liang; Wang, Zheming; Shi, Zhi; Arenholz, Elke; Rosso, Kevin M.

    2016-11-01

    The cycling of iron at the Earth's near surface is profoundly influenced by dissimilatory metal reducing microorganisms, and many studies have focused on unraveling electron transfer mechanisms between these bacteria and Fe(III)-(oxyhydr)oxides. However, these efforts have been complicated by the fact that these minerals often occur in the micro- to nanosize regime, and in relevant natural environments as well as in the laboratory are subject to aggregation. The nature of the physical interface between the cellular envelope, the outer-membrane cytochromes responsible for facilitating the interfacial electron transfer step, and these complex mineral particulates is thus difficult to probe. Previous studies using whole cells have reported reduction rates that do not correlate with particle size. In the present study we isolate the interaction between the decaheme outer-membrane cytochrome OmcA of Shewanella oneidensis and nanoparticulate hematite, examining the reduction rate as a function of particle size and reaction products through detailed characterization of the electron balance and the structure and valence of iron at particle surfaces. By comparison with abiotic reduction via the smaller molecule ascorbic acid, we show that the reduction rate is systematically controlled by the sterically accessible interfacial contact area between OmcA and hematite in particle aggregates; rates increase once pore throat sizes in aggregates become as large as OmcA. Simultaneous measure of OmcA oxidation against Fe(II) release shows a ratio of 1:10, consistent with a cascade OmcA oxidation mechanism heme by heme. X-ray absorption spectroscopies reveal incipient magnetite on the reacted surfaces of the hematite nanoparticles after reaction. The collective findings establish the importance of accessibility of physical contact between the terminal reductases and iron oxide surfaces, and through apparent consistency of observations help reconcile behavior reported at the larger more complex scale of whole cell studies.

  17. Interactions of praseodymium and neodymium with nucleosides and nucleotides: absorption difference and comparative absorption spectral study.

    PubMed

    Misra, S N; Anjaiah, K; Joseph, G; Abdi, S H

    1992-02-01

    The interactions of praseodymium(III) and neodymium(III) with nucleosides and nucleotides have been studied in different stoichiometry in water and water-DMF mixtures by employing absorption difference and comparative absorption spectrophotometry. The 4f-4f bands were analysed by linear curve analysis followed by gaussian curve analysis, and various spectral parameters were computed, using partial and multiple regression method. The magnitude of changes in both energy interaction and intensity were used to explore the degree of outer and inner sphere coordination, incidence of covalency and the extent of metal 4f-orbital involvement in chemical bonding. Crystalline complexes of the type [Ln(nucleotide)2(H2O)2]- (where nucleotide--GMP or IMP) were characterized by IR, 1H NMR, 31P NMR data. These studies indicated that the binding of the nucleotide is through phosphate oxygen in a bidentate manner and the complexes undergo substantial ionisation in aqueous medium, thereby supporting the observed weak 4f-4f bands and lower values for nephelauxetic effect (1-beta), bonding (b) and covalency (delta) parameters derived from coulombic and spin orbit interaction parameters.

  18. Effect of silicic acid on arsenate and arsenite retention mechanisms on 6-L ferrihydrite: A spectroscopic and batch adsorption approach

    PubMed Central

    Gao, Xiaodong; Root, Robert A.; Farrell, James; Ela, Wendell; Chorover, Jon

    2014-01-01

    The competitive adsorption of arsenate and arsenite with silicic acid at the ferrihydrite-water interface was investigated over a wide pH range using batch sorption experiments, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) modeling. Batch sorption results indicate that the adsorption of arsenate and arsenite on the 6-L ferrihydrite surface exhibits a strong pH-dependence, and the effect of pH on arsenic sorption differs between arsenate and arsenite. Arsenate adsorption decreases consistently with increasing pH; whereas arsenite adsorption initially increases with pH to a sorption maximum at pH 7–9, where after sorption decreases with further increases in pH. Results indicate that competitive adsorption between silicic acid and arsenate is negligible under the experimental conditions; whereas strong competitive adsorption was observed between silicic acid and arsenite, particularly at low and high pH. In-situ, flow-through ATR-FTIR data reveal that in the absence of silicic acid, arsenate forms inner-sphere, binuclear bidentate, complexes at the ferrihydrite surface across the entire pH range. Silicic acid also forms inner-sphere complexes at ferrihydrite surfaces throughout the entire pH range probed by this study (pH 2.8 – 9.0). The ATR-FTIR data also reveal that silicic acid undergoes polymerization at the ferrihydrite surface under the environmentally-relevant concentrations studied (e.g., 1.0 mM). According to ATR-FTIR data, arsenate complexation mode was not affected by the presence of silicic acid. EXAFS analyses and DFT modeling confirmed that arsenate tetrahedra were bonded to Fe metal centers via binuclear bidentate complexation with average As(V)-Fe bond distance of 3.27 Å. The EXAFS data indicate that arsenite forms both mononuclear bidentate and binuclear bidentate complexes with 6-L ferrihydrite as indicated by two As(III)-Fe bond distances of ~2.92–2.94 and 3.41–3.44 Å, respectively. The As-Fe bond distances in both arsenate and arsenite EXAFS spectra remained unchanged in the presence of Si, suggesting that whereas Si diminishes arsenite adsorption preferentially, it has a negligible effect on As-Fe bonding mechanisms. PMID:25382933

  19. Marginally outer trapped surfaces and symmetries

    NASA Astrophysics Data System (ADS)

    Carrasco, Alberto; Mars, Marc

    2009-05-01

    We study properties of outermost marginally outer trapped surfaces in slices of space-times possessing certain symmetries, like isometries, homotheties or conformal Killings. In particular, we find restrictions on these surfaces for the vector field generating the symmetry. As an application we give a result of non-existence of outermost marginally outer trapped surfaces in accelerated Friedmann-Lemaître-Roberson-Walker spacetimes.

  20. Mass transfer of therapeutics through natural human plaque biofilms: a model for therapeutic delivery to pathological bacterial biofilms.

    PubMed

    Robinson, Colin

    2011-09-01

    Bacterial biofilms in the mouth are prime mediators of the destruction of the dental and oral tissues. This brief review summarises recent work using a device for generating intact plaque in the mouth on natural enamel surfaces such that quantitative studies of mass transfer through natural plaque biofilms could be carried out in relation to plaque architecture. This data is discussed against the background of existing information. The device revealed complex plaque architecture with high a surface area to mass ratio decreasing from the exterior of the biofilm towards the tissue surface. Fluoride, a potent inhibitor of caries was concentrated in the outer regions of the biofilm. This implies some restriction of diffusion and possibly binding to the high surface area of the outer biofilm. Whilst all components examined conformed to this distribution pattern, some relatively uncharged materials penetrated the bacterial biomass whilst other, more highly charged materials tended to be restricted to the channels or biomass surface. Plaque architecture was robust but could be altered using detergent indicating that biomass architecture and chemistry could be manipulated as a possible means of facilitating mass transport of therapeutics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Gravitational Instabilities in the Disks of Massive Protostars as an Explanation for Linear Distributions of Methanol Masers

    NASA Astrophysics Data System (ADS)

    Durisen, Richard H.; Mejia, Annie C.; Pickett, Brian K.; Hartquist, Thomas W.

    2001-12-01

    Evidence suggests that some masers associated with massive protostars may originate in the outer regions of large disks, at radii of hundreds to thousands of AU from the central mass. This is particularly true for methanol (CH3OH), for which linear distributions of masers are found with disklike kinematics. In three-dimensional hydrodynamics simulations we have made to study the effects of gravitational instabilities in the outer parts of disks around young low-mass stars, the nonlinear development of the instabilities leads to a complex of intersecting spiral shocks, clumps, and arclets within the disk and to significant time-dependent, nonaxisymmetric distortions of the disk surface. A rescaling of our disk simulations to the case of a massive protostar shows that conditions in the disturbed outer disk seem conducive to the appearance of masers if it is viewed edge-on.

  2. Dispersion analysis and measurement of circular cylindrical wedge-like acoustic waveguides.

    PubMed

    Yu, Tai-Ho

    2015-09-01

    This study investigated the propagation of flexural waves along the outer edge of a circular cylindrical wedge, the phase velocities, and the corresponding mode displacements. Thus far, only approximate solutions have been derived because the corresponding boundary-value problems are complex. In this study, dispersion curves were determined using the bi-dimensional finite element method and derived through the separation of variables and the Hamilton principle. Modal displacement calculations clarified that the maximal deformations appeared at the outer edge of the wedge tip. Numerical examples indicated how distinct thin-film materials deposited on the outer surface of the circular cylindrical wedge influenced the dispersion curves. Additionally, dispersion curves were measured using a laser-induced guided wave, a knife-edge measurement scheme, and a two-dimensional fast Fourier transform method. Both the numerical and experimental results correlated closely, thus validating the numerical solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Super-Resolution Imaging by Arrays of High-Index Spheres Embedded in Transparent Matrices

    DTIC Science & Technology

    2014-06-25

    microsphere-assisted imaging. Roles of surface excitations, plasmons, polaritons and Tamm-states, as well as the role of nanoscale gap separating the object...nanometric gap between the object and spheres and the role of surface polariton -plasmons in the metallic nanostructures. Our results, however, show that

  4. Classical plasma dynamics of Mie-oscillations in atomic clusters

    NASA Astrophysics Data System (ADS)

    Kull, H.-J.; El-Khawaldeh, A.

    2018-04-01

    Mie plasmons are of basic importance for the absorption of laser light by atomic clusters. In this work we first review the classical Rayleigh-theory of a dielectric sphere in an external electric field and Thomson’s plum-pudding model applied to atomic clusters. Both approaches allow for elementary discussions of Mie oscillations, however, they also indicate deficiencies in describing the damping mechanisms by electrons crossing the cluster surface. Nonlinear oscillator models have been widely studied to gain an understanding of damping and absorption by outer ionization of the cluster. In the present work, we attempt to address the issue of plasmon relaxation in atomic clusters in more detail based on classical particle simulations. In particular, we wish to study the role of thermal motion on plasmon relaxation, thereby extending nonlinear models of collective single-electron motion. Our simulations are particularly adopted to the regime of classical kinetics in weakly coupled plasmas and to cluster sizes extending the Debye-screening length. It will be illustrated how surface scattering leads to the relaxation of Mie oscillations in the presence of thermal motion and of electron spill-out at the cluster surface. This work is intended to give, from a classical perspective, further insight into recent work on plasmon relaxation in quantum plasmas [1].

  5. Formation of Ketenimines via the Palladium-Catalyzed Decarboxylative π-Allylic Rearrangement of N-Alloc Ynamides.

    PubMed

    Alexander, Juliana R; Cook, Matthew J

    2017-11-03

    A new approach for the formation of ketenimines via a decarboxylative allylic rearrangement pathway that does not require strong stabilizing or protecting groups has been developed. The products can be readily hydrolyzed into their corresponding secondary amides or reacted with sulfur ylides to perform an additional [2,3]-Wittig process. Mechanistic studies suggest an outer-sphere process in which reductive alkylation is rate-limiting.

  6. Polarization Utilization in Radar Target Reconstruction: C-Wide (Multi-Frequency) Band Relationship of a Target’s Characteristic Operators with Its Unique Set of Natural Eigenfrequencies.

    DTIC Science & Technology

    1983-12-14

    the left half of the s- plane . These are representation independent. We shall be interested in these poles only. These poles are the complex...on the Left Half Plane Asymptotic Behavior of the SEM Expansion of Surface Currents, Published in Special Issue on the Singularity Expansion Method...precisely, the polarization chart is an orthogonal projection of the Poincare Sphere on a plane , having polar coordinates p= cos (2-) and

  7. Gas turbine row #1 steam cooled vane

    DOEpatents

    Cunha, Frank J.

