Sample records for outflows high resolution

  1. From bipolar to quadrupolar - The collimation processes of the Cepheus A outflow

    NASA Technical Reports Server (NTRS)

    Torrelles, Jose M.; Verdes-Montenegro, Lourdes; Ho, Paul T. P.; Rodriguez, Luis F.; Canto, Jorge

    1993-01-01

    Results of new K-band observations of the (1, 1) and (2, 2) ammonia lines toward Cepheus A are reported. The lines are mapped with approximately 2 arcsec of angular resolution and 0.3 km/s of velocity resolution. A sensitivity of 10 mJy has been achieved. The observations reveal details of the spatial and kinematics structure of the ambient high-density gas. It is suggested that the interstellar high-density gas is diverting and redirecting the outflow in the sense that the quadrupolar structure of the molecular outflow is produced by the interaction with the ammonia condensationss, with Cep A-1 and Cep A-3 splitting in two halves, respectively the blue- and redshifted lobes of an east-west bipolar molecular outflow.

  2. Exploring the engines of molecular outflows

    NASA Astrophysics Data System (ADS)

    Testi, Leonardo

    1995-03-01

    Water vapour masers and CO outflows are well known to be associated with the youngest phases of evolution of massive stellar objects. Nevertheless, up to now there is a lack of high resolution multiwavelength study of the regions containing these objects. Using the VLA, the CSO and the TIRGO equipped with the new Near-Infrared (NIR) camera ARNICA, we have begun a systematic study of water maser/CO outflow regions. These new high resolution and high sensitivity data have proved to be very useful in probing the star formation activity and the connection between infrared and radio sources. Here we report the results obtained in a preliminary sub- sample of objects. The NIR data showed that both the maser spots and the large- scale outflows tend to be associated to the most embedded and probably younger sources of the infrared clusters. Infrared emission lines observed with narrow band filters show the presence of jet-like structures in most of the sources observed. Water masers, jet-like and Herbig-Haro-like infrared structures, and CO outflows enable to probe ejection phenomena at all spacial scales ranging from 0.01 to 1 parsec.

  3. Protostellar Outflows Mapped with ALMA and Techniques to Include Short Spacings

    NASA Astrophysics Data System (ADS)

    Plunkett, Adele

    2018-01-01

    Protostellar outflows are early signs of star formation, yet in cluster environments - common sites of star formation - their role and interaction with surrounding gas are complicated. Protostellar outflows are interesting and complex because they connect protostars (scales 10s au) to the surrounding gas environment (few pc), and their morphology constrains launching and/or accretion modes. A complete outflow study must use observing methods that recover several orders of magnitude of spatial scales, ideally with sub-arcsecond resolution and mapping over a few parsecs. ALMA provides high-resolution observations of outflows, and in some cases outflows have been mapped in clusters. Combining with observations using the Total Power array is possible, but challenging, and a large single dish telescope providing more overlap in uv space is advantageous. In this presentation I show protostellar outflows observed with ALMA using 12m, 7m, and To tal Power arrays. With a new CASA tool TP2VIS we create total power ``visibility'' data and perform joint imaging and deconvolution of interferometry and single dish data. TP2VIS will ultimately provide synergy between ALMA and AtLAST data.

  4. Unveiling the molecular bipolar outflow of the peculiar red supergiant VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Shinnaga, Hiroko; Claussen, Mark J.; Lim, Jeremy; Dinh-van-Trung; Tsuboi, Masato

    2003-04-01

    We carried out polarimetric spectral-line imaging of the molecular outflow of the peculiar red supergiant VY Canis Majoris in SiO J=1-0 line in the ground vibrational state, which contains highly linearly-polarized velocity components, using the Very Large Array. We succeeded in unveiling the highly linearly polarized bipolar outflow for the first time at subarcsecond spatial resolution. The results clearly show that the direction of linear polarization of the brightest maser components is parallel to the outflow axis. The results strongly suggest that the linear polarization of the SiO maser is closely related to the outflow phenomena of the star. Furthermore, the results indicate that the linear polarization observed in the optical and infrared also occur due to the outflow phenomena.

  5. Effect of elevation resolution on evapotranspiration simulations using MODFLOW.

    PubMed

    Kambhammettu, B V N P; Schmid, Wolfgang; King, James P; Creel, Bobby J

    2012-01-01

    Surface elevations represented in MODFLOW head-dependent packages are usually derived from digital elevation models (DEMs) that are available at much high resolution. Conventional grid refinement techniques to simulate the model at DEM resolution increases computational time, input file size, and in many cases are not feasible for regional applications. This research aims at utilizing the increasingly available high resolution DEMs for effective simulation of evapotranspiration (ET) in MODFLOW as an alternative to grid refinement techniques. The source code of the evapotranspiration package is modified by considering for a fixed MODFLOW grid resolution and for different DEM resolutions, the effect of variability in elevation data on ET estimates. Piezometric head at each DEM cell location is corrected by considering the gradient along row and column directions. Applicability of the research is tested for the lower Rio Grande (LRG) Basin in southern New Mexico. The DEM at 10 m resolution is aggregated to resampled DEM grid resolutions which are integer multiples of MODFLOW grid resolution. Cumulative outflows and ET rates are compared at different coarse resolution grids. Results of the analysis conclude that variability in depth-to-groundwater within the MODFLOW cell is a major contributing parameter to ET outflows in shallow groundwater regions. DEM aggregation methods for the LRG Basin have resulted in decreased volumetric outflow due to the formation of a smoothing error, which lowered the position of water table to a level below the extinction depth. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  6. The IRS 1 circumstellar disk, and the origin of the jet and CO outflow in B5

    NASA Technical Reports Server (NTRS)

    Langer, W. D.; Velusamy, T.; Xie, T.; Levin, S. M. (Principal Investigator)

    1996-01-01

    We report the discovery of the inner edge of the high velocity CO outflow associated with the bipolar jet originating from IRS 1 in Barnard 5 and the first ever resolution of its circumstellar disk in the 2.6 mm dust continuum and C18O. From high spatial resolution observations made with the Owens Valley Millimeter Array we are able to locate the origin of the outflow to within approximately 500 AU on either side of IRS 1 and apparently at the edge of, or possibly within, its circumstellar disk. The orientation of the continuum disk is perpendicular to the highly collimated jet outflow recently seen in optical emission at much farther distances. The disk has been detected in C18O giving a disk mass approximately 0.16 M (solar). Our HCO+ and HCN maps indicate significant chemical differentiation in the circumstellar region on small scales with HCO+ tracing an extended disk of material. The 12CO interferometer maps of the outflow show two conelike features originating at IRS 1, the blue one fanning open to the northeast and the red one to the southwest. The vertices of the cones are on either side of the circumstellar disk and have a projected opening angle of about 90 degrees. The intrinsic opening angle is in the range of 60 degrees-90 degrees which leads to significant interaction between outflow and infall.

  7. High-resolution Near-IR Spectral Mapping with H2 and [Fe II] Lines of Multiple Outflows around LkHα 234

    NASA Astrophysics Data System (ADS)

    Oh, Heeyoung; Pyo, Tae-Soo; Koo, Bon-Chul; Yuk, In-Soo; Kaplan, Kyle F.; Lee, Yong-Hyun; Sokal, Kimberly R.; Mace, Gregory N.; Park, Chan; Lee, Jae-Joon; Park, Byeong-Gon; Hwang, Narae; Kim, Hwihyun; Jaffe, Daniel T.

    2018-05-01

    We present a high-resolution, near-IR spectroscopic study of multiple outflows in the LkHα 234 star formation region using the Immersion GRating INfrared Spectrometer (IGRINS). Spectral mapping over the blueshifted emission of HH 167 allowed us to distinguish at least three separate, spatially overlapped outflows in H2 and [Fe II] emission. We show that the H2 emission represents not a single jet but rather complex multiple outflows driven by three known embedded sources: MM1, VLA 2, and VLA 3. There is a redshifted H2 outflow at a low velocity, V LSR <+50 km s‑1, with respect to the systemic velocity of V LSR = ‑11.5 km s‑1, that coincides with the H2O masers seen in earlier radio observations 2″ southwest of VLA 2. We found that the previously detected [Fe II] jet with | {V}LSR}| > 100 km s‑1 driven by VLA 3B is also detected in H2 emission and confirm that this jet has a position angle of about 240°. Spectra of the redshifted knots at 14″–65″ northeast of LkHα 234 are presented for the first time. These spectra also provide clues to the existence of multiple outflows. We detected high-velocity (50–120 km s‑1) H2 gas in the multiple outflows around LkHα 234. Since these gases move at speeds well over the dissociation velocity (>40 km s‑1), the emission must originate from the jet itself rather than H2 gas in the ambient medium. Also, position–velocity and excitation diagrams indicate that emission from knot C in HH 167 comes from two different phenomena, shocks and photodissociation.

  8. Zooming into local active galactic nuclei: the power of combining SDSS-IV MaNGA with higher resolution integral field unit observations

    NASA Astrophysics Data System (ADS)

    Wylezalek, Dominika; Schnorr Müller, Allan; Zakamska, Nadia L.; Storchi-Bergmann, Thaisa; Greene, Jenny E.; Müller-Sánchez, Francisco; Kelly, Michael; Liu, Guilin; Law, David R.; Barrera-Ballesteros, Jorge K.; Riffel, Rogemar A.; Thomas, Daniel

    2017-05-01

    Ionized gas outflows driven by active galactic nuclei (AGN) are ubiquitous in high-luminosity AGN with outflow speeds apparently correlated with the total bolometric luminosity of the AGN. This empirical relation and theoretical work suggest that in the range Lbol ˜ 1043-45 erg s-1 there must exist a threshold luminosity above which the AGN becomes powerful enough to launch winds that will be able to escape the galaxy potential. In this paper, we present pilot observations of two AGN in this transitional range that were taken with the Gemini North Multi-Object Spectrograph integral field unit (IFU). Both sources have also previously been observed within the Sloan Digital Sky Survey-IV (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. While the MaNGA IFU maps probe the gas fields on galaxy-wide scales and show that some regions are dominated by AGN ionization, the new Gemini IFU data zoom into the centre with four times better spatial resolution. In the object with the lower Lbol we find evidence of a young or stalled biconical AGN-driven outflow where none was obvious at the MaNGA resolution. In the object with the higher Lbol we trace the large-scale biconical outflow into the nuclear region and connect the outflow from small to large scales. These observations suggest that AGN luminosity and galaxy potential are crucial in shaping wind launching and propagation in low-luminosity AGN. The transition from small and young outflows to galaxy-wide feedback can only be understood by combining large-scale IFU data that trace the galaxy velocity field with higher resolution, small-scale IFU maps.

  9. Searching for outflows in ultraluminous X-ray sources through high-resolution X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Kosec, P.; Pinto, C.; Fabian, A. C.; Walton, D. J.

    2018-02-01

    Ultraluminous X-ray sources (ULXs) are non-nuclear point sources exceeding the Eddington luminosity of a 10 M⊙ black hole. Modern consensus for a majority of the ULX population is that they are powered by stellar-mass black holes or neutron stars accreting well above the Eddington limit. Theoretical models of super-Eddington accretion predict existence of powerful outflows of moderately ionized gas at mildly relativistic velocities. So far, these winds have been found in three systems: NGC 1313 X-1, NGC 5408 X-1 and NGC 55 ULX. In this work, we create a sample of all ULXs with usable archival high-resolution X-ray data, with 10 sources in total, in which we aim to find more signatures of outflows. We perform Gaussian line scans to find any narrow spectral signatures, and physical wind model scans where possible. We tentatively identify an outflow in NGC 5204 X-1, blueshifted to 0.34c, which produces emission features with a total significance of at least 3σ. Next we compare ULXs with similar hardness ratios. Holmberg IX X-1 shows absorption features that could be associated with a photoionized outflowing absorber, similar to that seen in NGC 1313 X-1. The spectrum of Holmberg II X-1 possesses features similar to NGC 5408 X-1 and NGC 6946 X-1 shows O VIII rest-frame emission. All other sources from the sample also show tentative evidence of spectral features in their high-resolution spectra. Further observations with the XMM-Newton and Chandra gratings will place stronger constraints. Future missions like XARM and Athena will be able to detect them at larger distances and increase our sample.

  10. Geometric and Kinematic Structure of the Outflow/Envelope System of L1527 Revealed by Subarcsecond-resolution Observation of CS

    NASA Astrophysics Data System (ADS)

    Oya, Yoko; Sakai, Nami; Lefloch, Bertrand; López-Sepulcre, Ana; Watanabe, Yoshimasa; Ceccarelli, Cecilia; Yamamoto, Satoshi

    2015-10-01

    Subarcsecond-resolution images of the rotational line emissions of CS and c-C3H2 obtained toward the low-mass protostar IRAS 04368+2557 in L1527 with the Atacama Large Millimeter/submillimeter Array are investigated to constrain the orientation of the outflow/envelope system. The distribution of CS consists of an envelope component extending from north to south and a faint butterfly shaped outflow component. The kinematic structure of the envelope is well reproduced by a simple ballistic model of an infalling rotating envelope. Although the envelope has a nearly edge-on configuration, we find that the western side of the envelope faces the observer. This configuration is opposite to the direction of the large-scale (˜104 AU) outflow suggested previously from the 12CO (J = 3-2) observation, and to the morphology of infrared reflection near the protostar (˜200 AU). The latter discrepancy could originate from high extinction by the outflow cavity of the western side, or may indicate that the outflow axis is not parallel to the rotation axis of the envelope. Position-velocity diagrams show the accelerated outflow cavity wall, and its kinematic structure in the 2000 AU scale is explained by a standard parabolic model with the inclination angle derived from the analysis of the envelope. The different orientation of the outflow between the small and large scale implies a possibility of precession of the outflow axis. The shape and the velocity of the outflow in the vicinity of the protostar are compared with those of other protostars.

  11. On the effect of galactic outflows in cosmological simulations of disc galaxies

    NASA Astrophysics Data System (ADS)

    Valentini, Milena; Murante, Giuseppe; Borgani, Stefano; Monaco, Pierluigi; Bressan, Alessandro; Beck, Alexander M.

    2017-09-01

    We investigate the impact of galactic outflow modelling on the formation and evolution of a disc galaxy, by performing a suite of cosmological simulations with zoomed-in initial conditions (ICs) of a Milky Way-sized halo. We verify how sensitive the general properties of the simulated galaxy are to the way in which stellar feedback triggered outflows are implemented, keeping ICs, simulation code and star formation (SF) model all fixed. We present simulations that are based on a version of the gadget3 code where our sub-resolution model is coupled with an advanced implementation of smoothed particle hydrodynamics that ensures a more accurate fluid sampling and an improved description of gas mixing and hydrodynamical instabilities. We quantify the strong interplay between the adopted hydrodynamic scheme and the sub-resolution model describing SF and feedback. We consider four different galactic outflow models, including the one introduced by Dalla Vecchia & Schaye (2012) and a scheme that is inspired by the Springel & Hernquist (2003) model. We find that the sub-resolution prescriptions adopted to generate galactic outflows are the main shaping factor of the stellar disc component at low redshift. The key requirement that a feedback model must have to be successful in producing a disc-dominated galaxy is the ability to regulate the high-redshift SF (responsible for the formation of the bulge component), the cosmological infall of gas from the large-scale environment, and gas fall-back within the galactic radius at low redshift, in order to avoid a too high SF rate at z = 0.

  12. The detection of high-velocity outflows from M8E-IR

    NASA Technical Reports Server (NTRS)

    Mitchell, George F.; Allen, Mark; Beer, Reinhard; Dekany, Richard; Huntress, Wesley

    1988-01-01

    A high-resolution (0.059/cm) M band (4.6 micron) spectrum of the embedded young stellar object M8E-IR is presented and discussed. The spectrum shows strong absorption to large blueshifts in the rotational lines of the fundamental vibrational band, v = 1-0, of CO. The absorption is interpreted as being due to gas near to, and flowing from, the central object. The outflowing gas is warm (95-330 K) and consists of discrete velocity components with the very high velocities of 90, 130, 150, and 160 km/s. On the basis of a simple model, it is estimated that the observed outflows are less than 100 yr old.

  13. Introducing CGOLS: The Cholla Galactic Outflow Simulation Suite

    NASA Astrophysics Data System (ADS)

    Schneider, Evan E.; Robertson, Brant E.

    2018-06-01

    We present the Cholla Galactic OutfLow Simulations (CGOLS) suite, a set of extremely high resolution global simulations of isolated disk galaxies designed to clarify the nature of multiphase structure in galactic winds. Using the GPU-based code Cholla, we achieve unprecedented resolution in these simulations, modeling galaxies over a 20 kpc region at a constant resolution of 5 pc. The simulations include a feedback model designed to test the effects of different mass- and energy-loading factors on galactic outflows over kiloparsec scales. In addition to describing the simulation methodology in detail, we also present the results from an adiabatic simulation that tests the frequently adopted analytic galactic wind model of Chevalier & Clegg. Our results indicate that the Chevalier & Clegg model is a good fit to nuclear starburst winds in the nonradiative region of parameter space. Finally, we investigate the role of resolution and convergence in large-scale simulations of multiphase galactic winds. While our largest-scale simulations show convergence of observable features like soft X-ray emission, our tests demonstrate that simulations of this kind with resolutions greater than 10 pc are not yet converged, confirming the need for extreme resolution in order to study the structure of winds and their effects on the circumgalactic medium.

  14. Elevated-temperature luminescence measurements to improve spatial resolution

    NASA Astrophysics Data System (ADS)

    Pluska, Mariusz; Czerwinski, Andrzej

    2018-01-01

    Various branches of applied physics use luminescence based methods to investigate light-emitting specimens with high spatial resolution. A key problem is that luminescence signals lack all the advantages of high locality (i.e. of high spatial resolution) when structures with strong built-in electric field are measured. Such fields exist intentionally in most photonic structures, and occur unintentionally in many other materials. In this case, as a result of beam-induced current generation and its outflow, information that indicates irregularities, nonuniformities and inhomogeneities, such as defects, is lost. We show that to avoid nonlocality and enable truly local luminescence measurements, an elevated measurement temperature as high as 350 K (or even higher) is, perhaps surprisingly, advantageous. This is in contrast to a widely used approach, where cryogenic temperatures, or at least room temperature, are recommended. The elevated temperature of a specimen, together with the current outflow being limited by focused ion beam (FIB) milling, is shown to improve the spatial resolution of luminescence measurements greatly. All conclusions drawn using the example of cathodoluminescence are useful for other luminescence techniques.

  15. The Martian Outflow Channels: Mgs Sheds New Light On Viking and Pathfinder Results

    NASA Astrophysics Data System (ADS)

    Lanz, J.; Jaumann, R.

    The Mars Global Surveyor (MGS) Mission has, as most successful missions before, given stunningly new insights in the processes that shaped the Martian surface. But how do these findings and observations fit in the context of our pre-MGS knowledge? and do they fit at all? Combining data from the Viking, Pathfinder and MGS Missions, erosion processes in the circum-Chryse Region have been newly and extensively examined. Maximum discharge rates and flow velocities within the major outflow channels were calculated as well as sediment transport and sediment volumes eroded by the flows evaluating the erosion balance of the region. In a second step a detailed study of the available high resolution MOC-Images and lower resolution MOC and Viking context images was performed to evaluate the geologic and morphologic inventory of the outflow chan- nels. Focusing on morphologic and hydrologic differences to terrestrial outflow chan- nels as well as differences to earlier pre-MGS studies, theories and hypothesis con- cerning the outflow channels have been tested for their validity. New hydrologic cal- culations e.g. give different results than previously measured (e.g. Carr 1979, Robin- son &Tanaka 1990, Komatsu &Baker 1997). Maximum discharge rates are generally smaller (see also Williams et al. 2000), in some cases up to a factor of 2 to 3 (e.g. Ares Vallis), having a strong impact on the northern ocean theory. Some morphologic fea- tures that are typical for terrestrial flood features (such as inner channels, bar deposits, gravel dunes, etc) could not or not clearly be identified in any of the large outflow channels even in high resolution MOC-imagery. Younger resurfacing processes might have covered or obscured them. Others are hard to distinguish from non-fluvial, i.e. eo- lian, features from satellite images. Nevertheless, the overall absence of such features in the outflow channels is striking and shows again that processes on Mars differ sig- nificantly from those on Earth and similar features might well have different origins. A simple comparison of similarities only, will inevitably be misleading or incomplete.

  16. Distribution, structure and temporal variability of hydrothermal outflow at a slow-spreading hydrothermal field from seafloor image mosaics.

    NASA Astrophysics Data System (ADS)

    Barreyre, Thibaut; Escartin, Javier; Cannat, Mathilde; Garcia, Rafael; Science Party, Momar'08; Science Party, Bathyluck'09

    2010-05-01

    The Lucky Strike hydrothermal site, located South of the Azores along the Mid-Atlantic Ridge, is one of the largest and best-known active hydrothermal fields along the ridge system. This site within the MoMAR area is also the target for the installation in 2010 of a pilot deep-sea observatory with direct telemetry to land, to be part of the European Seafloor Observatory Network (ESONET). The Lucky Strike hydrothermal site has seen extensive high-resolution, near-bottom geophysical surveys in 1996 (Lustre'96), 2006 (Momareto06), 2008 (MOMAR08) and 2009 (Bathyluck09). Vertically acquired black-and-white electronic still camera images have been projected and georeferenced to obtain 3 image mosaics covering the zone of active venting, extending ~ 700x800 m2, and with full image resolution (~10 mm pixels). These data allow us to study how hydrothermal outflow is structured, including the relationships between the zones of active high-temperature venting, areas of diffuse outflow, and the geological structure (nature of the substrate, faults and fissures, sediments, etc.). Hydrothermal outflow is systematically associated with bacterial mats that are easily identified in the imagery, allowing us to study temporal variability at two different scales. Over the 13-year period we can potentially track changes in both the geometry and intensity of hydrothermal activity throughout the system; our preliminary study of the Eiffel Tower, White Castle and Mt Segur indicate that activity has been sustained in recent times, with small changes in the detailed geometry of the diffuse outflow and its intensity. At longer times scales (hundreds to 1000 years?) imagery also shows evidence of areas of venting that are no longer active, often associated with the active structures. In combination with the high-resolution bathymetry, the imagery data thus allow us to characterize the shallow structure of hydrothermal outflow at depth, the structural and volcanic control, and ultimately quantify the heat flux associates with this hydrothermal outflow. Image mosaics are also key for the installation of instrumentation required by temporal studies, and for the infrastructure of the ESONET pilot seafloor observatory. This type of survey techniques and studies can also be extended to other areas of interest, such as hydrothermal fields, cold seeps, etc.

  17. The Gaseous Environments of Quasars: Outflows, Feedback & Cold Mode Accretion

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Hamann, Fred

    2018-06-01

    The early stages of massive galaxy evolution can involve galaxy-scale outflows driven by a starburst or a central quasar and cold-mode accretion (infall) that adds to the mass buildup in the galaxies. I will describe three related studies that use quasar absorption lines to measure outflows, infall, and the general gaseous environments of quasars across a range of spatial scales. The three studies are: 1) High-resolution spectroscopy with Keck-HIRES and VLT-UVES to study associated absorption lines (AALs) that have redshifts greater than the emission redshifts indicating infall and/or rich multi-component AAL complexes that might be interstellar clouds in the host galaxies that have been shredded and dispersed by a fast unseen quasar-driven wind. The data provide strong constraints on the gas kinematics, spatial structure, column densities, metallicities, and energetics. 2) A complete inventory of high-velocity CIV 1548,1550 mini-BAL outflows in quasars using high-resolution high signal-to-noise spectra in the public VLT-UVES and Keck-HIRES archives. This sensitive mini-BAL survey fills an important niche between previous work on narrow absorption lines (NALs) and the much-studied broad absorption lines (BALs) to build a more complete picture of quasar outflows. I will report of the mini-BAL statistics, the diversity of lines detected, and some tests for correlations with the quasar properties. We find, for example, that mini-BALs at v > 4000 km/s in at least 10% of 511 quasars studied, including 1% at v > 0.1 c. Finally, 3) Use the much larger database of NALs measured in 262,449 BOSS quasars by York et al. (in prep.) to study their potential relationships to the quasars and, specifically, their origins in quasar outflows. This involves primarily comparisons of the incidence and properties of NALs at different velocity shifts to other measured properties of the quasars such as BAL outflows, emission line characteristics, radio-loudness, and red colors. We find, for example, that the extreme high-velocity NALs (0.1 ‑ 0.2c) correlate strongly with AALs, indicating that a significant fraction of these NALs is ejected from the quasars.

  18. Resolving the Circumgalactic Medium in the NEPHTHYS Simulations

    NASA Astrophysics Data System (ADS)

    Richardson, Mark Lawrence Albert; Devriendt, Julien; Slyz, Adrianne; Rosdahl, Karl Joakim; Kimm, Taysun

    2018-01-01

    NEPHTHYS is a RAMSES Cosmological-zoom galaxy simulation suite investigating the impact of stellar feedback (winds, radiation, and type Ia and II SNe) on z > 1 ~L* galaxies and their environments. NEPHTHYS has ~10 pc resolution in the galaxy, where the scales driving star formation and the interaction of stellar feedback with the ISM can begin to be resolved. As outflows, winds, and radiation permeate through the circumgalactic medium (CGM) they can heat or cool gas, and deposit metals throughout the CGM. Such material in the CGM is seen by spectroscopic studies of distant quasars, where CGM gas of foreground galaxies is observed in absorption. It is still unclear what the origin and evolution of this gas is. To help answer this, NEPHTHYS includes additional refinement in the CGM, refining it to an unrivaled 80 pc resolution. I will discuss how this extra resolution is crucial for resolving the complex structure of outflows and accretion in the CGM. Specifically, the metal mass and covering fraction of metals and high energy ions is increased, while the better resolved outflows leads to a decrease in the overall baryon content of galaxy halos, and individual outflow events can have larger velocities. Our results suggest that absorption observations of CGM are tracing a clumpy column of gas with multiple kinematic components.

  19. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    NASA Astrophysics Data System (ADS)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-07-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O III], [S II], and Hα, as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ˜10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include Hα evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  20. Submillimeter array observations of NGC 2264-C: molecular outflows and driving sources

    NASA Astrophysics Data System (ADS)

    Cunningham, Nichol; Lumsden, Stuart L.; Cyganowski, Claudia J.; Maud, Luke T.; Purcell, Cormac

    2016-05-01

    We present 1.3 mm Submillimeter Array (SMA) observations at ˜3 arcsec resolution towards the brightest section of the intermediate/massive star-forming cluster NGC 2264-C. The millimetre continuum emission reveals ten 1.3 mm continuum peaks, of which four are new detections. The observed frequency range includes the known molecular jet/outflow tracer SiO (5-4), thus providing the first high-resolution observations of SiO towards NGC 2264-C. We also detect molecular lines of 12 additional species towards this region, including CH3CN, CH3OH, SO, H2CO, DCN, HC3N, and 12CO. The SiO (5-4) emission reveals the presence of two collimated, high-velocity (up to 30 km s-1 with respect to the systemic velocity) bipolar outflows in NGC 2264-C. In addition, the outflows are traced by emission from 12CO, SO, H2CO, and CH3OH. We find an evolutionary spread between cores residing in the same parent cloud. The two unambiguous outflows are driven by the brightest mm continuum cores, which are IR-dark, molecular line weak, and likely the youngest cores in the region. Furthermore, towards the Red MSX Source AFGL 989-IRS1, the IR-bright and most evolved source in NGC 2264-C, we observe no molecular outflow emission. A molecular line rich ridge feature, with no obvious directly associated continuum source, lies on the edge of a low-density cavity and may be formed from a wind driven by AFGL 989-IRS1. In addition, 229 GHz class I maser emission is detected towards this feature.

  1. Discovery of very high velocity outflow in V Hydra - Wind from an accretion disk in a binary?

    NASA Technical Reports Server (NTRS)

    Sahai, R.; Wannier, P. G.

    1988-01-01

    High-resolution observations of lines from the CO v = 1-0 vibration-rotation band at 4.6 microns, taken with the FTS/KPNO 4-m telescope, are reported for the carbon-rich red giant V Hydra, which is surrounded by an extended expanding molecular envelope resulting from extensive mass loss. The spectrum shows, in addition to the expected absorption at the outflow velocity of the envelope, absorption extending up to 120 km/s bluewards of the stellar velocity. A comparison of the spectrum observed at two epochs shows that the high-velocity absorption features change with time. It is suggested that the observed high-velocity features in V Hydra arise in a high-velocity polar outflow from an accretion disk in a binary system, as proposed in the mass-loss model for bipolar envelopes by Morris (1988).

  2. A Massive Molecular Outflow in the Dense Dust Core AGAL G337.916-00.477

    NASA Astrophysics Data System (ADS)

    Torii, Kazufumi; Hattori, Yusuke; Hasegawa, Keisuke; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo; Tokuda, Kazuki; Onishi, Toshikazu; Hattori, Yasuki; Ishihara, Daisuke; Kaneda, Hidehiro; Fukui, Yasuo

    2017-05-01

    Massive molecular outflows erupting from high-mass young stellar objects (YSOs) provide important clues to understanding the mechanism of high-mass star formation. Based on new CO J = 3-2 and J = 1-0 observations using the Atacama Submillimeter Telescope Experiment (ASTE) and Mopra telescope facilities, we discovered a massive bipolar outflow associated with the dense dust core AGAL G337.916-00.477 (AGAL337.9-S), located 3.48 kpc from the Sun. The outflow lobes have extensions of less than 1 pc—and thus were not fully resolved in the angular resolutions of ASTE and Mopra—and masses of ˜50 M ⊙. The maximum velocities of the outflow lobes are as high as 36-40 {km} {{{s}}}-1. Our analysis of the infrared and submillimeter data indicates that AGAL337.9-S is in an early evolutionary stage of high-mass star formation, having the total far-infrared luminosity of ˜ 5× {10}4 {L}⊙ . We also found that another dust core, AGAL G337.922-00.456 (AGAL337.9-N), located 2‧ north of AGAL337.9-S, is a high-mass YSO in an earlier evolutionary stage than AGAL337.9-S, as it is less bright in the mid-infrared than AGAL337.9-S.

  3. HELICAL MAGNETIC FIELDS IN THE NGC 1333 IRAS 4A PROTOSTELLAR OUTFLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ching, Tao-Chung; Lai, Shih-Ping; Zhang, Qizhou

    We present Submillimeter Array polarization observations of the CO J = 3–2 line toward NGC 1333 IRAS 4A. The CO Stokes I maps at an angular resolution of ∼1″ reveal two bipolar outflows from the binary sources of NGC 1333 IRAS 4A. The kinematic features of the CO emission can be modeled by wind-driven outflows at ∼20° inclined from the plane of the sky. Close to the protostars the CO polarization, at an angular resolution of ∼2.″3, has a position angle approximately parallel to the magnetic field direction inferred from the dust polarizations. The CO polarization direction appears to vary smoothly frommore » an hourglass field around the core to an arc-like morphology wrapping around the outflow, suggesting a helical structure of magnetic fields that inherits the poloidal fields at the launching point and consists of toroidal fields at a farther distance of outflow. The helical magnetic field is consistent with the theoretical expectations for launching and collimating outflows from a magnetized rotating disk. Considering that the CO polarized emission is mainly contributed from the low-velocity and low-resolution data, the helical magnetic field is likely a product of the wind–envelope interaction in the wind-driven outflows. The CO data reveal a PA of ∼30° deflection in the outflows. The variation in the CO polarization angle seems to correlate with the deflections. We speculate that the helical magnetic field contributes to ∼10° deflection of the outflows by means of Lorentz force.« less

  4. Upper esophageal sphincter (UES) metrics on high-resolution manometry (HRM) differentiate achalasia subtypes.

    PubMed

    Blais, P; Patel, A; Sayuk, G S; Gyawali, C P

    2017-12-01

    The upper esophageal sphincter (UES) reflexively responds to bolus presence within the esophageal lumen, therefore UES metrics can vary in achalasia. Within consecutive patients undergoing esophageal high-resolution manometry (HRM), 302 patients (58.2±1.0 year, 57% F) with esophageal outflow obstruction were identified, and compared to 16 asymptomatic controls (27.7±0.7 year, 56% F). Esophageal outflow obstruction was segregated into achalasia subtypes 1, 2, and 3, and esophagogastric junction outflow obstruction (EGJOO with intact peristalsis) using Chicago Classification v3.0. UES and lower esophageal sphincter (LES) metrics were compared between esophageal outflow obstruction and normal controls using univariate and multivariate analysis. Linear regression excluded multicollinearity of pressure metrics that demonstrated significant differences across individual subtype comparisons. LES integrated relaxation pressure (IRP) had utility in differentiating achalasia from controls (P<.0001), but no utility in segregating between subtypes (P=.27). In comparison to controls, patients collectively demonstrated univariate differences in UES mean basal pressure, relaxation time to nadir, recovery time, and residual pressure (UES-RP) (P≤.049). UES-RP was highest in type 2 achalasia (P<.0001 compared to other subtypes and controls). In multivariate analysis, only UES-RP retained significance in comparison between each of the subgroups (P≤.02 for each comparison). Intrabolus pressure was highest in type 3 achalasia; this demonstrated significant differences across some but not all subtype comparisons. Nadir UES-RP can differentiate achalasia subtypes within the esophageal outflow obstruction spectrum, with highest values in type 2 achalasia. This metric likely represents a surrogate marker for esophageal pressurization. © 2017 John Wiley & Sons Ltd.

  5. A Massive Bipolar Outflow and a Dusty Torus with Large Grains in the Preplanetary Nebula IRAS 22036+5306

    NASA Technical Reports Server (NTRS)

    Sahai, Raghvendra; Young, K.; Patel, N. A.; Sanchez Contreras, C.; Morris, M.

    2006-01-01

    We report high angular resolution (approx.1") CO J=3-2 interferometric mapping using the Submillimeter Array (SMA) of IRAS 22036+5306 (I22036), a bipolar preplanetary nebula (PPN) with knotty jets discovered in our HST snapshot survey of young PPNs. In addition, we have obtained supporting lower resolution (approx.10") CO and 13CO J=1-0 observations with the Owens Valley Radio Observatory (OVRO) interferometer, as well as optical long-slit echelle spectra at the Palomar Observatory. The CO J=3-2 observations show the presence of a very fast (approx.220 km/s), highly collimated, massive (0.03 Solar Mass) bipolar outflow with a very large scalar momentum (about 10(exp 39) g cm/s), and the characteristic spatiokinematic structure of bow shocks at the tips of this outflow. The H(alpha) line shows an absorption feature blueshifted from the systemic velocity by approx.100 km/s, which most likely arises in neutral interface material between the fast outflow and the dense walls of the bipolar lobes at low latitudes. The fast outflow in I22036, as in most PPNs, cannot be driven by radiation pressure. We find an unresolved source of submillimeter (and millimeter-wave) continuum emission in I22036, implying a very substantial mass (0.02-0.04 Solar Mass) of large (radius > or approx.1 mm), cold (< or approx.50 K) dust grains associated with I22036's toroidal waist. We also find that the C-13/C-12 ratio in I22036 is very high (0.16), close to the maximum value achieved in equilibrium CNO nucleosynthesis (0.33). The combination of the high circumstellar mass (i.e., in the extended dust shell and the torus) and the high C-13/C-12 ratio in I22036 provides strong support for this object having evolved from a massive (> or approx.4 Solar Mass) progenitor in which hot-bottom-burning has occurred.

  6. A substellar-mass protostar and its outflow of IRAS 15398–3359 revealed by subarcsecond-resolution observations of H{sub 2}CO and CCH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oya, Yoko; Sakai, Nami; Watanabe, Yoshimasa

    2014-11-10

    Subarcsecond (0.''5) images of H{sub 2}CO and CCH line emission have been obtained in the 0.8 mm band toward the low-mass protostar IRAS 15398–3359 in the Lupus 1 cloud as one of the Cycle 0 projects of the Atacama Large Millimeter/Submillimeter Array. We have detected a compact component concentrated in the vicinity of the protostar and a well-collimated outflow cavity extending along the northeast-southwest axis. The inclination angle of the outflow is found to be about 20°, or almost edge-on, based on the kinematic structure of the outflow cavity. This is in contrast to previous suggestions of a more pole-onmore » geometry. The centrally concentrated component is interpreted by use of a model of the infalling rotating envelope with the estimated inclination angle and the mass of the protostar is estimated to be less than 0.09 M {sub ☉}. Higher spatial resolution data are needed to infer the presence of a rotationally supported disk for this source, hinted at by a weak high-velocity H{sub 2}CO emission associated with the protostar.« less

  7. Simulating Supernovae Driven Outflows in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jaimee-Ian

    2018-01-01

    Galactic outflows, or winds, prove to be a necessary input for galactic simulations to produce results comparable to observation, for it solves issues caused by what previous literature dubbed the “angular momentum catastrophe.” While it is known that the nature of outflows depends on the nature of the Interstellar Medium (ISM), the mechanisms behind outflows are still not completely understood. We investigate the driving force behind galactic outflows and the factors that influence their behavior, hypothesizing that supernovae within the galaxy drive these winds. We study isolated, high-resolution, smooth particle hydrodynamic simulations, focusing specifically on dwarf galaxies due to their shallow potential wells, which allow for more significant outflows. We find that outflows follow star formation (and associated supernovae) suggesting the causal relationship between the two. Furthermore, simulations with higher diffusivity differ little in star formation rate, but show significantly lower outflow rates, suggesting that environmental factors that have little effect on regulating star formation can greatly influence outflows, and so efficient outflows can be driven by a constant rate of supernovae, depending on ISM behavior. We are currently analyzing disk morphology and ambient density in order to comprehend the effect of supernovae on the immediate interstellar gas. By attaining greater understanding of the origin of galactic outflows, we will be able to not only improve the accuracy of simulations, we will also be able to gain greater insight into galactic formation and evolution, as outflows and resultant inflows may be vital to the regulation of galaxies throughout their lifetimes.

  8. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc)more » across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.« less

  9. Improving the analysis of biogeochemical patterns associated with internal waves in the strait of Gibraltar using remote sensing images

    NASA Astrophysics Data System (ADS)

    Navarro, Gabriel; Vicent, Jorge; Caballero, Isabel; Gómez-Enri, Jesús; Morris, Edward P.; Sabater, Neus; Macías, Diego; Bolado-Penagos, Marina; Gomiz, Juan Jesús; Bruno, Miguel; Caldeira, Rui; Vázquez, Águeda

    2018-05-01

    High Amplitude Internal Waves (HAIWs) are physical processes observed in the Strait of Gibraltar (the narrow channel between the Atlantic Ocean and the Mediterranean Sea). These internal waves are generated over the Camarinal Sill (western side of the strait) during the tidal outflow (toward the Atlantic Ocean) when critical hydraulic conditions are established. HAIWs remain over the sill for up to 4 h until the outflow slackens, being then released (mostly) towards the Mediterranean Sea. These have been previously observed using Synthetic Aperture Radar (SAR), which captures variations in surface water roughness. However, in this work we use high resolution optical remote sensing, with the aim of examining the influence of HAIWs on biogeochemical processes. We used hyperspectral images from the Hyperspectral Imager for the Coastal Ocean (HICO) and high spatial resolution (10 m) images from the MultiSpectral Instrument (MSI) onboard the Sentinel-2A satellite. This work represents the first attempt to examine the relation between internal wave generation and the water constituents of the Camarinal Sill using hyperspectral and high spatial resolution remote sensing images. This enhanced spatial and spectral resolution revealed the detailed biogeochemical patterns associated with the internal waves and suggests local enhancements of productivity associated with internal waves trains.

  10. Far-ultraviolet Observations of Outflows from Infrared-luminous Galaxies

    NASA Astrophysics Data System (ADS)

    Leitherer, Claus; Chandar, Rupali; Tremonti, Christy A.; Wofford, Aida; Schaerer, Daniel

    2013-08-01

    We obtained medium-resolution ultraviolet (UV) spectra between 1150 and 1450 Å of the four UV-bright, infrared-luminous starburst galaxies IRAS F08339+6517, NGC 3256, NGC 6090, and NGC 7552 using the Cosmic Origins Spectrograph on board the Hubble Space Telescope. The selected sightlines toward the starburst nuclei probe the properties of the recently formed massive stars and the physical conditions in the starburst-driven galactic superwinds. Despite being metal-rich and dusty, all four galaxies are strong Lyα emitters with equivalent widths ranging between 2 and 13 Å. The UV spectra show strong P Cygni-type high-ionization features indicative of stellar winds and blueshifted low-ionization lines formed in the interstellar and circumgalactic medium. We detect outflowing gas with bulk velocities of ~400 km s-1 and maximum velocities of almost 900 km s-1. These are among the highest values found in the local universe and comparable to outflow velocities found in luminous Lyman-break galaxies at intermediate and high redshift. The outflow velocities are unlikely to be high enough to cause escape of material from the galactic gravitational potential. However, the winds are significant for the evolution of the galaxies by transporting heavy elements from the starburst nuclei and enriching the galaxy halos. The derived mass outflow rates of ~100 M ⊙ yr-1 are comparable to or even higher than the star formation rates. The outflows can quench star formation and ultimately regulate the starburst as has been suggested for high-redshift galaxies.

  11. THE ORION FINGERS: NEAR-IR SPECTRAL IMAGING OF AN EXPLOSIVE OUTFLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youngblood, Allison; Bally, John; Ginsburg, Adam, E-mail: allison.youngblood@colorado.edu

    2016-06-01

    We present near-IR (1.1–2.4 μ m) position–position–velocity cubes of the 500 year old Orion BN/KL explosive outflow with spatial resolution 1″ and spectral resolution 86 km s{sup −1}. We construct integrated intensity maps free of continuum sources of 15 H{sub 2} and [Fe ii] lines while preserving kinematic information of individual outflow features. Included in the detected H{sub 2} lines are the 1-0 S(1) and 1-0 Q(3) transitions, allowing extinction measurements across the outflow. Additionally, we present dereddened flux ratios for over two dozen outflow features to allow for the characterization of the true excitation conditions of the BN/KL outflow. All of themore » ratios show the dominance of the shock excitation of the H{sub 2} emission, although some features exhibit signs of fluorescent excitation from stellar radiation or J-type shocks. We also detect tracers of the PDR/ionization front north of the Trapezium stars in [O i] and [Fe ii] and analyze other observed outflows not associated with the BN/KL outflow.« less

  12. Pulsar-Wind Nebulae and Magnetar Outflows: Observations at Radio, X-Ray, and Gamma-Ray Wavelengths

    NASA Astrophysics Data System (ADS)

    Reynolds, Stephen P.; Pavlov, George G.; Kargaltsev, Oleg; Klingler, Noel; Renaud, Matthieu; Mereghetti, Sandro

    2017-07-01

    We review observations of several classes of neutron-star-powered outflows: pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe interacting directly with interstellar medium (ISM), and magnetar-powered outflows. We describe radio, X-ray, and gamma-ray observations of PWNe, focusing first on integrated spectral-energy distributions (SEDs) and global spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering array of morphologies, with jets, trails, and other structures. Several of the 23 so far identified magnetars show evidence for continuous or sporadic emission of material, sometimes associated with giant flares, and a few "magnetar-wind nebula" have been recently identified.

  13. THE DISK-OUTFLOW SYSTEM IN THE S255IR AREA OF HIGH-MASS STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinchenko, I.; Zemlyanukha, P.; Liu, S.-Y.

    We report the results of our observations of the S255IR area with the Submillimeter Array (SMA) at 1.3 mm in the very extended configuration and at 0.8 mm in the compact configuration as well as with the IRAM 30 m at 0.8 mm. The best achieved angular resolution is about 0.4 arcsec. The dust continuum emission and several tens of molecular spectral lines are observed. The majority of the lines is detected only toward the S255IR-SMA1 clump, which represents a rotating structure (probably a disk) around the young massive star. The achieved angular resolution is still insufficient to make anymore » conclusions about the Keplerian or non-Keplerian character of the rotation. The temperature of the molecular gas reaches 130–180 K. The size of the clump is about 500 AU. The clump is strongly fragmented as follows from the low beam-filling factor. The mass of the hot gas is significantly lower than the mass of the central star. A strong DCN emission near the center of the hot core most probably indicates a presence of a relatively cold (≲80 K) and rather massive clump there. High-velocity emission is observed in the CO line as well as in lines of high-density tracers HCN, HCO{sup +}, CS and other molecules. The outflow morphology obtained from a combination of the SMA and IRAM 30 m data is significantly different from that derived from the SMA data alone. The CO emission detected with the SMA traces only one boundary of the outflow. The outflow is most probably driven by jet bow shocks created by episodic ejections from the center. We detected a dense high velocity clump associated apparently with one of the bow shocks. The outflow strongly affects the chemical composition of the surrounding medium.« less

  14. 4D display of the outflow track of embryonic-chick hearts (HH 14-19) using a high speed streak mode OCT

    NASA Astrophysics Data System (ADS)

    Ma, Siyu; Wang, Rui; Goodwin, Richard L.; Markwald, Roger R.; Borg, Thomas K.; Runyan, Raymond B.; Gao, Zhi

    2013-02-01

    Congenital Heart Disease (CHD) is the most common congenital malformation in newborns in the US. Although knowledge of CHD is limited, altered hemodynamic conditions are suspected as the factor that stimulates cardiovascular cell response, resulting in the heart morphology remodeling that ultimately causes CHDs. Therefore, one of recent efforts in CHD study is to develop high-speed imaging tools to correlate the rapidly changing hemodynamic condition and the morphological adaptations of an embryonic heart in vivo. We have developed a high-speed streak mode OCT that works at the center wavelength of 830 nm and is capable of providing images (292x220 μm2) of the outflow tract of an embryonic chick heart at the rate of 1000 Hz. The modality can provide a voxel resolution in the range of 10 μm3, and the spectral resolution allows a depth range of 1.63 mm. In the study reported here, each of the 4D images of an outflow tract was recorded for 2 seconds. The recording was conducted every 2 hours (HH17 to HH18), 3 hours (HH14 to HH17), and 4 hours (HH18 to HH19). Because of the fast scan speed, there is no need for postacquisition processing such as use of gating techniques to provide a fine 3D structure. In addition, more details of the outflow tract are preserved in the recorded images. The 4D images can be used in the future to determine the role of blood flow in CHD development.

  15. Surface Currents and Winds at the Delaware Bay Mouth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muscarella, P A; Barton, N P; Lipphardt, B L

    2011-04-06

    Knowledge of the circulation of estuaries and adjacent shelf waters has relied on hydrographic measurements, moorings, and local wind observations usually removed from the region of interest. Although these observations are certainly sufficient to identify major characteristics, they lack both spatial resolution and temporal coverage. High resolution synoptic observations are required to identify important coastal processes at smaller scales. Long observation periods are needed to properly sample low-frequency processes that may also be important. The introduction of high-frequency (HF) radar measurements and regional wind models for coastal studies is changing this situation. Here we analyze synoptic, high-resolution surface winds andmore » currents in the Delaware Bay mouth over an eight-month period (October 2007 through May 2008). The surface currents were measured by two high-frequency radars while the surface winds were extracted from a data-assimilating regional wind model. To illustrate the utility of these monitoring tools we focus on two 45-day periods which previously were shown to present contrasting pictures of the circulation. One, the low-outflow period is from 1 October through 14 November 2007; the other is the high-outflow period from 3 March through 16 April 2008. The large-scale characteristics noted by previous workers are clearly corroborated. Specifically the M2 tide dominates the surface currents, and the Delaware Bay outflow plume is clearly evident in the low frequency currents. Several new aspects of the surface circulation were also identified. These include a map of the spatial variability of the M2 tide (validating an earlier model study), persistent low-frequency cross-mouth flow, and a rapid response of the surface currents to a changing wind field. However, strong wind episodes did not persist long enough to set up a sustained Ekman response.« less

  16. Treatment implications of high-resolution manometry findings: options for patients with esophageal dysmotility.

    PubMed

    Bolkhir, Ahmed; Gyawali, C Prakash

    2014-03-01

    High-resolution manometry (HRM) has significantly impacted diagnosis and management of achalasia in particular, and has improved characterization of other motor disorders. Achalasia, the most profound esophageal motor disorder, is characterized by esophageal outflow obstruction from abnormal relaxation of the lower esophageal sphincter (LES) during swallowing, and presents with transit symptoms (dysphagia, regurgitation). Esophageal body motor disorders include both inhibitory nerve dysfunction associated with hypermotility or spasm, and hypomotility disorders with poor contraction. The implications of hypermotility disorders are both perceptive and obstructive. On the other hand, hypomotility disorders have reflux implications because of abnormal barrier function at the LES, and abnormal bolus clearance. Esophageal outflow obstruction in achalasia responds favorably to disruption of the LES, and outcome may be predicted by HRM subtyping of achalasia. Identification of dominant (perceptive vs. obstructive) mechanisms of symptom generation help direct therapy of hypermotility disorders, while hypomotility disorders typically require management of concurrent reflux disease.

  17. VY Canis Majoris: Observational Studies of the Outflow

    NASA Astrophysics Data System (ADS)

    Harwit, M.

    2001-12-01

    A number of recent studies carried out with the Infrared Space Observatory, ISO, and the Submillimeter Wave Astronomy Satellite, SWAS, provide new information on the chemical composition of the dust and the geometry of the outflow. With ISO, we have obtained a near-, mid-, and far-infrared spectrum of VY CMa that shows the strong preponderance of amorphous, as contrasted to crystalline, silicates. The sharp spectral slope in the near-infrared suggests the presence also of iron grains. While an excellent theoretical fit to the data is obtained, we emphasize that this is far from unique. A resolution of ambiguities will require a self-consistent model that considers not only radiative transfer, but also plausible elemental abundances, laboratory studies of chemical condensation sequences, and gas dynamics. With SWAS we have obtained a high-resolution spectrum of the 557GHz ground state transition of ortho-water. The spectral profile enables us to rule out a number of outflow geometries proposed in the literature. With ISO we also obtained the intensities and velocity structure of several other spectral lines of water. Most of these lines must be optically thick but effectively thin, a circumstance that permits us to make use of recent gas-dynamic models to locate the radial position in the outflow where individual lines are emitted.

  18. An Outflow-shaped Magnetic Field Toward the Class 0 Protostellar Source Serpens SMM1

    NASA Astrophysics Data System (ADS)

    Hull, Charles; Girart, Josep M.; Tychoniec, Lukasz; Rao, Ramprasad; Cortés, Paulo; Pokhrel, Riwaj; Zhang, Qizhou; Houde, Martin; Dunham, Michael; Kristensen, Lars; Lai, Shih-Ping; Li, Zhi-Yun; Plambeck, Richard

    2018-01-01

    The results from the polarization system at the Atacama Large Millimeter/submillimeter Array (ALMA) have begun both to expand and to confound our understanding of the role of the magnetic field in low-mass star formation. Here we show the highest resolution and highest sensitivity polarization images made to date toward the very young, intermediate-mass Class 0 protostellar source Serpens SMM1, the brightest source in the Serpens Main star-forming region. These ALMA observations achieve ~140 AU resolution, allowing us to probe dust polarization—and thus magnetic field orientation—in the innermost regions surrounding the protostar. By complementing these observations with polarization observations from the Submillimeter Array (SMA) and archival data from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the James Clerk Maxwell Telescopes (JCMT), we can compare the magnetic field orientations at different spatial scales. We find major changes in the magnetic field orientation between large (~0.1 pc) scales—where the magnetic field is oriented E–W, perpendicular to the major axis of the dusty filament where SMM1 is embedded—and the intermediate and small scales probed by CARMA (~1000 au resolution), the SMA (~350 au resolution), and ALMA. The ALMA maps reveal that the redshifted lobe of the bipolar outflow is clearly shaping the magnetic field in SMM1 on the southeast side of the source. High-spatial-resolution continuum and spectral-line observations also reveal a tight (~130 au) protobinary system in SMM1-b, the eastern component of which is launching an extremely high-velocity, one-sided jet visible in both CO(2-1) and SiO(5-4); however, that jet does not appear to be shaping the magnetic field. These observations show that with the sensitivity and resolution of ALMA, we can now begin to understand the role that feedback (e.g., from protostellar outflows) plays in shaping the magnetic field in very young, star-forming sources like SMM1.

  19. Outwash plains and thermokarst on Mars

    USGS Publications Warehouse

    Costard, F.M.; Kargel, J.S.

    1995-01-01

    The spatial distribution of different types of rampart craters on Mars suggests a hemispheric asymmetry in the distribution of ground ice. The northern plains, especially major topographic depressions near the terminations of outflow channels, have high percentages of rampart craters. Two of these basins, Acidalia and Utopia Planitiae, received extraordinarily large amounts of water and sediment from the Chryse and Elysium outflow channels. In both regions, the analysis of high-resolution Viking pictures (12 m/pixel) indicates a concentration of kilometer-scale depressions that are similar in size and form to thermokarstic features in Yakutia (Siberia) and parts of the arctic coastal plain of North America. Accordingly, we infer that (1) Utopia Planitia and Acidalia Planitia may contain thick, laterally continuous, ice-rich sedimentary deposits related to outflow channel-forming floods, and (2) these areas of Mars may have experienced thermokarstic processes similar to modern thermokarstic processes in some periglacial regions of Earth.

  20. Probing the Molecular Outflows of the Coldest Known Object in the Universe: The Boomerang Nebula

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Vlemmings, W.; Nyman, L. A.; Huggins, P.

    2012-05-01

    The Boomerang Nebula is the coldest known object in the Universe, and an extreme member of the class of Pre-Planetary Nebulae, objects which represent a short-lived transitional phase between the AGB and Planetary Nebula evolutionary stages. The Boomerang's estimated prodigious mass-loss rate (0.001 solar masses/year) and low-luminosity (300 Lsun) lack an explanation in terms of current paradigms for dusty mass-loss and standard evolutionary theory of intermediate-mass stars. Single-dish CO J=1-0 observations (with a 45 arcsec beam) show that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. We report on our high-resolution ALMA mapping of the CO lines in this ultra-cold nebula to determine the origin of these extreme conditions and robustly confirm current estimates of the fundamental physical properties of its ultra-cold outflow.

  1. Device specific analysis of neonatal aortic outflow cannula jet flows for improved cardiopulmonary bypass hemodynamics

    NASA Astrophysics Data System (ADS)

    Menon, Prahlad; Sotiropoulos, Fotis; Undar, Akif; Pekkan, Kerem

    2011-11-01

    Hemodynamically efficient aortic outflow cannulae can provide high blood volume flow rates at low exit force during extracorporeal circulation in pediatric or neonatal cardiopulmonary bypass repairs. Furthermore, optimal hemolytic aortic insertion configurations can significantly reduce risk of post-surgical neurological complications and developmental defects in the young patient. The methodology and results presented in this study serve as a baseline for design of superior aortic outflow cannulae based on a novel paradigm of characterizing jet-flows at different flow regimes. In-silico evaluations of multiple cannula tips were used to delineate baseline hemodynamic performance of the popular pediatric cannula tips in an experimental cuboidal test-rig, using PIV. High resolution CFD jet-flow simulations performed for various cannula tips in the cuboidal test-rig as well as in-vivo insertion configurations have suggested the existence of optimal surgically relevant characteristics such as cannula outflow angle and insertion depth for improved hemodynamic performance during surgery. Improved cannula tips were designed with internal flow-control features for decreased blood damage and increased permissible flow rates.

  2. NGC 7538 IRS. 1. Interaction of a Polarized Dust Spiral and a Molecular Outflow

    NASA Astrophysics Data System (ADS)

    Wright, M. C. H.; Hull, Charles L. H.; Pillai, Thushara; Zhao, Jun-Hui; Sandell, Göran

    2014-12-01

    We present dust polarization and CO molecular line images of NGC 7538 IRS 1. We combined data from the Submillimeter Array, the Combined Array for Research in Millimeter-wave Astronomy, and the James Clerk Maxwell Telescope to make images with ~2.''5 resolution at 230 and 345 GHz. The images show a remarkable spiral pattern in both the dust polarization and molecular outflow. These data dramatically illustrate the interplay between a high infall rate onto IRS 1 and a powerful outflow disrupting the dense, clumpy medium surrounding the star. The images of the dust polarization and the CO outflow presented here provide observational evidence for the exchange of energy and angular momentum between the infall and the outflow. The spiral dust pattern, which rotates through over 180° from IRS 1, may be a clumpy filament wound up by conservation of angular momentum in the infalling material. The redshifted CO emission ridge traces the dust spiral closely through the MM dust cores, several of which may contain protostars. We propose that the CO maps the boundary layer where the outflow is ablating gas from the dense gas in the spiral.

  3. How stellar feedback simultaneously regulates star formation and drives outflows

    NASA Astrophysics Data System (ADS)

    Hayward, Christopher C.; Hopkins, Philip F.

    2017-02-01

    We present an analytic model for how momentum deposition from stellar feedback simultaneously regulates star formation and drives outflows in a turbulent interstellar medium (ISM). Because the ISM is turbulent, a given patch of ISM exhibits sub-patches with a range of surface densities. The high-density patches are 'pushed' by feedback, thereby driving turbulence and self-regulating local star formation. Sufficiently low-density patches, however, are accelerated to above the escape velocity before the region can self-adjust and are thus vented as outflows. When the gas fraction is ≳ 0.3, the ratio of the turbulent velocity dispersion to the circular velocity is sufficiently high that at any given time, of the order of half of the ISM has surface density less than the critical value and thus can be blown out on a dynamical time. The resulting outflows have a mass-loading factor (η ≡ dot{M}_{out}/M_{star }) that is inversely proportional to the gas fraction times the circular velocity. At low gas fractions, the star formation rate needed for local self-regulation, and corresponding turbulent Mach number, declines rapidly; the ISM is 'smoother', and it is actually more difficult to drive winds with large mass-loading factors. Crucially, our model predicts that stellar-feedback-driven outflows should be suppressed at z ≲ 1 in M⋆ ≳ 1010 M⊙ galaxies. This mechanism allows massive galaxies to exhibit violent outflows at high redshifts and then 'shut down' those outflows at late times, thereby enabling the formation of a smooth, extended thin stellar disc. We provide simple fitting functions for η that should be useful for sub-resolution and semi-analytic models.

  4. The structure of the Cepheus E protostellar outflow: The jet, the bowshock, and the cavity

    NASA Astrophysics Data System (ADS)

    Lefloch, B.; Gusdorf, A.; Codella, C.; Eislöffel, J.; Neri, R.; Gómez-Ruiz, A. I.; Güsten, R.; Leurini, S.; Risacher, C.; Benedettini, M.

    2015-09-01

    Context. Protostellar outflows are a crucial ingredient of the star-formation process. However, the physical conditions in the warm outflowing gas are still poorly known. Aims: We present a multi-transition, high spectral resolution CO study of the outflow of the intermediate-mass Class 0 protostar Cep E-mm. The goal is to determine the structure of the outflow and to constrain the physical conditions of the various components in order to understand the origin of the mass-loss phenomenon. Methods: We have observed the J = 12-11, J = 13-12, and J = 16-15 CO lines at high spectral resolution with SOFIA/GREAT and the J = 5-4, J = 9-8, and J = 14-13 CO lines with HIFI/Herschel towards the position of the terminal bowshock HH377 in the southern outflow lobe. These observations were complemented with maps of CO transitions obtained with the IRAM 30 m telescope (J = 1-0, 2-1), the Plateau de Bure interferometer (J = 2-1), and the James Clerk Maxwell Telescope (J = 3-2, 4-3). Results: We identify three main components in the protostellar outflow: the jet, the cavity, and the bowshock, with a typical size of 1.7″ × 21″, 4.5″, and 22″ × 10″, respectively. In the jet, the emission from the low-J CO lines is dominated by a gas layer at Tkin = 80-100 K, column density N(CO) = 9 × 1016 cm-2, and density n(H2) = (0.5-1) × 105 cm-3; the emission of the high-J CO lines arises from a warmer (Tkin = 400-750 K), denser (n(H2) = (0.5-1) × 106 cm-3), lower column density (N(CO) = 1.5 × 1016 cm-2) gas component. Similarly, in the outflow cavity, two components are detected: the emission of the low-J lines is dominated by a gas layer of column density N(CO) = 7 × 1017 cm-2 at Tkin = 55-85 K and density in the range (1-8) × 105 cm-3; the emission of the high-J lines is dominated by a hot, denser gas layer with Tkin = 500-1500K, n(H2) = (1-5) × 106 cm-3, and N(CO) = 6 × 1016 cm-2. A temperature gradient as a function of the velocity is found in the high-excitation gas component. In the terminal bowshock HH377, we detect gas of moderate excitation, with a temperature in the range Tkin ≈ 400-500 K, density n(H2) ≃ (1 -2) × 106 cm-3 and column density N(CO) = 1017 cm-2. The amounts of momentum carried away in the jet and in the entrained ambient medium are similar. Comparison with time-dependent shock models shows that the hot gas emission in the jet is well accounted for by a magnetized shock with an age of 220-740 yr propagating at 20-30 km s-1 in a medium of density n(H2) = (0.5-1) × 105 cm-3, consistent with that of the bulk material. Conclusions: The Cep E protostellar outflow appears to be a convincing case of jet bowshock driven outflow. Our observations trace the recent impact of the protostellar jet into the ambient cloud, produing a non-stationary magnetized shock, which drives the formation of an outflow cavity. Appendices are available in electronic form at http://www.aanda.org

  5. A Massive X-ray Outflow From The Quasar PDS 456

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; O'Brien, P. T.; Ward, M. J.

    2003-01-01

    We report on XMM-Newton spectroscopic observations of the luminous, radio-quiet quasar PDS 456. The hard X-ray spectrum of PDS 456 shows a deep absorption trough (constituting 50% of the continuum) at energies above 7 keV in the quasar rest frame, which can be attributed to a series of blue-shifted K-shell absorption edges due to highly ionized iron. The higher resolution soft X-ray grating RGS spectrum exhibits a broad absorption line feature near 1 keV, which can be modeled by a blend of L-shell transitions from highly ionized iron (Fe XVII - XXIV). An extreme outflow velocity of approx. 50000 km/s is required to model the K and L shell iron absorption present in the XMM-Newton data. Overall, a large column density (N(sub H) = 5 x 10(exp 23)/sq cm) of highly ionized gas (log xi = 2.5) is required in PDS 456. A large mass outflow rate of approx. 10 solar mass/year (assuming a conservative outflow covering factor of 0.1 steradian) is derived, which is of the same order as the overall mass accretion rate in PDS 456. This represents a substantial fraction (approx. 10%) of the quasar energy budget, whilst the large column and outflow velocity place PDS 456 towards the extreme end of the broad absorption line quasar population.

  6. The very faint X-ray binary IGR J17062-6143: a truncated disc, no pulsations, and a possible outflow

    NASA Astrophysics Data System (ADS)

    van den Eijnden, J.; Degenaar, N.; Pinto, C.; Patruno, A.; Wette, K.; Messenger, C.; Hernández Santisteban, J. V.; Wijnands, R.; Miller, J. M.; Altamirano, D.; Paerels, F.; Chakrabarty, D.; Fabian, A. C.

    2018-04-01

    We present a comprehensive X-ray study of the neutron star low-mass X-ray binary IGR J17062-6143, which has been accreting at low luminosities since its discovery in 2006. Analysing NuSTAR, XMM-Newton, and Swift observations, we investigate the very faint nature of this source through three approaches: modelling the relativistic reflection spectrum to constrain the accretion geometry, performing high-resolution X-ray spectroscopy to search for an outflow, and searching for the recently reported millisecond X-ray pulsations. We find a strongly truncated accretion disc at 77^{+22}_{-18} gravitational radii (˜164 km) assuming a high inclination, although a low inclination and a disc extending to the neutron star cannot be excluded. The high-resolution spectroscopy reveals evidence for oxygen-rich circumbinary material, possibly resulting from a blueshifted, collisionally ionized outflow. Finally, we do not detect any pulsations. We discuss these results in the broader context of possible explanations for the persistent faint nature of weakly accreting neutron stars. The results are consistent with both an ultra-compact binary orbit and a magnetically truncated accretion flow, although both cannot be unambiguously inferred. We also discuss the nature of the donor star and conclude that it is likely a CO or O-Ne-Mg white dwarf, consistent with recent multiwavelength modelling.

  7. High Resolution Studies of Mass Loss from Massive Binary Stars

    NASA Astrophysics Data System (ADS)

    Corcoran, Michael F.; Gull, Theodore R.; Hamaguchi, Kenji; Richardson, Noel; Madura, Thomas; Post Russell, Christopher Michael; Teodoro, Mairan; Nichols, Joy S.; Moffat, Anthony F. J.; Shenar, Tomer; Pablo, Herbert

    2017-01-01

    Mass loss from hot luminous single and binary stars has a significant, perhaps decisive, effect on their evolution. The combination of X-ray observations of hot shocked gas embedded in the stellar winds and high-resolution optical/UV spectra of the cooler mass in the outflow provides unique ways to study the unstable process by which massive stars lose mass both through continuous stellar winds and rare, impulsive, large-scale mass ejections. The ability to obtain coordinated observations with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) and the Chandra High-Energy Transmission Grating Spectrometer (HETGS) and other X-ray observatories has allowed, for the first time, studies of resolved line emisssion over the temperature range of 104- 108K, and has provided observations to confront numerical dynamical models in three dimensions. Such observations advance our knowledge of mass-loss asymmetries, spatial and temporal variabilities, and the fundamental underlying physics of the hot shocked outflow, providing more realistic constraints on the amount of mass lost by different luminous stars in a variety of evolutionary stages. We discuss the impact that these joint observational studies have had on our understanding of dynamical mass outflows from massive stars, with particular emphasis on two important massive binaries, Delta Ori Aa, a linchpin of the mass luminosity relation for upper HRD main sequence stars, and the supermassive colliding wind binary Eta Carinae.

  8. Global-scale Ionospheric Outflow: Major Processes and Unresolved Problems

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Welling, D. T.; Ilie, R.; Khazanov, G. V.; Jahn, J. M.; Zou, S.; Ganushkina, N. Y.; Valek, P. W.; Elliott, H. A.; Gilchrist, B. E.; Hoegy, W. R.; Glocer, A.

    2016-12-01

    Outflow from the ionosphere is a major source of plasma to the magnetosphere. Its presence, especially that of ions heavier than He+, mass loads the magnetosphere and changes reconnection rates, current system configurations, plasma wave excitation and wave-particle interactions. It even impacts the propagation of information. We present a brief overview of the major processes and scientific history of this field. There are still major gaps, however, in our understanding of the global-scale nature of ionospheric outflow. We discuss these unresolved problems highlighting the leading questions still outstanding on this topic. First and foremost, since the measurements of ionospheric outflow have largely come from individual satellites and sounding rockets, the processes are best known on the local level, while the spatial distribution of outflow has never been simultaneously measured on more global scales. The spatial coherence and correlation of outflow across time and space have not been quantified. Furthermore, the composition of the outflow is often only measured at a coarse level of H+, He+, and O+, neglecting other species such as N+ or moleculars. However, resolving O+ from N+, as is customary in planetary research, aids in revealing the physics and altitude dependence of the energization processes in the ionosphere. Similarly, fine-resolution velocity space measurements of ionospheric outflow have been limited, yet such observations can also reveal energization processes driving the outflow. A final unresolved issue to mention is magnetically conjugate outflow and the full extent of hemispherically asymmetric outflow fluxes or fluence. Each of these open questions have substantial ramifications for magnetospheric physics; their resolution could yield sweeping changes in our understanding of nonlinear feedback and cross-scale physical interactions, magnetosphere-ionosphere coupling, and geospace system-level science.

  9. Molecular emission in chemically active protostellar outflows

    NASA Astrophysics Data System (ADS)

    Lefloch, B.

    2011-12-01

    Protostellar outflows play an important role in the dynamical and chemical evolution of cloud through shocks. The Herschel Space Observatory (HSO) brings new insight both on the molecular content and the physical conditions in protostellar shocks through high spectral and angular resolution studies of the emission of major gas cooling agents and hydrides. The Herschel/CHESS key-program is carrying out an in depth study of the prototypical shock region L1157-B1. Analysis of the line profiles detected allows to constrain the formation/destruction route of various molecular species, in relation with the predictions of MHD shock models. The Herschel/WISH key-program investigates the properties and origin of water emission in a broad sample of protostellar outflows and envelopes. Implications of the first results for future studies on mass-loss phenomena are discussed.

  10. The Coldest Place in the Universe: Probing the Ultra-cold Outflow and Dusty Disk in the Boomerang Nebula

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Vlemmings, W. H. T.; Nyman, L.-Å.

    2017-06-01

    Our Cycle 0 ALMA observations confirmed that the Boomerang Nebula is the coldest known object in the universe, with a massive high-speed outflow that has cooled significantly below the cosmic background temperature. Our new CO 1-0 data reveal heretofore unseen distant regions of this ultra-cold outflow, out to ≳120,000 au. We find that in the ultra-cold outflow, the mass-loss rate (\\dot{M}) increases with radius, similar to its expansion velocity (V)—taking V\\propto r, we find \\dot{M}\\propto {r}0.9{--2.2}. The mass in the ultra-cold outflow is ≳ 3.3 M ⊙, and the Boomerang’s main-sequence progenitor mass is ≳ 4 M ⊙. Our high angular resolution (˜ 0\\buildrel{\\prime\\prime}\\over{.} 3) CO J = 3-2 map shows the inner bipolar nebula’s precise, highly collimated shape, and a dense central waist of size (FWHM) ˜1740 au × 275 au. The molecular gas and the dust as seen in scattered light via optical Hubble Space Telescope imaging show a detailed correspondence. The waist shows a compact core in thermal dust emission at 0.87-3.3 mm, which harbors (4{--}7)× {10}-4 M ⊙ of very large (˜millimeter-to-centimeter sized), cold (˜ 20{--}30 K) grains. The central waist (assuming its outer regions to be expanding) and fast bipolar outflow have expansion ages of ≲ 1925 {years} and ≤slant 1050 {years}: the “jet-lag” (I.e., torus age minus the fast-outflow age) in the Boomerang supports models in which the primary star interacts directly with a binary companion. We argue that this interaction resulted in a common-envelope configuration, while the Boomerang’s primary was an RGB or early-AGB star, with the companion finally merging into the primary’s core, and ejecting the primary’s envelope that now forms the ultra-cold outflow.

  11. A High-definition View Of The Circum-nuclear Regions In Nearby Seyferts With Chandra And HST

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mundell, C. G.

    2011-09-01

    To improve our understanding of AGN feedback, it is crucial to evaluate the true role of outflows on galaxy evolution observationally. I will present new results from the CHandra survey of Extended Emission-line Regions in nearby Seyfert galaxies (CHEERS), which aims to examine feedback in action in much greater detail than at high redshift. Findings from Chandra studies of the circum-nuclear region in the archetypal Seyfert 1 galaxy NGC 4151 will be discussed in detail. Exploiting Chandra's highest possible resolution, we find evidence for X-ray emission from interaction between radio outflow and the optical narrow-line region clouds, in addition to the emission from photoionized gas.

  12. Anatomy of the AGN in NGC 5548: Discovery of a fast and massive outflow

    NASA Astrophysics Data System (ADS)

    Kaastra, J.; Kriss, G.; Cappi, M.; Mehdipour, M.; Petrucci, P.; Steenbrugge, K.; Arav, N.; Behar, E.; Bianchi, S.; Boissay, R.; Branduardi-Raymont, G.; Chamberlain, C.; Costantini, E.; Ely, J.; Ebrero, J.; Di Gesu, L.; Harrison, F.; kaspi, S.; Malzac, J.; De Marco, B.; Matt, G.; Nandra, K.; Paltani, S.; Person, R.; Peterson, B.; Pinto, C.; Ponti, G.; Pozo Nuñez, F.; De Rosa, A.; Seta, H.; Ursini, F.; De Vries, C.; Walton, D.; Whewell, M.

    2014-07-01

    After a very succesfull multi-satellite campaign on Mrk 509 in 2009, we conducted a similar campaign on the AGN NGC 5548 in 2013. This archetype Seyfert 1 galaxy NGC 5548 has been studied for decades, and high-resolution X-ray and UV observations have previously shown an outflow with standard physical characteristics. However, our recent observing campaign with six space observatories (XMM-Newton, HST, Swift, NuSTAR, Chandra and INTEGRAL) shows the nucleus to be obscured by a stream of new ionized gas never seen before in this source. The gas with hydrogen column densities of 1E26-1E27 per m2 blocks 90% of the soft X-ray emission and causes deep and broad UV absorption troughs. The outflow velocities are up to five times faster than the persistent normal outflow. It is located at a distance of only a few light days from the nucleus close to the broad line region; this might indicate an origin from the accretion disk.

  13. ORIGIN AND KINEMATICS OF THE ERUPTIVE FLOW FROM XZ TAU REVEALED BY ALMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapata, Luis A.; Galván-Madrid, Roberto; Carrasco-González, Carlos

    2015-09-20

    We present high angular resolution (∼0.″94) {sup 12}CO(1-0) Atacama Large Millimeter/submillimeter Array (ALMA) observations obtained during the 2014 long baseline campaign from the eruptive bipolar flow from the multiple XZ Tau stellar system discovered by the Hubble Space Telescope (HST). These observations reveal, for the first time, the kinematics of the molecular flow. The kinematics of the different ejections close to XZ Tau reveal a rotating and expanding structure with a southeast–northwest velocity gradient. The youngest eruptive bubbles unveiled in the optical HST images are inside of this molecular expanding structure. Additionally, we report a very compact and collimated bipolarmore » outflow emanating from XZ Tau A, which indicates that the eruptive outflow is indeed originating from this object. The mass (3 × 10{sup −7} M{sub ⊙}) and energetics (E{sub kin} = 3 × 10{sup 37} erg) for the collimated outflow are comparable to those found in molecular outflows associated with young brown dwarfs.« less

  14. The bipolar jet of the symbiotic star R Aquarii: A study of its morphology using the high-resolution HST WFC3/UVIS camera

    NASA Astrophysics Data System (ADS)

    Melnikov, Stanislav; Stute, Matthias; Eislöffel, Jochen

    2018-04-01

    Context. R Aqr is a symbiotic binary system consisting of a Mira variable with a pulsation period of 387 days and a hot companion which is presumably a white dwarf with an accretion disk. This binary system is the source of a prominent bipolar gaseous outflow. Aims: We use high spatial resolution and sensitive images from the Hubble Space Telescope (HST) to identify and investigate the different structural components that form the complex morphology of the R Aqr jet. Methods: We present new high-resolution HST WFC3/UVIS narrow-band images of the R Aqr jet obtained in 2013/14 using the [OIII]λ5007, [OI]λ6300, [NII]λ6583, and Hα emission lines. These images also allow us to produce detailed maps of the jet flow in several line ratios such as [OIII]λ5007/[OI]λ6300 and [NII]λ6583/[OI]λ6300 which are sensitive to the outflow temperature and its hydrogen ionisation fraction. The new emission maps together with archival HST data are used to derive and analyse the proper motion of prominent emitting features which can be traced over 20 years with the HST observations. Results: The images reveal the fine gas structure of the jet out to distances of a few tens of arcseconds from the central region, as well as in the innermost region, within a few arcseconds around the stellar source. They reveal for the first time the straight, highly collimated jet component which can be traced to up to 900 AU in the NE direction. Images in [OIII]λ5007, [OI]λ6300, and [NII]λ6583 clearly show a helical pattern in the jet beams which may derive from the small-scale precession of the jet. The highly collimated jet is accompanied by a wide opening angle outflow which is filled by low excitation gas. The position angles of the jet structures as well as their opening angles are calculated. Our measurements of the proper motions of some prominent emission knots confirm the scenario of gas acceleration during the propagation of the outflow. Finally, we produce several detailed line ratio maps which present a mosaic combined from the large field and the PSF-subtracted inner region. Conclusions: The high signal-to-noise HST WFC3/UVIS images provide powerful tools for the study of the jet morphology and also bring detailed information about the physical jet gas conditions. The simultaneous observations of [OIII], [OI], [NII], and [SII] would allow us to measure basic parameters of the ionised gas in the R Aqr outflow such as electron density, electron temperature and hydrogen ionisation fraction, and compare them with other stellar jets.

  15. A Sleeping Giant Awakened: Reignition of AGN Activity, Reborn Star Formation, and a Multiphase Outflow in one of the Largest Radio Galaxies Known

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant; O'Dea, Christopher; Labiano, Alvaro; Baum, Stefi; McDermid, Richard; Combes, Francoise; Garcia-Burillo, Santiago; Davis, Timothy

    2014-08-01

    3C 236 is the second largest known radio galaxy and one of the largest objects in the known Universe. Its central AGN has recently reignited after a 10 Myr dormancy period, giving rise to a very young and compact radio source and a 1000 km/sec outflow of warm ionized and atomic HI gas. We propose GMOS-N IFU observations to resolve this outflow, determine its driver, and estimate the relative coupling efficiencies between the warm ionized, atomic, and cold molecular gas phases. We will assemble a much-needed spatially resolved Balmer decrement (extinction map) across the dramatic double dust lanes of this source, enabling high spatial resolution star formation rate, efficiency, and gas excitation and velocity maps. These will address several mysteries related to the very high star formation efficiency and the unique nature of the multiphase outflow in this source. 3C 236 is such a remarkable galaxy that whatever the results of the proposed observations, they will have wide-ranging implications for the triggering of star formation and AGN activity, their possibly coupled co-evolution, and the feedback effects of the latter on the former.

  16. Figuring Out Gas and Galaxies in Enzo (FOGGIE): Simulating effects of feedback on galactic outflows

    NASA Astrophysics Data System (ADS)

    Morris, Melissa Elizabeth; Corlies, Lauren; Peeples, Molly; Tumlinson, Jason; O'Shea, Brian; Smith, Britton

    2018-01-01

    The circumgalactic medium (CGM) is the region beyond the galactic disk in which gas is accreted through pristine inflows from the intergalactic medium and expelled from the galaxy by stellar feedback in large outflows that can then be recycled back onto the disk. These gas cycles connect the galactic disk with its cosmic environment, making the CGM a vital component of galaxy evolution. However, the CGM is primarily observed in absorption, which can be difficult to interpret. In this study, we use high resolution cosmological hydrodynamic simulations of a Milky Way mass halo evolved with the code Enzo to aid the interpretation of these observations. In our simulations, we vary feedback strength and observe the effect it has on galactic outflows and the evolution of the galaxy’s CGM. We compare the star formation rate of the galaxy with the velocity flux and mass outflow rate as a function of height above the plane of the galaxy in order to measure the strength of the outflows and how far they extend outside of the galaxy.This work was supported by The Space Astronomy Summer Program at STScI and NSF grant AST-1517908.

  17. A TWO-PHASE LOW-VELOCITY OUTFLOW IN THE SEYFERT 1 GALAXY Ark 564

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, A.; Mathur, S.; Krongold, Y.

    2013-05-10

    The Seyfert 1 galaxy Ark 564 was observed with Chandra high-energy transmission gratings for 250 ks. We present the high-resolution X-ray spectrum that shows several associated absorption lines. The photoionization model requires two warm absorbers (WAs) with two different ionization states (log U = 0.39 {+-} 0.03 and log U = -0.99 {+-} 0.13), both with moderate outflow velocities ({approx}100 km s{sup -1}) and relatively low line of sight column densities (log N{sub H} = 20.94 and 20.11 cm{sup -2}). The high-ionization phase produces absorption lines of O VII, O VIII, Ne IX, Ne X, Mg XI, Fe XVII, andmore » Fe XVIII, while the low-ionization phase produces lines at lower energies (O VIand O VII). The pressure-temperature equilibrium curve for the Ark 564 absorber does not have the typical ''S'' shape, even if the metallicity is super-solar; as a result, the two WA phases do not appear to be in pressure balance. This suggests that the continuum incident on the absorbing gas is perhaps different from the observed continuum. We also estimated the mass outflow rate and the associated kinetic energy and find it to be at most 0.009% of the bolometric luminosity of Ark 564. Thus, it is highly unlikely that these outflows provide significant feedback required by the galaxy formation models.« less

  18. ALMA Observations of Dust Polarization and Molecular Line Emission from the Class 0 Protostellar Source Serpens SMM1

    NASA Astrophysics Data System (ADS)

    Hull, Charles L. H.; Girart, Josep M.; Tychoniec, Łukasz; Rao, Ramprasad; Cortés, Paulo C.; Pokhrel, Riwaj; Zhang, Qizhou; Houde, Martin; Dunham, Michael M.; Kristensen, Lars E.; Lai, Shih-Ping; Li, Zhi-Yun; Plambeck, Richard L.

    2017-10-01

    We present high angular resolution dust polarization and molecular line observations carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) toward the Class 0 protostar Serpens SMM1. By complementing these observations with new polarization observations from the Submillimeter Array (SMA) and archival data from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the James Clerk Maxwell Telescopes (JCMT), we can compare the magnetic field orientations at different spatial scales. We find major changes in the magnetic field orientation between large (˜0.1 pc) scales—where the magnetic field is oriented E-W, perpendicular to the major axis of the dusty filament where SMM1 is embedded—and the intermediate and small scales probed by CARMA (˜1000 au resolution), the SMA (˜350 au resolution), and ALMA (˜140 au resolution). The ALMA maps reveal that the redshifted lobe of the bipolar outflow is shaping the magnetic field in SMM1 on the southeast side of the source; however, on the northwestern side and elsewhere in the source, low-velocity shocks may be causing the observed chaotic magnetic field pattern. High-spatial-resolution continuum and spectral-line observations also reveal a tight (˜130 au) protobinary system in SMM1-b, the eastern component of which is launching an extremely high-velocity, one-sided jet visible in both {CO}(J=2\\to 1) and {SiO}(J=5\\to 4); however, that jet does not appear to be shaping the magnetic field. These observations show that with the sensitivity and resolution of ALMA, we can now begin to understand the role that feedback (e.g., from protostellar outflows) plays in shaping the magnetic field in very young, star-forming sources like SMM1.

  19. Modeling Jet and Outflow Feedback during Star Cluster Formation

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph; Schrön, Martin; Banerjee, Robi; Klessen, Ralf S.

    2014-08-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ~1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ~1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ~ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  20. The Chicago classification of motility disorders: an update.

    PubMed

    Roman, Sabine; Gyawali, C Prakash; Xiao, Yinglian; Pandolfino, John E; Kahrilas, Peter J

    2014-10-01

    The Chicago Classification defines esophageal motility disorders in high resolution manometry. This is based on individual scoring of 10 swallows performed in supine position. Disorders of esophago-gastric junction (EGJ) outflow obstruction are defined by a median integrated relaxation pressure above the limit of normal and divided into 3 achalasia subtypes and EGJ outflow obstruction. Major motility disorders (aperistalsis, distal esophageal spasm, and hypercontractile esophagus) are patterns not encountered in controls in the context of normal EGJ relaxation. Finally with the latest version of the Chicago Classification, only two minor motor disorders are considered: ineffective esophageal motility and fragmented peristalsis. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Radio jets clearing the way through galaxies: the view from Hi and molecular gas

    NASA Astrophysics Data System (ADS)

    Morganti, Raffaella

    2015-03-01

    Massive gas outflows are considered a key component in the process of galaxy formation and evolution. Because of this, they are the topic of many studies aimed at learning more about their occurrence, location and physical conditions as well as the mechanism(s) at their origin. This contribution presents recent results on two of the best examples of jet-driven outflows traced by cold and molecular gas. Thanks to high-spatial resolution observations, we have been able to locate the region where the outflow occurs. This appears to be coincident with bright radio features and regions where the interaction between radio plasma jet and ISM is known to occur, thus strongly supporting the idea of jet-driven outflows. We have also imaged the distribution of the outflowing gas. The results clearly show the effect that expanding radio jets and lobes have on the ISM. This appears to be in good agreement with what predicted from numerical simulations. Furthermore, the results show that cold gas is associated with these powerful phenomena and can be formed - likely via efficient cooling - even after a strong interaction and fast shocks. The discovery of similar fast outflows of cold gas in weak radio sources is further increasing the relevance that the effect of the radio plasma can have on the surrounding medium and on the host galaxy.

  2. Velocity-resolved observations of water in Comet Halley

    NASA Technical Reports Server (NTRS)

    Larson, Harold P.; Davis, D. Scott; Mumma, Michael J.; Weaver, Harold A.

    1986-01-01

    High resolution (lambda/delta lambda approx. = 3 x 10 to the 5th power) near-infrared observations of H2O emission from Comet Halley were acquired at the time of maximum post-perihelion geocentric Doppler shift. The observed widths and absolute positions of the H2O line profiles reveal characteristics of the molecular velocity field in the coma. These results support H2O outflow from a Sun-lit hemisphere or the entire nucleus, but not from a single, narrow jet emanating from the nucleus. The measured pre- and post-perihelion outflow velocities were 0.9 + or - 0.2 and 1.4 + or - 0.2 km/s, respectively. Temporal variations in the kinematic properties of the outflow were inferred from changes in the spectral line shapes. These results are consistent with the release of H2O into the coma from multiple jets.

  3. Uncovering the Protostars in Serpens South with ALMA: Continuum Sources and Their Outflow Activity

    NASA Astrophysics Data System (ADS)

    Plunkett, Adele; Arce, H.; Corder, S.; Dunham, M.

    2017-06-01

    Serpens South is an appealing protostellar cluster to study due the combination of several factors: (1) a high protostar fraction that shows evidence for very recent and ongoing star formation; (2) iconic clustered star formation along a filamentary structure; (3) its relative proximity within a few hundred parsecs. An effective study requires the sensitivity, angular and spectral resolution, and mapping capabilities recently provided with ALMA. Here we present a multi-faceted data set acquired from Cycles 1 through 3 with ALMA, including maps of continuum sources and molecular outflows throughout the region, as well as a more focused kinematical study of the protostar that is the strongest continuum source at the cluster center. Together these data span spatial scales over several orders of magnitude, allowing us to investigate the outflow-driving sources and the impact of the outflows on the cluster environment. Currently, we focus on the census of protostars in the cluster center, numbering about 20, including low-flux, low-mass sources never before detected in mm-wavelengths and evidence for multiplicity that was previously unresolved.

  4. MHD Wind Models in X-Ray Binaries and AGN

    NASA Astrophysics Data System (ADS)

    Behar, Ehud; Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris R.; Tombesi, Francesco; Contopoulos, Ioannis

    2017-08-01

    Self-similar magnetohydrodynamic (MHD) wind models that can explain both the kinematics and the ionization structure of outflows from accretion sources will be presented.The X-ray absorption-line properties of these outflows are diverse, their velocity ranging from 0.001c to 0.1c, and their ionization ranging from neutral to fully ionized.We will show how the velocity structure and density profile of the wind can be tightly constrained, by finding the scaling of the magnetic flux with the distance from the center that best matches observations, and with no other priors.It will be demonstrated that the same basic MHD wind structure that successfully accounts for the X-ray absorber properties of outflows from supermassive black holes, also reproduces the high-resolution X-ray spectrum of the accreting stellar-mass black hole GRO J1655-40 for a series of ions between ~1A and ~12A.These results support both the magnetic nature of these winds, as well as the universal nature of magnetic outflows across all black hole sizes.

  5. ALMA Studies of the Disk-Jet-Outflow Connection

    NASA Astrophysics Data System (ADS)

    Dougados, Catherine; Louvet, F.; Mardones, D.; Cabrit, S.

    2017-06-01

    I will describe in this contribution recent results obtained with ALMA on the origin of the disk/jet/outflow connexion in T Tauri stars. I will first present ALMA observations of the disk associated with the jet source Th 28, which question previous jet rotation measurements in this source and the implications drawn from them. I will then discuss Cycle 2 ALMA observations of the disk and small scale CO outflow associated with the prototypical edge-on HH 30 source. The unprecedented angular resolution of this dataset brings new constraints on the origin of the CO outflows in young stars.

  6. Recent Chandra/HETGS and NuSTAR observations of the quasar PDS 456 and its Ultra-Fast Outflow

    NASA Astrophysics Data System (ADS)

    Boissay Malaquin, Rozenn; Marshall, Herman L.; Nowak, Michael A.

    2018-01-01

    Evidence is growing that the interaction between outflows from active galactic nuclei (AGN) and their surrounding medium may play an important role in galaxy evolution, i.e. in the regulation of star formation in galaxies, through AGN feedback processes. Indeed, powerful outflows, such as the ultra-fast outflows (UFOs) that can reach mildly relativistic velocities of 0.2-0.4c, could blow away a galaxy’s reservoir of star-forming gas and hence quench the star formation in host galaxies. The low-redshift (z=0.184) radio-quiet quasar PDS 456 has showed the presence of a strong and blueshifted absorption trough in the Fe K band above 7 keV, that has been associated with the signature of such a fast and highly ionized accretion disk wind of a velocity of 0.25-0.3c. This persistent and variable feature has been detected in many observations of PDS 456, in particular by XMM-Newton, Suzaku and NuSTAR, together with other blueshifted absorption lines in the soft energy band (e.g. Nardini et al. 2015, Reeves et al. 2016). I will present here the results of the analysis of recent and contemporaneous high-resolution Chandra/HETGS and NuSTAR observations of PDS 456, and compare them with the previous findings.

  7. Highly Collimated Jets and Wide-angle Outflows in HH 46/47: New Evidence from Spitzer Infrared Images

    NASA Technical Reports Server (NTRS)

    Velusamy, T.; Langer, William D.; Marsh, Kenneth. A.

    2007-01-01

    We present new details of the structure and morphology of the jets and outflows in HH 46/47 as seen in Spitzer infrared images from IRAC and MIPS, reprocessed using the 'HiRes' deconvolution technique. HiRes improves the visualization of spatial morphology by enhancing resolution (to subarcsecond levels in IRAC bands) and removing the contaminating side lobes from bright sources. In addition to sharper views of previously reported bow shocks, we have detected (1) the sharply delineated cavity walls of the wide-angle biconical outflow, seen in scattered light on both sides of the protostar, (2) several very narrow jet features at distances approximately 400 AU to approximately 0.1 pc from the star, and (3) compact emissions at MIPS 24 m with the jet heads, tracing the hottest atomic/ionic gas in the bow shocks. Together the IRAC and MIPS images provide a more complete picture of the bow shocks, tracing both the molecular and atomic/ionic gases, respectively. The narrow width and alignment of all jet-related features indicate a high degree of jet collimation and low divergence (width of approximately 400 AU increasing by only a factor of 2.3 over 0.2 pc). The morphology of this jet, bow shocks, wide-angle outflows, and the fact that the jet is nonprecessing and episodic, constrain the mechanisms for producing the jet's entrained molecular gas, and origins of the fast jet, and slower wide-angle outflow.

  8. High resolution simulations on the North Aegean Sea seasonal circulation

    NASA Astrophysics Data System (ADS)

    Kourafalou, V. H.; Barbopoulos, K.

    2003-01-01

    The seasonal characteristics of the circulation in the North Aegean Sea are examined with the aid of a climatological type simulation (three-year run with perpetual year forcing) on a fine resolution grid (2.5 km by 2.5 km). The model is based on the Princeton Ocean Model with a parameterisation of plume dynamics that is employed for the input of waters with hydrographic properties that are different than the properties of basin waters, as the Black Sea Water (BSW) outflow through the Dardanelles Strait and riverine sources. The model is nested with a sequence of coarser regional and basin-wide models that provide for the long-term interaction between the study area and the Eastern Mediterranean at large. The results are employed to discuss the response of the North Aegean to the important circulation forcing mechanisms in the region, namely wind stress, heat and salt fluxes, buoyancy due to rivers and the BSW outflow (which is low in salinity and occasionally low in temperature) and the interaction with the Southern Aegean. The high resolution allows for the detailed representation of the complicated topography that presides in the region. This helps produce a rich eddy field and it allows for variability in the pathways of BSW that has implications in the basin hydrography and circulation.

  9. IGRINS NEAR-IR HIGH-RESOLUTION SPECTROSCOPY OF MULTIPLE JETS AROUND LkHα 234

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Heeyoung; Yuk, In-Soo; Park, Byeong-Gon

    2016-02-01

    We present the results of high-resolution near-IR spectroscopy toward the multiple outflows around the Herbig Be star LkHα 234 using the Immersion Grating Infrared Spectrograph. Previous studies indicate that the region around LkHα 234 is complex, with several embedded young stellar objects and the outflows associated with them. In simultaneous H- and K-band spectra from HH 167, we detected 5 [Fe ii] and 14 H{sub 2} emission lines. We revealed a new [Fe ii] jet driven by radio continuum source VLA 3B. Position–velocity diagrams of the H{sub 2} 1−0 S(1) λ2.122 μm line show multiple velocity peaks. The kinematics maymore » be explained by a geometrical bow shock model. We detected a component of H{sub 2} emission at the systemic velocity (V{sub LSR} = −10.2 km s{sup −1}) along the whole slit in all slit positions, which may arise from the ambient photodissociation region. Low-velocity gas dominates the molecular hydrogen emission from knots A and B in HH 167, which is close to the systemic velocity; [Fe ii] emission lines are detected farther from the systemic velocity, at V{sub LSR} = −100–−130 km s{sup −1}. We infer that the H{sub 2} emission arises from shocked gas entrained by a high-velocity outflow. Population diagrams of H{sub 2} lines imply that the gas is thermalized at a temperature of 2500–3000 K and the emission results from shock excitation.« less

  10. A 100 au Wide Bipolar Rotating Shell Emanating from the HH 212 Protostellar Disk: A Disk Wind?

    NASA Astrophysics Data System (ADS)

    Lee, Chin-Fei; Li, Zhi-Yun; Codella, Claudio; Ho, Paul T. P.; Podio, Linda; Hirano, Naomi; Shang, Hsien; Turner, Neal J.; Zhang, Qizhou

    2018-03-01

    HH 212 is a Class 0 protostellar system found to host a “hamburger”-shaped dusty disk with a rotating disk atmosphere and a collimated SiO jet at a distance of ∼400 pc. Recently, a compact rotating outflow has been detected in SO and SO2 toward the center along the jet axis at ∼52 au (0.″13) resolution. Here we resolve the compact outflow into a small-scale wide-opening rotating outflow shell and a collimated jet, with the observations in the same S-bearing molecules at ∼16 au (0.″04) resolution. The collimated jet is aligned with the SiO jet, tracing the shock interactions in the jet. The wide-opening outflow shell is seen extending out from the inner disk around the SiO jet and has a width of ∼100 au. It is not only expanding away from the center, but also rotating around the jet axis. The specific angular momentum of the outflow shell is ∼40 au km s‑1. Simple modeling of the observed kinematics suggests that the rotating outflow shell can trace either a disk wind or disk material pushed away by an unseen wind from the inner disk or protostar. We also resolve the disk atmosphere in the same S-bearing molecules, confirming the Keplerian rotation there.

  11. A High Resolution View of Galactic Centers: Arp 220 and M31

    NASA Astrophysics Data System (ADS)

    Lockhart, Kelly E.

    The centers of galaxy are small in size and yet incredibly complex. They play host to supermassive black holes and nuclear star clusters (NSCs) and are subject to large gas inows, nuclear starbursts, and active galactic nuclear (AGN) activity. They can also be the launching site for large-scale galactic outows. However, though these systems are quite important to galactic evolution, observations are quite difficult due to their small size. Using high spatial resolution narrowband imaging with HST/WFC3 of Arp 220, a latestage galaxy merger, I discover an ionized gas bubble feature ( r = 600 pc) just off the nucleus. The bubble is aligned with both the western nucleus and with the large-scale galactic outflow. Using energetics arguments, I link the bubble with a young, obscured AGN or with an intense nuclear starburst. Given its alignment along the large-scale outflow axis, I argue that the bubble presents evidence for a link between the galactic center and the large-scale outflow. I also present new observations of the NSC in M31, the closest large spiral galaxy to our own. Using the OSIRIS near-infrared integral field spectrograph (IFS) on Keck, I map the kinematics of the old stellar population in the eccentric disk of the NSC. I compare the observations to models to derive a precession speed of the disk of 0+/-5 km s-1 pc-1 , and hence confirm that winds from the old stellar population may be the source of gas needed to form the young stellar population in the NSC. Studies of galactic centers are dependent on high spatial resolution observations. In particular, IFSs are ideal instruments for these studies as they provide two-dimensional spectroscopy of the field of view, enabling 2D kinematic studies. I report on work to characterize and improve the data reduction pipeline of the OSIRIS IFS, and discuss implications for future generations of IFS instrumentation.

  12. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources.

    PubMed

    Pinto, Ciro; Middleton, Matthew J; Fabian, Andrew C

    2016-05-05

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources in galaxies, and have X-ray luminosities in excess of 3 × 10(39) ergs per second. They are thought to be powered by accretion onto a compact object. Possible explanations include accretion onto neutron stars with strong magnetic fields, onto stellar-mass black holes (of up to 20 solar masses) at or in excess of the classical Eddington limit, or onto intermediate-mass black holes (10(3)-10(5) solar masses). The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. Here we report the presence of X-ray emission lines arising from highly ionized iron, oxygen and neon with a cumulative significance in excess of five standard deviations, together with blueshifted (about 0.2 times light velocity) absorption lines of similar significance, in the high-resolution X-ray spectra of the ultraluminous X-ray sources NGC 1313 X-1 and NGC 5408 X-1. The blueshifted absorption lines must occur in a fast-outflowing gas, whereas the emission lines originate in slow-moving gas around the source. We conclude that the compact object in each source is surrounded by powerful winds with an outflow velocity of about 0.2 times that of light, as predicted by models of accreting supermassive black holes and hyper-accreting stellar-mass black holes.

  13. Hemodynamic changes in systolic and diastolic function during isoproterenol challenge predicts symptomatic response to myectomy in hypertrophic cardiomyopathy with labile obstruction.

    PubMed

    Prasad, Megha; Geske, Jeffrey B; Sorajja, Paul; Ommen, Steve R; Schaff, Hartzell V; Gersh, Bernard J; Nishimura, Rick A

    2016-11-15

    We aimed to assess the utility of changes in systolic and diastolic function by isoproterenol challenge in predicting symptom resolution post-myectomy in selected patients with hypertrophic cardiomyopathy (HCM) and labile obstruction. In a subset of symptomatic HCM patients without resting/provocable obstruction on noninvasive assessment, isoproterenol challenge during hemodynamic catheterization may elicit labile left ventricular outflow tract (LVOT) obstruction, and demonstrate the effect of obstruction on diastolic function. These changes may determine whether patients achieve complete symptom resolution post-myectomy. Between February 2003 and April 2009, 18 symptomatic HCM patients without LVOT obstruction on noninvasive testing underwent isoproterenol provocation and septal myectomy due to presence of provocable gradient and were followed for 4 (IQR 3-7) years. Thirteen (72.2%) had complete symptom resolution, while 5 (27.8%) had improved, but persistent symptoms. Those with provoked gradient >100 mm Hg or increase in left atrial pressure (LAP) with isoproterenol had symptom resolution. Symptomatic HCM patients without LVOT gradient on noninvasive testing may demonstrate labile obstruction with isoproterenol. With isoproterenol, patients with high LVOT gradient or increase in LAP concomitant with an increase in gradient achieved complete symptom resolution post-myectomy. Thus, improved diastolic filling as well as outflow gradient production in patients with HCM may predict symptom response to myectomy. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Climbing the Ladder of Star Formation Feedback

    NASA Astrophysics Data System (ADS)

    Frank, Adam

    2012-10-01

    While much is understood about isolated star formation, the opposite is true for star formation in clusters of both low and high mass. In particular the mechanisms by which many coevally formed stars affect their parent cloud environment remains poorly characterized. Fundamental questions such as interplay between multiple outflows, ionization fronts and turbulence are just beginning to be fully articulated. Distinguishing between the nature of feedback in clusters of different mass is also critical. In high mass clusters O stars are expected to dominate energetics while in low mass clusters multiple collimated outflows may represent the dominant feedback mechanism. Thus the issue of feedback modalities in clusters of different masses represents one of the major challenges to the next generation of star formation studies. In this proposal we seek to carry forward a focused theoretical study of feedback in both low and high-mass cluster environments with direct connections to observations. Using a state-of-the-art Adaptive Mesh Refinement MHD multi-physics code {developed by our group} we propose two computational studies: {1} multiple, interacting outflows and their role in altering the properties of a parent low mass cluster {2} Poorly collimated outburst/outflows from massive star{s} and their effect on high mass cluster star forming environments. In both cases we will use initial conditions derived from high-resolution AMR MHD simulations of cloud/cluster formation. Synthetic observations derived from the simulations {in a variety of emission lines from ions to atoms to molecules} will allow for direct contact with HST and other star formation databases.

  15. The bipolar outflow from the rotating carbon star, V Hydrae

    NASA Technical Reports Server (NTRS)

    Kahane, C.; Maizels, C.; Jura, M.

    1988-01-01

    A high-resolution optical spectrum of the mass-losing red giant carbon star, V Hya, has been obtained, and the (C-12)O (J = 1-0) millimeter emission in the circumstellar envelope around this star has been mapped. It is found that the CO emission is extended, clearly anisotropic and can be interpreted as the superposition of an isotropic emission with that of a bipolar flow. The optical spectrum of the photosphere suggests that this star is rotating with v sin i between 10 and 20 km/s. These data are interpreted, together, to suggest that the bipolar nature of the outflow results from the flattening of the star induced by its rapid rotation.

  16. Chryse Outflow Channel

    NASA Image and Video Library

    1998-06-08

    A color image of the south Chryse basin Valles Marineris outflow channels on Mars; north toward top. The scene shows on the southwest corner the chaotic terrain of the east part of Valles Marineris and two of its related canyons: Eos and Capri Chasmata (south to north). Ganges Chasma lies directly north. The chaos in the southern part of the image gives rise to several outflow channels, Shalbatana, Simud, Tiu, and Ares Valles (left to right), that drained north into the Chryse basin. The mouth of Ares Valles is the site of the Mars Pathfinder lander. This image is a composite of NASA's Viking medium-resolution images in black and white and low-resolution images in color. The image extends from latitude 20 degrees S. to 20 degrees N. and from longitude 15 degrees to 53 degrees; Mercator projection. http://photojournal.jpl.nasa.gov/catalog/PIA00418

  17. The Resolved Outflow from 3C 48

    NASA Astrophysics Data System (ADS)

    Shih, Hsin-Yi; Stockton, Alan

    2014-10-01

    We investigate the properties of the high-velocity outflow driven by the young radio jet of 3C 48, a compact-steep-spectrum source. We use the Space Telescope Imaging Spectrograph on board the Hubble Space Telecope to obtain (1) low-resolution UV and optical spectra and (2) multi-slit medium-resolution spectra of the ionized outflow. With supporting data from ground-based spectrographs, we are able to accurately measure the ratios of diagnostic emission lines such as [O III] λ5007, [O III] λ3727, [N II] λ6548, Hα, Hβ, [Ne V] λ3425, and [Ne III] λ3869. We fit the observed emission-line ratios using a range of ionization models, powered by active galactic nucleus (AGN) radiation and shocks, produced by the MAPPINGS code. We have determined that AGN radiation is likely the dominant ionization source. The outflow's density is estimated to be in the range n = 103-104 cm-3, the mass is ~6 × 106 M ⊙, and the metallicity is likely equal to or higher than solar. Compared with the typical outflows associated with more evolved radio jets, this young outflow is denser, less massive, and more metal rich. Multi-slit observations allow us to construct a two-dimensional velocity map of the outflow that shows a wide range of velocities with distinct velocity components, suggesting a wide-angle clumpy outflow. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-11574. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Some of the observations included were obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  18. Radio Jets Clearing the Way Through a Galaxy: Watching Feedback in Action in the Seyfert Galaxy IC 5063

    NASA Astrophysics Data System (ADS)

    Morganti, R.; Oosterloo, T. A.; Oonk, J. B. R.; Frieswijk, W.; Tadhunter, C. N.

    2015-12-01

    High-resolution (0.5 arcsec) CO(2-1) observations performed with the Atacama Large Millimetre/submillimetre Array have been used to trace the kinematics of the molecular gas in the Seyfert 2 galaxy{IC 5063}. Although one of the most radio-loud Seyfert galaxy, IC 5063 is a relatively weak radio source (P1.4GHz=3 ×1023 W Hz-1). The data reveal that the kinematics of the gas is very complex. A fast outflow of molecular gas extends along the entire radio jet (˜ 1 kpc), with the highest outflow velocities about 0.5 kpc from the nucleus, at the location of the brighter hot-spot in the W lobe. All the observed characteristics can be described by a scenario of a radio plasma jet expanding into a clumpy medium, interacting directly with the clouds and inflating a cocoon that drives a lateral outflow into the interstellar medium. This suggests that most of the observed cold molecular outflow is due to fast cooling of the gas after the passage of a shock and that it is the end product of the cooling process.

  19. Imaging the molecular outflows of the prototypical ULIRG NGC 6240 with ALMA

    NASA Astrophysics Data System (ADS)

    Saito, T.; Iono, D.; Ueda, J.; Espada, D.; Sliwa, K.; Nakanishi, K.; Lu, N.; Xu, C. K.; Michiyama, T.; Kaneko, H.; Yamashita, T.; Ando, M.; Yun, M. S.; Motohara, K.; Kawabe, R.

    2018-03-01

    We present 0.97 × 0.53 arcsec2 (470 pc × 250 pc) resolution CO (J = 2-1) observations towards the nearby luminous merging galaxy NGC 6240 with the Atacama Large Millimeter/submillimeter Array. We confirmed a strong CO concentration within the central 700 pc, which peaks between the double nuclei, surrounded by extended CO features along the optical dust lanes (˜11 kpc). We found that the CO emission around the central, a few kpc, has extremely broad velocity wings with full width at zero intensity ˜ 2000 km s-1, suggesting a possible signature of molecular outflow(s). In order to extract and visualize the high-velocity components in NGC 6240, we performed a multiple Gaussian fit to the CO data cube. The distribution of the broad CO components shows four extremely large line width regions (˜1000 km s-1) located 1-2 kpc away from both nuclei. Spatial coincidence of the large line width regions with H α, near-IR H2, and X-ray suggests that the broad CO (2-1) components are associated with nuclear outflows launched from the double nuclei.

  20. The spatially resolved stellar population and ionized gas properties in the merger LIRG NGC 2623

    NASA Astrophysics Data System (ADS)

    Cortijo-Ferrero, C.; González Delgado, R. M.; Pérez, E.; Sánchez, S. F.; Cid Fernandes, R.; de Amorim, A. L.; Di Matteo, P.; García-Benito, R.; Lacerda, E. A. D.; López Fernández, R.; Tadhunter, C.; Villar-Martín, M.; Roth, M. M.

    2017-10-01

    We report on a detailed study of the stellar populations and ionized gas properties in the merger LIRG NGC 2623, analyzing optical integral field spectroscopy from the CALIFA survey and PMAS LArr, multiwavelength HST imaging, and OSIRIS narrow band Hα and [NII]λ6584 imaging. The spectra were processed with the starlight full spectral fitting code, and the results are compared with those for two early-stage merger LIRGs (IC 1623 W and NGC 6090), together with CALIFA Sbc/Sc galaxies. We find that NGC 2623 went through two periods of increased star formation (SF), a first and widespread episode, traced by intermediate-age stellar populations ISP (140 Myr-1.4 Gyr), and a second one, traced by young stellar populations YSP (<140 Myr), which is concentrated in the central regions (<1.4 kpc). Our results are in agreement with the epochs of the first peri-center passage ( 200 Myr ago) and coalescence (<100 Myr ago) predicted by dynamical models, and with high-resolution merger simulations in the literature, consistent with NGC 2623 representing an evolved version of the early-stage mergers. Most ionized gas is concentrated within <2.8 kpc, where LINER-like ionization and high-velocity dispersion ( 220 km s-1) are found, consistent with the previously reported outflow. As revealed by the highest-resolution OSIRIS and HST data, a collection of HII regions is also present in the plane of the galaxy, which explains the mixture of ionization mechanisms in this system. It is unlikely that the outflow in NGC 2623 will escape from the galaxy, given the low SFR intensity ( 0.5 M⊙ yr-1 kpc-2), the fact that the outflow rate is three times lower than the current SFR, and the escape velocity in the central areas is higher than the outflow velocity.

  1. Outflows in the narrow-line region of bright Seyfert galaxies - I. GMOS-IFU data

    NASA Astrophysics Data System (ADS)

    Freitas, I. C.; Riffel, R. A.; Storchi-Bergmann, T.; Elvis, M.; Robinson, A.; Crenshaw, D. M.; Nagar, N. M.; Lena, D.; Schmitt, H. R.; Kraemer, S. B.

    2018-05-01

    We present two-dimensional maps of emission-line fluxes and kinematics, as well as of the stellar kinematics of the central few kpc of five bright nearby Seyfert galaxies - Mrk 6, Mrk 79, Mrk 348, Mrk 607, and Mrk 1058 - obtained from observations with the Gemini Multi-Object Spectrograph Integral Field Unit on the Gemini North Telescope. The data cover the inner 3.5 arcsec × 5.0 arcsec - corresponding to physical scales in the range 0.6 × 0.9-1.5 × 2.2 kpc2 - at a spatial resolution ranging from 110 to 280 pc with a spectral coverage of 4300-7100 Å and velocity resolution of ≈90 km s-1. The gas excitation is Seyfert like everywhere but show excitation gradients that are correlated with the gas kinematics, reddening and/or the gas density. The gas kinematics show in all cases two components: a rotation one similar to that observed in the stellar velocity field, and an outflow component. In the case of Mrk607, the gas is counter-rotating relative to the stars. Enhanced gas velocity dispersion is observed in association with the outflows according to two patterns: at the locations of the highest outflow velocities along the ionization axis or perpendicularly to it in a strip centred at the nucleus that we attribute to an equatorial outflow. Bipolar outflows are observed in Mrk 348 and Mrk 79, while in Mrk 1058 only the blueshifted part is clearly observed, while in cases of Mrk 6 and Mrk 607, the geometry of the outflow needs further constraints from modelling to be presented in a forthcoming study, where the mass flow rate and powers will also be obtained.

  2. MASS OUTFLOW AND CHROMOSPHERIC ACTIVITY OF RED GIANT STARS IN GLOBULAR CLUSTERS. II. M13 AND M92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meszaros, Sz.; Dupree, A. K.; Szalai, T.

    High-resolution spectra of 123 red giant stars in the globular cluster M13 and 64 red giant stars in M92 were obtained with Hectochelle at the MMT telescope. Emission and line asymmetries in H{alpha} and Ca II K are identified, characterizing motions in the extended atmospheres and seeking differences attributable to metallicity in these clusters and M15. On the red giant branch, emission in H{alpha} generally appears in stars with T {sub eff} {approx}< 4500 K and log L/L {sub sun}{approx}> 2.75. Fainter stars showing emission are asymptotic giant branch (AGB) stars or perhaps binary stars. The line-bisector for H{alpha} revealsmore » the onset of chromospheric expansion in stars more luminous than log (L/L {sub sun}) {approx} 2.5 in all clusters, and this outflow velocity increases with stellar luminosity. However, the coolest giants in the metal-rich M13 show greatly reduced outflow in H{alpha} most probably due to decreased T {sub eff} and changing atmospheric structure. The Ca II K{sub 3} outflow velocities are larger than shown by H{alpha} at the same luminosity and signal accelerating outflows in the chromospheres. Stars clearly on the AGB show faster chromospheric outflows in H{alpha} than RGB objects. While the H{alpha} velocities on the RGB are similar for all metallicities, the AGB stars in the metal-poor M15 and M92 have higher outflow velocities than in the metal-rich M13. Comparison of these chromospheric line profiles in the paired metal-poor clusters, M15 and M92, shows remarkable similarities in the presence of emission and dynamical signatures, and does not reveal a source of the 'second-parameter' effect.« less

  3. Did the martian outflow channels mostly form during the Amazonian Period?

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. Alexis P.; Platz, Thomas; Gulick, Virginia; Baker, Victor R.; Fairén, Alberto G.; Kargel, Jeffrey; Yan, Jianguo; Miyamoto, Hideaki; Glines, Natalie

    2015-09-01

    Simud, Tiu, and Ares Valles comprise some of the largest outflow channels on Mars. Their excavation has been attributed variously to (or a combination of) erosion by catastrophic floods, glaciers, and debris flows. Numerous investigations indicate that they formed largely during the Late Hesperian (3.61-3.37 Ga). However, these studies mostly equate the ages of the outflow channel floors to those of the flows that generated mesoscale (several hundred meters to a few kilometers) bedforms within them. To improve the statistical accuracy in the age determinations of these flow events, we have used recently acquired high-resolution image and topographic data to map and date portions of Simud, Tiu and Ares Valles, which are extensively marked by these bedforms. Our results, which remove the statistical effects of older and younger outflow channel floor surfaces on the generation of modeled ages, reveal evidence for major outflow channel discharges occurring during the Early (3.37-1.23 Ga) and Middle (1.23-0.328 Ga) Amazonian, with activity significantly peaking during the Middle Amazonian stages. We also find that during the documented stages of Middle Amazonian discharges, the floor of Tiu Valles underwent widespread collapse, resulting in chaotic terrain formation. In addition, we present evidence showing that following the outflow channel discharges, collapse within northern Simud Valles generated another chaotic terrain. This younger chaos region likely represents the latest stage of large-scale outflow channel resurfacing within the study area. Our findings imply that in southern circum-Chryse the martian hydrosphere experienced large-scale drainage during the Amazonian, which likely led to periodic inundation and sedimentation within the northern plains.

  4. Quantifying the AGN-driven outflows in ULIRGs (QUADROS) II: evidence for compact outflow regions from HST [OIII] imaging observations

    NASA Astrophysics Data System (ADS)

    Tadhunter, C.; Zaurín, J. Rodríguez; Rose, M.; Spence, R. A. W.; Batcheldor, D.; Berg, M. A.; Ramos Almeida, C.; Spoon, H. W. W.; Sparks, W.; Chiaberge, M.

    2018-05-01

    The true importance of the warm, AGN-driven outflows for the evolution of galaxies remains uncertain. Measurements of the radial extents of the outflows are key for quantifying their masses and kinetic powers, and also establishing whether the AGN outflows are galaxy-wide. Therefore, as part of a larger project to investigate the significance of warm, AGN-driven outflows in the most rapidly evolving galaxies in the local universe, here we present deep Hubble Space Telescope (HST) narrow-band [OIII]λ5007 observations of a complete sample of 8 nearby ULIRGs with optical AGN nuclei. Combined with the complementary information provided by our ground-based spectroscopy, the HST images show that the warm gas outflows are relatively compact for most of the objects in the sample: in three objects the outflow regions are barely resolved at the resolution of HST (0.065 < R[OIII] < 0.12 kpc); in a further four cases the outflows are spatially resolved but with flux weighted mean radii in the range 0.65 < R[OIII] < 1.2 kpc; and in only one object (Mrk273) is there clear evidence for a more extended outflow, with a maximum extent of R[OIII] ˜ 5 kpc. Overall, our observations show little evidence for the galaxy-wide outflows predicted by some models of AGN feedback.

  5. TETHER-CUTTING RECONNECTION BETWEEN TWO SOLAR FILAMENTS TRIGGERING OUTFLOWS AND A CORONAL MASS EJECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huadong; Zhang, Jun; Li, Leping

    Triggering mechanisms of solar eruptions have long been a challenge. A few previous case studies have indicated that preceding gentle filament merging via magnetic reconnection may launch following intense eruption, according to the tether-cutting (TC) model. However, the detailed process of TC reconnection between filaments has not been exhibited yet. In this work, we report the high-resolution observations from the Interface Region Imaging Spectrometer (IRIS) of TC reconnection between two sheared filaments in NOAA active region 12146. The TC reconnection commenced on ∼15:35 UT on 2014 August 29 and triggered an eruptive GOES C4.3-class flare ∼8 minutes later. An associatedmore » coronal mass ejection appeared in the field of view of the Solar and Heliospheric Observatory/LASCO C2 about 40 minutes later. Thanks to the high spatial resolution of IRIS data, bright plasma outflows generated by the TC reconnection are clearly observed, which moved along the subarcsecond fine-scale flux tube structures in the erupting filament. Based on the imaging and spectral observations, the mean plane-of-sky and line-of-sight velocities of the TC reconnection outflows are separately measured to be ∼79 and 86 km s{sup −1}, which derives an average real speed of ∼120 km s{sup −1}. In addition, it is found that spectral features, such as peak intensities, Doppler shifts, and line widths in the TC reconnection region are evidently enhanced compared to those in the nearby region just before the flare.« less

  6. Sea state indices for a coastal strait

    NASA Astrophysics Data System (ADS)

    Gemmrich, Johannes; Dewey, Richard

    2017-04-01

    The Strait of Georgia at the west coast of Canada is an enclosed coastal strait, about 250km long and 25 to 50 km wide, with great socio-economic importance. Regular freighter traffic, ferry services, commercial and sport fisheries, and recreational boating, makes the area one of the busiest marine areas in the world. Waves in SoG are generally small, with the median value of the significant wave height Hs=0.3m. However, strong outflows off the mountainous terrain can generate significant wave heights Hs > 2.5m, with high spatial and temporal variability. In addition, strong tidal currents and the Fraser River outflow generate localized regions of steep and breaking waves that are of particular concern. We have implemented the Wavewatch III model at 500m-resolution, forced by Environment Canada's high resolution atmospheric model winds and currents from the UBC NEMO implementation of the Salish Sea. The final output combines GIS layers of the predicted wave field (Hs, dominant wave length and direction), the modeled wind field and currents, observed currents from a set of CODAR systems, and a sea state index that highlights regions of potentially steep and dangerous waves.

  7. Functional and Anatomic Esophagogastic Junction Outflow Obstruction: Manometry, Timed Barium Esophagram Findings, and Treatment Outcomes.

    PubMed

    Clayton, Steven B; Patel, Rupal; Richter, Joel E

    2016-06-01

    Little is known about the clinical features, radiology and manometry findings, and treatment outcomes of patients with functional and mechanical esophagogastic junction outflow obstruction (EGJOO). Between November 2011 and February 2015, a total of 1443 high-resolution manometries were reviewed and 49 patients (3.4%) met the manometric criteria for EGJOO. Then, we performed a retrospective chart review, collecting data from manometric studies, timed barium esophagram findings (TBEs), endoscopic reports, and clinical records. Twenty-seven patients had functional EGJOO and 22 patients had an anatomic esophageal obstruction. Common causes of anatomic EGJOO included strictures (36% of patients) and hiatal hernias (31% of patients). There were no differences between groups in manometric or radiographic metrics. Each group had increased basal lower esophageal sphincter and intrabolus pressures, compared with individuals without EGJOO, and most patients had abnormal findings on TBE analysis. Two patients with functional EGJOO progressed to type 3 achalasia. We conclude that patients diagnosed with EGJOO based on manometry findings can have anatomic obstruction or functional EGJOO; high-resolution manometry and TBE do not distinguish between disease causes. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Relativistic MHD simulations of collision-induced magnetic dissipation in poynting-flux-dominated jets/outflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Wei; Li, Hui; Zhang, Bing

    We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in themore » relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.« less

  9. Relativistic MHD simulations of collision-induced magnetic dissipation in poynting-flux-dominated jets/outflows

    DOE PAGES

    Deng, Wei; Li, Hui; Zhang, Bing; ...

    2015-05-29

    We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in themore » relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.« less

  10. Three-dimensional Shock Structure of the Orion KL Outflow with IGRINS

    NASA Astrophysics Data System (ADS)

    Oh, Heeyoung; Pyo, Tae-Soo; Kaplan, Kyle; Yuk, In-Soo; Park, Byeong-Gon; Mace, Gregory; Park, Chan; Chun, Moo-Young; Pak, Soojong; Kim, Kang-Min; Sok Oh, Jae; Jeong, Ueejeong; Yu, Young Sam; Lee, Jae-Joon; Kim, Hwihyun; Hwang, Narae; Lee, Hye-In; Nguyen Le, Huynh Anh; Lee, Sungho; Jaffe, Daniel T.

    2016-12-01

    We report a study of the three-dimensional (3D) outflow structure of a 15″ × 13″ area around the H2 peak 1 in Orion KL with slit-scan observations (13 slits) using the Immersion Grating Infrared Spectrograph. The datacubes have a high-velocity resolution (˜7.5 km s-1), provide high-contrast imaging within ultra-narrow bands, and enable the detection of the main stream of the previously reported H2 outflow fingers. We identified 31 distinct fingers in the H2 1-0 S(1) λ2.122 μm emission. The line profile at each finger shows multiple-velocity peaks with a strong low-velocity component around the systemic velocity at {V}{LSR} = +8 km s-1 and high-velocity emission (| {V}{LSR}| = 45-135 km s-1), indicating a typical bow-shock. The observed radial velocity gradients of ˜4 km s-1 arcsec-1 agree well with the velocities inferred from large-scale proper motions, where the projected motion is proportional to the distance from a common origin. We construct a conceptual 3D map of the fingers with estimated inclination angles of 57°-74°. The extinction difference (ΔA v > 10 mag) between blueshifted and redshifted fingers indicates high internal extinction. The extinction, the overall angular spread, and the scale of the flow argue for an ambient medium with a very high density (105-106 cm-3), consistent with molecular line observations of the Orion Molecular Cloud core. The radial velocity gradients and the 3D distributions of the fingers together support the hypothesis of a simultaneous radial explosion of the Orion KL outflow. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  11. A Mini-BAL Outflow at 900 pc from the Central Source: VLT/X-shooter Observations

    NASA Astrophysics Data System (ADS)

    Xu, Xinfeng; Arav, Nahum; Miller, Timothy; Benn, Chris

    2018-05-01

    We determine the physical conditions and location of the outflow material seen in the mini-BAL quasar SDSS J1111+1437 (z = 2.138). These results are based on the analysis of a high S/N, medium-resolution VLT/X-shooter spectrum. The main outflow component spans the velocity range ‑1500 to ‑3000 km s‑1 and has detected absorption troughs from both high-ionization species: C IV, N V, O VI, Si IV, P V, and S IV; and low-ionization species: H I, C II, Mg II, Al II, Al III, Si II, and Si III. Measurements of these troughs allow us to derive an accurate photoionization solution for this absorption component: a hydrogen column density, {log}({N}{{H}})={21.47}-0.27+0.21 cm‑2 and ionization parameter, {log}({U}{{H}})=-{1.23}-0.25+0.20. Troughs produced from the ground and excited states of S IV combined with the derived {U}{{H}} value allow us to determine an electron number density of {log}({n}{{e}})={3.62}-0.11+0.09 cm‑3 and to obtain the distance of the ionized gas from the central source: R={880}-260+210 pc.

  12. Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes

    USGS Publications Warehouse

    Dohm, J.M.; Ferris, J.C.; Baker, V.R.; Anderson, R.C.; Hare, T.M.; Strom, R.G.; Barlow, N.G.; Tanaka, K.L.; Klemaszewski, J.E.; Scott, D.H.

    2001-01-01

    Paleotopographic reconstructions based on a synthesis of published geologic information and high-resolution topography, including topographic profiles, reveal the potential existence of an enormous drainage basin/aquifer system in the eastern part of the Tharsis region during the Noachian Period. Large topographic highs formed the margin of the gigantic drainage basin. Subsequently, lavas, sediments, and volatiles partly infilled the basin, resulting in an enormous and productive regional aquifer. The stacked sequences of water-bearing strata were then deformed locally and, in places, exposed by magmatic-driven uplifts, tectonic deformation, and erosion. This basin model provides a potential source of water necessary to carve the large outflow channel systems of the Tharsis and surrounding regions and to contribute to the formation of putative northern-plains ocean(s) and/or paleolakes. Copyright 2001 by the American Geophysical Union.

  13. The SAMI Galaxy Survey: understanding observations of large-scale outflows at low redshift with EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Tescari, E.; Cortese, L.; Power, C.; Wyithe, J. S. B.; Ho, I.-T.; Crain, R. A.; Bland-Hawthorn, J.; Croom, S. M.; Kewley, L. J.; Schaye, J.; Bower, R. G.; Theuns, T.; Schaller, M.; Barnes, L.; Brough, S.; Bryant, J. J.; Goodwin, M.; Gunawardhana, M. L. P.; Lawrence, J. S.; Leslie, S. K.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Richards, S. N.; Sweet, S. M.; Tonini, C.

    2018-01-01

    This work presents a study of galactic outflows driven by stellar feedback. We extract main-sequence disc galaxies with stellar mass 109 ≤ M⋆/ M⊙ ≤ 5.7 × 1010 at redshift z = 0 from the highest resolution cosmological simulation of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) set. Synthetic gas rotation velocity and velocity dispersion (σ) maps are created and compared to observations of disc galaxies obtained with the Sydney-AAO (Australian Astronomical Observatory) Multi-object Integral field spectrograph (SAMI), where σ-values greater than 150 km s-1 are most naturally explained by bipolar outflows powered by starburst activity. We find that the extension of the simulated edge-on (pixelated) velocity dispersion probability distribution depends on stellar mass and star formation rate surface density (ΣSFR), with low-M⋆/low-ΣSFR galaxies showing a narrow peak at low σ (∼30 km s-1) and more active, high-M⋆/high-ΣSFR galaxies reaching σ > 150 km s-1. Although supernova-driven galactic winds in the EAGLE simulations may not entrain enough gas with T <105 K compared to observed galaxies, we find that gas temperature is a good proxy for the presence of outflows. There is a direct correlation between the thermal state of the gas and its state of motion as described by the σ-distribution. The following equivalence relations hold in EAGLE: (i) low-σ peak ⇔ disc of the galaxy ⇔ gas with T <105 K; (ii) high-σ tail ⇔ galactic winds ⇔ gas with T ≥105 K.

  14. High-cadence, High-resolution Spectroscopic Observations of Herbig Stars HD 98922 and V1295 Aquila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aarnio, Alicia N.; Monnier, John D.; Calvet, Nuria

    Recent observational work has indicated that mechanisms for accretion and outflow in Herbig Ae/Be star–disk systems may differ from magnetospheric accretion (MA) as it is thought to occur in T Tauri star–disk systems. In this work, we assess the temporal evolution of spectral lines probing accretion and mass loss in Herbig Ae/Be systems and test for consistency with the MA paradigm. For two Herbig Ae/Be stars, HD 98922 (B9e) and V1295 Aql (A2e), we have gathered multi-epoch (∼years) and high-cadence (∼minutes) high-resolution optical spectra to probe a wide range of kinematic processes. Employing a line equivalent width evolution correlation metricmore » introduced here, we identify species co-evolving (indicative of common line origin) via novel visualization. We interferometrically constrain often problematically degenerate parameters, inclination and inner-disk radius, allowing us to focus on the structure of the wind, magnetosphere, and inner gaseous disk in radiative transfer models. Over all timescales sampled, the strongest variability occurs within the blueshifted absorption components of the Balmer series lines; the strength of variability increases with the cadence of the observations. Finally, high-resolution spectra allow us to probe substructure within the Balmer series’ blueshifted absorption components: we observe static, low-velocity features and time-evolving features at higher velocities. Overall, we find the observed line morphologies and variability are inconsistent with a scaled-up T Tauri MA scenario. We suggest that as magnetic field structure and strength change dramatically with increasing stellar mass from T Tauri to Herbig Ae/Be stars, so too may accretion and outflow processes.« less

  15. Protostars and Disks

    NASA Technical Reports Server (NTRS)

    Ho, Paul

    1997-01-01

    The research concentrated on high angular resolution (arc-second scale) studies of molecular cloud cores associated with very young star formation. New ways to study disks and protoplanetary systems were explored. Findings from the areas studied are briefly summarized: (1) molecular clouds; (2) gravitational contraction; (3) jets, winds, and outflows; (4) Circumstellar Disks (5) Extrasolar Planetary Systems. A bibliography of publications and submitted papers produced during the grant period is included.

  16. Chandra High Resolution Imaging of NGC 1365 and NGC 4151

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mazzarella, J. M.; Lord, S.; Howell, J. H.; Mundell, C. G.

    2010-07-01

    We present Chandra high resolution imaging of the circumnuclear regions of two nearby active galaxies, namely the starburst/AGN composite Seyfert 1.8 NGC 1365 and the archetypal Seyfert 1 NGC 4151. In NGC 1365, the X-ray morphology shows a biconical soft X-ray-emission region extending ~5 kpc in projection from the nucleus, coincident with the optical high-excitation outflows. Chandra HRC imaging of the NGC 4151 nucleus resolves X-ray emission from the 4 arcsec radio jet and the narrow line region (NLR) clouds. Our results demonstrate the unique power of spatially resolved spectroscopy with Chandra, and support previous claims that frequent jet-ISM interaction may explain why jets in Seyfert galaxies appear small, slow, and thermally dominated.

  17. Inter-annual variability and long term predictability of exchanges through the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    Boutov, Dmitri; Peliz, Álvaro; Miranda, Pedro M. A.; Soares, Pedro M. M.; Cardoso, Rita M.; Prieto, Laura; Ruiz, Javier; García-Lafuente, Jesus

    2014-03-01

    Inter-annual variability of calculated barotropic (netflow) and simulated baroclinic (inflow and outflow) exchanges through the Strait of Gibraltar is analyzed and their response to the main modes of atmospheric variability is investigated. Time series of the outflow obtained by high resolution simulations and estimated from in-situ Acoustic Doppler Current Profiler (ADCP) current measurements are compared. The time coefficients (TC) of the leading empirical orthogonal function (EOF) modes that describe zonal atmospheric circulation in the vicinity of the Strait (1st and 3rd of Sea-Level Pressure (SLP) and 1st of the wind) show significant covariance with the inflow and outflow. Based on these analyses, a regression model between these SLP TCs and outflow of the Mediterranean Water was developed. This regression outflow time series was compared with estimates based on current meter observations and the predictability and reconstruction of past exchange variability based on atmospheric pressure fields are discussed. The simple regression model seems to reproduce the outflow evolution fairly reasonably, with the exception of the year 2008, which is apparently anomalous without available physical explanation yet. The exchange time series show a reduced inter-annual variability (less than 1%, 2.6% and 3.1% of total 2-day variability, for netflow, inflow and outflow, respectively). From a statistical point of view no clear long-term tendencies were revealed. Anomalously high baroclinic fluxes are reported for the years of 2000-2001 that are coincident with strong impact on the Alboran Sea ecosystem. The origin of the anomalous flow is associated with a strong negative anomaly (~ - 9 hPa) in atmospheric pressure fields settled north of Iberian Peninsula and extending over the central Atlantic, favoring an increased zonal circulation in winter 2000/2001. These low pressure fields forced intense and durable westerly winds in the Gulf of Cadiz-Alboran system. The signal of this anomaly is also seen in time coefficients of the most significant EOF modes. The predictability of the exchanges for future climate is discussed.

  18. SPECTROSCOPY ALONG MULTIPLE, LENSED SIGHT LINES THROUGH OUTFLOWING WINDS IN THE QUASAR SDSS J1029+2623

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misawa, Toru; Inada, Naohisa; Ohsuga, Ken

    2013-02-01

    We study the origin of absorption features on the blue side of the C IV broad emission line of the large-separation lensed quasar SDSS J1029+2623 at z{sub em} {approx} 2.197. The quasar images, produced by a foreground cluster of galaxies, have a maximum separation angle of {theta} {approx} 22.''5. The large angular separation suggests that the sight lines to the quasar central source can go through different regions of outflowing winds from the accretion disk of the quasar, providing a unique opportunity to study the structure of outflows from the accretion disk, a key ingredient for the evolution of quasarsmore » as well as for galaxy formation and evolution. Based on medium- and high-resolution spectroscopy of the two brightest images conducted at the Subaru telescope, we find that each image has different intrinsic levels of absorptions, which can be attributed either to variability of absorption features over the time delay between the lensed images, {Delta}t {approx} 744 days, or to the fine structure of quasar outflows probed by the multiple sight lines toward the quasar. While both these scenarios are consistent with the current data, we argue that they can be distinguished with additional spectroscopic monitoring observations.« less

  19. THE LAUNCHING OF COLD CLOUDS BY GALAXY OUTFLOWS. II. THE ROLE OF THERMAL CONDUCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brüggen, Marcus; Scannapieco, Evan

    2016-05-01

    We explore the impact of electron thermal conduction on the evolution of radiatively cooled cold clouds embedded in flows of hot and fast material as it occurs in outflowing galaxies. Performing a parameter study of three-dimensional adaptive mesh refinement hydrodynamical simulations, we show that electron thermal conduction causes cold clouds to evaporate, but it can also extend their lifetimes by compressing them into dense filaments. We distinguish between low column-density clouds, which are disrupted on very short times, and high-column density clouds with much longer disruption times that are set by a balance between impinging thermal energy and evaporation. Wemore » provide fits to the cloud lifetimes and velocities that can be used in galaxy-scale simulations of outflows in which the evolution of individual clouds cannot be modeled with the required resolution. Moreover, we show that the clouds are only accelerated to a small fraction of the ambient velocity because compression by evaporation causes the clouds to present a small cross-section to the ambient flow. This means that either magnetic fields must suppress thermal conduction, or that the cold clouds observed in galaxy outflows are not formed of cold material carried out from the galaxy.« less

  20. Density diagnostics of ionized outflows in active galactic nuclei. X-ray and UV absorption lines from metastable levels in Be-like to C-like ions

    NASA Astrophysics Data System (ADS)

    Mao, Junjie; Kaastra, J. S.; Mehdipour, M.; Raassen, A. J. J.; Gu, Liyi; Miller, J. M.

    2017-11-01

    Context. Ionized outflows in active galactic nuclei (AGNs) are thought to influence their nuclear and local galactic environment. However, the distance of the outflows with respect to the central engine is poorly constrained, which limits our understanding of their kinetic power as a cosmic feedback channel. Therefore, the impact of AGN outflows on their host galaxies is uncertain. However, when the density of the outflows is known, their distance can be immediately obtained from their modeled ionization parameters. Aims: We perform a theoretical study of density diagnostics of ionized outflows using absorption lines from metastable levels in Be-like to C-like cosmic abundant ions. Methods: With the new self-consistent PhotoIONization (PION) model in the SPEX code, we are able to calculate detailed level populations, including the ground and metastable levels. This enables us to determine under what physical conditions the metastable levels are significantly populated. We then identify characteristic lines from these metastable levels in the 1-2000 Å wavelength range. Results: In the broad density range of nH ∈ (106, 1020) m-3, the metastable levels 2s2p (3P0-2) in Be-like ions can be significantly populated. For B-like ions, merely the first excited level 2s22p (2P3/2) can be used as a density probe. For C-like ions, the first two excited levels 2s22p2 (3P1 and 3P2) are better density probes than the next two excited levels 2s22p2 (1S0 and 1D2). Different ions in the same isoelectronic sequence cover not only a wide range of ionization parameters, but also a wide range of density values. On the other hand, within the same isonuclear sequence, those less ionized ions probe lower density and smaller ionization parameters. Finally, we reanalyzed the high-resolution grating spectra of NGC 5548 observed with Chandra in January 2002 using a set of PION components to account for the ionized outflow. We derive lower (or upper) limits of plasma density in five out of six PION components based on the presence (or absence) of the metastable absorption lines. Once atomic data from N-like to F-like ions are available, combined with the next generation of spectrometers that cover both X-ray and UV wavelength ranges with higher spectral resolution and larger effective areas, tight constraints on the density and thus the location and kinetic power of AGN outflows can be obtained.

  1. ALMA Observations of the Water Fountain Pre-Planetary Nebula IRAS 16342-3814: High-Velocity Bipolar Jets and an Expanding Torus

    PubMed Central

    Sahai, R.; Vlemmings, W.H.T.; Gledhill, T.; Sánchez Contreras, C.; Lagadec, E.; Nyman, L-Å; Quintana-Lacaci, G.

    2017-01-01

    We have mapped 12CO J=3–2 and other molecular lines from the “water-fountain” bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with ∼0⋅″35 resolution using ALMA. We find (i) two very high-speed knotty, jet-like molecular outflows, (ii) a central high-density (> few × 106 cm−3), expanding torus of diameter 1300 AU, and (iii) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to > 3.5 × 10−4 M⊙ yr−1 in the past ~455 yr. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally-emitting dust, implies a substantial mass (0.017 M⊙) of very large (~mm-sized) grains. The measured expansion ages of the above structural components imply that the torus (age~160 yr) and the younger high-velocity outflow (age~110 yr) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi-Hoyle-Lyttleton wind accretion and wind Roche lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common envelope evolution are needed. PMID:28191303

  2. ALMA Observations of the Water Fountain Pre-Planetary Nebula IRAS 16342-3814: High-Velocity Bipolar Jets and an Expanding Torus.

    PubMed

    Sahai, R; Vlemmings, W H T; Gledhill, T; Sánchez Contreras, C; Lagadec, E; Nyman, L-Å; Quintana-Lacaci, G

    2017-01-20

    We have mapped 12 CO J=3-2 and other molecular lines from the "water-fountain" bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with [Formula: see text] resolution using ALMA. We find (i) two very high-speed knotty, jet-like molecular outflows, (ii) a central high-density (> few × 10 6 cm -3 ), expanding torus of diameter 1300 AU, and (iii) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to > 3.5 × 10 -4 M ⊙ yr -1 in the past ~455 yr. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally-emitting dust, implies a substantial mass (0.017 M ⊙ ) of very large (~mm-sized) grains. The measured expansion ages of the above structural components imply that the torus (age~160 yr) and the younger high-velocity outflow (age~110 yr) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi-Hoyle-Lyttleton wind accretion and wind Roche lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common envelope evolution are needed.

  3. ALMA Observations of the Water Fountain Pre-planetary Nebula IRAS 16342-3814: High-velocity Bipolar Jets and an Expanding Torus

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Vlemmings, W. H. T.; Gledhill, T.; Sánchez Contreras, C.; Lagadec, E.; Nyman, L.-Å; Quintana-Lacaci, G.

    2017-01-01

    We have mapped 12CO J = 3-2 and other molecular lines from the “water fountain” bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with ˜0.″35 resolution using Atacama Large Millimeter/submillimeter Array. We find (I) two very high-speed knotty, jet-like molecular outflows; (II) a central high-density (> {few}× {10}6 cm-3), expanding torus of diameter 1300 au; and (III) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to > 3.5× {10}-4 M⊙ yr-1 in the past ˜455 years. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally emitting dust, implies a substantial mass (0.017 M⊙) of very large (˜millimeter-sized) grains. The measured expansion ages of the above structural components imply that the torus (age ˜160 years) and the younger high-velocity outflow (age ˜110 years) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi-Hoyle-Lyttleton wind accretion and wind Roche-lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common-envelope evolution are needed.

  4. The complex jet- and bar-perturbed kinematics in NGC 3393 as revealed with ALMA and GEMINI-GMOS/IFU

    NASA Astrophysics Data System (ADS)

    Finlez, Carolina; Nagar, Neil M.; Storchi-Bergmann, Thaisa; Schnorr-Müller, Allan; Riffel, Rogemar A.; Lena, Davide; Mundell, C. G.; Elvis, Martin S.

    2018-06-01

    NGC 3393, a nearby Seyfert 2 galaxy with nuclear radio jets, large-scale and nuclear bars, and a posited secondary super massive black hole, provides an interesting laboratory to test the physics of inflows and outflows. Here we present and analyse the molecular gas (ALMA observations of CO J:2-1 emission over a field of view (FOV) of 45" × 45", at 0."56 (143 pc) spatial and 5 km/s spectral resolution), ionised gas and stars (GEMINI-GMOS/IFU; over a FOV of 4" × 5", at 0."62 (159 pc) spatial and 23 km/s spectral resolution) in NGC 3393. The ionised gas emission, detected over the complete GEMINI-GMOS FOV, has three identifiable kinematic components. A narrow (σ < 115 km/s) component present in the complete FOV, which is consistent with rotation in the galaxy disk. A broad (σ > 115 km/s) redshifted component, detected near the NE and SW radio lobes; which we interpret as a radio jet driven outflow. And a broad (σ > 115 km/s) blueshifted component that shows high velocities in a region perpendicular to the radio jet axis; we interpret this as an equatorial outflow. The CO J:2-1 emission is detected in spiral arms on 5" - 20" scales, and in two disturbed circumnuclear regions. The molecular kinematics in the spiral arms can be explained by rotation. The highly disturbed kinematics of the inner region can be explained by perturbations induced by the nuclear bar and interactions with the large scale bar. We find no evidence for, but cannot strongly rule out, the presence of the posited secondary black hole.

  5. The VLA Nascent Disk And Multiplicity Survey of Perseus Protostars (VANDAM). III. Extended Radio Emission from Protostars in Perseus

    NASA Astrophysics Data System (ADS)

    Tychoniec, Łukasz; Tobin, John J.; Karska, Agata; Chandler, Claire; Dunham, Michael M.; Li, Zhi-Yun; Looney, Leslie W.; Segura-Cox, Dominique; Harris, Robert J.; Melis, Carl; Sadavoy, Sarah I.

    2018-01-01

    Centimeter continuum emission from protostars offers insight into the innermost part of the outflows, as shock-ionized gas produces free–free emission. We observed a complete population of Class 0 and I protostars in the Perseus molecular cloud at 4.1 and 6.4 cm with resolution and sensitivity superior to previous surveys. From a total of 71 detections, eight sources exhibit resolved emission at 4.1 cm and/or 6.4 cm. In this paper, we focus on this subsample, analyzing their spectral indices along the jet and their alignment with respect to the large-scale molecular outflow. Spectral indices for fluxes integrated toward the position of the protostar are consistent with free–free thermal emission. The value of the spectral index along a radio jet decreases with distance from the protostar. For six sources, emission is well aligned with the outflow central axis, showing that we observe the ionized base of the jet. This is not the case for two sources, where we note misalignment of the emission with respect to the large-scale outflow. This might indicate that the emission does not originate in the radio jet, but rather in an ionized outflow cavity wall or disk surface. For five of the sources, the spectral indices along the jet decrease well below the thermal free–free limit of ‑0.1 with > 2σ significance. This is indicative of synchrotron emission, meaning that high-energy electrons are being produced in the outflows close to the disk. This result can have far-reaching implications for the chemical composition of the embedded disks.

  6. Comparison of two high-resolution manometry software systems in evaluating esophageal motor function.

    PubMed

    Rengarajan, A; Drapekin, J; Patel, A; Gyawali, C P

    2016-12-01

    High-resolution manometry (HRM) utilizes software tools to diagnose esophageal motor disorders. Performance of these software metrics could be affected by averaging and by software characteristics of different manufacturers. High-resolution manometry studies on 86 patients referred for antireflux surgery (61.6 ± 1.4 year, 70% F) and 20 healthy controls (27.9 ± 0.7 year, 45% F) were first subject to standard analysis (Medtronic, Duluth, GA, USA). Coordinates for each of 10 test swallows were exported and averaged to generate a composite swallow. The swallows and averaged composites were imported as ASCII file format into Manoview (Medtronic) and Medical Measurement Systems database reporter (MMS, Dover, NH, USA), and analyses repeated. Comparisons were made between standard and composite swallow interpretations. Correlation between the two systems was high for mean distal contractile integral (DCI, r 2 ≥ 0.9) but lower for integrated relaxation pressure (IRP, r 2 = 0.7). Excluding achalasia, six patients with outflow obstruction (mean IRP 23.2 ± 2.1 with 10-swallow average) were identified by both systems. An additional nine patients (10.5%) were identified as outflow obstruction (15 mmHg threshold) with MMS 10-swallow and four with MMS composite swallow evaluation; only one was confirmed. Ineffective esophageal motility was diagnosed by 10-swallow evaluation in 19 (22.1%) with Manoview, and 20 (23.3%) with MMS. On Manoview composite, 17 had DCI <450 mmHg/cm/s, and on MMS composite, 21, (p ≥ 0.85 for each comparison) but these did not impact diagnostic conclusions. Comparison of 10 swallow and composite swallows demonstrate variability in software metrics between manometry systems. Our data support use of manufacturer specific software metrics on 10-swallow sequences. © 2016 John Wiley & Sons Ltd.

  7. The Properties and Prevalence of Galactic Outflows at z ~ 1 in the Extended Groth Strip

    NASA Astrophysics Data System (ADS)

    Kornei, Katherine A.; Shapley, Alice E.; Martin, Crystal L.; Coil, Alison L.; Lotz, Jennifer M.; Schiminovich, David; Bundy, Kevin; Noeske, Kai G.

    2012-10-01

    We investigate galactic-scale outflowing winds in 72 star-forming galaxies at z ~ 1 in the Extended Groth Strip. Galaxies were selected from the DEEP2 survey and follow-up LRIS spectroscopy was obtained covering Si II, C IV, Fe II, Mg II, and Mg I lines in the rest-frame ultraviolet. Using Galaxy Evolution Explorer (GALEX), Hubble Space Telescope (HST), and Spitzer imaging available for the Extended Groth Strip, we examine galaxies on a per-object basis in order to better understand both the prevalence of galactic outflows at z ~ 1 and the star-forming and structural properties of objects experiencing outflows. Gas velocities, measured from the centroids of Fe II interstellar absorption lines, are found to span the interval [-217, +155] km s-1. We find that ~40% (10%) of the sample exhibits blueshifted Fe II lines at the 1σ (3σ) level. We also measure maximal outflow velocities using the profiles of the Fe II and Mg II lines; we find that Mg II frequently traces higher velocity gas than Fe II. Using quantitative morphological parameters derived from the HST imaging, we find that mergers are not a prerequisite for driving outflows. More face-on galaxies also show stronger winds than highly inclined systems, consistent with the canonical picture of winds emanating perpendicular to galactic disks. In light of clumpy galaxy morphologies, we develop a new physically motivated technique for estimating areas corresponding to star formation. We use these area measurements in tandem with GALEX-derived star formation rates (SFRs) to calculate SFR surface densities. At least 70% of the sample exceeds an SFR surface density of 0.1 M ⊙ yr-1 kpc-2, the threshold necessary for driving an outflow in local starbursts. At the same time, the outflow detection fraction of only 40% in Fe II absorption provides further evidence for an outflow geometry that is not spherically symmetric. We see a ~3σ trend between outflow velocity and SFR surface density, but no significant trend between outflow velocity and SFR. Higher resolution data are needed in order to test the scaling relations between outflow velocity and both SFR and SFR surface density predicted by theory. Based, in part, on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  8. Pyloric obstruction secondary to epicardial pacemaker implantation: a case report.

    PubMed

    Bedoya Nader, G; Kellihan, H B; Bjorling, D E; McAnulty, J

    2017-02-01

    A 10-year old Lhasa Apso dog was presented for an acute history of exercise intolerance and hind limb weakness. High grade second degree atrioventricular block with an atrial rate of 200 beats per minute, ventricular rate of 40 beats per minute and an intermittent ventricular escape rhythm, was diagnosed on electrocardiograph. A transdiaphragmatic, unipolar, epicardial pacemaker was implanted without immediate surgical complications. Severe vomiting was noted 12 h post-operatively. Abdominal ultrasound and a barium study supported a diagnosis of pyloric outflow obstruction and exploratory abdominal surgery was performed. The pyloric outflow tract appeared normal and no other causes of an outflow obstruction were identified. The epicardial generator was repositioned from the right to the left abdominal wall. Pyloric cell pacing was presumed to be the cause for the pyloric obstruction and severe vomiting, and this was thought to be due to close proximity of the pacemaker generator to the pylorus situated in the right abdominal wall. Repositioning of the pulse generator to the left abdominal wall resulted in resolution of vomiting. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. RELATIVISTIC MHD SIMULATIONS OF COLLISION-INDUCED MAGNETIC DISSIPATION IN POYNTING-FLUX-DOMINATED JETS/OUTFLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Wei; Zhang, Bing; Li, Hui

    We perform 3D relativistic ideal magnetohydrodynamics (MHD) simulations to study the collisions between high-σ (Poynting-flux-dominated (PFD)) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable PFD jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvénic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in themore » relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. Our results give support to the proposed astrophysical models that invoke significant magnetic energy dissipation in PFD jets, such as the internal collision-induced magnetic reconnection and turbulence model for gamma-ray bursts, and reconnection triggered mini jets model for active galactic nuclei. The simulation movies are shown in http://www.physics.unlv.edu/∼deng/simulation1.html.« less

  10. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-07-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disc galaxy set-ups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disc. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation, and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine-tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, and require a better star formation prescription or most likely some combination of these issues.

  11. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-04-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disk galaxy setups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disk. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, require a better star formation prescription or most likely some combination of these issues.

  12. Usability of small impact craters on small surface areas in crater count dating: Analysing examples from the Harmakhis Vallis outflow channel, Mars

    NASA Astrophysics Data System (ADS)

    Kukkonen, S.; Kostama, V.-P.

    2018-05-01

    The availability of very high-resolution images has made it possible to extend crater size-frequency distribution studies to small, deca/hectometer-scale craters. This has enabled the dating of small and young surface units, as well as recent, short-time and small-scale geologic processes that have occurred on the units. Usually, however, the higher the spatial resolution of space images is, the smaller area is covered by the images. Thus the use of single, very high-resolution images in crater count age determination may be debatable if the images do not cover the studied region entirely. Here we compare the crater count results for the floor of the Harmakhis Vallis outflow channel obtained from the images of the ConTeXt camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) aboard the Mars Reconnaissance Orbiter (MRO). The CTX images enable crater counts for entire units on the Harmakhis Vallis main valley, whereas the coverage of the higher-resolution HiRISE images is limited and thus the images can only be used to date small parts of the units. Our case study shows that the crater count data based on small impact craters and small surface areas mainly correspond with the crater count data based on larger craters and more extensive counting areas on the same unit. If differences between the results were founded, they could usually be explained by the regional geology. Usually, these differences appeared when at least one cratering model age is missing from either of the crater datasets. On the other hand, we found only a few cases in which the cratering model ages were completely different. We conclude that the crater counts using small impact craters on small counting areas provide useful information about the geological processes which have modified the surface. However, it is important to remember that all the crater counts results obtained from a specific counting area always primarily represent the results from the counting area-not the whole unit. On the other hand, together with crater count results from extensive counting areas and lower-resolution images, crater counts on small counting areas but by using very high-resolution images is a very valuable tool for obtaining unique additional information about the local processes on the surface units.

  13. Effects of stellar outflows on interstellar sulfur oxide chemistry

    NASA Technical Reports Server (NTRS)

    Welch, W. J.; Vogel, S.; Terebey, S.; Dreher, J.; Jackson, J.; Carlstrom, J.

    1986-01-01

    Interferometer Maps with 2" to 6" resolution of a number of regions with active star formation (Orion A, W49, W51, SGRB2) show that the distribution of the molecule SO is very compact around stellar outflow sources. Both SO and SO2 were studied near three outflows, OrionA/IRc2 and two sources in W49. The two molecules have similar distributions and abundances. More than 95% of the emission comes from regions whose extents are only .05 to .2 pc., being larger around the more energetic sources. Their spectra are broad, 30 km/sec or more, suggesting that the oxide production is associated with the flows. The outflows are identified by water masers and by extended bipolar flows in SiO. Maps in other molecules, such as HCO+ and CS, which have similar collisional excitation requirements, have much greater spatial extent. Thus it appears that the SO and SO2 abundances are truly compact and are closely associated with the outflows.

  14. The Coldest Object in the Universe: Probing the Mass Distribution of the Ultra-Cold Outflow and Dusty Disk in the Boomerang Nebula

    NASA Technical Reports Server (NTRS)

    Sahai, R.; Vlemmings, W.; Nyman, L. A.

    2014-01-01

    Our Cycle 0 ALMA observations confirmed that the Boomerang Nebula is the coldest known object in the universe, with a massive high-speed outflow that has cooled significantly below the temperature of the cosmic background (CMB). The Boomerang's prodigious mass-loss rate (0.001 solar mass M yr (exp -1) and low-luminosity (300L ) make it a key object for understanding the remarkable transition of the circumstellar envelopes of AGB stars into bipolar planetary nebulae. We have obtained new ACA CO 1-0 data that recover much of the flux lost in the Cycle O data, and reveal heretofore unseen distant regions of the ultra-cold outflow reheated to temperatures above the CMB. Our CO J=3-2 data reveal the precise, highly collimated shape of an inner bipolar structure and its dense central waist, with unprecedented angular resolution (0.4 in). The waist shows a core-halo structure in the thermal dust emission at 0.88 millimeter, and its derived flux at this wavelength, compared with the 3.3, 2.6, and 1.3 millimeter fluxes support the presence of about 5 x 10 (exp -4) solar mass of very large (approximately millimeter-sized), cold (approximately 30K) grains. We also find the unexpected presence of weak SO emission, possibly resulting from the release of S from grains due to high-speed shocks.