    2000-01-01

    A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.

  8. Terminal velocity and drag reduction measurements on superhydrophobic spheres

    NASA Astrophysics Data System (ADS)

    McHale, G.; Shirtcliffe, N. J.; Evans, C. R.; Newton, M. I.

    2009-02-01

    Super water-repellent surfaces occur naturally on plants and aquatic insects and are created in the laboratory by combining micro- or nanoscale surface topographic features with hydrophobic surface chemistry. When such types of water-repellent surfaces are submerged they can retain a film of air (a plastron). In this work, we report measurements of the terminal velocity of solid acrylic spheres with various surface treatments settling under the action of gravity in water. We observed increases in terminal velocity corresponding to drag reduction of between 5% and 15% for superhydrophobic surfaces that carry plastrons.

  9. Fine tuning the ionic liquid-vacuum outer atomic surface using ion mixtures.

    PubMed

    Villar-Garcia, Ignacio J; Fearn, Sarah; Ismail, Nur L; McIntosh, Alastair J S; Lovelock, Kevin R J

    2015-03-28

    Ionic liquid-vacuum outer atomic surfaces can be created that are remarkably different from the bulk composition. In this communication we demonstrate, using low-energy ion scattering (LEIS), that for ionic liquid mixtures the outer atomic surface shows significantly more atoms from anions with weaker cation-anion interactions (and vice versa).

  10. Isolation and characterization of a uranium(VI)-nitride triple bond

    NASA Astrophysics Data System (ADS)

    King, David M.; Tuna, Floriana; McInnes, Eric J. L.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T.

    2013-06-01

    The nature and extent of covalency in uranium bonding is still unclear compared with that of transition metals, and there is great interest in studying uranium-ligand multiple bonds. Although U=O and U=NR double bonds (where R is an alkyl group) are well-known analogues to transition-metal oxo and imido complexes, the uranium(VI)-nitride triple bond has long remained a synthetic target in actinide chemistry. Here, we report the preparation of a uranium(VI)-nitride triple bond. We highlight the importance of (1) ancillary ligand design, (2) employing mild redox reactions instead of harsh photochemical methods that decompose transiently formed uranium(VI) nitrides, (3) an electrostatically stabilizing sodium ion during nitride installation, (4) selecting the right sodium sequestering reagent, (5) inner versus outer sphere oxidation and (6) stability with respect to the uranium oxidation state. Computational analyses suggest covalent contributions to U≡N triple bonds that are surprisingly comparable to those of their group 6 transition-metal nitride counterparts.

  11. Spectroscopic and structural study of novel interaction product of pyrrolidine-2-thione with molecular iodine. Presumable mechanisms of oxidation

    NASA Astrophysics Data System (ADS)

    Chernov'yants, Margarita S.; Burykin, Igor V.; Starikova, Zoya A.; Tereznikov, Alexander Yu.; Kolesnikova, Tatiana S.

    2013-09-01

    Synthesis, spectroscopic and structural characterization of novel interaction product of pyrrolidine-2-thione with molecular iodine is reported. The ability of pyrrolidine-2-thione to form the outer-sphere charge-transfer complex C4H7NS·I2 with iodine molecule in dilute chloroform solution has been studied by UV/vis spectroscopy. Oxidative desulfurization promotes ring fusion of two pyrrolidine-2-thione molecules. The product of iodine induced oxidative desulfurization has been studied by X-ray diffraction method. The crystal structure of the reaction product is formed by 5-(2-thioxopyrrolidine-1-yl)-3,4-dihydro-2H-pyrrolium (C8H13N2S+) cations and pentaiodide anions I5-, which are linked by the intermolecular I⋯Hsbnd C and I⋯C close contacts. The angular pentaiodide anions can be considered as structures formed by coordination of two iodine molecules to the iodide ion (type 1) or by the coordination of iodine molecule to the triiodide ion (type 2).

  12. Electrochemistry of redox-active self-assembled monolayers

    PubMed Central

    Eckermann, Amanda L.; Feld, Daniel J.; Shaw, Justine A.; Meade, Thomas J.

    2010-01-01

    Redox-active self-assembled monolayers (SAMs) provide an excellent platform for investigating electron transfer kinetics. Using a well-defined bridge, a redox center can be positioned at a fixed distance from the electrode and electron transfer kinetics probed using a variety of electrochemical techniques. Cyclic voltammetry, AC voltammetry, electrochemical impedance spectroscopy, and chronoamperometry are most commonly used to determine the rate of electron transfer of redox-activated SAMs. A variety of redox species have been attached to SAMs, and include transition metal complexes (e.g., ferrocene, ruthenium pentaammine, osmium bisbipyridine, metal clusters) and organic molecules (e.g., galvinol, C60). SAMs offer an ideal environment to study the outer-sphere interactions of redox species. The composition and integrity of the monolayer and the electrode material influence the electron transfer kinetics and can be investigated using electrochemical methods. Theoretical models have been developed for investigating SAM structure. This review discusses methods and monolayer compositions for electrochemical measurements of redox-active SAMs. PMID:20563297

  13. (18-Crown-6)potassium [(1,2,5,6-η)-cyclo­octa-1,5-diene][(1,2,3,4-η)-naph­tha­lene]­ferrate(−I)

    PubMed Central

    Brennessel, William W.; Ellis, John E.

    2012-01-01

    The title salt, [K(C12H24O6)][Fe(C8H12)(C10H8)], is the only known naphthalene complex containing iron in a formally negative oxidation state. Each (naphthalene)(1,5-cod)ferrate(−I) anion is in contact with one (18-crown-6)potassium cation via K⋯C contacts to the outer four carbon atoms of the naphthalene ligand (cod = 1,5-cyclo­octa­diene, 18-crown-6 = 1,4,7,10,13,16-hexa­oxacyclo­octa­deca­ne). When using the midpoints of the coordinating olefin bonds, the overall geometry of the coordination sphere around iron can be best described as distorted tetra­hedral. The naphthalene fold angle between the plane of the iron-coordinating butadiene unit and the plane containing the exo-benzene moiety is 19.2 (1)°. PMID:23125569

  14. Tunable Porosities and Shapes of Fullerene-Like Spheres

    PubMed Central

    Dielmann, Fabian; Fleischmann, Matthias; Heindl, Claudia; Peresypkina, Eugenia V; Virovets, Alexander V; Gschwind, Ruth M; Scheer, Manfred

    2015-01-01

    The formation of reversible switchable nanostructures monitored by solution and solid-state methods is still a challenge in supramolecular chemistry. By a comprehensive solid state and solution study we demonstrate the potential of the fivefold symmetrical building block of pentaphosphaferrocene in combination with CuI halides to switch between spheres of different porosity and shape. With increasing amount of CuX, the structures of the formed supramolecules change from incomplete to complete spherically shaped fullerene-like assemblies possessing an Ih-C80 topology at one side and to a tetrahedral-structured aggregate at the other. In the solid state, the formed nano-sized aggregates reach an outer diameter of 3.14 and 3.56 nm, respectively. This feature is used to reversibly encapsulate and release guest molecules in solution. PMID:25759976

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao Xia; Liu Bing; Hou Qian

    A new route for the economic and efficient treatment of azo dye pollutants is reported, in which surface-modified organic-inorganic hybrid mesoporous silica (MS) spheres were chosen as microreactors for the accumulation and subsequent photodegradation of pollutants in defined regions. The surface-modified silica materials were prepared by anchoring the polycationic species such as poly(allylamine hydrochloride) on MS spheres via a simple wet impregnation method. The as-synthesized spheres with well-defined porous structures exhibited 15 times of accumulating capacity for orange II and Congo red compared to that of the pure MS spheres. Diffuse reflectance UV-vis spectroscopy and confocal laser scanning microscopy demonstratedmore » that the accumulated orange II and CR in defined MS spheres were rapidly degraded in the presence of Fenton reagent under visible radiation. Kinetics analysis in recycling degradation showed that the as-synthesized materials might be utilized as environment-friendly preconcentrators/microreactors for the remediation of dye wastewater.« less

  16. Consequences of Location-Dependent Organ of Corti Micro-Mechanics

    PubMed Central

    Liu, Yanju; Gracewski, Sheryl M.; Nam, Jong-Hoon

    2015-01-01

    The cochlea performs frequency analysis and amplification of sounds. The graded stiffness of the basilar membrane along the cochlear length underlies the frequency-location relationship of the mammalian cochlea. The somatic motility of outer hair cell is central for cochlear amplification. Despite two to three orders of magnitude change in the basilar membrane stiffness, the force capacity of the outer hair cell’s somatic motility, is nearly invariant over the cochlear length. It is puzzling how actuators with a constant force capacity can operate under such a wide stiffness range. We hypothesize that the organ of Corti sets the mechanical conditions so that the outer hair cell’s somatic motility effectively interacts with the media of traveling waves—the basilar membrane and the tectorial membrane. To test this hypothesis, a computational model of the gerbil cochlea was developed that incorporates organ of Corti structural mechanics, cochlear fluid dynamics, and hair cell electro-physiology. The model simulations showed that the micro-mechanical responses of the organ of Corti are different along the cochlear length. For example, the top surface of the organ of Corti vibrated more than the bottom surface at the basal (high frequency) location, but the amplitude ratio was reversed at the apical (low frequency) location. Unlike the basilar membrane stiffness varying by a factor of 1700 along the cochlear length, the stiffness of the organ of Corti complex felt by the outer hair cell remained between 1.5 and 0.4 times the outer hair cell stiffness. The Y-shaped structure in the organ of Corti formed by outer hair cell, Deiters cell and its phalange was the primary determinant of the elastic reactance imposed on the outer hair cells. The stiffness and geometry of the Deiters cell and its phalange affected cochlear amplification differently depending on the location. PMID:26317521

  17. Spectral studies, thermal investigation and biological activity of some metal complexes derived from (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide

    NASA Astrophysics Data System (ADS)

    El-Samanody, El-Sayed A.; Polis, Magdy W.; Emara, Esam M.

    2017-09-01

    A new series of biologically active Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes derived from the novel thiosemicarbazone ligand; (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide (HL) were synthesized. The mode of bonding of the ligand and the geometrical structures of its metal complexes were achieved by different analytical and spectral methods. The ligand coordinated with metal ions in a neutral bidentate fashion through the thione sulfur and azomethine nitrogen atoms. All metal complexes adopted octahedral geometry, except Cu(II) complexes (3, 6, 7) which have a square planar structure. The general thermal decomposition pathways of the ligand along with its metal complexes were explained. The thermal stability of the complexes is controlled by the number of outer and inner sphere water molecules, ionic radii and the steric hindrance. The activation thermodynamic parameters; (activation energy (E*), enthalpy of activation (ΔH*), entropy of activation (ΔS*) and Gibbs free energy (ΔG*)) along with order of reaction (n) were estimated from DTG curves. The ESR spectra of Cu(II) complexes indicated that (dx2-y2)1 is the ground state with covalence character of metal-ligand bonds. The molluscicidal and biochemical effects of the ligand and its Ni(II); Cu(II) complexes (2; 3, 5, 7) along with their combinations with metaldehyde were screened in vitro on the mucous gland of Eobania vermiculata. The tested compounds exhibited a significant toxicity against the tested animals and have almost the same toxic effect of metaldehyde which increases the mucous secretion of the snails and leads to death.

  18. X-ray absorption spectroscopy as a tool investigating arsenic(III) and arsenic(V) sorption by an aluminum-based drinking-water treatment residual.