  15. The Coldest Object in the Universe: Probing the Mass Distribution of the Ultra-Cold Outflow and Dusty Disk in the Boomerang Nebula

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Vlemmings, W.; Nyman, L.

    2015-12-01

    Our Cycle 0 ALMA observations confirmed that the Boomerang Nebula is the coldest known object in the Universe, with a massive high-speed outflow that has cooled significantly below the temperature of the cosmic background (CMB). The Boomerang's prodigious mass-loss rate (0.001M⊙) and low-luminosity (300L⊙) make it a key object for understanding the remarkable transition of the circumstellar envelopes of AGB stars into bipolar planetary nebulae. We have obtained new ACA CO 1-0 data that recover much of the flux lost in the Cycle 0 data, and reveal heretofore unseen distant regions of the ultra-cold outflow re-heated to temperatures above the CMB. Our CO J=3-2 data reveal the precise, highly collimated shape of an inner bipolar structure and its dense central waist, with unprecedented angular resolution (0.4”). The waist shows a core-halo structure in the thermal dust emission at 0.88 mm, and its derived flux at this wavelength, compared with the 3.3, 2.6, and 1.3 mm fluxes support the presence of about 5×10-4 M⊙ of very large (˜mm-sized), cold (˜30K) grains. We also find the unexpected presence of weak SO emission, possibly resulting from the release of S from grains due to high-speed shocks.

  16. HIGH-RESOLUTION CO OBSERVATION OF THE CARBON STAR CIT 6 REVEALING THE SPIRAL STRUCTURE AND A NASCENT BIPOLAR OUTFLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyosun; Liu, Sheng-Yuan; Hirano, Naomi

    2015-11-20

    CIT 6 is a carbon star in the transitional phase from the asymptotic giant branch (AGB) to the protoplanetary nebulae (pPNs). Observational evidences of two point sources in the optical, circumstellar arc segments in an HC{sub 3}N line emission, and a bipolar nebula in near-infrared provide strong support for the presence of a binary companion. Hence, CIT 6 is very attractive for studying the role of companions in the AGB–pPN transition. We have carried out high-resolution {sup 12}CO J = 2–1 and {sup 13}CO J = 2–1 observations of CIT 6 with the Submillimeter Array combined with the Submillimeter Telescopemore » (single-dish) data. The {sup 12}CO channel maps reveal a spiral-shell pattern connecting the HC{sub 3}N segments in a continuous form and an asymmetric outflow corresponding to the near-infrared bipolar nebula. Rotation of the {sup 12}CO channel peak position may be related to the inner spiral winding and/or the bipolar outflow. An eccentric orbit binary is suggested for the presence of an anisotropic mass loss to the west and a double spiral pattern. The lack of interarm emission to the west may indicate a feature corresponding to the periastron passage of a highly eccentric orbit of the binary. Spatially averaged radial and spectral profiles of {sup 12}CO J = 2–1 and {sup 13}CO J = 2–1 are compared with simple spherical radiative transfer models, suggesting a change of {sup 12}CO/{sup 13}CO abundance ratio from ∼30 to ∼50 inward in the CSE of CIT 6. The millimeter continuum emission is decomposed into extended dust thermal emission (spectral index ∼ −2.4) and compact emission from radio photosphere (spectral index ∼ −2.0)« less

  17. Studying the outflow-core interaction with ALMA Cycle 1 observations of the HH 46/47 molecular outflow

    NASA Astrophysics Data System (ADS)

    Zhang, Yichen; Arce, Hector G.; Mardones, Diego; Dunham, Michael; Garay, Guido; Noriega-Crespo, Alberto; Corder, Stuartt; Offner, Stella; Cabrit, Sylvie

    2016-01-01

    We present ALMA Cycle 1 observations of the HH 46/47 molecular outflow which is driven by a low-mass Class 0/I protostar. Previous ALMA Cycle 0 12CO observation showed outflow cavities produced by the entrainment of ambient gas by the protostellar jet and wide-angle wind. Here we present analysis of observation of 12CO, 13CO, C18O and other species using combined 12m array and ACA observations. The improved angular resolution and sensitivity allow us to detect details of the outflow structure. Specially, we see that the outflow cavity wall is composed of two or more layers of outflowing gas, which separately connect to different shocked regions along the outflow axis inside the cavity, suggesting the outflow cavity wall is composed of multiple shells entrained by a series of jet bow-shock events. The new 13CO and C18O data also allow us to trace relatively denser and slower outflow material than that traced by the 12CO. These species are only detected within about 1 to 2 km/s from the cloud velocity, tracing the outflow to lower velocities than what is possible using only the 12CO emission. Interestingly, the cavity wall of the red lobe appears at very low outflow velocities (as low as ~0.2 km/s). In addition, 13CO and C18O allow us to correct for the CO optical depth, allowing us to obtain more accurate estimates of the outflow mass, momentum and kinetic energy. Applying the optical depth correction significantly increases the previous mass estimate by a factor of 14. The outflow kinetic energy distribution shows that even though the red lobe is mainly entrained by jet bow-shocks, most of the outflow energy is being deposited into the cloud at the base of the outflow cavity rather than around the heads of the bow shocks. The estimated total mass, momentum, and energy of the outflow indicate that the outflow has the ability to disperse the parent core. We found possible evidence for a slowly moving rotating outflow in CS. Our 13CO and C18O observations also trace a circumstellar envelope with both rotation and infall motions.

  18. Taking the Measure of Massive Stars and their Environments with the CHARA Array Long-baseline Interferometer

    NASA Astrophysics Data System (ADS)

    Gies, Douglas R.

    2017-11-01

    Most massive stars are so distant that their angular diameters are too small for direct resolution. However, the observational situation is now much more favorable, thanks to new opportunities available with optical/IR long-baseline interferometry. The Georgia State University Center for High Angular Resolution Astronomy Array at Mount Wilson Observatory is a six-telescope instrument with a maximum baseline of 330 meters, which is capable of resolving stellar disks with diameters as small as 0.2 milliarcsec. The distant stars are no longer out of range, and many kinds of investigations are possible. Here we summarize a number of studies involving angular diameter measurements and effective temperature estimates for OB stars, binary and multiple stars (including the σ Orionis system), and outflows in Luminous Blue Variables. An enlarged visitors program will begin in 2017 that will open many opportunities for new programs in high angular resolution astronomy.

  19. A Three Parsec-Scale Jet-Driven Outflow from Sgr A

    NASA Technical Reports Server (NTRS)

    Yusef-Zadeh, F.; Arendt, R.; Bushouse, H.; Cotton, W.; Haggard, D.; Pound, M. W.; Roberts, D. A.; Royster, M.; Wardle, M.

    2012-01-01

    The compact radio source Sgr A* is coincident with a 4x 10(exp 6) solar Mass black hole at the dynamical center of the Galaxy and is surrounded by dense orbiting ionized and molecular gas. We present high resolution radio continuum images of the central 3' and report a faint continuous linear structure centered on Sgr A*. This feature is rotated by 28 deg in PA with respect to the Galactic plane. A number of weak blobs of radio emission with X-ray counterparts are detected along the axis of the linear structure. In addition, the continuous linear feature appears to be terminated symmetrically by two linearly polarized structures at 8.4 GHz, approx 75" from Sgr A*. The linear structure is best characterized by a mildly relativistic jet-driven outflow from Sgr A*, and an outflow rate 10(exp 6) solar M / yr. The near and far-sides of the jet are interacting with orbiting ionized and molecular gas over the last 1-3 hundred years and are responsible for the origin of a 2" hole, the "minicavity", where disturbed kinematics, enhanced FeII/III line emission, and diffuse X-ray gas have been detected. The estimated kinetic luminosity of the outflow is approx 1.2 X 10(exp 41) erg/s which can produce the Galactic center X-ray flash that has recently been identified

  20. Velocities of gas in star-forming regions

    NASA Astrophysics Data System (ADS)

    Nissen, H. D.; Gustafsson, M.; Field, D.; Lemaire, J. L.; Clénet, Y.; Rouan, D.

    2007-12-01

    We present high spatial (0.18") and velocity (<2 km/s) resolution observations of the central 1'x1' of OMC1. We identify a large number of shock features and determine radial velocity, position angle and emission brightness for each of these features. Using this dataset we analyze the kinematic properties of the inner square arcminute of OMC1, identifying among other things the IR signature of a massive outflow originating from source I.

  1. Progress and Challenges in SPH Simulations of Disk Galaxy Formation: The Combined Role of Resolution and the Star Formation Density Threshold

    NASA Astrophysics Data System (ADS)

    Mayer, L.

    2012-07-01

    We review progress in cosmological SPH simulations of disk galaxy formation. We discuss the role of numerical resolution and sub-grid recipes of star formation and feedback from supernovae, higlighting the important role of a high star formation density threshold comparable to that of star forming molecular gas phase. Two recent succesfull examples, in simulations of the formation of gas-rich bulgeless dwarf galaxies and in simulations of late-type spirals (the ERIS simulations), are presented and discussed. In the ERIS simulations, already in the progenitors at z = 3 the resolution is above the threshold indicated by previous idealized numerical experiments as necessary to minimize numerical angular momentum loss (Kaufmann et al. 2007). A high star formation density threshold maintains an inhomogeneous interstellar medium, where star formation is clustered, and thus the local effect of supernovae feedback is enhanced. As a result, outflows are naturally generated removing 2/3 of the baryons in galaxies with Vvir˜50 km/s and ˜ 30% of the baryons in galaxies with (Vvir ˜ 150 km/s). Low angular momentum baryons are preferentially removed since the strongest bursts of star formation occur predominantly near the center, especially after a merger event. This produces pure exponential disks or small bulges depending on galaxy mass, and, correspondingly, slowly rising or nearly flat rotation curves that match those of observed disk galaxies. In dwarfs the rapid mass removal by outflows generates a core-like distribution in the dark matter. Furthermore, contrary to the common picture, in the ERIS spiral galaxies a bar/pseudobulge forms rapidly, and not secularly, as a result of mergers and interactions at high-z.

  2. Winds of change - a molecular outflow in NGC 1377?. The anatomy of an extreme FIR-excess galaxy

    NASA Astrophysics Data System (ADS)

    Aalto, S.; Muller, S.; Sakamoto, K.; Gallagher, J. S.; Martín, S.; Costagliola, F.

    2012-10-01

    Aims: Our goal was to investigate the molecular gas distribution and kinematics in the extreme far-infrared (FIR) excess galaxy NGC 1377 and to address the nature and evolutionary status of the buried source. Methods: We used high- (0''65 × 0''52, (65 × 52 pc)) and low- (4''88 × 2''93) resolution SubMillimeter Array (SMA) observations to image the 12CO and 13CO 2-1 line emission. Results: We find bright, complex 12CO 2-1 line emission in the inner 400 pc of NGC 1377. The 12CO 2-1 line has wings that are tracing a kinematical component that appears to be perpendicular to the component traced by the line core. Together with an intriguing X-shape of the integrated intensity and dispersion maps, this suggests that the molecular emission of NGC 1377 consists of a disk-outflow system. Lower limits to the molecular mass and outflow rate are Mout(H2) > 1 × 107 M⊙ and Ṁ > 8 M⊙ yr-1. The age of the proposed outflow is estimated to be 1.4 Myr, the extent to be 200 pc and the outflow speed to be Vout = 140 km s-1. The total molecular mass in the SMA map is estimated to Mtot(H2) = 1.5 × 108 M⊙ (on a scale of 400 pc) while in the inner r = 29 pc the molecular mass is Mcore(H2) = 1.7 × 107 M⊙ with a corresponding H2 column density of N(H2) = 3.4 × 1023 cm-2 and an average 12CO 2-1 brightness temperature of 19 K. 13CO 2-1 emission is found at a factor 10 fainter than 12CO in the low-resolution map while C18O 2-1 remains undetected. We find weak 1 mm continuum emission of 2.4 mJy with spatial extent less than 400 pc. Conclusions: Observing the molecular properties of the FIR-excess galaxy NGC 1377 allows us to probe the early stages of nuclear activity and the onset of feedback in active galaxies. The age of the outflow supports the notion that the current nuclear activity is young - a few Myr. The outflow may be powered by radiation pressure from a compact, dust enshrouded nucleus, but other driving mechanisms are possible. The buried source may be an active galactic nucleus (AGN) or an extremely young (1 Myr) compact starburst. Limitations on size and mass lead us to favor the AGN scenario, but additional studies are required to settle this question. In either case, the wind with its implied mass outflow rate will quench the nuclear power source within the very short time of 5-25 Myr. It is possible, however, that the gas is unable to escape the galaxy and may eventually fall back onto NGC 1377 again.

  3. Another piece of the puzzle: The fast H I outflow in Mrk 231

    NASA Astrophysics Data System (ADS)

    Morganti, Raffaella; Veilleux, Sylvain; Oosterloo, Tom; Teng, Stacy H.; Rupke, David

    2016-09-01

    We present the detection, performed with the Westerbork Synthesis Radio Telescope (WSRT) and the Karl Jansky Very Large Array (VLA), of a fast H I 21 cm outflow in the ultra-luminous infrared galaxy Mrk 231. The outflow is observed as shallow H I absorption blueshifted ~1300 km s-1 with respect to the systemic velocity and located against the inner kpc of the radio source. The outflowing gas has an estimated column density between 5 and 15 × 1018Tspin cm-2. We derive the Tspin to lie in the range 400-2000 K and the corresponding H I densities are nHI ~ 10-100 cm-3. Our results complement previous findings and confirm the multiphase nature of the outflow in Mrk 231. Although effects of the interaction between the radio plasma and the surrounding medium cannot be ruled out, the energetics and the lack of a clear kpc-scale jet suggest that the most likely origin of the H I outflow is a wide-angle nuclear wind, as earlier proposed to explain the neutral outflow traced by Na I and molecular gas in this source. Our results suggest that an H I component is present in fast outflows regardless of the acceleration mechanism (wind vs. jet driven) and that it must be connected with common properties of the pre-interaction gas involved. Considering the observed similarity of their column densities, the H I outflow likely represents the inner part of the broad wind identified on larger scales in atomic Na I. The mass outflow rate of the H I outflow (between 8 and 18 M⊙ yr-1) does not appear to be as large as that observed in molecular gas, partly owing to the smaller sizes of the outflowing region sampled by the H I absorption. These characteristics are commonly seen in other cases of outflows driven by the active galactic nucleus (AGN) suggesting that the H I may represent a short intermediate phase in the rapid cooling of the gas. The results further confirm H I as a good tracer for AGN-driven outflows not only in powerful radio sources. We also obtained deeper continuum images than previously available. They confirm the complex structure of the radio continuum originating both from the AGN and star formation. At the resolution obtained with the VLA (~1'') we do not see a kpc-scale jet. Instead, we detect a plateau of emission, likely due to star formation, surrounding the bright nuclear region. We also detect a poorly collimated bridge which may represent the channel feeding the southern lobe. The unprecedented depth of the low-resolution WSRT image reveals radio emission extending 50'' (43 kpc) to the south and 20'' (17 kpc) to the north. The continuum images and the average spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A30

  4. Millimeter and Submillimeter Survey of the R Coronae Australis Region

    NASA Astrophysics Data System (ADS)

    Groppi, Christopher E.; Kulesa, Craig; Walker, Christopher; Martin, Christopher L.

    2004-09-01

    Using a combination of data from the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO), the Arizona Radio Observatory Kitt Peak 12 m telescope, and the Arizona Radio Observatory 10 m Heinrich Hertz Telescope, we have studied the most active part of the R CrA molecular cloud in multiple transitions of carbon monoxide, HCO+, and 870 μm continuum emission. Since R CrA is nearby (130 pc), we are able to obtain physical spatial resolution as high as 0.01 pc over an area of 0.16 pc2, with velocity resolution finer than 1 km s-1. Mass estimates of the protostar driving the millimeter-wave emission derived from HCO+, dust continuum emission, and kinematic techniques point to a young, deeply embedded protostar of ~0.5-0.75 Msolar, with a gaseous envelope of similar mass. A molecular outflow is driven by this source that also contains at least 0.8 Msolar of molecular gas with ~0.5 Lsolar of mechanical luminosity. HCO+ lines show the kinematic signature of infall motions, as well as bulk rotation. The source is most likely a Class 0 protostellar object not yet visible at near-IR wavelengths. With the combination of spatial and spectral resolution in our data set, we are able to disentangle the effects of infall, rotation, and outflow toward this young object.

  5. A High Definition View of AGN Feedback: Chandra Imaging of Nearby Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Fabbiano, G.; Risaliti, G.; Elvis, M.; Karovska, M.; Zezas, A.; Mundell, C. G.

    2010-03-01

    To improve the physics of AGN feedback, it is crucial to evaluate the true role of outflows on galaxy evolution observationally. I will present new results from Chandra spectral imaging of nearby Seyfert galaxies, which offer unique opportunities to examine feedback in action in much greater detail than at high redshift. Exploiting Chandra's highest possible resolution, we are able to study structures in NGC 4151 on spatial scales of 0.5 arcsec (30 pc), showing an extended X-ray morphology overall consistent with the optical NLR. We find that most of the NLR clouds in NGC 4151 have [OIII] to soft X-ray ratio consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii. We examine various X-ray emission mechanisms of the radio jet and consider thermal emission from interaction between radio outflow and the NLR clouds the most probable origin for the X-ray emission associated with the jet.

  6. A bipolar outflow of ionized gas in K3-50A: H76 alpha radio recombination line and continuum observations of K3-50

    NASA Technical Reports Server (NTRS)

    Depree, C. G.; Goss, W. M.; Palmer, Patrick; Rubin, Robert H.

    1994-01-01

    The H II regions near K3-50 (G70.3 + 1.6) have been imaged at high angular resolution (approximately 1 sec .3) in the continuum and the recombination lines H76(sub alpha and He76(sub alpha) using the Very Large Array (VLA). The helium line is detected in only the brightest component K3-50A while the hydrogen line is detected in three components (K3-50A, B and C1). K3-50A shows a pronounced velocity gradient of approximately 150 km/sec/pc along its major axis (P.A. = 160 deg); in addition a wide range of line widths are observed, from 20 to 65 km/sec. Kinematics from the line data and the morphology of the continuum emission suggest that the ionized material associated with K3-50A is undergoing a high-velocity bipolar outflow.

  7. Outflow structure and velocity field of Orion source. I. ALMA imaging of SiO isotopologue maser and thermal emission

    NASA Astrophysics Data System (ADS)

    Niederhofer, F.; Humphreys, E. M. L.; Goddi, C.

    2012-12-01

    Using Science Verification data from the Atacama Large Millimeter/Submillimeter Array (ALMA), we have identified and imaged five rotational transitions (J = 5-4 and J = 6-5) of the three silicon monoxide isotopologues 28SiO v = 0, 1, 2 and 29SiO v = 0 and 28Si18O v = 0 in the frequency range from 214 to 246 GHz towards the Orion BN/KL region. The emission of the ground-state 28SiO, 29SiO and 28Si18O shows an extended bipolar shape in the northeast-southwest direction at the position of Radio Source I, indicating that these isotopologues trace an outflow ( 18 km s-1, PA 50°, 5000 AU in diameter) that is driven by this embedded high-mass young stellar object (YSO). Whereas on small scales (10-1000 AU) the outflow from Source I has a well-ordered spatial and velocity structure, as probed by Very Long Baseline Interferometry (VLBI) imaging of SiO masers, the large scales (500-5000 AU) probed by thermal SiO with ALMA reveal a complex structure and velocity field, most likely related to the effects of the environment of the BN/KL region on the outflow emanating from Source I. The emission of the vibrationally-excited species peaks at the position of Source I. This emission is compact and not resolved at an angular resolution of 1farcs5 ( 600 AU at a distance of 420 pc). 2D Gaussian fitting to individual velocity channels locates emission peaks within radii of 100 AU, i.e. they trace the innermost part of the outflow. A narrow spectral profile and spatial distribution of the v = 1 J = 5-4 line similar to the masing v = 1 J = 1-0 transition, provide evidence for the most highly rotationally excited (frequency > 200 GHz) SiO maser emission associated with Source I known to date. The maser emission will enable studies of the Source I disk-outflow interface with future ALMA longest baselines.

  8. Multi-wavelength investigations on feedback of massive star formation

    NASA Astrophysics Data System (ADS)

    Yuan, Jinghua

    2014-05-01

    In the course of massive star formation, outflows, ionizing radiation and intense stellar winds could heavily affect their adjacent environs and natal clouds. There are several outstanding open questions related to these processes: i) whether they can drive turbulence in molecular clouds; ii) whether they are able to trigger star formation; iii) whether they can destroy natal clouds to terminate star formation at low efficiencies. This thesis investigates feedback in different stages of massive star formation. Influence of such feedback to the ambient medium has been revealed. A new type of millimeter methanol maser is detected for the first time. An uncommon bipolar outflow prominent in the mid-infrared is discovered. And features of triggered star formation are found on the border of an infrared bubble and in the surroundings of a Herbig Be star. Extended green objects (EGOs) are massive outflow candidates showing prominent shocked features in the mid-infrared. We have carried out a high resolution study of the EGO G22.04+0.22 (hereafter, G22) based on archived SMA data. Continuum and molecular lines at 1.3 mm reveal that G22 is still at a hot molecular core stage. A very young multi-polar outflow system is detected, which is interacting with the adjacent dense gas. Anomalous emission features from CH3OH (8,-1,8 - 7,0,7) and CH3OH (4,2,2 - 3,1,2) are proven to be millimeter masers. It is the first time that maser emission of CH3OH (8,-1,8 - 7,0,7) at 218.440 GHz is detected in a massive star-forming region. Bipolar outflows have been revealed and investigated almost always in the microwave or radio domain. It's sort of rare that hourglass-shaped morphology be discovered in the mid-infrared. Based on GLIMPSE data, we have discovered a bipolar object resembling an hourglass at 8.0 um. It is found to be associated with IRAS 18114-1825. Analysis based on fitted SED, optical spectroscopy, and infrared color indices suggests IRAS 18114-1825 is an uncommon bipolar outflow driven by a massive protostar. Multi-wavelength observations based on classical tracers of outflows are highly necessary. Extensive investigations of IRAS 18114-1825 may contribute to our understanding of massive star formation in early stage.

  9. The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow

    NASA Astrophysics Data System (ADS)

    Feruglio, C.; Fiore, F.; Carniani, S.; Piconcelli, E.; Zappacosta, L.; Bongiorno, A.; Cicone, C.; Maiolino, R.; Marconi, A.; Menci, N.; Puccetti, S.; Veilleux, S.

    2015-11-01

    Mrk 231 is a nearby ultra-luminous IR galaxy exhibiting a kpc-scale, multi-phase AGN-driven outflow. This galaxy represents the best target to investigate in detail the morphology and energetics of powerful outflows, as well as their still poorly-understood expansion mechanism and impact on the host galaxy. In this work, we present the best sensitivity and angular resolution maps of the molecular disk and outflow of Mrk 231, as traced by CO(2-1) and (3-2) observations obtained with the IRAM/PdBI. In addition, we analyze archival deep Chandra and NuSTAR X-ray observations. We use this unprecedented combination of multi-wavelength data sets to constrain the physical properties of both the molecular disk and outflow, the presence of a highly-ionized ultra-fast nuclear wind, and their connection. The molecular CO(2-1) outflow has a size of 1 kpc, and extends in all directions around the nucleus, being more prominent along the south-west to north-east direction, suggesting a wide-angle biconical geometry. The maximum projected velocity of the outflow is nearly constant out to 1 kpc, thus implying that the density of the outflowing material must decrease from the nucleus outwards as r-2. This suggests that either a large part of the gas leaves the flow during its expansion or that the bulk of the outflow has not yet reached out to 1 kpc, thus implying a limit on its age of 1 Myr. Mapping the mass and energy rates of the molecular outflow yields dot {M} OF = [500-1000] M⊙ yr-1 and Ėkin,OF = [7-10] × 1043 erg s-1. The total kinetic energy of the outflow is Ekin,OF is of the same order of the total energy of the molecular disk, Edisk. Remarkably, our analysis of the X-ray data reveals a nuclear ultra-fast outflow (UFO) with velocity -20 000 km s-1, dot {M}UFO = [0.3-2.1] M⊙ yr-1, and momentum load dot {P}UFO/ dot {P}rad = [0.2-1.6]. We find Ėkin,UFO Ėkin,OF as predicted for outflows undergoing an energy conserving expansion. This suggests that most of the UFO kinetic energy is transferred to mechanical energy of the kpc-scale outflow, strongly supporting that the energy released during accretion of matter onto super-massive black holes is the ultimate driver of giant massive outflows. The momentum flux dot {P}OF derived for the large scale outflows in Mrk 231 enables us to estimate a momentum boost dot {P}OF/ dot {P} UFO ≈ [30-60]. The ratios Ėkin,UFO/Lbol,AGN = [1-5] % and Ėkin,OF/Lbol,AGN = [1-3] % agree with the requirements of the most popular models of AGN feedback. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain), and with Chandra and NuSTAR observatories.

  10. APEX-CHAMP+ high-J CO observations of low-mass young stellar objects. IV. Mechanical and radiative feedback

    NASA Astrophysics Data System (ADS)

    Yıldız, U. A.; Kristensen, L. E.; van Dishoeck, E. F.; Hogerheijde, M. R.; Karska, A.; Belloche, A.; Endo, A.; Frieswijk, W.; Güsten, R.; van Kempen, T. A.; Leurini, S.; Nagy, Z.; Pérez-Beaupuits, J. P.; Risacher, C.; van der Marel, N.; van Weeren, R. J.; Wyrowski, F.

    2015-04-01

    Context. During the embedded stage of star formation, bipolar molecular outflows and UV radiation from the protostar are important feedback processes. Both processes reflect the accretion onto the forming star and affect subsequent collapse or fragmentation of the cloud. Aims: Our aim is to quantify the feedback, mechanical and radiative, for a large sample of low-mass sources in a consistent manner. The outflow activity is compared to radiative feedback in the form of UV heating by the accreting protostar to search for correlations and evolutionary trends. Methods: Large-scale maps of 26 young stellar objects, which are part of the Herschel WISH key program are obtained using the CHAMP+ instrument on the Atacama Pathfinder EXperiment (12CO and 13CO 6-5; Eup ~ 100 K), and the HARP-B instrument on the James Clerk Maxwell Telescope (12CO and 13CO 3-2; Eup ~ 30 K). The maps have high spatial resolution, particularly the CO 6-5 maps taken with a 9″ beam, resolving the morphology of the outflows. The maps are used to determine outflow parameters and the results are compared with higher-J CO lines obtained with Herschel. Envelope models are used to quantify the amount of UV-heated gas and its temperature from 13CO 6-5 observations. Results: All sources in our sample show outflow activity, with the spatial extent decreasing from the Class 0 to the Class I stage. Consistent with previous studies, the outflow force, FCO, is larger for Class 0 sources than for Class I sources, even if their luminosities are comparable. The outflowing gas typically extends to much greater distances than the power-law envelope and therefore influences the surrounding cloud material directly. Comparison of the CO 6-5 results with HIFI H2O and PACS high-J CO lines, both tracing currently shocked gas, shows that the two components are linked, even though the transitions do not probe the same gas. The link does not extend down to CO 3-2. The conclusion is that CO 6-5 depends on the shock characteristics (density and velocity), whereas CO 3-2 is more sensitive to conditions in the surrounding environment (density). The radiative feedback is responsible for increasing the gas temperature by a factor of two, up to 30-50 K, on scales of a few thousand AU, particularly along the direction of the outflow. The mass of the UV heated gas exceeds the mass contained in the entrained outflow in the inner ~3000 AU and is therefore at least as important on small scales. Appendix A is available in electronic form at http://www.aanda.orgThe CHAMP+ maps (data cubes) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A109

  11. Development of a sub-cm high resolution ion Doppler tomography diagnostics for fine structure measurement of guide field reconnection in TS-U

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; Koike, Hideya; Hatano, Hironori; Hayashi, Takumi; Cao, Qinghong; Himeno, Shunichi; Kaneda, Taishi; Akimitsu, Moe; Sawada, Asuka; Ono, Yasushi

    2017-10-01

    A new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics has been developed using ``multi-slit'' spectroscopy technique for detailed investigation of fine structure formation during high guide field magnetic reconnection. In the last three years, high field merging experiment in MAST pioneered new frontiers of reconnection heating: formation of highly peaked structure around X-point in high guide field condition (Bt > 0.3 T), outflow dissipation under the influence of better plasma confinement to form high temperature ring structure which aligns with closed flux surface of toroidal plasma, and interaction between ion and electron temperature profile during transport/confinement phase to form triple peak structure (τeiE 4 ms). To investigate more detailed mechanism with in-situ magnetic measurement, the university of Tokyo starts the upgrade of plasma parameters and spatial resolution of optical diagnostics as in MAST. Now, a new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics system construction has been completed and it successfully resolved fine structure of ion heating downstream, aligned with closed flux surface formed by reconnected field. This work was supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.

  12. Probing the gas fuelling and outflows in nearby AGN with ALMA

    NASA Astrophysics Data System (ADS)

    Audibert, Anelise; Combes, Françoise; García-Burillo, Santiago; Salomé, Philippe

    2017-12-01

    Feeding and feedback in AGN play a very important role to gain a proper understanding of galaxy formation and evolution. The interaction between activity mechanisms in the nucleus and its influence in the host galaxy are related to the physical processes involved in feedback and the gas fuelling of the black hole. The discovery of many massive molecular outflows in the last few years have been promoting the idea that winds may be major actors in sweeping the gas out of galaxies. Also, the widely observed winds from the central regions of AGN are promising candidates to explain the scaling relations (e.g. the black hole-bulge mass relation, BH accretion rate tracking the star formation history) under the AGN feedback scenario. Out goal is to probe these phenomena through the kinematic and morphology of the gas inside the central kpc in nearby AGN. This has recently been possible due to the unprecedented ALMA spatial resolution and sensitivity. We present results on NGC7213 and NGC1808, the latter is part of a new ALMA follow-up of the NuGa project, a previous high-resolution (0.5-1”) CO survey of low luminosity AGN performed with the IRAM PdBI.

  13. Development of High-Field ST Merging Experiment: TS-U for High Power Reconnection Heating

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Koike, H.; Tanabe, H.; Himeno, S.; Ishida, S.; Kimura, K.; Kawanami, M.; Narita, M.; Takahata, Y.; Yokoyama, T.; Inomoto, M.; Cheng, C. Z.

    2016-10-01

    We are developing high-magnetic field ST merging/ reconnection experiment TS-U with Brec = 0.3-0.5T, based on our scaling law of reconnection heating energy proportional to square of the reconnecting (poloidal) magnetic field Brec. This scaling law indicates that the high-Brec ST merging will heat ions to the burning plasma regime without using any additional heating facility. Its mechanism is that the reconnection outflow accelerates mainly ions up to the poloidal Alfven speed like the Sweet-Parker model. The shock-like density pileups thermalize the accelerated ions in the down-streams in agreement with recent solar satellite observations and PIC simulation results. We already documented significant ion heating of spheromak and ST mergings up to 0.25keV in TS-3 and 1.2keV in MAST, leading us to the high-Brec merging experiment TS-U. It is noted that high-resolution (>500 channel) 2D measurements of ion and electron temperatures is being developed for the purpose of solving all acceleration and heating effects of magnetic reconnection, such as the huge outflow heating of ions in the downstream and electron heating localized at the X-point.

  14. Infall and outflow motions towards a sample of massive star-forming regions from the RMS survey

    NASA Astrophysics Data System (ADS)

    Cunningham, N.; Lumsden, S. L.; Moore, T. J. T.; Maud, L. T.; Mendigutía, I.

    2018-06-01

    We present the results of an outflow and infall survey towards a distance-limited sample of 31 massive star-forming regions drawn from the Red MSX source (RMS) survey. The presence of young, active outflows is identified from SiO (8-7) emission and the infall dynamics are explored using HCO+/H13CO+ (4-3) emission. We investigate if the infall and outflow parameters vary with source properties, exploring whether regions hosting potentially young active outflows show similarities or differences with regions harbouring more evolved, possibly momentum-driven, `fossil' outflows. SiO emission is detected towards approximately 46 per cent of the sources. When considering sources with and without an SiO detection (i.e. potentially active and fossil outflows, respectively), only the 12CO outflow velocity shows a significant difference between samples, indicating SiO is more prevalent towards sources with higher outflow velocities. Furthermore, we find the SiO luminosity increases as a function of the Herschel 70 μm to WISE 22 μm flux ratio, suggesting the production of SiO is prevalent in younger, more embedded regions. Similarly, we find tentative evidence that sources with an SiO detection have a smaller bolometric luminosity-to-mass ratio, indicating SiO (8-7) emission is associated with potentially younger regions. We do not find a prevalence towards sources displaying signatures of infall in our sample. However, the higher energy HCO+ transitions may not be the best suited tracer of infall at this spatial resolution in these regions.

  15. The interaction of the outflow with the molecular disk in the Active Galactic Nucleus of NGC 6951

    NASA Astrophysics Data System (ADS)

    May, D.; Steiner, J. E.; Ricci, T. V.; Menezes, R. B.; Andrade, I. S.

    2015-02-01

    Context: we present a study of the central 200 pc of NGC 6951, in the optical and NIR, taken with the Gemini North Telescope integral field spectrographs, with resolution of ~ 0''.1 Methods: we used a set of image processing techniques, as the filtering of high spatial and spectral frequencies, Richardson-Lucy deconvolution and PCA Tomography (Steiner et al. 2009) to map the distribution and kinematics of the emission lines. Results: we found a thick molecular disk, with the ionization cone highly misaligned.

  16. Sgr A* Emission Parametrizations from GRMHD Simulations

    NASA Astrophysics Data System (ADS)

    Anantua, Richard; Ressler, Sean; Quataert, Eliot

    2018-06-01

    Galactic Center emission near the vicinity of the central black hole, Sagittarius (Sgr) A*, is modeled using parametrizations involving the electron temperature, which is found from general relativistic magnetohydrodynamic (GRMHD) simulations to be highest in the disk-outflow corona. Jet-motivated prescriptions generalizing equipartition of particle and magnetic energies, e.g., by scaling relativistic electron energy density to powers of the magnetic field strength, are also introduced. GRMHD jet (or outflow)/accretion disk/black hole (JAB) simulation postprocessing codes IBOTHROS and GRMONTY are employed in the calculation of images and spectra. Various parametric models reproduce spectral and morphological features, such as the sub-mm spectral bump in electron temperature models and asymmetric photon rings in equipartition-based models. The Event Horizon Telescope (EHT) will provide unprecedentedly high-resolution 230+ GHz observations of the "shadow" around Sgr A*'s supermassive black hole, which the synthetic models presented here will reverse-engineer. Both electron temperature and equipartition-based models can be constructed to be compatible with EHT size constraints for the emitting region of Sgr A*. This program sets the groundwork for devising a unified emission parametrization flexible enough to model disk, corona and outflow/jet regions with a small set of parameters including electron heating fraction and plasma beta.

  17. The Red Sea outflow regulated by the Indian monsoon

    NASA Astrophysics Data System (ADS)

    Aiki, Hidenori; Takahashi, Keiko; Yamagata, Toshio

    2006-08-01

    To investigate why the Red Sea water overflows less in summer and more in winter, we have developed a locally high-resolution global OGCM with transposed poles in the Arabian peninsula and India. Based on a series of sensitivity experiments with different sets of idealized atmospheric forcing, the present study shows that the summer cessation of the strait outflow is remotely induced by the monsoonal wind over the Indian Ocean, in particular that over the western Arabian Sea. During the southwest monsoon (May-September), thermocline in the Gulf of Aden shoals as a result of coastal Ekman upwelling induced by the predominantly northeastward wind in the Gulf of Aden and the Arabian Sea. Because this shoaling is maximum during the southwest summer monsoon, the Red Sea water is blocked at the Bab el Mandeb Strait by upwelling of the intermediate water of the Gulf of Aden in late summer. The simulation also shows the three-dimensional evolution of the Red Sea water tongue at the mid-depths in the Gulf of Aden. While the tongue meanders, the discharged Red Sea outflow water (RSOW) (incoming Indian Ocean intermediate water (IOIW)) is always characterized by anticyclonic (cyclonic) vorticity, as suggested from the potential vorticity difference.

  18. Corongraphic Observations and Analyses of The Ultraviolet Solar Corona

    NASA Technical Reports Server (NTRS)

    Kohl, John L.

    2000-01-01

    The activities supported under NASA Grant NAG5-613 included the following: 1) reduction and scientific analysis of data from three sounding rocket flights of the Rocket Ultraviolet Coronagraph Spectrometer, 2) development of ultraviolet spectroscopic diagnostic techniques to provide a detailed empirical description of the extended solar corona, 3) extensive upgrade of the rocket instrument to become the Ultraviolet Coronal Spectrometer (UVCS) for Spartan 201,4) instrument scientific calibration and characterization, 5) observation planning and mission support for a series of five Spartan 201 missions (fully successful except for STS 87 where the Spartan spacecraft was not successfully deployed and the instruments were not activated), and 6) reduction and scientific analysis of the UVCS/Spartan 201 observational data. The Ultraviolet Coronal Spectrometer for Spartan 201 was one unit of a joint payload and the other unit was a White Light Coronagraph (WLC) provided by the High Altitude Observatory and the Goddard Space Flight Center. The two instruments were used in concert to determine plasma parameters describing structures in the extended solar corona. They provided data that could be used individually or jointly in scientific analyses. The WLC provided electron column densities in high spatial resolution and high time resolution. UVCS/Spartan provided hydrogen velocity distributions, and line of sight hydrogen velocities. The hydrogen intensities from UVCS together with the electron densities from WLC were used to determine hydrogen outflow velocities. The UVCS also provided O VI intensities which were used to develop diagnostics for velocity distributions and outflow velocities of minor ions.

  19. Diagnosis and Treatment Strategy of Achalasia Subtypes and Esophagogastric Junction Outflow Obstruction Based on High-Resolution Manometry.

    PubMed

    Ihara, Eikichi; Muta, Kazumasa; Fukaura, Keita; Nakamura, Kazuhiko

    2017-01-01

    Based on Chicago Classification version 3.0, the disorders of esophagogastric junction outflow obstruction (EGJOO) include achalasia (types I, II and III) and EGJOO. Although no curative treatments are currently available for the treatment of the disorders of EGJOO, medical treatments, endoscopic pneumatic dilation (PD), laparoscopic Heller myotomy (LHM), and per-oral endoscopic myotomy (POEM) are usually the sought-after modes of treatment. Since the etiology and pathogenesis might vary depending on the types of EGJOO disorders, treatment strategies should be considered based on those subtypes. Based on the accumulated evidences, the treatment strategies of our institution are as follows: effects of medical treatments on achalasia are limited. Either PD or LHM/POEM can be considered a first-line in achalasia type I, according to the patient's wish. PD and POEM can be considered first-line in achalasia types II and III, respectively. Conversely, In EGJOO, medical treatments including drugs like acotiamide and/or diltiazem can be tested as a first-line, and PD and POEM will be considered second and third-line treatments, respectively. Key Messages: The classification of subtypes based on high-resolution manometry will help us consider which treatment option can be selected as a first-line treatment depending upon the subtypes of disorders of EGJOO. Acotiamide has the potential to cure patients with EGJOO. © 2016 S. Karger AG, Basel.

  20. High resolution esophageal manometry--the switch from "intuitive" visual interpretation to Chicago classification.

    PubMed

    Srinivas, M; Balakumaran, T A; Palaniappan, S; Srinivasan, Vijaya; Batcha, M; Venkataraman, Jayanthi

    2014-03-01

    High resolution esophageal manometry (HREM) has been interpreted all along by visual interpretation of color plots until the recent introduction of Chicago classification which categorises HREM using objective measurements. It compares HREM diagnosis of esophageal motor disorders by visual interpretation and Chicago classification. Using software Trace 1.2v, 77 consecutive tracings diagnosed by visual interpretation were re-analyzed by Chicago classification and findings compared for concordance between the two systems of interpretation. Kappa agreement rate between the two observations was determined. There were 57 males (74 %) and cohort median age was 41 years (range: 14-83 years). Majority of the referrals were for gastroesophageal reflux disease, dysphagia and achalasia. By "intuitive" visual interpretation, the tracing were reported as normal in 45 (58.4 %), achalasia 14 (18.2 %), ineffective esophageal motility 3 (3.9 %), nutcracker esophagus 11 (14.3 %) and nonspecific motility changes 4 (5.2 %). By Chicago classification, there was 100 % agreement (Kappa 1) for achalasia (type 1: 9; type 2: 5) and ineffective esophageal motility ("failed peristalsis" on visual interpretation). Normal esophageal motility, nutcracker esophagus and nonspecific motility disorder on visual interpretation were reclassified as rapid contraction and esophagogastric junction (EGJ) outflow obstruction by Chicago classification. Chicago classification identified distinct clinical phenotypes including EGJ outflow obstruction not identified by visual interpretation. A significant number of unclassified HREM by visual interpretation were also classified by it.

  1. Direct trabecular meshwork imaging in porcine eyes through multiphoton gonioscopy

    PubMed Central

    Masihzadeh, Omid; Ammar, David A.; Kahook, Malik Y.; Gibson, Emily A.; Lei, Tim C.

    2013-01-01

    Abstract. The development of technologies to characterize the ocular aqueous outflow system (AOS) is important for the understanding of the pathophysiology of glaucoma. Multiphoton microscopy (MPM) offers the advantage of high-resolution, label-free imaging with intrinsic image contrast because the emitted signals result from the specific biomolecular content of the tissue. Previous attempts to use MPM to image the murine irido-corneal region directly through the sclera have suffered from degradation in image resolution due to scattering of the focused laser light. As a result, transscleral MPM has limited ability to observe fine structures in the AOS. In this work, the porcine irido-corneal angle was successfully imaged through the transparent cornea using a gonioscopic lens to circumvent the highly scattering scleral tissue. The resulting high-resolution images allowed the detailed structures in the trabecular meshwork (TM) to be observed. Multimodal imaging by two-photon autofluorescence and second harmonic generation allowed visualization of different features in the TM without labels and without disruption of the TM or surrounding tissues. MPM gonioscopy is a promising noninvasive imaging tool for high-resolution studies of the AOS, and research continues to explore the potential for future clinical applications in humans. PMID:23515864

  2. Direct trabecular meshwork imaging in porcine eyes through multiphoton gonioscopy.

    PubMed

    Masihzadeh, Omid; Ammar, David A; Kahook, Malik Y; Gibson, Emily A; Lei, Tim C

    2013-03-01

    The development of technologies to characterize the ocular aqueous outflow system (AOS) is important for the understanding of the pathophysiology of glaucoma. Multiphoton microscopy (MPM) offers the advantage of high-resolution, label-free imaging with intrinsic image contrast because the emitted signals result from the specific biomolecular content of the tissue. Previous attempts to use MPM to image the murine irido-corneal region directly through the sclera have suffered from degradation in image resolution due to scattering of the focused laser light. As a result, transscleral MPM has limited ability to observe fine structures in the AOS. In this work, the porcine irido-corneal angle was successfully imaged through the transparent cornea using a gonioscopic lens to circumvent the highly scattering scleral tissue. The resulting high-resolution images allowed the detailed structures in the trabecular meshwork (TM) to be observed. Multimodal imaging by two-photon autofluorescence and second harmonic generation allowed visualization of different features in the TM without labels and without disruption of the TM or surrounding tissues. MPM gonioscopy is a promising noninvasive imaging tool for high-resolution studies of the AOS, and research continues to explore the potential for future clinical applications in humans.

  3. Direct trabecular meshwork imaging in porcine eyes through multiphoton gonioscopy

    NASA Astrophysics Data System (ADS)

    Masihzadeh, Omid; Ammar, David A.; Kahook, Malik Y.; Gibson, Emily A.; Lei, Tim C.

    2013-03-01

    The development of technologies to characterize the ocular aqueous outflow system (AOS) is important for the understanding of the pathophysiology of glaucoma. Multiphoton microscopy (MPM) offers the advantage of high-resolution, label-free imaging with intrinsic image contrast because the emitted signals result from the specific biomolecular content of the tissue. Previous attempts to use MPM to image the murine irido-corneal region directly through the sclera have suffered from degradation in image resolution due to scattering of the focused laser light. As a result, transscleral MPM has limited ability to observe fine structures in the AOS. In this work, the porcine irido-corneal angle was successfully imaged through the transparent cornea using a gonioscopic lens to circumvent the highly scattering scleral tissue. The resulting high-resolution images allowed the detailed structures in the trabecular meshwork (TM) to be observed. Multimodal imaging by two-photon autofluorescence and second harmonic generation allowed visualization of different features in the TM without labels and without disruption of the TM or surrounding tissues. MPM gonioscopy is a promising noninvasive imaging tool for high-resolution studies of the AOS, and research continues to explore the potential for future clinical applications in humans.

  4. Magnetic Origin of Black Hole Winds Across the Mass Scale

    NASA Technical Reports Server (NTRS)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis

    2017-01-01

    Black hole accretion disks appear to produce invariably plasma outflows that result in blue-shifted absorption features in their spectra. The X-ray absorption-line properties of these outflows are quite diverse, ranging in velocity from non-relativistic (approx. 300 km/sec) to sub-relativistic (approx. 0.1c where c is the speed of light) and a similarly broad range in the ionization states of the wind plasma. We report here that semi-analytic, self-similar magnetohydrodynamic (MHD) wind models that have successfully accounted for the X-ray absorber properties of supermassive black holes, also fit well the high-resolution X-ray spectrum of the accreting stellar-mass black hole, GRO J1655-40. This provides an explicit theoretical argument of their MHD origin (aligned with earlier observational claims) and supports the notion of a universal magnetic structure of the observed winds across all known black hole sizes.

  5. Ice sculpture in the Martian outflow channels

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1982-01-01

    Viking Orbiter and terrestrial satellite images are examined at similar resolution to compare features of the Martian outflow channels with features produced by the movement of ice on earth, and many resemblances are found. These include the anastomoses, sinuosities, and U-shaped cross profiles of valleys; hanging valleys; linear scour marks on valley walls; grooves and ridges on valley floors; and the streamlining of bedrock highs. Attention is given to the question whether ice could have moved in the Martian environment. It is envisaged that springs or small catastrophic outbursts discharged fluids from structural outlets or chaotic terrains. These fluids built icings that may have grown into substantial masses and eventually flowed like glaciers down preexisting valleys. An alternative is that the fluids formed rivers or floods that in turn formed ice jams and consolidated into icy masses in places where obstacles blocked their flow.

  6. High order accurate solutions of viscous problems

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Turkel, Eli

    1993-01-01

    We consider a fourth order extension to MacCormack's scheme. The original extension was fourth order only for the inviscid terms but was second order for the viscous terms. We show how to modify the viscous terms so that the scheme is uniformly fourth order in the spatial derivatives. Applications are given to some boundary layer flows. In addition, for applications to shear flows the effect of the outflow boundary conditions are very important. We compare the accuracy of several of these different boundary conditions for both boundary layer and shear flows. Stretching at the outflow usually increases the oscillations in the numerical solution but the addition of a filtered sponge layer (with or without stretching) reduces such oscillations. The oscillations are generated by insufficient resolution of the shear layer. When the shear layer is sufficiently resolved then oscillations are not generated and there is less of a need for a nonreflecting boundary condition.

  7. The Circumstellar Disk and Asymmetric Outflow of the EX Lup Outburst System

    NASA Astrophysics Data System (ADS)

    Hales, A. S.; Pérez, S.; Saito, M.; Pinte, C.; Knee, L. B. G.; de Gregorio-Monsalvo, I.; Dent, B.; López, C.; Plunkett, A.; Cortés, P.; Corder, S.; Cieza, L.

    2018-06-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations at 0.″3 resolution of EX Lup, the prototype of the EXor class of outbursting pre-main-sequence stars. The circumstellar disk of EX Lup is resolved for the first time in 1.3 mm continuum emission and in the J = 2–1 spectral line of three isotopologues of CO. At the spatial resolution and sensitivity achieved, the compact dust continuum disk shows no indications of clumps, fragments, or asymmetries above the 5σ level. Radiative transfer modeling constrains the characteristic radius of the dust disk to 23 au and the total dust mass to 1.0 × 10‑4 M ⊙ (33 M ⊕), similar to other EXor sources. The 13CO and C18O line emissions trace the disk rotation and are used to constrain the disk geometry, kinematics, and a total gas disk mass of 5.1 × 10‑4 M ⊙. The 12CO emission extends out to a radius of 200 au and is asymmetric, with one side deviating from Keplerian rotation. We detect blueshifted, 12CO arc-like emission located 0.″8 to the northwest and spatially disconnected from the disk emission. We interpret this extended structure as the brightened walls of a cavity excavated by an outflow, which are more commonly seen in FUor sources. Such outflows have also been seen in the borderline FU/EXor object V1647 Ori, but not toward EXor objects. Our detection provides evidence that the outflow phenomenon persists into the EXor phase, suggesting that FUor and EXor objects are a continuous population in which outflow activity declines with age, with transitional objects such as EX Lup and V1647 Ori.

  8. Numerical Simulations of Multiphase Winds and Fountains from Star-forming Galactic Disks. I. Solar Neighborhood TIGRESS Model

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Ostriker, Eve C.

    2018-02-01

    Gas blown away from galactic disks by supernova (SN) feedback plays a key role in galaxy evolution. We investigate outflows utilizing the solar neighborhood model of our high-resolution, local galactic disk simulation suite, TIGRESS. In our numerical implementation, star formation and SN feedback are self-consistently treated and well resolved in the multiphase, turbulent, magnetized interstellar medium. Bursts of star formation produce spatially and temporally correlated SNe that drive strong outflows, consisting of hot (T> 5× {10}5 {{K}}) winds and warm (5050 {{K}}< T< 2× {10}4 {{K}}) fountains. The hot gas at distance d> 1 {kpc} from the midplane has mass and energy fluxes nearly constant with d. The hot flow escapes our local Cartesian box barely affected by gravity, and is expected to accelerate up to terminal velocity of {v}{wind}∼ 350{--}500 {km} {{{s}}}-1. The mean mass and energy loading factors of the hot wind are 0.1 and 0.02, respectively. For warm gas, the mean outward mass flux through d=1 {kpc} is comparable to the mean star formation rate, but only a small fraction of this gas is at velocity > 50 {km} {{{s}}}-1. Thus, the warm outflows eventually fall back as inflows. The warm fountain flows are created by expanding hot superbubbles at d< 1 {kpc}; at larger d neither ram pressure acceleration nor cooling transfers significant momentum or energy flux from the hot wind to the warm outflow. The velocity distribution at launching near d∼ 1 {kpc} is a better representation of warm outflows than a single mass loading factor, potentially enabling development of subgrid models for warm galactic winds in arbitrary large-scale galactic potentials.

  9. Evidence for a Variable Ultrafast Outflow in the Newly Discovered Ultraluminous Pulsar NGC 300 ULX-1

    NASA Astrophysics Data System (ADS)

    Kosec, P.; Pinto, C.; Walton, D. J.; Fabian, A. C.; Bachetti, M.; Brightman, M.; Fürst, F.; Grefenstette, B. W.

    2018-06-01

    Ultraluminous pulsars are a definite proof that persistent super-Eddington accretion occurs in nature. They support the scenario according to which most Ultraluminous X-ray Sources (ULXs) are super-Eddington accretors of stellar mass rather than sub-Eddington intermediate mass black holes. An important prediction of theories of supercritical accretion is the existence of powerful outflows of moderately ionized gas at mildly relativistic speeds. In practice, the spectral resolution of X-ray gratings such as RGS onboard XMM-Newton is required to resolve their observational signatures in ULXs. Using RGS, outflows have been discovered in the spectra of 3 ULXs (none of which are currently known to be pulsars). Most recently, the fourth ultraluminous pulsar was discovered in NGC 300. Here we report detection of an ultrafast outflow (UFO) in the X-ray spectrum of the object, with a significance of more than 3σ, during one of the two simultaneous observations of the source by XMM-Newton and NuSTAR in December 2016. The outflow has a projected velocity of 65000 km/s (0.22c) and a high ionisation factor with a log value of 3.9. This is the first direct evidence for a UFO in a neutron star ULX and also the first time that this its evidence in a ULX spectrum is seen in both soft and hard X-ray data simultaneously. We find no evidence of the UFO during the other observation of the object, which could be explained by either clumpy nature of the absorber or a slight change in our viewing angle of the accretion flow.

  10. Off-axis Gamma-ray Burst Afterglow Modeling Based on a Two-dimensional Axisymmetric Hydrodynamics Simulation

    NASA Astrophysics Data System (ADS)

    van Eerten, Hendrik; Zhang, Weiqun; MacFadyen, Andrew

    2010-10-01

    Starting as highly relativistic collimated jets, gamma-ray burst outflows gradually slow down and become nonrelativistic spherical blast waves. Although detailed analytical solutions describing the afterglow emission received by an on-axis observer during both the early and late phases of the outflow evolution exist, a calculation of the received flux during the intermediate phase and for an off-axis observer requires either a more simplified analytical model or direct numerical simulations of the outflow dynamics. In this paper, we present light curves for off-axis observers covering the long-term evolution of the blast wave, calculated from a high-resolution two-dimensional relativistic hydrodynamics simulation using a synchrotron radiation model. We compare our results to earlier analytical work and calculate the consequence of the observer angle with respect to the jet axis both for the detection of orphan afterglows and for jet break fits to the observational data. We confirm earlier results in the literature finding that only a very small number of local type Ibc supernovae can harbor an orphan afterglow. For off-axis observers, the observable jet break can be delayed up to several weeks, potentially leading to overestimation of the beaming-corrected total energy. In addition we find that, when using our off-axis light curves to create synthetic Swift X-ray data, jet breaks are likely to remain hidden in the data.

  11. A New Look at Speeding Outflows

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-02-01

    The compact centers of active galaxies known as active galactic nuclei, or AGN are known for the dynamic behavior they exhibit as the supermassive black holes at their centers accrete matter. New observations of outflows from a nearby AGN provide a more detailed look at what happens in these extreme environments.Outflows from GiantsThe powerful radio jets of Cygnus A, which extend far beyond the galaxy. [NRAO/AUI]AGN consist of a supermassive black hole of millions to tens of billions of solar masses surrounded by an accretion disk of in-falling matter. But not all the material falling toward the black hole accretes! Some of it is flung from the AGN via various types of outflows.The most well-known of these outflows are powerful radio jets collimated and incredibly fast-moving streams of particles that blast their way out of the host galaxy and into space. Only around 10% of AGN are observed to host such jets, however and theres another outflow thats more ubiquitous.Fast-Moving AbsorbersPerhaps 30% of AGN both those with and without observed radio jets host wider-angle, highly ionized gaseous outflows known as ultra-fast outflows (UFOs). Ultraviolet and X-ray radiation emitted from the AGN is absorbed by the UFO, revealing the outflows presence: absorption lines appear in the ultraviolet and X-ray spectra of the AGN, blue-shifted due to the high speeds of the absorbing gas in the outflow.Quasar PG 1211+143, indicated by the crosshairs at the center of the image, in the color context of its surroundings. [SDSS/S. Karge]But what is the nature of UFOs? Are they disk winds? Or are they somehow related to the radio jets? And what impact do they have on the AGNs host galaxy?X-ray and Ultraviolet CooperationNew observations are now providing fresh information about one particular UFO. A team of scientists led by Ashkbiz Danehkar (Harvard-Smithsonian Center for Astrophysics) recently used the Chandra and Hubble space telescopes to make the first simultaneous observations of the same outflow a UFO in quasar PG 1211+143 in both X-rays and in ultraviolet.Danehkar and collaborators found absorption lines in both sets of data revealing an outflow moving at 17,000 km/s (for reference, thats 5.6% of the speed of light, and more than 1,500 times faster than Elon Musks roadster will be traveling at its maximum speed in the orbit it was launched onto yesterday by the Falcon Heavy). Having the information both from the X-ray and the ultraviolet data provides the opportunity to better asses the UFOs physical characteristics.The X-ray spectrum for PG 1211+143 was obtained by Chandra HETGS (top); the ultraviolet spectrum was obtained by HST-COS G130M (bottom). [Adapted from Danehkar et al. 2018]A Link Between Black Holes and Galaxies?The authors use models of the data to demonstrate the plausibility of a scenario in which a shock driven by the radio jet gives rise to the fast bulk outflows detected in the X-ray and ultraviolet spectra.They also estimate the impact that the outflows might have on the AGNs host galaxy, demonstrating that the energy injected into the galaxy could be somewhere between 0.02% and 0.6% of the AGNs total luminosity. At the higher end of this range, this could have an evolutionary impact on the host galaxy, suggesting a possible link between the black holes behavior and how its host galaxy evolves.In order to draw definitive conclusions, we will need higher-resolution observations that can determine the total size and extent of these outflows. For that, we may need to wait for 2023, when a proposed X-ray spectrometer that might fit the bill, Arcus, may be launched.CitationAshkbiz Danehkar et al 2018 ApJ 853 165. doi:10.3847/1538-4357/aaa427

  12. Massive Outflows Associated with ATLASGAL Clumps

    NASA Astrophysics Data System (ADS)

    Yang, A. Y.; Thompson, M. A.; Urquhart, J. S.; Tian, W. W.

    2018-03-01

    We have undertaken the largest survey for outflows within the Galactic plane using simultaneously observed {}13{CO} and {{{C}}}18{{O}} data. Out of a total of 919 ATLASGAL clumps, 325 have data suitable to identify outflows, and 225 (69% ± 3%) show high-velocity outflows. The clumps with detected outflows show significantly higher clump masses ({M}clump}), bolometric luminosities ({L}bol}), luminosity-to-mass ratios ({L}bol}/{M}clump}), and peak H2 column densities ({N}{{{H}}2}) compared to those without outflows. Outflow activity has been detected within the youngest quiescent clump (i.e., 70 μ {{m}} weak) in this sample, and we find that the outflow detection rate increases with {M}clump}, {L}bol}, {L}bol}/{M}clump}, and {N}{{{H}}2}, approaching 90% in some cases (UC H II regions = 93% ± 3%; masers = 86% ± 4%; HC H II regions = 100%). This high detection rate suggests that outflows are ubiquitous phenomena of massive star formation (MSF). The mean outflow mass entrainment rate implies a mean accretion rate of ∼ {10}-4 {M}ȯ {yr}}-1, in full agreement with the accretion rate predicted by theoretical models of MSF. Outflow properties are tightly correlated with {M}clump}, {L}bol}, and {L}bol}/{M}clump} and show the strongest relation with the bolometric clump luminosity. This suggests that outflows might be driven by the most massive and luminous source within the clump. The correlations are similar for both low-mass and high-mass outflows over 7 orders of magnitude, indicating that they may share a similar outflow mechanism. Outflow energy is comparable to the turbulent energy within the clump; however, we find no evidence that outflows increase the level of clump turbulence as the clumps evolve. This implies that the origin of turbulence within clumps is fixed before the onset of star formation.

  13. Nature of shocks revealed by SOFIA OI observations in the Cepheus E protostellar outflow

    NASA Astrophysics Data System (ADS)

    Gusdorf, A.; Anderl, S.; Lefloch, B.; Leurini, S.; Wiesemeyer, H.; Güsten, R.; Benedettini, M.; Codella, C.; Godard, B.; Gómez-Ruiz, A. I.; Jacobs, K.; Kristensen, L. E.; Lesaffre, P.; Pineau des Forêts, G.; Lis, D. C.

    2017-06-01

    Context. Protostellar jets and outflows are key features of the star-formation process, and primary processes of the feedback of young stars on the interstellar medium. Understanding the underlying shocks is necessary to explain how jet and outflow systems are launched, and to quantify their chemical and energetic impacts on the surrounding medium. Aims: We performed a high-spectral resolution study of the [OI]63μm emission in the outflow of the intermediate-mass Class 0 protostar Cep E-mm. The goal is to determine the structure of the outflow, to constrain the chemical conditions in the various components, and to understand the nature of the underlying shocks, thus probing the origin of the mass-loss phenomenon. Methods: We present observations of the O I 3P1 → 3P2, OH between 2Π1/2J = 3/2 and J = 1/2 at 1837.8 GHz, and CO (16-15) lines with the GREAT receiver onboard SOFIA towards three positions in the Cep E protostellar outflow: Cep E-mm (the driving protostar), Cep E-BI (in the southern lobe), and Cep E-BII (the terminal position in the southern lobe). Results: The CO (16-15) line is detected at all three positions. The [OI]63μm line is detected in Cep E-BI and BII, whereas the OH line is not detected. In Cep E-BII, we identify three kinematical components in O I and CO. These were already detected in CO transitions and relate to spatial components: the jet, the HH377 terminal bow-shock, and the outflow cavity. We measure line temperature and line integrated intensity ratios for all components. The O I column density is higher in the outflow cavity than in the jet, which itself is higher than in the terminal shock. The terminal shock is the region where the abundance ratio of O I to CO is the lowest (about 0.2), whereas the jet component is atomic (N(O I)/N(CO) 2.7). In the jet, we compare the [OI]63μm observations with shock models that successfully fit the integrated intensity of 10 CO lines. We find that these models most likely do not fit the [OI]63μm data. Conclusions: The high intensity of O I emission points towards the propagation of additional dissociative or alternative FUV-irradiated shocks, where the illumination comes from the shock itself. A picture emerges from the sample of low-to-high mass protostellar outflows, where similar observations have been performed, with the effects of illumination increasing with the mass of the protostar. These findings need confirmation with more observational constraints and a larger sample. This article uses Herschel-PACS data; Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.All spectra shown in Fig. 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A8

  14. Grid of Supergiant B[e] Models from HDUST Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, A.; Carciofi, A. C.

    2012-12-01

    By using the Monte Carlo radiative transfer code HDUST (developed by A. C. Carciofi and J..E. Bjorkman) we have built a grid of models for stars presenting the B[e] phenomenon and a bimodal outflowing envelope. The models are particularly adapted to the study of B[e] supergiants and FS CMa type stars. The adopted physical parameters of the calculated models make the grid well adapted to interpret high angular and high spectral observations, in particular spectro-interferometric data from ESO-VLTI instruments AMBER (near-IR at low and medium spectral resolution) and MIDI (mid-IR at low spectral resolution). The grid models include, for example, a central B star with different effective temperatures, a gas (hydrogen) and silicate dust circumstellar envelope with a bimodal mass loss presenting dust in the denser equatorial regions. The HDUST grid models were pre-calculated using the high performance parallel computing facility Mésocentre SIGAMM, located at OCA, France.

  15. Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary.

    PubMed

    Main, Robert; Yang, I-Sheng; Chan, Victor; Li, Dongzi; Lin, Fang Xi; Mahajan, Nikhil; Pen, Ue-Li; Vanderlinde, Keith; van Kerkwijk, Marten H

    2018-05-01

    Radio pulsars scintillate because their emission travels through the ionized interstellar medium along multiple paths, which interfere with each other. It has long been realized that, independent of their nature, the regions responsible for the scintillation could be used as 'interstellar lenses' to localize pulsar emission regions 1,2 . Most such lenses, however, resolve emission components only marginally, limiting results to statistical inferences and detections of small positional shifts 3-5 . As lenses situated close to their source offer better resolution, it should be easier to resolve emission regions of pulsars located in high-density environments such as supernova remnants 6 or binaries in which the pulsar's companion has an ionized outflow. Here we report observations of extreme plasma lensing in the 'black widow' pulsar, B1957+20, near the phase in its 9.2-hour orbit at which its emission is eclipsed by its companion's outflow 7-9 . During the lensing events, the observed radio flux is enhanced by factors of up to 70-80 at specific frequencies. The strongest events clearly resolve the emission regions: they affect the narrow main pulse and parts of the wider interpulse differently. We show that the events arise naturally from density fluctuations in the outer regions of the outflow, and we infer a resolution of our lenses that is comparable to the pulsar's radius, about 10 kilometres. Furthermore, the distinct frequency structures imparted by the lensing are reminiscent of what is observed for the repeating fast radio burst FRB 121102, providing observational support for the idea that this source is observed through, and thus at times strongly magnified by, plasma lenses 10 .

  16. Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary

    NASA Astrophysics Data System (ADS)

    Main, Robert; Yang, I.-Sheng; Chan, Victor; Li, Dongzi; Lin, Fang Xi; Mahajan, Nikhil; Pen, Ue-Li; Vanderlinde, Keith; van Kerkwijk, Marten H.

    2018-05-01

    Radio pulsars scintillate because their emission travels through the ionized interstellar medium along multiple paths, which interfere with each other. It has long been realized that, independent of their nature, the regions responsible for the scintillation could be used as `interstellar lenses' to localize pulsar emission regions1,2. Most such lenses, however, resolve emission components only marginally, limiting results to statistical inferences and detections of small positional shifts3-5. As lenses situated close to their source offer better resolution, it should be easier to resolve emission regions of pulsars located in high-density environments such as supernova remnants6 or binaries in which the pulsar's companion has an ionized outflow. Here we report observations of extreme plasma lensing in the `black widow' pulsar, B1957+20, near the phase in its 9.2-hour orbit at which its emission is eclipsed by its companion's outflow7-9. During the lensing events, the observed radio flux is enhanced by factors of up to 70-80 at specific frequencies. The strongest events clearly resolve the emission regions: they affect the narrow main pulse and parts of the wider interpulse differently. We show that the events arise naturally from density fluctuations in the outer regions of the outflow, and we infer a resolution of our lenses that is comparable to the pulsar's radius, about 10 kilometres. Furthermore, the distinct frequency structures imparted by the lensing are reminiscent of what is observed for the repeating fast radio burst FRB 121102, providing observational support for the idea that this source is observed through, and thus at times strongly magnified by, plasma lenses10.

  17. Accretion and outflow in the proplyd-like objects near Cygnus OB2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarcello, M. G.; Drake, J. J.; Wright, N. J.

    2014-09-20

    Cygnus OB2 is the most massive association within 2 kpc from the Sun, hosting hundreds of massive stars, thousands of young low mass members, and some sights of active star formation in the surrounding cloud. Recently, 10 photoevaporating proplyd-like objects with tadpole-shaped morphology were discovered in the outskirts of the OB association, approximately 6-14 pc away from its center. The classification of these objects is ambiguous, being either evaporating residuals of the parental cloud that are hosting a protostar inside or disk-bearing stars with an evaporating disk, such as the evaporating proplyds observed in the Trapezium Cluster in Orion. Inmore » this paper, we present a study based on low-resolution optical spectroscopic observations made with the Optical System for Imaging and low Resolution Integrated Spectroscopy, mounted on the 10.4 m Gran Telescopio CANARIAS, of two of these protostars. The spectrum of one of the objects shows evidence of accretion but not of outflows. In the latter object, the spectra show several emission lines indicating the presence of an actively accreting disk with outflow. We present estimates of the mass loss rate and the accretion rate from the disk, showing that the former exceeds the latter as observed in other known objects with evaporating disks. We also show evidence of a strong variability in the integrated flux observed in these objects as well as in the accretion and outflow diagnostics.« less

  18. THE BARYON CYCLE AT HIGH REDSHIFTS: EFFECTS OF GALACTIC WINDS ON GALAXY EVOLUTION IN OVERDENSE AND AVERAGE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadoun, Raphael; Shlosman, Isaac; Choi, Jun-Hwan

    2016-10-01

    We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ∼ 6–12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (i) constant wind velocity (CW), (ii) variable wind scaling with galaxy properties (VW), and (iii) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the “normal” region,more » and to shallow galaxy stellar mass functions at the low-mass end. Although CW shows little dependence on the environment, the more physically motivated VW model does exhibit this effect. In addition, VW can reproduce the observed specific SFR (sSFR) and the sSFR–stellar mass relation, which CW and NW fail to satisfy simultaneously. Winds also differ substantially in affecting the state of the intergalactic medium (IGM). The difference lies in the volume-filling factor of hot, high-metallicity gas, which is near unity for CW, while such gas remains confined in massive filaments for VW, and locked up in galaxies for NW. Such gas is nearly absent from the normal region. Although all wind models suffer from deficiencies, the VW model seems to be promising in correlating the outflow properties with those of host galaxies. Further constraints on the state of the IGM at high z are needed to separate different wind models.« less

  19. The Baryon Cycle at High Redshifts: Effects of Galactic Winds on Galaxy Evolution in Overdense and Average Regions

    NASA Astrophysics Data System (ADS)

    Sadoun, Raphael; Shlosman, Isaac; Choi, Jun-Hwan; Romano-Díaz, Emilio

    2016-10-01

    We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ˜ 6-12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (I) constant wind velocity (CW), (II) variable wind scaling with galaxy properties (VW), and (III) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the “normal” region, and to shallow galaxy stellar mass functions at the low-mass end. Although CW shows little dependence on the environment, the more physically motivated VW model does exhibit this effect. In addition, VW can reproduce the observed specific SFR (sSFR) and the sSFR-stellar mass relation, which CW and NW fail to satisfy simultaneously. Winds also differ substantially in affecting the state of the intergalactic medium (IGM). The difference lies in the volume-filling factor of hot, high-metallicity gas, which is near unity for CW, while such gas remains confined in massive filaments for VW, and locked up in galaxies for NW. Such gas is nearly absent from the normal region. Although all wind models suffer from deficiencies, the VW model seems to be promising in correlating the outflow properties with those of host galaxies. Further constraints on the state of the IGM at high z are needed to separate different wind models.

  20. The Megamaser Cosmology Project. X. High-resolution Maps and Mass Constraints for SMBHs

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Braatz, J. A.; Condon, J. J.; Lo, K. Y.; Reid, M. J.; Henkel, C.; Pesce, D. W.; Greene, J. E.; Gao, F.; Kuo, C. Y.; Impellizzeri, C. M. V.

    2018-02-01

    We present high-resolution (submas) Very Long Baseline Interferometry maps of nuclear H2O megamasers for seven galaxies. In UGC 6093, the well-aligned systemic masers and high-velocity masers originate in an edge-on, flat disk and we determine the mass of the central supermassive black holes (SMBH) to be M SMBH = 2.58 × 107 M ⊙ (±7%). For J1346+5228, the distribution of masers is consistent with a disk, but the faint high-velocity masers are only marginally detected, and we constrain the mass of the SMBH to be in the range (1.5–2.0) × 107 M ⊙. The origin of the masers in Mrk 1210 is less clear, as the systemic and high-velocity masers are misaligned and show a disorganized velocity structure. We present one possible model in which the masers originate in a tilted, warped disk, but we do not rule out the possibility of other explanations including outflow masers. In NGC 6926, we detect a set of redshifted masers, clustered within a parsec of each other, and a single blueshifted maser about 4.4 pc away, an offset that would be unusually large for a maser disk system. Nevertheless, if it is a disk system, we estimate the enclosed mass to be M SMBH < 4.8 × 107 M ⊙. For NGC 5793, we detect redshifted masers spaced about 1.4 pc from a clustered set of blueshifted features. The orientation of the structure supports a disk scenario as suggested by Hagiwara et al. We estimate the enclosed mass to be M SMBH < 1.3 × 107 M ⊙. For NGC 2824 and J0350‑0127, the masers may be associated with parsec- or subparsec-scale jets or outflows.

  1. Non-contact high resolution Bessel beam probe for diagnostic imaging of cornea and trabecular meshwork region in eye

    NASA Astrophysics Data System (ADS)

    Murukeshan, V. M.; Jesmond, Hong Xun J.; Shinoj, V. K.; Baskaran, M.; Tin, Aung

    2015-07-01

    Primary angle closure glaucoma is a major form of disease that causes blindness in Asia and worldwide. In glaucoma, irregularities in the ocular aqueous outflow system cause an elevation in intraocular pressure (IOP) with subsequent death of retinal ganglion cells, resulting in loss of vision. High resolution visualization of the iridocorneal angle region has great diagnostic value in understanding the disease condition which enables monitoring of surgical interventions that decrease IOP. None of the current diagnostic techniques such as goniophotography, ultrasound biomicroscopy (UBM), anterior segment optical coherence tomography (AS-OCT) and RetCam™ can image with molecular specificity and required spatial resolution that can delineate the trabecular meshwork structures. This paper in this context proposes new concepts and methodology using Bessel beams based illumination and imaging for such diagnostic ocular imaging applications. The salient features using Bessel beams instead of the conventional Gaussian beam, and the optimization challenges in configuring the probe system will be illustrated with porcine eye samples.

  2. Quasar Outflows and AGN Feedback in the Extreme UV: HST/COS Observations of QSO HE0238-1904

    NASA Astrophysics Data System (ADS)

    Arav, Nahum; Borguet, B.; Chamberlain, C.; Edmonds, D.; Danforth, C.

    2014-01-01

    Spectroscopic observations of quasar outflows at rest-frame 500-1000 Angstrom have immense diagnostic power. We present analyses of such data, where absorption troughs from three important ions are measured: first, O IV and O IV* that allow us to obtain the distance of high ionization outflows from the AGN; second, Ne VIII and Mg X that are sensitive to the very high ionization phase of the outflow. Their inferred column densities, combined with those of troughs from O VI, N IV, and H I, yield two important results: 1) The outflow shows two ionization phases, where the high ionization phase carries the bulk of the material. This is similar to the situation seen in x-ray warm absorber studies. Furthermore, the low ionization phase is inferred to have a volume filling factor of 10^(-5)-10^(-6). 2) From the O IV to O IV* column density ratio, and the knowledge of the ionization parameter, we determine a distance of 3000 pc. from the outflow to the central source. Since this is a typical high ionization outflow, we can determine robust values for the mass flux and kinetic luminosity of the outflow: 40 solar masses per year and 10^45 ergs/s, respectively, where the latter is roughly equal to 1% of the bolometric luminosity. Such a large kinetic luminosity and mass flow rate measured in a typical high ionization wind suggests that quasar outflows are a major contributor to AGN feedback mechanisms.

  3. An Extreme Metallicity, Large-scale Outflow from a Star-forming Galaxy at z ~ 0.4

    NASA Astrophysics Data System (ADS)

    Muzahid, Sowgat; Kacprzak, Glenn G.; Churchill, Christopher W.; Charlton, Jane C.; Nielsen, Nikole M.; Mathes, Nigel L.; Trujillo-Gomez, Sebastian

    2015-10-01

    We present a detailed analysis of a large-scale galactic outflow in the circumgalactic medium of a massive ({M}{{h}}˜ {10}12.5 {M}⊙ ), star-forming (˜ 6.9 {M}⊙ yr-1), sub-L* (˜ 0.5{L}B*) galaxy at z = 0.39853 that exhibits a wealth of metal-line absorption in the spectra of the background quasar Q 0122-003 at an impact parameter of 163 kpc. The galaxy inclination angle (i=63^\\circ ) and the azimuthal angle ({{Φ }}=73^\\circ ) imply that the QSO sightline is passing through the projected minor-axis of the galaxy. The absorption system shows a multiphase, multicomponent structure with ultra-strong, wide velocity spread {{O}} {{VI}} ({log}N=15.16+/- 0.04, {{Δ }}{v}90 = 419 km s-1) and {{N}} {{V}} ({log}N=14.69+/- 0.07, {{Δ }}{v}90 = 285 km s-1) lines that are extremely rare in the literature. The highly ionized absorption components are well explained as arising in a low density (˜ {10}-4.2 cm-3), diffuse (˜10 kpc), cool (˜104 K) photoionized gas with a super-solar metallicity ([{{X}}/{{H}}]≳ 0.3). From the observed narrowness of the Lyβ profile, the non-detection of {{S}} {{IV}} absorption, and the presence of strong {{C}} {{IV}} absorption in the low-resolution FOS spectrum, we rule out equilibrium/non-equilibrium collisional ionization models. The low-ionization photoionized gas with a density of ˜ {10}-2.5 cm-3 and a metallicity of [{{X}}/{{H}}]≳ -1.4 is possibly tracing recycled halo gas. We estimate an outflow mass of ˜ 2× {10}10 {M}⊙ , a mass-flow rate of ˜ 54 {M}⊙ {{yr}}-1, a kinetic luminosity of ˜ 9× {10}41 erg s-1, and a mass loading factor of ˜8 for the outflowing high-ionization gas. These are consistent with the properties of “down-the-barrel” outflows from infrared-luminous starbursts as studied by Rupke et al. Such powerful, large-scale, metal-rich outflows are the primary means of sufficient mechanical and chemical feedback as invoked in theoretical models of galaxy formation and evolution.