    PubMed

    Makris, Konstantinos C; Sarkar, Dibyendu; Parsons, Jason G; Datta, Rupali; Gardea-Torresdey, Jorge L

    2009-11-15

    Historic applications of arsenical pesticides to agricultural land have resulted in accumulation of residual arsenic (As) in such soils. In situ immobilization represents a cost-effective and least ecological disrupting treatment technology for soil As. Earlier work in our laboratory showed that drinking-water treatment residuals (WTRs), a low-cost, waste by-product of the drinking-water treatment process exhibit a high affinity for As. Wet chemical experiments (sorption kinetics and desorption) were coupled with X-ray absorption spectroscopy measurements to elucidate the bonding strength and type of As(V) and As(III) sorption by an aluminum-based WTR. A fast (1h), followed by a slower sorption stage resulted in As(V) and As(III) sorption capacities of 96% and 77%, respectively. Arsenic desorption with a 5mM oxalate from the WTR was minimal, being always <4%. X-ray absorption spectroscopy data showed inner-sphere complexation between As and surface hydroxyls. Reaction time (up to 48h) had no effect on the initial As oxidation state for sorbed As(V) and As(III). A combination of inner-sphere bonding types occurred between As and Al on the WTR surface because mixed surface geometries and interatomic distances were observed.

  19. Van der Waals Interactions Involving Proteins

    NASA Technical Reports Server (NTRS)

    Roth, Charles M.; Neal, Brian L.; Lenhoff, Abraham M.

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models. with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth.

  20. Targeting Prostate Cancer Stemlike Cells through Cell Surface Expressed GRP78

    DTIC Science & Technology

    2016-12-01

    NOTES 14. ABSTRACT This study investigated a function for cell surface GRP78 in regulating prostate cancer stem -like cells . In year 1, we showed that...enrichment of cell surface GRP78+ cancer stem like cells in sphere culture. We also showed that the signaling axis activated by cell surface GRP78 is...but not the GRP78(-) cells , exhibited cancer stem -like cell behavior. Furthermore an GRP78 monoclonal antibody inhibited sphere forming ability of

  1. Apparatus for premixing in a gas turbine engine

    DOEpatents

    McCormick, Keith Alan; Smith, Duane A.

    2002-01-01

    An apparatus for mixing fuel with oxidizing agent is disclosed comprising an outer body and an inner body. The outer body has an interior surface extending between an inlet end toward an outlet end. The interior surface includes a first plurality of openings. The inner body has an exterior surface extending between the first end and the second end of the inner body. The exterior surface of the inner body includes a second plurality of openings. At least a portion of the exterior surface of the inner body is positioned within the outer body to define a mixing channel between the exterior surface of the inner body and the interior surface of the outer body. In one form the first and second plurality of openings substantially longitudinally span at least one of the outer body and the inner body. In another form the first and second plurality of openings are substantially radially oriented. In yet another form the first and second plurality of openings are offset from one another.

  2. Complex Chern-Simons from M5-branes on the squashed three-sphere

    NASA Astrophysics Data System (ADS)

    Córdova, Clay; Jafferis, Daniel L.

    2017-11-01

    We derive an equivalence between the (2,0) superconformal M5-brane field theory dimensionally reduced on a squashed three-sphere, and Chern-Simons theory with complex gauge group. In the reduction, the massless fermions obtain an action which is second order in derivatives and are reinterpreted as ghosts for gauge fixing the emergent non-compact gauge symmetry. A squashing parameter in the geometry controls the imaginary part of the complex Chern-Simons level.

  3. Evidence of the no-slip boundary condition of water flow between hydrophilic surfaces using atomic force microscopy.

    PubMed

    Maali, Abdelhamid; Wang, Yuliang; Bhushan, Bharat

    2009-10-20

    In this study we present measurements of the hydrodynamic force exerted on a glass sphere glued to an atomic force microscopy (AFM) cantilever approaching a mica surface in water. A large sphere was used to reduce the impact of the cantilever beam on the measurement. An AFM cantilever with large stiffness was used to accurately determine the actual contact position between the sphere and the sample surface. The measured hydrodynamic force with different approach velocities is in good agreement with the Taylor force calculated in the lubrication theory with the no-slip boundary conditions, which verifies that there is no boundary slip on the glass and mica surfaces. Moreover, a detailed procedure of how to subtract the electrostatic double-layer force is presented.

  4. The Acrosome Reaction: A Historical Perspective.

    PubMed

    Okabe, Masaru

    2016-01-01

    Acrosome reaction is often referred to as acrosomal exocytosis, but it differs significantly from normal exocytosis. While the vesicle membrane initially holding excreting molecules remains on the cell surface during exocytosis, the outer acrosomal membrane and plasma membrane are lost by forming vesicles during acrosome reaction. In this context, the latter process resembles a release of exosome. However, recent experimental data indicate that the most important roles of acrosome reaction lie not in the release of acrosomal contents (or "vesiculated" plasma and outer acrosomal membrane complexes) but rather in changes in sperm membrane. This review describes the mechanism of fertilization vis-a-vis sperm membrane change, with a brief historical overview of the half-century study of acrosome reaction.

  5. The effect of ultrasound irradiation on the convective heat transfer rate during immersion cooling of a stationary sphere.

    PubMed

    Kiani, Hossein; Sun, Da-Wen; Zhang, Zhihang

    2012-11-01

    It has been proven that ultrasound irradiation can enhance the rate of heat transfer processes. The objective of this work was to study the heat transfer phenomenon, mainly the heat exchange at the surface, as affected by ultrasound irradiation around a stationary copper sphere (k=386W m(-1)K(-1), C(p)=384J kg(-1)K(-1), ρ=8660kg m(-3)) during cooling. The sphere (0.01m in diameter) was immersed in an ethylene glycol-water mixture (-10°C) in an ultrasonic cooling system that included a refrigerated circulator, a flow meter, an ultrasound generator and an ultrasonic bath. The temperature of the sphere was recorded using a data logger equipped with a T-type thermocouple in the center of the sphere. The temperature of the cooling medium was also monitored by four thermocouples situated at different places in the bath. The sphere was located at different positions (0.02, 0.04 and 0.06m) above the transducer surface of the bath calculated considering the center of the sphere as the center of the reference system and was exposed to different intensities of ultrasound (0, 120, 190, 450, 890, 1800, 2800, 3400 and 4100W m(-2)) during cooling. The frequency of the ultrasound was 25kHz. It was demonstrated that ultrasound irradiation can increase the rate of heat transfer significantly, resulting in considerably shorter cooling times. Higher intensities caused higher cooling rates, and Nu values were increased from about 23-27 to 25-108 depending on the intensity of ultrasound and the position of the sphere. However, high intensities of ultrasound led to the generation of heat at the surface of the sphere, thus limiting the lowest final temperature achieved. An analytical solution was developed considering the heat generation and was fitted to the experimental data with R(2) values in the range of 0.910-0.998. Visual observations revealed that both cavitation and acoustic streaming were important for heat transfer phenomenon. Cavitation clouds at the surface of the sphere were the main cause of heating effect. The results showed that closer distances to the transducer surface showed higher cooling rates. On the other hand, despite having a bigger distance from the transducer, when the sphere was located close to the gas-liquid interface the enhancement factor of heat transfer was higher. Ultrasound irradiation showed promising effect for the enhancement of convective heat transfer rate during immersion cooling. More investigations are required to demonstrate the behavior of ultrasound assisted heat transfer and resolve the proper way of the application of ultrasound to assist the cooling and/or freezing processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Silver nanoparticle deposition on inverse opal SiO2 films embedded in protective polypropylene micropits for SERS applications

    NASA Astrophysics Data System (ADS)

    Ammosova, Lena; Ankudze, Bright; Philip, Anish; Jiang, Yu; Pakkanen, Tuula T.; Pakkanen, Tapani A.

    2018-01-01

    Common methods to fabricate surface enhanced Raman scattering (SERS) substrates with controlled micro-nanohierarchy are often complex and expensive. In this study, we demonstrate a simple and cost effective method to fabricate SERS substrates with complex geometries. Microworking robot structuration is used to pattern a polypropylene (PP) substrate with micropits, facilitating protective microenvironment for brittle SiO2 inverse opal (IO) structure. Hierarchical SiO2 IO patterns were obtained using polystyrene (PS) spheres as a sacrificial template, and were selectively embedded into the hydrophilized PP micropits. The same microworking robot technique was subsequently used to deposit silver nanoparticle ink into the SiO2 IO cavities. The fabricated multi-level micro-nanohierarchy surface was studied to enhance Raman scattering of the 4-aminothiophenol (4-ATP) analyte molecule. The results show that the SERS performance of the micro-nanohierarchical substrate increases significantly the Raman scattering intensity compared to substrates with structured 2D surface geometries.

  7. Exact Solution for Capillary Bridges Properties by Shooting Method

    NASA Astrophysics Data System (ADS)

    Qiang-Nian, Li; Jia-Qi, Zhang; Feng-Xi, Zhou

    2017-04-01

    The investigation of liquid bridge force acting between wet particles has great significance in many fields. In this article, the exact solution of capillary force between two unequal-sized spherical particles is investigated. Firstly, The Young-Laplace equation with moving boundary is converted into a set of ordinary differential equations with two fix point boundary using variable substitution technique, in which the gravity effects have been neglected. The geometry of the liquid bridge between two particles is solved by shooting method. After that, the gorge method is applied to calculate the capillary-bridge force that is consists of contributions from the capillary suction and surface tension. Finally, the effect of various parameters including distance between two spheres, radii of spheres, and contact angles on the capillary force are investigated. It is shown that the presented approach is an efficient and accurate algorithm for capillary force between two particles in complex situations.

  8. Social Justice and Education in the Public and Private Spheres

    ERIC Educational Resources Information Center

    Power, Sally; Taylor, Chris

    2013-01-01

    This paper explores the complex relationship between social justice and education in the public and private spheres. The politics of education is often presented as a battle between left and right, the state and the market. In this representation, the public and the private spheres are neatly aligned on either side of the line of battle, and…

  9. Systems to facilitate reducing flashback/flame holding in combustion systems

    DOEpatents

    Lacy, Benjamin Paul [Greer, SC; Kraemer, Gilbert Otto [Greer, SC; Varatharajan, Balachandar [Clifton Park, NY; Yilmaz, Ertan [Albany, NY; Zuo, Baifang [Simpsonville, SC

    2012-02-21

    A method for assembling a premixing injector is provided. The method includes providing a centerbody including a center axis and a radially outer surface, and providing an inlet flow conditioner. The inlet flow conditioner includes a radially outer wall, a radially inner wall, and an end wall coupled substantially perpendicularly between the outer wall and the inner wall. Each of the outer wall and the end wall include a plurality of openings defined therein. The outer wall, the inner wall, and the end wall define a first passage therebetween. The method also includes coupling the inlet flow conditioner to the centerbody such that the inlet flow conditioner substantially circumscribes the centerbody, such that the inner wall is substantially parallel to the centerbody outer surface, and such that a second passage is defined between the centerbody outer surface and the inner wall.

  10. Density functional theory studies on the solvent effects in Al(H2O)63+ water-exchange reactions: the number and arrangement of outer-sphere water molecules.

    PubMed

    Liu, Li; Zhang, Jing; Dong, Shaonan; Zhang, Fuping; Wang, Ye; Bi, Shuping

    2018-03-07

    Density functional theory (DFT) calculations combined with cluster models are performed at the B3LYP/6-311+G(d,p) level for investigating the solvent effects in Al(H 2 O) 6 3+ water-exchange reactions. A "One-by-one" method is proposed to obtain the most representative number and arrangement of explicit H 2 Os in the second hydration sphere. First, all the possible ways to locate one explicit H 2 O in second sphere (N m ' = 1) based on the gas phase structure (N m ' = 0) are examined, and the optimal pathway (with the lowest energy barrier) for N m ' = 1 is determined. Next, more explicit H 2 Os are added one by one until the inner-sphere is fully hydrogen bonded. Finally, the optimal pathways with N m ' = 0-7 are obtained. The structural and energetic parameters as well as the lifetimes of the transition states are compared with the results obtained with the "Independent-minimum" method and the "Independent-average" method, and all three methods show that the pathway with N m ' = 6 may be representative. Our results give a new idea for finding the representative pathway for water-exchange reactions in other hydrated metal ion systems.

  11. Micro-cone targets for producing high energy and low divergence particle beams

    DOEpatents

    Le Galloudec, Nathalie

    2013-09-10

    The present invention relates to micro-cone targets for producing high energy and low divergence particle beams. In one embodiment, the micro-cone target includes a substantially cone-shaped body including an outer surface, an inner surface, a generally flat and round, open-ended base, and a tip defining an apex. The cone-shaped body tapers along its length from the generally flat and round, open-ended base to the tip defining the apex. In addition, the outer surface and the inner surface connect the base to the tip, and the tip curves inwardly to define an outer surface that is concave, which is bounded by a rim formed at a juncture where the outer surface meets the tip.

  12. Frame-mounted wire management device

    DOEpatents

    Grushkowitz, Tyler; Fischer, Kevin; Danning, Matthew

    2016-09-20

    A wire management device is disclosed. The device comprises a clip comprising an upper planar member and a lower planar member, each planar member having an inner and outer surface, wherein the inner surface of the upper planar member includes a post extending toward the inner surface of the lower planar member, a stem extending from the outer surface of the lower planar member, the stem including two outwardly-extending flanges, each of the first and second outwardly-extending flanges including an edge portion extending toward the outer surface of the lower planar member, and a transverse passage extending along the outer surface of the lower planar member, the transverse passage extending across the stem, wherein the stem has a recessed portion along the transverse passage.

  13. The Sus operon: a model system for starch uptake by the human gut Bacteroidetes

    PubMed Central

    Foley, Matthew H.; Cockburn, Darrell W.; Koropatkin, Nicole M.

    2016-01-01

    Resident bacteria in the densely populated human intestinal tract must efficiently compete for carbohydrate nutrition. The Bacteroidetes, a dominant bacterial phylum in the mammalian gut, encode a plethora of discrete polysaccharide utilization loci (PULs) that are selectively activated to facilitate glycan capture at the cell surface. The most well-studied PUL-encoded glycan-up-take system is the starch utilization system (Sus) of Bacteroides thetaiotaomicron. The Sus includes the requisite proteins for binding and degrading starch at the surface of the cell preceding oligosaccharide transport across the outer membrane for further depolymerization to glucose in the periplasm. All mammalian gut Bacteroidetes possess analogous Sus-like systems that target numerous diverse glycans. In this review, we discuss what is known about the eight Sus proteins of B. thetaiotaomicron that define the Sus-like paradigm of nutrient acquisition that is exclusive to the Gram-negative Bacteroidetes. We emphasize the well-characterized outer membrane proteins SusDEF and the α-amylase SusG, each of which have unique structural features that allow them to interact with starch on the cell surface. Despite the apparent redundancy in starch-binding sites among these proteins, each has a distinct role during starch catabolism. Additionally, we consider what is known about how these proteins dynamically interact and cooperate in the membrane and propose a model for the formation of the Sus outer membrane complex. PMID:27137179

  14. Calculation of Latitude and Longitude for Points on Perimeter of a Circle on a Sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Heidi E.

    2015-08-14

    This document describes the calculation of the Earth-Centered Earth Fixed (ECEF) coordinates for points lying on the perimeter of a circle. Here, the perimeter of the circle lies on the surface of the sphere and the center of the planar circle is below the surface. These coordinates are converted to latitude and longitude for mapping fields on the surface of the earth.

  15. Stable isotope fractionation of tungsten during adsorption on Fe and Mn (oxyhydr)oxides

    NASA Astrophysics Data System (ADS)

    Kashiwabara, Teruhiko; Kubo, Sayuri; Tanaka, Masato; Senda, Ryoko; Iizuka, Tsuyoshi; Tanimizu, Masaharu; Takahashi, Yoshio

    2017-05-01

    The similar, but not identical chemical properties of W compared with Mo suggest that the stable isotope system of W could be a novel proxy to explore the modern and ancient ocean as is the case in the well-established utility of Mo isotopes. We experimentally investigated the isotopic fractionation of W during adsorption on Fe and Mn (oxyhydr)oxides (ferrihydrite and δ-MnO2), a key process in the global ocean budget of this element. Our adsorption experiments confirmed that W isotopes fractionate substantially on both ferrihydrite and δ-MnO2: lighter W isotopes are preferentially adsorbed on both oxides as a result of equilibrium isotopic exchange between dissolved and adsorbed species, and the obtained values of Δ186/183Wliquid-solid (= δ186Wdissolved - δ186Wadsorbed) are 0.76 ± 0.09‰ for ferrihydrite and 0.88 ± 0.21‰ for δ-MnO2 (2σ, n = 6). Compared with the case of Mo isotopes, fractionation of W isotopes is (i) of comparable magnitude between ferrihydrite and δ-MnO2, and (ii) much smaller than that of Mo on δ-MnO2. Our previous XAFS observations and newly-performed DFT calculations both indicate that the observed W isotopic fractionations are caused by the symmetry change from Td (tetrahedral) WO42- to distorted Oh (octahedral) monomeric W species via formation of inner-sphere complexes on both ferrihydrite and δ-MnO2. The similar isotopic fractionations between the two oxides relate to the strong tendency for W to form inner-sphere complexes, which causes the symmetry change, in contrast to the outer-sphere complex of Mo on ferrihydrite. The smaller isotopic fractionation of W compared with Mo on δ-MnO2 despite their similar molecular symmetry seems to be due to their different degrees of distortion of Oh species. Our findings imply that the isotopic composition of W in modern oxic seawater is likely to become heavier relative to the input by removal of lighter W isotopes via adsorption on ferromanganese oxides in analogy with the Mo isotope budget. In contrast, the isotopic composition of W in ancient seawater should have evolved in response to the extent of deposition of both Fe and Mn oxides; this is likely to be different compared with that of the Mo isotopes, which is strongly associated with the occurrence of Mn oxides relative to Fe oxides.

  16. New light-shielding technique for shortening the baffle length of a star sensor

    NASA Astrophysics Data System (ADS)

    Kawano, Hiroyuki; Sato, Yukio; Mitani, Kenji; Kanai, Hiroshi; Hama, Kazumori

    2002-10-01

    We have developed a star sensor with a short baffle of 140 mm. Our baffle provides a Sun rejection angle of 35 degrees with stray light attenuation less than the intensity level of a visual magnitude of Mv = +5 for a wide field of view lens of 13x13 degrees. The application of a new light shielding technique taking advantage of total internal reflection phenomena enables us to reduce the baffle length to about three fourths that of the conventional two-stage baffle. We have introduced two ideas to make the baffle length shorter. The one is the application of a nearly half sphere convex lens as the first focusing lens. The bottom surface reflects the scattering rays with high incident angles of over 50 degrees by using the total internal reflection phenomena. The other is the painting of the surface of the baffle with not frosted but gloss black paint. The gloss black paint enables most of the specular reflection rays to go back to outer space without scattering. We confirm the baffle performance mentioned above by scattering ray tracing simulation and a light attenuation experiment in a darkroom on the ground.

  17. Selectively Patterning Polymer Opal Films via Microimprint Lithography.

    PubMed

    Ding, Tao; Zhao, Qibin; Smoukov, Stoyan K; Baumberg, Jeremy J

    2014-11-01

    Large-scale structural color flexible coatings have been hard to create, and patterning color on them is key to many applications, including large-area strain sensors, wall-size displays, security devices, and smart fabrics. To achieve controlled tuning, a micro-imprinting technique is applied here to pattern both the surface morphology and the structural color of the polymer opal films (POFs). These POFs are made of 3D ordered arrays of hard spherical particles embedded inside soft shells. The soft outer shells cause the POFs to deform upon imprinting with a pre-patterned stamp, driving a flow of the soft polymer and a rearrangement of the hard spheres within the films. As a result, a patterned surface morphology is generated within the POFs and the structural colors are selectively modified within different regions. These changes are dependent on the pressure, temperature, and duration of imprinting, as well as the feature sizes in the stamps. Moreover, the pattern geometry and structural colors can then be further tuned by stretching. Micropattern color generation upon imprinting depends on control of colloidal transport in a polymer matrix under shear flow and brings many potential properties including stretchability and tunability, as well as being of fundamental interest.

  18. The mond external field effect on the dynamics of the globular clusters: general considerations and application to NGC 2419

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derakhshani, Kamran, E-mail: kderakhshani@iasbs.ac.ir

    2014-03-01

    In this paper, we investigate the external field effect in the context of the MOdified Newtonian Dynamics (MOND) on the surface brightness and velocity dispersion profiles of globular clusters (GCs). Using N-MODY, which is an N-body simulation code with a MOND potential solver, we show that the general effect of the external field for diffuse clusters, which obey MOND in most of their parts, is that it pushes the dynamics toward the Newtonian regime. On the other hand, for more compact clusters, which are essentially Newtonian in their inner parts, the external field is effective mainly in the outer partsmore » of compact clusters. As a case study, we then choose the remote Galactic GC NGC 2419. By varying the cluster mass, half-light radius, and mass-to-light ratio, we aim to find a model that will reproduce the observational data most effectively, using N-MODY. We find that even if we take the Galactic external field into account, a Newtonian Plummer sphere represents the observational data better than MOND to an order of magnitude in terms of the total χ{sup 2} of surface brightness and velocity dispersion.« less

  19. The MOND External Field Effect on the Dynamics of the Globular Clusters: General Considerations and Application to NGC 2419

    NASA Astrophysics Data System (ADS)

    Derakhshani, Kamran

    2014-03-01

    In this paper, we investigate the external field effect in the context of the MOdified Newtonian Dynamics (MOND) on the surface brightness and velocity dispersion profiles of globular clusters (GCs). Using N-MODY, which is an N-body simulation code with a MOND potential solver, we show that the general effect of the external field for diffuse clusters, which obey MOND in most of their parts, is that it pushes the dynamics toward the Newtonian regime. On the other hand, for more compact clusters, which are essentially Newtonian in their inner parts, the external field is effective mainly in the outer parts of compact clusters. As a case study, we then choose the remote Galactic GC NGC 2419. By varying the cluster mass, half-light radius, and mass-to-light ratio, we aim to find a model that will reproduce the observational data most effectively, using N-MODY. We find that even if we take the Galactic external field into account, a Newtonian Plummer sphere represents the observational data better than MOND to an order of magnitude in terms of the total χ2 of surface brightness and velocity dispersion.

  20. Bushy sphere dendrites with husk-shaped branches axially spreading out from the core for photo-catalytic oxidation/remediation of toxins.