  4. MULTI-COMPONENT ANALYSIS OF POSITION-VELOCITY CUBES OF THE HH 34 JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Gonzalez, A.; Esquivel, A.; Raga, A. C.

    We present an analysis of H{alpha} spectra of the HH 34 jet with two-dimensional spectral resolution. We carry out multi-Gaussian fits to the spatially resolved line profiles and derive maps of the intensity, radial velocity, and velocity width of each of the components. We find that close to the outflow source we have three components: a high (negative) radial velocity component with a well-collimated, jet-like morphology; an intermediate velocity component with a broader morphology; and a positive radial velocity component with a non-collimated morphology and large linewidth. We suggest that this positive velocity component is associated with jet emission scatteredmore » in stationary dust present in the circumstellar environment. Farther away from the outflow source, we find only two components (a high, negative radial velocity component, which has a narrower spatial distribution than an intermediate velocity component). The fitting procedure was carried out with the new AGA-V1 code, which is available online and is described in detail in this paper.« less

  5. DISCOVERY OF RELATIVISTIC OUTFLOW IN THE SEYFERT GALAXY Ark 564

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, A.; Mathur, S.; Krongold, Y.

    2013-07-20

    We present Chandra High Energy Transmission Grating Spectra of the narrow-line Seyfert-1 galaxy Ark 564. The spectrum shows numerous absorption lines which are well modeled with low-velocity outflow components usually observed in Seyfert galaxies. There are, however, some residual absorption lines which are not accounted for by low-velocity outflows. Here, we present identifications of the strongest lines as K{alpha} transitions of O VII (two lines) and O VI at outflow velocities of {approx}0.1c. These lines are detected at 6.9{sigma}, 6.2{sigma}, and 4.7{sigma}, respectively, and cannot be due to chance statistical fluctuations. Photoionization models with ultra-high velocity components improve the spectralmore » fit significantly, providing further support for the presence of relativistic outflow in this source. Without knowing the location of the absorber, its mass and energy outflow rates cannot be well constrained; we find E-dot (outflow)/L{sub bol} lower limit of {>=}0.006% assuming a bi-conical wind geometry. This is the first time that absorption lines with ultra-high velocities are unambiguously detected in the soft X-ray band. The presence of outflows with relativistic velocities in active galactic nuclei (AGNs) with Seyfert-type luminosities is hard to understand and provides valuable constraints to models of AGN outflows. Radiation pressure is unlikely to be the driving mechanism for such outflows and magnetohydrodynamic may be involved.« less

  6. High-resolution X-Ray Spectroscopy of the Seyfert 1 Galaxy Mrk 1040. Revealing the Failed Nuclear Wind with Chandra

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Braito, V.; Behar, E.; Fischer, T. C.; Kraemer, S. B.; Lobban, A.; Nardini, E.; Porquet, D.; Turner, T. J.

    2017-03-01

    High-resolution X-ray spectroscopy of the warm absorber in the nearby X-ray bright Seyfert 1 galaxy Mrk 1040 is presented. The observations were carried out in the 2013-2014 timeframe using the Chandra High Energy Transmission Grating with a total exposure of 200 ks. A multitude of absorption lines from Ne, Mg, and Si are detected from a wide variety of ionization states. In particular, the detection of inner K-shell absorption lines from Ne, Mg, and Si, from charge states ranging from F-like to Li-like ions, suggests the presence of a substantial amount of low-ionization absorbing gas, illuminated by a steep soft X-ray continuum. The observations reveal at least three warm absorbing components ranging in ionization parameter from {log}(ξ /{erg} {cm} {{{s}}}-1)=0{--}2 and with column densities of {N}{{H}}=1.5{--}4.0× {10}21 cm-2. The velocity profiles imply that the outflow velocities of the absorbing gas are low and within ±100 km s-1 of the systemic velocity of Mrk 1040, which suggests that any outflowing gas may have stalled in this AGN on large enough scales. The warm absorber is likely located far from the black hole, within 300 pc of the nucleus, and is spatially coincident with emission from an extended narrow-line region as seen in the Hubble Space Telescope images. The iron K-band spectrum reveals only narrow emission lines, with Fe Kα at 6.4 keV consistent with originating from reflection off Compton-thick pc-scale reprocessing gas.

  7. Near-Surface Flow Fields Deduced Using Correlation Tracking and Time-Distance Analysis

    NASA Technical Reports Server (NTRS)

    DeRosa, Marc; Duvall, T. L., Jr.; Toomre, Juri

    1999-01-01

    Near-photospheric flow fields on the Sun are deduced using two independent methods applied to the same time series of velocity images observed by SOI-MDI on SOHO. Differences in travel times between f modes entering and leaving each pixel measured using time-distance helioseismology are used to determine sites of supergranular outflows. Alternatively, correlation tracking analysis of mesogranular scales of motion applied to the same time series is used to deduce the near-surface flow field. These two approaches provide the means to assess the patterns and evolution of horizontal flows on supergranular scales even near disk center, which is not feasible with direct line-of-sight Doppler measurements. We find that the locations of the supergranular outflows seen in flow fields generated from correlation tracking coincide well with the locations of the outflows determined from the time-distance analysis, with a mean correlation coefficient after smoothing of bar-r(sub s) = 0.840. Near-surface velocity field measurements can used to study the evolution of the supergranular network, as merging and splitting events are observed to occur in these images. The data consist of one 2048-minute time series of high-resolution (0.6" pixels) line-of-sight velocity images taken by MDI on 1997 January 16-18 at a cadence of one minute.

  8. In-N-Out: The Gas Cycle from Dwarfs to Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Christensen, Charlotte R.; Davé, Romeel; Governato, Fabio; Pontzen, Andrew; Brooks, Alyson; Munshi, Ferah; Quinn, Thomas; Wadsley, James

    2016-06-01

    We examine the scalings of galactic outflows with halo mass across a suite of 20 high-resolution cosmological zoom galaxy simulations covering halo masses in the range {10}9.5{--}{10}12 {M}⊙ . These simulations self-consistently generate outflows from the available supernova energy in a manner that successfully reproduces key galaxy observables, including the stellar mass-halo mass, Tully-Fisher, and mass-metallicity relations. We quantify the importance of ejective feedback to setting the stellar mass relative to the efficiency of gas accretion and star formation. Ejective feedback is increasingly important as galaxy mass decreases; we find an effective mass loading factor that scales as {v}{{circ}}-2.2, with an amplitude and shape that are invariant with redshift. These scalings are consistent with analytic models for energy-driven wind, based solely on the halo potential. Recycling is common: about half of the outflow mass across all galaxy masses is later reaccreted. The recycling timescale is typically ˜1 Gyr, virtually independent of halo mass. Recycled material is reaccreted farther out in the disk and with typically ˜2-3 times more angular momentum. These results elucidate and quantify how the baryon cycle plausibly regulates star formation and alters the angular momentum distribution of disk material across the halo mass range where most cosmic star formation occurs.

  9. A resolved outflow of matter from a brown dwarf.

    PubMed

    Whelan, Emma T; Ray, Thomas P; Bacciotti, Francesca; Natta, Antonella; Testi, Leonardo; Randich, Sofia

    2005-06-02

    The birth of stars involves not only accretion but also, counter-intuitively, the expulsion of matter in the form of highly supersonic outflows. Although this phenomenon has been seen in young stars, a fundamental question is whether it also occurs among newborn brown dwarfs: these are the so-called 'failed stars', with masses between stars and planets, that never manage to reach temperatures high enough for normal hydrogen fusion to occur. Recently, evidence for accretion in young brown dwarfs has mounted, and their spectra show lines that are suggestive of outflows. Here we report spectro-astrometric data that spatially resolve an outflow from a brown dwarf. The outflow's characteristics appear similar to, but on a smaller scale than, outflows from normal young stars. This result suggests that the outflow mechanism is universal, and perhaps relevant even to the formation of planets.

  10. First image of the L1157 molecular jet by the CALYPSO IRAM-PdBI survey

    NASA Astrophysics Data System (ADS)

    Podio, L.; Codella, C.; Gueth, F.; Cabrit, S.; Maury, A.; Tabone, B.; Lefèvre, C.; Anderl, S.; André, P.; Belloche, A.; Bontemps, S.; Hennebelle, P.; Lefloch, B.; Maret, S.; Testi, L.

    2016-09-01

    Context. Fast jets are thought to be a crucial ingredient of star formation because they might extract angular momentum from the disk and thus allow mass accretion onto the star. However, it is unclear whether jets are ubiquitous, and likewise, their contribution to mass and angular momentum extraction during protostar formation remains an open question. Aims: Our aim is to investigate the ejection process in the low-mass Class 0 protostar L1157. This source is associated with a spectacular bipolar outflow, and the recent detection of high-velocity SiO suggests the occurrence of a jet. Methods: Observations of CO 2 -1 and SiO 5 - 4 at ~0.8 arcsec resolution were obtained with the IRAM Plateau de Bure Interferometer (PdBI) as part of the CALYPSO large program. The jet and outflow structure were fit with a precession model. We derived the column density of CO and SiO, as well as the jet mass-loss rate and mechanical luminosity. Results: High-velocity CO and SiO emission resolve for the first time the first 200 au of the outflow-driving molecular jet. The jet is strongly asymmetric, with the blue lobe ~0.65 times slower than the red lobe. This suggests that the large-scale asymmetry of the outflow is directly linked to the jet velocity and that the asymmetry in the launching mechanism has been at work for the past 1800 yr. Velocity asymmetries are common in T Tauri stars, which suggests that the jet formation mechanism from Class 0 to Class II stages might be similar. Our model simultaneously fits the properties of the inner jet and of the clumpy 0.2 pc scale outflow by assuming that the jet precesses counter-clockwise on a cone inclined by 73° to the line of sight with an opening angle of 8° on a period of ~1640 yr. The estimated jet mass flux and mechanical luminosity are Ṁjet ~ 7.7 × 10-7M⊙ yr-1 and Ljet ~ 0.9L⊙, indicating that the jet could extract at least 25% of the gravitational energy released by the forming star.

  11. The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas (MegaSaura). II. Stacked Spectra

    NASA Astrophysics Data System (ADS)

    Rigby, J. R.; Bayliss, M. B.; Chisholm, J.; Bordoloi, R.; Sharon, K.; Gladders, M. D.; Johnson, T.; Paterno-Mahler, R.; Wuyts, E.; Dahle, H.; Acharyya, A.

    2018-01-01

    We stack the rest-frame ultraviolet spectra of N = 14 highly magnified gravitationally lensed galaxies at redshifts 1.6< z< 3.6. The resulting new composite spans 900< {λ }{rest}< 3000 Å, with a peak signal-to-noise ratio (S/N) of 103 per spectral resolution element (∼100 km s‑1). It is the highest S/N, highest spectral resolution composite spectrum of z ∼ 2–3 galaxies yet published. The composite reveals numerous weak nebular emission lines and stellar photospheric absorption lines that can serve as new physical diagnostics, particularly at high redshift with the James Webb Space Telescope (JWST). We report equivalent widths to aid in proposing for and interpreting JWST spectra. We examine the velocity profiles of strong absorption features in the composite, and in a matched composite of z∼ 0 COS/HST galaxy spectra. We find remarkable similarity in the velocity profiles at z∼ 0 and z∼ 2, suggesting that similar physical processes control the outflows across cosmic time. While the maximum outflow velocity depends strongly on ionization potential, the absorption-weighted mean velocity does not. As such, the bulk of the high-ionization absorption traces the low-ionization gas, with an additional blueshifted absorption tail extending to at least ‑2000 km s‑1. We interpret this tail as arising from the stellar wind and photospheres of massive stars. Starburst99 models are able to replicate this high-velocity absorption tail. However, these theoretical models poorly reproduce several of the photospheric absorption features, indicating that improvements are needed to match observational constraints on the massive stellar content of star-forming galaxies at z∼ 2. We publicly release our composite spectra.

  12. An evaluation of simulated particulate sulfate over East Asia through global model intercomparison

    NASA Astrophysics Data System (ADS)

    Goto, Daisuke; Nakajima, Teruyuki; Dai, Tie; Takemura, Toshihiko; Kajino, Mizuo; Matsui, Hitoshi; Takami, Akinori; Hatakeyama, Shiro; Sugimoto, Nobuo; Shimizu, Atsushi; Ohara, Toshimasa

    2015-06-01

    Sulfate aerosols simulated by an aerosol module coupled to the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) at a spatial resolution (220 km) widely used by global climate models were evaluated by a comparison with in situ observations and the same aerosol module coupled to the Model for Interdisciplinary Research on Climate (MIROC) over East Asia for January, April, July, and October 2006. The results indicated that a horizontal gradient of sulfate from the source over China to the outflow over Korea-Japan was present in both the simulations and the observations. At the observation sites, the correlation coefficients of the sulfate concentrations between the simulations and the observations were high (NICAM: 0.49-0.89, MIROC: 0.61-0.77), whereas the simulated sulfate concentrations were lower than those obtained by the observation with the normalized mean bias of NICAM being -68 to -54% (all), -77 to -63% (source), and -67 to -30% (outflow) and that of MIROC being -61 to -28% (all), -77 to -63% (source), and -60 to +2% (outflow). Both NICAM and MIROC strongly underpredict surface SO2 over China source regions and Korea-Japan outflow regions, but the MIROC SO2 is much higher than NICAM SO2 over both regions. These differences between the models were mainly explained by differences in the sulfate formation within clouds and the dry deposition of SO2. These results indicated that the uncertainty of the meteorological and cloud fields as well as the vertical transport patterns between the different host climate models has a substantial impact on the simulated sulfate distribution.

  13. The relationship between Class I and Class II methanol masers at high angular resolution

    NASA Astrophysics Data System (ADS)

    McCarthy, T. P.; Ellingsen, S. P.; Voronkov, M. A.; Cimò, G.

    2018-06-01

    We have used the Australia Telescope Compact Array (ATCA) to make the first high-resolution observations of a large sample of class I methanol masers in the 95-GHz (80-71A+) transition. The target sources consist of a statistically complete sample of 6.7-GHz class II methanol masers with an associated 95-GHz class I methanol maser, enabling a detailed study of the relationship between the two methanol maser classes at arcsecond angular resolution. These sources have been previously observed at high resolution in the 36- and 44-GHz transitions, allowing comparison between all three class I maser transitions. In total, 172 95-GHz maser components were detected across the 32 target sources. We find that at high resolution, when considering matched maser components, a 3:1 flux density ratio is observed between the 95- and 44-GHz components, consistent with a number of previous lower angular resolution studies. The 95-GHz maser components appear to be preferentially located closer to the driving sources and this may indicate that this transition is more strongly inverted nearby to background continuum sources. We do not observe an elevated association rate between 95-GHz maser emission and more evolved sources, as indicated by the presence of 12.2-GHz class II masers. We find that in the majority of cases where both class I and class II methanol emission is observed, some component of the class I emission is associated with a likely outflow candidate.

  14. Sub-arcsecond imaging of Arp 299-A at 150 MHz with LOFAR: Evidence for a starburst-driven outflow

    NASA Astrophysics Data System (ADS)

    Ramírez-Olivencia, N.; Varenius, E.; Pérez-Torres, M.; Alberdi, A.; Pérez, E.; Alonso-Herrero, A.; Deller, A.; Herrero-Illana, R.; Moldón, J.; Barcos-Muñoz, L.; Martí-Vidal, I.

    2018-03-01

    We report on the first sub-arcsecond (0.44 × 0.41 arcsec2) angular resolution image at 150 MHz of the A-nucleus in the luminous infrared galaxy Arp 299, from International Low Frequency Array (LOFAR) Telescope observations. The most remarkable finding is that of an intriguing two-sided, filamentary structure emanating from the A-nucleus, which we interpret as an outflow that extends up to at least 14 arcsec from the A-nucleus in the N-S direction ( ≈5 kpc deprojected size) and accounts for almost 40% of the extended emission of the entire galaxy system. We also discuss HST/NICMOS [FeII] 1.64 μm and H2 2.12 μm images of Arp 299-A, which show similar features to those unveiled by our 150 MHz LOFAR observations, providing strong morphological support for the outflow scenario. Finally, we discuss unpublished Na I D spectra that confirm the outflow nature of this structure. From energetic arguments, we rule out the low-luminosity active galactic nucleus in Arp 299-A as a driver for the outflow. On the contrary, the powerful, compact starburst in the central regions of Arp 299-A provides plenty of mechanical energy to sustain an outflow, and we conclude that the intense supernova (SN) activity in the nuclear region of Arp 299-A is driving the observed outflow. We estimate that the starburst wind can support a mass-outflow rate in the range (11-63 M⊙ yr-1) at speeds of up to 370-890 km s-1, and is relatively young, with an estimated kinematic age of 3-7 Myr. Those results open an avenue to the use of low-frequency (150 MHz), sub-arcsecond imaging with LOFAR to detect outflows in the central regions of local luminous infrared galaxies.

  15. Quasar outflows and AGN feedback in the extreme UV: HST/COS observations of HE 0238-1904

    NASA Astrophysics Data System (ADS)

    Arav, Nahum; Borguet, Benoit; Chamberlain, Carter; Edmonds, Doug; Danforth, Charles

    2013-12-01

    Spectroscopic observations of quasar outflows at rest-frame 500-1000 Å have immense diagnostic power. We present analyses of such data, where absorption troughs from O IV and O IV* allow us to obtain the distance of the outflows from the AGN and troughs from Ne VIII and Mg X reveal the warm absorber phase of the outflow. Their inferred column densities, combined with those of O VI, N IV and H I, yield two important results. (1) The outflow shows two ionization phases, where the high-ionization phase carries the bulk of the material. This is similar to the situation seen in X-ray warm absorber studies. Furthermore, the low-ionization phase is inferred to have a volume filling factor of 10-5-10-6. (2) We determine a distance of 3000 pc from the outflow to the central source using the O IV*/O IV column density ratio and the knowledge of the ionization parameter. Since this is a typical high-ionization outflow, we can determine robust values for the outflow's mass flux and kinetic luminosity of 40 M⊙ yr-1 and 1045 erg s-1, respectively, where the latter is roughly equal to 1 per cent of the bolometric luminosity. Such a large kinetic luminosity and mass flow rate measured in a typical high-ionization wind suggest that quasar outflows are a major contributor to AGN feedback mechanisms.

  16. Star formation inside a galactic outflow.

    PubMed

    Maiolino, R; Russell, H R; Fabian, A C; Carniani, S; Gallagher, R; Cazzoli, S; Arribas, S; Belfiore, F; Bellocchi, E; Colina, L; Cresci, G; Ishibashi, W; Marconi, A; Mannucci, F; Oliva, E; Sturm, E

    2017-04-13

    Recent observations have revealed massive galactic molecular outflows that may have the physical conditions (high gas densities) required to form stars. Indeed, several recent models predict that such massive outflows may ignite star formation within the outflow itself. This star-formation mode, in which stars form with high radial velocities, could contribute to the morphological evolution of galaxies, to the evolution in size and velocity dispersion of the spheroidal component of galaxies, and would contribute to the population of high-velocity stars, which could even escape the galaxy. Such star formation could provide in situ chemical enrichment of the circumgalactic and intergalactic medium (through supernova explosions of young stars on large orbits), and some models also predict it to contribute substantially to the star-formation rate observed in distant galaxies. Although there exists observational evidence for star formation triggered by outflows or jets into their host galaxy, as a consequence of gas compression, evidence for star formation occurring within galactic outflows is still missing. Here we report spectroscopic observations that unambiguously reveal star formation occurring in a galactic outflow at a redshift of 0.0448. The inferred star-formation rate in the outflow is larger than 15 solar masses per year. Star formation may also be occurring in other galactic outflows, but may have been missed by previous observations owing to the lack of adequate diagnostics.

  17. The detection of a discrete outflow from the young stellar object GL 490

    NASA Technical Reports Server (NTRS)

    Mitchell, G. F.; Allen, M.; Beer, R.; Dekany, R.; Huntress, W.

    1988-01-01

    A high-resolution (0.059/cm) M-band spectrum has been obtained of the embedded young stellar object GL490. The spectrum shows interstellar absorption in the fundamental vibrational band, v = 1-0, of (C-12)O. Two strong and narrow (10 km/s) velocity components are present. One, at the velocity of GL490 (vLSR = -16 km/s), is likely gas in the molecular cloud within which GL490 is embedded. The other component is blueshifted by 13 km/s relative to GL490. An observation of emission from the J = 3-2 transition of HCO(+) using a 20-arcsec beam supports the view that the blueshifted gas is near the central object. The -29-km/s feature is interpreted as a recently ejected shell. It is conjectured that the extended outflows of cold molecular gas seen by millimeter CO emission observations are driven by sporadic outbursts rather than by continuous flows from the central object.

  18. The Joint Airport Weather Studies Project - Current analysis highlights in the aviation safety context

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.

    1984-01-01

    The principal objective of the Joint Airport Weather Studies Project was to obtain high-resolution velocity, turbulence, and thermodynamic data on a convective outflow called a microburst, an intense downdraft and resulting horizontal outflow near the surface. Data collection occurred during the summer of 1982 near Denver, CO. Data sensors included three pulsed-microwave Doppler and two pulsed CO2 lidar radars, along with 27 Portable Automated Mesonet surface weather stations, the FAA's low-level-wind-shear alert system (LLWSAS), and five instrumented research aircraft. Convective storms occurred on 75 of 91 operational days, with Doppler data being collected on at least 70 microbursts. Analyses reported included a thorough examination of microburst-climatology statistics, the capability of the LLWSAS to detect adequately and accurately the presence of low-altitude wind shear danger to aircraft, the capability of a terminal Doppler radar system development to provide improved wind-shear detection and warning, and progress toward improved wind-shear training for pilots.

  19. Raman-scattered O VI λ1032 and He II λ1025 and Bipolar Outflow in the Symbiotic Star V455 Sco

    NASA Astrophysics Data System (ADS)

    Heo, Jeong-Eun; Angeloni, Rodolfo; Di Mille, Francesco; Palma, Tali; Chang, Seok-Jun; Hong, Chae-Lin; Lee, Hee-Won

    2016-07-01

    Raman-scattering by atomic hydrogen is a unique spectroscopic process that may probe the mass transfer and mass loss phenomena in symbiotic stars(SSs). In the optical high- resolution spectra of the S-type SS V455 Sco, we note the presence of two Raman-scattered features, one at around 6825 Å with a triple-peak profile formed from Raman-scattering of O VI λ1032 and the other Raman-scattered He II λ1025 at around 6545 Å. Adopting an accretion flow model with additional contribution from a collimated bipolar outflow, we propose that the blue and central peaks are contributed from the accretion flow and the bipolar flow is responsible for the remaining red peak. With the absence of [N II] λ6548, the Raman-scattered He II λ1025 at around 6545 Å is immersed in the broad Ha wings that appear to be formed by Raman-scattering of far-UV continuum near Lyman series.

  20. X-ray diagnostics of massive star winds

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Ignace, R.; Huenemoerder, D. P.

    2017-11-01

    Observations with powerful X-ray telescopes, such as XMM-Newton and Chandra, significantly advance our understanding of massive stars. Nearly all early-type stars are X-ray sources. Studies of their X-ray emission provide important diagnostics of stellar winds. High-resolution X-ray spectra of O-type stars are well explained when stellar wind clumping is taking into account, providing further support to a modern picture of stellar winds as non-stationary, inhomogeneous outflows. X-ray variability is detected from such winds, on time scales likely associated with stellar rotation. High-resolution X-ray spectroscopy indicates that the winds of late O-type stars are predominantly in a hot phase. Consequently, X-rays provide the best observational window to study these winds. X-ray spectroscopy of evolved, Wolf-Rayet type, stars allows to probe their powerful metal enhanced winds, while the mechanisms responsible for the X-ray emission of these stars are not yet understood.

  1. Velocity profiles of high-excitation molecular hydrogen lines

    NASA Technical Reports Server (NTRS)

    Moorhouse, A.; Brand, P. W. J. L.; Geballe, T. R.; Burton, M. G.

    1990-01-01

    Profiles of three lines of molecular hydrogen near 2.2 microns, originating from widely spaced energy levels, have been measured at a resolution of 32 km/s at Peak 1 in the Orion molecular outflow. The three lines, 1 - 0 S(1), 2 - 1 S(1), and 3 - 2 S(3), are found to have identical profiles. This result rules out any significant contribution to the population of the higher energy levels of molecular hydrogen at Peak 1 by fluorescence, and is generally consistent with emission from multiple J-type shocks.

  2. Measurements of HNO3, SO2 High Resolution Aerosol SO4 (sup 2-), and Selected Aerosol Species Aboard the NASA DC-8 Aircraft: During the Transport and Chemical Evolution Over the Pacific Airborne Mission (TRACE-P)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    2004-01-01

    The UNH investigation during TRACE-P provided measurements of selected acidic gases and aerosol species aboard the NASA DC-8 research aircraft. Our investigation focused on measuring HNO3, SO2, and fine (less than 2 microns) aerosol SO4(sup 2-) with two minute time resolution in near-real-time. We also quantified mixing ratios of aerosol ionic species, and aerosol (210)Pb and (7)Be collected onto bulk filters at better than 10 minute resolution. This suite of measurements contributed extensively to achieving the principal objectives of TRACE-P. In the context of the full data set collected by experimental teams on the DC-8, our observations provide a solid basis for assessing decadal changes in the chemical composition and source strength of Asian continental outflow. This region of the Pacific should be impacted profoundly by Asian emissions at this time with significant degradation of air quality over the next few decades. Atmospheric measurements in the western Pacific region will provide a valuable time series to help quantify the impact of Asian anthropogenic activities. Our data also provide important insight into the chemical and physical processes transforming Asian outflow during transport over the Pacific, particularly uptake and reactions of soluble gases on aerosol particles. In addition, the TRACE-P data set provide strong constraints for assessing and improving the chemical fields simulated by chemical transport models.

  3. Chicago Classification Criteria of Esophageal Motility Disorders Defined in High Resolution Esophageal Pressure Topography (EPT)†

    PubMed Central

    Bredenoord, Albert J; Fox, Mark; Kahrilas, Peter J; Pandolfino, John E; Schwizer, Werner; Smout, AJPM; Conklin, Jeffrey L; Cook, Ian J; Gyawali, Prakash; Hebbard, Geoffrey; Holloway, Richard H; Ke, Meiyun; Keller, Jutta; Mittal, Ravinder K; Peters, Jeff; Richter, Joel; Roman, Sabine; Rommel, Nathalie; Sifrim, Daniel; Tutuian, Radu; Valdovinos, Miguel; Vela, Marcelo F; Zerbib, Frank

    2011-01-01

    Background The Chicago Classification of esophageal motility was developed to facilitate the interpretation of clinical high resolution esophageal pressure topography (EPT) studies, concurrent with the widespread adoption of this technology into clinical practice. The Chicago Classification has been, and will continue to be, an evolutionary process, molded first by published evidence pertinent to the clinical interpretation of high resolution manometry (HRM) studies and secondarily by group experience when suitable evidence is lacking. Methods This publication summarizes the state of our knowledge as of the most recent meeting of the International High Resolution Manometry Working Group in Ascona, Switzerland in April 2011. The prior iteration of the Chicago Classification was updated through a process of literature analysis and discussion. Key Results The major changes in this document from the prior iteration are largely attributable to research studies published since the prior iteration, in many cases research conducted in response to prior deliberations of the International High Resolution Manometry Working Group. The classification now includes criteria for subtyping achalasia, EGJ outflow obstruction, motility disorders not observed in normal subjects (Distal esophageal spasm, Hypercontractile esophagus, and Absent peristalsis), and statistically defined peristaltic abnormalities (Weak peristalsis, Frequent failed peristalsis, Rapid contractions with normal latency, and Hypertensive peristalsis). Conclusions & Inferences The Chicago Classification is an algorithmic scheme for diagnosis of esophageal motility disorders from clinical EPT studies. Moving forward, we anticipate continuing this process with increased emphasis placed on natural history studies and outcome data based on the classification. PMID:22248109

  4. Chicago classification criteria of esophageal motility disorders defined in high resolution esophageal pressure topography.

    PubMed

    Bredenoord, A J; Fox, M; Kahrilas, P J; Pandolfino, J E; Schwizer, W; Smout, A J P M

    2012-03-01

    The Chicago Classification of esophageal motility was developed to facilitate the interpretation of clinical high resolution esophageal pressure topography (EPT) studies, concurrent with the widespread adoption of this technology into clinical practice. The Chicago Classification has been an evolutionary process, molded first by published evidence pertinent to the clinical interpretation of high resolution manometry (HRM) studies and secondarily by group experience when suitable evidence is lacking. This publication summarizes the state of our knowledge as of the most recent meeting of the International High Resolution Manometry Working Group in Ascona, Switzerland in April 2011. The prior iteration of the Chicago Classification was updated through a process of literature analysis and discussion. The major changes in this document from the prior iteration are largely attributable to research studies published since the prior iteration, in many cases research conducted in response to prior deliberations of the International High Resolution Manometry Working Group. The classification now includes criteria for subtyping achalasia, EGJ outflow obstruction, motility disorders not observed in normal subjects (Distal esophageal spasm, Hypercontractile esophagus, and Absent peristalsis), and statistically defined peristaltic abnormalities (Weak peristalsis, Frequent failed peristalsis, Rapid contractions with normal latency, and Hypertensive peristalsis). The Chicago Classification is an algorithmic scheme for diagnosis of esophageal motility disorders from clinical EPT studies. Moving forward, we anticipate continuing this process with increased emphasis placed on natural history studies and outcome data based on the classification. © 2012 Blackwell Publishing Ltd.

  5. Character and dynamics of the Red Sea and Persian Gulf outflows

    NASA Astrophysics Data System (ADS)

    Bower, Amy S.; Hunt, Heather D.; Price, James F.

    2000-03-01

    Historical hydrographic data and a numerical plume model are used to investigate the initial transformation, dynamics, and spreading pathways of Red Sea and Persian Gulf outflow waters where they enter the Indian Ocean. The annual mean transport of these outflows is relatively small (<0.4 Sv), but they have a major impact on the hydrographic properties of the Indian Ocean at the thermocline level because of their high salinity. They are different from other outflows in that they flow over very shallow sills (depth < 200 m) into a highly stratified upper ocean environment and they are located at relatively low latitudes (12°N and 26°N). Furthermore, the Red Sea outflow exhibits strong seasonal variability in transport. The four main results of this study are as follows. First, on the basis of observed temperature-salinity (T-S) characteristics of the outflow source and product waters we estimate that the Red Sea and Persian Gulf outflows are diluted by factors of ˜2.5 and 4, respectively, as they descend from sill depth to their depth of neutral buoyancy. The high-dilution factor for the Persian Gulf outflow results from the combined effects of large initial density difference between the outflow source water and oceanic water and low outflow transport. Second, the combination of low latitude and low outflow transport (and associated low outflow thickness) results in Ekman numbers for both outflows that are O(1). This indicates that they should be thought of as frictional density currents modified by rotation rather than geostrophic density currents modified by friction. Third, different mixing histories along the two channels that direct Red Sea outflow water into the open ocean result in product waters with significantly different densities, which probably contributes to the multilayered structure of the Red Sea product waters. In both outflows, seasonal variations in source water and oceanic properties have some effect on the T-S of the product waters, but they have only a minor impact on equilibrium depth. Fourth, product waters from both outflows are advected away from the sill region in narrow boundary currents, at least during part of the year. At other times, the product water appears more in isolated patches.

  6. Spatial resolution of pace mapping of idiopathic ventricular tachycardia/ectopy originating in the right ventricular outflow tract.

    PubMed

    Bogun, Frank; Taj, Majid; Ting, Michael; Kim, Hyungjin Myra; Reich, Stephen; Good, Eric; Jongnarangsin, Krit; Chugh, Aman; Pelosi, Frank; Oral, Hakan; Morady, Fred

    2008-03-01

    Pace mapping has been used to identify the site of origin of focal ventricular arrhythmias. The spatial resolution of pace mapping has not been adequately quantified using currently available three-dimensional mapping systems. The purpose of this study was to determine the spatial resolution of pace mapping in patients with idiopathic ventricular tachycardia or premature ventricular contractions originating in the right ventricular outflow tract. In 16 patients with idiopathic ventricular tachycardia/ectopy from the right ventricular outflow tract, comparisons and classifications of pace maps were performed by two observers (good pace map: match >10/12 leads; inadequate pace map: match < or =10/12 leads) and a customized MATLAB 6.0 program (assessing correlation coefficient and normalized root mean square of the difference (nRMSd) between test and template signals). With an electroanatomic mapping system, the correlation coefficient of each pace map was correlated with the distance between the pacing site and the effective ablation site. The endocardial area within the 10-ms activation isochrone was measured. The ablation procedure was effective in all patients. Sites with good pace maps had a higher correlation coefficient and lower nRMSd than sites with inadequate pace maps (correlation coefficient: 0.96 +/- 0.03 vs 0.76 +/- 0.18, P <.0001; nRMSd: 0.41 +/- 0.16 vs 0.89 +/- 0.39, P <.0001). Using receiver operating characteristic curves, appropriate cutoff values were >0.94 for correlation coefficient (sensitivity 81%, specificity 89%) and < or =0.54 for nRMSd (sensitivity 76%, specificity 80%). Good pace maps were located a mean of 7.3 +/- 5.0 mm from the effective ablation site and had a mean activation time of -24 +/- 7 ms. However, in 3 (18%) of 16 patients, the best pace map was inadequate at the effective ablation site, with an endocardial activation time at these sites of -25 +/- 12 ms. Pace maps with correlation coefficient > or =0.94 were confined to an area of 1.8 +/- 0.6 cm2. The 10-ms isochrone measured 1.2 +/- 0.7 cm2. The spatial resolution of a good pace map for targeting ventricular tachycardia/ectopy is 1.8 cm2 in the right ventricular outflow tract and therefore is inferior to the spatial resolution of activation mapping as assessed by isochronal activation. In approximately 20% of patients, pace mapping is unreliable in identifying the site of origin, possibly due a deeper site of origin and preferential conduction via fibers connecting the focus to the endocardial surface.

  7. Flow splitting in numerical simulations of oceanic dense-water outflows

    NASA Astrophysics Data System (ADS)

    Marques, Gustavo M.; Wells, Mathew G.; Padman, Laurie; Özgökmen, Tamay M.

    2017-05-01

    Flow splitting occurs when part of a gravity current becomes neutrally buoyant and separates from the bottom-trapped plume as an interflow. This phenomenon has been previously observed in laboratory experiments, small-scale water bodies (e.g., lakes) and numerical studies of small-scale systems. Here, the potential for flow splitting in oceanic gravity currents is investigated using high-resolution (Δx = Δz = 5 m) two-dimensional numerical simulations of gravity flows into linearly stratified environments. The model is configured to solve the non-hydrostatic Boussinesq equations without rotation. A set of experiments is conducted by varying the initial buoyancy number B0 =Q0N3 /g‧2 (where Q0 is the volume flux of the dense water flow per unit width, N is the ambient stratification and g‧ is the reduced gravity), the bottom slope (α) and the turbulent Prandtl number (Pr). Regardless of α or Pr, when B0 ≤ 0.002 the outflow always reaches the deep ocean forming an underflow. Similarly, when B0 ≥ 0.13 the outflow always equilibrates at intermediate depths, forming an interflow. However, when B0 ∼ 0.016, flow splitting always occurs when Pr ≥ 10, while interflows always occur for Pr = 1. An important characteristic of simulations that result in flow splitting is the development of Holmboe-like interfacial instabilities and flow transition from a supercritical condition, where the Froude number (Fr) is greater than one, to a slower and more uniform subcritical condition (Fr < 1). This transition is associated with an internal hydraulic jump and consequent mixing enhancement. Although our experiments do not take into account three-dimensionality and rotation, which are likely to influence mixing and the transition between flow regimes, a comparison between our results and oceanic observations suggests that flow splitting may occur in dense-water outflows with weak ambient stratification, such as Antarctic outflows.

  8. ALMA Cycle 1 Observations of the HH46/47 Molecular Outflow: Structure, Entrainment, and Core Impact

    NASA Astrophysics Data System (ADS)

    Zhang, Yichen; Arce, Héctor G.; Mardones, Diego; Cabrit, Sylvie; Dunham, Michael M.; Garay, Guido; Noriega-Crespo, Alberto; Offner, Stella S. R.; Raga, Alejandro C.; Corder, Stuartt A.

    2016-12-01

    We present Atacama Large Millimeter/sub-millimeter Array Cycle 1 observations of the HH 46/47 molecular outflow using combined 12 m array and Atacama Compact Array observations. The improved angular resolution and sensitivity of our multi-line maps reveal structures that help us study the entrainment process in much more detail and allow us to obtain more precise estimates of outflow properties than in previous observations. We use {}13{{CO}} (1-0) and {{{C}}}18{{O}} (1-0) emission to correct for the {}12{{CO}} (1-0) optical depth to accurately estimate the outflow mass, momentum, and kinetic energy. This correction increases the estimates of the mass, momentum, and kinetic energy by factors of about 9, 5, and 2, respectively, with respect to estimates assuming optically thin emission. The new {}13{{CO}} and {{{C}}}18{{O}} data also allow us to trace denser and slower outflow material than that traced by the {}12{{CO}} maps, and they reveal an outflow cavity wall at very low velocities (as low as 0.2 {\\text{km s}}-1 with respect to the core’s central velocity). Adding the slower material traced only by {}13{{CO}} and {{{C}}}18{{O}}, there is another factor of three increase in the mass estimate and 50% increase in the momentum estimate. The estimated outflow properties indicate that the outflow is capable of dispersing the parent core within the typical lifetime of the embedded phase of a low-mass protostar and that it is responsible for a core-to-star efficiency of 1/4 to 1/3. We find that the outflow cavity wall is composed of multiple shells associated with a series of jet bow-shock events. Within about 3000 au of the protostar the {}13{{CO}} and {{{C}}}18{{O}} emission trace a circumstellar envelope with both rotation and infall motions, which we compare with a simple analytic model. The CS (2-1) emission reveals tentative evidence of a slowly moving rotating outflow, which we suggest is entrained not only poloidally but also toroidally by a disk wind that is launched from relatively large radii from the source.

  9. Dynamic right ventricular outflow tract (infundibular) stenosis and pectus excavatum in a dog

    PubMed Central

    Fournier, Tanya E.

    2008-01-01

    This is the first published report of a dog with dynamic right ventricular outflow tract (infundibular) stenosis, right ventricular hypertrophy, and pectus excavatum. A juvenile dog presented with a grade V/VI left base systolic heart murmur, tachycardia, and pectus excavatum. Diagnosis of the aforementioned conditions was based on radiography, electrocardiography, and echocardiography. At 9 1/2 wk of age the heart murmur was no longer audible and the right ventricular stenosis and hypertrophy had dissipated and regressed, respectively. Resolution may be associated with growth of the dog. A good prognosis is foreseen. PMID:18512460

  10. Modeling water mass formation in the Mertz Glacier Polynya and Adélie Depression, East Antarctica

    NASA Astrophysics Data System (ADS)

    Marsland, S. J.; Bindoff, N. L.; Williams, G. D.; Budd, W. F.

    2004-11-01

    High rates of sea ice growth and brine rejection in the Mertz Glacier Polynya drive the production of dense continental shelf waters in the Adélie Depression. We consider the rate of outflow of waters having sufficient density to sink into the neighboring abyssal ocean and form Adélie Land Bottom Water (ALBW). Along with Weddell and Ross Sea Bottom Waters, the ALBW is an important source of Antarctic Bottom Water. The relevant processes are modeled using a variant of the Max Planck Institute Ocean Model (MPIOM) under daily NCEP-NCAR reanalysis forcing for the period 1991-2000. The orthogonal curvilinear horizontal grid allows for the construction of a global domain with high resolution in our region of interest. The modeled Mertz Glacier Polynya is realistic in location and extent, exhibiting low ice thickness (<0.4 m) and low ice fraction (<50%). The net surface ocean to atmosphere heat flux exceeds 200 W m2 and is dominated by sensible heat exchange. In wintertime (May through September inclusive), 7.5 m of sea ice forms over the Adélie Depression at a rate of 4.9 cm d-1: this results in annual average volumetric production of 99 km3 of sea ice. The associated brine release drives dense shelf water formation. The off-shelf flow of dense water exhibits strong interannual variability in response to variability in both atmospheric forcing and ocean preconditioning. Averaged over the period 1991-2000 the off shelf flow of dense water is 0.15 Sv: for a period of strong outflow (1993-1997), this increases to 0.24 Sv. Most of the outflow occurs during July through October, at a rate of 0.40 (0.63) Sv over the period 1991-2000 (1993-1997). The peak mean monthly outflow can exceed 1 Sv.

  11. ALMA Observations of the Galactic Center: SiO Outflows and High Mass Star Formation Near Sgr A

    NASA Technical Reports Server (NTRS)

    Yusef-Zadeh, F.; Royster, M.; Wardle, M.; Arendt, R.; Bushouse, H.; Gillessen, S.; Lis, D.; Pound, M. W.; Roberts, D. A.; Whitney, B.; hide

    2013-01-01

    Using ALMA observations of the Galactic center with a spatial resolution of 2.61" x 0.97 ", we detected 11 SiO (5-4) clumps of molecular gas in the within 0.6pc (15") of Sgr A*, interior of the 2-pc circumnuclear molecular ring. Three SiO (5-4) clumps closest to Sgr A* show the largest central velocities of approximately 150 kilometers per second and broadest asymmetric linewidths with total linewidths FWZI approximately 110-147 kilometers per second. Other clumps are distributed mainly to the NE of the ionized minispiral with narrow linewidths of FWHM approximately 11-27 kilometers per second. Using CARMA data, LVG modeling of the broad velocity clumps, the SiO (5-4) and (2-1) line ratios constrain the column density N(SiO) approximately 10(exp 14) per square centimeter, and the H2 gas density n(sub H2) = (3-9) x 10(exp 5) per cubic centimeter for an assumed kinetic temperature 100-200K. The SiO (5-4) clumps with broad and narrow linewidths are interpreted as highly embedded protostellar outflows, signifying an early stage of massive star formation near Sgr A* in the last 104 years. Additional support for the presence of YSO outflows is that the luminosities and velocity widths lie in the range detected from protostellar outflows in star forming regions in the Galaxy. Furthermore, SED modeling of stellar sources along the N arm show two YSO candidates near SiO clumps supporting in-situ star formation near Sgr A*. We discuss the nature of star formation where the gravitational potential of the black hole dominates. In particular, we suggest that external radiative pressure exerted on self-shielded molecular clouds enhance the gas density, before the gas cloud become gravitationally unstable near Sgr A*.

  12. Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015

    NASA Astrophysics Data System (ADS)

    Wu, Mengwen; Luo, Yali

    2016-08-01

    A long-lived, quasi-stationary mesoscale convective system (MCS) producing extreme rainfall (maximum of 542 mm) over the eastern coastal area of Guangdong Province on 20 May 2015 is analyzed by using high-resolution surface observations, sounding data, and radar measurements. New convective cells are continuously initiated along a mesoscale boundary at the surface, leading to formation and maintenance of the quasi-linear-shaped MCS from about 2000 BT 19 to 1200 BT 20 May. The boundary is originally formed between a cold dome generated by previous convection and southwesterly flow from the ocean carrying higher equivalent potential temperature ( θ e) air. The boundary is subsequently maintained and reinforced by the contrast between the MCS-generated cold outflow and the oceanic higher- θ e air. The cold outflow is weak (wind speed ≤ 5 m s -1), which is attributable to the characteristic environmental conditions, i.e., high humidity in the lower troposphere and weak horizontal winds in the middle and lower troposphere. The low speed of the cold outflow is comparable to that of the near surface southerly flow from the ocean, resulting in very slow southward movement of the boundary. The boundary features temperature contrasts of 2-3°C and is roughly 500-m deep. Despite its shallowness, the boundary appears to exert a profound influence on continuous convection initiation because of the very low level of free convection and small convection inhibition of the near surface oceanic air, building several parallel rainbands (of about 50-km length) that move slowly eastward along the MCS and produce about 80% of the total rainfall. Another MCS moves into the area from the northwest and merges with the local MCS at about 1200 BT. The cold outflow subsequently strengthens and the boundary moves more rapidly toward the southeast, leading to end of the event in 3 h.

  13. Searching for the UV counterpart of the extraordinary X-ray UFO in the NLSy1 IRAS17020+4544

    NASA Astrophysics Data System (ADS)

    Krongold, Yair

    2017-08-01

    We recently reported the first unambiguous discovery in high resolution X-ray data of an ultra fast outflow (UFO) with velocity .1c. This wind, in Narrow Line Seyfert 1 galaxy IRAS17020+4544, represents so far the most compelling detection of an UFO, with many different absorption lines that give rise to very high significance detections. The charge states that form the wind clearly indicate a large range of ionization states in the gas, and significant absorption by Ly alpha, C IV, Si IV and N V (among other ions) is expected in the UV band. The goal of our proposed program is to observe an characterize the best X-ray detected UFO in the UV. These observations are crucial to study in great detail the UFO phenomenon, and understand its nature and its relation to the narrow absorption line low velocity systems. Only through detection of Ly alpha absorption in the UV data, measurements of the metallicity of these winds will be possible. The proposed program will help guide new theoretical models of UFOs origins, beyond the simple actual picture that predicts only very high ionization Fe absorption. UV data are required to understand the wind nature and launching mechanism (whether due to radiation pressure via line or continuum opacity, or magnetic forces). Fully characterizing the wind properties will put stronger constraints in the mass outflow and kinetic outflow rates of these systems, as well as in their geometry. Such estimates will give a much clearer picture of UFOs feedback potential, and will provide clues on the feedback mode in action (e.g. energy conserving vs. momentum conserving).

  14. Mediterranean Outflow Water dynamics during the past 570 kyr: Regional and global implications

    NASA Astrophysics Data System (ADS)

    Kaboth, Stefanie; de Boer, Bas; Bahr, André; Zeeden, Christian; Lourens, Lucas J.

    2017-06-01

    The Gulf of Cadiz constitutes a prime area to study teleconnections between the North Atlantic Ocean and climate change in the Mediterranean realm. In particular, the highly saline Mediterranean Outflow Water (MOW) is an important modulator of the North Atlantic salt budget on intermediate water levels. However, our understanding of its paleoceanographic evolution is poorly constrained due to the lack of high-resolution proxy records that predate the last glacial cycle. Here we present the first continuous and high-resolution ( 1 kyr) benthic δ18O and δ13C as well as grain size records from Integrated Ocean Drilling Program Site U1386 representing the last 570 kyr. We find three distinct phases of MOW variability throughout the Late to Middle Pleistocene at Site U1386 associated with prominent shifts in its composition and flow strength. We attribute this long-term variability to changes in water mass sourcing of the MOW. Superimposed on the long-term change in water mass sourcing is the occurrence of distinct and precession paced δ18O enrichment events, which contrast the pattern of global ice volume change as inferred from the global mean δ18O signal (i.e., LR04) but mimics that of the adjacent Mediterranean Sea. We attribute these enrichment events to a profound temperature reduction and salinity increases of the MOW, aligning with similar changes in the Mediterranean source region. These events might further signify ice volume increases as inferred from significant sea level drops recorded in the Red Sea and/or increased influence of North Atlantic intermediate water masses when MOW influence was absent at Site U1386.

  15. The Molecular Envelope around the Red Supergiant VY CMa

    NASA Astrophysics Data System (ADS)

    Muller, S.; Dinh-V-Trung; Lim, J.; Hirano, N.; Muthu, C.; Kwok, S.

    2007-02-01

    We present millimeter interferometric observations of the molecular envelope around the red supergiant VY CMa with the Submillimeter Array (SMA). The high angular resolution (<2") allows us to derive the structure of the envelope as observed in the 1.3 mm continuum, 12CO(2-1), 13CO(2-1), and SO(65-54) lines emission. The circumstellar envelope is resolved into three components: (1) a dense, compact, and dusty central component, embedded in (2) a more diffuse and extended envelope, and (3) a high-velocity component. We construct a simple model, consisting of a spherically symmetric slowly expanding envelope and bipolar outflows with a wide opening angle (~120°) viewed close to the line of sight (i=15deg). Our model can explain the main features of the SMA data and previous single-dish CO multiline observations. An episode of enhanced mass loss along the bipolar direction is inferred from our modeling. The SMA data provide a better understanding of the complicated morphology seen in the optical/IR high-resolution observations.

  16. The Orion Nebula in the Far-Infrared: High-J CO and fine-structure lines mapped by FIFI-LS/SOFIA

    NASA Astrophysics Data System (ADS)

    Klein, Randolf; Looney, Leslie W.; Cox, Erin; Fischer, Christian; Iserlohe, Christof; Krabbe, Alfred

    2017-03-01

    The Orion Nebula is the closest massive star forming region allowing us to study the physical conditions in such a region with high spatial resolution. We used the far infrared integral-field spectrometer, FIFI-LS, on-board the airborne observatory SOFIA to study the atomic and molecular gas in the Orion Nebula at medium spectral resolution. The large maps obtained with FIFI-LS cover the nebula from the BN/KL-object to the bar in several fine structure lines. They allow us to study the conditions of the photon-dominated region and the interface to the molecular cloud with unprecedented detail. Another investigation targeted the molecular gas in the BN/KL region of the Orion Nebula, which is stirred up by a violent explosion about 500 years ago. The explosion drives a wide angled molecular outflow. We present maps of several high-J CO observations, allowing us to analyze the heated molecular gas.

  17. CO (3 - 2) High-resolution Survey of the Galactic Plane: R1

    NASA Astrophysics Data System (ADS)

    Dempsey, J. T.; Thomas, H. S.; Currie, M. J.

    2013-11-01

    We present the first release (R1) of data from the CO High-Resolution Survey (COHRS), which maps a strip of the inner Galactic plane in 12CO (J = 3 → 2). The data are taken using the Heterodyne Array Receiver Programme on the James Clerk Maxwell Telescope (JCMT) in Hawaii, which has a 14 arcsec angular resolution at this frequency. When complete, this survey will cover |b| <= 0.°5 between 10° < l < 65°. This first release covers |b| <= 0.°5 between 10.°25 < l < 17.°5 and 50.°25 < l < 55.°25, and |b| <= 0.°25 between 17.°5 < l < 50.°25. The data are smoothed to a velocity resolution of 1 km s-1, a spatial resolution of 16 arcsec and achieve a mean rms of ~1 K. COHRS data are available to the community online at http://dx.doi.org/10.11570/13.0002. In this paper we describe the data acquisition and reduction techniques used and present integrated intensity images and longitude-velocity maps. We also discuss the noise characteristics of the data. The high resolution is a powerful tool for morphological studies of bubbles and filaments while the velocity information shows the spiral arms and outflows. These data are intended to complement both existing and upcoming surveys, e.g., the Bolocam Galactic Plane Survey (BGPS), ATLASGAL, the Herschel Galactic Plane Survey (Hi-GAL) and the JCMT Galactic Plane Survey with SCUBA-2 (JPS).

  18. Imaging of trabecular meshwork using Bessel-Gauss light sheet with fluorescence

    NASA Astrophysics Data System (ADS)

    Jie Jeesmond Hong, Xun; Shinoj, V. K.; Murukeshan, V. M.; Baskaran, M.; Aung, Tin

    2017-03-01

    Ocular imaging technology that holds promise for both fundamental investigation and clinical detection of glaucoma is still a challenging research area. A direct view of the trabecular meshwork (TM) with high resolution is not generally possible because the iridocorneal angle region is obstructed by the sclera overlap. The best approach to observe the aqueous outflow system (AOS) is therefore to view from the opposite angle. In this research work, we developed two imaging systems for the high resolution ex vivo studies of the AOS inside porcine eye, based on a Gaussian illuminated and a digitally scanned Bessel-Gauss beam light sheet fluorescence configurations. The digitally scanned Bessel-Gauss beam is able to overcome the trade-off between the length and thickness of the Gaussian light sheet to give better imaging performance. It has adequate spatial resolution to resolve critical anatomical structures such as the TM, thereby enabling objective information about the AOS. This non-contact and non-invasive imaging methodology with excellent safety profile is expected to be well received by vision researchers and clinicians in the evaluation and management of glaucoma.

  19. Phenotypes and clinical context of hypercontractility in high resolution esophageal pressure topography (EPT)

    PubMed Central

    Roman, Sabine; Pandolfino, John E; Chen, Joan; Boris, Lubomyr; Luger, Daniel; Kahrilas, Peter J

    2013-01-01

    Backgrounds & Aims This study aimed to refine the criteria for esophageal hypercontractility in high resolution esophageal pressure topography (EPT) and examine the clinical context in which it occurs. Subjects & Methods 72 control subjects were used to define the threshold for hypercontractility as a distal contractile integral (DCI) greater than observed in normals. 2,000 consecutive EPT studies were reviewed to find patients exceeding this threshold. Concomitant EPT and clinical variables were explored. Results The greatest DCI value observed in any swallow among the control subjects was 7,732 mmHg-s-cm; the threshold for hypercontractility was established as a swallow with DCI >8,000 mmHg-s-cm. 44 patients were identified with a median maximal DCI of 11,077 mmHg-s-cm, all with normal contractile propagation and normal distal contractile latency, thereby excluding achalasia and distal esophageal spasm. Hypercontractility was associated with multipeaked contractions in 82% of instances leading to the name Jackhammer Esophagus . Dysphagia was the dominant symptom although subsets of patients had hypercontractility in the context of EGJ outflow obstruction, reflux disease, or as an apparent primary motility disorder. Conclusion We describe an extreme phenotype of hypercontractility characterized in EPT by the occurrence of at least a single contraction with DCI > 8,000 mmHg-s-cm, a value not encountered in control subjects. This phenomenon, branded Jackhammer Esophagus was usually accompanied by dysphagia and occurred both in association with other esophageal pathology (EGJ outflow obstruction, reflux disease) or as an isolated motility disturbance. Further studies are required to define the pathophysiology and treatment of this disorder. PMID:21931377

  20. Impaired bolus clearance in combined high-resolution esophageal manometry and impedance measurement helps to differentiate between esophagogastric junction outflow obstruction and achalasia.

    PubMed

    Zizer, Eugen; Seufferlein, Thomas; Hänle, Mark Martin

    2017-02-01

    Introduction and aims  High-resolution esophageal manometry (HRM) has improved the diagnostic work-up of esophageal motility disorders. Simultaneous evaluation of bolus clearance delivers useful information about the function of tubular esophagus. We assessed bolus clearance in a combined HRM-impedance examination for esophagogastric junction outflow obstruction (EGJOO) in comparison to achalasia patients. The collected data were assessed in a retrospective analysis. Patients and methods  After gastroscopy excluded a mechanical esophageal or gastric obstruction, 142 consecutive patients underwent combined HRM-impedance examination. The assessment and interpretation of the manometry results were done according to the Chicago Classification of esophageal motility disorders v3.0. After classifying the motility disorder, the evaluation of bolus clearance was done according to published studies. Results  All patients with achalasia (n = 24) showed a significantly impaired bolus clearance (< 80 %). Patients with unaffected peristalsis (n = 56) or patients with EGJOO (n = 14) each showed impaired clearance in 7 %, respectively. The evidence of axial hernia was not associated with impaired clearance. Conclusion  Our results demonstrate a significant difference in impedance measurements between EGJOO and achalasia cases. This might be helpful as an additional tool to differentiate between achalasia and EGJOO patients. Furthermore, the role of the combined impedance-HRM investigation for early diagnosis of achalasia in "pre-achalasia" condition or in evaluation of potential progress of EGJOO to achalasia should be evaluated in a prospective study. © Georg Thieme Verlag KG Stuttgart · New York.

  1. The continuous field measurements of soluble aerosol compositions at the Taipei Aerosol Supersite, Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, Shih-Yu; Lee, Chung-Te; Chou, Charles C.-K.; Liu, Shaw-Chen; Wen, Tian-Xue

    The characteristics of ambient aerosols, affected by solar radiation, relative humidity, wind speed, wind direction, and gas-aerosol interaction, changed rapidly at different spatial and temporal scales. In Taipei Basin, dense traffic emissions and sufficient solar radiation for typical summer days favored the formation of secondary aerosols. In winter, the air quality in Taipei Basin was usually affected by the Asian continental outflows due to the long-range transport of pollutants carried by the winter monsoon. The conventional filter-based method needs a long time for collecting aerosols and analyzing compositions, which cannot provide high time-resolution data to investigate aerosol sources, atmospheric transformation processes, and health effects. In this work, the in situ ion chromatograph (IC) system was developed to provide 15-min time-resolution data of nine soluble inorganic species (Cl -, NO 2-, NO 3-, SO 42-, Na +, NH 4+, K +, Mg 2+ and Ca 2+). Over 89% of all particles larger than approximately 0.056 μm were collected by the in situ IC system. The in situ IC system is estimated to have a limit of detection lower than 0.3 μg m -3 for the various ambient ionic components. Depending on the hourly measurements, the pollutant events with high aerosol concentrations in Taipei Basin were associated with the local traffic emission in rush hour, the accumulation of pollutants in the stagnant atmosphere, the emission of industrial pollutants from the nearby factories, the photochemical secondary aerosol formation, and the long-range transport of pollutants from Asian outflows.

  2. Jet creation in post-AGB binaries: the circum-companion accretion disk around BD+46°442

    NASA Astrophysics Data System (ADS)

    Bollen, Dylan; Van Winckel, Hans; Kamath, Devika

    2017-11-01

    Aims: We aim at describing and understanding binary interaction processes in systems with very evolved companions. Here, we focus on understanding the origin and determining the properties of the high-velocity outflow observed in one such system. Methods: We present a quantitative analysis of BD+46°442, a post-AGB binary that shows active mass transfer that leads to the creation of a disk-driven outflow or jet. We obtained high-resolution optical spectra from the HERMES spectrograph, mounted on the 1.2 m Flemish Mercator Telescope. By performing a time-series analysis of the Hα profile, we identified the different components of the system. We deduced the jet geometry by comparing the orbital phased data with our jet model. In order to image the accretion disk around the companion of BD+46°442, we applied the technique of Doppler tomography. Results: The orbital phase-dependent variations in the Hα profile can be related to an accretion disk around the companion, from which a high-velocity outflow or jet is launched. Our model shows that there is a clear correlation between the inclination angle and the jet opening angle. The latitudinally dependent velocity structure of our jet model shows a good correspondence to the data, with outflow velocities higher than at least 400 km s-1. The intensity peak in the Doppler map might be partly caused by a hot spot in the disk, or by a larger asymmetrical structure in the disk. Conclusions: We show that BD+46°442 is a result of a binary interaction channel. The origin of the fast outflow in this system might be to a gaseous disk around the secondary component, which is most likely a main-sequence star. Our analysis suggests that the outflow has a rather wide opening angle and is not strongly collimated. Our time-resolved spectral monitoring reveals the launching site of the jet in the binary BD+46°442. Similar orbital phase-dependent Hα profiles are commonly observed in post-AGB binaries. Post-AGB binaries provide ideal test beds to study jet formation and launching mechanisms over a wide range of orbital conditions. Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemmish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A60

  3. Variable interstellar radiation fields in simulated dwarf galaxies: supernovae versus photoelectric heating

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Yu; Naab, Thorsten; Glover, Simon C. O.; Walch, Stefanie; Clark, Paul C.

    2017-10-01

    We present high-resolution hydrodynamical simulations of isolated dwarf galaxies including self-gravity, non-equilibrium cooling and chemistry, interstellar radiation fields (ISRF) and shielding, star formation, and stellar feedback. This includes spatially and temporally varying photoelectric (PE) heating, photoionization, resolved supernova (SN) blast waves and metal enrichment. A new flexible method to sample the stellar initial mass function allows us to follow the contribution to the ISRF, the metal output and the SN delay times of individual massive stars. We find that SNe play the dominant role in regulating the global star formation rate, shaping the multiphase interstellar medium (ISM) and driving galactic outflows. Outflow rates (with mass-loading factors of a few) and hot gas fractions of the ISM increase with the number of SNe exploding in low-density environments where radiative energy losses are low. While PE heating alone can suppress star formation as efficiently as SNe alone can do, it is unable to drive outflows and reproduce the multiphase ISM that emerges naturally whenever SNe are included. We discuss the potential origins for the discrepancy between our results and another recent study that claimed that PE heating dominates over SNe. In the absence of SNe and photoionization (mechanisms to disperse dense clouds), the impact of PE heating is highly overestimated owing to the (unrealistic) proximity of dense gas to the radiation sources. This leads to a substantial boost of the infrared continuum emission from the UV-irradiated dust and a far-infrared line-to-continuum ratio too low compared to observations.

  4. Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers

    USGS Publications Warehouse

    Stubbins, Aron; Hood, Eran; Raymond, Peter A.; Aiken, George R.; Sleighter, Rachel L.; Hernes, Peter J.; Butman, David; Hatcher, Patrick G.; Striegl, Robert G.; Schuster, Paul F.; Abdulla, Hussain A.N.; Vermilyea, Andrew W.; Scott, Durelle T.; Spencer, Robert G.M.

    2012-01-01

    Glacier-derived dissolved organic matter represents a quantitatively significant source of ancient, yet highly bioavailable carbon to downstream ecosystems. This finding runs counter to logical perceptions of age–reactivity relationships, in which the least reactive material withstands degradation the longest and is therefore the oldest. The remnants of ancient peatlands and forests overrun by glaciers have been invoked as the source of this organic matter. Here, we examine the radiocarbon age and chemical composition of dissolved organic matter in snow, glacier surface water, ice and glacier outflow samples from Alaska to determine the origin of the organic matter. Low levels of compounds derived from vascular plants indicate that the organic matter does not originate from forests or peatlands. Instead, we show that the organic matter on the surface of the glaciers is radiocarbon depleted, consistent with an anthropogenic aerosol source. Fluorescence spectrophotometry measurements reveal the presence of protein-like compounds of microbial or aerosol origin. In addition, ultrahigh-resolution mass spectrometry measurements document the presence of combustion products found in anthropogenic aerosols. Based on the presence of these compounds, we suggest that aerosols derived from fossil fuel burning are a source of pre-aged organic matter to glacier surfaces. Furthermore, we show that the molecular signature of the organic matter is conserved in snow, glacier water and outflow, suggesting that the anthropogenic carbon is exported relatively unchanged in glacier outflows.

  5. Thermal Modeling of Permafrost Melt by Overlying Lava Flows with Applications to Flow-associated Outflow Channel Volumes in the Cerberus Plains, Mars

    NASA Technical Reports Server (NTRS)

    Chase, Z. A. J.; Sakimoto, S. E. H.

    2003-01-01

    The Cerberus region of Mars has numerous geologically recent fluvial and volcanic features superimposed spatially, with some of them using the same flow channels and apparent vent structures. Lava-water interaction landforms such as psuedocraters suggest some interaction of emplacing lava flows with underlying ground ice or water. This study investigates a related interaction type a region where the emplaced lava might have melted underlying ice in the regolith, as there are small outflow channel networks emerging from the flank flows of a lava shield over a portion of the Eastern Cerberus Rupes. Specifically, we use high-resolution Mars Orbiter Laser Altimeter (MOLA) topography to constrain channel and flow dimensions, and thus estimate the thermal pulse from the emplaced lava into the substrate and the resulting melting durations and refreezing intervals. These preliminary thermal models indicate that the observed flows could easily create thermal pulse(s) sufficient to melt enough ground ice to fill the observed fluvial small outflow channels. Depending on flow eruption timing and hydraulic recharge times, this system could easily have produced multiple thermal pulses and fluvial releases. This specific case suggests that regional small water releases from similar cases may be more common than suspected, and that there is a possibility for future fluvial releases if ground ices are currently present and future volcanic eruptions in this young region are possible.

  6. ALMA Observations of SMM11 Reveal an Extremely Young Protostar in Serpens Main Cluster

    NASA Astrophysics Data System (ADS)

    Aso, Yusuke; Ohashi, Nagayoshi; Aikawa, Yuri; Machida, Masahiro N.; Saigo, Kazuya; Saito, Masao; Takakuwa, Shigehisa; Tomida, Kengo; Tomisaka, Kohji; Yen, Hsi-Wei; Williams, Jonathan P.

    2017-11-01

    We report the discovery of an extremely young protostar, SMM11, located in the associated submillimeter condensation in the Serpens Main cluster using the Atacama Large Millimeter/submillimeter Array (ALMA) during its Cycle 3 at 1.3 mm and an angular resolution of ˜ 0\\buildrel{\\prime\\prime}\\over{.} 5˜ 210 {AU}. SMM11 is a Class 0 protostar without any counterpart at 70 μm or shorter wavelengths. The ALMA observations show 1.3 mm continuum emission associated with a collimated 12CO bipolar outflow. Spitzer and Herschel data show that SMM11 is extremely cold ({T}{bol} = 26 K) and faint ({L}{bol} ≲ 0.9 {L}⊙ ). We estimate the inclination angle of the outflow to be ˜ 80^\\circ , almost parallel to the plane of the sky, from simple fitting using a wind-driven-shell model. The continuum visibilities consist of Gaussian and power-law components, suggesting a spherical envelope with a radius of ˜600 au around the protostar. The estimated low C18O abundance, X(C18O) = 1.5-3 × {10}-10, is also consistent with its youth. The high outflow velocity, a few 10 {km} {{{s}}}-1 at a few 1000 au, is much higher than theoretical simulations of first hydrostatic cores, and we suggest that SMM11 is a transitional object right after the second collapse of the first core.

  7. A Study of PG Quasar-Driven Outflows with COS

    NASA Astrophysics Data System (ADS)

    Hamann, Frederick

    2013-10-01

    Quasar outflows are an important part of the quasar phenomenon, but many questions remain about their energetics, physical properties and the role they might play in providing feedback to host galaxy evolution. We searched our own COS far-UV observations from the QUEST survey and other large COS programs to find a sample of 6 bright PG quasars with broad {FWHM > 400 km/s} high velocity {v > 1000 km/s} absorption lines that clearly form in quasar-driven winds. These quasars can fill an important gap in our understanding between local Seyferts with low-speed winds and high-redshift quasars with extreme BAL outflows. They are also well-studied at other wavelengths, with some evidence for the quasars driving galaxy-scale blowouts and shutting down star formation. But almost nothing is known about the quasar outflows themselves. We propose a detailed study of these 6 outflow quasars using new COS FUV observations to 1} expand the existing wavelength coverage across critical lines that are diagnostic of the outflow physical conditions, kinetic energies, and metallicities, and 2} check for line variability as an indicator of the outflow structure and locations. This quasar sample includes unusual cases with many low-abundance {PV 1118,1128 and SIV 1063} and excited-state lines {SIV 1073*, CIII* 1175, CII* 1335} that will provide unprecedented constraints on the outflow properties, plus the first known OVI-only mini-BAL outflow {no lower ions detected} for which we will cover NeVIII 770,780 to probe the highest ionization gas. The high FUV sensitivity of COS is uniquely able to measure this wide range of outflow lines in low-redshift quasars with no Lya forest contamination.

  8. Mid-Infrared Interferometry on Spectral Lines. III. Ammonia and Silane around IRC +10216 and VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Monnier, J. D.; Danchi, W. C.; Hale, D. S.; Tuthill, P. G.; Townes, C. H.

    2000-11-01

    Using the University of California Berkeley Infrared Spatial Interferometer with a radio frequency (RF) filter bank, the first interferometric observations of mid-infrared molecular absorption features of ammonia (NH3) and silane (SiH4) with very high spectral resolution (λ/Δλ~105) were made. Under the assumptions of spherical symmetry and uniform outflow, these new data permitted the molecular stratification around carbon star IRC +10216 and red supergiant VY CMa to be investigated. For IRC +10216, both ammonia and silane were found to form in the dusty outflow significantly beyond both the dust formation and gas acceleration zones. Specifically, ammonia was found to form before silane in a region of decaying gas turbulence (>~20R*), while the silane is produced in a region of relatively smooth gas flow much farther from the star (>~80R*). The depletion of gas-phase SiS onto grains soon after dust formation may fuel silane-producing reactions on the grain surfaces. For VY CMa, a combination of interferometric and spectral observations suggest that NH3 is forming near the termination of the gas acceleration phase in a region of high gas turbulence (~40R*).

  9. Tracing Galactic Outflows to the Source: Spatially Resolved Feedback in M83 with COS

    NASA Astrophysics Data System (ADS)

    Aloisi, Alessandra

    2016-10-01

    Star-formation (SF) feedback plays a vital role in shaping galaxy properties, but there are many open questions about how this feedback is created, propagated, and felt by galaxies. SF-driven feedback can be observationally constrained with rest-frame UV absorption-line spectroscopy that accesses a range of powerful gas density and kinematic diagnostics. Studies at both high and low redshift show clear evidence for large-scale outflows in star-forming galaxies that scale with galaxy SF rate. However, by sampling one sightline or the galaxy as a whole, these studies are not tailored to reveal how the large-scale outflows develop from their ultimate sources at the scale of individual SF regions. We propose the first spatially-resolved COS G130M/G160M (1130-1800 A) study of the ISM in the nearby (4.6 Mpc) face-on spiral starburst M83 using individual young star clusters as background sources. This is the first down-the-barrel study where blueshifted absorptions can be identified directly with outflowing gas in a spatially resolved fashion. The kpc-scale flows sampled by the COS pointings will be anchored to the properties of the large-scale (10-100 kpc) flows thanks to the wealth of multi-wavelength observations of M83 from X-ray to radio. A comparison of COS data with mock spectra from constrained simulations of spiral galaxies with FIRE (Feedback In Realistic Environments; a code with unprecedented 1-100 pc spatial resolution and self-consistent treatments of stellar feedback) will provide an important validation of these simulations and will supply the community with a powerful and well-tested tool for galaxy formation predictions applicable to all redshifts.

  10. The kinematics of the diffuse ionized gas in NGC 4666

    NASA Astrophysics Data System (ADS)

    Voigtländer, P.; Kamphuis, P.; Marcelin, M.; Bomans, D. J.; Dettmar, R.-J.

    2013-06-01

    Context. The global properties of the interstellar medium with processes such as infall and outflow of gas and a large scale circulation of matter and its consequences for star formation and chemical enrichment are important for the understanding of galaxy evolution. Aims: In this paper we studied the kinematics and morphology of the diffuse ionized gas (DIG) in the disk and in the halo of the star forming spiral galaxy NGC 4666 to derive information about its kinematical properties. Especially, we searched for infalling and outflowing ionized gas. Methods: We determined surface brightness, radial velocity, and velocity dispersion of the warm ionized gas via high spectral resolution (R ≈ 9000) Fabry-Pérot interferometry. This allows the determination of the global velocity field and the detection of local deviations from this velocity field. We calculated models of the DIG distribution and its kinematics for comparison with the measured data. In this way we determined fundamental parameters such as the inclination and the scale height of NGC 4666, and established the need for an additional gas component to fit our observed data. Results: We found individual areas, especially along the minor axis, with gas components reaching into the halo which we interpret as an outflowing component of the DIG. As the main result of our study, we were able to determine that the vertical structure of the DIG distribution in NGC 4666 is best modeled with two components of ionized gas, a thick and a thin disk with 0.8 kpc and 0.2 kpc scale height, respectively. Therefore, the enhanced star formation in NGC 4666 drives an outflow and also maintains a thick ionized gas layer reminiscent of the Reynold's layer in the Milky Way.

  11. Emplacement and erosive effects of the south Kasei Valles lava on Mars

    USGS Publications Warehouse

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2014-01-01

    Although it has generally been accepted that the Martian outflow channels were carved by floods of water, observations of large channels on Venus and Mercury demonstrate that lava flows can cause substantial erosion. Recent observations of large lava flows within outflow channels on Mars have revived discussion of the hypothesis that the Martian channels are also produced by lava. An excellent example is found in south Kasei Valles (SKV), where the most recent major event was emplacement of a large lava flow. Calculations using high-resolution Digital Terrain Models (DTMs) demonstrate that this flow was locally turbulent, similar to a previously described flood lava flow in Athabasca Valles. The modeled peak local flux of approximately 106 m3 s−1 was approximately an order of magnitude lower than that in Athabasca, which may be due to distance from the vent. Fluxes close to 107 m3 s−1 are estimated in some reaches but these values are probably records of local surges caused by a dam-breach event within the flow. The SKV lava was locally erosive and likely caused significant (kilometer-scale) headwall retreat at several cataracts with tens to hundreds of meters of relief. However, in other places the net effect of the flow was unambiguously aggradational, and these are more representative of most of the flow. The larger outflow channels have lengths of thousands of kilometers and incision of a kilometer or more. Therefore, lava flows comparable to the SKV flow did not carve the major Martian outflow channels, although the SKV flow was among the largest and highest-flux lava flows known in the Solar System.

  12. Hyperspatial Thermal Imaging of Surface Hydrothermal Features at Pilgrim Hot Springs, Alaska using a small Unmanned Aerial System (sUAS)

    NASA Astrophysics Data System (ADS)

    Haselwimmer, C. E.; Wilson, R.; Upton, C.; Prakash, A.; Holdmann, G.; Walker, G.

    2013-12-01

    Thermal remote sensing provides a valuable tool for mapping and monitoring surface hydrothermal features associated with geothermal activity. The increasing availability of low-cost, small Unmanned Aerial Systems (sUAS) with integrated thermal imaging sensors offers a means to undertake very high spatial resolution (hyperspatial), quantitative thermal remote sensing of surface geothermal features in support of exploration and long-term monitoring efforts. Results from the deployment of a quadcopter sUAS equipped with a thermal camera over Pilgrim Hot Springs, Alaska for detailed mapping and heat flux estimation for hot springs, seeps, and thermal pools are presented. Hyperspatial thermal infrared imagery (4 cm pixels) was acquired over Pilgrim Hot Springs in July 2013 using a FLIR TAU 640 camera operating from an Aeryon Scout sUAS flying at an altitude of 40m. The registered and mosaicked thermal imagery is calibrated to surface temperature values using in-situ measurements of uniform blackbody tarps and the temperatures of geothermal and other surface pools acquired with a series of water temperature loggers. Interpretation of the pre-processed thermal imagery enables the delineation of hot springs, the extents of thermal pools, and the flow and mixing of individual geothermal outflow plumes with an unprecedented level of detail. Using the surface temperatures of thermal waters derived from the FLIR data and measured in-situ meteorological parameters the hot spring heat flux and outflow rate is calculated using a heat budget model for a subset of the thermal drainage. The heat flux/outflow rate estimates derived from the FLIR data are compared against in-situ measurements of the hot spring outflow rate recorded at the time of the thermal survey.

  13. High-Resolution Mesoscale Simulations of the 6-7 May 2000 Missouri Flash Flood: Impact of Model Initialization and Land Surface Treatment

    NASA Technical Reports Server (NTRS)

    Baker, R. David; Wang, Yansen; Tao, Wei-Kuo; Wetzel, Peter; Belcher, Larry R.

    2004-01-01

    High-resolution mesoscale model simulations of the 6-7 May 2000 Missouri flash flood event were performed to test the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation. In this flash flood event, a mesoscale convective system (MCS) produced over 340 mm of rain in roughly 9 hours in some locations. Two different types of model initialization were employed: 1) NCEP global reanalysis with 2.5-degree grid spacing and 12-hour temporal resolution, and 2) Eta reanalysis with 40- km grid spacing and $hour temporal resolution. In addition, two different land surface treatments were considered. A simple land scheme. (SLAB) keeps soil moisture fixed at initial values throughout the simulation, while a more sophisticated land model (PLACE) allows for r interactive feedback. Simulations with high-resolution Eta model initialization show considerable improvement in the intensity of precipitation due to the presence in the initialization of a residual mesoscale convective vortex (hlCV) from a previous MCS. Simulations with the PLACE land model show improved location of heavy precipitation. Since soil moisture can vary over time in the PLACE model, surface energy fluxes exhibit strong spatial gradients. These surface energy flux gradients help produce a strong low-level jet (LLJ) in the correct location. The LLJ then interacts with the cold outflow boundary of the MCS to produce new convective cells. The simulation with both high-resolution model initialization and time-varying soil moisture test reproduces the intensity and location of observed rainfall.