    PubMed

    Shenashen, Mohamed A; Kawada, Satoshi; Selim, Mahmoud M; Morsy, Wafaa M; Yamaguchi, Hitoshi; Alhamid, Abdulaziz A; Ohashi, Naoki; Ichinose, Izumi; El-Safty, Sherif A

    2017-06-14

    This work describes densely interlinked bushy "tree-like chains" characterized by neatly branched sphere dendrites (bushy sphere dendrites, BSD) with long fan-like, husk-shaped branching paths that extend longitudinally from the core axis of the {110}-exposed plane. We confirmed that the hierarchical dendrite surfaces created bowls of swirled caves along the tree-tube in the mat-like branches. These surfaces had high-index catalytic site facets associated with the formation of ridges/defects on the dominant {110}-top-cover surface. These swirled caves along the branches were completely filled with 50-100 nm poly-CN nano-sphere-fossils with orb-like appearance. Such structural features are key issues of the inherent surface reactivity of a powerful catalyst/trapper, enabling photocatalytic oxidation and trapping of extremely toxic arsenite (AsO 3 3- ) species and photo-induced recovery of arsenate (AsO 4 3- ) products from catalyst surfaces. The light-induced release of produced AsO 4 3- from BSD indicates (i) highly controlled waste collection/management (i.e., recovery), (ii) low cost and ecofriendly photo-adsorbent, (iii) selective trapping of real sample water to produce water-free arsenite species; (iv) multiple reuse cycles of catalysts (i.e., reduced waste volume). Matrixed dendrites, covered with 3D microscopic sphere cores that capture solar-light, trap toxins, and are triggered by light, were designed. These dendrites can withstand indoor and outdoor recovery of toxins from water sources.

  1. Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: a Monte Carlo simulation study in the Debye-Hückel approximation.

    PubMed

    Truzzolillo, D; Bordi, F; Sciortino, F; Sennato, S

    2010-07-14

    We study the effective interaction between differently charged polyelectrolyte-colloid complexes in electrolyte solutions via Monte Carlo simulations. These complexes are formed when short and flexible polyelectrolyte chains adsorb onto oppositely charged colloidal spheres, dispersed in an electrolyte solution. In our simulations the bending energy between adjacent monomers is small compared to the electrostatic energy, and the chains, once adsorbed, do not exchange with the solution, although they rearrange on the particles surface to accommodate further adsorbing chains or due to the electrostatic interaction with neighbor complexes. Rather unexpectedly, when two interacting particles approach each other, the rearrangement of the surface charge distribution invariably produces antiparallel dipolar doublets that invert their orientation at the isoelectric point. These findings clearly rule out a contribution of dipole-dipole interactions to the observed attractive interaction between the complexes, pointing out that such suspensions cannot be considered dipolar fluids. On varying the ionic strength of the electrolyte, we find that a screening length kappa(-1), short compared with the size of the colloidal particles, is required in order to observe the attraction between like-charged complexes due to the nonuniform distribution of the electric charge on their surface ("patch attraction"). On the other hand, by changing the polyelectrolyte/particle charge ratio xi(s), the interaction between like-charged polyelectrolyte-decorated particles, at short separations, evolves from purely repulsive to strongly attractive. Hence, the effective interaction between the complexes is characterized by a potential barrier, whose height depends on the net charge and on the nonuniformity of their surface charge distribution.

  2. Coherent Backscattering Effect in Saturnian vs. Uranian Satellites: Observations and Enhanced MSTM Modeling

    NASA Astrophysics Data System (ADS)

    Pitman, Karly M.; Kolokolova, Ludmilla; Verbiscer, Anne J.; Joseph, Emily C.; Mackowski, Daniel W.; Buratti, Bonnie J.; Momary, Thomas W.

    2014-11-01

    We continue our campaign to extract spectra and measure absorption band parameters from Cassini Visual & Infrared Mapping Spectrometer (VIMS) and ground-based near-infrared observations of saturnian and uranian icy satellites. We compare these spectra to numerical models to study the coherent backscattering effect (CBE; constructive interference of radiation) that should significantly alter the interpretation of spacecraft spectra obtained at solar phase angles α < 2 degrees. To quantify CBE, we extract VIMS spectra for different α from the same location on the icy satellite surface, ideally within +/- 1-2 degrees in subspacecraft latitude and longitude. Using 2013-2014 calibration updates for VIMS, we present groups of VIMS spectra (pairs or trios) for 3 saturnian moons that most closely fit these ideal criteria. We also show models of the light-scattering characteristics of icy surfaces using a new version of the Multiple Sphere T-Matrix (MSTM) code (Mackowski, D., 2014, in Proceedings of the Workshop “Scattering by aggregates (on surfaces)”, Bremen, Germany, 24 - 25. March 2014, p. 6-9). This code, called MSTM4, allows users to build large, thick slabs of dozens of thousands of spheres to model planetary regolith more accurately. The results clearly indicate the influence of CBE on the spectra and show significant dependence on the size of particles and their packing. To extend the low phase angle coverage of Cassini VIMS data and examine CBE on darker surfaces, we also compare to spectra of several uranian satellites (Titania, Oberon Ariel) acquired using Triplespec ( 3500) at Apache Point Observatory, New Mexico. Synthesizing such results will ultimately place limits on the size and packing fraction of icy satellite regolith particles and aid in interpretations of the structure, composition, and evolution of icy satellites.This work is supported by NASA’s Outer Planets Research program (NNX12AM76G; PI Pitman), Planetary Astronomy program (NNX09AD06G; PI Verbiscer), and NASA’s Advanced Supercomputing Division. Calibrated Cassini VIMS data cubes appear courtesy of the Cassini VIMS team and the PDS.

  3. Real-time observation of cation exchange kinetics and dynamics at the muscovite-water interface

    DOE PAGES

    Lee, Sang Soo; Fenter, Paul; Nagy, Kathryn L.; ...

    2017-06-09

    Here, ion exchange at charged solid–liquid interfaces is central to a broad range of chemical and transport phenomena. Real-time observations of adsorption/desorption at the molecular-scale elucidate exchange reaction pathways. Here, we report temporal variation in the distribution of Rb + species at the muscovite (001)–water interface during exchange with Na +. Time-resolved resonant anomalous X-ray reflectivity measurements reveal that Rb + desorption occurs over several tens of seconds during which thermodynamically stable inner-sphere Rb + slowly transforms to less stable outer-sphere Rb + at 25°C. In contrast, Rb + adsorption is about twice as fast, proceeding quickly from Rb +more » in the bulk solution to the stable inner-sphere species. The Arrhenius plot of the adsorption/desorption rate constants measured from 9 to 55°C shows that the pre-exponential factor for desorption is significantly smaller than for adsorption, indicating that this reduced attempt frequency of cation detachment largely explains the slow cation exchange processes at the interface.« less

  4. Colloidal Material Box: In-situ Observations of Colloidal Self-Assembly and Liquid Crystal Phase Transitions in Microgravity

    NASA Astrophysics Data System (ADS)

    Li, WeiBin; Lan, Ding; Sun, ZhiBin; Geng, BaoMing; Wang, XiaoQing; Tian, WeiQian; Zhai, GuangJie; Wang, YuRen

    2016-05-01

    To study the self-assembly behavior of colloidal spheres in the solid/liquid interface and elucidate the mechanism of liquid crystal phase transition under microgravity, a Colloidal Material Box (CMB) was designed which consists of three modules: (i) colloidal evaporation experimental module, made up of a sample management unit, an injection management unit and an optical observation unit; (ii) liquid crystal phase transition experimental module, including a sample management unit and an optical observation unit; (iii) electronic control module. The following two experimental plans will be performed inside the CMB aboard the SJ-10 satellite in space. (i) Self-assembly of colloidal spheres (with and without Au shell) induced by droplet evaporation, allowing observation of the dynamic process of the colloidal spheres within the droplet and the change of the droplet outer profile during evaporation; (ii) Phase behavior of Mg2Al LDHs suspensions in microgravity. The experimental results will be the first experimental observations of depositing ordered colloidal crystals and their self-assembly behavior under microgravity, and will illustrate the influence of gravity on liquid crystal phase transition.

  5. Radar Transponder Antenna Systems Evaluation Handbook

    DTIC Science & Technology

    2006-07-01

    Poincare Sphere Usage. The plane geometry... Poincare Sphere any coupling factor is numerically equal to the cosine of half the distance between states on the spherical surface. 5-52 Then in...Erhcp, Elhcp) on the Poincare sphere (Paragraph 5.14.1). As such, any antenna whose polarization lies on this plane receives the same

  6. NDE of Space Shuttle Solid Rocket Motor field joint

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.

    1987-01-01

    One of the most critical areas for inspection in the Space Shuttle Solid Rocket Motors is the bond between the steel case and rubber insulation in the region of the field joints. The tang-and-clevis geometry of the field joints is sufficiently complex to prohibit the use of resonance-based techniques. One approach we are investigating is to interrogate the steel-insulation bondline in the tang and clevis regions using surface-travelling waves. A low-frequency contact surface wave transmitting array transducer is under development at our laboratory for this purpose. The array is placed in acoustic contact with the steel and surface waves are launched on the inside surface or the clevis leg which propagate along the steel-insulation interface. As these surface waves propagate along the bonded surface, the magnitude of the ultrasonic energy leaking into the steel is monitored on the outer surface of the case. Our working hypothesis is that the magnitude of energy received at the outer surface of the case is dependent upon the integrity of the case-insulation bond, with less attenuation for propagation along a disbond due to imperfect acoustic coupling between the steel and rubber. Measurements on test specimens indicate a linear relationship between received signal amplitude and the length of good bend between the transmitter and receiver, suggesting the validity of this working hypothesis.

  7. Modelling mass diffusion for a multi-layer sphere immersed in a semi-infinite medium: application to drug delivery.

    PubMed

    Carr, Elliot J; Pontrelli, Giuseppe

    2018-04-12

    We present a general mechanistic model of mass diffusion for a composite sphere placed in a large ambient medium. The multi-layer problem is described by a system of diffusion equations coupled via interlayer boundary conditions such as those imposing a finite mass resistance at the external surface of the sphere. While the work is applicable to the generic problem of heat or mass transfer in a multi-layer sphere, the analysis and results are presented in the context of drug kinetics for desorbing and absorbing spherical microcapsules. We derive an analytical solution for the concentration in the sphere and in the surrounding medium that avoids any artificial truncation at a finite distance. The closed-form solution in each concentric layer is expressed in terms of a suitably-defined inverse Laplace transform that can be evaluated numerically. Concentration profiles and drug mass curves in the spherical layers and in the external environment are presented and the dependency of the solution on the mass transfer coefficient at the surface of the sphere analyzed. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Rakesh K.; Poppenhaeger, Katja; Wolk, Scott J.

    Despite the lack of a shear-rich tachocline region, low-mass fully convective (FC) stars are capable of generating strong magnetic fields, indicating that a dynamo mechanism fundamentally different from the solar dynamo is at work in these objects. We present a self-consistent three-dimensional model of magnetic field generation in low-mass FC stars. The model utilizes the anelastic magnetohydrodynamic equations to simulate compressible convection in a rotating sphere. A distributed dynamo working in the model spontaneously produces a dipole-dominated surface magnetic field of the observed strength. The interaction of this field with the turbulent convection in outer layers shreds it, producing small-scalemore » fields that carry most of the magnetic flux. The Zeeman–Doppler-Imaging technique applied to synthetic spectropolarimetric data based on our model recovers most of the large-scale field. Our model simultaneously reproduces the morphology and magnitude of the large-scale field as well as the magnitude of the small-scale field observed on low-mass FC stars.« less

  9. Manufacture of a 1.7m prototype of the GMT primary mirror segments

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Burge, J. H.; Miller, S. M.; Smith, B. K.; Zehnder, R.; Zhao, C.