  14. Probing the Physical Properties and Origins of Ultra-fast Outflows in AGN

    NASA Astrophysics Data System (ADS)

    Kraemer, Steven B.; Tombesi, Francesco; Bottorff, Mark

    2017-01-01

    Approximately half of Type 1 AGN possess intrinsic absorption and high resolution UV and X-ray spectroscopy have revealed that the absorbing gas is radially outflowing, with velocities of 100s to 1000s km/sec. X-ray ("warm") absorbers, originally revealed by the presence of bound-free edges of O~VII and O~VIII, are more highly ionized than their UV counterparts, and photo-ionization modeling studies have determined that they have ionization parameters of logU ~ -1 to 1. Recently, muchmore highly ionized gas, with logU > 2, has been detected in XMM-Newton spectra, as evidenced by absorption lines from H- and He-like Fe. Some of these absorbers, ``Ultra Fast Outlows (UFOs)'', have radial velocities up to 0.2c. We have undertaken a detailed photo-ionization study of high-ionization Fe absorbers, both UFOs and non-UFOs, in a sample of AGN observed by XMM-Newton. We find that the UFOs are completely Compton-cooled, unlike the non-UFOS. Both types are too highly ionized to be radiatively accelerated, hence they are more likely driven via Magneto-Hydrodynamic processes. Their large column densities and velocity gradients are consistent with flows along magnetic streamlines emanating from accretion disks. Open questions include: the temporal stability of the UFOs, the apparent lack of non-UFOs in UFO sources, and their relationship to warm absorbers.

  15. OUTFLOW AND METALLICITY IN THE BROAD-LINE REGION OF LOW-REDSHIFT ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jaejin; Woo, Jong-Hak; Nagao, Tohru

    2017-01-20

    Outflows in active galactic nuclei (AGNs) are crucial to understand in investigating the co-evolution of supermassive black holes (SMBHs) and their host galaxies since outflows may play an important role as an AGN feedback mechanism. Based on archival UV spectra obtained with the Hubble Space Telescope and IUE , we investigate outflows in the broad-line region (BLR) in low-redshift AGNs ( z < 0.4) through detailed analysis of the velocity profile of the C iv emission line. We find a dependence of the outflow strength on the Eddington ratio and the BLR metallicity in our low-redshift AGN sample, which ismore » consistent with earlier results obtained for high-redshift quasars. These results suggest that BLR outflows, gas accretion onto SMBHs, and past star formation activity in host galaxies are physically related in low-redshift AGNs as in powerful high-redshift quasars.« less

  16. The Variable Fast Soft X-Ray Wind in PG 1211+143

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Lobban, A.; Pounds, K. A.

    2018-02-01

    The analysis of a series of seven observations of the nearby (z = 0.0809) QSO PG 1211+143, taken with the Reflection Grating Spectrometer (RGS) onboard XMM-Newton in 2014, are presented. The high-resolution soft X-ray spectrum, with a total exposure exceeding 600 ks, shows a series of blueshifted absorption lines from the He and H-like transitions of N, O, and Ne, as well as from L-shell Fe. The strongest absorption lines are all systematically blueshifted by ‑0.06c, originating in two absorption zones from low- and high-ionization gas. Both zones are variable on timescales of days, with the variations in absorber opacity effectively explained by either column density changes or the absorber ionization responding directly to the continuum flux. We find that the soft X-ray absorbers probably exist in a two-phase wind at a radial distance of ∼1017–1018 cm from the black hole with the lower-ionization gas as denser clumps embedded within a higher-ionization outflow. The overall mass outflow rate of the soft X-ray wind may be as high as 2{M}ȯ yr‑1, close to the Eddington rate for PG 1211+143 and similar to that previously deduced from the Fe K absorption.

  17. Intercostal muscle twitching: An unusual manifestation of extracardiac stimulation related to right ventricular outflow tract pacing

    PubMed Central

    Erdogan, Okan

    2007-01-01

    The present case report describes a patient who underwent successful dual-chamber pacemaker implantation with active ventricular lead fixation at a high septal region in the right ventricular outflow tract. Unexpectedly, stimulation at a high output in the right ventricular outflow tract caused an unusual extracardiac stimulation, specifically, intercostal muscle twitching. PMID:17703261

  18. The COS revolution of AGN outflow science

    NASA Astrophysics Data System (ADS)

    Arav, Nahum

    2016-10-01

    HST/COS has opened a new discovery space for quasar outflow science. Specifically, it provides high quality FUV spectra covering the diagnostic-rich 500A-1050A rest-frame of medium redshift objects. We have published three refereed papers based on the analysis of such data that were supported by our concluded COS archive program, in which we reported: a) a new population of very high ionization outflows, b) robust cases of two-ionization-phase outflows, which are the missing link between UV AGN outflows and x-ray warm absorbers, and most importantly c) spectral diagnostics that allowed us to determine the distance of the outflows from the central source. The latter is a cardinal issue in the field as many researchers believe that most outflows are situated close to the accretion disk ( 0.01 pc) while the few reliable measurements show distances of 10-10,000 pc. Therefore, every empirical distance measurement is of importance. Our archive based publication also demonstrates that quasar outflows have sufficient energy to match theoretical predictions for AGN feedback influencing galaxy evolution.We propose to continue this successful archive program. Thus far we've analyzed about 300 COS G130M and G160M orbits of AGN observations. There are roughly 900 additional orbits that satisfy our criteria and will be available within a year. Based on our published survey, we expect that these 900 orbits will yield about 20-30 additional very-high ionization outflows and 4-6 cases of distance and kinetic luminosity determinations, all in cosmologically important luminous-quasars.

  19. Shaping a high-mass star-forming cluster through stellar feedback. The case of the NGC 7538 IRS 1-3 complex

    NASA Astrophysics Data System (ADS)

    Frau, P.; Girart, J. M.; Zhang, Q.; Rao, R.

    2014-07-01

    Context. NGC 7538 IRS 1-3 is a high-mass star-forming cluster with several detected dust cores, infrared sources, (ultra)compact H II regions, molecular outflows, and masers. In such a complex environment, interactions and feedback among the embedded objects are expected to play a major role in the evolution of the region. Aims: We study the dust, kinematic, and polarimetric properties of the NGC 7538 IRS 1-3 region to investigate the role of the different forces in the formation and evolution of high-mass star-forming clusters. Methods: We performed SMA high angular resolution observations at 880 μm with the compact configuration. We developed the RATPACKS code to generate synthetic velocity cubes from models of choice to be compared to the observational data. To quantify the stability against gravitational collapse we developed the "mass balance" analysis that accounts for all the energetics on core scales. Results: We detect 14 dust cores from 3.5 M⊙ to 37 M⊙ arranged in two larger scale structures: a central bar and a filamentary spiral arm. The spiral arm presents large-scale velocity gradients in H13CO+ 4-3 and C17O 3-2, and magnetic field segments aligned well to the dust main axis. The velocity gradient is reproduced well by a spiral arm expanding at 9 km s-1 with respect to the central core MM1, which is known to power a large precessing outflow. The energy of the outflow is comparable to the spiral-arm kinetic energy, which dominates gravitational and magnetic energies. In addition, the dynamical ages of the outflow and spiral arm are comparable. On core scales, those embedded in the central bar seem to be unstable against gravitational collapse and prone to forming high-mass stars, while those in the spiral arm have lower masses that seem to be supported by non-thermal motions and magnetic fields. Conclusions: The NGC 7538 IRS 1-3 cluster seems to be dominated by protostellar feedback. The dusty spiral arm appears to be formed in a snowplow fashion owing to the outflow from the MM1 core. We speculate that the external pressure from the redshifted lobe of the outflow could trigger star formation in the spiral arm cores. This scenario would form a small cluster with a few central high-mass stars, surrounded by a number of low-mass stars formed through protostellar feedback. Based on observations carried out with the SMA telescope. The SMA is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics, and is funded by the Smithsonian Institution and the Academia Sinica (http://sma1.sma.hawaii.edu/).Final reduced SMA data cube is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/567/A116

  20. The high-mass star-forming core G35.2N: what have we learnt from SOFIA and ALMA observations?

    NASA Astrophysics Data System (ADS)

    Zinnecker, Hans; Sandell, Goeran

    2014-07-01

    G35.2N is a luminouos, star forming core in a filamentary cloud at a distance of 2.2 kpc. It is associated with a thermal N-S radio jet and a misaligned NE-SW CO outflow observed both with SOFIA FORCAST (30 and 40 microns, ~4" resolution; Zhang, Tan, de Buizer et al. 2013) and with ALMA band 7 (850 micron line and continuum, 0.4" resolution; Sanchez-Monge, Cesaroni, Beltran et al. 2013, 2014). The ALMA observations revealed a NW-SE Keplerian rotating disk in the CH3CN molecule (Sanchez-Monge et al.) with an enclosed protostellar mass of 18 +/- 3 Mo, whose orientation is inconsistent with the N-S radio jet, and whose protostellar mass is marginally inconsistent with the one inferred from the SED modelling (20-34 Mo, L ~ 10(5) Lo; Zhang et al.) We review the various assumptions involved in the derivation of the disk interpretation and the SED modelling. The dynamical mass could be in the form of a close binary (two 9 Mo stars, say) in which case the predicted total luminosity would be 3 x 10(4) Lo, close to the actually observed one (as opposed to the modelled one, which takes into account the flashlight effect and unmeasured radiation that escapes along a bipolar cavity). One the other hand, if the inferred higher-luminosity model is correct, the disk interpretation of ALMA rotation curve may have to be challenged, and what seems like a nice disk might be a more complex dynamical structure, such as a warped or precessing disk around a binary protostar or a different (outflow-related) velocity-structure altogether. These observations show the complexity of the interpretation of multi-wavelength observations of high-mass star forming regions when viewed with different spatial resolutions.

  1. Mediterranean Outflow Water at the Pliocene/Pleistocene transition: New stratigraphic constraints from IODP Site U1389 (Gulf of Cadiz, IODP Expedition 339)

    NASA Astrophysics Data System (ADS)

    Grunert, Patrick; Balestra, Barbara; Auer, Gerald; Flores, José-Abel; Richter, Carl; García Gallardo, Ángela; Röhl, Ulla; Piller, Werner E.

    2016-04-01

    IODP Hole U1389E, at present located in the lower core of the Mediterranean Outflow Water (MOW) at 640m water depth in the northern Gulf of Cadiz, represents a key-site for the understanding of changes in MOW contribution to the North Atlantic during the late Pliocene and the transition into the Pleistocene ice house climate. Integrated geophysical, micropalaeontological and geochemical proxy records of the recovered sediments imply major changes in MOW strength over the studied interval. However, to consider these data in a broader paleoceanographic and paleoclimatic context, a well-constrained age model is essential. New bio-, chemo-, magnetostratigraphic data and XRF core-scanning suggest that the shipboard age model for the site has to be reconsidered as major changes in the depositional environment have not been recognized in the original, comparably low resolution data-sets. While the new, high-resolution biostratigraphic data confirm the overall time frame of 2.6 to 3.6 Myrs for the studied interval, they also indicate that the last occurrence of Discoaster tamalis in the succession should be reconsidered. New palaeomagnetic data constrain the Gauss normal chron and its subchrons more accurately. Finally, a high-resolution δ18O-record of the planktic foraminifer Globigerinoides ruber allows the identification of many marine isotopic chrons, further refining the stratigraphic framework. Cyclic patterns are recognized in the CaCO3 and TOC contents as well as Ca/Ti- and Zr/Al-ratios. A preliminary cyclostratigraphic analysis of these records in well-recovered intervals suggests an interplay of obliquity and precessional forcing reflected in a change from deposits strongly influenced by terrestrial input (3.0-2.8 Myrs) to deposits strongly affected by MOW (2.8-2.6 Myrs). This study contributes to project P25831-N29 of the Austrian Science Fund (FWF) and is financially supported by grants of ECORD and the Max Kade Foundation.

  2. SYNTHETIC OBSERVATIONS OF MAGNETIC FIELDS IN PROTOSTELLAR CORES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joyce W. Y.; Hull, Charles L. H.; Offner, Stella S. R., E-mail: chat.hull@cfa.harvard.edu, E-mail: jwyl1g12@soton.ac.uk

    The role of magnetic fields in the early stages of star formation is not well constrained. In order to discriminate between different star formation models, we analyze 3D magnetohydrodynamic simulations of low-mass cores and explore the correlation between magnetic field orientation and outflow orientation over time. We produce synthetic observations of dust polarization at resolutions comparable to millimeter-wave dust polarization maps observed by the Combined Array for Research in Millimeter-wave Astronomy and compare these with 2D visualizations of projected magnetic field and column density. Cumulative distribution functions of the projected angle between the magnetic field and outflow show different degreesmore » of alignment in simulations with differing mass-to-flux ratios. The distribution function for the less magnetized core agrees with observations finding random alignment between outflow and field orientations, while the more magnetized core exhibits stronger alignment. We find that fractional polarization increases when the system is viewed such that the magnetic field is close to the plane of the sky, and the values of fractional polarization are consistent with observational measurements. The simulation outflow, which reflects the underlying angular momentum of the accreted gas, changes direction significantly over over the first ∼0.1 Myr of evolution. This movement could lead to the observed random alignment between outflows and the magnetic fields in protostellar cores.« less

  3. Fabry-Perot observations of comet Austin

    NASA Technical Reports Server (NTRS)

    Schultz, David; Scherb, F.; Roesler, F. L.; Li, G.; Harlander, J.; Roberts, T. P. P.; Vandenberk, D.; Nossal, S.; Coakley, M.; Oliversen, Ronald J.

    1990-01-01

    Preliminary results of a program to observe Comet Austin (1990c1) from 16 April to 4 May and from 11 May to 27 May 1990 using the West Auxiliary of the McMath Solar Telescope on Kitt Peak, Arizona were presetned. The observations were made with a 15 cm duel-etalon Fabry-Perot scanning and imaging spectrometer with two modes of operation: a high resolution mode with a velocity resolution of 1.2 km/s and a medium resolution mode with a velocity resolution 10 km/s. Scanning data was obtained with an RCA C31034A photomultiplier tube and imaging data was obtained with a Photometrics LN2 cooled CCD camera with a 516 by 516 Ford chip. The results include: (1) information on the coma outflow velocity from high resolution spectral profiles of (OI)6300 and NH2 emissions, (2) gaseous water production rates from medium resolution observation of (OI)6300, (3) spectra of H2O(+) emissions in order to study the ionized component of the coma, (4) spatial distribution of H2O(+) emission features from sequences of velocity resolved images (data cubes), and (5) spatial distribution of (OI)6300 and NH2 emissions from medium resolution images. The field of view on the sky was 10.5 arcminutes in diameter. In the imaging mode the CCD was binned 4 by 4 resulting in 7.6 sec power pixel and a subarray readout for a field of view of 10.5 min.

  4. X-Ray Evidence for the Accretion Disc-Outflow Connection in 3C 111

    NASA Technical Reports Server (NTRS)

    Tombesi, Frank; Sambruna, R. M.; Reeves, J. N.; Reynolds, C. S.; Braito, V.

    2011-01-01

    We present the spectral analysis of three Suzaku X-ray Imaging Spectrometer observations of 3C III requested to monitor the predicted variability of its ultrafast outflow on approximately 7 d time-scales. We detect an ionized iron emission line in the first observation and a blueshifted absorption line in the second, when the flux is approximately 30 per cent higher. The location of the material is constrained at less than 0.006 pc from the variability. Detailed modelling supports an identification with ionized reflection off the accretion disc at approximately 20-100rg from the black hole and a highly ionized and massive ultrafast outflow with velocity approximately 0.1c, respectively. The outflow is most probably accelerated by radiation pressure, but additional magnetic thrust cannot be excluded. The measured high outflow rate and mechanical energy support the claims that disc outflows may have a significant feedback role. This work provides the first direct evidence for an accretion disc-outflow connection in a radio-loud active galactic nucleus, possibly linked also to the jet activity.

  5. Filamentary structure and Keplerian rotation in the high-mass star-forming region G35.03+0.35 imaged with ALMA

    NASA Astrophysics Data System (ADS)

    Beltrán, M. T.; Sánchez-Monge, Á.; Cesaroni, R.; Kumar, M. S. N.; Galli, D.; Walmsley, C. M.; Etoka, S.; Furuya, R. S.; Moscadelli, L.; Stanke, T.; van der Tak, F. F. S.; Vig, S.; Wang, K.-S.; Zinnecker, H.; Elia, D.; Schisano, E.

    2014-11-01

    Context. Theoretical scenarios propose that high-mass stars are formed by disk-mediated accretion. Aims: To test the theoretical predictions on the formation of massive stars, we wish to make a thorough study at high-angular resolution of the structure and kinematics of the dust and gas emission toward the high-mass star-forming region G35.03+0.35, which harbors a disk candidate around a B-type (proto)star. Methods: We carried out ALMA Cycle 0 observations at 870 μm of dust of typical high-density, molecular outflow, and cloud tracers with resolutions of < 0''&dotbelow;5. Complementary Subaru COMICS 25 μm observations were carried out to trace the mid-infrared emission toward this star-forming region. Results: The submillimeter continuum emission has revealed a filamentary structure fragmented into six cores, called A-F. The filament could be in quasi-equilibrium taking into account that the mass per unit length of the filament, 200-375 M⊙/pc, is similar to the critical mass of a thermally and turbulently supported infinite cylinder, ~335 M⊙/pc. The cores, which are on average separated by ~0.02 pc, have deconvolved sizes of 1300-3400 AU, temperatures of 35-240 K, H2 densities >107 cm -3, and masses in the range 1-5 M⊙, and they are subcritical. Core A, which is associated with a hypercompact Hii region and could be the driving source of the molecular outflow observed in the region, is the most chemically rich source in G35.03+0.35 with strong emission of typical hot core tracers such as CH3CN. Tracers of high density and excitation show a clear velocity gradient along the major axis of the core, which is consistent with a disk rotating about the axis of the associated outflow. The PV plots along the SE-NW direction of the velocity gradient show clear signatures of Keplerian rotation, although infall could also be present, and they are consistent with the pattern of an edge-on Keplerian disk rotating about a star with a mass in the range 5-13 M⊙. The high tff/trot ratio for core A suggests that the structure rotates fast and that the accreting material has time to settle into a centrifugally supported disk. Conclusions: G35.03+0.35 is one of the most convincing examples of Keplerian disks rotating about high-mass (proto)stars. This supports theoretical scenarios according to which high-mass stars, at least B-type stars, would form through disk-mediated accretion. Appendices are available in electronic form at http://www.aanda.org

  6. Analysis of in situ measurements of cirrus anvil outflow dynamics

    NASA Astrophysics Data System (ADS)

    Lederman, J. I.; Whiteway, J. A.

    2012-12-01

    The airborne campaign, EMERALD 2 (Egrett Microphysics Experiment with Radiation, Lidar, and Dynamics,) was conducted out of Darwin, Australia in 2002. Objectives included characterization of the dynamics in the cirrus anvil outflow from tropical deep convection. Two aircraft, the Egrett and King Air, were flown in tandem in the upper troposphere (7 km - 15 km) to collect in situ measurements in the anvil outflow from a storm named "Hector" that occurs on a regular basis over the Tiwi Islands north of Darwin during November and December. Turbulence probes mounted on the wings of the Egrett aircraft were used to measure the wind fluctuations across the anvil and along its length with a spatial resolution of 2 meters. The in situ measurements from the Egrett were coincident with lidar measurements of the cloud structure from the King Air aircraft flying directly below. The presentation will show results of the analysis of the measurements with an emphasis on the turbulence, gravity waves, and coherent structures that are particular to the cirrus anvil outflow environment. Emphasis is placed on the dynamics associated with the generation of mammatus formations at the base of the anvil clouds.

  7. Inferring Polar Ion Outflows from Topside Ionograms

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; Rice, D. D.; Eccles, V.; Schunk, R. W.; David, M.; Benson, R. F.; James, H. G.

    2017-12-01

    The high-latitude topside ionosphere is dominated by O+ ions from the F-region peak around 300 km to over 1000 km altitude. The O+ profile shape provides information on the thermal structure, field aligned plasma dynamics, and outflows into the magnetosphere. Topside electron density profiles (EDP) are either obtained from topside sounders or Incoherent Scatter Radars. There is a large archive of topside sounder ionograms and hand scaled EDPs from the Alouette and ISIS satellites between 1962 and 1990. Recent NASA data enhancement efforts have augmented these EDP archives by producing digital topside ionograms both from the 7-track analog telemetry tapes and from 35 mm topside film ionograms. Rice et al [2017] in their 35 mm ionogram recovery emphasized high latitude ionograms taken during disturbed conditions. The figure below contrasts ISIS-II EDPs extracted from 35 mm films before and during a major storm (Dst -200nT) on 9 April 1972 (left panel: quiet period before the storm; right panel: during the peak of the storm). Both satellite passes used for these EDPs were centered on the Resolute Bay location that in 1972 was close to the magnetic pole. They begin at auroral latitudes around 2100 MLT and end on the dayside around 0900MLT. We will present results of how ionospheric models replicate both the quiet and disturbed conditions shown in the figure. Three types of models will be contrasted: an empirical ionosphere (IRI), a physics based ionospheric model (TDIM), and a fluid-based polar-wind model (PW). During the storm pass, when it is expected that substantial heating is present, the ISIS-II topside EDPs provide severe constraints on the usage of these models. These constraints enable estimates of the outflow fluxes as well as the heating that has occurred. The comparisons with the empirical model establish how well the pre-storm topside is modeled and identifies the challenges as the storm magnitude increases. The physics-based TDIM does have storm drivers but is limited in how the 800 km topside boundary is set. In contrast, the polar wind model extends out to many Earth radii and, hence, physically handles ionospheric heating and ion outflows during storms. These topside EDP data will provide a means to establish the sensitivity of various ionospheric heating mechanisms that drive the ion outflow.

  8. Simplified models of circumstellar morphologies for interpreting high-resolution data. Analytical approach to the equatorial density enhancement

    NASA Astrophysics Data System (ADS)

    Homan, W.; Boulangier, J.; Decin, L.; de Koter, A.

    2016-12-01

    Context. Equatorial density enhancements (EDEs) are a very common astronomical phenomenon. Studies of the circumstellar environments (CSE) of young stellar objects and of evolved stars have shown that these objects often possess these features. These are believed to originate from different mechanisms, ranging from binary interactions to the gravitational collapse of interstellar material. Quantifying the effect of the presence of this type of EDE on the observables is essential for a correct interpretation of high-resolution data. Aims: We seek to investigate the manifestation in the observables of a circumstellar EDE, to assess which properties can be constrained, and to provide an intuitive bedrock on which to compare and interpret upcoming high-resolution data (e.g. ALMA data) using 3D models. Methods: We develop a simplified analytical parametrised description of a 3D EDE, with possible substructure such as warps, gaps, and spiral instabilities. In addition, different velocity fields (Keplerian, radial, super-Keplerian, sub-Keplerian and rigid rotation) are considered. The effect of a bipolar outflow is also investigated. The geometrical models are fed into the 3D radiative transfer code LIME, that produces 3D intensity maps throughout velocity space. We investigate the spectral signature of the J = 3-2 up to J = 7-6 rotational transitions of CO in the models, as well as the spatial aspect of this emission by means of channel maps, wide-slit position-velocity (PV) diagrams, stereograms, and spectral lines. Additionally, we discuss methods of constraining the geometry of the EDE, the inclination, the mass-contrast between the EDE and the bipolar outflow, and the global velocity field. Finally, we simulated ALMA observations to explore the effects of interferometric noise and artefacts on the emission signatures. Results: The effects of the different velocity fields are most evident in the PV diagrams. These diagrams also enable us to constrain the EDE height and inclination. A level of degeneracy may occur in the shapes of individual PV diagrams for different global velocity fields. The orthogonal PV diagrams may completely eliminate this ambiguity. Information on the EDE substructure is evident in the channel maps, but cannot be recovered from the PV diagrams, nor from the spectral lines. However, stereograms enable the detection of warping. For most inclinations the spectral lines are relatively broad, making it difficult to distinguish from an eventual superposed bipolar outflow component. Only under low inclination angles can one distinguish between these structures. Simulations of synthetic ALMA observations show how emission is affected when the largest angular scale of an antenna configuration is exceeded. For a rotating EDE, the emission around zero velocity will first fade because of destructive interference.

  9. Quasar Feedback in the Ultraluminous Infrared Galaxy F11119+3257: Connecting the Accretion Disk Wind with the Large-scale Molecular Outflow

    NASA Astrophysics Data System (ADS)

    Veilleux, S.; Bolatto, A.; Tombesi, F.; Meléndez, M.; Sturm, E.; González-Alfonso, E.; Fischer, J.; Rupke, D. S. N.

    2017-07-01

    In Tombesi et al., we reported the first direct evidence for a quasar accretion disk wind driving a massive (>100 M ⊙ yr-1) molecular outflow. The target was F11119+3257, an ultraluminous infrared galaxy (ULIRG) with unambiguous type 1 quasar optical broad emission lines. The energetics of the accretion disk wind and molecular outflow were found to be consistent with the predictions of quasar feedback models where the molecular outflow is driven by a hot energy-conserving bubble inflated by the inner quasar accretion disk wind. However, this conclusion was uncertain because the mass outflow rate, momentum flux, and mechanical power of the outflowing molecular gas were estimated from the optically thick OH 119 μm transition profile observed with Herschel. Here, we independently confirm the presence of the molecular outflow in F11119+3257, based on the detection of ˜±1000 km s-1 blue- and redshifted wings in the CO(1-0) emission line profile derived from deep ALMA observations obtained in the compact array configuration (˜2.″8 resolution). The broad CO(1-0) line emission appears to be spatially extended on a scale of at least ˜7 kpc from the center. Mass outflow rate, momentum flux, and mechanical power of (80-200) {R}7-1 M ⊙ yr-1, (1.5-3.0) {R}7-1 L AGN/c, and (0.15-0.40)% {R}7-1 {L}{AGN}, respectively, are inferred from these data, assuming a CO-to-H2 conversion factor appropriate for a ULIRG (R 7 is the radius of the outflow normalized to 7 kpc, and L AGN is the AGN luminosity). These rates are time-averaged over a flow timescale of 7 × 106 yr. They are similar to the OH-based rates time-averaged over a flow timescale of 4 × 105 yr, but about a factor of 4 smaller than the local (“instantaneous” ≲105 yr) OH-based estimates cited in Tombesi et al. The implications of these new results are discussed in the context of time-variable quasar-mode feedback and galaxy evolution. The need for an energy-conserving bubble to explain the molecular outflow is also reexamined.

  10. Discovery of the Rotating Molecular Outflow and Disk in the CLASS-0/I Protostar [BHB2007]#11 in Pipe

    NASA Astrophysics Data System (ADS)

    Chihomi, Hara; Ryohei, Kawabe; Yoshito, Shimajiri; Junko, Ueda; Takashi, Tsukagoshi; Yasutaka, Kurono; Kazuya, Saigo; Fumitaka, Nakamura; Masao, Saito; Wilner, David

    2013-07-01

    The loss of angular momentum is inevitable in star formation processes, and the transportation of angular momentum by a molecular flow is widely thought to be one of the important processes. We present the results of our 2'h resolution Submillimeter Array (SMA) observations in CO, 13CO, and C18O(2-1) emissions toward a low-mass Class-0/I protostar, [BHB2007]#11 (hereafter B59#11) at the nearby star forming region, Barnard 59 in the Pipe Nebula (d=130 pc). B59#11 ejects a molecular outflow whose axis lies almost on the plane of the sky, and one of the best targets to investigate the envelope/disk rotation and the velocity structure of the molecular outflow. The 13CO and C18O observations have revealed that a compact (r ˜ 800 AU) and elongated structure of dense gas is associated with B59#11, which orients perpendicular to the outflow axis. Their distributions show the velocity gradients along their major axes, which are considered to arise from the envelope/disk rotation. The specific angular momentum is estimated to be (1.6+/-0.6)e-3 km/s pc. The power-law index of the radial profile of the rotation velocity changes from steeper one, i.e., ˜ -1 to -1/2 at a radius of 140 AU, suggesting the Keplerian disk is formed inside the radius. The central stellar mass is estimated to be ˜1.3 Msun. A collimated molecular outflow is detected from the CO observations. We found in the outflow a velocity gradient which direction is the same as that seen in the dense gas. This is interpreted to be due to the outflow rotation. The specific angular momentum of the outflow is comparable to that of the envelope, suggesting that this outflow play an important role to the ejection of the angular momentum from the envelope/disk system. This is the first case where both the Keplerian disk and the rotation of the molecular outflow were found in the Class-0 or I protostar, and provides one of good targets for ALMA to address the angular momentum ejection in course of star formation.

  11. XMM-Newton Proposal 03033401

    NASA Astrophysics Data System (ADS)

    Ghosh, Kajal

    2004-10-01

    We have detected a highly blueshifted (7.6 keV at the source frame) emission feature in the ASCA spectra of the unusual Narrow-line Seyfert 1 galaxy RX J0136.9-3510. At ASCA resolution it is impossible to tell if the feature is a single line or a combination of lines nor if the feature is due to He-like or H-like Fe. The line profile can tell us where the bulk of the emission origin- ates: A low velocity dispersion would favor a wind/outflow origin, while a hi- gher dispersion may allow for an ionized disk reflection origin. Strong absor- ption and resonant scattering could also produce blueshifted line. To acquire better resolution spectrum to constrain the origin of the line via detailed physical modeling, we propose 50 ks XMM-Newton observations of RXJ0136.9-3510.

  12. The Anatomy of the Young Protostellar Outflow HH 211

    NASA Astrophysics Data System (ADS)

    Tappe, A.; Forbrich, J.; Martín, S.; Yuan, Y.; Lada, C. J.

    2012-05-01

    We present Spitzer Space Telescope 5-36 μm mapping observations toward the southeastern lobe of the young protostellar outflow HH 211. The southeastern terminal shock of the outflow shows a rich mid-infrared spectrum including molecular emission lines from OH, H2O, HCO+, CO2, H2, and HD. The spectrum also shows a rising infrared continuum toward 5 μm, which we interpret as unresolved emission lines from highly excited rotational levels of the CO v = 1-0 fundamental band. This interpretation is supported by a strong excess flux observed in the Spitzer/IRAC 4-5 μm channel 2 image compared to the other IRAC channels. The extremely high critical densities of the CO v = 1-0 ro-vibrational lines and a comparison to H2 and CO excitation models suggest jet densities larger than 106 cm-3 in the terminal shock. We also observed the southeastern terminal outflow shock with the Submillimeter Array and detected pure rotational emission from CO 2-1, HCO+ 3-2, and HCN 3-2. The rotationally excited CO traces the collimated outflow backbone as well as the terminal shock. HCN traces individual dense knots along the outflow and in the terminal shock, whereas HCO+ solely appears in the terminal shock. The unique combination of our mid-infrared and submillimeter observations with previously published near-infrared observations allow us to study the interaction of one of the youngest known protostellar outflows with its surrounding molecular cloud. Our results help us to understand the nature of some of the so-called green fuzzies (Extended Green Objects), and elucidate the physical conditions that cause high OH excitation and affect the chemical OH/H2O balance in protostellar outflows and young stellar objects. In an appendix to this paper, we summarize our Spitzer follow-up survey of protostellar outflow shocks to find further examples of highly excited OH occurring together with H2O and H2.

  13. A 27,000 year record of Red Sea Outflow: Implication for timing of post-glacial monsoon intensification

    NASA Astrophysics Data System (ADS)

    Naqvi, Wajih A.; Fairbanks, Richard G.

    We reconstruct here the history of the Red Sea Outflow (RSO) over the past 27,000 years from an AMS 14C-dated high-resolution δ13C record of benthic foraminifera from the inner Gulf of Aden assuming the dominance of circulation over productivity in regulating benthic δ13C. The results reveal that, following a period of suppressed RSO due to shallow sill 24,000-18,000 yr BP, the Red Sea was vigorously flushed for ˜2,000 years before a major monsoon intensification caused the cessation of deep water formation from 15,500 to 7,300 yr BP. It appears that the monsoon intensification did lag behind insolation until 15,500 yr BP. Between 15,500 and the present, however, there was no lag in conflict with the previous reports, implying a negligible dampening effect of continental albedo during this period. However, since our analysis is confined to a single depth horizon and our record is sensitive to sea level, it has some limitations as an indicator of monsoon intensity.

  14. PTR-TOF-MS measurements of atmospheric VOCs during the CALNEX 2010 campaign

    NASA Astrophysics Data System (ADS)

    Vlasenko, A. L.; Li, S.; Bon, D.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.

    2010-12-01

    During the CALNEX 2010 study, in-situ volatile organic compounds (VOCs) measurements were made aboard the WHOI research vessel Atlantis by a high resolution proton transfer mass spectrometer (PTR-TOF-MS, Ionicon Analytik). The PTR-TOF-MS was deployed along with a GC-FID system during cruise along the California coast and inside port areas to characterize atmospheric levels and chemical transformation of the extensive set of VOCs in marine boundary layer, in particular, in situations where outflows of pollutants from the major urban centers along the coast occur, and to probe the interactions of the anthropogenic pollutants with marine atmosphere. One minute average scans were collected over a period of 24 days. Several offshore outflow episodes were identified by the increasing mixing ratios of aromatic compounds, such as benzene, toluene and C8-aromatics. Preliminary analysis suggests a relatively rapid removal of these species as a result of photochemical aging over a time scale of hours during sunrise. The observed rates of removal correspond reasonably well with those expected from OH photochemistry. Data demonstrating all of these conclusions will be shown.

  15. MISR CMVs and Multiangular Views of Tropical Cyclone Inner-Core Dynamics

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.; Diner, David J.; Garay, Michael J; Jovanovic, Veljko M.; Lee, Jae N.; Moroney, Catherine M.; Mueller, Kevin J.; Nelson, David L.

    2010-01-01

    Multi-camera stereo imaging of cloud features from the MISR (Multiangle Imaging SpectroRadiometer) instrument on NASA's Terra satellite provides accurate and precise measurements of cloud top heights (CTH) and cloud motion vector (CMV) winds. MISR observes each cloudy scene from nine viewing angles (Nadir, +/-26(sup o), +/-46(sup o), +/-60(sup o), +/-70(sup o)) with approximatel 275-m pixel resolution. This paper provides an update on MISR CMV and CTH algorithm improvements, and explores a high-resolution retrieval of tangential winds inside the eyewall of tropical cyclones (TC). The MISR CMV and CTH retrievals from the updated algorithm are significantly improved in terms of spatial coverage and systematic errors. A new product, the 1.1-km cross-track wind, provides high accuracy and precision in measuring convective outflows. Preliminary results obtained from the 1.1-km tangential wind retrieval inside the TC eyewall show that the inner-core rotation is often faster near the eyewall, and this faster rotation appears to be related linearly to cyclone intensity.

  16. Synoptic Observations of The Terrestrial Polar Wind

    NASA Astrophysics Data System (ADS)

    Pollock, C. J.; Jahn, J.-M.; Moore, T. E.; Valek, P.; Wiig, J.

    High altitude passes of NASA"s Polar spacecraft, during intevals when the Plasma Source Investigation (PSI) was operating to neutralize the spacecraft charge, are uti- lized to study the relatively low energy outflow of plasma from Earth's polar iono- sphere into the magnetosphere. Four years (1996 - 2000) of data from the Themal Ion Dynamics Experiment (TIDE) are analyzed to determine typical polar wind outflow parameters and their variability. These outflows, which are typically but not always present, are usually of high mach number, are strongly collimated along the outgoing field aligned direction and display significant temporal variability. Multi-species out- flows are distinguished from those of a single-species based on the energy signature. Preliminary results show that single species outflow is the rule and that observation of multi-species outflow is often associated with geomagnetic storms.

  17. Large-Scale Outflows in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Baum, S. A.

    1995-12-01

    \\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.

  18. Comparison of motor diagnoses by Chicago Classification versions 2.0 and 3.0 on esophageal high-resolution manometry.

    PubMed

    Patel, A; Cassell, B; Sainani, N; Wang, D; Shahid, B; Bennett, M; Mirza, F A; Munigala, S; Gyawali, C P

    2017-07-01

    The Chicago Classification (CC) uses high-resolution manometry (HRM) software tools to designate esophageal motor diagnoses. We evaluated changes in diagnostic designations between two CC versions, and determined motor patterns not identified by either version. In this observational cohort study of consecutive patients undergoing esophageal HRM over a 6-year period, proportions meeting CC 2.0 and 3.0 criteria were segregated into esophageal outflow obstruction, hypermotility, and hypomotility disorders. Contraction wave abnormalities (CWA), and 'normal' cohorts were recorded. Symptom burden was characterized using dominant symptom intensity and global symptom severity. Motor diagnoses, presenting symptoms, and symptom burden were compared between CC 2.0 and 3.0, and in cohorts not meeting CC diagnoses. Of 2569 eligible studies, 49.9% met CC 2.0 criteria, but only 40.3% met CC 3.0 criteria (P<.0001). Between CC 2.0 and 3.0, 82.8% of diagnoses were concordant. Discordance resulted from decreasing proportions of hypermotility (4.4%) and hypomotility (9.0%) disorders, and increase in 'normal' designations (13.0%); esophageal outflow obstruction showed the least variation between CC versions. Symptom burden was higher with CC 3.0 diagnoses (P≤.005) but not with CC 2.0 diagnoses (P≥.1). Within 'normal' cohorts for both CC versions, CWA were associated with higher likelihood of esophageal symptoms, especially dysphagia, regurgitation, and heartburn, compared to truly normal studies (P≤.02 for each comparison). Despite lower sensitivity, CC 3.0 identifies esophageal motor disorders with higher symptom burden compared to CC 2.0. CWA, which are associated with both transit and perceptive symptoms, are not well identified by either version. © 2017 John Wiley & Sons Ltd.

  19. Arcus: the x-ray grating spectrometer explorer

    NASA Astrophysics Data System (ADS)

    Smith, R. K.; Abraham, M. H.; Allured, R.; Bautz, M.; Bookbinder, J.; Bregman, J. N.; Brenneman, L.; Brickhouse, N. S.; Burrows, D. N.; Burwitz, V.; Carvalho, R.; Cheimets, P. N.; Costantini, E.; Dawson, S.; DeRoo, C.; Falcone, A.; Foster, A. R.; Grant, C. E.; Heilmann, R. K.; Hertz, E.; Hine, B.; Huenemoerder, D.; Kaastra, J. S.; Madsen, K. K.; McEntaffer, R. L.; Miller, E. D.; Miller, J.; Morse, E.; Mushotzky, R.; Nandra, K.; Nowak, M.; Paerels, F.; Petre, R.; Plice, L.; Poppenhaeger, K.; Ptak, A.; Reid, P.; Sanders, J.; Schattenburg, M. L.; Schulz, N.; Smale, A.; Temi, P.; Valencic, L.; Walker, S.; Willingale, R.; Wilms, J.; Wolk, S. J.

    2016-07-01

    Arcus will be proposed to the NASA Explorer program as a free-flying satellite mission that will enable high-resolution soft X-ray spectroscopy (8-50) with unprecedented sensitivity - effective areas of >500 sq cm and spectral resolution >2500. The Arcus key science goals are (1) to determine how baryons cycle in and out of galaxies by measuring the effects of structure formation imprinted upon the hot gas that is predicted to lie in extended halos around galaxies, groups, and clusters, (2) to determine how black holes influence their surroundings by tracing the propagation of out-flowing mass, energy and momentum from the vicinity of the black hole out to large scales and (3) to understand how accretion forms and evolves stars and circumstellar disks by observing hot infalling and outflowing gas in these systems. Arcus relies upon grazing-incidence silicon pore X-ray optics with the same 12m focal length (achieved using an extendable optical bench) that will be used for the ESA Athena mission. The focused X-rays from these optics will then be diffracted by high-efficiency off-plane reflection gratings that have already been demonstrated on sub-orbital rocket flights, imaging the results with flight-proven CCD detectors and electronics. The power and telemetry requirements on the spacecraft are modest. The majority of mission operations will not be complex, as most observations will be long ( 100 ksec), uninterrupted, and pre-planned, although there will be limited capabilities to observe targets of opportunity, such as tidal disruption events or supernovae with a 3-5 day turnaround. After the end of prime science, we plan to allow guest observations to maximize the science return of Arcus to the community.

  20. Clinicomanometric factors associated with clinically relevant esophagogastric junction outflow obstruction from the Sandhill high-resolution manometry system.

    PubMed

    Song, B G; Min, Y W; Lee, H; Min, B-H; Lee, J H; Rhee, P-L; Kim, J J

    2018-03-01

    Integrated relaxation pressure (IRP) is a key metric for diagnosing esophagogastric junction outflow obstruction (EGJOO). However, its normal value might be different according to the manufacturer of high-resolution manometry (HRM). This study aimed to investigate optimal value of IRP for diagnosing EGJOO in Sandhill HRM and to find clinicomanometric variables to segregate clinically relevant EGJOO. We analyzed 262 consecutive subjects who underwent HRM between June 2011 and December 2016 showing elevated median IRP (> 15 mm Hg) but did not satisfy criteria for achalasia. Clinically relevant subjects were defined as follows: (i) subsequent HRM met achalasia criteria during follow-up (early achalasia); (ii) Eckardt score was decreased at least two points without exceeding a score of 3 after pneumatic dilatation (variant achalasia); and (iii) significant passage disturbance on esophagogram without structural abnormality (possible achalasia). Seven subjects were clinically relevant, including two subjects with early achalasia, four subjects with variant achalasia, and one subject with possible achalasia. All clinically relevant subjects had IRP 20 mm Hg or above. Among subjects (n = 122) with IRP 20 mm Hg or more, clinically relevant group (n = 7) had significantly higher rate of dysphagia (100% vs 24.3%, P < .001) and compartmentalized pressurization (85.7% vs 21.7%, P = .001) compared to clinically non-relevant group (n = 115). Our results suggest that IRP of 20 mm Hg or higher could segregate clinically relevant subjects showing EGJOO in Sandhill HRM. Additionally, if subjects have both dysphagia and compartmentalized pressurization, careful follow-up is essential. © 2017 John Wiley & Sons Ltd.

  1. Arcus: The X-Ray Grating Spectrometer Explorer

    NASA Technical Reports Server (NTRS)

    Smith, R. K.; Abraham, M. H.; Allured, R.; Bautz, M.; Bookbinder, J.; Bregman, J. N.; Brenneman, L.; Brickhouse, N. S.; Burrows, D. N.; Burwitz, V.; hide

    2016-01-01

    Arcus will be proposed to the NASA Explorer program as a free-flying satellite mission that will enable high-resolution soft X-ray spectroscopy (8-50 Angstroms) with unprecedented sensitivity-effective areas of greater than 500 sq cm and spectral resolution greater than 2500. The Arcus key science goals are (1) to determine how baryons cycle in and out of galaxies by measuring the effects of structure formation imprinted upon the hot gas that is predicted to lie in extended halos around galaxies, groups, and clusters, (2) to determine how black holes influence their surroundings by tracing the propagation of out-flowing mass, energy and momentum from the vicinity of the black hole out to large scales and (3) to understand how accretion forms and evolves stars and circumstellar disks by observing hot infalling and outflowing gas in these systems. Arcus relies upon grazing incidence silicon pore X-ray optics with the same 12m focal length (achieved using an extendable optical bench) that will be used for the ESA Athena mission. The focused X-rays from these optics will then be diffracted by high-efficiency off-plane reflection gratings that have already been demonstrated on sub-orbital rocked flights, imaging the results with flight-proven CCD detectors and electronics. The power and telemetry requirements on the spacecraft are modest. The majority of mission operations will not be complex, as most observations will be long (100 ksec), uninterrupted, and pre-planned, although there will be limited capabilities to observe targets of opportunity, such as tidal disruption events or supernovae with a 3-5 day turnaround. After the end of prime science, we plan to allow guest observations to maximize the science return of Arcus to the community.

  2. Molecular jet of IRAS 04166+2706

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liang-Yao; Shang, Hsien; Su, Yu-Nung

    2014-01-01

    The molecular outflow from IRAS 04166+2706 was mapped with the Submillimeter Array at a 350 GHz continuum and CO J = 3-2 at an angular resolution of ∼1''. The field of view covers the central arcminute, which contains the inner four pairs of knots of the molecular jet. On the channel map, conical structures are clearly present in the low-velocity range (|V – V {sub 0}| < 10 km s{sup –1}), and the highly collimated knots appear in the extremely high velocity range (50 >|V – V {sub 0}| > 30 km s{sup –1}). The higher angular resolution of ∼1''more » reveals the first blue-shifted knot (B1) that was missing in previous Plateau de Bure Interferometer observation of Santiago-García et al. at an offset of ∼6'' to the northeast of the central source. This identification completes the symmetric sequence of knots in both the blue- and red-shifted lobes of the outflow. The innermost knots R1 and B1 have the highest velocities within the sequence. Although the general features appear to be similar to previous CO J = 2-1 images in Santiago-García et al., the emission in CO J = 3-2 almost always peaks further away from the central source than that of CO J = 2-1 in the red-shifted lobe of the channel maps. This gives rise to a gradient in the line-ratio map of CO J = 3-2/J = 2-1 from head to tail within a knot. A large velocity gradient analysis suggests that the differences may reflect a higher gas kinetic temperature at the head. We also explore possible constraints imposed by the nondetection of SiO J = 8-7.« less

  3. Measuring the Impact of AGN Outflows via Intensive UV and X-ray Monitoring Campaigns

    NASA Astrophysics Data System (ADS)

    Kriss, Gerard

    2015-08-01

    Observations of AGN outflows have progressed from the era of single-object surveys to intensive monitoring campaigns spanning weeks to months. The combination of multiple observations, improved temporal coverage, multi-wavelength monitoring in both the X-ray and UV bands, and the baseline of prior historical observations has enabled determinations of the locations, mass flux, and kinetic luminosities of the outflowing absorbing gas in several AGN, notably Mrk 509, NGC 5548, Mrk 335, and NGC 985. Another intensive campaign is planned for 2015-2016 on NGC 7469. In all cases, the mass flux and kinetic energy is dominated by the higher-ionization X-ray absorbing gas. But the higher-resolution UV observations give a kinematically resolved picture of the overall outflow. In most cases, the outflowing gas is located at parsec to kpc scales, with insufficient kinetic luminosity to have an evolutionary impact on the host galaxy. Typically, the kinetic luminosity is less than a percent of the Eddington luminosity. In some cases, transient, broad UV absorption troughs have appeared (e.g., Mrk 335 and NGC 5548), with variability timescales suggesting locations near the broad-line region of the AGN. Yet these higher-velocity outflows also have low-impact kinetic luminosities. In the best-studied case of NGC 5548, the strength of the broad UV absorption lines varies with the degree of soft X-ray obscuration first revealed by XMM-Newton spectra. The lower-ionization, narrow associated absorption lines in the UV spectrum of NGC 5548 that appeared concurrently with the soft X-ray obscuration vary in response to the changing UV flux on a daily basis. The intensive monitoring allows us to fit time-dependent photoionization models to the UV-absorbing gas, allowing precise determinations of the locations, mass flux, and kinetic luminosities of the absorbers.

  4. Multi-resolution MPS method

    NASA Astrophysics Data System (ADS)

    Tanaka, Masayuki; Cardoso, Rui; Bahai, Hamid

    2018-04-01

    In this work, the Moving Particle Semi-implicit (MPS) method is enhanced for multi-resolution problems with different resolutions at different parts of the domain utilising a particle splitting algorithm for the finer resolution and a particle merging algorithm for the coarser resolution. The Least Square MPS (LSMPS) method is used for higher stability and accuracy. Novel boundary conditions are developed for the treatment of wall and pressure boundaries for the Multi-Resolution LSMPS method. A wall is represented by polygons for effective simulations of fluid flows with complex wall geometries and the pressure boundary condition allows arbitrary inflow and outflow, making the method easier to be used in flow simulations of channel flows. By conducting simulations of channel flows and free surface flows, the accuracy of the proposed method was verified.

  5. Particle Acceleration in Relativistic Outflows

    NASA Technical Reports Server (NTRS)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  6. SUBARU near-infrared multi-color images of Class II Young Stellar Object, RNO91

    NASA Astrophysics Data System (ADS)

    Mayama, Satoshi; Tamura, Motohide; Hayashi, Masahiko

    RNO91 is class II source currently in a transition phase between a protostar and a main-sequence star. It is known as a source of complex molecular outflows. Previous studies suggested that RNO91 was associated with a reflection nebula, a CO outflow, shock-excited H[2] emission, and disk type structure. But geometry of RNO91, especially its inner region, is not well confirmed yet. High resolution imaging is needed to understand the nature of RNO91 and its interaction with outflow. Furthermore, RNO91 is an important candidate for studying YSOs in a transition phase. Thus, we conducted near-infrared imaging observations of RNO91 with the infrared camera CIAO mounted on the Subaru 8.2m Telescope. We present JHK band and optical images which resolve a complex asymmetrical circumstellar structure. We examined the color of RNO91 nebula and compare the geometry of the system suggested by our data with that already proposed on the basis of other studies. Our main results are as follows; 1. At J and optical, several bluer clumps are detected and they are aligned nearly perpendicular to the outflow axis. 2. The NIR images show significant halo emission detected within 2'' around the peak position while less halo emission is seen in the optical image. The nebula appears to become more circular and more diffuse with increasing wavelengths. The power-law dependence of radial surface brightness profile is shallower than that of normal stars, indicating that RNO91 is still optically thick objects. We suggest that the halo emission is the NIR light scattered by an optically thick disk or envelope surrounding the RNO91. 3. In the shorter wavelength images, the nebula appears to become more extended (2".3 long) to the southwest. This extended emission might trace a bottom of outflow emanating to southwest direction. 4. Color composite image of RNO91 reveals that the emission extending to the north and to the east through RNO91 is interpreted as a part of the cavity wall seen relatively edge-on. The northern ridge is 11" long and eastern ridge is 7" long.

  7. Using He I λ10830 to Diagnose Mass Flows Around Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Cauley, Paul W.; Johns-Krull, Christopher M.

    2015-01-01

    The pre-main sequence Herbig Ae/Be stars (HAEBES) are the intermediate mass cousins of the low mass T Tauri stars (TTSs). However, it is not clear that the same accretion and mass outflow mechanisms operate identically in both mass regimes. Classical TTSs (CTTSs) accrete material from their disks along stellar magnetic field lines in a scenario called magnetospheric accretion. Magnetospheric accretion requires a strong stellar dipole field in order to truncate the inner gas disk. These fields are either absent or very weak on a large majority of HAEBES, challenging the view that magnetospheric accretion is the dominant accretion mechanism. If magnetospheric accretion does not operate similarly around HAEBES as it does around CTTSs, then strong magnetocentrifugal outflows, which are directly linked to accretion and are ubiquitous around CTTSs, may be driven less efficiently from HAEBE systems. Here we present high resolution spectroscopic observations of the He I λ10830 line in a sample of 48 HAEBES. He I λ10830 is an excellent tracer of both mass infall and outflow which is directly manifested as red and blue-shifted absorption in the profile morphologies. These features, among others, are common in our sample. The occurrence of both red and blue-shifted absorption profiles is less frequent, however, than is found in CTTSs. Statistical contingency tests confirm this difference at a significant level. In addition, we find strong evidence for smaller disk truncation radii in the objects displaying red-shifted absorption profiles. This is expected for HAEBES experiencing magnetospheric accretion based on their large rotation rates and weak magnetic field strengths. Finally, the low incidence of blue-shifted absorption in our sample compared to CTTSs and the complete lack of simultaneous red and blue-shifted absorption features suggests that magnetospheric accretion in HAEBES is less efficient at driving strong outflows. The stellar wind-like outflows that are observed are likely driven, at least in part, by boundary layer accretion. The smaller (or absent) disk truncation radii in HAEBES may have consequences for the frequency of planets in close orbits around main sequence B and A stars.

  8. The inner core thermodynamics of the tropical cyclone boundary layer

    NASA Astrophysics Data System (ADS)

    Williams, Gabriel J.

    2016-10-01

    Although considerable progress has been made in understanding the inner-core dynamics of the tropical cyclone boundary layer (TCBL), our knowledge of the inner-core thermodynamics of the TCBL remains limited. In this study, the inner-core budgets of potential temperature (θ), specific humidity ( q), and reversible equivalent potential temperature (θ _e) are examined using a high-resolution multilevel boundary layer model. The potential temperature budgets show that the heat energy is dominated by latent heat release in the eyewall, evaporative cooling along the outer edge of the eyewall, and upward surface fluxes of sensible and latent heat from the underlying warm ocean. It is shown that the vertical θ advection overcompensates the sum of radial advective warming from the boundary layer outflow jet and latent heating for the development of cooling in the eyewall within the TCBL. The moisture budgets show the dominant upward transport of moisture in the eyewall updrafts, partly by the boundary-layer outflow jet from the bottom eye region, so that the eyewall remains nearly saturated. The θ _e budgets reveal that the TCBL is maintained thermodynamically by the upward surface flux of higher-θ _e air from the underlying warm ocean, the radial transport of low-θ _e air from the outer regions of the TCBL, and the dry adiabatic cooling associated by eyewall updrafts. These results underscore the significance of vertical motion and the location of the boundary layer outflow jet in maintaining the inner core thermal structure of the TCBL.

  9. Esophageal motor disorders in subjects with incidentally discovered Chagas disease: a study using high-resolution manometry and the Chicago classification.

    PubMed

    Remes-Troche, J M; Torres-Aguilera, M; Antonio-Cruz, K A; Vazquez-Jimenez, G; De-La-Cruz-Patiño, E

    2014-08-01

    In patients with chronic indeterminate Chagas disease, conventional manometry has shown that 25-48% had esophageal motor disorders. Recently, esophageal high-resolution manometry (HRM) has revolutionized the assessment of esophageal motor function. In this study, we performed esophageal HRM in a group of subjects with incidentally positive serological findings for Trypanosoma cruzi. In this prospective observational study, we evaluated subjects who had positive serological tests for Chagas disease detected during a screening evaluation for blood donation. All subjects underwent symptomatic evaluation and esophageal HRM with a 36 solid-state catheter. Esophageal abnormalities were classified using the Chicago classification. Forty-two healthy subjects (38 males) aged 18-61 years (mean age, 40.7 years) were included. When specific symptoms questionnaire was applied, 14 (33%) subjects had esophageal symptoms. Esophageal high-resolution manometry revealed that 28 (66%) of the subjects had an esophageal motility disorder according to the Chicago classification. Most common findings were hypocontractile disorders in 18 subjects (43%) and esophagogastric junction (EGJ) outflow obstruction in 6 (15%). Esophageal high-resolution manometry reveals that up to two thirds of the subjects with an incidental diagnosis of Chagas disease have esophageal abnormalities. This technology increases the detection and allows a more complete assessment of esophageal motor function in subjects infected with T. cruzi even in the early stages of the disease. © 2012 Copyright the Authors. Journal compilation © 2012, Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.

  10. The quest for infall in star-forming regions

    NASA Astrophysics Data System (ADS)

    Wyrowski, Friedrich

    2018-06-01

    Observation of infall is key to our understanding of the accretion process in star formation. High-resolution spectroscopy allows us to resolve molecular lines originating from the dense molecular envelopes of the forming (proto-) stars to deduce the kinematics of the gas. In this contribution, I'll describe how SOFIA can significantly contribute to the quest for and characterisation of infall by providing unique access to molecular lines at THz frequencies that allow red-shifted absorption studies as direct probe of infall and that provide access to fine structure and high excitation lines that probe outflowing gas as indirect evidence for accretion. In particular, I will report on a recent study using the GREAT high-spectral resolution instrument on-board of SOFIA to observe ammonia at 1.8 THz. Eight out of eleven observed massive clumps have been found with red-shifted absorption that is indicative of infall motions. This fraction of 72% is substantially higher than that found in past searches for the blue-skewed profile signature. The observations show that infall on clump scales is ubiquitous through a wide range of evolutionary stages.

  11. Using NASA's Giovanni System to Simulate Time-Series Stations in the Outflow Region of California's Eel River

    NASA Technical Reports Server (NTRS)

    Acker, James G.; Shen, Suhung; Leptoukh, Gregory G.; Lee, Zhongping

    2012-01-01

    Oceanographic time-series stations provide vital data for the monitoring of oceanic processes, particularly those associated with trends over time and interannual variability. There are likely numerous locations where the establishment of a time-series station would be desirable, but for reasons of funding or logistics, such establishment may not be feasible. An alternative to an operational time-series station is monitoring of sites via remote sensing. In this study, the NASA Giovanni data system is employed to simulate the establishment of two time-series stations near the outflow region of California s Eel River, which carries a high sediment load. Previous time-series analysis of this location (Acker et al. 2009) indicated that remotely-sensed chl a exhibits a statistically significant increasing trend during summer (low flow) months, but no apparent trend during winter (high flow) months. Examination of several newly-available ocean data parameters in Giovanni, including 8-day resolution data, demonstrates the differences in ocean parameter trends at the two locations compared to regionally-averaged time-series. The hypothesis that the increased summer chl a values are related to increasing SST is evaluated, and the signature of the Eel River plume is defined with ocean optical parameters.

  12. Red Sea Outflow Experiment (REDSOX): Descent and initial spreading of Red Sea Water in the northwestern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Bower, A.; Johns, W.; Peters, H.; Fratantoni, D.

    2003-04-01

    Two comprehensive surveys were carried out during 2001 to investigate the dense overflow and initial spreading of Red Sea Water (RSW) in the Gulf of Aden. The cruises were timed to coincide with the climatological maximum (February) and minimum (August) periods of outflow transport. The surveys included high-resolution CTD/lowered ADCP/shipboard ADCP observations in the descending plume and in the western gulf, and trajectories from 50 acoustically-tracked RAFOS floats released at the center of the equilibrated RSW (650 m). The measurements reveal a complicated descending plume structure in the western gulf with three main pathways for the high salinity RSW. Different mixing intensities along these pathways lead to variable penetration depths of the Red Sea plume between 450-900 m in the Gulf of Aden. The observations also revealed the hydrographic and velocity structure of large, energetic, deep-reaching mesoscale eddies in the gulf that fundamentally impact the spreading rates and pathways of RSW. Both cyclones and anticyclones were observed, with horizontal scales up to 250 km and azimuthal speeds as high as 0.5 m/s. The eddies appear to reach nearly to the sea floor and entrain RSW from the western gulf at mid-depth. Post-cruise analysis of SeaWiffs imagery suggests that some of these eddies form in the Indian Ocean and propagate into the gulf.

  13. Directly Driven Ion Outflow

    NASA Technical Reports Server (NTRS)

    Elliott, H. A.; Comfort, R. H.; Craven, P. D.; Moore, T. E.; Russell, C. T.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We examine ionospheric outflows in the high altitude magnetospheric polar cap during the POLAR satellite's apogee on April 19, 1996 using the Thermal Ion Dynamics Experiment (TIDE) instrument. The elevated levels of O(+) observed in this pass may be due to the geophysical conditions during and prior to the apogee pass. In addition to the high abundance of O(+) relative to H(+), several other aspects of this data are noteworthy. We observe relationships between the density, velocity, and temperature which appear to be associated with perpendicular heating and the mirror force, rather than adiabatic expansion. The H(+) outflow is at a fairly constant flux which is consistent with being source limited by charge exchange at lower altitudes. Local centrifugal acceleration in the polar cap is found to be insufficient to account for the main variations we observe in the outflow velocity. The solar wind speed is high during this pass approximately 700 kilometers per second, and there are Alfve'n waves present in the solar wind such that the solar wind speed and IMF Bx are correlated. In this pass both the H(+) and O(+) outflow velocities correlate with both the solar wind speed and IMF fluctuations. Polar cap magnetometer and Hydra electron data show the same long period wave structure as found in the solar wind and polar cap ion outflow. In addition, the polar cap Poynting flux along the magnetic field direction correlates well with the H(+) temperature (R=0.84). We conclude that the solar wind can drive polar cap ion outflow particularly during polar squalls by setting up a parallel drop that is tens of eV which then causes the ion outflow velocity of O(+) and H(+), the electrons, and magnetic perturbations to vary in a similar fashion.

  14. Esophageal manometry in gastroesophageal reflux disease.

    PubMed

    Mello, Michael; Gyawali, C Prakash

    2014-03-01

    High-resolution manometry (HRM) allows nuanced evaluation of esophageal motor function, and more accurate evaluation of lower esophageal sphincter (LES) function, in comparison with conventional manometry. Pathophysiologic correlates of gastroesophageal reflux disease (GERD) and esophageal peristaltic performance are well addressed by this technique. HRM may alter the surgical decision by assessment of esophageal peristaltic function and exclusion of esophageal outflow obstruction before antireflux surgery. Provocative testing during HRM may assess esophageal smooth muscle peristaltic reserve and help predict the likelihood of transit symptoms following antireflux surgery. HRM represents a continuously evolving new technology that compliments the evaluation and management of GERD. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Large-scale horizontal flows from SOUP observations of solar granulation

    NASA Technical Reports Server (NTRS)

    November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.

    1987-01-01

    Using high resolution time sequence photographs of solar granulation from the SOUP experiment on Spacelab 2, large scale horizontal flows were observed in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.

  16. Shocks and Molecules in Protostellar Outflows

    NASA Astrophysics Data System (ADS)

    Arce, Héctor

    2014-06-01

    As protostars form through the gravitational infall of material from their parent molecular cloud, they power energetic bipolar outflows that interact with the surrounding medium. Protostellar outflows are important to the chemical evolution of star forming regions, as the shocks produced by the interaction of the high-velocity protostellar wind and the ambient cloud can heat the surrounding medium and trigger chemical and physical processes that would otherwise not take place in a quiescent molecular cloud. Protostellar outflows, are therefore a great laboratory to study shock physics and shock-induced chemistry. I will present results from millimeter-wave observations of a small sample of outflow shocks. The spectra show clear evidence of the existence of complex organic molecules (e.g., methyl formate, ethanol, acetaldehyde) and high abundance of certain simple molecules (e.g., HCO^+, HCN, H_2O) in outflows. Results indicate that, most likely, the complex species formed on the surface of grains and were then ejected from the grain mantles by the shock. Spectral surveys of shocked regions using ALMA could therefore be used to probe the composition of dust in molecular clouds. Our results demonstrate that outflows modify the chemical composition of the surrounding gaseous environment and that this needs to be considered when using certain species to study active star forming regions.

  17. Arctic Outflow West of Greenland: Mass and Freshwater Fluxes at Davis Strait

    NASA Astrophysics Data System (ADS)

    Lee, Craig; Curry, Beth; Petrie, Brian; Azetsu-Scott, Kumiko; Gobat, Jason

    2014-05-01

    Eberhard Fahrbach worked to understand the communication between the Arctic and subpolar oceans and its role in modulating Arctic change. This included long-standing leadership in the Arctic-Subarctic Ocean Flux program and the long-term quantification of fluxes east of Greenland, through Fram Strait, the primary pathway for Atlantic water passing into the Arctic and one of two gateways for freshwater flowing out. Freshwater also exits the Arctic west of Greenland, though the Canadian Arctic Archipelago and, to the south, Davis Strait. The strait provides a convenient choke point for monitoring temporal and spatial variability of Arctic outflow while also characterizing a critical upstream boundary condition for Labrador Sea convection. Fluxes through the Strait represent the net integrated Canadian Archipelago throughflow, over 50% of the Arctic's liquid freshwater discharge, modified by terrestrial inputs and oceanic processes during its southward transit through Baffin Bay. By the time they reach Davis Strait, Arctic waters already embody most of the transformations they undergo prior to exerting their influence on the deepwater formation sites in the Labrador Sea. An ongoing program has characterized Davis Strait volume, freshwater and heat flux since September 2004. Measurements include continuous velocity, temperature and salinity time series collected by a moored array, autumn ship-based hydrographic sections and high-resolution sections occupied by autonomous gliders. Moored instrumentation includes novel new instruments that provide temperature and salinity measurements in the critical region neat the ice-ocean interface and measurements over the shallow Baffin and West Greenland shelves, while gliders have captured the first high-resolution wintertime sections across the Strait. These data show large interannual variability in volume and freshwater transport, with no clear trends observed between 2004-2010. Average volume, liquid freshwater and sea ice transports are -1.6 +- 0.2 Sv, -93 +- 6 mSv and -10 +- 1 mSv, respectively (negative indicates southward transport). However, changes in circulation have occurred, as freshwater outflow from Baffin Bay has decreased and warm, salty North Atlantic inflow has increased since 1987-90. Local atmospheric variability within Baffin Bay and the Labrador Sea influence the observed variability in Davis Strait volume transport either directly or indirectly. Large-scale atmospheric teleconnections, such as the AO and NAO, correlate poorly with Davis Strait volume transport and are likely only an indicator of transport variability when the indices are strong.

  18. Feeding, Feedback and the Growth of Galaxies - Molecules as Tools for Probing Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Aalto, Susanne

    2017-06-01

    Cold gas plays a central role in feeding and regulating star formation and growth of supermassive black holes (SMBH) in galaxy nuclei. Particularly powerful activity occurs when interactions of gas-rich galaxies funnel large amounts of gas and dust into nuclei of luminous and ultra luminous infrared galaxies (LIRGs/ULIRGs). These dusty objects are of key importance to galaxy mass assembly over cosmic time. Some (U)LIRGS have deeply embedded galaxy nuclei that harbour a very active evolutionary stage of AGNs and/or starbursts. The nuclear activity will often drive mechanical feedback in the form of molecular winds, jets and outflows. This feedback can for example remove baryons from low-mass galaxies, prevent overgrowth of galaxies, be linked to the M_{BH}-σ relation, and explain "red-and dead" properties of local ellipticals. With the ALMA and NOEMA telescopes we can use molecules as diagnostic tools to probe the properties of dust-enshrouded galaxy nuclei and their associated cold winds and outflows. Their morphology, velocity structure, physical conditions and even chemistry can be studied at unprecedented sensitivity and resolution, opening new avenues to further our understanding of the growth of galaxies. I will give a brief review of the ALMA/NOEMA view of AGN and starburst radiative and mechanical feedback, and how it is linked to the properties of the nuclear power source. I will discuss the use of molecules (e.g. H_2O, H_3O^{+}, HCN, HCO^+, H_2S) for studying dusty nuclei and the nature of the embedded activity. We can, for example, investigate ionization rates and the impact of cosmic ray-, X-ray- and PDR-chemistry and the onset of outflows and winds. Interestingly, in some deeply obscured nuclei the chemistry shows strong similarities to that of Galactic hot cores. Finally I will show peculiar molecular jets and very recent ALMA observations at resolutions of tens of milli-arcseconds (few pc) of vibrationally excited HCN in opaque nuclei. These regions offer both challenges and opportunities for IR and submm studies of the nature of the buried activity - which we suggest is a deeply dust-enshrouded SMBH in a high-accretion state, or an extreme, high-temperature, burst of star formation.

  19. Trends in diagnoses after implementation of the Chicago classification for esophageal motility disorders (V3.0) for high-resolution manometry studies.

    PubMed

    Laing, P; Bress, A P; Fang, J; Peterson, K; Adler, D G; Gawron, A J

    2017-12-01

    To determine trends in the diagnostic distribution of esophageal motility disorders after implementation of the Chicago Classification Version 3.0 (CC V3.0) for interpretation of high-resolution manometry (HRM) studies compared to non-Chicago Classification criteria. Retrospective trends analysis of patients with an HRM study conducted at a single center from January 1, 2013 to September 30, 2015. The implementation of the CC V3.0 for manometry interpretation occurred in September 2014. Patient charts were manually reviewed for data collection including demographics and HRM diagnoses. The prevalence and relative risks (RR) of CC V3.0 diagnostic categories (i.e. normal, indeterminate, achalasia, and EGJ outflow obstruction [EJGOO], and major and minor motility disorders) were calculated before and after CC V3.0 implementation. Four hundred sixty-five HRM studies were included in the study including 268 before and 179 after CC V3.0 implementation. The mean ± SD age was 54 ± 15.4 years and 59.8% were female (n = 278). The percentage with indeterminate diagnosis decreased from 35.3% before CC V3.0 implementation to 16.8% after implementation (adjusted RR 0.5, 95%CI 0.30-0.70, p < 0.001). The percentage with a major motility disorders decreased from 13.9% to 7.3% (adjusted RR 0.5, 95%CI 0.2-1.0, p < 0.001). The percentage with EJGOO and minor diagnoses increased from 1.4% to 14.5% and 11.9% to 22.9%, respectively. The percentage with achalasia and normal diagnosis did not change over the study period. Implementation of CCV3.0 was associated with changes in the distribution of esophageal motility diagnoses in clinical practice. The percentage of indeterminate and major diagnosis decreased and EGJOO and minor diagnoses increased. The decrease in the number of indeterminate studies suggests that the CC V3.0 may clarify the criteria for the interpreting physician. The increase in studies with a diagnosis of EGJ outflow obstruction may reflect the heterogeneity of disorders with clinically relevant outflow obstruction. Published by Oxford University Press on behalf of International Society for Diseases of the Esophagus 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. New methods and astrophysical applications of adaptive mesh fluid simulations

    NASA Astrophysics Data System (ADS)

    Wang, Peng

    The formation of stars, galaxies and supermassive black holes are among the most interesting unsolved problems in astrophysics. Those problems are highly nonlinear and involve enormous dynamical ranges. Thus numerical simulations with spatial adaptivity are crucial in understanding those processes. In this thesis, we discuss the development and application of adaptive mesh refinement (AMR) multi-physics fluid codes to simulate those nonlinear structure formation problems. To simulate the formation of star clusters, we have developed an AMR magnetohydrodynamics (MHD) code, coupled with radiative cooling. We have also developed novel algorithms for sink particle creation, accretion, merging and outflows, all of which are coupled with the fluid algorithms using operator splitting. With this code, we have been able to perform the first AMR-MHD simulation of star cluster formation for several dynamical times, including sink particle and protostellar outflow feedbacks. The results demonstrated that protostellar outflows can drive supersonic turbulence in dense clumps and explain the observed slow and inefficient star formation. We also suggest that global collapse rate is the most important factor in controlling massive star accretion rate. In the topics of galaxy formation, we discuss the results of three projects. In the first project, using cosmological AMR hydrodynamics simulations, we found that isolated massive star still forms in cosmic string wakes even though the mega-parsec scale structure has been perturbed significantly by the cosmic strings. In the second project, we calculated the dynamical heating rate in galaxy formation. We found that by balancing our heating rate with the atomic cooling rate, it gives a critical halo mass which agrees with the result of numerical simulations. This demonstrates that the effect of dynamical heating should be put into semi-analytical works in the future. In the third project, using our AMR-MHD code coupled with radiative cooling module, we performed the first MHD simulations of disk galaxy formation. We find that the initial magnetic fields are quickly amplified to Milky-Way strength in a self-regulated way with amplification rate roughly one e-folding per orbit. This suggests that Milky Way strength magnetic field might be common in high redshift disk galaxies. We have also developed AMR relativistic hydrodynamics code to simulate black hole relativistic jets. We discuss the coupling of the AMR framework with various relativistic solvers and conducted extensive algorithmic comparisons. Via various test problems, we emphasize the importance of resolution studies in relativistic flow simulations because extremely high resolution is required especially when shear flows are present in the problem. Then we present the results of 3D simulations of supermassive black hole jets propagation and gamma ray burst jet breakout. Resolution studies of the two 3D jets simulations further highlight the need of high resolutions to calculate accurately relativistic flow problems. Finally, to push forward the kind of simulations described above, we need faster codes with more physics included. We describe an implementation of compressible inviscid fluid solvers with AMR on Graphics Processing Units (GPU) using NVIDIA's CUDA. We show that the class of high resolution shock capturing schemes can be mapped naturally on this architecture. For both uniform and adaptive simulations, we achieve an overall speedup of approximately 10 times faster execution on one Quadro FX 5600 GPU as compared to a single 3 GHz Intel core on the host computer. Our framework can readily be applied to more general systems of conservation laws and extended to higher order shock capturing schemes. This is shown directly by an implementation of a magneto-hydrodynamic solver and comparing its performance to the pure hydrodynamic case.

  1. A total and polarized infrared flux view of the AGN clumpy torus

    NASA Astrophysics Data System (ADS)

    Lopez Rodriguez, Enrique

    2013-12-01

    Magnetohydrodynamical theories consider the torus of Active Galactic Nuclei (AGN) to be part of an outflow wind moving away from the central engine. In this framework, the torus is a particular region of the wind, where dusty and optically thick clouds are formed. The outflows are strongly related to the accretion rate and magnetic field strength, which play an important role in the creation, morphology and evolution of the torus. Through infrared (IR) imaging and polarimetry observations, this dissertation (1) searches for signatures of dusty tori in low-luminosity AGN (LLAGN); (2) explores the role and strength of magnetic field in the torus; and (3) investigates the nucleus of radio-loud AGN. Recent theoretical models predicted that LLAGN do not host a Seyfert-like torus, since low-luminosities (<1042 erg s-1 ) cannot sustain the required outflow rate. High-spatial resolution mid-IR (MIR) imaging and nuclear spectral energy distribution of 22 LLAGN reveals different IR characteristics by dividing the sample in terms of the Eddington ratio. These galaxies show a diversity of nuclear morphologies and have a high MIR/X-ray luminosity ratio compared to higher-luminosity AGN. Star formation, jets and/or truncated accretion disk can explain the MIR excess. Although several models have been made to account for the outflowing dusty winds from the central engine, the magnetic field strength at the position of the torus remains poorly characterized. Through a novel study using near-IR polarimetry, the magnetic field strength in the clumpy torus was estimated. Specifically, if paramagnetic alignment is assumed in the dusty clouds of the torus, the magnetic field strength of the torus of IC5063 is estimated to be in the range of 12--128 mG. Alternatively, Chandrasekhar-Fermi method suggests a lower-limit magnetic field strength of 13 mG. For the archetypical radio-loud AGN, Cygnus A, MIR polarimetry using CanariCam on the 10.4-m Gran Telescopio de Canarias revealed a high polarized, 11+/-3% and 12+/-3% (at Si2 and Si5 respectively) unresolved nucleus. Polarimetric modeling suggests that the MIR polarization arises from a synchrotron component. This result represents the most compelling MIR polarization detection of synchrotron radiation in Cygnus A.

  2. Comparing cosmological hydrodynamic simulations with observations of high- redshift galaxy formation

    NASA Astrophysics Data System (ADS)

    Finlator, Kristian Markwart

    We use cosmological hydrodynamic simulations to study the impact of outflows and radiative feedback on high-redshift galaxies. For outflows, we consider simulations that assume (i) no winds, (ii) a "constant-wind" model in which the mass-loading factor and outflow speed are constant, and (iii) "momentum-driven" winds in which both parameters vary smoothly with mass. In order to treat radiative feedback, we develop a moment-based radiative transfer technique that operates in both post-processing and coupled radiative hydrodynamic modes. We first ask how outflows impact the broadband spectral energy distributions (SEDs) of six observed reionization-epoch galaxies. Simulations reproduce five regardless of the outflow prescription, while the sixth suggests an unusually bursty star formation history. We conclude that (i) simulations broadly account for available constraints on reionization-epoch galaxies, (ii) individual SEDs do not constrain outflows, and (iii) SED comparisons efficiently isolate objects that challenge simulations. We next study how outflows impact the galaxy mass metallicity relation (MZR). Momentum-driven outflows uniquely reproduce observations at z = 2. In this scenario, galaxies obey two equilibria: (i) The rate at which a galaxy processes gas into stars and outflows tracks its inflow rate; and (ii) The gas enrichment rate owing to star formation balances the dilution rate owing to inflows. Combining these conditions indicates that the MZR is dominated by the (instantaneous) variation of outflows with mass, with more-massive galaxies driving less gas into outflows per unit stellar mass formed. Turning to radiative feedback, we use post-processing simulations to study the topology of reionization. Reionization begins in overdensities and then "leaks" directly into voids, with filaments reionizing last owing to their high density and low emissivity. This result conflicts with previous findings that voids ionize last. We argue that it owes to the uniqely-biased emissivity field produced by our star formation prescriptions, which have previously been shown to reproduce numerous post-reionization constraints. Finally, preliminary results from coupled radiative hydrodynamic simulations indicate that reionization suppresses the star formation rate density by at most 10-20% by z = 5. This is much less than previous estimates, which we attribute to our unique reionization topology although confirmation will have to await more detailed modeling.

  3. A Brown Dwarf Joins the Jet-Set

    NASA Astrophysics Data System (ADS)

    2007-05-01

    Jets of matter have been discovered around a very low mass 'failed star', mimicking a process seen in young stars. This suggests that these 'brown dwarfs' form in a similar manner to normal stars but also that outflows are driven out by objects as massive as hundreds of millions of solar masses down to Jupiter-sized objects. The brown dwarf with the name 2MASS1207-3932 is full of surprises [1]. Its companion, a 5 Jupiter-mass giant, was the first confirmed exoplanet for which astronomers could obtain an image (see ESO 23/04 and 12/05), thereby opening a new field of research - the direct detection of alien worlds. It was then later found (see ESO 19/06) that the brown dwarf has a disc surrounding it, not unlike very young stars. ESO PR Photo 24/07 ESO PR Photo 24/07 Jets from a Brown Dwarf (Artist's Impression) Now, astronomers using ESO's Very Large Telescope (VLT) have found that the young brown dwarf is also spewing jets, a behaviour again quite similar to young stars. The mass of the brown dwarf is only 24 Jupiter-masses. Hence, it is by far the smallest object known to drive an outflow. "This leads us to the tantalizing prospect that young giant planets could also be associated with outflows," says Emma Whelan, the lead-author of the paper reporting the results. The outflows were discovered using an amazing technique known as spectro-astrometry, based on high resolution spectra taken with UVES on the VLT. Such a technique was required due to the difficulty of the task. While in normal young stars - known as T-Tauri stars for the prototype of their class - the jets are large and bright enough to be seen directly, this is not the case around brown dwarfs: the length scale of the jets, recovered with spectro-astrometry is only about 0.1 arcsecond long, that is, the size of a two Euro coin seen from 40 km away. The jets stretch about 1 billion kilometres and the material is rushing away from the brown dwarf with a speed of a few kilometres per second. The astronomers had to rely on the power of the VLT because the observed emission is extremely faint and only UVES on the VLT could provide both the sensitivity and the spectral resolution they required. "Discoveries like these are purely reliant on excellent telescopes and instruments, such as the VLT," says Whelan. "Our result also highlights the incredible level of quality which is available today to astronomers: the first telescopes built by Galileo were used to observe the moons of Jupiter. Today, the largest ground-based telescopes can be used to observe a Jupiter size object at a distance of 200 light-years and find it has outflows!" Using the same technique and the same telescope, the team had previously discovered outflows in another young brown dwarf. The new discovery sets a record for the lowest mass object in which jets are seen [2]. Outflows are ubiquitous in the Universe, as they are observed rushing away from the active nuclei of galaxies - AGNs - but also emerging from young stars. The present observations show they even arise in still lower mass objects. The outflow mechanism is thus very robust over an enormous range of masses, from several tens of millions of solar mass (for AGNs) down to a few tens of Jupiter masses (for brown dwarfs). More Information These results were reported in a Letter to the Editor in the Astrophysical Journal (vol. 659, p. L45): "Discovery of a Bipolar Outflow from 2MASSW J1207334-393254 a 24 MJup Brown Dwarf", by E.T. Whelan et al. The team is composed of Emma Whelan and Tom Ray (Dublin Institute for Advanced Studies, Ireland), Ray Jayawardhana (University of Toronto, Canada), Francesca Bacciotti, Antonella Natta and Sofia Randich (Osservatorio Astrofisico di Arcetri, Italy), Leonardo Testi (ESO), and Subu Mohanty (Harvard-Smithsonian CfA, USA).

  4. Narrow absorption lines complex I: one form of broad absorption line

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Jian; Lin, Ying-Ru

    2018-03-01

    We discover that some of the broad absorption lines (BALs) are actually a complex of narrow absorption lines (NALs). As a pilot study of this type of BAL, we show this discovery through a typical example in this paper. Utilizing the two-epoch observations of J002710.06-094435.3 (hereafter J0027-0944) from the Sloan Digital Sky Survey (SDSS), we find that each of the C IV and Si IV BAL troughs contains at least four NAL doublets. By resolving the Si IV BAL into multiple NALs, we present the following main results and conclusions. First, all these NALs show coordinated variations between the two-epoch SDSS observations, suggesting that they all originate in the quasar outflow, and that their variations are due to global changes in the ionization condition of the absorbing gas. Secondly, a BAL consisting of a number of NAL components indicates that this type of BAL is basically the same as the intrinsic NAL, which tends to support the inclination model rather than the evolution model. Thirdly, although both the C IV and Si IV BALs originate from the same clumpy substructures of the outflow, they show different profile shapes: multiple absorption troughs for the Si IV BAL in a wider velocity range, while P-Cygni for the C IV BAL in a narrower velocity range. This can be interpreted by the substantial differences in fine structure and oscillator strength between the Si IVλλ1393, 1402 and C IVλλ1548, 1551 doublets. Based on the above conclusions, we consider that the decomposition of a BAL into NALs can serve as a way to resolve the clumpy structure for outflows, and it can be used to learn more about characteristics of the clumpy structure and to test the outflow model, when utilizing high-resolution spectra and photoionization model.

  5. Mapping and dating based evolution studies of the Niger Vallis outflow channel, Mars

    NASA Astrophysics Data System (ADS)

    Kukkonen, S.; Kostama, V.-P.

    2018-04-01

    Niger Vallis is one of the four large outflow channel systems in the eastern Hellas rim region of Mars. Niger, as well as the other nearby valles, is assumed to have been carved by water and later covered by ice-rich deposits. Thus, it plays a significant role both in the fluvial and glacial evolution of the region. This work presents the photogeological mapping and crater count dating results of the Niger Vallis system achieved based on the images of the ConTeXt (CTX) and High Resolution Imaging Science Experiment (HiRISE) cameras of Mars Reconnaissance Orbiter (MRO). The results show that Niger Vallis formed in at least two stages. The southern branch of Niger Vallis originated from Ausonia Cavus, ∼3.7-3.9 Ga ago, whereas the northern branch formed from Peraea Cavus, ∼3.3-3.4 Ga ago. Both of the time scales correspond to the volcanic activity phases of the nearby highland volcanoes of Tyrrhenus and Hadriacus Montes. The fluvial activity of Niger Vallis was not, however, as intense as the activity of the other nearby outflow channels, and it seems to have weakened soon after the formation of the northern branch. The outflow channel was resurfaced again ∼0.9-1.5 Ga ago, probably by regional fluvial activity. After that, the floor of Niger Vallis was covered by lineated valley fills and corresponding ice-rich deposits, the formation of which ended ∼220-470 Ma ago, or not later than ∼110 Ma ago. Although the origin of the deposits was probably related to contemporary climate conditions, the emplacement of some deposits, or even their formation, may have been contributed by impact events. After lineated valley fill formation, the region was resurfaced several times, probably because of changes in regional climatic or endogenic circumstances.

  6. The Simbol-X Perspective on the Physics of Quasar Outflows

    NASA Astrophysics Data System (ADS)

    Giustini, M.; Cappi, M.; Vignali, C.; Palumbo, G. G. C.; Fiore, F.; Malaguti, G.

    2009-05-01

    There is increasing evidence that quasar outflows may play a key role in providing the feedback between AGN/QSOs and their surrounding (and feeding) media, in regulating the central supermassive black hole growth and the galaxy formation and, on larger scales, in shaping the growth of cosmic structures (see e.g. [1]). X-ray observations of quasar outflows are crucial to probe their innermost parts and assess the global energetics entrained in the outflow by studying its most extreme (in terms of velocity, ionization state, mass outflow rate) phases. Simbol-X-with its high effective area in the Fe K energy band and above-will allow the detection and the characterization of powerful outflows in bright, nearby AGN and notably also in moderately faint AGN, thus shedding light on feedback processes in these objects.

  7. High-Resolution Magnetic Properties and Cyclicity of Contourites from IODP Site U1389 (West Iberian Margin)

    NASA Astrophysics Data System (ADS)

    Richter, C.; Adesiyun, O.; Acton, G.; Sidorovskaia, N.; Sierro, F. J.; Xuan, C.; Verosub, K. L.

    2015-12-01

    We present high-resolution paleomagnetic and rock magnetic results from the lower part of the APC-cored section (36 - 107 meters composite depth) of Integrated Ocean Drilling Program (IODP) Site U1389 (36º 25.515'N; 7º 16.683'W, 644 m water depth). This site was cored as part of the IODP Mediterranean Outflow Expedition to address paleoceanographic questions about the evolution of the North Atlantic Mediterranean and climate system over the past 6 million years. The recovered section at Site U1389 consists of a thick, rapidly accumulated (~40 cm/kyr), and very uniform series of contouritic sediment. Ages were obtained by tuning the planktonic foraminifer oxygen isotope data to the NGRIP ice core record. We collected rock magnetic and paleomagnetic measurements at 1-cm resolution on 71-m of U-channel samples (representing ~145 k.yr.), with the goal of extracting a high-resolution record of paleoenvironmental variability, relative geomagnetic paleointensity, and paleosecular variation. Stepwise demagnetization of the natural remanence (NRM) demonstrates the successful removal of a secondary, predominantly drill-string induced, magnetization and identification of a stable and strong primary magnetization carried by the sediment samples (average MAD calculated by principal component analysis: ~1º). Excellent behavior of the samples during alternating field demagnetization and isothermal remanent magnetization (IRM) acquisition suggest magnetite as the main carrier of magnetic remanence. Relative paleointensity estimates were determined by normalizing the NRM by the ARM, IRM, and magnetic susceptibility. Time-frequency analyses of high-resolution concentration and grain-size dependent paleomagnetic proxy data for the entire 107-m (200 k.yr.) long APC section of Site U1389 will be presented with the goal of identifying the driver of cyclic changes in the sedimentary section.

  8. An X-Ray/SDSS Sample: Observational Characterization of The Outflowing Gas

    NASA Astrophysics Data System (ADS)

    Perna, Michele; Brusa, M.; Lanzuisi, G.; Mignoli, M.

    2016-10-01

    Powerful ionised AGN-driven outflows, commonly detected both locally and at high redshift, are invoked to contribute to the co-evolution of SMBH and galaxies through feedback phenomena. Our recent works (Brusa+2015; 2016; Perna+2015a,b) have shown that the XMM-COSMOS targets with evidence of outflows collected so far ( 10 sources) appear to be associated with low X-ray kbol corrections (Lbol /LX ˜ 18), in spite of their spread in obscuration, in the locations on the SFR-Mstar diagram, in their radio emission. A higher statistical significance is required to validate a connection between outflow phenomena and a X-ray loudness. Moreover, in order to validate their binding nature to the galaxy fate, it is crucial to correctly determine the outflow energetics. This requires time consuming integral field spectroscopic (IFS) observations, which are, at present, mostly limited to high luminosity objectsThe study of SDSS data offers a complementary strategy to IFS efforts. I will present physical and demographic characterization of the AGN-galaxy system during the feedback phase obtained studying a sample of 500 X-ray/SDSS AGNs, at z<0.8. Outflow velocity inferred from [OIII]5007 emission line profile has been related to optical (e.g., [OIII] and bolometric luminosities, Eddington ratio, stellar velocity dispersion) and X-ray properties (intrinsic X-ray luminosity, obscuration and X-ray kbol correction), to determine what drives ionised winds. Several diagnostic line ratios have been used to infer the physical properties of the ionised outflowing gas. The knowledge of these properties can reduce the actual uncertainties in the outflow energetics by a factor of ten, pointing to improve our understanding of the AGN outflow phenomenon and its impact on galaxy evolution.

  9. Luminous, pc-scale CO 6-5 emission in the obscured nucleus of NGC 1377

    NASA Astrophysics Data System (ADS)

    Aalto, S.; Muller, S.; Costagliola, F.; Sakamoto, K.; Gallagher, J. S.; Falstad, N.; König, S.; Dasyra, K.; Wada, K.; Combes, F.; García-Burillo, S.; Kristensen, L. E.; Martín, S.; van der Werf, P.; Evans, A. S.; Kotilainen, J.

    2017-12-01

    High-resolution submillimeter line and continuum observations are important in probing the morphology, column density, and dynamics of the molecular gas and dust around obscured active galactic nuclei (AGNs). With high-resolution (0.̋06 × 0.̋05 (6 × 5 pc)) ALMA 690 GHz observations we have found bright (TB > 80 K) and compact (full width half maximum size (FWHM) size of 10 × 7 pc) CO 6-5 line emission in the nuclear region of the extremely radio-quiet galaxy NGC 1377. The CO 6-5 intensity is partially aligned with the previously discovered jet/outflow of NGC 1377 and is tracing dense (n > 104cm-3) hot molecular gas at the base of the outflow. The velocity structure is complex and shifts across the jet/outflow are discussed in terms of separate overlapping kinematical components or rotation. High-velocity gas (Δv ± 145km s-1) is detected inside r < 2-3 pc and we suggest that it is emerging from an inclined rotating disk or torus of position angle PA = 140° ± 20° with a dynamical mass of 3 × 106M⊙. This mass is consistent with that of a supermassive black hole (SMBH), as inferred from the M-σ relation. The gas mass of the proposed disk/torus constitutes <3% of the dynamical mass inside a radius of 3 pc. In contrast to the intense CO 6-5 line emission, we do not detect 690 GHz dust continuum in the nuclear region of NGC 1377. The upper limit of S(690 GHz) ≲ 2 mJy implies an H2 column density N(H2) < 3 × 1023cm-2 (averaged in the central 6 × 5 pc beam). This is inconsistent with a Compton thick (CT) source and we discuss the possibility that CT obscuration may instead be occurring on smaller subparsec scales or in a larger foreground structure. From SED fitting we suggest that half of the IR emission of NGC 1377 is nuclear and the rest, mostly the far-infrared (FIR), is emerging from larger scales. The extreme radio quietness, and the lack of emission from other star formation tracers, raise questions on the origin of the FIR emission. We discuss the possibility that it arises from AGN-heated dust along the minor axis. The reduced datacube is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A22

  10. Transport and fate of river waters under flood conditions and rim current influence: the Mississippi River test case

    NASA Astrophysics Data System (ADS)

    Kourafalou, Villy; Androulidakis, Yannis

    2013-04-01

    Large river plumes are a major supplier of freshwater, sediments and nutrients in coastal and shelf seas. Novel processes controlling the transport and fate of riverine waters (and associated materials) will be presented, under flood conditions and in the presence of complex topography, ambient shelf circulation and slope processes, controlled by the interaction with rim currents. The Mississippi River (MR) freshwater outflow is chosen as a test case, as a major circulation forcing mechanism for the Northern Gulf of Mexico and a unique river plume for the intense interactions with a large scale ocean current, namely the Loop Current branch of the Gulf Stream, and associated eddy field. The largest MR outflow in history (45,000 m3/sec in 2011) is compared with the second largest outflow in the last 8 years (41,000 m3/sec in 2008). Realistically forced simulations, based on the Hybrid Coordinate Ocean Model (HYCOM) with careful treatment of river plume dynamics and nested to a data assimilated, basin-wide model, reveal the synergistic effect of enhanced discharge, winds, stratification of ambient shelf waters and offshore circulation over the transport of plume waters. The investigation targets a broader understanding of the dynamics of large scale river plumes in general, and of the MR plume in particular. In addition, in situ observations from ship surveys and satellite chl-a data showed that the mathematical simulations with high temporal resolution river outflow input may reproduce adequately the buoyant waters spreading over the Northern Gulf of Mexico shelf and offshore areas. The fate of the river plume is strongly determined and affected by deep basin processes. The strong impacts of the Loop Current system (and its frontal eddies) on river plume evolution are of particular importance under conditions of increased offshore spreading, which is presumed under large discharge rates and can cause loss of riverine materials to the basin interior. Flood conditions can increase both downstream (westward) and upstream (eastward) spreading. The high outflow rates enhance the anticyclonic bulge, strengthen the downstream coastal current toward the western Louisiana-Texas shelf. The substantial eastward spreading over the eastern Mississippi-Alabama-Florida shelf was highly correlated with the Loop Current northward extension. On the contrary, cyclonic eddies east of the Delta effectively block the offshore eastward spreading of the plume and may keep the river waters away from the eastern shelf. We show that the proximity of eddies to the shelf break is a sufficient condition for shelf-to-offshore interaction, which is facilitated by the steep bottom topography near the Delta.

  11. What Fraction of Active Galaxies Actually Show Outflows?

    NASA Astrophysics Data System (ADS)

    Ganguly, Rajib; Brotherton, M. S.

    2007-12-01

    Outflows from active galactic nuclei (AGNs) seem to be common and are thought to be important from a variety of perspectives: as an agent of chemical enhancement of the interstellar and intergalactic media, as an agent of angular momentum removal from the accreting central engine, and as an agent limiting star formation in starbursting systems by blowing out gas and dust from the host galaxy. To understand these processes, we must determine what fraction of AGNs feature outflows and understand what forms they take. We examine recent surveys of outflows detected in ultraviolet absorption over the entire range of velocities and velocity widths (i.e., broad absorption lines, associated absorption lines, and high-velocity narrow absorption lines). While the fraction of specific forms of outflows depends on AGN properties, the overall fraction displaying outflows is fairly constant, approximately 60%, over many orders of magnitude in luminosity. We discuss implications of this result and ways to refine our understanding of outflows. We acknowledge support from the US National Science Foundation through grant AST 05-07781.

  12. Valles Marineris and Chryse Outflow Channels

    NASA Image and Video Library

    1998-06-08

    A color image of Valles Marineris, the great canyon and the south Chryse basin-Valles Marineris outflow channels of Mars; north toward top. The scene shows the entire Valles Marineris canyon system, over 3,000 km long and averaging 8 km deep, extending from Noctis Labyrinthus, the arcuate system of graben to the west, to the chaotic terrain to the east and related outflow canyons that drain toward the Chryse basin. Eos and Capri Chasmata (south to north) are two canyons connected to Valles Marineris. Ganges Chasma lies directly north. The chaos in the southeast part of the image gives rise to several outflow channels, Shalbatana, Simud, Tiu, and Ares Valles (left to right), that drained north into the Chryse basin. The mouth of Ares Valles is the site of the Mars Pathfinder lander. This image is a composite of Viking medium-resolution images in black and white and low-resolution images in color; Mercator projection. The image roughly extends from latitude 20 degrees S. to 20 degrees N. and from longitude 15 degrees to 102.5 degrees. The connected chasma or valleys of Valles Marineris may have formed from a combination of erosional collapse and structural activity. Layers of material in the eastern canyons might consist of carbonates deposited in ancient lakes, eolian deposits, or volcanic materials. Huge ancient river channels began from Valles Marineris and from adjacent canyons and ran north. Many of the channels flowed north into Chryse Basin. The south Chryse outflow channels are cut an average of 1 km into the cratered highland terrain. This terrain is about 9 km above datum near Valles Marineris and steadily decreases in elevation to 1 km below datum in the Chryse basin. Shalbatana is relatively narrow (10 km wide) but can reach 3 km in depth. The channel begins at a 2- to 3-km-deep circular depression within a large impact crater, whose floor is partly covered by chaotic material, and ends in Simud Valles. Tiu and Simud Valles consist of a complex of connected channel floors and chaotic terrain and extend as far south as and connect to eastern Valles Marineris. Ares Vallis originates from discontinuous patches of chaotic terrain within large craters. In the Chryse basin the Ares channel forks; one branch continues northwest into central Chryse Planitia and the other extends north into eastern Chryse Planitia. http://photojournal.jpl.nasa.gov/catalog/PIA00426

  13. Spatially resolved vertical vorticity in solar supergranulation using helioseismology and local correlation tracking

    NASA Astrophysics Data System (ADS)

    Langfellner, J.; Gizon, L.; Birch, A. C.

    2015-09-01

    Flow vorticity is a fundamental property of turbulent convection in rotating systems. Solar supergranules exhibit a preferred sense of rotation, which depends on the hemisphere. This is due to the Coriolis force acting on the diverging horizontal flows. We aim to spatially resolve the vertical flow vorticity of the average supergranule at different latitudes, both for outflow and inflow regions. To measure the vertical vorticity, we use two independent techniques: time-distance helioseismology (TD) and local correlation tracking of granules in intensity images (LCT) using data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Both maps are corrected for center-to-limb systematic errors. We find that 8 h TD and LCT maps of vertical vorticity are highly correlated at large spatial scales. Associated with the average supergranule outflow, we find tangential (vortical) flows that reach about 10 m s-1 in the clockwise direction at 40° latitude. In average inflow regions, the tangential flow reaches the same magnitude, but in the anticlockwise direction. These tangential velocities are much smaller than the radial (diverging) flow component (300 m s-1 for the average outflow and 200 m s-1 for the average inflow). The results for TD and LCT as measured from HMI are in excellent agreement for latitudes between -60° and 60°. From HMI LCT, we measure the vorticity peak of the average supergranule to have a full width at half maximum of about 13 Mm for outflows and 8 Mm for inflows. This is larger than the spatial resolution of the LCT measurements (about 3 Mm). On the other hand, the vorticity peak in outflows is about half the value measured at inflows (e.g., 4 × 10-6 s-1 clockwise compared to 8 × 10-6 s-1 anticlockwise at 40° latitude). Results from the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) obtained in 2010 are biased compared to the HMI/SDO results for the same period. Appendices are available in electronic form at http://www.aanda.orgThe azimuthally averaged velocity components vr and vt for supergranular outflows and inflows at various latitudes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A67

  14. Extreme gaseous outflows in radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Xu, D. W.; Wagner, A. Y.

    2018-07-01

    We present four radio-loud narrow-line Seyfert 1 (NLS1) galaxies with extreme emission-line shifts, indicating radial outflow velocities of the ionized gas of up to 2450 km s-1, above the escape velocity of the host galaxies. The forbidden lines show strong broadening, up to 2270 km s-1. An ionization stratification (higher line shift at higher ionization potential) implies that we see a large-scale outflow rather than single, localized jet-cloud interactions. Similarly, the paucity of zero-velocity [O III] λ5007 emitting gas implies the absence of a second narrow-line region (NLR) component at rest, and therefore a large part of the high-ionization NLR is affected by the outflow. Given the radio loudness of these NLS1 galaxies, the observations are consistent with a pole on view onto their central engines, so that the effects of polar outflows are maximized. In addition, a very efficient driving mechanism is required to reach the high observed velocities. We explore implications from recent hydrodynamic simulations of the interaction between fast winds or jets with the large-scale NLR. Overall, the best agreement with observations (and especially the high outflow speeds of the [Ne V] emitting gas) can be reached if the NLS1 galaxies are relatively young sources with lifetimes not much exceeding 1 Myr. These systems represent sites of strong feedback at NLR scales at work, well below redshift one.

  15. Extreme Gaseous Outflows in Radio-Loud Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Xu, D. W.; Wagner, A. Y.

    2018-04-01

    We present four radio-loud NLS1 galaxies with extreme emission-line shifts, indicating radial outflow velocities of the ionized gas of up to 2450 km/s, above the escape velocity of the host galaxies. The forbidden lines show strong broadening, up to 2270 km/s. An ionization stratification (higher line shift at higher ionization potential) implies that we see a large-scale outflow rather than single, localized jet-cloud interactions. Similarly, the paucity of zero-velocity [OIII]λ5007 emitting gas implies the absence of a second narrow-line region (NLR) component at rest, and therefore a large part of the high-ionization NLR is affected by the outflow. Given the radio loudness of these NLS1 galaxies, the observations are consistent with a pole on view onto their central engines, so that the effects of polar outflows are maximized. In addition, a very efficient driving mechanism is required, to reach the high observed velocities. We explore implications from recent hydrodynamic simulations of the interaction between fast winds or jets with the large-scale NLR. Overall, the best agreement with observations (and especially the high outflow speeds of the [NeV] emitting gas) can be reached if the NLS1 galaxies are relatively young sources with lifetimes not much exceeding 1 Myr. These systems represent sites of strong feedback at NLR scales at work, well below redshift one.

  16. Outflow activities in the young high-mass stellar object G23.44-0.18

    NASA Astrophysics Data System (ADS)

    Ren, Jeremy Zhiyuan; Liu, Tie; Wu, Yuefang; Li, Lixin

    2011-07-01

    We present an observational study towards the young high-mass star-forming region G23.44-0.18 using the Submillimeter Array. Two massive, radio-quiet dusty cores MM1 and MM2 are observed in 1.3-mm continuum emission and dense molecular gas tracers including thermal CH3OH, CH3CN, HNCO, SO, and OCS lines. The 12CO (2-1) line reveals a strong bipolar outflow originating from MM2. The outflow consists of a low-velocity component with wide-angle quasi-parabolic shape and a more compact and collimated high-velocity component. The overall geometry resembles the outflow system observed in the low-mass protostar which has a jet-driven fast flow and entrained gas shell. The outflow has a dynamical age of 6 × 103 yr and a mass loss rate ˜10-3 M ⊙ yr-1. A prominent shock emission in the outflow is observed in SO and OCS, and also detected in CH3OH and HNCO. We investigated the chemistry of MM1, MM2 and the shocked region. The dense core MM2 have molecular abundances of three to four times higher than those in MM1. The abundance excess, we suggest, can be a net effect of the stellar evolution and embedded shocks in MM2 that calls for further inspection.

  17. Theory of Bipolar Outflows from Accreting Hot Stars

    NASA Astrophysics Data System (ADS)

    Konigl, A.

    1996-05-01

    There is a growing number of observational indicators for the presence of bipolar outflows in massive, young stellar objects that are still accreting mass as part of their formation process. In particular, there is evidence that the outflows from these objects can attain higher velocities and kinetic luminosities than their lower-mass counterparts. Furthermore, the higher-mass objects appear to smoothly continue the correlation found in T Tauri stars between outflow and accretion signatures, and in several cases there are direct clues to the existence of a disk from optical and infrared spectroscopy. These results suggest that the disk--outflow connection found in low-mass pre--main-sequence stars extends to more massive objects, and that a similar physical mechanism may drive the outflows in both cases. In this presentation, I first critically examine the observational basis for this hypothesis, considering, among other things, the possibility that several low-luminosity outflows might occasionally masquerade as a single flow from a luminous object, and the effects that the radiation field of a hot star could have on the spectroscopic diagnostics of an accretion-driven outflow. I then go on to consider how the commonly invoked centrifugally driven wind models of bipolar outflows in low-mass stars would be affected by the various physical processes (such as photoionization, photoevaporation, radiation pressure, and stellar wind ram pressure) that operate in higher-mass stars. I conclude by mentioning some of the tantalizing questions that one could hope to address as this young field of research continues to develop (for example: is there a high-mass analog of the FU Orionis outburst phenomenon? Could one use observations of progressively more massive, and hence less convective, stars to elucidate the role of stellar magnetic fields in the accretion and outflow processes? Would it be possible to observationally identify massive stars that have reached the main sequence while they were still accreting? Does the evolution of protostellar disks differ in low-mass and high-mass objects?).

  18. Observations and analysis of O(1D) and NH2 line profiles for the coma of comet P/Halley

    NASA Technical Reports Server (NTRS)

    Smyth, William H.; Combi, Michael R.; Roesler, Fred L.; Scherb, Frank

    1995-01-01

    A set of high-resolution Fabry-Perot measurements of the coma of comet P/Halley was acquired in the (O I) 6300 A and NH2 6298.62 A emission lines. These high-resolution measurements provide the first optical observations capable of studying directly the photochemical kinetics and dynamic outflow of the coma. The observations were analyzed by a Monte Carlo Particle Trajectory Model. The agreement of the model and observed line profiles was excellent and verified the underlying dynamics, exothermic photodissociative chemistry, and collisional thermalization in the coma. The somewhat wider intrinsic line profile width for the O(1D) emission in 1986 January compared to 1986 May, is, for example, produced by the larger outflow speeds and gas temperatures nearer perihelion in January. The January O(1D) profile, which is wider than the January NH2 profile, is indicative of the photochemical kinetics in the dissociation of the parent molecules H2O and OH in the coma. The absolute calibration of the observations in 1986 January allowed the production rates for H2O and the NH2-parent molecules to be determined. The average daily water production rates derived from the O(1D) emission data for January 16 and 17 are presented. These very large water production rates are consistent with the extrapolated (and 7.6 day time variable) water production rates determined from the analysis of lower spectral resolution observations for O(1D) and H-alpha emissions that covered the time period up to January 13. The large production rates on January 16 and 17 establish that the maximum water production rate for comet Halley accurred pre-perihelion in January. Implications drawn from comparison with 18 cm radio emission data in January suggest that the peak water production rate was even larger. The average production rate for NH3 determined from the NH2 emission data for January 17 was (1.48 +/- 0.10) x 10(exp 28) molecules/s, yielding an NH3/H2O production rate ratio of 0.55%.

  19. The collapse of a molecular cloud core to stellar densities using radiation non-ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Wurster, James; Bate, Matthew R.; Price, Daniel J.

    2018-04-01

    We present results from radiation non-ideal magnetohydrodynamics (MHD) calculations that follow the collapse of rotating, magnetized, molecular cloud cores to stellar densities. These are the first such calculations to include all three non-ideal effects: ambipolar diffusion, Ohmic resistivity, and the Hall effect. We employ an ionization model in which cosmic ray ionization dominates at low temperatures and thermal ionization takes over at high temperatures. We explore the effects of varying the cosmic ray ionization rate from ζcr = 10-10 to 10-16 s-1. Models with ionization rates ≳10-12 s-1 produce results that are indistinguishable from ideal MHD. Decreasing the cosmic ray ionization rate extends the lifetime of the first hydrostatic core up to a factor of 2, but the lifetimes are still substantially shorter than those obtained without magnetic fields. Outflows from the first hydrostatic core phase are launched in all models, but the outflows become broader and slower as the ionization rate is reduced. The outflow morphology following stellar core formation is complex and strongly dependent on the cosmic ray ionization rate. Calculations with high ionization rates quickly produce a fast (≈14 km s-1) bipolar outflow that is distinct from the first core outflow, but with the lowest ionization rate, a slower (≈3-4 km s-1) conical outflow develops gradually and seamlessly merges into the first core outflow.

  20. Infrared Spectro-Interferometry of Massive Stars: Disks, Winds, Outflows, and Stellar Multiplicity

    NASA Astrophysics Data System (ADS)

    Kraus, Stefan

    2007-06-01

    Interferometry is the ultimate technology for overcoming the limitations which diffraction and the atmosphere-induced seeing impose on the resolution achievable with ground-based telescopes. The latest generation of long-baseline interferometric instruments (in particular VLTI/AMBER and VLTI/MIDI), combines the high spatial resolution (typically a few milliarcseconds) with spectroscopic capabilities, allowing one to characterize the geometry of a continuum-emitting region over a wide spectral range or to spatially resolve the emitting region of Doppler-broadened spectral lines in many velocity channels. One branch of astrophysics which might particularly benefit from these advances in technology is the study of massive (O-B type) stars. In order to characterize these stars and their companions and to study accretion and outflow processes in their vicinity with unprecedented angular resolution, we have performed interferometric studies on four key objects, representing the still most enigmatic evolutionary phases of massive stars; namely the pre-main-sequence (MWC 147, NGC 7538 IRS1, Theta 1 Orionis C) and the post-main-sequence phase (Eta Carinae). MWC 147: As indicated by its strong infrared excess, this young Herbig Be star (B6-type) is still associated with residual material from its formation; maybe arranged in a circumstellar disk. In order to investigate the geometry of the material, we combined, for the first time, long-baseline spectro-interferometric observations at near- (NIR) and mid-infrared (MIR) wavelengths (using VLTI/AMBER, VLTI/MIDI, and archival PTI data). Fitting analytic models to the obtained interferometric data revealed a significant elongation of the continuum-emitting region. For a physical interpretation, we modeled the geometry of the dust distribution using 2-D radiative transfer simulations of Keplerian disks with and without a puffed-up inner rim, simultaneously fitting the wavelength-dependent visibilities and the SED, which we complemented with archival Spitzer/IRS spectra. Surprisingly, we found that passive disk models, which can reproduce the SED well, are in strong conflict with the interferometric data. However, when including emission from an optically thick inner gaseous disk, good quantitative agreement was found for all observables, suggesting that MWC 147 harbours a still actively accreting disk. NGC 7538 IRS1/2: NGC 7538 IRS1 is a high-mass (O7-type) protostar with a CO outflow, an associated ultracompact H II region, and a linear methanol maser structure, which might trace a Keplerian-rotating circumstellar disk. We investigated the NIR morphology of the source with unprecedented resolution using NIR bispectrum speckle interferometry obtained at the BTA 6 m and the MMT 6.5 m telescopes. Our high-dynamic range images show fan-shaped outflow structures, in which we detected 18 stars and several blobs of diffuse emission. Complementary archival Spitzer/IRAC images were used to relate the detected structures with the outflow at larger scales. We found a misalignment of various outflow axes and interpreted this in the context of a disk precession model, also using molecular hydrodynamic simulations. As a possible triggering mechanism, we identified non-coplanar tidal interaction of an (yet undiscovered) close companion with the circumbinary disk. Finally, our observations resolved the nearby massive protostar NGC 7538 IRS2 as a close binary with a separation of 195 mas, finding indications for shock interaction between the outflows from IRS1 and IRS2. Theta 1 Orionis C/D: Located in the Orion Trapezium Cluster, Theta 1 C is one of the youngest and nearest high-mass (O5-O7) stars. The star is also known to be a close binary system. We traced the orbital motion from 1997.8 to 2004.8 using visual and NIR bispectrum speckle interferometry at the BTA 6 m telescope. In 2005.9, we obtained first IOTA long-baseline interferometry on the Theta 1 C system, allowing us to derive preliminary solutions for the dynamical orbit and the dynamical mass. Taking the measured flux ratio and the derived location in the HR-diagram into account, we estimated the spectral types and masses of Theta 1 Ori C1 and C2 to be O5.5 (M=34.0 M_sun) and O9.5 (M=15.5 M_sun), respectively. Thus, the companion C2 appears to be much more massive than previously thought, suggesting strong wind-wind interaction during the periastron passage, which we predict for epoch 2007.5 with a small physical separation of only approx. 1.5 AU. From the IOTA data on Theta 1 Ori C, we reconstructed the first optical aperture synthesis image of a young star. We also obtained IOTA data for Theta 1 Ori D, which appears resolved, perhaps indicating the presence of a close, faint companion. Eta Carinae: Using VLTI/AMBER, we performed the first NIR spectro-interferometry of the Luminous Blue Variable (LBV) Eta Car, simultaneously obtaining high spatial and spectral resolutions (R=1,500 and 12,000). The measured wavelength-dependent visibilities, differential phases, and closure phases were used to constrain the geometry of the continuum-emitting region, as well as the Br Gamma 2.166 micron and He I 2.059 micron line-emitting region. We compared the measured visibilities with predictions of the radiative transfer model of Hillier et al. (2001), finding good agreement. For the interpretation of the non-zero differential and closure phases measured within the Br Gamma line, we present a simple geometric model of an inclined, latitude-dependent wind zone. Thus, our observations support theoretical models of anisotropic winds from fast-rotating, luminous hot stars with enhanced high-velocity mass loss near the polar regions. In the He I line, we measured non-zero phases as well, indicating asymmetries in the brightness distribution, which we discuss in the context of wind-wind interaction between Eta Car and its hypothetical hot binary companion. Using simulations, we examined the possibility to directly detect this companion in future observations. Besides these astrophysical results of my dissertation, I present work related to methodological and technical aspects of infrared interferometry. The principles of a data reduction software developed for IOTA/IONIC3 and a pipeline for VLTI/AMBER are discussed. Furthermore, I summarize comparative studies which aim to evaluate the performance of different image reconstruction algorithms in order to explore the prospects and limitations of optical aperture synthesis imaging.

  1. Very Long Baseline Array Imaging of Type-2 Seyferts with Double-peaked Narrow Emission Lines: Searches for Sub-kpc Dual AGNs and Jet-powered Outflows

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Lazio, T. Joseph W.; Shen, Yue; Strauss, Michael A.

    2018-02-01

    This paper presents Very Long Baseline Array (VLBA) observations of 13 double-peaked [O III] emission-line type-2 active galactic nuclei (AGNs) at redshifts 0.06 < z < 0.41 (with a median redshift of z ∼ 0.15) identified in the Sloan Digital Sky Survey. Such double-peaked emission-line objects may result from jets or outflows from the central engine or from a dual AGN. The VLBA provides an angular resolution of ≲10 pc at the distance of many of these galaxies, sufficient to resolve the radio emission from extremely close dual AGNs and to contribute to understanding the origin of double-peaked [O III] emission lines. Of the 13 galaxies observed at 3.6 cm (8.4 GHz), we detect six at a 1σ sensitivity level of ∼0.15 mJy beam‑1, two of which show clear jet structures on scales ranging from a few milliarcseconds to tens of milliarcseconds (corresponding to a few pc to tens of pc at a median redshift of 0.15). We suggest that radio-loud, double-peaked emission-line type-2 AGNs may be indicative of jet produced structures, but a larger sample of double-peaked [O III] AGNs with high angular resolution radio observations will be required to confirm this suggestion. Based, in part, on observations made with the Very Long Baseline Array, obtained at the Long Baseline Observatory. The Long Baseline Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  2. A jet-dominated model for a broad-band spectral energy distribution of the nearby low-luminosity active galactic nucleus in M94

    NASA Astrophysics Data System (ADS)

    van Oers, Pieter; Markoff, Sera; Uttley, Phil; McHardy, Ian; van der Laan, Tessel; Donovan Meyer, Jennifer; Connors, Riley

    2017-06-01

    We have compiled a new multiwavelength spectral energy distribution (SED) for the closest obscured low-ionization emission-line region active galactic nucleus (AGN), NGC 4736, also known as M94. The SED comprises mainly high-resolution (mostly sub-arcsecond, or, at the distance to M94, ≲23 pc from the nucleus) observations from the literature, archival data, as well as previously unpublished sub-millimetre data from the Plateau de Bure Interferometer (PdBI) and the Combined Array for Research in Millimeter-wave Astronomy, in conjunction with new electronic MultiElement Radio Interferometric Network (e-MERLIN) L-band (1.5 GHz) observations. Thanks to the e-MERLIN resolution and sensitivity, we resolve for the first time a double structure composed of two radio sources separated by ˜1 arcsec, previously observed only at higher frequency. We explore this data set, which further includes non-simultaneous data from the Very Large Array, the Gemini telescope, the Hubble Space Telescope and the Chandra X-ray observatory, in terms of an outflow-dominated model. We compare our results with previous trends found for other AGN using the same model (NGC 4051, M81*, M87 and Sgr A*), as well as hard- and quiescent-state X-ray binaries. We find that the nuclear broad-band spectrum of M94 is consistent with a relativistic outflow of low inclination. The findings in this work add to the growing body of evidence that the physics of weakly accreting black holes scales with mass in a rather straightforward fashion.

  3. Episodes of fluvial and volcanic activity in Mangala Valles, Mars.

    PubMed

    Keske, Amber L; Hamilton, Christopher W; McEwen, Alfred S; Daubar, Ingrid J

    2015-01-01

    A new mapping-based study of the 900-km-long Mangala Valles outflow system was motivated by the availability of new high-resolution images and continued debates about the roles of water and lava in outflow channels on Mars. This study uses photogeologic analysis, geomorphic surface mapping, cratering statistics, and relative stratigraphy. Results show that Mangala Valles underwent at least two episodes of fluvial activity and at least three episodes of volcanic activity during the Late Amazonian. The occurrence of scoured bedrock at the base of the mapped stratigraphy, in addition to evidence provided by crater retention ages, suggests that fluvial activity preceded the deposition of two of the volcanic units. Crater counts performed at 30 locations throughout the area have allowed us to construct the following timeline: (1) formation of Noachian Highlands and possible initial flooding event(s) before ~1 Ga, (2) emplacement of Tharsis lava flows in the valley from ~700 to 1000 Ma, (3) a megaflooding event at ~700-800 Ma sourced from Mangala Fossa, (4) valley fill by a sequence of lava flows sourced from Mangala Fossa ~400-500 Ma, (5) another megaflooding event from ~400 Ma, (6) a final phase of volcanism sourced from Mangala Fossa ~300-350 Ma, and (7) emplacement of eolian sedimentary deposits in the northern portion of the valley ~300 Ma. These results are consistent with alternating episodes of aqueous flooding and volcanism in the valles. This pattern of geologic activity is similar to that of other outflow systems, such as Kasei Valles, suggesting that there is a recurring, and perhaps coupled, nature of these processes on Mars.

  4. Spatially Resolved Imaging and Spectroscopy of Candidate Dual Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    McGurk, R. C.; Max, C. E.; Medling, A. M.; Shields, G. A.; Comerford, J. M.

    2015-09-01

    When galaxies merge, both central supermassive black holes are immersed in a dense and chaotic environment. If there is sufficient gas in the nuclear regions, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O iii] emission lines has been proposed as a technique to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O iii] emitting AGNs from Sloan Digital Sky Survey (SDSS) DR7. By obtaining new and archival high spatial resolution images taken with the Keck II Laser Guide Star Adaptive Optics system and the near-infrared camera NIRC2, we show that 30% of 140 double-peaked [O iii] emission line SDSS AGNs have two spatial components within a 3″ radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up three spatially double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and 10 candidates with long-slit spectroscopy from the Shane Kast Double Spectrograph at Lick Observatory. We find that the double-peaked emission lines in our sample of 12 candidates are caused by: one dual AGN (SDSS J114642.47+511029.6), one confirmed outflow and four likely outflows, two pairs of star-forming galaxies, one candidate indeterminate due to sky line interference, and three AGNs with spatially coincident double [O iii] peaks, likely due to unresolved complex narrow line kinematics, outflows, binary AGN, or small-scale jets.

  5. Water mass characteristic in the outflow region of the Indonesian throughflow during and post 2016 negative Indian ocean dipole event

    NASA Astrophysics Data System (ADS)

    Bayhaqi, A.; Iskandar, I.; Surinati, D.; Budiman, A. S.; Wardhana, A. K.; Dirhamsyah; Yuan, D.; Lestari, D. O.

    2018-05-01

    Strong El Niño and positive Indian Ocean Dipole (pIOD) events in 2015/2016 followed by relatively strong negative Indian Ocean Dipole (nIOD) and weak La Niña in 2016 events have affected hydrography conditions in the Indonesian Throughflow (ITF) region. Two research cruises were conducted using RV Baruna Jaya VIII in August and November 2016. These cruises aim to evaluate possible impact of those two climate mode events on the water mass characteristic in the outflow region of the ITF. Hydrographic data from those two cruises were combined with the sea surface temperature (SST) from the Advanced Very High Resolution Radiometer (AVHRR) and surface wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF). The results showed that in the 2016 anomaly year, the cooler sea surface temperature was observed during the negative IOD (nIOD) event while the warmer temperature was found in the post of nIOD event. The observed water mass characteristics in the outflow region of the ITF revealed that the upper layer was dominated by the Indian Ocean water mass, while the Pacific Ocean water mass was observed in the deeper layer. The observed current data across the Sumba Strait showed that the South Java Coastal Current (SJCC) was observed in the upper layer, propagating eastward toward the Savu Sea. A few days later, the observed currents in the upper layer of the Ombai Strait revealed the ITF flow towards the Indian Ocean. Meanwhile, the lower layer showed an eastward flow towards the Ombai Strait.

  6. Hierarchical fragmentation and differential star formation in the Galactic `Snake': infrared dark cloud G11.11-0.12

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Zhang, Qizhou; Testi, Leonardo; van der Tak, Floris; Wu, Yuefang; Zhang, Huawei; Pillai, Thushara; Wyrowski, Friedrich; Carey, Sean; Ragan, Sarah E.; Henning, Thomas

    2014-04-01

    We present Submillimeter Array (SMA) λ = 0.88 and 1.3 mm broad-band observations, and Very Large Array (VLA) observations in NH3 (J, K) = (1,1) up to (5,5), H2O and CH3OH maser lines towards the two most massive molecular clumps in infrared dark cloud (IRDC) G11.11-0.12. Sensitive high-resolution images reveal hierarchical fragmentation in dense molecular gas from the ˜1 pc clump scale down to ˜0.01 pc condensation scale. At each scale, the mass of the fragments is orders of magnitude larger than the Jeans mass. This is common to all four IRDC clumps we studied, suggesting that turbulence plays an important role in the early stages of clustered star formation. Masers, shock heated NH3 gas, and outflows indicate intense ongoing star formation in some cores while no such signatures are found in others. Furthermore, chemical differentiation may reflect the difference in evolutionary stages among these star formation seeds. We find NH3 ortho/para ratios of 1.1 ± 0.4, 2.0 ± 0.4, and 3.0 ± 0.7 associated with three outflows, and the ratio tends to increase along the outflows downstream. Our combined SMA and VLA observations of several IRDC clumps present the most in-depth view so far of the early stages prior to the hot core phase, revealing snapshots of physical and chemical properties at various stages along an apparent evolutionary sequence.

  7. AGN outflows as neutrino sources: an observational test

    NASA Astrophysics Data System (ADS)

    Padovani, P.; Turcati, A.; Resconi, E.

    2018-04-01

    We test the recently proposed idea that outflows associated with Active Galactic Nuclei (AGN) could be neutrino emitters in two complementary ways. First, we cross-correlate a list of 94 "bona fide" AGN outflows with the most complete and updated repository of IceCube neutrinos currently publicly available, assembled by us for this purpose. It turns out that AGN with outflows matched to an IceCube neutrino have outflow and kinetic energy rates, and bolometric powers larger than those of AGN with outflows not matched to neutrinos. Second, we carry out a statistical analysis on a catalogue of [O III] λ5007 line profiles using a sample of 23,264 AGN at z < 0.4, a sub-sample of which includes mostly possible outflows sources. We find no significant evidence of an association between the AGN and the IceCube events, although we get the smallest p-values (˜6 and 18 per cent respectively, pre-trial) for relatively high velocities and luminosities. Our results are consistent with a scenario where AGN outflows are neutrino emitters but at present do not provide a significant signal. This can be tested with better statistics and source stacking. A predominant role of AGN outflows in explaining the IceCube data appears in any case to be ruled out.

  8. Bright crater outflows: Possible emplacement mechanisms

    NASA Technical Reports Server (NTRS)

    Chadwick, D. John; Schaber, Gerald G.; Strom, Robert G.; Duval, Darla M.

    1992-01-01

    Lobate features with a strong backscatter are associated with 43 percent of the impact craters cataloged in Magellan's cycle 1. Their apparent thinness and great lengths are consistent with a low-viscosity material. The longest outflow yet identified is about 600 km in length and flows from the 90-km-diameter crater Addams. There is strong evidence that the outflows are largely composed of impact melt, although the mechanisms of their emplacement are not clearly understood. High temperatures and pressures of target rocks on Venus allow for more melt to be produced than on other terrestrial planets because lower shock pressures are required for melting. The percentage of impact craters with outflows increases with increasing crater diameter. The mean diameter of craters without outflows is 14.4 km, compared with 27.8 km for craters with outflows. No craters smaller than 3 km, 43 percent of craters in the 10- to 30-km-diameter range, and 90 percent in the 80- to 100-km-diameter range have associated bright outflows. More melt is produced in the more energetic impact events that produce larger craters. However, three of the four largest craters have no outflows. We present four possible mechanisms for the emplacement of bright outflows. We believe this 'shotgun' approach is justified because all four mechanisms may indeed have operated to some degree.

  9. AGN outflows as neutrino sources: an observational test

    NASA Astrophysics Data System (ADS)

    Padovani, P.; Turcati, A.; Resconi, E.

    2018-07-01

    We test the recently proposed idea that outflows associated with Active Galactic Nuclei (AGN) could be neutrino emitters in two complementary ways. First, we cross-correlate a list of 94 'bona fide' AGN outflows with the most complete and updated repository of IceCube neutrinos currently publicly available, assembled by us for this purpose. It turns out that AGN with outflows matched to an IceCube neutrino have outflow and kinetic energy rates, and bolometric powers larger than those of AGN with outflows not matched to neutrinos. Secondly, we carry out a statistical analysis on a catalogue of [O III] λ5007 line profiles using a sample of 23 264 AGN at z < 0.4, a subsample of which includes mostly possible outflow sources. We find no significant evidence of an association between the AGN and the IceCube events, although we get the smallest p-values (˜6 and 18 per cent, respectively, pre-trial) for relatively high velocities and luminosities. Our results are consistent with a scenario where AGN outflows are neutrino emitters but at present do not provide a significant signal. This can be tested with better statistics and source stacking. A predominant role of AGN outflows in explaining the IceCube data appears in any case to be ruled out.

  10. TESTING WIND AS AN EXPLANATION FOR THE SPIN PROBLEM IN THE CONTINUUM-FITTING METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Bei; Czerny, Bożena; Sobolewska, Małgosia

    2016-04-20

    The continuum-fitting method is one of the two most advanced methods of determining the black hole spin in accreting X-ray binary systems. There are, however, still some unresolved issues with the underlying disk models. One of these issues manifests as an apparent decrease in spin for increasing source luminosity. Here, we perform a few simple tests to establish whether outflows from the disk close to the inner radius can address this problem. We employ four different parametric models to describe the wind and compare these to the apparent decrease in spin with luminosity measured in the sources LMC X-3 andmore » GRS 1915+105. Wind models in which parameters do not explicitly depend on the accretion rate cannot reproduce the spin measurements. Models with mass accretion rate dependent outflows, however, have spectra that emulate the observed ones. The assumption of a wind thus effectively removes the artifact of spin decrease. This solution is not unique; the same conclusion can be obtained using a truncated inner disk model. To distinguish among the valid models, we will need high-resolution X-ray data and a realistic description of the Comptonization in the wind.« less

  11. Correlated fast X-ray and optical variability in the black-hole candidate XTE J1118+480.

    PubMed

    Kanbach, G; Straubmeier, C; Spruit, H C; Belloni, T

    2001-11-08

    Black holes become visible when they accrete gas, a common source of which is a close stellar companion. The standard theory for this process (invoking a 'thin accretion disk') does not explain some spectacular phenomena associated with these systems, such as their X-ray variability and relativistic outflows, indicating some lack of understanding of the actual physical conditions. Simultaneous observations at multiple wavelengths can provide strong constraints on these conditions. Here we report simultaneous high-time-resolution X-ray and optical observations of the transient source XTE J1118+480, which show a strong but puzzling correlation between the emissions. The optical emission rises suddenly following an increase in the X-ray output, but with a dip 2-5 seconds in advance of the X-rays. This result is not easy to understand within the simplest model of the optical emission, where the light comes from reprocessed X-rays. It is probably more consistent with an earlier suggestion that the optical light is cyclosynchrotron emission that originates in a region about 20,000 km from the black hole. We propose that the time dependence is evidence for a relatively slow (<0.1c), magnetically controlled outflow.

  12. [Radionuclide diagnosis of upper urinary tract patency in patients with cancer of the cervix uteri ].

    PubMed

    Ashrafian, L A; Fomin, D K; Trushin, V I; Trepin, A V

    2011-01-01

    The experience with dynamic renal scintigraphy has shown its high informative value and safety in evaluating the degree of intrarenal urine outflow disorders. However, failure to make an objective assessment of ureteral patency considerably limits its study. The set of studies, which is given in this paper, is devoted to precisely this, highly urgent, problem. The authors have developed an original procedure for diagnosing impaired urine outflow along the ureters during dynamic renal scintigraphy. The visual and digital characteristics of normal and impaired urine outflow in the supravesical segment are defined. The criteria characterizing severe impairments of renal urine derivation along the ureters are denoted. Risk factors for urine outflow disorders are identified in patients with cancer of the cervix uteri, who receive various treatment modalities.

  13. Low-energy ion outflow modulated by the solar wind energy input

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wei, Yong; Andre, Mats; Eriksson, Anders; Haaland, Stein; Kronberg, Elena; Nilsson, Hans; Maes, Lukas

    2017-04-01

    Due to the spacecraft charging issue, it has been difficult to measure low-energy ions of ionospheric origin in the magnetosphere. A recent study taking advantage of the spacecraft electric potential has found that the previously 'hidden' low-energy ions is dominant in the magnetosphere. This comprehensive dataset of low-energy ions allows us to study the relationship between the ionospheric outflow and energy input from the solar wind (ɛ). In this study, we discuss the ratios of the solar wind energy input to the energy of the ionospheric outflow. We show that the ɛ controls the ionospheric outflow when the ɛ is high, while the ionospheric outflow does not systematically change with the ɛ when the ɛ is low.

  14. Ionised outflows in z ~ 2.4 quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Marconi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Cano-Díaz, M.; Cicone, C.; Comastri, A.; Cresci, G.; Fiore, F.; Feruglio, C.; La Franca, F.; Mainieri, V.; Mannucci, F.; Nagao, T.; Netzer, H.; Piconcelli, E.; Risaliti, G.; Schneider, R.; Shemmer, O.

    2015-08-01

    Aims: Outflows driven by active galactic nuclei (AGN) are invoked by galaxy evolutionary models to quench star formation and to explain the origin of the relations observed locally between super-massive black holes and their host galaxies. We here aim to detect extended ionised outflows in luminous quasars, where we expect the highest activity both in star formation and in black-hole accretion. Currently, there are only a few studies based on spatially resolved observations of outflows at high redshift, z > 2. Methods: We analysed a sample of six luminous (L > 1047 erg/s) quasars at z ~ 2.4, observed in H-band using the near-IR integral field spectrometer SINFONI at the VLT. We performed a kinematic analysis of the [Oiii] emission line at λ = 5007 Å. Results: We detect fast, spatially extended outflows in five out of six targets. [Oiii]λ5007 has a complex gas kinematic, with blue-shifted velocities of a few hundreds of km s-1 and line widths up to 1500 km s-1. Using the spectroastrometric method, we infer a size of the ionised outflows of up to ~2 kpc. The properties of the ionised outflows, mass outflow rate, momentum rate, and kinetic power, are correlated with the AGN luminosity. The increase in outflow rate with increasing AGN luminosity is consistent with the idea that a luminous AGN pushes away the surrounding gas through fast outflows that are driven by radiation pressure, which depends on the emitted luminosity. Conclusions: We derive mass outflow rates of about 6-700 M⊙ yr-1 for our sample, which are lower than those observed in molecular outflows. The physical properties of ionised outflows show dependences on AGN luminosity that are similar to those of molecular outflows, but indicate that the mass of ionised gas is lower than that of molecular outflows. Alternatively, this discrepancy between ionised and molecular outflows could be explained with different acceleration mechanisms. Based on Observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, P.ID: 086.B-0579(A).

  15. Discovering a misaligned CO outflow related to the red MSX source G034.5964-01.0292

    NASA Astrophysics Data System (ADS)

    Paron, S.; Ortega, M. E.; Petriella, A.; Rubio, M.

    2014-07-01

    Aims: The red MSX source G034.5964-01.0292 (MSXG34), catalogued as a massive young stellar object, was observed in molecular lines with the aim of discovering and studying molecular outflows. Methods: We mapped a region of 3'× 3' centred at MSXG34 using the Atacama Submillimeter Telescope Experiment in the 12CO J = 3-2 and HCO+J = 4-3 lines with an angular and spectral resolution of 22'' and 0.11 km s-1. Additionally, public 13CO J = 1-0 and near-IR UKIDSS data obtained from the Galactic Ring Survey and the WFCAM Sciencie Archive were analysed. Results: We found that the 12CO spectra towards the YSO present a self-absorption dip, as is common in star-forming regions, and spectral wings that indicate outflow activity. The HCO+ was detected only towards the MSXG34 position at vLSR ~ 14.2 km s-1, in coincidence with the 12CO absorption dip and approximately with the velocity of previous ammonia observations. HCO+ and NH3 are known to be enhanced in molecular outflows. When we analysed the spectral wings of the 12CO line, we discovered misaligned red- and blue-shifted molecular outflows associated with MSXG34. The near-IR emission shows a cone-like nebulosity composed of two arc-like features related to the YSO, which might be due to a cavity cleared in the circumstellar material by a precessing jet. This can explain the misalignment in the molecular outflows. From the analysis of the 13CO J = 1-0 data we suggest that the YSO is very likely related to a molecular clump ranging between 10 and 14 km s-1. This suggests that MSXG34, with an associated central velocity of about 14 km s-1, may be located in the background of this clump. Thus, the blue-shifted outflow is probably deflected by the interaction with dense gas along the line of sight. From a spectral energy distribution analysis of MSXG34 we found that its central object probably is an intermediate-mass protostar.

  16. Multiple outflows in the bipolar planetary nebula M1-16: A molecular line study

    NASA Technical Reports Server (NTRS)

    Sahai, Raghvendra; Wootten, Alwyn; Schwarz, Hugo E.; Wild, W.

    1994-01-01

    Extensive observations of the molecular gas in the young, compact planetary nebula M1-16 have been made, using the Swedish-ESO-Submillimeter Telescope. A map of the CO J = 2-1 emission shows that the molecular envelope contains both a slow and a fast outflow with expansion velocities of 19 km/s and greater than 34 km/s, respectively. The slow outflow is mildly elliptical, while the fast molecular outflow is bipolar. This fast outflow is roughly aligned with the very fast outflows recently found in the optical, while the long axis of the slow elliptical outflow is roughly orthogonal to the optical outflow axis. The kinematic timescales for the CO fast outflow and the optical very fast outflow agree closely, supporting the view that the former represents material in the slow outflow accelerated by the very fast outflow. The kinematic signature of a disk expanding with about 15.5 km/s can also be seen in the CO J = 2-1 data. The mass-loss rate (a) for the slow outflow is greater than or equal to 2.8 x 10(exp -5) solar mass/yr and possibly as large as 9 x 10(exp -5) solar mass/yr, (b) for the fast outflow is greater than or equal to 5 x 10(exp -6) solar mass/yr, and (c) for the very fast optically visible outflow is approximately equal 5 x 10(exp -7) solar mass/yr. The disk mass is approximately equal 6 x 10(exp -3) solar mass. Grain photoelectric heating results in temperatures of 20-70 K in molecular gas of the slow outflow. The (13)C/(12)C abundance ratio in M1-16 is found to be 0.33, quite possibly the highest found for any evolved object. Upper limits for the (18)O/(16)O and (17)O/(16)O ratios were found to be consistent with the values found in AGB stars. A search for other molecular species in M1-16 resulted in the detection of the high-excitation species HCN, CN, (13)CN, HCO(+), and H(13)CO(+) and possibly N2H(+). Both the HCO(+)/HCN and CN/HCN line-intensity ratios are enhanced, the former by a very large factor, over the values found in the envelopes of AGB stars, probably as a result of enhancement of the CN and HCO(+) abundances due to photochemistry induced by the stellar UV. The CS J = 2-1, SiO J = 2-1 (v = 0), and SiS J = 6-5 lines were not detected to low levels. For the high-excitation molecules, adequate collisional excitation of rotational levels and survival against photodissociation by the UV radiation requires significant clumping of the molecular gas into clumps with H2 densities approximately 10(exp 5)/cu cm. The IRAS fluxes of M1-16, assuming negligible contribution from line emission, imply the presence of about (1.7-0.4) x 10(exp -3) solar mass of cool dust (temperature around 50 K) and a smaller quantity, (2.7-3.1) x 10(exp -6) solar mass, of warmer dust (temperature around 125 K) for a power-law emissivity index p = 1-2. The evolutionary nature of M1-16 cannot be explained by existing single-star models of post-AGB evolution. The very high (13)C/(12)C abundance ratio in M1-16 suggests a possible evolutionary connection between M1-16 and the rare class of J-type silicate-carbon stars which also have high (13)C/(12)C ratios and are thought to be binary systems with accretion disks.

  17. Multiple outflows in the bipolar planetary nebula M1-16: A molecular line study

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Wootten, Alwyn; Schwarz, Hugo E.; Wild, W.

    1994-06-01

    Extensive observations of the molecular gas in the young, compact planetary nebula M1-16 have been made, using the Swedish-ESO-Submillimeter Telescope. A map of the CO J = 2-1 emission shows that the molecular envelope contains both a slow and a fast outflow with expansion velocities of 19 km/s and greater than 34 km/s, respectively. The slow outflow is mildly elliptical, while the fast molecular outflow is bipolar. This fast outflow is roughly aligned with the very fast outflows recently found in the optical, while the long axis of the slow elliptical outflow is roughly orthogonal to the optical outflow axis. The kinematic timescales for the CO fast outflow and the optical very fast outflow agree closely, supporting the view that the former represents material in the slow outflow accelerated by the very fast outflow. The kinematic signature of a disk expanding with about 15.5 km/s can also be seen in the CO J = 2-1 data. The mass-loss rate (a) for the slow outflow is greater than or equal to 2.8 x 10-5 solar mass/yr and possibly as large as 9 x 10-5 solar mass/yr, (b) for the fast outflow is greater than or equal to 5 x 10-6 solar mass/yr, and (c) for the very fast optically visible outflow is approximately equal 5 x 10-7 solar mass/yr. The disk mass is approximately equal 6 x 10-3 solar mass. Grain photoelectric heating results in temperatures of 20-70 K in molecular gas of the slow outflow. The (13)C/(12)C abundance ratio in M1-16 is found to be 0.33, quite possibly the highest found for any evolved object. Upper limits for the (18)O/(16)O and (17)O/(16)O ratios were found to be consistent with the values found in AGB stars. A search for other molecular species in M1-16 resulted in the detection of the high-excitation species HCN, CN, (13)CN, HCO(+), and H(13)CO(+) and possibly N2H(+). Both the HCO(+)/HCN and CN/HCN line-intensity ratios are enhanced, the former by a very large factor, over the values found in the envelopes of AGB stars, probably as a result of enhancement of the CN and HCO(+) abundances due to photochemistry induced by the stellar UV. The CS J = 2-1, SiO J = 2-1 (v = 0), and SiS J = 6-5 lines were not detected to low levels. For the high-excitation molecules, adequate collisional excitation of rotational levels and survival against photodissociation by the UV radiation requires significant clumping of the molecular gas into clumps with H2 densities approximately 105/cu cm. The IRAS fluxes of M1-16, assuming negligible contribution from line emission, imply the presence of about (1.7-0.4) x 10-3 solar mass of cool dust (temperature around 50 K) and a smaller quantity, (2.7-3.1) x 10-6 solar mass, of warmer dust (temperature around 125 K) for a power-law emissivity index p = 1-2. The evolutionary nature of M1-16 cannot be explained by existing single-star models of post-AGB evolution. The very high (13)C/(12)C abundance ratio in M1-16 suggests a possible evolutionary connection between M1-16 and the rare class of J-type silicate-carbon stars which also have high (13)C/(12)C ratios and are thought to be binary systems with accretion disks.

  18. Small Scale Chemical Segregation Within Keplerian Disk Candidate G35.20-0.74N

    NASA Astrophysics Data System (ADS)

    Allen, Veronica; van der Tak, Floris; Sánchez-Monge, Álvaro; Cesaroni, Riccardo; Beltrán, Maria T.

    2016-06-01

    In the study of high-mass star formation, hot cores are empirically defined stages where chemically rich emission is detected toward a massive protostar. It is unknown whether the physical origin of this emission is a disk, inner envelope, or outflow cavity wall and whether the hot core stage is common to all massive stars. With the advent of the highly sensitive sub-millimeter interferometer, ALMA, the ability to chemically characterize high mass star forming regions other than Orion has become possible. In the up-and-coming field of observational astrochemistry, these sensitive high resolution observations have opened up opportunities to find small scale variations in young protostellar sources.We have done an in depth analysis of high spatial resolution (~1000 AU) Cycle 0 ALMA observations of the high mass star forming region G35.20-0.74N, where Sánchez-Monge et al (2013) found evidence for Keplerian rotation. After further chemical analysis, numerous complex organic species have been identified in this region and we notice an interesting asymmetry in the distribution of the Nitrogen-bearing species within this source. In my talk, I will briefly outline the case for the disk and the consequences for this hypothesis following the chemical segregation we have seen.

  19. Subarcsecond international LOFAR radio images of Arp 220 at 150 MHz. A kpc-scale star forming disk surrounding nuclei with shocked outflows

    NASA Astrophysics Data System (ADS)

    Varenius, E.; Conway, J. E.; Martí-Vidal, I.; Aalto, S.; Barcos-Muñoz, L.; König, S.; Pérez-Torres, M. A.; Deller, A. T.; Moldón, J.; Gallagher, J. S.; Yoast-Hull, T. M.; Horellou, C.; Morabito, L. K.; Alberdi, A.; Jackson, N.; Beswick, R.; Carozzi, T. D.; Wucknitz, O.; Ramírez-Olivencia, N.

    2016-09-01

    Context. Arp 220 is the prototypical ultra luminous infrared galaxy (ULIRG). Despite extensive studies, the structure at MHz-frequencies has remained unknown because of limits in spatial resolution. Aims: This work aims to constrain the flux and shape of radio emission from Arp 220 at MHz frequencies. Methods: We analyse new observations with the International Low Frequency Array (LOFAR) telescope, and archival data from the Multi-Element Radio Linked Interferometer Network (MERLIN) and the Karl G. Jansky Very Large Array (VLA). We model the spatially resolved radio spectrum of Arp 220 from 150 MHz to 33 GHz. Results: We present an image of Arp 220 at 150 MHz with resolution 0.̋65 × 0.̋35, sensitivity 0.15 mJy beam-1, and integrated flux density 394 ± 59 mJy. More than 80% of the detected flux comes from extended (6''≈ 2.2 kpc) steep spectrum (α = -0.7) emission, likely from star formation in the molecular disk surrounding the two nuclei. We find elongated features extending 0.3'' (110 pc) and 0.9'' (330 pc) from the eastern and western nucleus respectively, which we interpret as evidence for outflows. The extent of radio emission requires acceleration of cosmic rays far outside the nuclei. We find that a simple three component model can explain most of the observed radio spectrum of the galaxy. When accounting for absorption at 1.4 GHz, Arp 220 follows the FIR/radio correlation with q = 2.36, and we estimate a star formation rate of 220 M⊙ yr-1. We derive thermal fractions at 1 GHz of less than 1% for the nuclei, which indicates that a major part of the UV-photons are absorbed by dust. Conclusions: International LOFAR observations shows great promise to detect steep spectrum outflows and probe regions of thermal absorption. However, in LIRGs the emission detected at 150 MHz does not necessarily come from the main regions of star formation. This implies that high spatial resolution is crucial for accurate estimates of star formation rates for such galaxies at 150 MHz. The reduced images at 150 MHz and 1.4 GHz presented in this paper are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A86

  20. VizieR Online Data Catalog: L1157-B1 DCN (2-1) and H13CN (2-1) datacubes (Busquet+,

    NASA Astrophysics Data System (ADS)

    Busquet, G.; Fontani, F.; Viti, S.; Codella, C.; Lefloch, B.; Benedettini, M.; Ceccarellli, C.

    2017-06-01

    IRAM NOEMA observations of DCN(2-1) and H13CN(2-1) towa brightest bow-shock B1 of the L1157 molecular outflow. All data cubes are provided in fits format smoothed to a velocity resolution of 0.5km/s. (2 data files).

  1. Multi-Band Light Curves from Two-Dimensional Simulations of Gamma-Ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    MacFadyen, Andrew

    2010-01-01

    The dynamics of gamma-ray burst outflows is inherently multi-dimensional. 1.) We present high resolution two-dimensional relativistic hydrodynamics simulations of GRBs in the afterglow phase using adaptive mesh refinement (AMR). Using standard synchrotron radiation models, we compute multi-band light curves, from the radio to X-ray, directly from the 2D hydrodynamics simulation data. We will present on-axis light curves for both constant density and wind media. We will also present off-axis light curves relevant for searches for orphan afterglows. We find that jet breaks are smoothed due to both off-axis viewing and wind media effects. 2.) Non-thermal radiation mechanisms in GRB afterglows require substantial magnetic field strengths. In turbulence driven by shear instabilities in relativistic magnetized gas, we demonstrate that magnetic field is naturally amplified to half a percent of the total energy (epsilon B = 0.005). We will show high resolution three dimensional relativistic MHD simulations of this process as well as particle in cell (PIC) simulations of mildly relativistic collisionless shocks.

  2. Using "StorAge Selection" functions and high resolution isotope data to unravel travel time distributions in headwater catchments

    NASA Astrophysics Data System (ADS)

    Benettin, Paolo; Soulsby, Chris; Birkel, Christian; Tetzlaff, Doerthe; Botter, Gianluca; Rinaldo, Andrea

    2017-04-01

    We use high resolution tracer data from the Bruntland Burn catchment (UK) to test theoretical approaches that integrate catchment-scale flow and transport processes in a unified framework centered on selective age sampling by streamflow and evapotranspiration fluxes. Hydrologic transport is here described through StorAge Selection (SAS) functions, parametrized as simple power laws. By representing the way in which catchment storage generates outflows composed by water of different ages, the main mechanism regulating the tracer composition of runoff is clearly identified. The calibrated numerical model provides simulations that convincingly reproduce complex measured signals of daily deuterium content in stream waters during wet and dry periods. The results for the catchment under consideration are consistent with other recent studies indicating a tendency for natural catchments to preferentially release younger available water. The model allows estimating transient water age and its related uncertainty, as well as the total catchment storage. This study shows that power-law SAS functions prove a powerful tool to explain catchment-scale transport processes that also has potential in less intensively monitored sites.

  3. Imaging the Human Aqueous Humor Outflow Pathway in Human Eyes by Three Dimensional Micro-Computed Tomography (3D micro-CT)

    PubMed Central

    Hann, Cheryl R.; Bentley, Michael D.; Vercnocke, Andrew; Ritman, Erik L.; Fautsch, Michael P.

    2011-01-01

    The site of outflow resistance leading to elevated intraocular pressure in primary open angle glaucoma is believed to be located in the region of Schlemm’s canal inner wall endothelium, its basement membrane and the adjacent juxtacanalicular tissue. Evidence also suggests collector channels and intrascleral vessels may have a role in intraocular pressure in both normal and glaucoma eyes. Traditional imaging modalities limit the ability to view both proximal and distal portions of the trabecular outflow pathway as a single unit. In this study, we examined the effectiveness of three-dimensional micro-computed tomography (3D micro-CT) as a potential method to view the trabecular outflow pathway. Two normal human eyes were used: one immersion fixed in 4% paraformaldehyde, and one with anterior chamber perfusion at 10 mmHg followed by perfusion fixation in 4% paraformaldehyde/2% glutaraldehyde. Both eyes were postfixed in 1% osmium tetroxide, and scanned with 3D micro-CT at 2 µm or 5 µm voxel resolution. In the immersion fixed eye, 24 collector channels were identified with an average orifice size of 27.5 ± 5 µm. In comparison, the perfusion fixed eye had 29 collector channels with a mean orifice size of 40.5 ± 13 µm. Collector channels were not evenly dispersed around the circumference of the eye. There was no significant difference in the length of Schlemm’s canal in the immersed versus the perfused eye (33.2 versus 35.1 mm). Structures, locations and size measurements identified by 3D micro-CT were confirmed by correlative light microscopy. These findings confirm 3D micro-CT can be used effectively for the non-invasive examination of the trabecular meshwork, Schlemm’s canal, collector channels and intrascleral vasculature that comprise the distal outflow pathway. This imaging modality will be useful for noninvasive study of the role of the trabecular outflow pathway as a whole unit. PMID:21187085

  4. Imaging the Aqueous Humor Outflow Pathway in Human Eyes by Three-dimensional Micro-computed Tomography (3D micro-CT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C Hann; M Bentley; A Vercnocke

    2011-12-31

    The site of outflow resistance leading to elevated intraocular pressure in primary open-angle glaucoma is believed to be located in the region of Schlemm's canal inner wall endothelium, its basement membrane and the adjacent juxtacanalicular tissue. Evidence also suggests collector channels and intrascleral vessels may have a role in intraocular pressure in both normal and glaucoma eyes. Traditional imaging modalities limit the ability to view both proximal and distal portions of the trabecular outflow pathway as a single unit. In this study, we examined the effectiveness of three-dimensional micro-computed tomography (3D micro-CT) as a potential method to view the trabecularmore » outflow pathway. Two normal human eyes were used: one immersion fixed in 4% paraformaldehyde and one with anterior chamber perfusion at 10 mmHg followed by perfusion fixation in 4% paraformaldehyde/2% glutaraldehyde. Both eyes were postfixed in 1% osmium tetroxide and scanned with 3D micro-CT at 2 {mu}m or 5 {mu}m voxel resolution. In the immersion fixed eye, 24 collector channels were identified with an average orifice size of 27.5 {+-} 5 {mu}m. In comparison, the perfusion fixed eye had 29 collector channels with a mean orifice size of 40.5 {+-} 13 {mu}m. Collector channels were not evenly dispersed around the circumference of the eye. There was no significant difference in the length of Schlemm's canal in the immersed versus the perfused eye (33.2 versus 35.1 mm). Structures, locations and size measurements identified by 3D micro-CT were confirmed by correlative light microscopy. These findings confirm 3D micro-CT can be used effectively for the non-invasive examination of the trabecular meshwork, Schlemm's canal, collector channels and intrascleral vasculature that comprise the distal outflow pathway. This imaging modality will be useful for non-invasive study of the role of the trabecular outflow pathway as a whole unit.« less

  5. A distance-limited sample of massive molecular outflows

    NASA Astrophysics Data System (ADS)

    Maud, L. T.; Moore, T. J. T.; Lumsden, S. L.; Mottram, J. C.; Urquhart, J. S.; Hoare, M. G.

    2015-10-01

    We have observed 99 mid-infrared-bright, massive young stellar objects and compact H II regions drawn from the Red MSX source survey in the J = 3-2 transition of 12CO and 13CO, using the James Clerk Maxwell Telescope. 89 targets are within 6 kpc of the Sun, covering a representative range of luminosities and core masses. These constitute a relatively unbiased sample of bipolar molecular outflows associated with massive star formation. Of these, 59, 17 and 13 sources (66, 19 and 15 per cent) are found to have outflows, show some evidence of outflow, and have no evidence of outflow, respectively. The time-dependent parameters of the high-velocity molecular flows are calculated using a spatially variable dynamic time-scale. The canonical correlations between the outflow parameters and source luminosity are recovered and shown to scale with those of low-mass sources. For coeval star formation, we find the scaling is consistent with all the protostars in an embedded cluster providing the outflow force, with massive stars up to ˜30 M⊙ generating outflows. Taken at face value, the results support the model of a scaled-up version of the accretion-related outflow-generation mechanism associated with discs and jets in low-mass objects with time-averaged accretion rates of ˜10-3 M⊙ yr-1 on to the cores. However, we also suggest an alternative model, in which the molecular outflow dynamics are dominated by the entrained mass and are unrelated to the details of the acceleration mechanism. We find no evidence that outflows contribute significantly to the turbulent kinetic energy of the surrounding dense cores.

  6. Molecular hydrogen fluorescence and accretion in far-ultraviolet spectra of classical T Tauri stars

    NASA Astrophysics Data System (ADS)

    Herczeg, Gregory J.