    2006-06-01

    We have nearly completed the manufacture of a 1.7 m off-axis mirror as part of the technology development for the Giant Magellan Telescope. The mirror is an off-axis section of a 5.3 m f/0.73 parent paraboloid, making it roughly a 1:5 model of the outer 8.4 m GMT segment. The 1.7 m mirror will be the primary mirror of the New Solar Telescope at Big Bear Solar Observatory. It has a 2.7 mm peak-to-valley departure from the best-fit sphere, presenting a serious challenge in terms of both polishing and measurement. The mirror was polished with a stressed lap, which bends actively to match the local curvature at each point on the mirror surface, and works for asymmetric mirrors as well as symmetric aspheres. It was measured using a hybrid reflective-diffractive null corrector to compensate for the mirror's asphericity. Both techniques will be applied in scaled-up versions to the GMT segments.

  10. Highly Monodisperse Microporous Polymeric and Carbonaceous Nanospheres with Multifunctional Properties

    PubMed Central

    Ouyang, Yi; Shi, Huimin; Fu, Ruowen; Wu, Dingcai

    2013-01-01

    Fabrication of monodisperse porous polymeric nanospheres with diameters below 500 nm remains a great challenge, due to serious crosslinking between neighboring nanospheres during pore-making process. Here we show how a versatile hypercrosslinking strategy can be used to prepare monodisperse microporous polystyrene nanospheres (MMPNSs) with diameters as low as ca. 190 nm. In our approach, an unreactive crosslinked PS outer skin as protective layer can be in-situ formed at the very beginning of hypercrosslinking treatment to minimize the undesired inter-sphere crosslinking. The as-prepared MMPNSs with a well-developed microporous network demonstrate unusual multifunctional properties, including remarkable colloidal stability in aqueous solution, good adsorption-release property for drug, and large adsorption capacity toward organic vapors. Surprisingly, MMPNSs can be directly transformed into high-surface-area monodisperse carbon nanospheres with good colloidal stability via a facile hydrothermal-assisted carbonization procedure. These findings provide a new benchmark for fabricating well-defined porous nanospheres with great promise for various applications. PMID:23478487

  11. The Escherichia coli Lpt transenvelope protein complex for lipopolysaccharide export is assembled via conserved structurally homologous domains.

    PubMed

    Villa, Riccardo; Martorana, Alessandra M; Okuda, Suguru; Gourlay, Louise J; Nardini, Marco; Sperandeo, Paola; Dehò, Gianni; Bolognesi, Martino; Kahne, Daniel; Polissi, Alessandra

    2013-03-01

    Lipopolysaccharide is a major glycolipid component in the outer leaflet of the outer membrane (OM), a peculiar permeability barrier of Gram-negative bacteria that prevents many toxic compounds from entering the cell. Lipopolysaccharide transport (Lpt) across the periplasmic space and its assembly at the Escherichia coli cell surface are carried out by a transenvelope complex of seven essential Lpt proteins spanning the inner membrane (LptBCFG), the periplasm (LptA), and the OM (LptDE), which appears to operate as a unique machinery. LptC is an essential inner membrane-anchored protein with a large periplasm-protruding domain. LptC binds the inner membrane LptBFG ABC transporter and interacts with the periplasmic protein LptA. However, its role in lipopolysaccharide transport is unclear. Here we show that LptC lacking the transmembrane region is viable and can bind the LptBFG inner membrane complex; thus, the essential LptC functions are located in the periplasmic domain. In addition, we characterize two previously described inactive single mutations at two conserved glycines (G56V and G153R, respectively) of the LptC periplasmic domain, showing that neither mutant is able to assemble the transenvelope machinery. However, while LptCG56V failed to copurify any Lpt component, LptCG153R was able to interact with the inner membrane protein complex LptBFG. Overall, our data further support the model whereby the bridge connecting the inner and outer membranes would be based on the conserved structurally homologous jellyroll domain shared by five out of the seven Lpt components.

  12. The Escherichia coli Lpt Transenvelope Protein Complex for Lipopolysaccharide Export Is Assembled via Conserved Structurally Homologous Domains

    PubMed Central

    Villa, Riccardo; Martorana, Alessandra M.; Okuda, Suguru; Gourlay, Louise J.; Nardini, Marco; Sperandeo, Paola; Dehò, Gianni; Bolognesi, Martino; Kahne, Daniel

    2013-01-01

    Lipopolysaccharide is a major glycolipid component in the outer leaflet of the outer membrane (OM), a peculiar permeability barrier of Gram-negative bacteria that prevents many toxic compounds from entering the cell. Lipopolysaccharide transport (Lpt) across the periplasmic space and its assembly at the Escherichia coli cell surface are carried out by a transenvelope complex of seven essential Lpt proteins spanning the inner membrane (LptBCFG), the periplasm (LptA), and the OM (LptDE), which appears to operate as a unique machinery. LptC is an essential inner membrane-anchored protein with a large periplasm-protruding domain. LptC binds the inner membrane LptBFG ABC transporter and interacts with the periplasmic protein LptA. However, its role in lipopolysaccharide transport is unclear. Here we show that LptC lacking the transmembrane region is viable and can bind the LptBFG inner membrane complex; thus, the essential LptC functions are located in the periplasmic domain. In addition, we characterize two previously described inactive single mutations at two conserved glycines (G56V and G153R, respectively) of the LptC periplasmic domain, showing that neither mutant is able to assemble the transenvelope machinery. However, while LptCG56V failed to copurify any Lpt component, LptCG153R was able to interact with the inner membrane protein complex LptBFG. Overall, our data further support the model whereby the bridge connecting the inner and outer membranes would be based on the conserved structurally homologous jellyroll domain shared by five out of the seven Lpt components. PMID:23292770

  13. Electromagnetic braking revisited with a magnetic point dipole model

    NASA Astrophysics Data System (ADS)

    Land, Sara; McGuire, Patrick; Bumb, Nikhil; Mann, Brian P.; Yellen, Benjamin B.

    2016-04-01

    A theoretical model is developed to predict the trajectory of magnetized spheres falling through a copper pipe. The derive magnetic point dipole model agrees well with the experimental trajectories for NdFeB spherical magnets of varying diameter, which are embedded inside 3D printed shells with fixed outer dimensions. This demonstration of electrodynamic phenomena and Lenz's law serves as a good laboratory exercise for physics, electromagnetics, and dynamics classes at the undergraduate level.

  14. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Dongli; Zhang, Zhen; Li, Jieyao

    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be seriallymore » passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells.« less

  15. High-Resolution Scanning Electron Microscopy and Immuno-Gold Labeling of the Nuclear Lamina and Nuclear Pore Complex.

    PubMed

    Goldberg, Martin W

    2016-01-01

    Scanning electron microscopy (SEM) is a technique used to image surfaces. Field emission SEMs (feSEMs) can resolve structures that are ~0.5-1.5 nm apart. FeSEM, therefore is a useful technique for imaging molecular structures that exist at surfaces such as membranes. The nuclear envelope consists of four membrane surfaces, all of which may be accessible for imaging. Imaging of the cytoplasmic face of the outer membrane gives information about ribosomes and cytoskeletal attachments, as well as details of the cytoplasmic peripheral components of the nuclear pore complex, and is the most easily accessed surface. The nucleoplasmic face of the inner membrane is easily accessible in some cells, such as amphibian oocytes, giving valuable details about the organization of the nuclear lamina and how it interacts with the nuclear pore complexes. The luminal faces of both membranes are difficult to access, but may be exposed by various fracturing techniques. Protocols are presented here for the preparation, labeling, and feSEM imaging of Xenopus laevis oocyte nuclear envelopes.

  16. Modification of titanium surfaces by adding antibiotic-loaded PHB spheres and PEG for biomedical applications.

    PubMed

    Rodríguez-Contreras, Alejandra; Marqués-Calvo, María Soledad; Gil, Francisco Javier; Manero, José María

    2016-08-01

    Novel researches are focused on the prevention and management of post-operative infections. To avoid this common complication of implant surgery, it is preferable to use new biomaterials with antibacterial properties. Therefore, the aim of this work is to develop a method of combining the antibacterial properties of antibiotic-loaded poly(3-hydroxybutyrate) (PHB) nano- and micro-spheres and poly(ethylene glycol) (PEG) as an antifouling agent, with titanium (Ti), as the base material for implants, in order to obtain surfaces with antibacterial activity. The Ti surfaces were linked to both PHB particles and PEG by a covalent bond. This attachment was carried out by firstly activating the surfaces with either Oxygen plasma or Sodium hydroxide. Further functionalization of the activated surfaces with different alkoxysilanes allows the reaction with PHB particles and PEG. The study confirms that the Ti surfaces achieved the antibacterial properties by combining the antibiotic-loaded PHB spheres, and PEG as an antifouling agent.

  17. Strongly Modulated Friction of a Film-Terminated Ridge-Channel Structure.

    PubMed

    He, Zhenping; Hui, Chung-Yuen; Levrard, Benjamin; Bai, Ying; Jagota, Anand

    2016-05-26

    Natural contacting surfaces have remarkable surface mechanical properties, which has led to the development of bioinspired surface structures using rubbery materials with strongly enhanced adhesion and static friction. However, sliding friction of structured rubbery surfaces is almost always significantly lower than that of a flat control, often due to significant loss of contact. Here we show that a film-terminated ridge-channel structure can strongly enhance sliding friction. We show that with properly chosen materials and geometrical parameters the near surface structure undergoes mechanical instabilities along with complex folding and sliding of internal interfaces, which is responsible for the enhancement of sliding friction. Because this structure shows no enhancement of adhesion under normal indentation by a sphere, it breaks the connection between energy loss during normal and shear loading. This makes it potentially interesting in many applications, for instance in tires, where one wishes to minimize rolling resistance (normal loading) while maximizing sliding friction (shear loading).

  18. Computation of resistive instabilities by matched asymptotic expansions

    DOE PAGES

    Glasser, A. H.; Wang, Z. R.; Park, J. -K.

    2016-11-17

    Here, we present a method for determining the linear resistive magnetohydrodynamic (MHD) stability of an axisymmetric toroidal plasma, based on the method of matched asymptotic expansions. The plasma is partitioned into a set of ideal MHD outer regions, connected through resistive MHD inner regions about singular layers where q = m/n, with m and n toroidal mode numbers, respectively, and q the safety factor. The outer regions satisfy the ideal MHD equations with zero-frequency, which are identical to the Euler-Lagrange equations for minimizing the potential energy delta W. The solutions to these equations go to infinity at the singular surfaces.more » The inner regions satisfy the equations of motion of resistive MHD with a finite eigenvalue, resolving the singularity. Both outer and inner regions are solved numerically by newly developed singular Galerkin methods, using specialized basis functions. These solutions are matched asymptotically, providing a complex dispersion relation which is solved for global eigenvalues and eigenfunctions in full toroidal geometry. The dispersion relation may have multiple complex unstable roots, which are found by advanced root-finding methods. These methods are much faster and more robust than the previous numerical methods. The new methods are applicable to more challenging high-pressure and strongly shaped plasma equilibria and generalizable to more realistic inner region dynamics. In the thermonuclear regime, where the outer and inner regions overlap, they are also much faster and more accurate than the straight-through methods, which treat the resistive MHD equations in the whole plasma volume.« less

  19. Floating nut retention system

    NASA Technical Reports Server (NTRS)

    Charles, J. F.; Theakston, H. A. (Inventor)

    1980-01-01

    A floating nut retention system includes a nut with a central aperture. An inner retainer plate has an opening which is fixedly aligned with the nut aperture. An outer retainer member is formed of a base plate having an opening and a surface adjacent to a surface of the inner retainer plate. The outer retainer member includes a securing mechanism for retaining the inner retainer plate adjacent to the outer retainer member. The securing mechanism enables the inner retainer plate to float with respect to the outer retainer number, while simultaneously forming a bearing surface for inner retainer plate.