    2005-11-01

    Far-ultraviolet spectra of classical T Tauri stars reveal accretion, outflows, and H 2 fluorescence. The E140M echelle spectrograph on HST /STIS and the FUSE satellite offer high spectral resolution and broad wavelength coverage, and enables our unique and detailed analysis of the H 2 lines. A strong and broad Lya emission line excites warm H 2 into many levels of the B and C electronic states, from which we can detect as many as 200 H 2 emission lines. These H2 lines are narrow and often asymmetric, with excess blueshifted emission that can extend to 100 km s -1 from some sources. The fluorescent H 2 emission probes diverse environments around CTTSs. High spectral and spatial resolution are essential for identifying the location and studying the kinematics of the gas, which constrain the origin of the H 2 emission. Several other spectral characteristics, including absorption of H2 emission by the wind and H 2 absorption lines, also provide valuable diagnostics of the origin of this emission. The H 2 emission is most likely produced at the surface of a circumstellar disk in some sources, but is produced by outflows from other sources. DF Tau appears to show H 2 emission from both a disk and an outflow. The excitation of H 2 can be determined from relative line strengths by measuring self-absorption in lines with low-energy lower levels, or by reconstructing the Lya profile incident upon the warm H 2 using the total flux from a single upper level and the opacity in the pumping transition. Based on those diagnostics and the rich H 2 spectrum of TW Hya, the H 2 at the warm disk surface has a column density of log N (H 2 ) = [Special characters omitted.] , a temperature T = [Special characters omitted.] K, and a filling factor of H 2 , as seen by the source of Lya emission, of 0.25 +/- 0.08 (all 2s error bars). The total FUV luminosity from CTTSs ranges from 2 x 10 -3 to 3 x 10 -2 [Special characters omitted.] , much of which is in the Lya line. With the exception of the nearby CTTS TW Hya, this Lya emission is mostly or completely hidden from us by H I absorption in the interstellar medium and stellar winds. Since the H 2 emission traces the Lya emission strength at each pumping wavelength, we can reconstruct the Lya emission across the profile. At least 80% of the total FUV emission from TW Hya, DF Tau, and V836 Tau occurs in Lya. A much smaller Lya flux is produced by RU Lupi, T Tau, and DG Tau, although this estimate is affected by several uncertainties, including whether we are estimating the Lya emission produced by the accreting gas or by outflows.

  7. THE MOLECULAR WIND IN THE NEAREST SEYFERT GALAXY CIRCINUS REVEALED BY ALMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zschaechner, Laura K.; Walter, Fabian; Farina, Emanuele P.

    2016-12-01

    We present ALMA observations of the inner 1′ (1.2 kpc) of the Circinus galaxy, the nearest Seyfert. We target CO (1–0) in the region associated with a well-known multiphase outflow driven by the central active galactic nucleus (AGN). While the geometry of Circinus and its outflow make disentangling the latter difficult, we see indications of outflowing molecular gas at velocities consistent with the ionized outflow. We constrain the mass of the outflowing molecular gas to be 1.5 × 10{sup 5}−5.1 × 10{sup 6} M {sub ⊙}, yielding a molecular outflow rate of 0.35–12.3 M {sub ⊙} yr{sup −1}. The values within this range aremore » comparable to the star formation (SF) rate in Circinus, indicating that the outflow indeed regulates SF to some degree. The molecular outflow in Circinus is considerably lower in mass and energetics than previously studied AGN-driven outflows, especially given its high ratio of AGN luminosity to bolometric luminosity. The molecular outflow in Circinus is, however, consistent with some trends put forth by Cicone et al., including a linear relation between kinetic power and AGN luminosity, as well as its momentum rate versus bolometric luminosity (although the latter places Circinus among the starburst galaxies in that sample). We detect additional molecular species including CN and C{sup 17}O.« less

  8. AGN Outflow Shocks on Bonnor–Ebert Spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugan, Zachary; Silk, Joseph; Rahman, Mubdi

    Feedback from active galactic nuclei (AGNs) and subsequent jet cocoons and outflow bubbles can have a significant impact on star formation in the host galaxy. To investigate feedback physics on small scales, we perform hydrodynamic simulations of realistically fast AGN winds striking Bonnor–Ebert spheres and examine gravitational collapse and ablation. We test AGN wind velocities ranging from 300 to 3000 km s{sup −1} and wind densities ranging from 0.5 to 10 m {sub p} cm{sup −3}. We include heating and cooling of low- and high-temperature gas, self-gravity, and spatially correlated perturbations in the shock, with a maximum resolution of 0.01more » pc. We find that the ram pressure is the most important factor that determines the fate of the cloud. High ram pressure winds increase fragmentation and decrease the star formation rate, but they also cause star formation to occur on a much shorter timescale and with increased velocities of the newly formed stars. We find a threshold ram pressure of ∼2 × 10{sup −8} dyn cm{sup −2} above which stars are not formed because the resulting clumps have internal velocities large enough to prevent collapse. Our results indicate that simultaneous positive and negative feedback will be possible in a single galaxy, as AGN wind parameters will vary with location within a galaxy.« less

  9. Large-scale horizontal flows from SOUP observations of solar granulation

    NASA Astrophysics Data System (ADS)

    November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.

    1987-09-01

    Using high-resolution time-sequence photographs of solar granulation from the SOUP experiment on Spacelab 2 the authors observed large-scale horizontal flows in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into the surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.

  10. Role of Boundary Conditions in Monte Carlo Simulation of MEMS Devices

    NASA Technical Reports Server (NTRS)

    Nance, Robert P.; Hash, David B.; Hassan, H. A.

    1997-01-01

    A study is made of the issues surrounding prediction of microchannel flows using the direct simulation Monte Carlo method. This investigation includes the introduction and use of new inflow and outflow boundary conditions suitable for subsonic flows. A series of test simulations for a moderate-size microchannel indicates that a high degree of grid under-resolution in the streamwise direction may be tolerated without loss of accuracy. In addition, the results demonstrate the importance of physically correct boundary conditions, as well as possibilities for reducing the time associated with the transient phase of a simulation. These results imply that simulations of longer ducts may be more feasible than previously envisioned.

  11. Galactic-scale Feedback Observed in the 3C 298 Quasar Host Galaxy

    NASA Astrophysics Data System (ADS)

    Vayner, Andrey; Wright, Shelley A.; Murray, Norman; Armus, Lee; Larkin, James E.; Mieda, Etsuko

    2017-12-01

    We present high angular resolution multiwavelength data of the 3C 298 radio-loud quasar host galaxy (z = 1.439) taken using the W.M. Keck Observatory OSIRIS integral field spectrograph (IFS) with adaptive optics, the Atacama Large Millimeter/submillimeter Array (ALMA), the Hubble Space Telescope (HST) WFC3, and the Very Large Array (VLA). Extended emission is detected in the rest-frame optical nebular emission lines Hβ, [O III], Hα, [N II], and [S II], as well as in the molecular lines CO (J = 3‑2) and (J = 5‑4). Along the path of the relativistic jets of 3C 298, we detect conical outflows in ionized gas emission with velocities of up to 1700 {km} {{{s}}}-1 and an outflow rate of 450–1500 {M}ȯ {{yr}}-1 extended over 12 kpc. Near the spatial center of the conical outflow, CO (J = 3‑2) emission shows a molecular gas disk with a rotational velocity of ±150 {km} {{{s}}}-1 and total molecular mass ({M}{{{H}}2}) of 6.6+/- 0.36× {10}9 {M}ȯ . On the blueshifted side of the molecular disk, we observe broad extended emission that is due to a molecular outflow with a rate of 2300 {M}ȯ {{yr}}-1 and depletion timescale of 3 Myr. We detect no narrow Hα emission in the outflow regions, suggesting a limit on star formation of 0.3 {M}ȯ {{yr}}-1 {{kpc}}-2. Quasar-driven winds are evacuating the molecular gas reservoir, thereby directly impacting star formation in the host galaxy. The observed mass of the supermassive black hole is {10}9.37{--9.56} {M}ȯ , and we determine a dynamical bulge mass of {M}{bulge}=1{--}1.7× {10}10\\tfrac{R}{1.6 {kpc}} {M}ȯ . The bulge mass of 3C 298 lies 2–2.5 orders of magnitude below the expected value from the local galactic bulge—supermassive black hole mass ({M}{bulge}{--}{M}{BH}) relationship. A second galactic disk observed in nebular emission is offset from the quasar by 9 kpc, suggesting that the system is an intermediate-stage merger. These results show that galactic-scale negative feedback is occurring early in the merger phase of 3C 298, well before the coalescence of the galactic nuclei and assembly on the local {M}{bulge}{--}{M}{BH} relationship.

  12. Submesoscale features and their interaction with fronts and internal tides in a high-resolution coupled atmosphere-ocean-wave model of the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Jensen, Tommy G.; Shulman, Igor; Wijesekera, Hemantha W.; Anderson, Stephanie; Ladner, Sherwin

    2018-03-01

    Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.

  13. Does the X-ray outflow quasar PDS 456 have a UV outflow at 0.3c?

    NASA Astrophysics Data System (ADS)

    Hamann, Fred; Chartas, George; Reeves, James; Nardini, Emanuele

    2018-05-01

    The quasar PDS 456 (at redshift ˜0.184) has a prototype ultra-fast outflow (UFO) measured in X-rays. This outflow is highly ionized with relativistic speeds, large total column densities log NH(cm-2) > 23, and large kinetic energies that could be important for feedback to the host galaxy. A UV spectrum of PDS 456 obtained with the Hubble Space Telescope in 2000 contains one well-measured broad absorption line (BAL) at ˜1346 Å (observed) that might be Ly α at v ≈ 0.06c or N V λ1240 at v ≈ 0.08c. However, we use photoionization models and comparisons to other outflow quasars to show that these BAL identifications are problematic because other lines that should accompany them are not detected. We argue that the UV BAL is probably C IV at v ≈ 0.30c. This would be the fastest UV outflow ever reported, but its speed is similar to the X-ray outflow and its appearance overall is similar to relativistic UV BALs observed in other quasars. The C IV BAL identification is also supported indirectly by the tentative detection of another broad C IV line at v ≈ 0.19c. The high speeds suggest that the UV outflow originates with the X-ray UFO crudely 20-30 rg from the central black hole. We speculate that the C IV BAL might form in dense clumps embedded in the X-ray UFO, requiring density enhancements of only ≳0.4 dex compared to clumpy structures already inferred for the soft X-ray absorber in PDS 456. The C IV BAL might therefore be the first detection of low-ionization clumps proposed previously to boost the opacities in UFOs for radiative driving.

  14. The influence of the environment on the propagation of protostellar outflows

    NASA Astrophysics Data System (ADS)

    Moraghan, Anthony; Smith, Michael D.; Rosen, Alexander

    2008-06-01

    The properties of bipolar outflows depend on the structure in the environment as well as the nature of the jet. To help distinguish between the two, we investigate here the properties pertaining to the ambient medium. We execute axisymmetric hydrodynamic simulations, injecting continuous atomic jets into molecular media with density gradients (protostellar cores) and density discontinuities (thick swept-up sheets). We determine the distribution of outflowing mass with radial velocity (the mass spectrum) to quantify our approach and to compare to observationally determined values. We uncover a sequence from clump entrainment in the flanks to bow shock sweeping as the density profile steepens. We also find that the dense, highly supersonic outflows remain collimated but can become turbulent after passing through a shell. The mass spectra vary substantially in time, especially at radial speeds exceeding 15 kms-1. The mass spectra also vary according to the conditions: both envelope-type density distributions and the passage through dense sheets generate considerably steeper mass spectra than a uniform medium. The simulations suggest that observed outflows penetrate highly non-uniform media.

  15. High-Resolution X-Ray Spectroscopy and Modeling of the Absorbing and Emitting Outflow in NGC 3783

    NASA Astrophysics Data System (ADS)

    Kaspi, Shai; Brandt, W. N.; Netzer, Hagai; George, Ian M.; Chartas, George; Behar, Ehud; Sambruna, Rita M.; Garmire, Gordon P.; Nousek, John A.

    2001-06-01

    The high-resolution X-ray spectrum of NGC 3783 shows several dozen absorption lines and a few emission lines from the H-like and He-like ions of O, Ne, Mg, Si, and S, as well as from Fe XVII-Fe XXIII L-shell transitions. We have reanalyzed the Chandra HETGS spectrum using better flux and wavelength calibrations, along with more robust methods. Combining several lines from each element, we clearly demonstrate the existence of the absorption lines and determine that they are blueshifted relative to the systemic velocity by -610+/-130 km s-1. We find the Ne absorption lines in the High-Energy Grating spectrum to be resolved with FWHM=840+490-360 km s-1; no other lines are resolved. The emission lines are consistent with being at the systemic velocity. We have used regions in the spectrum where no lines are expected to determine the X-ray continuum, and we model the absorption and emission lines using photoionized-plasma calculations. The model consists of two absorption components, with different covering factors, which have an order-of-magnitude difference in their ionization parameters. The two components are spherically outflowing from the active galactic nucleus, and thus contribute to both the absorption and the emission via P Cygni profiles. The model also clearly requires O VII and O VIII absorption edges. The low-ionization component of our model can plausibly produce UV absorption lines with equivalent widths consistent with those observed from NGC 3783. However, we note that this result is highly sensitive to the unobservable UV to X-ray continuum, and the available UV and X-ray observations cannot firmly establish the relationship between the UV and X-ray absorbers. We find good agreement between the Chandra spectrum and simultaneous ASCA and RXTE observations. The 1 keV deficit previously found when modeling ASCA data probably arises from iron L-shell absorption lines not included in previous models. We also set an upper limit on the FWHM of the narrow Fe Kα emission line of 3250 km s-1. This is consistent with this line originating outside the broad-line region, possibly from a torus.

  16. Development of high-resolution two-dimensional magnetic field measurement system by use of printed-circuit technology

    NASA Astrophysics Data System (ADS)

    Akimitsu, Moe; Qinghong, Cao; Sawada, Asuka; Hatano, Hironori; Tanabe, Hiroshi; Ono, Yasushi; TS-Group Team

    2017-10-01

    We have developed a new-types of high-resolution magnetic probe array for our new magnetic reconnection experiments: TS-3U (ST, FRC: R =0.2m, 2017-) and TS-4U (ST, FRC: R =0.5m, 2018-), using the advanced printed-circuit technology. They are equipped with all three-components of magnetic pick-up coils whose size is 1-5mm x 3mm. Each coil is composed of two-sided coil pattern with line width of 0.05mm. We can install two or three printed arrays in a single glass (ceramic) tube for two or three component measurements. Based on this new probe technique, we started high-resolution and high-accuracy measurement of the current sheet thickness and studied its plasma parameter dependence. We found that the thickness of current sheet increases inversely with the guide toroidal field. It is probably determined by the ion gyroradius in agreement with the particle simulation by Horiuchi etc. While the reconnection speed is steady under low guide field condition, it is observed to oscillate in the specific range of guide field, suggesting transition from the quasi-steady reconnection to the intermittent reconnection. Cause and mechanism for intermittent reconnection will be discussed using the current sheet dissipation and dynamic balance between plasma inflow and outflow. This work supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.

  17. Driving gas shells with radiation pressure on dust in radiation-hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Costa, Tiago; Rosdahl, Joakim; Sijacki, Debora; Haehnelt, Martin G.

    2018-01-01

    We present radiation-hydrodynamic simulations of radiatively-driven gas shells launched by bright active galactic nuclei (AGN) in isolated dark matter haloes. Our goals are (1) to investigate the ability of AGN radiation pressure on dust to launch galactic outflows and (2) to constrain the efficiency of infrared (IR) multiscattering in boosting outflow acceleration. Our simulations are performed with the radiation-hydrodynamic code RAMSES-RT and include both single- and multiscattered radiation pressure from an AGN, radiative cooling and self-gravity. Since outflowing shells always eventually become transparent to the incident radiation field, outflows that sweep up all intervening gas are likely to remain gravitationally bound to their halo even at high AGN luminosities. The expansion of outflowing shells is well described by simple analytic models as long as the shells are mildly optically thick to IR radiation. In this case, an enhancement in the acceleration of shells through IR multiscattering occurs as predicted, i.e. a force \\dot{P} ≈ τ_IR L/c is exerted on the gas. For high optical depths τIR ≳ 50, however, momentum transfer between outflowing optically thick gas and IR radiation is rapidly suppressed, even if the radiation is efficiently confined. At high τIR, the characteristic flow time becomes shorter than the required trapping time of IR radiation such that the momentum flux \\dot{P} ≪ τ_IR L/c. We argue that while unlikely to unbind massive galactic gaseous haloes, AGN radiation pressure on dust could play an important role in regulating star formation and black hole accretion in the nuclei of massive compact galaxies at high redshift.

  18. From Cores to Envelopes to Disks: A Multi-scale View of Magnetized Star Formation

    NASA Astrophysics Data System (ADS)

    Hull, Charles L. H.

    2014-12-01

    Observations of polarization in star forming regions have been made across many wavelengths, many size scales, and many stages of stellar evolution. One of the overarching goals of these observations has been to determine the importance of magnetic fields -- which are the cause of the polarization -- in the star formation process. We begin by describing the commissioning and the calibration of the 1.3 mm dual-polarization receiver system we built for CARMA (the Combined Array for Research in Millimeter-wave Astronomy), a radio telescope in the eastern Sierra region of California. One of the primary science drivers behind the polarization system is to observe polarized thermal emission from dust grains in the dense clumps of dust and gas where the youngest, Class 0 protostars are forming. We go on to describe the CARMA TADPOL survey -- the largest high-resolution (~1000 AU scale) survey to date of dust polarization in low-mass protostellar cores -- and discuss our main findings: (1) Magnetic fields (B-fields) on scales of ~1000 AU are not tightly aligned with protostellar outflows. Rather, the data are consistent both with scenarios where outflows and magnetic fields are preferentially misaligned (perpendicular) and where they are randomly aligned. (2) Sources with high CARMA polarization fractions have consistent B-field orientations on large scales (~20'', measured using single-dish submillimeter telescopes) and small scales (~2.5'', measured by CARMA). We interpret this to mean that in at least some cases B-fields play a role in regulating the infall of material all the way down to the ~1000 AU scales of protostellar envelopes. Finally, (3) While on the whole outflows appear to be randomly aligned with B-fields, in sources with low polarization fractions there is a hint that outflows are preferentially perpendicular to small-scale B-fields, which suggests that in these sources the fields have been wrapped up by envelope rotation. This work shows that the ~1000 AU protostellar envelope may be a turning point: at larger scales B-fields may still retain the memory of the global B-field drawn in from the ambient medium; but at smaller scales the B-fields may be affected by the dynamics of both envelope and disk rotation. This sets the stage for ALMA (the Atacama Large Millimeter/submillimeter Array), which will soon reveal the morphology of B-fields in circumstellar disks themselves.

  19. Comparing the contributions of ionospheric outflow and high-altitude production to O+ loss at Mars

    NASA Astrophysics Data System (ADS)

    Liemohn, Michael; Curry, Shannon; Fang, Xiaohua; Johnson, Blake; Fraenz, Markus; Ma, Yingjuan

    2013-04-01

    The Mars total O+ escape rate is highly dependent on both the ionospheric and high-altitude source terms. Because of their different source locations, they appear in velocity space distributions as distinct populations. The Mars Test Particle model is used (with background parameters from the BATS-R-US magnetohydrodynamic code) to simulate the transport of ions in the near-Mars space environment. Because it is a collisionless model, the MTP's inner boundary is placed at 300 km altitude for this study. The MHD values at this altitude are used to define an ionospheric outflow source of ions for the MTP. The resulting loss distributions (in both real and velocity space) from this ionospheric source term are compared against those from high-altitude ionization mechanisms, in particular photoionization, charge exchange, and electron impact ionization, each of which have their own (albeit overlapping) source regions. In subsequent simulations, the MHD values defining the ionospheric outflow are systematically varied to parametrically explore possible ionospheric outflow scenarios. For the nominal MHD ionospheric outflow settings, this source contributes only 10% to the total O+ loss rate, nearly all via the central tail region. There is very little dependence of this percentage on the initial temperature, but a change in the initial density or bulk velocity directly alters this loss through the central tail. However, a density or bulk velocity increase of a factor of 10 makes the ionospheric outflow loss comparable in magnitude to the loss from the combined high-altitude sources. The spatial and velocity space distributions of escaping O+ are examined and compared for the various source terms, identifying features specific to each ion source mechanism. These results are applied to a specific Mars Express orbit and used to interpret high-altitude observations from the ion mass analyzer onboard MEX.

  20. The CHESS Survey of the L1157-B1 Shock Region: CO Spectral Signatures of Jet-driven Bow Shocks

    NASA Astrophysics Data System (ADS)

    Lefloch, B.; Cabrit, S.; Busquet, G.; Codella, C.; Ceccarelli, C.; Cernicharo, J.; Pardo, J. R.; Benedettini, M.; Lis, D. C.; Nisini, B.

    2012-10-01

    The unprecedented sensitivity of Herschel coupled with the high resolution of the HIFI spectrometer permits studies of the intensity-velocity relationship I(v) in molecular outflows, over a higher excitation range than possible up to now. Over the course of the CHESS Key Program, we have observed toward the bright bow shock region L1157-B1, the CO rotational transitions between J = 5-4 and J = 16-15 with HIFI, and the J = 1-0, 2-1, and 3-2 with the IRAM 30 m and the Caltech Submillimeter Observatory telescopes. We find that all the line profiles I CO(v) are well fit by a linear combination of three exponential laws vpropexp (- |v/v 0|) with v 0 = 12.5, 4.4, and 2.5 km s-1. The first component dominates the CO emission at J >= 13, as well as the high-excitation lines of SiO and H2O. The second component dominates for 3 <= J up <= 10 and the third one for J up <= 2. We show that these exponentials are the signature of quasi-isothermal shocked gas components: the impact of the jet against the L1157-B1 bow shock (T k ~= 210 K), the walls of the outflow cavity associated with B1 (T k ~= 64 K), and the older cavity L1157-B2 (T k ~= 23 K), respectively. Analysis of the CO line flux in the large-velocity gradient approximation further shows that the emission arises from dense gas (n(H2) >= 105-106 cm-3) close to LTE up to J = 20. We find that the CO J = 2-1 intensity-velocity relation observed in various other molecular outflows is satisfactorily fit by similar exponential laws, which may hold an important clue to their entrainment process.

  1. The Soft X-ray View of Ultra Fast Outflows

    NASA Astrophysics Data System (ADS)

    Reeves, J.; Braito, V.; Nardini, E.; Matzeu, G.; Lobban, A.; Costa, M.; Pounds, K.; Tombesi, F.; Behar, E.

    2017-10-01

    The recent large XMM-Newton programmes on the nearby quasars PDS 456 and PG 1211+143 have revealed prototype ultra fast outflows in the iron K band through highly blue shifted absorption lines. The wind velocities are in excess of 0.1c and are likely to make a significant contribution to the host galaxy feedback. Here we present evidence for the signature of the fast wind in the soft X-ray band from these luminous quasars, focusing on the spectroscopy with the RGS. In PDS 456, the RGS spectra reveal the presence of soft X-ray broad absorption line profiles, which suggests that PDS 456 is an X-ray equivalent to the BAL quasars, with outflow velocities reaching 0.2c. In PG 1211, the soft X-ray RGS spectra show a complex of several highly blue shifted absorption lines over a wide range of ionisation and reveal outflowing components with velocities between 0.06-0.17c. For both quasars, the soft X-ray absorption is highly variable, even on timescales of days and is most prominent when the quasar flux is low. Overall the results imply the presence of a soft X-ray component of the ultra fast outflows, which we attribute to a clumpy or inhomogeneous phase of the disk wind.

  2. X-ray evidence for ultra-fast outflows in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Braito, Valentina; Reeves, James; Cappi, Massimo; Dadina, Mauro

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts observed with XMM-Newton. Similar results are also obtained from a Suzaku analysis of 5 radio galaxies. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1}. The associated mechanical power is also high, in the range ˜10^{43}--10^{45} erg/s, which indicates that UFOs are capable to provide a significant contribution to the AGN cosmological feedback.

  3. ALMA [C I] observations toward the central region of Seyfert galaxy NGC 613

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yusuke; Seta, Masumichi; Nakai, Naomasa; Watanabe, Yoshimasa; Salak, Dragan; Ishii, Shun

    2018-06-01

    We report ALMA observations of [C I](3P1 - 3P0), 13CO, and C18O(J = 1-0) toward the central region of a nearby Seyfert galaxy NGC 613. The very high resolutions of 0{^''.}26 × 0{^''.}23 (=22 × 20 pc) for [C I] and 0{^''.}42 × 0{^''.}35 (=36 × 30 pc) for 13CO, and C18O resolve the circumnuclear disk (CND) and star-forming ring. The distribution of [C I] in the ring resembles that of the CO emission, although [C I] is prominent in the CND. This can be caused by the low intensities of the CO isotopes due to the low optical depths under the high temperature in the CND. We found that the intensity ratios of [C I] to 12CO(3-2) (R_{CI/CO}) and to 13CO(1-0) (R_{CI/^{13}CO}) are high at several positions around the edge of the ring. The spectral profiles of CO lines mostly correspond each other in the spots of the ring and high R_{CI/CO}, but those of [C I] at spots of high R_{CI/CO} are different from those of CO. These results indicate that [C I] at the high R_{CI/CO} traces different gas from that traced by the CO lines. The [C I] kinematics along the minor axis of NGC 613 could be interpreted as a bubbly molecular outflow. The outflow rate of molecular gas is higher than star formation rate in the CND. The flow could be mainly boosted by the active galactic nucleus through its radio jets.

  4. ALMA [C I] observations toward the central region of Seyfert galaxy NGC 613

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yusuke; Seta, Masumichi; Nakai, Naomasa; Watanabe, Yoshimasa; Salak, Dragan; Ishii, Shun

    2018-04-01

    We report ALMA observations of [C I](3P1 - 3P0), 13CO, and C18O(J = 1-0) toward the central region of a nearby Seyfert galaxy NGC 613. The very high resolutions of 0{^''.}26 × 0{^''.}23 (=22 × 20 pc) for [C I] and 0{^''.}42 × 0{^''.}35 (=36 × 30 pc) for 13CO, and C18O resolve the circumnuclear disk (CND) and star-forming ring. The distribution of [C I] in the ring resembles that of the CO emission, although [C I] is prominent in the CND. This can be caused by the low intensities of the CO isotopes due to the low optical depths under the high temperature in the CND. We found that the intensity ratios of [C I] to 12CO(3-2) (R_C {I/CO}) and to 13CO(1-0) (R_C {I/^{13}CO}) are high at several positions around the edge of the ring. The spectral profiles of CO lines mostly correspond each other in the spots of the ring and high R_C {I/CO}, but those of [C I] at spots of high R_C {I/CO} are different from those of CO. These results indicate that [C I] at the high R_C {I/CO} traces different gas from that traced by the CO lines. The [C I] kinematics along the minor axis of NGC 613 could be interpreted as a bubbly molecular outflow. The outflow rate of molecular gas is higher than star formation rate in the CND. The flow could be mainly boosted by the active galactic nucleus through its radio jets.

  5. High-resolution monitoring of stormwater quality in an urbanising catchment in the United Kingdom during the 2013/2014 winter storms

    NASA Astrophysics Data System (ADS)

    McGrane, S. J.; Hutchins, M. G.; Kjeldsen, T. R.; Miller, J. D.; Bussi, G.; Loewenthal, M.

    2015-12-01

    Urban areas are widely recognised as a key source of contaminants entering our freshwater systems, yet in spite of this, our understanding of stormwater quality dynamics remains limited. The development of in-situ, high-resolution monitoring equipment has revolutionised our capability to capture flow and water quality data at a sub-hourly resolution, enabling us to potentially enhance our understanding of hydrochemical variations from contrasting landscapes during storm events. During the winter of 2013/2014, the United Kingdom experienced a succession of intense storm events, where the south of the country experienced 200% of the average rainfall, resulting in widespread flooding across the Thames basin. We applied high-frequency (15 minute resolution) water quality monitoring across ten contrasting subcatchments (including rural, urban and mixed land-use catchments), seeking to classify the disparity in water quality conditions both within- and between events. Rural catchments increasingly behave like "urban" catchments as soils wet up and become increasingly responsive to subsequent events, however water quality response during the winter months remains limited. By contrast, increasingly urban catchments yield greater contaminant loads during events, and pre-event baseline chemistry highlights a resupply source in dense urban catchments. Wastewater treatment plants were shown to dominate baseline chemistry during low-flow events but also yield a considerable impact on stormwater outputs during peak-flow events, as hydraulic push results in the outflow of untreated solid wastes into the river system. Results are discussed in the context of water quality policy; urban growth scenarios and BMP for stormwater runoff in contrasting landscapes.

  6. Intermediate scale plasma density irregularities in the polar ionosphere inferred from radio occultation

    NASA Astrophysics Data System (ADS)

    Shume, E. B.; Komjathy, A.; Langley, R. B.; Verkhoglyadova, O. P.; Butala, M.; Mannucci, A. J.

    2014-12-01

    In this research, we report intermediate scale plasma density irregularities in the high-latitude ionosphere inferred from high-resolution radio occultation (RO) measurements in the CASSIOPE (CAScade Smallsat and IOnospheric Polar Explorer) - GPS (Global Positioning System) satellites radio link. The high inclination of the CASSIOPE satellite and high rate of signal receptionby the occultation antenna of the GPS Attitude, Positioning and Profiling (GAP) instrument on the Enhanced Polar Outflow Probe platform on CASSIOPE enable a high temporal and spatial resolution investigation of the dynamics of the polar ionosphere, magnetosphere-ionospherecoupling, solar wind effects, etc. with unprecedented details compared to that possible in the past. We have carried out high spatial resolution analysis in altitude and geomagnetic latitude of scintillation-producing plasma density irregularities in the polar ionosphere. Intermediate scale, scintillation-producing plasma density irregularities, which corresponds to 2 to 40 km spatial scales were inferred by applying multi-scale spectral analysis on the RO phase delay measurements. Using our multi-scale spectral analysis approach and Polar Operational Environmental Satellites (POES) and Defense Meteorological Satellite Program (DMSP) observations, we infer that the irregularity scales and phase scintillations have distinct features in the auroral oval and polar cap regions. In specific terms, we found that large length scales and and more intense phase scintillations are prevalent in the auroral oval compared to the polar cap region. Hence, the irregularity scales and phase scintillation characteristics are a function of the solar wind and the magnetospheric forcing. Multi-scale analysis may become a powerful diagnostic tool for characterizing how the ionosphere is dynamically driven by these factors.

  7. PROTOSTELLAR OUTFLOWS AND RADIATIVE FEEDBACK FROM MASSIVE STARS. II. FEEDBACK, STAR-FORMATION EFFICIENCY, AND OUTFLOW BROADENING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuiper, Rolf; Turner, Neal J.; Yorke, Harold W., E-mail: rolf.kuiper@uni-tuebingen.de, E-mail: Neal.J.Turner@jpl.nasa.gov, E-mail: Harold.W.Yorke@jpl.nasa.gov

    2016-11-20

    We perform two-dimensional axially symmetric radiation hydrodynamic simulations to assess the impact of outflows and radiative force feedback from massive protostars by varying when the protostellar outflow starts, and to determine the ratio of ejection to accretion rates and the strength of the wide-angle disk wind component. The star-formation efficiency, i.e., the ratio of final stellar mass to initial core mass, is dominated by radiative forces and the ratio of outflow to accretion rates. Increasing this ratio has three effects. First, the protostar grows slower with a lower luminosity at any given time, lowering radiative feedback. Second, bipolar cavities clearedmore » by the outflow become larger, further diminishing radiative feedback on disk and core scales. Third, the higher momentum outflow sweeps up more material from the collapsing envelope, decreasing the protostar's potential mass reservoir via entrainment. The star-formation efficiency varies with the ratio of ejection to accretion rates from 50% in the case of very weak outflows to as low as 20% for very strong outflows. At latitudes between the low-density bipolar cavity and the high-density accretion disk, wide-angle disk winds remove some of the gas, which otherwise would be part of the accretion flow onto the disk; varying the strength of these wide-angle disk winds, however, alters the final star-formation efficiency by only ±6%. For all cases, the opening angle of the bipolar outflow cavity remains below 20° during early protostellar accretion phases, increasing rapidly up to 65° at the onset of radiation pressure feedback.« less

  8. Broad [C II] Line Wings as Tracer of Molecular and Multi-phase Outflows in Infrared Bright Galaxies

    NASA Astrophysics Data System (ADS)

    Janssen, A. W.; Christopher, N.; Sturm, E.; Veilleux, S.; Contursi, A.; González-Alfonso, E.; Fischer, J.; Davies, R.; Verma, A.; Graciá-Carpio, J.; Genzel, R.; Lutz, D.; Sternberg, A.; Tacconi, L.; Burtscher, L.; Poglitsch, A.

    2016-05-01

    We report a tentative correlation between the outflow characteristics derived from OH absorption at 119 μm and [C II] emission at 158 μm in a sample of 22 local and bright ultraluminous infrared galaxies (ULIRGs). For this sample, we investigate whether [C II] broad wings are a good tracer of molecular outflows, and how the two tracers are connected. Fourteen objects in our sample have a broad wing component as traced by [C II], and all of these also show OH119 absorption indicative of an outflow (in one case an inflow). The other eight cases, where no broad [C II] component was found, are predominantly objects with no OH outflow or a low-velocity (≤100 km s-1) OH outflow. The FWHM of the broad [C II] component shows a trend with the OH119 blueshifted velocity, although with significant scatter. Moreover, and despite large uncertainties, the outflow masses derived from OH and broad [C II] show a 1:1 relation. The main conclusion is therefore that broad [C II] wings can be used to trace molecular outflows. This may be particularly relevant at high redshift, where the usual tracers of molecular gas (like low-J CO lines) become hard to observe. Additionally, observations of blueshifted Na I D λλ 5890, 5896 absorption are available for 10 of our sources. Outflow velocities of Na I D show a trend with OH velocity and broad [C II] FWHM. These observations suggest that the atomic and molecular gas phases of the outflow are connected.

  9. An X-ray/SDSS sample. I. Multi-phase outflow incidence and dependence on AGN luminosity

    NASA Astrophysics Data System (ADS)

    Perna, M.; Lanzuisi, G.; Brusa, M.; Mignoli, M.; Cresci, G.

    2017-07-01

    Aims: The connection between the growth of super-massive black holes (SMBHs) and the evolution of their host galaxies is nowadays well established, although the underlying mechanisms explaining their mutual relations are still debated. Multi-phase fast, massive outflows have been postulated to play a crucial role in this process. The aim of this work is to constrain the nature and the fraction of outflowing gas in active galactic nuclei (AGNs) as well as the nuclear conditions possibly at the origin of such phenomena. Methods: We present a large spectroscopic sample of X-ray detected SDSS AGNs at z< 0.8 with a high signal-to-noise ratio in the [O III]λ5007 line to unveil the faint wings of the emission profile associated with AGN-driven outflows. We used X-ray and optical flux ratio diagnostics to select the sample. We derived physical and kinematic characterization by re-analysing optical (and X-ray) spectra. Results: We derive the incidence of ionized ( 40%) and atomic (<1%) outflows covering a wide range of AGN bolometric luminosity from 1042 to 1046 erg/s. We also derive bolometric luminosities and X-ray bolometric corrections to test whether the presence of outflows is associated with an X-ray loudness, as suggested by our recent results obtained by studying high-z QSOs. Conclusions: We study the relations between the outflow velocity inferred from [O III] kinematic analysis and different AGN power tracers, such as black hole mass (MBH), [O III], and X-ray luminosity. We show a well-defined positive trend between outflow velocity and LX, for the first time, over a range of 5 order of magnitudes. Overall, we find that in the QSO-luminosity regime and at MBH> 108M⊙ the fraction of AGNs with outflows becomes >50%. Finally, we discuss our results about X-ray bolometric corrections and outflow incidence in cold and ionized phases in the context of an evolutionary sequence allowing two distinct stages for the feedback phase: first, an initial stage characterized by X-ray/optical obscured AGNs, in which the atomic gas is still present in the ISM and the outflow processes involve all the gas components and, second, a later stage associated with unobscured AGNs, in which the line of sight has been cleaned and the cold components have been heated or exhausted.

  10. FLOWS AND WAVES IN BRAIDED SOLAR CORONAL MAGNETIC STRUCTURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pant, V.; Datta, A.; Banerjee, D., E-mail: vaibhav@iiap.res.in

    We study the high frequency dynamics in the braided magnetic structure of an active region (AR 11520) moss as observed by the High-Resolution Coronal Imager (Hi-C). We detect quasi-periodic flows and waves in these structures. We search for high frequency dynamics while looking at power maps of the observed region. We find that shorter periodicities (30–60 s) are associated with small spatial scales which can be resolved by Hi-C only. We detect quasi-periodic flows with a wide range of velocities, from 13–185 km s{sup −1}, associated with braided regions. This can be interpreted as plasma outflows from reconnection sites. Wemore » also find short period and large amplitude transverse oscillations associated with the braided magnetic region. Such oscillations could be triggered by reconnection or such oscillations may trigger reconnection.« less

  11. Can Radio Emission From Luminous Obscured AGN Blow Kpc-scale Ionized Outflows?

    NASA Astrophysics Data System (ADS)

    Goulding, Andy

    2017-09-01

    We propose joint VLA radio and Chandra X-ray to observe 4 AGN selected from the SDSS-BOSS and the Hyper Suprime-Cam surveys that present spectacular extended outflowing [O III] regions, reaching up to 50kpc in diameter. Our proposed observations allow us to study the mechanical and kinematical output of the AGN through radio and X-ray observations, measure the fraction of the AGN bolometric luminosity that is transferred to the outflow, and to determine the morphology and spectral index (by producing high-res continuum maps) of the radio emission that may be co-spatial with the extended ionized AGN outflow. In turn, our study will determine what role the AGN plays in producing extended outflows, and hence, provide an in-depth understanding of the physical drivers of AGN feedback.

  12. Cumulative neutrino background from quasar-driven outflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiawei; Loeb, Abraham, E-mail: xiawei.wang@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu

    2016-12-01

    Quasar-driven outflows naturally account for the missing component of the extragalactic γ-ray background through neutral pion production in interactions between protons accelerated by the forward outflow shock and interstellar protons. We study the simultaneous neutrino emission by the same protons. We adopt outflow parameters that best fit the extragalactic γ-ray background data and derive a cumulative neutrino background of ∼ 10{sup −7} GeV cm{sup −2} s{sup −1} sr{sup −1} at neutrino energies E {sub ν} ∼> 10 TeV, which naturally explains the most recent IceCube data without tuning any free parameters. The link between the γ-ray and neutrino emission frommore » quasar outflows can be used to constrain the high-energy physics of strong shocks at cosmological distances.« less

  13. The structure and nature of NGC 2017 IRS. 1: High-resolution radio continuum maps

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Beck, Sara C.

    1994-01-01

    We have observed the star formation cluster NGC 2071 IRS 1, 2, and 3, with 0.14 sec spatial resolution at 2 cm. The strong source IRS 1 breaks up into a bright peak sitting on a narrow line emission extending over about 400 AU, with three much weaker peaks. This ridge, which has a p.a. = 100 deg, is not aligned with any of the other structures that have previously been seen around IRS 1: its orientation is about 55 deg from the CO outflow direction, and 35 deg from a hypothetical disk direction. The spectral and spatial results, combined with earlier radio and infrared observations, indicate that most likely the radio and infrared emission from the exciting source, IRS 1, is produced by a dense wind hidden by at least 100 visual magnitudes of extinction; the extended ridge of emission comes from an optically thin H II region with characteristic dimensions of approximately AU and which may result from a clumpy distribution of local gas and dust.

  14. The formation of disc galaxies in high-resolution moving-mesh cosmological simulations

    NASA Astrophysics Data System (ADS)

    Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker

    2014-01-01

    We present cosmological hydrodynamical simulations of eight Milky Way-sized haloes that have been previously studied with dark matter only in the Aquarius project. For the first time, we employ the moving-mesh code AREPO in zoom simulations combined with a comprehensive model for galaxy formation physics designed for large cosmological simulations. Our simulations form in most of the eight haloes strongly disc-dominated systems with realistic rotation curves, close to exponential surface density profiles, a stellar mass to halo mass ratio that matches expectations from abundance matching techniques, and galaxy sizes and ages consistent with expectations from large galaxy surveys in the local Universe. There is no evidence for any dark matter core formation in our simulations, even so they include repeated baryonic outflows by supernova-driven winds and black hole quasar feedback. For one of our haloes, the object studied in the recent `Aquila' code comparison project, we carried out a resolution study with our techniques, covering a dynamic range of 64 in mass resolution. Without any change in our feedback parameters, the final galaxy properties are reassuringly similar, in contrast to other modelling techniques used in the field that are inherently resolution dependent. This success in producing realistic disc galaxies is reached, in the context of our interstellar medium treatment, without resorting to a high density threshold for star formation, a low star formation efficiency, or early stellar feedback, factors deemed crucial for disc formation by other recent numerical studies.

  15. A physiological model for the investigation of esophageal motility in healthy and pathologic conditions.

    PubMed

    Carniel, Emanuele Luigi; Frigo, Alessandro; Costantini, Mario; Giuliani, Tommaso; Nicoletti, Loredana; Merigliano, Stefano; Natali, Arturo N

    2016-07-15

    Recent technological advances in esophageal manometry allowed the definition of new classification methods for the diagnosis of disorders of esophageal motility and the implementation of innovative computational tools for the autonomic, reliable and unbiased detection of different disorders. Computational models can be developed aiming to interpret the mechanical behavior and functionality of the gastrointestinal tract and to summarize the results from clinical measurements, as high-resolution manometry pressure plots, into model parameters. A physiological model was here developed to interpret data from esophageal high-resolution manometry. Such model accounts for parameters related to specific physiological properties of the biological structures involved in the peristaltic mechanism. The identification of model parameters was performed by minimizing the discrepancy between clinical data from high-resolution manometry and model results. Clinical data were collected from both healthy volunteers (n = 35) and patients with different motor disorders, such as achalasia patterns 1 (n = 13), 2 (n = 20) and 3 (n = 5), distal esophageal spasm (n = 69), esophago-gastric junction outflow obstruction (n = 25), nutcracker esophagus (n = 11) and normal motility (n = 42). The physiological model that was formulated in this work can properly explain high-resolution manometry data, as confirmed by the evaluation of the coefficient of determination R 2  = 0.83 - 0.96. The study finally led to identify the statistical distributions of model parameters for each healthy or pathologic conditions considered, addressing the applicability of the achieved results for the implementation of autonomic diagnosis procedures to support the medical staff during the traditional diagnostic process. © IMechE 2016.

  16. Mapping the Fresh-Salt Water Interaction in the Coastal Zone Using High Resolution Airborne Electromagnetics

    NASA Astrophysics Data System (ADS)

    Auken, E.; Pedersen, J. B. B.; Christiansen, A. V.; Foged, N.; Schaars, F.; Rolf, H.

    2016-12-01

    During the last decade airborne electromagnetics (AEM) and the accompanying data processing and inversion algorithms have undergone huge developments in terms of technology, costs, and reliability. This has expanded the scope of AEM from mainly mineral exploration to geotechnical applications and groundwater resource mapping. In this abstract we present a case with generally applicable results where AEM is used to map saltwater intrusion as well as outflow of fresh water to the sea. The survey took place on the Dutch coast in 2011 and is composed of a detailed inland coastal mapping as well as lines extending kilometres into the North Sea. It adds further complications that the area has a dense infrastructure and rapid varying dune topography causing the need for cautious data processing. We use the high resolution AEM system SkyTEM and data processing and inversion in the Aarhus Workbench. On the inland side, the results show a high resolution image of the fresh water interface and the interaction with clay layers acting as barriers. On the sea side they show a picture of freshwater plumes being pushed several hundred meters under the sea. The last mentioned information was actually the main purpose of the survey as this information could hardly be obtained by other methods and it is decisive for the total water balance of the system. The case shows an example of an AEM survey resulting in a high resolution image of the entire coastal zone. The technology is applicable in all coastal zones in the world and if applied it would lead to much improved management of the water resources in these landscapes.

  17. High-Resolution Infrared Imaging and Polarimetry plus Spectroscopy of Evolved Red and Yellow Supergiants

    NASA Astrophysics Data System (ADS)

    Gordon, Michael Scott; Humphreys, Roberta; Jones, Terry J.; Gehrz, Robert D.

    2018-01-01

    To what extent mass loss and periods of enhanced stellar outflow can influence the terminal state of the most massive stars remains an outstanding question in the fields of stellar physics, chemical enrichment of the Local Universe, andsupernova research. For my dissertation, I focus on characterizing the stellar ejecta around supergiants through a combination of observing techniques. Using the LBT, MMT, IRTF, VLT, and SOFIA observatories, I have performed high-resolution imaging, spectroscopy, and polarimetry—methods that provide us with keen insight on mass-loss histories and 3D morphology of the Local Group's most fascinating stars.Based on spectroscopic evidence for mass loss in the optical and the presence ofcircumstellar (CS) dust in infrared SEDs, we find that 30%–40% of observed yellow supergiants in M31 and M33 are likely in a post-RSG state. We also presentnear-IR spectra from IRTF/SPeX of optically-obscured RSGs in M33. These IR-bright sources likely have some of the highest mass-loss rates and are self-obscured in the optical by their own CS ejecta. For Galactic red supergiants (RSGs), we are able to observe the gas and CS dust ejecta both close in to the central star and at larger distances. The resulting radial profiles are valuable probes on timescale for the ejecta when combined with radiative-transfer models. We find evidence for both variable/high mass-loss events and constant mass loss over the last few thousand years. Finally, we discuss the use of high-resolution imaging polarimetry with VLT/NACO of two co-eval RSG clusters toward the Galactic center. The resulting polarized intensity images in the near-infrared provide unprecedented spatial and contrast resolution of the scattered light from extended nebular material.

  18. The Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO)

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Bookbinder, Jay; Petre, Robert; Smith, Randall; Ptak, Andrew; Tananbaum, Harvey; Garcia, Michael

    2012-01-01

    Following recommendations from the 2010 "New Worlds, New Horizons" (NWNH) report, the Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO) concept streamlines the International X-ray Observatory (IXO) mission to concentrate on the science objectives that are enabled by high-resolution spectroscopic capabilities. AXSIO will trace orbits close to the event horizon of black holes, measure black hole spin for tens of supermassive black holes (SMBH), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, observe 5MBH out to redshift z=6, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes and supernovae inject energy on galactic and intergalactic scales. These measurements are enabled by a 0.9 sq m collecting area at 1.25 keV, a micro calorimeter array providing high-resolution spectroscopic imaging and a deployable high efficiency grating spectrometer. AXSIO delivers a 30-fold increase in effective area for high resolution spectroscopy. The key simplifications are guided by recommendations in the NWNH panel report include a reduction in focal length from 20m to 10m, eliminating the extendable optical bench, and a reduction in the instrument complement from six to two, avoiding a movable instrument platform. A focus on spectroscopic science allows the spatial resolution requirement to be relaxed to 10 arc sec (with a 5 arc sec goal). These simplifications decrease the total mission cost to under the $2B cost to NASA recommended by NWNH. AXSIO will be available to the entire astronomical community with observing allocations based on peer-review.

  19. Gastroesophageal reflux symptoms are not sufficient to guide esophageal function testing in lung transplant candidates.

    PubMed

    Posner, S; Zheng, J; Wood, R K; Shimpi, R A; Hartwig, M G; Chow, S-C; Leiman, D A

    2018-05-01

    Gastroesophageal reflux disease and esophageal dysmotility are prevalent in patients with advanced lung disease and are associated with graft dysfunction following lung transplantation. As a result, many transplant centers perform esophageal function testing as part of the wait-listing process but guidelines for testing in this population are lacking. The aim of this study is to describe whether symptoms of gastroesophageal reflux correlate with abnormal results on pH-metry and high-resolution manometry and can be used to identify those who require testing. We performed a retrospective cohort study of 226 lung transplant candidates referred for high-resolution manometry and pH-metry over a 12-month period in 2015. Demographic data, results of a standard symptom questionnaire and details of esophageal function testing were obtained. Associations between the presence of symptoms and test results were analyzed using Fisher's exact tests and multivariable logistic regression. The most common lung disease diagnosis was interstitial lung disease (N = 131, 58%). Abnormal pH-metry was seen in 116 (51%) patients and the presence of symptoms was significantly associated with an abnormal study (p < 0.01). Dysmotility was found in 98 (43%) patients, with major peristaltic or esophageal outflow disorders in 45 (20%) patients. Symptoms were not correlated with findings on esophageal high-resolution manometry. Fifteen of 25 (60%) asymptomatic patients had an abnormal manometry or pH-metry. These results demonstrate that in patients with advanced lung disease, symptoms of gastroesophageal reflux increase the likelihood of elevated acid exposure on pH-metry but were not associated with dysmotility. Given the proportion of asymptomatic patients with abnormal studies and associated post-transplant risks, a practice of universal high-resolution manometry and pH-metry testing in this population is justifiable.

  20. A Compact L-band Radiometer for High Resolution sUAS-based Imaging of Soil Moisture and Surface Salinity Variations

    NASA Astrophysics Data System (ADS)

    Gasiewski, A. J.; Stachura, M.; Dai, E.; Elston, J.; McIntyre, E.; Leuski, V.

    2014-12-01

    Due to the long electrical wavelengths required along with practical aperture size limitations the scaling of passive microwave remote sensing of soil moisture and salinity from spaceborne low-resolution (~10-100 km) applications to high resolution (~10-1000 m) applications requires use of low flying aerial vehicles. This presentation summarizes the status of a project to develop a commercial small Unmanned Aerial System (sUAS) hosting a microwave radiometer for mapping of soil moisture in precision agriculture and sea surface salinity studies. The project is based on the Tempest electric-powered UAS and a compact L-band (1400-1427 MHz) radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated sUAS/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a unique lobe-differencing correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAS above the surface while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer has been tested using analog correlation detection, although future builds will include infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction and digital sampling for radio frequency interference mitigation. This NASA-sponsored project is being developed for commercial application in cropland water management (for example, high-value shallow root-zone crops), landslide risk assessment, NASA SMAP satellite validation, and NASA Aquarius salinity stratification studies. The system will ultimately be capable of observing salinity events caused by coastal glacier and estuary fresh water outflow plumes and open ocean rainfall events.

  1. Acoustic imaging of the Mediterranean water outflowing through the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    Biescas Gorriz, Berta; Carniel, Sandro; Sallarès, Valentí; Rodriguez Ranero, Cesar

    2016-04-01

    Acoustic imaging of the Mediterranean water outflowing through the Strait of Gibraltar Berta Biescas (1), Sandro Carniel (2) , Valentí Sallarès (3) and Cesar R. Ranero(3) (1) Istituto di Scienze Marine, CNR, Bologna, Italy (2) Istituto di Scienze Marine, CNR, Venice, Italy (3) Institut de Ciències del Mar, CSIC, Barcelona, Spain Acoustic reflectivity acquired with multichannel seismic reflection (MCS) systems allow to detect and explore the thermohaline structure in the ocean with vertical and lateral resolutions in the order of 10 m, covering hundreds of kilometers in the lateral dimension and the full-depth water column. In this work we present a MCS 2D profile that crosses the Strait of Gibraltar, from the Alboran Sea to the internal Gulf of Cadiz (NE Atlantic Ocean). The MCS data was acquired during the Topomed-Gassis Cruise (European Science Foundation TopoEurope), which was carried out on board of the Spanish R/V Sarmiento de Gamboa in October 2011. The strong thermohaline contrast between the Mediterranean water and the Atlantic water, characterizes this area and allows to visualize, with unprecedented resolution, the acoustic reflectivity associated to the dense flow of the Mediterranean water outflowing through the prominent slope of the Strait of Gibraltar. During the first kilometers, the dense flow drops attached to the continental slope until it reaches the buoyancy depth at 700 m. Then, it detaches from the sea floor and continues flowing towards the Atlantic Ocean, occupying the layer at 700-1500 m deep and developing clear staircase layers. The reflectivity images display near seabed reflections that could well correspond to turbidity layers. The XBT data acquired coincident in time and space with the MCS data will help us in the interpretation and analysis of the acoustic data.

  2. The Mass Outflow Rate of the Milky Way

    NASA Astrophysics Data System (ADS)

    Fox, Andrew

    2017-08-01

    The balance between gaseous inflow and outflow regulates star formation in spiral galaxies. This paradigm can be tested in the Milky Way, but whereas the star formation rate and inflow rate have both been measured, the outflow rate has not. We propose an archival COS program to determine the Galactic outflow rate in cool gas ( 10^4 K) by surveying UV absorption line high-velocity clouds (HVCs). This project will make use of the newly updated Hubble Spectroscopic Legacy Archive, which contains a uniformly reduced sample of 233 COS G130M spectra of background AGN. The outflow rate will be determined by (1) searching for redshifted HVCs; (2) modeling the clouds with photoionization simulations to determine their masses and physical properties; (3) combining the cloud masses with their velocities and distances. We will measure how the outflow is distributed spatially across the sky, calculate its mass loading factor, and compare the line profiles to synthetic spectra extracted from new hydrodynamic simulations. The distribution of HVC velocities will inform us what fraction of the outflowing clouds will escape the halo and what fraction will circulate back to the disk, to better understand how and where gas enters and exits the Milky Way.

  3. Gas flows in the circumgalactic medium around simulated high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Mitchell, Peter D.; Blaizot, Jérémy; Devriendt, Julien; Kimm, Taysun; Michel-Dansac, Léo; Rosdahl, Joakim; Slyz, Adrianne

    2018-03-01

    We analyse the properties of circumgalactic gas around simulated galaxies in the redshift range z ≥ 3, utilizing a new sample of cosmological zoom simulations. These simulations are intended to be representative of the observed samples of Lyman α (Ly α) emitters recently obtained with the multi unit spectroscopic explorer (MUSE) instrument (halo masses ˜1010-1011 M⊙). We show that supernova feedback has a significant impact on both the inflowing and outflowing circumgalactic medium (CGM) by driving outflows, reducing diffuse inflow rates, and by increasing the neutral fraction of inflowing gas. By temporally stacking simulation outputs, we find that significant net mass exchange occurs between inflowing and outflowing phases: none of the phases are mass-conserving. In particular, we find that the mass in neutral outflowing hydrogen declines exponentially with radius as gas flows outwards from the halo centre. This is likely caused by a combination of both fountain-like cycling processes and gradual photoionization/collisional ionization of outflowing gas. Our simulations do not predict the presence of fast-moving neutral outflows in the CGM. Neutral outflows instead move with modest radial velocities (˜50 km s-1), and the majority of the kinetic energy is associated with tangential rather than radial motion.

  4. Structure and Evolution of an Undular Bore on the High Plains and Its Effects on Migrating Birds.

    NASA Astrophysics Data System (ADS)

    Locatelli, John D.; Stoelinga, Mark T.; Hobbs, Peter V.; Johnson, Jim

    1998-06-01

    On 18 September 1992 a series of thunderstorms in Nebraska and eastern Colorado, which formed south of a synoptic-scale cold front and north of a Rocky Mountain lee trough, produced a cold outflow gust front that moved southeastward into Kansas, southeastern Colorado, and Oklahoma around sunset. When this cold outflow reached the vicinity of the lee trough, an undular bore developed on a nocturnally produced stable layer and moved through the range of the Dodge City WSR-88D Doppler radar. The radar data revealed that the undular bore, in the leading portion of a region of northwesterly winds about 45 km wide by 4 km high directly abutting the cold outflow, developed five undulations over the course of 3 h. Contrary to laboratory tank experiments, observations indicated that the solitary waves that composed the bore probably did not form from the enveloping of the head of the cold air outflow by the stable layer and the breaking off of the head of the cold air outflow. The synoptic-scale cold front subsequently intruded on the surface layer of air produced by the cold outflow, but there was no evidence for the formation of another bore.Profiler winds, in the region affected by the cold air outflow and the undular bore, contained signals from nocturnally, southward-migrating birds (most likely waterfowl) that took off in nonfavorable southerly winds and remained aloft for several hours longer than usual, thereby staying ahead of the turbulence associated with the undular bore.

  5. Episodes of fluvial and volcanic activity in Mangala Valles, Mars

    PubMed Central

    Keske, Amber L.; Hamilton, Christopher W.; McEwen, Alfred S.; Daubar, Ingrid J.

    2017-01-01

    A new mapping-based study of the 900-km-long Mangala Valles outflow system was motivated by the availability of new high-resolution images and continued debates about the roles of water and lava in outflow channels on Mars. This study uses photogeologic analysis, geomorphic surface mapping, cratering statistics, and relative stratigraphy. Results show that Mangala Valles underwent at least two episodes of fluvial activity and at least three episodes of volcanic activity during the Late Amazonian. The occurrence of scoured bedrock at the base of the mapped stratigraphy, in addition to evidence provided by crater retention ages, suggests that fluvial activity preceded the deposition of two of the volcanic units. Crater counts performed at 30 locations throughout the area have allowed us to construct the following timeline: (1) formation of Noachian Highlands and possible initial flooding event(s) before ~1 Ga, (2) emplacement of Tharsis lava flows in the valley from ~700 to 1000 Ma, (3) a megaflooding event at ~700–800 Ma sourced from Mangala Fossa, (4) valley fill by a sequence of lava flows sourced from Mangala Fossa ~400–500 Ma, (5) another megaflooding event from ~400 Ma, (6) a final phase of volcanism sourced from Mangala Fossa ~300–350 Ma, and (7) emplacement of eolian sedimentary deposits in the northern portion of the valley ~300 Ma. These results are consistent with alternating episodes of aqueous flooding and volcanism in the valles. This pattern of geologic activity is similar to that of other outflow systems, such as Kasei Valles, suggesting that there is a recurring, and perhaps coupled, nature of these processes on Mars. PMID:29176911

  6. Birth, life, and death of a solar coronal plume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pucci, Stefano; Romoli, Marco; Poletto, Giannina

    2014-10-01

    We analyze a solar polar-coronal-hole (CH) plume over its entire ≈40 hr lifetime, using high-resolution Solar Dynamic Observatory Atmospheric Imaging Assembly (AIA) data. We examine (1) the plume's relationship to a bright point (BP) that persists at its base, (2) plume outflows and their possible contribution to the solar wind mass supply, and (3) the physical properties of the plume. We find that the plume started ≈2 hr after the BP first appeared and became undetectable ≈1 hr after the BP disappeared. We detected radially moving radiance variations from both the plume and from interplume regions, corresponding to apparent outflowmore » speeds ranging over ≈(30-300) km s{sup –1} with outflow velocities being higher in the 'cooler' AIA 171 Å channel than in the 'hotter' 193 Å and 211 Å channels, which is inconsistent with wave motions; therefore, we conclude that the observed radiance variations represent material outflows. If they persist into the heliosphere and plumes cover ≈10% of a typical CH area, these flows could account for ≈50% of the solar wind mass. From a differential emission measure analysis of the AIA images, we find that the average electron temperature of the plume remained approximately constant over its lifetime, at T {sub e} ≈ 8.5 × 10{sup 5} K. Its density, however, decreased with the age of the plume, being about a factor of three lower when the plume faded compared to when it was born. We conclude that the plume died due to a density reduction rather than to a temperature decrease.« less

  7. Blowing in the Milky Way Wind: Neutral Hydrogen Clouds Tracing the Galactic Nuclear Outflow

    NASA Astrophysics Data System (ADS)

    Di Teodoro, Enrico M.; McClure-Griffiths, N. M.; Lockman, Felix J.; Denbo, Sara R.; Endsley, Ryan; Ford, H. Alyson; Harrington, Kevin

    2018-03-01

    We present the results of a new sensitive survey of neutral hydrogen above and below the Galactic Center with the Green Bank Telescope. The observations extend up to Galactic latitude | b| < 10^\\circ with an effective angular resolution of 9.‧5 and an average rms brightness temperature noise of 40 mK in a 1 {km} {{{s}}}-1 channel. The survey reveals the existence of a population of anomalous high-velocity clouds extending up to heights of about 1.5 kpc from the Galactic plane and showing no signature of Galactic rotation. These clouds have local standard of rest velocities | {V}LSR}| ≲ 360 {km} {{{s}}}-1, and assuming a Galactic Center origin, they have sizes of a few tens of parsec and neutral hydrogen masses spanning 10{--}{10}5 {M}ȯ . Accounting for selection effects, the cloud population is symmetric in longitude, latitude, and V LSR. We model the cloud kinematics in terms of an outflow expanding from the Galactic Center and find the population consistent with being material moving with radial velocity {V}{{w}}≃ 330 {km} {{{s}}}-1 distributed throughout a bicone with opening angle α > 140^\\circ . This simple model implies an outflow luminosity {L}{{w}}> 3× {10}40 erg s‑1 over the past 10 Myr, consistent with star formation feedback in the inner region of the Milky Way, with a cold gas mass-loss rate ≲ 0.1 {{M}ȯ {yr}}-1. These clouds may represent the cold gas component accelerated in the nuclear wind driven by our Galaxy, although some of the derived properties challenge current theoretical models of the entrainment process.

  8. Hot Gas Flows in T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Herczeg, G.; Gregory, S. G.; Ingleby, L.; France, K.; Brown, A.; Edwards, S.; Linsky, J.; Yang, H.; Valenti, J. A.; Johns-Krull, C. M.; Alexander, R.; Bergin, E. A.; Bethell, T.; Brown, J.; Calvet, N.; Espaillat, C.; Hervé, A.; Hillenbrand, L.; Hussain, G.; Roueff, E.; Schindhelm, E.; Walter, F. M.

    2013-01-01

    We describe observations of the hot gas 1e5 K) ultraviolet lines C IV and He II, in Classical and Weak T Tauri Stars (CTTSs, WTTSs). Our goal is to provide observational constraints for realistic models. Most of the data for this work comes from the Hubble proposal “The Disks, Accretion, and Outflows (DAO) of T Tau stars” (PI Herczeg). The DAO program is the largest and most sensitive high resolution spectroscopic survey of young stars in the UV ever undertaken and it provides a rich source of information for these objects. The sample of high resolution COS and STIS spectra presented here comprises 35 stars: one Herbig Ae star, 28 CTTSs, and 6 WTTSs. For CTTSs, the lines consist of two kinematic components. The relative strengths of the narrow and broad components (NC, BC) are similar in C IV but in He II the NC is stronger than the BC, and dominates the line profile. We do not find correlations between disk inclination and the velocity centroid, width, or shape of the CIV line profile. The NC of the C IV line in CTTSs increases in strength with accretion rate, and its contribution to the line increases from ˜20% to ˜80%, for the accretion rates considered here (1e-10 to 1e-7 Msun/yr). The CTTSs C IV lines are redshifted by ˜20 km/s while the CTTSs He II are redshifted by ˜10 km/s. Because the He II line and the C IV NC have the same width in CTTSs and in WTTSs, but are correlated with accretion, we suggest that they are produced in the stellar transition region. The accretion shock model predicts that the velocity of the post-shock emission should be 4x smaller than the velocity of the pre-shock emission. Identifying the post-shock emission with the NC and the pre-shock with the BC, we find that this is approximately the case in 11 out of 23 objects. The model cannot explain 11 systems in which the velocity of the NC is smaller than the velocity of the BC, or systems in which one of the velocities is negative (five CTTSs). The hot gas lines in some systems such as HN Tau, RW Aur A, AK Sco, DK Tau, T Tau N, and V1190 Sco require an outflow contribution, which may come from jet shocks in the observed outflows. We suggest that a hot wind is being launched by the Herbig Ae star DX Cha.

  9. High spectral resolution spectroscopy of the SiO fundamental lines in red giants and red supergiants with VLT/VISIR

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.

    2014-01-01

    Context. The mass-loss mechanism in red giants and red supergiants is not yet understood well. The SiO fundamental lines near 8 μm are potentially useful for probing the outer atmosphere, which is essential for clarifying the mass-loss mechanism. However, these lines have been little explored until now. Aims: We present high spectral resolution spectroscopic observations of the SiO fundamental lines near 8.1 μm in 16 bright red giants and red supergiants. Our sample consists of seven normal (i.e., non-Mira) K-M giants (from K1.5 to M6.5), three Mira stars, three optically bright red supergiants, two dusty red supergiants, and the enigmatic object GCIRS3 near the Galactic center. Methods: Our program stars were observed between 8.088 μm and 8.112 μm with a spectral resolution of 30 000 using VLT/VISIR. Results: We detected SiO fundamental lines in all of our program stars except for GCIRS3. The SiO lines in normal K and M giants as well as optically bright (i.e., not dusty) red supergiants do not show P-Cyg profiles or blueshifts, which means the absence of systematic outflows in the SiO line forming region. We detected P-Cyg profiles in the SiO lines in the dusty red supergiants VY CMa and VX Sgr, with the latter object being a new detection. These SiO lines originate in the outflowing gas with the thermal dust continuum emission seen as the background. The outflow velocities of the SiO line forming region in VY CMa and VX Sgr are estimated to be 27 km s-1 and 17 km s-1, respectively. We derived basic stellar parameters (effective temperature, surface gravity, luminosity, and mass) for the normal K-M giants and optically bright red supergiants in our sample and compared the observed VISIR spectra with synthetic spectra predicted from MARCS photospheric models. Most of the SiO lines observed in the program stars warmer than ~3400 K are reasonably reproduced by the MARCS models, which allowed us to estimate the silicon abundance as well as the 28Si/29Si and 28Si/30Si ratios. However, we detected possible absorption excess in some SiO lines. Moreover, the SiO lines in the cooler red giants and red supergiant cannot be explained by the MARCS models at all, even if the dust emission is taken into account. This disagreement may be a signature of the dense, extended molecular outer atmosphere. Based on VISIR observations made with the Very Large Telescope of the European Southern Observatory. Program ID: 087.D-0522(A).Reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/561/A47

  10. First Large-scale Herbig-Haro Jet Driven by a Proto-brown Dwarf

    NASA Astrophysics Data System (ADS)

    Riaz, B.; Briceño, C.; Whelan, E. T.; Heathcote, S.

    2017-07-01

    We report the discovery of a new Herbig-Haro jet, HH 1165, in SOAR narrow-band imaging of the vicinity of the σ Orionis cluster. HH 1165 shows a spectacular extended and collimated spatial structure, with a projected length of 0.26 pc, a bent C-shaped morphology, multiple knots, and fragmented bow shocks at the apparent ends of the flow. The Hα image shows a bright halo with a clumpy distribution of material seen around the driving source, and curved reflection nebulosity tracing the outflow cavities. The driving source of HH 1165 is a Class I proto-brown dwarf, Mayrit 1701117 (M1701117), with a total (dust+gas) mass of ˜36 M Jup and a bolometric luminosity of ˜0.1 L ⊙. High-resolution VLT/UVES spectra of M1701117 show a wealth of emission lines indicative of strong outflow and accretion activity. SOAR/Goodman low-resolution spectra along the jet axis show an asymmetrical morphology for HH 1165. We find a puzzling picture wherein the northwest part exhibits a classical HH jet running into a pre-dominantly neutral medium, while the southern part resembles an externally irradiated jet. The C-shaped bending in HH 1165 may be produced by the combined effects from the massive stars in the ionization front to the east, the σ Orionis core to the west, and the close proximity to the B2-type star HR 1950. HH 1165 shows all of the signatures to be considered as a scaled-down version of parsec-length HH jets, and can be termed as the first sub-stellar analog of a protostellar HH jet system.

  11. First Large-scale Herbig–Haro Jet Driven by a Proto-brown Dwarf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riaz, B.; Briceño, C.; Heathcote, S.

    2017-07-20

    We report the discovery of a new Herbig–Haro jet, HH 1165, in SOAR narrow-band imaging of the vicinity of the σ Orionis cluster. HH 1165 shows a spectacular extended and collimated spatial structure, with a projected length of 0.26 pc, a bent C-shaped morphology, multiple knots, and fragmented bow shocks at the apparent ends of the flow. The H α image shows a bright halo with a clumpy distribution of material seen around the driving source, and curved reflection nebulosity tracing the outflow cavities. The driving source of HH 1165 is a Class I proto-brown dwarf, Mayrit 1701117 (M1701117), withmore » a total (dust+gas) mass of ∼36 M {sub Jup} and a bolometric luminosity of ∼0.1 L {sub ⊙}. High-resolution VLT/UVES spectra of M1701117 show a wealth of emission lines indicative of strong outflow and accretion activity. SOAR/Goodman low-resolution spectra along the jet axis show an asymmetrical morphology for HH 1165. We find a puzzling picture wherein the northwest part exhibits a classical HH jet running into a pre-dominantly neutral medium, while the southern part resembles an externally irradiated jet. The C-shaped bending in HH 1165 may be produced by the combined effects from the massive stars in the ionization front to the east, the σ Orionis core to the west, and the close proximity to the B2-type star HR 1950. HH 1165 shows all of the signatures to be considered as a scaled-down version of parsec-length HH jets, and can be termed as the first sub-stellar analog of a protostellar HH jet system.« less

  12. ALMA Detection of Bipolar Outflows: Evidence for Low-mass Star Formation within 1 pc of Sgr A*

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Wardle, M.; Kunneriath, D.; Royster, M.; Wootten, A.; Roberts, D. A.

    2017-12-01

    We report the discovery of 11 bipolar outflows within a projected distance of 1 pc from Sgr A* based on deep ALMA observations of 13CO, H30α, and SiO (5-4) lines with subarcsecond and ˜1.3 km s-1 resolutions. These unambiguous signatures of young protostars manifest as approaching and receding lobes of dense gas swept up by the jets created during the formation and early evolution of stars. The lobe masses and momentum transfer rates are consistent with young protostellar outflows found throughout the disk of the Galaxy. The mean dynamical age of the outflow population is estimated to be {6.5}-3.6+8.1× {10}3 years. The rate of star formation is ˜5 × 10-4 {M}⊙ yr-1 assuming a mean stellar mass of ˜0.3 {M}⊙ . This discovery provides evidence that star formation is taking place within clouds surprisingly close to Sgr A*, perhaps due to events that compress the host cloud, creating condensations with sufficient self-gravity to resist tidal disruption by Sgr A*. Low-mass star formation over the past few billion years at this level would contribute significantly to the stellar mass budget in the central few parsecs of the Galaxy. The presence of many dense clumps of molecular material within 1 pc of Sgr A* suggests that star formation could take place in the immediate vicinity of supermassive black holes in the nuclei of external galaxies.

  13. Ultra-fast outflows (aka UFOs) from AGNs and QSOs

    NASA Astrophysics Data System (ADS)

    Cappi, M.; Tombesi, F.; Giustini, M.

    During the last decade, strong observational evidence has been accumulated for the existence of massive, high velocity winds/outflows (aka Ultra Fast Outflows, UFOs) in nearby AGNs and in more distant quasars. Here we briefly review some of the most recent developments in this field and discuss the relevance of UFOs for both understanding the physics of accretion disk winds in AGNs, and for quantifying the global amount of AGN feedback on the surrounding medium.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Huan; Wang, JunXian; Zheng, Zhen-Ya

    Using the Lyα emission line as a tracer of high-redshift, star-forming galaxies, hundreds of Lyα emission line galaxies (LAEs) at z > 5 have been detected. These LAEs are considered to be low-mass young galaxies, critical to the re-ionization of the universe and the metal enrichment of the circumgalactic medium (CGM) and the intergalactic medium (IGM). It is assumed that outflows in LAEs can help both ionizing photons and Lyα photons escape from galaxies. However, we still know little about the outflows in high-redshift LAEs due to observational difficulties, especially at redshift >5. Models of Lyα radiative transfer predict asymmetricmore » Lyα line profiles with broad red wings in LAEs with outflows. Here, we report a z ∼ 5.7 Lyα emission line with a broad red wing extending to >1000 km s{sup –1} relative to the peak of Lyα line, which has been detected in only a couple of z > 5 LAEs until now. If the broad red wing is ascribed to gas outflow instead of active galactic nucleus activity, the outflow velocity could be larger than the escape velocity (∼500 km s{sup –1}) of a typical halo mass of z ∼ 5.7 LAEs, which is consistent with the idea that outflows in LAEs disperse metals to CGM and IGM.« less

  15. Interrelation of soft and hard X-ray emissions during solar flares. I - Observations

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Kiplinger, A. L.; Zarro, D. M.; Dulk, G. A.; Lemen, J. R.

    1991-01-01

    The interrelation between the acceleration and heating of electrons and ions during impulsive solar flares is determined on the basis of simulataneous observations of hard and soft X-ray emission from the Solar Maximum Mission at high time resolution (6 s). For all the flares, the hard X-rays are found to have a power-law spectrum which breaks down during the rise phase and beginning of the decay phase. After that, the spectrum changes to either a single power law or a power law that breaks up at high energies. The characteristics of the soft X-ray are found to depend on the flare position. It is suggested that small-scale quasi-static electric fields are important for determining the acceleration of the X-ray-producing electrons and the outflowing chromospheric ions.

  16. Chandra Takes on Heavy Jets and Massive Winds in 4U 1630-47

    NASA Astrophysics Data System (ADS)

    Neilsen, Joey

    2014-11-01

    Recently, Díaz Trigo et al. reported the discovery of relativistic baryons in a jet in XMM/ATCA observations of the 2012 outburst of the black hole 4U 1630-47. We present a search for a similarly massive jet earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. Despite a detection of radio emission with ATCA, we find no evidence of a heavy jet in the X-ray spectrum, with tight upper limits on the relativistic emission lines seen by Díaz Trigo eight months later. Instead, we find deep absorption lines from a massive, highly ionized disk wind, whose properties can be probed with detailed photoionization models. We explore several scenarios to explain the two modes of massive outflow in this remarkable black hole system.

  17. The Launching of Cold Clouds by Galaxy Outflows. I. Hydrodynamic Interactions with Radiative Cooling

    NASA Astrophysics Data System (ADS)

    Scannapieco, Evan; Brüggen, Marcus

    2015-06-01

    To better understand the nature of the multiphase material found in outflowing galaxies, we study the evolution of cold clouds embedded in flows of hot and fast material. Using a suite of adaptive mesh refinement simulations that include radiative cooling, we investigate both cloud mass loss and cloud acceleration under the full range of conditions observed in galaxy outflows. The simulations are designed to track the cloud center of mass, enabling us to study the cloud evolution at long disruption times. For supersonic flows, a Mach cone forms around the cloud, which damps the Kelvin-Helmholtz instability but also establishes a streamwise pressure gradient that stretches the cloud apart. If time is expressed in units of the cloud crushing time, both the cloud lifetime and the cloud acceleration rate are independent of cloud radius, and we find simple scalings for these quantities as a function of the Mach number of the external medium. A resolution study suggests that our simulations accurately describe the evolution of cold clouds in the absence of thermal conduction and magnetic fields, physical processes whose roles will be studied in forthcoming papers.

  18. Model intra-comparison of transboundary sulfate loadings over springtime east Asia

    NASA Astrophysics Data System (ADS)

    Goto, D.; Ohara, T.; Nakajima, T.; Takemura, T.; Kajino, M.; Dai, T.; Matsui, H.; Takami, A.; Hatakeyama, S.; Aoki, K.; Sugimoto, N.; Shimizu, A.

    2013-12-01

    Over east Asia, a spatial gradient of sulfate aerosols from source to outflow regions has not fully evaluated by simulations. In the present study, we executed a global aerosol-transport model (SPRINTARS) during April 2006 to investigate the spatial gradient of sulfate aerosols using multiple measurements including surface mass concentration, aerosol optical thickness, and vertical profiles of extinction coefficients for spherical particles. We also performed sensitivity experiments to estimate possible uncertainties of sulfate mass loadings caused by macrophysical processes; emission inventory, dynamic core, and spatial resolution. Among the experiments, although a difference in the surface sulfate mass concentrations over east Asia was large, none of the simulations in the present study as well as regional models reproduced the spatial gradient of the surface sulfate from the source over China to the outflow regions in Japan. The sensitivity of different macrophysical factors to the surface sulfate differs from that to sulfate loadings in the column especially in the marine boundary layers (MBL). Therefore, to properly simulate the transboundary air pollution over east Asia is required to use multiple measurements in both the source and outflow regions especially in the MBL during the polluted days.

  19. Quenching star formation with quasar outflows launched by trapped IR radiation

    NASA Astrophysics Data System (ADS)

    Costa, Tiago; Rosdahl, Joakim; Sijacki, Debora; Haehnelt, Martin G.