  20. Retention Mechanisms of Citric Acid in Ternary Kaolinite-Fe(III)-Citrate Acid Systems Using Fe K-edge EXAFS and L3,2-edge XANES Spectroscopy

    PubMed Central

    Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald

    2016-01-01

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. These findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils. PMID:27212680

  1. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L 3,2-edge XANES spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jianjun; Wang, Jian; Pan, Weinan

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L- 3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorptionmore » and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less

  2. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L 3,2-edge XANES spectroscopy

    DOE PAGES

    Yang, Jianjun; Wang, Jian; Pan, Weinan; ...

    2016-05-23

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L- 3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorptionmore » and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less

  3. Characterization of U(VI)-carbonato ternary complexes on hematite: EXAFS and electrophoretic mobility measurements

    USGS Publications Warehouse

    Bargar, John R.; Reitmeyer, Rebecca; Lenhart, John J.; Davis, James A.

    2000-01-01

    We have measured U(VI) adsorption on hematite using EXAFS spectroscopy and electrophoresis under conditions relevant to surface waters and aquifers (0.01 to 10 μM dissolved uranium concentrations, in equilibrium with air, pH 4.5 to 8.5). Both techniques suggest the existence of anionic U(VI)-carbonato ternary complexes. Fits to EXAFS spectra indicate that U(VI) is simultaneously coordinated to surface FeO6 octahedra and carbonate (or bicarbonate) ligands in bidentate fashions, leading to the conclusion that the ternary complexes have an inner-sphere metal bridging (hematite-U(VI)-carbonato) structure. Greater than or equal to 50% of adsorbed U(VI) was comprised of monomeric hematite-U(VI)-carbonato ternary complexes, even at pH 4.5. Multimeric U(VI) species were observed at pH ≥ 6.5 and aqueous U(VI) concentrations approximately an order of magnitude more dilute than the solubility of crystalline β-UO2(OH)2. Based on structural constraints, these complexes were interpreted as dimeric hematite-U(VI)-carbonato ternary complexes. These results suggest that Fe-oxide-U(VI)-carbonato complexes are likely to be important transport-limiting species in oxic aquifers throughout a wide range of pH values.

  4. Why do rough surfaces appear glossy?

    PubMed

    Qi, Lin; Chantler, Mike J; Siebert, J Paul; Dong, Junyu

    2014-05-01

    The majority of work on the perception of gloss has been performed using smooth surfaces (e.g., spheres). Previous studies that have employed more complex surfaces reported that increasing mesoscale roughness increases perceived gloss [Psychol. Sci.19, 196 (2008), J. Vis.10(9), 13 (2010), Curr. Biol.22, 1909 (2012)]. We show that the use of realistic rendering conditions is important and that, in contrast to [Psychol. Sci.19, 196 (2008), J. Vis.10(9), 13 (2010)], after a certain point increasing roughness further actually reduces glossiness. We investigate five image statistics of estimated highlights and show that for our stimuli, one in particular, which we term "percentage of highlight area," is highly correlated with perceived gloss. We investigate a simple model that explains the unimodal, nonmonotonic relationship between mesoscale roughness and percentage highlight area.

  5. Structure and Bonding in Uranyl(VI) Peroxide and Crown Ether Complexes; Comparison of Quantum Chemical and Experimental Data.

    PubMed

    Vallet, Valérie; Grenthe, Ingmar

    2017-12-18

    The structure, chemical bonding, and thermodynamics of alkali ions in M[12-crown-4] + , M[15-crown-5] + , and M[18-crown-6] + , M[UO 2 (O 2 )(OH 2 ) 2 ] + 4,5 , and M[UO 2 (O 2 )(OH)(OH 2 )] n 1-n (n = 4, 5) complexes have been explored by using quantum chemical (QC) calculations at the ab initio level. The chemical bonding has been studied in the gas phase in order to eliminate solvent effects. QTAIM analysis demonstrates features that are very similar in all complexes and typical for electrostatic M-O bonds, but with the M-O bonds in the uranyl peroxide systems about 20 kJ mol -1 stronger than in the corresponding crown ether complexes. The regular decrease in bond strength with increasing M-O bond distance is consistent with predominantly electrostatic contributions. Energy decomposition of the reaction energies in the gas phase and solvent demonstrates that the predominant component of the total attractive (ΔE elec + ΔE orb ) energy contribution is the electrostatic component. There are no steric constraints for coordination of large cations to small rings, because the M + ions are located outside the ring plane, [O n ], formed by the oxygen donors in the ligands; coordination of ions smaller than the ligand cavity results in longer than normal M-O distances or in a change in the number of bonds, both resulting in weaker complexes. The Gibbs energies, enthalpies, and entropies of reaction calculated using the conductor-like screening model, COSMO, to account for solvent effects deviate significantly from experimental values in water, while those in acetonitrile are in much better agreement. Factors that might affect the selectivity are discussed, but our conclusion is that present QC methods are not accurate enough to describe the rather small differences in selectivity, which only amount to 5-10 kJ mol -1 . We can, however, conclude on the basis of QC and experimental data that M[crown ether] + complexes in the strongly coordinating water solvent are of outer-sphere type, [M(OH 2 ) n + ][crown ether], while those in weakly coordinating acetonitrile are of inner-sphere type, [M-crown ether] + . The observation that the M[UO 2 (O 2 )(OH)(OH 2 )] n 1-n complexes are more stable in solution than those of M[crown ether] + is an effect of the different charges of the rings.

  6. Effects of beta-cyclodextrin on the structure of sphingomyelin/cholesterol model membranes.

    PubMed

    Jablin, Michael S; Flasiński, Michał; Dubey, Manish; Ratnaweera, Dilru R; Broniatowski, Marcin; Dynarowicz-Łatka, Patrycja; Majewski, Jarosław

    2010-09-08

    The interaction of beta-cyclodextrin (beta-CD) with mixed bilayers composed of sphingomylein and cholesterol (Chol) above and below the accepted stable complexation ratio (67:33) was investigated. Membranes with the same (symmetric) and different (asymmetric) compositions in their inner and outer leaflets were deposited at surface pressures of 20, 30, and 40 mN/m at the solid-liquid interface. Using neutron reflectometry, membranes of various global molar ratios (defined as the sum of the molar ratios of the inner and outer leaflets), were characterized before and after beta-CD was added to the subphase. The structure of bilayers with global molar ratios at or above the stable complexation ratio was unchanged by beta-CD, indicating that beta-CD is unable to remove sphingomyelin or complexed Chol. However, beta-CD removed all uncomplexed Chol from bilayers composed of global molar ratios below the stable complexation ratio. The removal of Chol by beta-CD was independent of the initial structure of the membranes as deposited, suggesting that asymmetric membranes homogenize by the exchange of molecules between leaflets. The interaction of beta-CD with the aforementioned membranes was independent of the deposition surface pressure except for a symmetric 50:50 membrane deposited at 40 mN/m. The scattering from 50:50 bilayers with higher packing densities (deposited at 40 mN/m) was unaffected by beta-CD, suggesting that the removal of Chol can depend on both the composition and packing density of the membrane. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. The "Magical" Sphere: Uncovering the Secret

    ERIC Educational Resources Information Center

    Petruševski, Vladimir M.; Bukleski, Miha

    2006-01-01

    A red sphere is seen at the bottom of a sealed glass tube filled with a colorless, transparent liquid. Holding the tube for a short period makes the sphere rise slowly from the bottom until it finally floats on the surface of the liquid. Instructions for preparing the demonstration are given, together with an explanation of the phenomenon. A…

  8. Carbon dioxide-assisted fabrication of highly uniform submicron-sized colloidal carbon spheres via hydrothermal carbonization using soft drink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Gun-Hee; Shin, Yongsoon; Arey, Bruce W.

    An eco-friendly and economical method for the formation of uniform-sized carbon spheres by hydrothermal dehydration/condensation of a commercial carbonated beverage at 200 oC is reported. CO2 dissolved in the beverage accelerates the dehydration kinetics of the dissolved sugar molecules leading to production of homogeneous carbon spheres having a diameter less than 850 nm. In the presence of CO2, the rough surface of these carbon spheres likely results from continuous Ostwald ripening of constituent microscopic carbon-containing spheres that are formed by subsequent polymerization of intermediate HMF molecules.

  9. Heat shield characterization: Outer planet atmospheric entry probe

    NASA Technical Reports Server (NTRS)

    Mezines, S. A.; Rusert, E. L.; Disser, E. F.

    1976-01-01

    A full scale carbon phenolic heat shield was fabricated for the Outer Planet Probe in order to demonstrate the feasibility of molding large carbon phenolic parts with a new fabrication processing method (multistep). The sphere-cone heat shield was molded as an integral unit with the nose cap plies configured into a double inverse chevron shape to achieve the desired ply orientation. The fabrication activity was successful and the feasibility of the multistep processing technology was established. Delaminations or unbonded plies were visible on the heat shield and resulted from excessive loss of resin and lack of sufficient pressure applied on the part during the curing cycle. A comprehensive heat shield characterization test program was conducted, including: nondestructive tests with the full scale heat shield and thermal and mechanical property tests with small test specimen.

  10. Effect of surface mobility on the particle sliding along a bubble or a solid sphere.

    PubMed

    Wang, Weixing; Zhou, Zhiang; Nandakumar, K; Xu, Zhenghe; Masliyah, Jacob H

    2003-03-01

    The sliding velocity of glass beads on a spherical surface, made either of an air bubble or of a glass sphere held stationary, is measured to investigate the effect of surface mobility on the particle sliding velocity. The sliding process is recorded with a digital camera and analyzed frame by frame. The sliding glass bead was found to accelerate with increasing angular position on the collector's surface. It reaches a maximum velocity at an angular position of about 100 degrees and then, under certain conditions, the glass bead leaves the surface of the collector. The sliding velocity of the glass bead depends strongly on the surface mobility of a bubble, decreasing with decreasing surface mobility. By a mobile surface we mean one which cannot set up resistive forces to an applied stress on the surface. The sliding velocity on a rigid surface, such as a glass sphere, is much lower than that on a mobile bubble surface. The sliding velocity can be described through a modified Stokes equation. A numerical factor in the modified Stokes equation is determined by fitting the experimental data and is found to increase with decreasing surface mobility. Hydrophobic glass beads sliding on a hydrophobic glass sphere were found to stick at the point of impact without sliding if the initial angular position of the impact is less than some specific angle, which is defined as the critical sticking angle. The sticking of the glass beads can be attributed to the capillary contracting force created by the formation of a cavity due to spontaneous receding of the nonwetting liquid from the contact zone. The relationship between the critical sticking angle and the particle size is established based on the Yushchenko [J. Colloid Interface Sci. 96 (1983) 307] analysis.

  11. Mesoporous carbon spheres with controlled porosity for high-performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dexian; Fu, Aiping; Li, Hongliang; Wang, Yiqian; Guo, Peizhi; Liu, Jingquan; Zhao, Xiu Song

    2015-07-01

    Mesoporous carbon (MC) spheres with hierarchical pores, controlled pore volume and high specific surface areas have been prepared by a mass-producible spray drying assisted template method using sodium alginate as carbon precursor and commercial colloidal silica particles as hard template. The resulting MC spheres, possessing hierarchical pores in the range of 3-30 nm, are employed as conductive matrices for the preparation of cathode materials for lithium-sulfur batteries. A high pressure induced one-step impregnation of elemental sulfur into the pore of the MC spheres has been exploited. The electrochemical performances of sulfur-impregnated MC spheres (S-MC) derived from MC spheres with different pore volume and specific surface area but with the same sulfur loading ratio of 60 wt% (S-MC-X-60) have been investigated in details. The S-MC-4-60 composite cathode material displayed a high initial discharge capacity of 1388 mAhg-1 and a good cycling stability of 857 mAhg-1 after 100 cycles at 0.2C, and shows also excellent rate capability of 864 mAhg-1 at 2C. More importantly, the sulfur loading content in MC-4 spheres can reach as high as 80%, and it still can deliver a capacity of 569 mAhg-1 after 100 cycles at 0.2C.

  12. Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water.

    PubMed

    Vakarelski, Ivan U; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2014-08-21

    We investigate the dynamic effects of a Leidenfrost vapour layer sustained on the surface of heated steel spheres during free fall in water. We find that a stable vapour layer sustained on the textured superhydrophobic surface of spheres falling through 95 °C water can reduce the hydrodynamic drag by up to 75% and stabilize the sphere trajectory for the Reynolds number between 10(4) and 10(6), spanning the drag crisis in the absence of the vapour layer. For hydrophilic spheres under the same conditions, the transition to drag reduction and trajectory stability occurs abruptly at a temperature different from the static Leidenfrost point. The observed drag reduction effects are attributed to the disruption of the viscous boundary layer by the vapour layer whose thickness depends on the water temperature. Both the drag reduction and the trajectory stabilization effects are expected to have significant implications for development of sustainable vapour layer based technologies.

  13. Numerical Solution of Light Scattered from and Transmitted through a Rough Dielectric Surface with Applications to Periodic Roughness and Isolated Structures

    NASA Technical Reports Server (NTRS)

    Sun, Wenbo; Videnn, Gorden; Lin, Bing; Hu, Yongxiang

    2007-01-01

    Light scattering and transmission by rough surfaces are of considerable interest in a variety of applications including remote sensing and characterization of surfaces. In this work, the finite-difference time domain technique is applied to calculate the scattered and transmitted electromagnetic fields of an infinite periodic rough surface. The elements of Mueller matrix for scattered light are calculated by an integral of the near fields over a significant number of periods of the surface. The normalized Mueller matrix elements of the scattered light and the spatial distribution of the transmitted flux for a monolayer of micron-sized dielectric spheres on a silicon substrate are presented. The numerical results show that the nonzero Mueller matrix elements of the system of the monolayer of dielectric spheres on a silicon substrate have specific maxima at some scattering angles. These maxima may be used in characterization of the feature of the system. For light transmitted through the monolayer of spheres, our results show that the transmitted energy focuses around the ray passing through centers of the spheres. At other locations, the transmitted flux is very small. The technique also may be used to calculate the perturbance of the electromagnetic field due to the presence of an isolated structure on the substrate.

  14. Study of adhesion and friction properties on a nanoparticle gradient surface: transition from JKR to DMT contact mechanics.

    PubMed

    Ramakrishna, Shivaprakash N; Nalam, Prathima C; Clasohm, Lucy Y; Spencer, Nicholas D

    2013-01-08

    We have previously investigated the dependence of adhesion on nanometer-scale surface roughness by employing a roughness gradient. In this study, we correlate the obtained adhesion forces on nanometer-scale rough surfaces to their frictional properties. A roughness gradient with varying silica particle (diameter ≈ 12 nm) density was prepared, and adhesion and frictional forces were measured across the gradient surface in perfluorodecalin by means of atomic force microscopy with a polyethylene colloidal probe. Similarly to the pull-off measurements, the frictional forces initially showed a reduction with decreasing particle density and later an abrupt increase as the colloidal sphere began to touch the flat substrate beneath, at very low particle densities. The friction-load relation is found to depend on the real contact area (A(real)) between the colloid probe and the underlying particles. At high particle density, the colloidal sphere undergoes large deformations over several nanoparticles, and the contact adhesion (JKR type) dominates the frictional response. However, at low particle density (before the colloidal probe is in contact with the underlying surface), the colloidal sphere is suspended by a few particles only, resulting in local deformations of the colloid sphere, with the frictional response to the applied load being dominated by long-range, noncontact (DMT-type) interactions with the substrate beneath.

  15. System and method for underwater radiography

    DOEpatents

    Hunter, James; Keck, Danny Lee; Sims, Jr., James Rae; Watson, Scott Avery

    2015-01-20

    A system for subsea imaging comprises a first plate having an inner surface, an outer surface, and a cavity formed in the inner surface. In addition, the system comprises a phosphor imaging plate disposed in the cavity. Further, the system comprises a second plate having an inner surface facing the inner surface of the first plate and an outer surface facing away from the outer surface of the first plate. Still further, the system comprises a seal member disposed between the inner surface of the first plate and the inner surface of the second plate. The seal member extends around the perimeter of the cavity and is configured to seal the phosphor imaging plate and the cavity from intrusion water.

  16. Hot gas path component cooling system

    DOEpatents

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  17. Noncircular features in Saturn's rings III: The Cassini Division

    NASA Astrophysics Data System (ADS)

    French, Richard G.; Nicholson, Philip D.; McGhee-French, Colleen A.; Lonergan, Katherine; Sepersky, Talia; Hedman, Mathew M.; Marouf, Essam A.; Colwell, Joshua E.

    2016-08-01

    We have conducted a comprehensive survey of 22 sharp-edged ringlets and gaps in the Cassini Division of Saturn's rings, making use of nearly 200 high-SNR stellar and radio occultation chords obtained by the Cassini VIMS, UVIS, and RSS instruments between 2005 and 2013. We measure eccentricities from as small as ae = 80 m to nearly 30 km, free normal modes with amplitudes from ∼ 0.1 to 4.1 km, and detectable inclinations as small as asini = 0.2 km. Throughout the entire region, the Mimas 2.1 ILR (inner Lindblad resonance) produces systematic forced m = 2 distortions that quantitatively match the expected amplitudes, phases, and pattern speed. The narrow Russell, Jeffreys, Kuiper, Bessel, and Barnard gaps are simplest, and do not contain dense ringlets. Their outer edges are generally quite sharp and four of them are circular to within ∼0.25 km, whereas most of the inner gap edges have significant eccentricities. Three gaps are more complex, containing one or more isolated ringlets. First among these is the 361 km-wide Huygens gap, containing two ringlets. The wider Huygens ringlet has nearly identical eccentricities on the two edges, in addition to OLR-type (outer Lindblad resonance) normal modes on the inner edge and ILR-type modes on the outer edge. A secondary m = 1 (eccentric) mode is present on the outer edge of the ringlet, with a pattern speed similar to that of the B ring's outer edge. Variations in the ringlet's width are complex, but are statistically consistent with the expected magnitudes resulting from the random superposition of the multiple normal modes on the two edges. Also present in the Huygens gap is the very narrow so-called Strange ringlet, with a substantial eccentricity and inclination, as well as both ILR- and OLR-type normal modes. The 100 km-wide Herschel gap's inner edge is highly eccentric, with at least seven ILR-type normal modes. The outer gap edge is also eccentric, and hosts four OLR-type normal modes, and a secondary m = 1 mode with a pattern speed quite close to that of the B ring's outer edge. The Herschel ringlet itself is eccentric and inclined, but neither the pericenters nor the nodes are well-aligned. The third of the complex gaps is the 241 km-wide Laplace gap, containing the Laplace ringlet. Both gap edges are eccentric, with very similar pericenter longitudes and apsidal precession rates, in spite of their large radial separation. The Laplace ringlet has eccentric edges and an abundance of normal modes. Like the Herschel ringlet, the Laplace ringlet does not precess rigidly and does not conform to the usual dynamical picture of an eccentric ringlet. Normal modes are abundant in the Cassini Division. Consistently, we find free ILR-type normal modes (m > 0) at the outer edges of ringlets and the inner edges of gaps, and free OLR-type normal modes (m ≤ 0) at inner ringlet edges and outer edges of gaps, as expected from the resonant cavity model of normal modes. We estimate the surface density of ring features from the resonance locations of the normal modes. The Cassini Division exhibits apsidal precession rates that are anomalously large, compared to the predicted values based on Saturn's zonal gravity field. The overall radial trend matches the secular contribution expected from the nearby B ring, assuming a surface mass density of Σ = 100 gm cm-2. However, the outer edges of the Huygens and Laplace gaps, and the outer edge of the Laplace ringlet, have conspicuously large residuals, exceeding their predicted precession rates by more than 0 .03∘d-1 . These patterns are probably the result of forcing by nearby ring material, but at present we cannot account for them in detail.

  18. Manipulator for rotating and examining small spheres

    DOEpatents

    Weinstein, Berthold W. [Livermore, CA; Willenborg, David L. [Livermore, CA

    1980-02-12

    A manipulator which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern.

  19. Differential regulation of cellulose orientation at the inner and outer face of epidermal cells in the Arabidopsis hypocotyl.

    PubMed

    Crowell, Elizabeth Faris; Timpano, Hélène; Desprez, Thierry; Franssen-Verheijen, Tiny; Emons, Anne-Mie; Höfte, Herman; Vernhettes, Samantha

    2011-07-01

    It is generally believed that cell elongation is regulated by cortical microtubules, which guide the movement of cellulose synthase complexes as they secrete cellulose microfibrils into the periplasmic space. Transversely oriented microtubules are predicted to direct the deposition of a parallel array of microfibrils, thus generating a mechanically anisotropic cell wall that will favor elongation and prevent radial swelling. Thus far, support for this model has been most convincingly demonstrated in filamentous algae. We found that in etiolated Arabidopsis thaliana hypocotyls, microtubules and cellulose synthase trajectories are transversely oriented on the outer surface of the epidermis for only a short period during growth and that anisotropic growth continues after this transverse organization is lost. Our data support previous findings that the outer epidermal wall is polylamellate in structure, with little or no anisotropy. By contrast, we observed perfectly transverse microtubules and microfibrils at the inner face of the epidermis during all stages of cell expansion. Experimental perturbation of cortical microtubule organization preferentially at the inner face led to increased radial swelling. Our study highlights the previously underestimated complexity of cortical microtubule organization in the shoot epidermis and underscores a role for the inner tissues in the regulation of growth anisotropy.

  20. Differential Regulation of Cellulose Orientation at the Inner and Outer Face of Epidermal Cells in the Arabidopsis Hypocotyl[W

    PubMed Central

    Crowell, Elizabeth Faris; Timpano, Hélène; Desprez, Thierry; Franssen-Verheijen, Tiny; Emons, Anne-Mie; Höfte, Herman; Vernhettes, Samantha

    2011-01-01

    It is generally believed that cell elongation is regulated by cortical microtubules, which guide the movement of cellulose synthase complexes as they secrete cellulose microfibrils into the periplasmic space. Transversely oriented microtubules are predicted to direct the deposition of a parallel array of microfibrils, thus generating a mechanically anisotropic cell wall that will favor elongation and prevent radial swelling. Thus far, support for this model has been most convincingly demonstrated in filamentous algae. We found that in etiolated Arabidopsis thaliana hypocotyls, microtubules and cellulose synthase trajectories are transversely oriented on the outer surface of the epidermis for only a short period during growth and that anisotropic growth continues after this transverse organization is lost. Our data support previous findings that the outer epidermal wall is polylamellate in structure, with little or no anisotropy. By contrast, we observed perfectly transverse microtubules and microfibrils at the inner face of the epidermis during all stages of cell expansion. Experimental perturbation of cortical microtubule organization preferentially at the inner face led to increased radial swelling. Our study highlights the previously underestimated complexity of cortical microtubule organization in the shoot epidermis and underscores a role for the inner tissues in the regulation of growth anisotropy. PMID:21742992

Top