    2018-06-01

    We present cosmological radiation-hydrodynamic simulations, performed with the code RAMSES-RT, of radiatively-driven outflows in a massive quasar host halo at z = 6. Our simulations include both single- and multi-scattered radiation pressure on dust from a quasar and are compared against simulations performed with thermal feedback. For radiation pressure-driving, we show that there is a critical quasar luminosity above which a galactic outflow is launched, set by the equilibrium of gravitational and radiation forces. While this critical luminosity is unrealistically high in the single-scattering limit for plausible black hole masses, it is in line with a ≈ 3 × 10^9 M_⊙ black hole accreting at its Eddington limit, if infrared (IR) multi-scattering radiation pressure is included. The outflows are fast (v ≳ 1000 km s^{-1}) and strongly mass-loaded with peak mass outflow rates ≈ 10^3 - 10^4 M_⊙ yr^{-1}, but short-lived (< 10 Myr). Outflowing material is multi-phase, though predominantly composed of cool gas, forming via a thermal instability in the shocked swept-up component. Radiation pressure- and thermally-driven outflows both affect their host galaxies significantly, but in different, complementary ways. Thermally-driven outflows couple more efficiently to diffuse halo gas, generating more powerful, hotter and more volume-filling outflows. IR radiation, through its ability to penetrate dense gas via diffusion, is more efficient at ejecting gas from the bulge. The combination of gas ejection through outflows with internal pressurisation by trapped IR radiation leads to a complete shut down of star formation in the bulge. We hence argue that radiation pressure-driven feedback may be an important ingredient in regulating star formation in compact starbursts, especially during the quasar's `obscured' phase.

  20. Nonradial and nonpolytropic astrophysical outflows. X. Relativistic MHD rotating spine jets in Kerr metric

    NASA Astrophysics Data System (ADS)

    Chantry, L.; Cayatte, V.; Sauty, C.; Vlahakis, N.; Tsinganos, K.

    2018-04-01

    Context. High-resolution radio imaging of active galactic nuclei (AGN) has revealed that the jets of some sources present superluminal knots and transverse stratification. Recent observational projects, such as ALMA and γ-ray telescopes, such as HESS and HESS2 have provided new observational constraints on the central regions of rotating black holes in AGN, suggesting that there is an inner- or spine-jet surrounded by a disk wind. This relativistic spine-jet is likely to be composed of electron-positron pairs extracting energy from the black hole and will be explored by the future γ-ray telescope CTA. Aims: In this article we present an extension to and generalization of relativistic jets in Kerr metric of the Newtonian meridional self-similar mechanism. We aim at modeling the inner spine-jet of AGN as a relativistic light outflow emerging from a spherical corona surrounding a Kerr black hole and its inner accretion disk. Methods: The model is built by expanding the metric and the forces with colatitude to first order in the magnetic flux function. As a result of the expansion, all colatitudinal variations of the physical quantities are quantified by a unique parameter. Unlike previous models, effects of the light cylinder are not neglected. Results: Solutions with high Lorentz factors are obtained and provide spine-jet models up to the polar axis. As in previous publications, we calculate the magnetic collimation efficiency parameter, which measures the variation of the available energy across the field lines. This collimation efficiency is an integral part of the model, generalizing the classical magnetic rotator efficiency criterion to Kerr metric. We study the variation of the magnetic efficiency and acceleration with the spin of the black hole and show their high sensitivity to this integral. Conclusions: These new solutions model collimated or radial, relativistic or ultra-relativistic outflows in AGN or γ-ray bursts. In particular, we discuss the relevance of our solutions to modeling the M 87 spine-jet. We study the efficiency of the central black hole spin to collimate a spine-jet and show that the jet power is of the same order as that determined by numerical simulations.

  1. X-ray Evidence for Ultra-Fast Outflows in Local AGNs

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Sambruna, R. M.; Reeves, J. N.; Reynolds, C. S.; Braito, V.; Dadina, M.

    2012-08-01

    X-ray evidence for ultra-fast outflows (UFOs) has been recently reported in a number of local AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 Broad-Line Radio Galaxies (BLRGs) observed with XMM-Newton and Suzaku. We detect UFOs in ga 40% of the sources. Their outflow velocities are in the range ˜ 0.03-0.3c, with a mean value of ˜ 0.14c. The ionization is high, in the range logℰ ˜3-6rm erg s-1 cm, and also the associated column densities are large, in the interval ˜ 1022-1024rm cm-2. Overall, these results point to the presence of highly ionized and massive outflowing material in the innermost regions of AGNs. Their variability and location on sub-pc scales favor a direct association with accretion disk winds/outflows. This also suggests that UFOs may potentially play a significant role in the AGN cosmological feedback besides jets, and their study can provide important clues on the connection between accretion disks, winds, and jets.

  2. Mechanisms of repetitive retrograde contractions in response to sustained esophageal distension: a study evaluating patients with postfundoplication dysphagia.

    PubMed

    Carlson, Dustin A; Kahrilas, Peter J; Ritter, Katherine; Lin, Zhiyue; Pandolfino, John E

    2018-03-01

    Repetitive retrograde contractions (RRCs) in response to sustained esophageal distension are a distinct contractility pattern observed with functional luminal imaging probe (FLIP) panometry that are common in type III (spastic) achalasia. RRCs are hypothesized to be indicative of either impaired inhibitory innervation or esophageal outflow obstruction. We aimed to apply FLIP panometry to patients with postfundoplication dysphagia (a model of esophageal obstruction) to explore mechanisms behind RRCs. Adult patients with dysphagia after Nissen fundoplication ( n = 32) or type III achalasia ( n = 25) were evaluated with high-resolution manometry (HRM) and upper endoscopy with FLIP. HRM studies were assessed for outflow obstruction and spastic features: premature contractility, hypercontractility, and impaired deglutitive inhibition during multiple-rapid swallows. FLIP studies were analyzed to determine the esophagogastric junction (EGJ)-distensibility index and contractility pattern, including RRCs. Barium esophagram was evaluated when available. RRCs were present in 8/32 (25%) fundoplication and 19/25 (76%) achalasia patients ( P < 0.001). EGJ outflow obstruction was detected in 21 (67%) fundoplication patients by HRM, FLIP, or esophagram [6 (29%) had RRCs]. On HRM, none of the fundoplication patients had premature contractility, whereas 3/4 with defective inhibition on multiple-rapid swallows and 2/4 with hypercontractility had RRCs. Regression analysis demonstrated HRM with spastic features, but not esophageal outflow obstruction, as a predictor for RRCs. RRCs in response to sustained esophageal distension appear to be a manifestation of spastic esophageal motility. Although future study to further clarify the significance of RRCs is needed, RRCs on FLIP panometry should prompt evaluation for a major motor disorder. NEW & NOTEWORTHY Repetitive retrograde contractions (RRCs) are a common response to sustained esophageal distension among spastic achalasia patients when evaluated with the functional luminal imaging probe. We evaluated patients with postfundoplication dysphagia, i.e., patients with suspected mechanical obstruction, and found that RRCs occasionally occurred among postfundoplication patients, but often in association with manometric features of esophageal neuromuscular imbalance. Thus, RRCs appear to be a manifestation of spastic esophageal dysmotility, likely from neural imbalance resulting in excess excitation.

  3. Endoscopic ultrasound as an adjunctive evaluation in patients with esophageal motor disorders subtyped by high-resolution manometry.

    PubMed

    Krishnan, K; Lin, C-Y; Keswani, R; Pandolfino, J E; Kahrilas, P J; Komanduri, S

    2014-08-01

    Esophageal motor disorders are a heterogeneous group of conditions identified by esophageal manometry that lead to esophageal dysfunction. The aim of this study was to assess the clinical utility of endoscopic ultrasound (EUS) in the further evaluation of patients with esophageal motor disorders categorized using the updated Chicago Classification. We performed a retrospective, single center study of 62 patients with esophageal motor disorders categorized according to the Chicago Classification. All patients underwent standard radial endosonography to assess for extra-esophageal findings or alternative explanations for esophageal outflow obstruction. Secondary outcomes included esophageal wall thickness among the different patient subsets within the Chicago Classification. EUS identified 9/62 (15%) clinically relevant findings that altered patient management and explained the etiology of esophageal outflow obstruction. We further identified substantial variability in esophageal wall thickness in a proportion of patients including some with a significantly thickened non-muscular layer. EUS findings are clinically relevant in a significant number of patients with motor disorders and can alter clinical management. Variability in esophageal wall thickness of the muscularis propria and non-muscular layers identified by EUS may also explain the observed variability in response to standard therapies for achalasia. © 2014 John Wiley & Sons Ltd.

  4. Mapping the Spatial Distribution of Metal-Bearing Oxides in VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Burkhardt, Andrew; Booth, S. Tom; Remijan, Anthony; Carroll, Brandon; Ziurys, Lucy M.

    2015-06-01

    The formation of silicate-based dust grains is not well constrained. Despite this, grain surface chemistry is essential to modern astrochemical formation models. In carbon-poor stellar envelopes, such as the red hypergiant VY Canis Majoris (VY CMa), metal-bearing oxides, the building blocks of silicate grains, dominate the grain formation, and thus are a key location to study dust chemistry. TiO_2, which was only first detected in the radio recently (Kaminski et al., 2013a), has been proposed to be a critical molecule for silicate grain formation, and not oxides containing more abundant metals (eg. Si, Fe, and Mg) (Gail and Sedlmayr, 1998). In addition, other molecules, such as SO_2, have been found to trace shells produced by numerous outflows pushing through the expanding envelope, resulting in a complex velocity structure (Ziurys et al., 2007). With the advanced capabilities of ALMA, it is now possible to individually resolve the velocity structure of each of these outflows and constrain the underlying chemistry in the region. Here, we present high resolution maps of rotational transitions of several metal-bearing oxides in VY CMa from the ALMA Band 7 and Band 9 Science Verification observations. With these maps, the physical parameters of the region and the formation chemistry of metal-bearing oxides will be studied.

  5. Baseline Computational Fluid Dynamics Methodology for Longitudinal-Mode Liquid-Propellant Rocket Combustion Instability

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.

    2005-01-01

    A computational method for the analysis of longitudinal-mode liquid rocket combustion instability has been developed based on the unsteady, quasi-one-dimensional Euler equations where the combustion process source terms were introduced through the incorporation of a two-zone, linearized representation: (1) A two-parameter collapsed combustion zone at the injector face, and (2) a two-parameter distributed combustion zone based on a Lagrangian treatment of the propellant spray. The unsteady Euler equations in inhomogeneous form retain full hyperbolicity and are integrated implicitly in time using second-order, high-resolution, characteristic-based, flux-differencing spatial discretization with Roe-averaging of the Jacobian matrix. This method was initially validated against an analytical solution for nonreacting, isentropic duct acoustics with specified admittances at the inflow and outflow boundaries. For small amplitude perturbations, numerical predictions for the amplification coefficient and oscillation period were found to compare favorably with predictions from linearized small-disturbance theory as long as the grid exceeded a critical density (100 nodes/wavelength). The numerical methodology was then exercised on a generic combustor configuration using both collapsed and distributed combustion zone models with a short nozzle admittance approximation for the outflow boundary. In these cases, the response parameters were varied to determine stability limits defining resonant coupling onset.

  6. Endoscopic ultrasound as an adjunctive evaluation in patients with esophageal motor disorders subtyped by high-resolution manometry

    PubMed Central

    Krishnan, Kumar; Lin, Chen-Yuan; Keswani, Rajesh; Pandolfino, John E; Kahrilas, Peter J; Komanduri, Srinadh

    2015-01-01

    Background and aims Esophageal motor disorders are a heterogenous group of conditions identified by esophageal manometry that lead to esophageal dysfunction. The aim of this study was to assess the clinical utility of endoscopic ultrasound in the further evaluation of patients with esophageal motor disorders categorized using the updated Chicago Classification. Methods We performed a retrospective, single center study of 62 patients with esophageal motor disorders categorized according to the Chicago Classification. All patients underwent standard radial endosonography to assess for extra esophageal findings or alternative explanations for esophageal outflow obstruction. Secondary outcomes included esophageal wall thickness among the different patient subsets within the Chicago Classification Key Results EUS identified 9/62 (15%) clinically relevant findings that altered patient management and explained the etiology of esophageal outflow obstruction. We further identified substantial variability in esophageal wall thickness in a proportion of patients including some with a significantly thickened non-muscular layer. Conclusions EUS findings are clinically relevant in a significant number of patients with motor disorders and can alter clinical management. Variability in esophageal wall thickness of the muscularis propria and non-muscular layers identified by EUS may also explain the observed variability in response to standard therapies for achalasia. PMID:25041229

  7. Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure

    PubMed Central

    Karunamuni, Ganga; Gu, Shi; Doughman, Yong Qiu; Noonan, Amanda I.; Rollins, Andrew M.; Jenkins, Michael W.; Watanabe, Michiko

    2014-01-01

    Background The most commonly used method to analyze congenital heart defects involves serial sectioning and histology. However, this is often a time-consuming process where the quantification of cardiac defects can be difficult due to problems with accurate section registration. Here we demonstrate the advantages of using optical coherence tomography, a comparatively new and rising technology, to phenotype avian embryo hearts in a model of Fetal Alcohol Syndrome where a binge-like quantity of alcohol/ethanol was introduced at gastrulation. Results The rapid, consistent imaging protocols allowed for the immediate identification of cardiac anomalies, including ventricular septal defects and misaligned/missing vessels. Interventricular septum thicknesses and vessel diameters for three of the five outflow arteries were also significantly reduced. Outflow and atrio-ventricular valves were segmented using image processing software and had significantly reduced volumes compared to controls. This is the first study to our knowledge that has 3-D reconstructed the late-stage cardiac valves in precise detail in order to examine their morphology and dimensions. Conclusion We believe therefore that OCT, with its ability to rapidly image and quantify tiny embryonic structures in high resolution, will serve as an excellent and cost-effective preliminary screening tool for developmental biologists working with a variety of experimental/disease models. PMID:25546089

  8. Observations and Numerical Modeling of Eddy Generation in the Mediterranean Undercurrent

    NASA Astrophysics Data System (ADS)

    Serra, N.; Ambar, I.; Kaese, R.

    2001-12-01

    In the frame of the European Union MAST III project CANIGO (Canary Islands Gibraltar Azores Observations), RAFOS floats were deployed in the Mediterranean undercurrent off south Portugal during the period from September 1997 to September 1998. An analysis of this Lagrangian approach complemented with results obtained with XBT probes and current meter data from the same project shows some of the major aspects of the flow associated with the undercurrent as well as the eddy activity related with it. Floats that stayed in the undercurrent featured a downstream deceleration and a steering by bottom topography. Three meddy formations at Cape St. Vincent could be isolated from the float data as well as the generation of dipolar structures in the Portimao Canyon, a feature not previously directly observed. The dynamical coupling of meddies and cyclones was observed for a considerable period of time. High-resolution modeling of the Mediterranean Outflow using a sigma-coordinate primitive equations ocean model (SCRUM) incorporating realistic topography and stratification reveals the adjustment of the salty plume while descending along the continental slope of the Gulf of Cadiz channeled by the topography. The model reproduces the generation of eddies in the two observed sites (cape and canyon) and the splitting of the outflow water into well-defined cores.

  9. Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting

    NASA Astrophysics Data System (ADS)

    Gladstone, Rupert Michael; Warner, Roland Charles; Galton-Fenzi, Benjamin Keith; Gagliardini, Olivier; Zwinger, Thomas; Greve, Ralf

    2017-01-01

    Computer models are necessary for understanding and predicting marine ice sheet behaviour. However, there is uncertainty over implementation of physical processes at the ice base, both for grounded and floating glacial ice. Here we implement several sliding relations in a marine ice sheet flow-line model accounting for all stress components and demonstrate that model resolution requirements are strongly dependent on both the choice of basal sliding relation and the spatial distribution of ice shelf basal melting.Sliding relations that reduce the magnitude of the step change in basal drag from grounded ice to floating ice (where basal drag is set to zero) show reduced dependence on resolution compared to a commonly used relation, in which basal drag is purely a power law function of basal ice velocity. Sliding relations in which basal drag goes smoothly to zero as the grounding line is approached from inland (due to a physically motivated incorporation of effective pressure at the bed) provide further reduction in resolution dependence.A similar issue is found with the imposition of basal melt under the floating part of the ice shelf: melt parameterisations that reduce the abruptness of change in basal melting from grounded ice (where basal melt is set to zero) to floating ice provide improved convergence with resolution compared to parameterisations in which high melt occurs adjacent to the grounding line.Thus physical processes, such as sub-glacial outflow (which could cause high melt near the grounding line), impact on capability to simulate marine ice sheets. If there exists an abrupt change across the grounding line in either basal drag or basal melting, then high resolution will be required to solve the problem. However, the plausible combination of a physical dependency of basal drag on effective pressure, and the possibility of low ice shelf basal melt rates next to the grounding line, may mean that some marine ice sheet systems can be reliably simulated at a coarser resolution than currently thought necessary.

  10. Narrow polarized components in the OH 1612-MHz maser emission from supergiant OH-IR sources

    NASA Technical Reports Server (NTRS)

    Cohen, R. J.; Downs, G.; Emerson, R.; Grimm, M.; Gulkis, S.; Stevens, G.

    1987-01-01

    High-resolution (300 Hz) OH 1612-MHz spectra of the supergiant OH-IR sources VY CMa, VX Sgr, IRC 10420, and NML Cyg are presented. Linewidths as small as 550 Hz (0.1 km/s) are found for narrow components in the spectra. The present results are consistent with current models for maser line-narrowing and for the physical properties in the OH maser regions. A significant degree of circular polarization is noted in many of the narrow components. The circular polarization suggests the presence of magnetic fields of about 1 mG in the circumstellar envelopes which would be strong enough to influence the outflow from the stars, and which may explain asymmetries found in the circumstellar envelopes.

  11. Characterizing the origin and impact of the most extreme molecular outflows in the nearby universe

    NASA Astrophysics Data System (ADS)

    Gowardhan, Avani; Riechers, Dominik A.; Spoon, Henrik; Farrah, Duncan

    2018-01-01

    Observations over the last decade have revealed that feedback in the form of molecular gas outflows is ubiquitous in local ultra luminous infrared galaxies (ULIRGs). Such outflows can clear the nuclear environments of gas and dust, quench star formation and active galactic nuclei (AGN) growth, and they are a key step in the evolution of dust-obscured AGN to optically luminous quasars. We here present multi-spectral line observations of feedback in the two most powerful molecular gas outflows in the local universe. We spatially resolve the outflows to determine their kinematics and structure and find that they can drive out the molecular gas and quench star formation within ~ few Myr. Applying mid-IR diagnostics to constrain the relative contributions of AGN and nuclear starburst activity, we find that starburst activity plays a significant role in driving the outflow. We discuss the implications for future studies of feedback in the local universe and obscured AGN at high redshift, which is a key target population for JWST and ALMA over the next decade.

  12. How to Sustain Warm Northern High Latitudes during the Late Pliocene? Roles of CO2, Orbital Changes and Increased Mediterranean Salinity on Oceanic Circulation

    NASA Astrophysics Data System (ADS)

    Contoux, C.; Zhang, Z.; Li, C.; Nisancioglu, K. H.; Risebrobakken, B.

    2014-12-01

    Northern high latitudes are thought to have been especially warm during the late Pliocene (e.g. Dowsett et al., 2013). However, the mechanisms sustaining these warm high latitude conditions are debated, especially because warm high latitudes are not necessarily depending on a stronger AMOC (Zhang et al., 2013). On the global scale, several authors reported CO2 level variability during the Pliocene ranging from 280 ppm to 450 ppm (e.g. Badger et al., 2013), which could be linked with orbital variability. More regionally, an aridification of the Mediterranean region is thought to have increased the Mediterranean outflow during the same period (e.g. Khélifi et al., 2009). These different forcings must have impacted on salinity and temperature profiles in the North Atlantic/Arctic oceans, which are then recorded at the local scale in the proxies derived from sediment cores. In order to carefully interpret these proxies, it is necessary to understand the large scale dynamics of the region during that period and its potential maximum variability with CO2 and orbital changes as well as Mediterranean outflow increase. Using the NorESM-L coupled atmosphere ocean model, which has a refined oceanic grid in the Nordic Seas region, we investigate the roles of extreme CO2and orbital variability on the Atlantic and Arctic oceanic circulation. An additional test to higher salinity in the Mediterranean is carried out. This study is part of a larger project which aims at characterising the state of the Nordic Seas during the Pliocene, and includes multi-proxy reconstructions and sensitivity model studies. References Badger et al., 2013. High resolution alkenone palaeobarometry indicates relatively stable pCO2 during the Pliocene (3.3 - 2.8 Ma), Philosophical Transactions of the Royal Society A, 371, 20130094. Dowsett et al., 2013. Sea surface temperature of the mid-Piacenzian ocean: a data-model comparison, Nature Scientific Reports, 3, 2013, doi:10.1038/srep02013. Khélifi et al., 2009. A major and long term intensification of the Mediterranean outflow water, 3.5 - 3.3 Ma ago, Geology, 2009,37;811-814, doi: 10.1130/G30058A.1 Zhang, Z.-S. et al., 2013. Mid-pliocene Atlantic meridional overturning circulation not unlike modern, Clim. Past, 9, 1495--1504, doi:10.5194/cp-9-1495-2013.

  13. Luminous Infrared Galaxies. III. Multiple Merger, Extended Massive Star Formation, Galactic Wind, and Nuclear Inflow in NGC 3256

    NASA Astrophysics Data System (ADS)

    Lípari, S.; Díaz, R.; Taniguchi, Y.; Terlevich, R.; Dottori, H.; Carranza, G.

    2000-08-01

    We report detailed evidence for multiple merger, extended massive star formation, galactic wind, and circular/noncircular motions in the luminous infrared galaxy NGC 3256, based on observations of high-resolution imaging (Hubble Space Telescope, ESO NTT), and extensive spectroscopic data (more than 1000 spectra, collected at Estación Astrofísica de Bosque Alegre, Complejo Astronómico el Leoncito, Cerro Tololo InterAmerican Observatory, and IUE observatories). We find in a detailed morphological study (resolution ~15 pc) that the extended massive star formation process detected previously in NGC 3256 shows extended triple asymmetrical spiral arms (r~5 kpc), emanating from three different nuclei. The main optical nucleus shows a small spiral disk (r~500 pc), which is a continuation of the external one and reaches the very nucleus. The core shows blue elongated structure (50 pc×25 pc) and harbors a blue stellar cluster candidate (r~8 pc). We discuss this complex morphology in the framework of an extended massive star formation driven by a multiple merger process (models of Hernquist et al. and Taniguchi et al.). We study the kinematics of this system and present a detailed Hα velocity field for the central region (40''×40'' rmax~30''~5 kpc), with a spatial resolution of 1" and errors of +/-15 km s-1. The color and isovelocity maps show mainly (1) a kinematic center of circular motion with ``spider'' shape, located between the main optical nucleus and the close (5") mid-IR nucleus and (2) noncircular motions in the external parts. We obtained three ``sinusoidal rotation curves'' (from the Hα velocity field) around position angle (P.A.) ~55°, ~90°, and ~130°. In the main optical nucleus we found a clear ``outflow component'' associated with galactic winds plus an ``inflow radial motion.'' The outflow component was also detected in the central and external regions (r<=5-6 kpc). The main axis of the inflow region (P.A.~80deg) is practically perpendicular to the ouflow axis (at P.A.~160deg). We analyze in detail the physical conditions in the giant H II regions located in the asymmetric spiral arms, the two main optical nuclei, and the outflow component (using long-slit spectroscopy, plus standard models of photoionization, shocks, and starbursts). We present four detailed emission-line ratios (N II/Hα, S II/Hα, S II/S II), and FWHM (Hα) maps for the central region (30''×30'' rmax~22''~4 kpc), with a spatial resolution of 1". In the central region (r~5-6 kpc) we detected that the nuclear starburst and the extended giant H II regions (in the spiral arms) have very similar properties, i.e., high metallicity and low-ionization spectra, with Teff=35,000 K, solar abundance, a range of Te~6000-7000 K, and Ne~100-1000 cm-3. The nuclear and extended outflow shows properties typical of galactic wind/shocks, associated with the nuclear starburst. We suggest that the interaction between dynamical effects, the galactic wind (outflow), low-energy cosmic rays, and the molecular+ionized gas (probably in the inflow phase) could be the possible mechanism that generate the ``similar extended properties in the massive star formation, at a scale of 5-6 kpc!'' We have also studied the presence of the close merger/interacting systems NGC 3256C (at ~150 kpc, ΔV=-100 km s-1) and the possible association between the NGC 3256 and 3263 groups of galaxies. In conclusion, these results suggest that NGC 3256 is the product of a multiple merger, which generated an extended massive star formation process with an associated galactic wind plus a nuclear inflow. Therefore, NGC 3256 is another example in which the relation between mergers and extreme starburst (and the powerful galactic wind, ``multiple'' Type II supernova explosions) play an important role in the evolution of galaxies (the hypothesis of Rieke et al., Joseph et al., Terlevich et al., Heckman et al., and Lípari et al.). Based on observations obtained at the Hubble Space Telescope (HST; Wide Field Planetary Camera 2 [WFPC2] and NICMOS) satellite; International Ultraviolet Explorer (IUE) satellite; European Southern Observatory (ESO, NTT); Chile, Cerro Tololo Inter-American Observatory (CTIO), Chile; Complejo Astronómico el Leoncito (CASLEO), Argentina; Estación Astrofísica de Bosque Alegre (BALEGRE), Argentina.

  14. Resolving shocked and UV excited components of H2 emission in planetary nebulae with high-resolution near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kaplan, Kyle; Dinerstein, Harriet L.; Jaffe, Daniel Thomas

    2016-06-01

    Planetary nebulae (PNe) form when low and intermediate-mass stars eject their outer layers into the ISM at the end of the AGB phase. Many PNe exhibit near-infrared (NIR) emission from molecular hydrogen (H2). This NIR emission arises from radiative decay out of excited rotation-vibration (rovibrational) states. The rovibrational states can be populated by excitation to higher electronic states through absorption of a far-UV photon followed by a radiative cascade to the electronic ground state, or by collisions (e.g., in a hot gas). The two processes populate the rovibrational levels of H2 differently, so the observed emergent emission spectrum provides an effective probe of the mechanisms that excite the H2. Many PNe display line intensity ratios that are intermediate between these two processes (Otsuka et al. 2013). With the advantages of the high spectral resolution (R~40000), broad wavelength coverage (1.45-2.45 μm), and high spatial resolution of the Immersion GRating Infrared Spectrometer (IGRINS, Park et al. 2014), we are able to differentiate components in position-velocity space: we see a slowly expanding UV-excited H2 shell in the PN M 1-11 and two faster moving “bullets” of thermalized H2 that we interpret as shocked gas from a bipolar outflow. We also present observations of several other PNe that exhibit similar morphologies of thermalized and UV-excited H2 components.

  15. The Sherwood simulation suite: overview and data comparisons with the Lyman α forest at redshifts 2 ≤ z ≤ 5

    NASA Astrophysics Data System (ADS)

    Bolton, James S.; Puchwein, Ewald; Sijacki, Debora; Haehnelt, Martin G.; Kim, Tae-Sun; Meiksin, Avery; Regan, John A.; Viel, Matteo

    2017-01-01

    We introduce a new set of large-scale, high-resolution hydrodynamical simulations of the intergalactic medium: the Sherwood simulation suite. These are performed in volumes of 103-1603h-3 comoving Mpc3, span almost four orders of magnitude in mass resolution with up to 17.2 billion particles, and employ a variety of physics variations including warm dark matter and galactic outflows. We undertake a detailed comparison of the simulations to high-resolution, high signal-to-noise observations of the Ly α forest over the redshift range 2 ≤ z ≤ 5. The simulations are in very good agreement with the observational data, lending further support to the paradigm that the Ly α forest is a natural consequence of the web-like distribution of matter arising in Λcold dark matter cosmological models. Only a small number of minor discrepancies remain with respect to the observational data. Saturated Ly α absorption lines with column densities N_{H I}>10^{14.5} cm^{-2} at 2 < z < 2.5 are underpredicted in the models. An uncertain correction for continuum placement bias is required to match the distribution and power spectrum of the transmitted flux, particularly at z > 4. Finally, the temperature of intergalactic gas in the simulations may be slightly too low at z = 2.7 and a flatter temperature-density relation is required at z = 2.4, consistent with the expected effects of non-equilibrium ionization during He II reionization.

  16. Shining a light on galactic outflows: photoionized outflows

    NASA Astrophysics Data System (ADS)

    Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei; Wofford, Aida

    2016-04-01

    We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O I, Si II, Si III, and Si IV ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si IV/Si II) have low dispersion, and little variation with stellar mass; while ratios with O I and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between -2.25 < log (U) < -1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15-10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.

  17. Segmental Versican Expression in the Trabecular Meshwork and Involvement in Outflow Facility

    PubMed Central

    Keller, Kate E.; Bradley, John M.; Vranka, Janice A.

    2011-01-01

    Purpose. Versican is a large proteoglycan with numerous chondroitin sulfate (CS) glycosaminoglycan (GAG) side chains attached. To assess versican's potential contributions to aqueous humor outflow resistance, its segmental distribution in the trabecular meshwork (TM) and the effect on outflow facility of silencing the versican gene were evaluated. Methods. Fluorescent quantum dots (Qdots) were perfused to label outflow pathways of anterior segments. Immunofluorescence with confocal microscopy and quantitative RT-PCR were used to determine versican protein and mRNA distribution relative to Qdot-labeled regions. Lentiviral delivery of shRNA-silencing cassettes to TM cells in perfused anterior segment cultures was used to evaluate the involvement of versican and CS GAG chains in outflow facility. Results. Qdot uptake by TM cells showed considerable segmental variability in both human and porcine outflow pathways. Regional levels of Qdot labeling were inversely related to versican protein and mRNA levels; versican levels were relatively high in sparsely Qdot-labeled regions and low in densely labeled regions. Versican silencing decreased outflow facility in human and increased facility in porcine anterior segments. However, RNAi silencing of ChGn, an enzyme unique to CS GAG biosynthesis, increased outflow facility in both species. The fibrillar pattern of versican immunostaining in the TM juxtacanalicular region was disrupted after versican silencing in perfusion culture. Conclusions. Versican appears to be a central component of the outflow resistance, where it may organize GAGs and other ECM components to facilitate and control open flow channels in the TM. However, the exact molecular organization of this resistance appears to differ between human and porcine eyes. PMID:21596823

  18. Feeding the fire: tracing the mass-loading of 107 K galactic outflows with O VI absorption

    NASA Astrophysics Data System (ADS)

    Chisholm, J.; Bordoloi, R.; Rigby, J. R.; Bayliss, M.

    2018-02-01

    Galactic outflows regulate the amount of gas galaxies convert into stars. However, it is difficult to measure the mass outflows remove because they span a large range of temperatures and phases. Here, we study the rest-frame ultraviolet spectrum of a lensed galaxy at z ˜ 2.9 with prominent interstellar absorption lines from O I, tracing neutral gas, up to O VI, tracing transitional phase gas. The O VI profile mimics weak low-ionization profiles at low velocities, and strong saturated profiles at high velocities. These trends indicate that O VI gas is co-spatial with the low-ionization gas. Further, at velocities blueward of -200 km s-1 the column density of the low-ionization outflow rapidly drops while the O VI column density rises, suggesting that O VI is created as the low-ionization gas is destroyed. Photoionization models do not reproduce the observed O VI, but adequately match the low-ionization gas, indicating that the phases have different formation mechanisms. Photoionized outflows are more massive than O VI outflows for most of the observed velocities, although the O VI mass outflow rate exceeds the photoionized outflow at velocities above the galaxy's escape velocity. Therefore, most gas capable of escaping the galaxy is in a hot outflow phase. We suggest that the O VI absorption is a temporary by-product of conduction transferring mass from the photoionized phase to an unobserved hot wind, and discuss how this mass-loading impacts the observed circum-galactic medium.

  19. Can Gas Outflows Explain The Strong Lyα Emission Of Lyman Alpha Emitters?

    NASA Astrophysics Data System (ADS)

    Hashimoto, Takuya; Ouchi, M.; Shimasaku, K.; Nakajima, K.; Ono, Y.; Rauch, M.

    2012-05-01

    Lyman alpha emitters (LAEs) are galaxies commonly seen at high redshift, probably playing an important role in galaxy evolution as building blocks of massive galaxies. The most interesting feature of LAEs is strong Lyα emission, because Lyα photons produced in a galaxy are expected to be easily absorbed by dust in the ISM before escaping the galaxy due to their resonant nature. Previous studies have suggested that outflow may help their escape thanks to reduced cross sections of outflowing (ie, redshifted) neutral hydrogen atoms. Although the presence of outflows can be examined from the offset of the Lyα emission from the systemic velocity defined by Hα emission, there are only four LAEs with reliable detection of Hα emission. We present the results of Magellan/MMIRS and Keck/NIRSPEC spectroscopic observations of five LAEs at z˜2.2 from our wide-field narrow-band survey with Subaru/Suprime-Cam. We successfully detect Hα emission for five objects. After eliminating an AGN contaminated object, we measure the velocityoffset between Lyα and Hα (Δ v_Lyα) for the remaining four, to find that three have a positive offset, suggesting an outflow. Since three among the four from the the literature also have an outflow, we conclude that ˜75% of LAEs have an outflow, with velocities of 75-280 km/s. We then use these eight LAEs to examine how the Lyα strength defined by Lyα escape fraction (f_esc) and/or Lyα equivalent width (EW(Lyα)) depend on other physical quantities including those derived from SED fitting. Contrary to our expectation, we find that both f_esc and EW(Lyα) decrease with Δ v_Lyα. Thus, although LAEs do have outflow, high outflow velocities are not the primary cause of strong Lyα emission. We also find that the Lyα strength does not depend on E(B-V). However, we find that objects with a clumpier gas distribution may have higher f_esc.

  20. The WISSH quasars project. I. Powerful ionised outflows in hyper-luminous quasars

    NASA Astrophysics Data System (ADS)

    Bischetti, M.; Piconcelli, E.; Vietri, G.; Bongiorno, A.; Fiore, F.; Sani, E.; Marconi, A.; Duras, F.; Zappacosta, L.; Brusa, M.; Comastri, A.; Cresci, G.; Feruglio, C.; Giallongo, E.; La Franca, F.; Mainieri, V.; Mannucci, F.; Martocchia, S.; Ricci, F.; Schneider, R.; Testa, V.; Vignali, C.

    2017-02-01

    Models and observations suggest that both the power and effects of AGN feedback should be maximised in hyper-luminous (LBol > 1047 erg s-1) quasars, I.e. objects at the brightest end of the AGN luminosity function. In this paper, we present the first results of a multiwavelength observing programme, focusing on a sample of WISE/SDSS selected hyper-luminous (WISSH) broad-line quasars at z ≈ 1.5-5. The WISSH quasars project has been designed to reveal the most energetic AGN-driven outflows, estimate their occurrence at the peak of quasar activity, and extend the study of correlations between outflows and nuclear properties up to poorly investigated, extreme AGN luminosities, I.e. LBol 1047 - 1048 erg s-1. We present near-infrared, long-slit LBT/LUCI1 spectroscopy of five WISSH quasars at z ≈ 2.3 - 3.5, showing prominent [OIII] emission lines with broad (FWHM 1200-2200 km s-1) and skewed profiles. The luminosities of these broad [OIII] wings are the highest measured so far, with L[OIII]broad ≳ 5 × 1044 erg s-1, and reveal the presence of powerful ionised outflows with associated mass outflow rates Ṁ ≳ 1700M⊙ yr-1 and kinetic powers Ėkin ≳ 1045 erg s-1. Although these estimates are affected by large uncertainties because of the use of [OIII] as a tracer of ionised outflows and the very basic outflow model adopted here, these results suggest that in our hyper-luminous targets the AGN is highly efficient at pushing large amounts of ionised gas outwards. Furthermore, the mechanical outflow luminosities measured for WISSH quasars correspond to higher percentages ( 1-3%) of LBol than those derived for AGN with lower LBol. Our targets host very massive (MBH ≳ 2 × 109M⊙) black holes that are still accreting at a high rate (I.e. a factor of 0.4-3 of the Eddington limit). These findings clearly demonstrate that WISSH quasars offer the opportunity to probe the extreme end of both luminosity and supermassive black holes (SMBH) mass functions and revealing powerful ionised outflows that are able to affect the evolution of their host galaxies.

  1. Chandra High Resolution Spectroscopy of the Circumnuclear Matter in the Broad Line Radio Galaxy, 3C 445

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; Gofford, J.; Braito, V.; Sambruna, R.

    2010-01-01

    We present evidence for X-ray line emitting and absorbing gas in the nucleus of the Broad-Line Radio Galaxy (BLRG), 3C445. A 200 ks Chandra LETG observation of 3C 445 reveals the presence of several highly ionized emission lines in the soft X-ray spectrum, primarily from the He and H-like ions of O, Ne, Mg and Si. Radiative recombination emission is detected from O VII and O VIII, indicating that the emitting gas is photoionized. The He-like emission appears to be resolved into forbidden and intercombination line components, which implies a high density of greater than 10(sup 10) cm(sup -3), while the lines are velocity broadened with a mean width of 2600 km s(sup -1). The density and widths of the ionized lines indicate an origin of the gas on sub-parsec scales in the Broad Line Region (BLR). The X-ray continuum of 3C 445 is heavily obscured by a photoionized absorber of column density N(sub H) = 2 x 10(sup 23) cm(sup -2) and ionization parameter log xi = 1.4 erg cm s(sup -1). However the view of the X-ray line emission is unobscured, which requires the absorber to be located at radii well within any parsec scale molecular torus. Instead we suggest that the X-ray absorber in 3C 445 may be associated with an outflowing, but clumpy accretion disk wind, with an observed outflow velocity of approximately 10000 km s(sup -1).

  2. Quantifying the AGN-driven outflows in ULIRGs (QUADROS) III: Measurements of the radii and kinetic powers of 8 near-nuclear outflows

    NASA Astrophysics Data System (ADS)

    Spence, R. A. W.; Tadhunter, C. N.; Rose, M.; Rodríguez Zaurín, J.

    2018-05-01

    As part of the QUADROS project to quantify the impact of AGN-driven outflows in rapidly evolving galaxies in the local universe, we present observations of 8 nearby ULIRGs (0.04 < z < 0.2) taken with the ISIS spectrograph on the William Herschel Telescope (WHT), and also summarize the results of the project as a whole. Consistent with Rose et al. (2018), we find that the outflow regions are compact (0.08 < R_{[O III]} < 1.5 kpc), and the electron densities measured using the [S II], [O II] trans-auroral emission-line ratios are relatively high (2.5 < log ne (cm-3) < 4.5, median log ne (cm-3) ˜ 3.1). Many of the outflow regions are also significantly reddened (median E(B - V) ˜ 0.5). Assuming that the de-projected outflow velocities are represented by the 5^{th} percentile velocities (v05) of the broad, blueshifted components of [O III] λ5007, we calculate relatively modest mass outflow rates (0.1 < \\dot{M} < 20 M⊙ yr-1, median \\dot{M} ˜ 2 M⊙ yr-1), and find kinetic powers as a fraction of the AGN bolometric luminosity (\\dot{F} = \\dot{E}/L_bol) in the range 0.02 < \\dot{F} < 3 per cent, median \\dot{F} ˜ 0.3 per cent). The latter estimates are in line with the predictions of multi-stage outflow models, or single-stage models in which only a modest fraction of the initial kinetic power of the inner disk winds is transferred to the larger-scale outflows. Considering the QUADROS sample as a whole, we find no clear evidence for correlations between the properties of the outflows and the bolometric luminosities of the AGN, albeit based on a sample that covers a relatively small range in Lbol. Overall, our results suggest that there is a significant intrinsic scatter in outflow properties of ULIRGs for a given AGN luminosity.

  3. Factors Controlling Water Volumes and Release Rates in Martian Outflow Channels

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Head, J. W.; Leask, H. J.; Ghatan, G.; Mitchell, K. L.

    2004-01-01

    We discuss estimates of water fluxes on Mars and suggest that many are overestimates. Even so, we can only explain very high martian outflow rates by either unusually permeable aquifer systems or sudden release of shallow concentrations of water.

  4. An aircraft gas chromatograph-mass spectrometer System for Organic Fast Identification Analysis (SOFIA): design, performance and a case study of Asian monsoon pollution outflow

    NASA Astrophysics Data System (ADS)

    Bourtsoukidis, Efstratios; Helleis, Frank; Tomsche, Laura; Fischer, Horst; Hofmann, Rolf; Lelieveld, Jos; Williams, Jonathan

    2017-12-01

    Volatile organic compounds (VOCs) are important for global air quality and oxidation processes in the troposphere. In addition to ground-based measurements, the chemical evolution of such species during transport can be studied by performing in situ airborne measurements. Generally, aircraft instrumentation needs to be sensitive, robust and sample at higher frequency than ground-based systems while their construction must comply with rigorous mechanical and electrical safety standards. Here, we present a new System for Organic Fast Identification Analysis (SOFIA), which is a custom-built fast gas chromatography-mass spectrometry (GC-MS) system with a time resolution of 2-3 min and the ability to quantify atmospheric mixing ratios of halocarbons (e.g. chloromethanes), hydrocarbons (e.g isoprene), oxygenated VOCs (acetone, propanal, butanone) and aromatics (e.g. benzene, toluene) from sub-ppt to ppb levels. The relatively high time resolution is the result of a novel cryogenic pre-concentration unit which rapidly cools (˜ 6 °C s-1) the sample enrichment traps to -140 °C, and a new chromatographic oven designed for rapid cooling rates (˜ 30 °C s-1) and subsequent thermal stabilization. SOFIA was installed in the High Altitude and Long Range Research Aircraft (HALO) for the Oxidation Mechanism Observations (OMO) campaign in August 2015, aimed at investigating the Asian monsoon pollution outflow in the tropical upper troposphere. In addition to a comprehensive instrument characterization we present an example monsoon plume crossing flight as a case study to demonstrate the instrument capability. Hydrocarbon, halocarbon and oxygenated VOC data from SOFIA are compared with mixing ratios of carbon monoxide (CO) and methane (CH4), used to define the pollution plume. By using excess (ExMR) and normalized excess mixing ratios (NEMRs) the pollution could be attributed to two air masses of distinctly different origin, identified by back-trajectory analysis. This work endorses the use of SOFIA for aircraft operation and demonstrates the value of relatively high-frequency, multicomponent measurements in atmospheric chemistry research.

  5. HIGH-RESOLUTION LINEAR POLARIMETRIC IMAGING FOR THE EVENT HORIZON TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chael, Andrew A.; Johnson, Michael D.; Narayan, Ramesh

    Images of the linear polarizations of synchrotron radiation around active galactic nuclei (AGNs) highlight their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest-resolution polarimetric images of AGNs are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore some extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previousmore » work, our polarimetric MEM algorithm combines a Stokes I imager that only uses bispectrum measurements that are immune to atmospheric phase corruption, with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7 and 3 mm wavelength quasar observations from the VLBA and simulated 1.3 mm Event Horizon Telescope observations of Sgr A* and M87. Consistent with past studies, we find that polarimetric MEM can produce superior resolution compared to the standard CLEAN algorithm, when imaging smooth and compact source distributions. As an imaging framework, MEM is highly adaptable, allowing a range of constraints on polarization structure. Polarimetric MEM is thus an attractive choice for image reconstruction with the EHT.« less

  6. High-resolution Linear Polarimetric Imaging for the Event Horizon Telescope

    NASA Astrophysics Data System (ADS)

    Chael, Andrew A.; Johnson, Michael D.; Narayan, Ramesh; Doeleman, Sheperd S.; Wardle, John F. C.; Bouman, Katherine L.

    2016-09-01

    Images of the linear polarizations of synchrotron radiation around active galactic nuclei (AGNs) highlight their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest-resolution polarimetric images of AGNs are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore some extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previous work, our polarimetric MEM algorithm combines a Stokes I imager that only uses bispectrum measurements that are immune to atmospheric phase corruption, with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7 and 3 mm wavelength quasar observations from the VLBA and simulated 1.3 mm Event Horizon Telescope observations of Sgr A* and M87. Consistent with past studies, we find that polarimetric MEM can produce superior resolution compared to the standard CLEAN algorithm, when imaging smooth and compact source distributions. As an imaging framework, MEM is highly adaptable, allowing a range of constraints on polarization structure. Polarimetric MEM is thus an attractive choice for image reconstruction with the EHT.

  7. Warm Absorbers in X-rays (WAX), a comprehensive high resolution grating spectral study of a sample of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Laha, S.; Guainazzi, M.; Dewangan, G.; Chakravorty, S.; Kembhavi, A.

    2014-07-01

    We present results from a homogeneous analysis of the broadband 0.3-10 keV CCD resolution as well as of soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. We could put a strict lower limit on the detection fraction of 50%. We find a gap in the distribution of the ionisation parameter in the range 0.5

  8. Wind influence on a coastal buoyant outflow

    NASA Astrophysics Data System (ADS)

    Whitney, Michael M.; Garvine, Richard W.

    2005-03-01

    This paper investigates the interplay between river discharge and winds in forcing coastal buoyant outflows. During light winds a plume influenced by the Earth's rotation will flow down shelf (in the direction of Kelvin wave propagation) as a slender buoyancy-driven coastal current. Downwelling favorable winds augment this down-shelf flow, narrow the plume, and mix the water column. Upwelling favorable winds drive currents that counter the buoyancy-driven flow, spread plume waters offshore, and rapidly mix buoyant waters. Two criteria are developed to assess the wind influence on a buoyant outflow. The wind strength index (Ws) determines whether a plume's along-shelf flow is in a wind-driven or buoyancy-driven state. Ws is the ratio of the wind-driven and buoyancy-driven along-shelf velocities. Wind influence on across-shelf plume structure is rated with a timescale (ttilt) for the isopycnal tilting caused by wind-driven Ekman circulation. These criteria are used to characterize wind influence on the Delaware Coastal Current and can be applied to other coastal buoyant outflows. The Delaware buoyant outflow is simulated for springtime high-river discharge conditions. Simulation results and Ws values reveal that the coastal current is buoyancy-driven most of the time (∣Ws∣ < 1 on average). Wind events, however, overwhelm the buoyancy-driven flow (∣Ws∣ > 1) several times during the high-discharge period. Strong upwelling events reverse the buoyant outflow; they constitute an important mechanism for transporting fresh water up shelf. Across-shelf plume structure is more sensitive to wind influence than the along-shelf flow. Values of ttilt indicate that moderate or strong winds persisting throughout a day can modify plume width significantly. Plume widening during upwelling events is accompanied by mixing that can erase the buoyant outflow.

  9. THE MULTIPHASE STRUCTURE AND POWER SOURCES OF GALACTIC WINDS IN MAJOR MERGERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rupke, David S. N.; Veilleux, Sylvain, E-mail: drupke@gmail.com

    2013-05-01

    Massive, galaxy-scale outflows are known to be ubiquitous in major mergers of disk galaxies in the local universe. In this paper, we explore the multiphase structure and power sources of galactic winds in six ultraluminous infrared galaxies (ULIRGs) at z < 0.06 using deep integral field spectroscopy with the Gemini Multi-Object Spectrograph (GMOS) on Gemini North. We probe the neutral, ionized, and dusty gas phases using Na I D, strong emission lines ([O I], H{alpha}, and [N II]), and continuum colors, respectively. We separate outflow motions from those due to rotation and tidal perturbations, and find that all of themore » galaxies in our sample host high-velocity flows on kiloparsec scales. The properties of these outflows are consistent with multiphase (ionized, neutral, and dusty) collimated bipolar winds emerging along the minor axis of the nuclear disk to scales of 1-2 kpc. In two cases, these collimated winds take the form of bipolar superbubbles, identified by clear kinematic signatures. Less collimated (but still high-velocity) flows are also present on scales up to 5 kpc in most systems. The three galaxies in our sample with obscured QSOs host higher velocity outflows than those in the three galaxies with no evidence for an active galactic nucleus. The peak outflow velocity in each of the QSOs is in the range 1450-3350 km s{sup -1}, and the highest velocities (2000-3000 km s{sup -1}) are seen only in ionized gas. The outflow energy and momentum in the QSOs are difficult to produce from a starburst alone, but are consistent with the QSO contributing significantly to the driving of the flow. Finally, when all gas phases are accounted for, the outflows are massive enough to provide negative feedback to star formation.« less

  10. The Anatomy of the Young Protostellar Outflow HH 211: Strong Evidence for CO v = 1-0 Fundamental Band Emission from Dense Gas in the Terminal Shock

    NASA Astrophysics Data System (ADS)

    Tappe, Achim; Forbrich, J.; Martín, S.; Lada, C. J.

    2011-05-01

    We present Spitzer Space Telescope 5-37 µm spectroscopic mapping observations toward the southeastern lobe of the young protostellar outflow HH 211 (part of IC 348 in Perseus, 260 pc). The terminal shock of the outflow shows a rich atomic and molecular spectrum with emission lines from OH, H2O, HCO+, CO2, H2, HD, [Fe II], [Si II], [Ne II], [S I], and [Cl I]. The spectrum also shows a rising continuum towards 5 µm, which we interpret as unresolved emission lines from highly excited rotational levels of the CO v=1-0 fundamental band. This interpretation is confirmed by a strong excess flux observed in the Spitzer IRAC 4-5 µm channel 2 image. We also observed the terminal outflow shock of this lobe with the Submillimeter Array (SMA) and detected pure rotational emission from CO 2-1, HCO+ 3-2, and HCN 3-2. The rotationally excited CO traces the collimated outflow and the terminal shock, whereas the vibrationally excited CO seen with Spitzer follows the continuation of the collimated outflow backbone in the terminal shock. The extremely high critical densities of the CO v=1-0 rovibrational lines indicate terminal shock jet densities larger than 107 cm-3. The unique combination of mid-infrared, submillimeter, and previous near-infrared observations allow us to gain detailed insights into the interaction of one of the youngest known protostellar outflows with its surrounding molecular cloud. Our results help to understand the nature of some of the so-called `green fuzzies’ (Extended Green Objects) identified by their Spitzer IRAC channel 2 excess and association with star-forming regions. They also provide a critical observational test to models of pulsed protostellar jets.

  11. High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer

    USGS Publications Warehouse

    Mellon, M.T.; Jakosky, B.M.; Kieffer, H.H.; Christensen, P.R.

    2000-01-01

    High-resolution thermal inertia mapping results are presented, derived from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) observations of the surface temperature of Mars obtained during the early portion of the MGS mapping mission. Thermal inertia is the key property controlling the diurnal surface temperature variations, and is dependent on the physical character of the top few centimeters of the surface. It represents a complex combination of particle size, rock abundance, exposures of bedrock, and degree of induration. In this work we describe the derivation of thermal inertia from TES data, present global scale analysis, and place these results into context with earlier work. A global map of nighttime thermal-bolometer-based thermal inertia is presented at 14?? per pixel resolution, with approximately 63% coverage between 50??S and 70??N latitude. Global analysis shows a similar pattern of high and low thermal inertia as seen in previous Viking low-resolution mapping. Significantly more detail is present in the high-resolution TES thermal inertia. This detail represents horizontal small-scale variability in the nature of the surface. Correlation with albedo indicates the presence of a previously undiscovered surface unit of moderate-to-high thermal inertia and intermediate albedo. This new unit has a modal peak thermal inertia of 180-250 J m-2 K-1 s-12 and a narrow range of albedo near 0.24. The unit, covering a significant fraction of the surface, typically surrounds the low thermal inertia regions and may comprise a deposit of indurated fine material. Local 3-km-resolution maps are also presented as examples of eolian, fluvial, and volcanic geology. Some impact crater rims and intracrater dunes show higher thermal inertias than the surrounding terrain; thermal inertia of aeolian deposits such as intracrater dunes may be related to average particle size. Outflow channels and valleys consistently show higher thermal inertias than the surrounding terrain. Generally, correlations between spatial variations in thermal inertia and geologic features suggest a relationship between the hundred-meter-scale morphology and the centimeter-scale surface layer. ?? 2000 Academic Press.

  12. Joint Evaluation of Copernicus Atmosphere Monitoring Service (CAMS) High-resolution Global Near-Real Time CO and CO2 Forecasts during KORUS-AQ Field Campaign

    NASA Astrophysics Data System (ADS)

    Tang, W.; Arellano, A. F., Jr.; Choi, Y.; DiGangi, J. P.; Woo, J. H.; Diskin, G. S.; Agusti-panareda, A.; Parrington, M.; Massart, S.; Lee, M.; Kanaya, Y.; Jang, J.; Lee, Y.; Hong, J.; Flynn, J. H., III; Thompson, A. M.; Kim, D. B.

    2017-12-01

    Anthropogenic combustion has significant impacts on air quality and climate. To understand anthropogenic combustion, it is critical to model CO2 and CO (key combustion signatures) and their relationships. In this study, we jointly evaluate the Copernicus Atmosphere Monitoring Service (CAMS) free-running 16-km forecast, 9-km forecast initialized with CAMS analysis, and analysis products of CO (80km) and CO2 (40km) to understand how well combustion-related processes and constituent transport are represented in the current system. We use measurements from aircraft, ground sites, and ships during the KORUS-AQ field campaign (May - June 2016), along with satellite observations (MOPITT, IASI, OCO-2, and GOSAT). Airborne measurements by the DC-8 aircraft are classified into five regions: Seoul metropolitan, Taehwa, West Sea, Seoul-Jeju jetway, and Seoul-Busan jetway. The observed CO2, CO, and their relationships varies significantly, and the performance of CAMS products also varies across regions. The three CAMS products perform reasonably well in simulating anthropogenic combustion processes. Overall, CO2 is overestimated while CO is underestimated by CAMS. The 9km forecast product generally has a better performance than the other two, because of its higher model resolution and better initialization conditions. The analysis product also performs better than the 16km forecast. China outflow over West Sea is captured, but CO2 and CO is underestimated in the outflow. According to CAMS, is 10-15 (ppbv/ppmv) for Korea and about 30 for China outflow, indicating anthropogenic combustion in Seoul is more efficient than it is in China. This agrees well with DC-8 aircraft observations. As for ground sites, we find that CO and CO2 measured by the Olympic park and Yonsei (Seoul metropolitan sites) have more regularity in diurnal cycle, and such periodical change is well captured by CAMS. The time series for CO from Baengnyeong, and Fukue (remote sites) are irregular and episodic, which are more related to transport rather than local emissions. CAMS performances over Taehwa site are impacted by both local processes and transport. These comparisons indicate vertical mixing near sources may be an issue for CAMS. Compared to satellite observations, CO analyses show a better agreement, while for CO2, the forecasts are better.

  13. Secondary chaotic terrain formation in the higher outflow channels of southern circum-Chryse, Mars

    USGS Publications Warehouse

    Rodriguez, J.A.P.; Kargel, J.S.; Tanaka, K.L.; Crown, D.A.; Berman, D.C.; Fairen, A.G.; Baker, V.R.; Furfaro, R.; Candelaria, P.; Sasaki, S.

    2011-01-01

    Higher outflow channel dissection in the martian region of southern circum-Chryse appears to have extended from the Late Hesperian to the Middle Amazonian Epoch. These outflow channels were excavated within the upper 1. km of the cryolithosphere, where no liquid water is expected to have existed during these geologic epochs. In accordance with previous work, our examination of outflow channel floor morphologies suggests the upper crust excavated by the studied outflow channels consisted of a thin (a few tens of meters) layer of dry geologic materials overlying an indurated zone that extends to the bases of the investigated outflow channels (1. km in depth). We find that the floors of these outflow channels contain widespread secondary chaotic terrains (i.e., chaotic terrains produced by the destruction of channel-floor materials). These chaotic terrains occur within the full range of outflow channel dissection and tend to form clusters. Our examination of the geology of these chaotic terrains suggests that their formation did not result in the generation of floods. Nevertheless, despite their much smaller dimensions, these chaotic terrains are comprised of the same basic morphologic elements (e.g., mesas, knobs, and smooth deposits within scarp-bound depressions) as those located in the initiation zones of the outflow channels, which suggests that their formation must have involved the release of ground volatiles. We propose that these chaotic terrains developed not catastrophically but gradually and during multiple episodes of nested surface collapse. In order to explain the formation of secondary chaotic terrains within zones of outflow channel dissection, we propose that the regional Martian cryolithosphere contained widespread lenses of volatiles in liquid form. In this model, channel floor collapse and secondary chaotic terrain formation would have taken place as a consequence of instabilities arising during their exhumation by outflow channel dissection. Within relatively warm upper crustal materials in volcanic settings, or within highly saline crustal materials where cryopegs developed, lenses of volatiles in liquid form within the cryolithosphere could have formed, and/or remained stable.In addition, our numerical simulations suggest that low thermal conductivity, dry fine-grained porous geologic materials just a few tens of meters in thickness (e.g., dunes, sand sheets, some types of regolith materials), could have produced high thermal anomalies resulting in subsurface melting. The existence of a global layer of dry geologic materials overlying the cryolithosphere would suggest that widespread lenses of fluids existed (and may still exist) at shallow depths wherever these materials are fine-grained and porous. The surface ages of the investigated outflow channels and chaotic terrains span a full 500 to 700. Myr. Chaotic terrains similar in dimensions and morphology to secondary chaotic terrains are not observed conspicuously throughout the surface of Mars, suggesting that intra-cryolithospheric fluid lenses may form relatively stable systems. The existence of widespread groundwater lenses at shallow depths of burial has tremendous implications for exobiological studies and future human exploration. We find that the clear geomorphologic anomaly that the chaotic terrains and outflow channels of southern Chryse form within the Martian landscape could have been a consequence of large-scale resurfacing resulting from anomalously extensive subsurface melt in this region of the planet produced by high concentrations of salts within the regional upper crust. Crater count statistics reveal that secondary chaotic terrains and the outflow channels within which they occur have overlapping ages, suggesting that the instabilities leading to their formation rapidly dissipated, perhaps as the thickness of the cryolithosphere was reset following the disruption of the upper crustal thermal structure produced during outflow channel ex

  14. Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly?

    PubMed

    Rodriguez, J Alexis P; Kargel, Jeffrey S; Baker, Victor R; Gulick, Virginia C; Berman, Daniel C; Fairén, Alberto G; Linares, Rogelio; Zarroca, Mario; Yan, Jianguo; Miyamoto, Hideaki; Glines, Natalie

    2015-09-08

    Catastrophic floods generated ~3.2 Ga by rapid groundwater evacuation scoured the Solar System's most voluminous channels, the southern circum-Chryse outflow channels. Based on Viking Orbiter data analysis, it was hypothesized that these outflows emanated from a global Hesperian cryosphere-confined aquifer that was infused by south polar meltwater infiltration into the planet's upper crust. In this model, the outflow channels formed along zones of superlithostatic pressure generated by pronounced elevation differences around the Highland-Lowland Dichotomy Boundary. However, the restricted geographic location of the channels indicates that these conditions were not uniform. Furthermore, some outflow channel sources are too high to have been fed by south polar basal melting. Using more recent mission data, we argue that during the Late Noachian fluvial and glacial sediments were deposited into a clastic wedge within a paleo-basin located in the southern circum-Chryse region, which at the time was completely submerged under a primordial northern plains ocean [corrected]. Subsequent Late Hesperian outflow channels were sourced from within these geologic materials and formed by gigantic groundwater outbursts driven by an elevated hydraulic head from the Valles Marineris region. Thus, our findings link the formation of the southern circum-Chryse outflow channels to ancient marine, glacial, and fluvial erosion and sedimentation.

  15. Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly?

    PubMed Central

    Rodriguez, J. Alexis P.; Kargel, Jeffrey S.; Baker, Victor R.; Gulick, Virginia C.; Berman, Daniel C.; Fairén, Alberto G.; Linares, Rogelio; Zarroca, Mario; Yan, Jianguo; Miyamoto, Hideaki; Glines, Natalie

    2015-01-01

    Catastrophic floods generated ~3.2 Ga by rapid groundwater evacuation scoured the Solar System’s most voluminous channels, the southern circum-Chryse outflow channels. Based on Viking Orbiter data analysis, it was hypothesized that these outflows emanated from a global Hesperian cryosphere-confined aquifer that was infused by south polar meltwater infiltration into the planet’s upper crust. In this model, the outflow channels formed along zones of superlithostatic pressure generated by pronounced elevation differences around the Highland-Lowland Dichotomy Boundary. However, the restricted geographic location of the channels indicates that these conditions were not uniform Boundary. Furthermore, some outflow channel sources are too high to have been fed by south polar basal melting. Using more recent mission data, we argue that during the Late Noachian fluvial and glacial sediments were deposited into a clastic wedge within a paleo-basin located in the southern circum-Chryse region, which was then completely submerged under a primordial northern plains ocean. Subsequent Late Hesperian outflow channels were sourced from within these geologic materials and formed by gigantic groundwater outbursts driven by an elevated hydraulic head from the Valles Marineris region. Thus, our findings link the formation of the southern circum-Chryse outflow channels to ancient marine, glacial, and fluvial erosion and sedimentation. PMID:26346067

  16. Quantification of Focal Outflow Enhancement Using Differential Canalograms

    PubMed Central

    Loewen, Ralitsa T.; Brown, Eric N.; Scott, Gordon; Parikh, Hardik; Schuman, Joel S.; Loewen, Nils A.

    2016-01-01

    Purpose To quantify regional changes of conventional outflow caused by ab interno trabeculectomy (AIT). Methods Gonioscopic, plasma-mediated AIT was established in enucleated pig eyes. We developed a program to automatically quantify outflow changes (R, package eye-canalogram, github.com) using a fluorescent tracer reperfusion technique. Trabecular meshwork (TM) ablation was demonstrated with fluorescent spheres in six eyes before formal outflow quantification with two-dye reperfusion canalograms in six additional eyes. Eyes were perfused with a central, intracameral needle at 15 mm Hg. Canalograms and histology were correlated for each eye. Results The pig eye provided a model with high similarity to AIT in human patients. Histology indicated ablation of TM and unroofing of most Schlemm's canal segments. Spheres highlighted additional circumferential and radial outflow beyond the immediate area of ablation. Differential canalograms showed that AIT caused an increase of outflow of 17 ± 5-fold inferonasally, 14 ± 3-fold superonasally, and also an increase in the opposite quadrants with a 2 ± 1-fold increase superotemporally, and 3 ± 3 inferotemporally. Perilimbal specific flow image analysis showed an accelerated nasal filling with an additional perilimbal flow direction into adjacent quadrants. Conclusions A quantitative, differential canalography technique was developed that allows us to quantify supraphysiological outflow enhancement by AIT. PMID:27227352

  17. Near-IR High-Resolution Imaging Polarimetry of the SU Aur Disk: Clues for Tidal Tails?

    NASA Technical Reports Server (NTRS)

    De Leon, Jerome; Michihiro, Takami; Karr, Jennifer; Hashimoto, Jun; Kudo, Tomoyuki; Sitko, Michael; Mayama, Satoshi; Kusakabe, Nobuyuki; Grady, Carol A.; McElwain, Michael W.

    2015-01-01

    We present new high-resolution (approximately 0.09) H-band imaging observations of the circumstellar disk around the T Tauri star SU Aur. Our observations with Subaru-HiCIAO have revealed the presence of scattered light as close as 0.15 (approximately 20 AU) to the star. Within our image, we identify bright emission associated with a disk with a minimum radius of approximately 90 AU, an inclination of approximately 35 deg from the plane of the sky, and an approximate PA of 15 deg for the major axis. We find a brightness asymmetry between the northern and southern sides of the disk due to a non-axisymmetric disk structure. We also identify a pair of asymmetric tail structures extending east and west from the disk. The western tail extends at least 2. 5 (350 AU) from the star, and is probably associated with a reflection nebula previously observed at optical and near-IR wavelengths. The eastern tail extends at least 1 (140 AU) at the present signal-to-noise. These tails are likely due to an encounter with an unseen brown dwarf, but our results do not exclude the explanation that these tails are outflow cavities or jets.

  18. Airborne Multiwavelength High Spectral Resolution Lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US

    DOE PAGES

    Muller, Detlef; Hostetler, Chris A.; Ferrare, R. A.; ...

    2014-10-10

    Here, we present measurements acquired by the world's first airborne 3 backscatter (β) + 2 extinction (α) High Spectral Resolution Lidar (HSRL-2). HSRL-2 measures particle backscatter coefficients at 355, 532, and 1064 nm, and particle extinction coefficients at 355 and 532 nm. The instrument has been developed by the NASA Langley Research Center. The instrument was operated during Phase 1 of the Department of Energy (DOE) Two-Column Aerosol Project (TCAP) in July 2012. We observed pollution outflow from the northeastern coast of the US out over the western Atlantic Ocean. Lidar ratios were 50–60 sr at 355 nm and 60–70more » sr at 532 nm. Extinction-related Ångström exponents were on average 1.2–1.7, indicating comparably small particles. Our novel automated, unsupervised data inversion algorithm retrieved particle effective radii of approximately 0.2 μm, which is in agreement with the large Angstrom exponents. We find good agreement with particle size parameters obtained from coincident in situ measurements carried out with the DOE Gulfstream-1 aircraft.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tie; Kim, Kee-Tae; Lee, Chang-Won

    Most bipolar outflows are associated with individual young stellar objects and have small opening angles. Here we report the discovery of an extremely wide-angle (∼180°) bipolar outflow (“EWBO”) in a cluster forming region AFGL 5142 from low-velocity emission of the HCN (3–2) and HCO{sup +} (3–2) lines. This bipolar outflow is along a north-west to south-east direction with a line of sight flow velocity of about 3 km s{sup −1} and is spatially connected to the high-velocity jet-like outflows. It seems to be a collection of low-velocity material entrained by the high-velocity outflows due to momentum feedback. The total ejectedmore » mass and mass loss rate due to both high-velocity jet-like outflows and the “EWBO” are ∼24.5 M {sub ⊙} and ∼1.7 × 10{sup −3} M {sub ⊙} yr{sup −1}, respectively. Global collapse of the clump is revealed by the “blue profile” in the HCO{sup +} (1–0) line. A hierarchical network of filaments was identified in NH{sub 3} (1, 1) emission. Clear velocity gradients of the order of 10 km s{sup −1} pc{sup −1} are found along filaments, indicating gas inflow along the filaments. The sum of the accretion rate along filaments and mass infall rate along the line of sight is ∼3.1 × 10{sup −3} M {sub ⊙} yr{sup −1}, which exceeds the total mass loss rate, indicating that the central cluster is probably still gaining mass. The central cluster is highly fragmented and 22 condensations are identified in 1.1 mm continuum emission. The fragmentation process seems to be determined by thermal pressure and turbulence. The magnetic field may not play an important role in fragmentation.« less

  20. The Orion Nebula in the Far-Infrared: high-J CO and fine-structure lines mapped by FIFI-LS/SOFIA

    NASA Astrophysics Data System (ADS)

    Klein, Randolf; Looney, Leslie; Cox, Erin; Fischer, Christian; Iserlohe, Christof; Krabbe, Alfred

    2015-08-01

    The Orion Nebula is the closest massive star forming region allowing us to study the physical conditions in such a region with high spatial resolution. We used the far infrared integral-field spectrometer, FIFI-LS, on-board the airborne observatory SOFIA to study the atomic and molecular gas in the Orion Nebula at medium spectral resolution.The large maps obtained with FIFI-LS cover the nebula from the BN/KL-object to the bar in several fine structure lines. These spectral maps are the largest and highest spatially resolved to date. They allow us to study the conditions of the photon-dominated region and the interface to the molecular cloud with unprecedented detail.Another investigation targeted the molecular gas in the BN/KL region of the Orion Nebula, which is stirred up by a violent explosion about 500 years ago. The explosion drives a wide angled molecular outflow. We present maps of several high-J CO observations (J in the range of 10 to 30), allowing us to analyse of the heated molecular gas.The observations were taken during the commissioning of FIFI-LS last year and as recent as this March. The results are still preliminary as the data reduction and calibration is still under development.

  1. Multiwavelength and parsec-scale properties of extragalactic jets. Doctoral Thesis Award Lecture 2015

    NASA Astrophysics Data System (ADS)

    Müller, C.

    2016-07-01

    Extragalactic jets originating from the central supermassive black holes of active galaxies are powerful, highly relativistic plasma outflows, emitting light from the radio up to the γ-ray regime. The details of their formation, composition and emission mechanisms are still not completely clear. The combination of high-resolution observations using very long baseline interferometry (VLBI) and multiwavelength monitoring provides the best insight into these objects. Here, such a combined study of sources of the TANAMI sample is presented, investigating the parsec-scale and high-energy properties. The TANAMI program is a multiwavelength monitoring program of a sample of the radio and γ-ray brightest extragalactic jets in the southern sky, below -30o declination. We obtain the first-ever VLBI images for most of the sources, providing crucial information on the jet kinematics and brightness distribution at milliarcsecond resolution. Two particular sources are discussed in detail: PMN J1603-4904 , which can be classified either as an atypical blazar or a γ-ray loud (young) radio galaxy, and Centaurus A, the nearest radio-loud active galaxy. The VLBI kinematics of the innermost parsec of Centaurus A's jet result in a consistent picture of an accelerated jet flow with a spine-sheath like structure.

  2. Feedback in the Antennae Galaxies (NGC 4038/9): I. High-Resolution Infrared Spectroscopy of Winds from Super Star Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, A; Graham, J

    2007-06-05

    We present high-resolution (R {approx} 24,600) near-IR spectroscopy of the youngest super star clusters (SSCs) in the prototypical starburst merger, the Antennae Galaxies. These SSCs are young (3-7 Myr old) and massive (10{sup 5}-10{sup 7} M{sub {circle_dot}} for a Kroupa IMF) and their spectra are characterized by broad, extended Brackett {gamma} emission, so we refer to them as emission-line clusters (ELCs) to distinguish them from older SSCs. The Br {gamma} lines of most ELCs have supersonic widths (60-110 km s{sup -1} FWHM) and non-Gaussian wings whose velocities exceed the clusters escape velocities. This high-velocity unbound gas is flowing out inmore » winds that are powered by the clusters massive O and W-R stars over the course of at least several crossing times. The large sizes of some ELCs relative to those of older SSCs may be due to expansion caused by these outflows; many of the ELCs may not survive as bound stellar systems, but rather dissipate rapidly into the field population. The observed tendency of older ELCs to be more compact than young ones is consistent with the preferential survival of the most concentrated clusters at a given age.« less

  3. The Warm-Hot Intergalactic Medium Explorer (WHIMex) Mission Concept

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Cash, W. C.; McEntaffer, R. L.; Zhang, W.; O'Dell, S.; Bautz, M.; Elvis, M.

    2011-05-01

    WHIMEx is a low-cost, highly capable, single instrument X-ray observatory proposed as a NASA Explorer 2011 mission. WHIMEx will use high resolution X-ray spectroscopy (R ≥ 4000) to probe the hot, tenuous gas that populates the great stretches between the galaxies - the place where most of the baryons in the Universe reside. The bulk of this gas is so hot that it can only be studied in the soft X-ray region where the atomic diagnostics for highly ionized species reside. And this gas is so tenuous that it can only be observed in absorption. To detect the absorption lines of O VII and O VIII along the line of sight to distant AGN requires an order of magnitude improvement in both spectral resolution and collecting area over the current best X-ray spectrographs on Chandra and XMM-Newton. WHIMEx achieves this goal in a compact and affordable package through the application of technologies that were developed over the last decade for the International X-ray Observatory. WHIMex uses ultra-thin, light, densely nested parabolic-hyperbolic mirror pairs to create a telescope with a high collecting area and 15 arcsecond resolution. The X-ray beam is dispersed in wavelength by an array of radial gratings in the extreme off-plane mount. Spectral resolving power of 4000 (λ/δλ) is expected in the 0.15 to 2keV band to bring weak absorption lines out of the noise. A collecting area up to 360 cm2 will enable spectral observations of high red shift AGNs.If selected WHIMEx could be launched in mid- 2017 on a Taurus or Athena II from Vandenberg AFB into its 540 km, 70° inclination low earth orbit. In flight, it would open up a new field of exploration with high resolution observations of AGN outflows, the IGM, interstellar medium, mass transfer binaries, stellar coronae and much more

  4. The Warm-Hot Intergalactic Medium Explorer (WHIMex)

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Cash, W. C.; Science, WHIMex; Instrument Teams

    2011-09-01

    WHIMex is a low-cost, highly capable, single instrument X-ray observatory proposed as a NASA Explorer 2011 mission. WHIMex will use high resolution X-ray spectroscopy (R ≥ 4000) to probe the hot, tenuous gas that populates the great stretches between the galaxies - the place where most of the baryons in the Universe reside. The bulk of this gas is so hot that it can only be studied in the soft X-ray region where the atomic diagnostics for highly ionized species reside. And this gas is so tenuous that it can only be observed in absorption. To detect the absorption lines of O VII and O VIII along the line of sight to distant AGN requires an order of magnitude improvement in both spectral resolution and collecting area over the current best X-ray spectrographs on Chandra and XMM-Newton. WHIMex achieves this goal in a compact and affordable package through the application of technologies that were developed over the last decade for the International X-ray Observatory. WHIMex uses ultra-thin, light, densely nested parabolic-hyperbolic mirror pairs to create a telescope with a high collecting area and <15 arcsecond resolution. The X-ray s are dispersed in wavelength by an array of radial gratings in the extreme off-plane mount. Spectral resolving power of 4000 (λ/δλ) is expected in the 0.3 to 0.8 keV band to bring weak absorption lines out of the noise. A collecting area up to 360 cm2 will enable spectral observations of high red shift AGNs. If selected WHIMex could be launched in mid- 2017 on a Taurus or Athena II from Vandenberg AFB into a 540 km, 70° inclination low earth orbit. In flight, it would open a new field of exploration with high resolution observations of AGN outflows, the IGM, Interstellar Medium, mass transfer binaries, stellar coronae and much more.

  5. Physical processes in the transition zone between North Sea and Baltic Sea. Numerical simulations and observations

    NASA Astrophysics Data System (ADS)

    Stanev, Emil V.; Lu, Xi; Grashorn, Sebastian

    2015-09-01

    The dynamics in the transition zone between the North Sea and Baltic Sea are analyzed here using data from a 22-year-long climatic simulation with a focus on the periods 1992-1994 and 2001-2003 when two recent major inflow events occurred. Observations from gauges and in situ measurements are used to validate the model. Parameters, which cannot be easily measured, such as water and salt transports through straits, have been compared against similar previous estimates. The good performance of simulations is attributed to the finer resolution of the model compared to earlier set ups. The outflow in the Kattegat, which is an analogue of the tidal outflows, tends to propagate to the North over the shallows without showing a substantial deflection to the right due to the Earth's rotation. The inflow follows the topography. The different inflow and outflow pathways are explained as a consequence of the specific combination of bathymetry, axial and lateral processes. The circulation in Kattegat is persistently clockwise with an eastern intensification during inflow and a western one during outflow regimes. The tidal wave there propagates as Kelvin wave, keeping the coast on its right. The flows in the two main straits reveal very different responses to tides, which are also highly asymmetric during inflow and outflow conditions. The circulation has a typical two-layer structure, the correlation between salinity and velocity tends to increase the salt transport in the salinity conveyor belt. The transversal circulation in the entrance of the Sound enhances the vertical mixing of the saltier North Sea water. The long-term averaged ratio of the water transports through the Great Belt and the Sound is ∼2.6-2.7 but this number changes reaching lower values during the major inflow in 1993. The transports in the straits are asymmetric. During inflow events the repartition of water penetrating the Baltic Sea is strongly in favor of the pathway through the Sound, which provides a shorter connection between the Kattegat and Baltic proper. The wider Great Belt has a relatively larger role in exporting water from the Baltic into the North Sea. A demonstration is given that the ventilation of the Baltic Sea deep water is not only governed by the dynamics in the straits and the strong westerly winds enhancing the eastward propagation of North Sea water (a case in 1993), but also by the clockwise circulation in the Kattegat acting as a preconditioning factor for the flow-partitioning.

  6. Solar forcing, and ionospheric ion outflow from Venus, Earth and Mars - A comparison

    NASA Astrophysics Data System (ADS)

    Lundin, R. N.

    2012-12-01

    Solar forcing by e.g. EUV radiation and the solar wind leads to outflow and escape of ionospheric ions from Earth, Venus and Mars. In-situ measurements in the Earth's space environment have demonstrated that the ion escape rate correlates with the magnitude of solar forcing, i.e. high solar EUV and solar wind forcing leads to enhanced escape rates. The Terrestrial outflow is dominated by H+ and O+ suggesting that the ultimate origin of outflowing ions is water. Recent measurements from the two arid planets Mars and Venus, their atmospheres dominated by CO2, display characteristics similar to that of the Earth - an outflow dominated by hydrogen (H+) and oxygen (O+, O2+) ions. Despite major differences in atmospheric composition, the composition of the ion outflow from Earth and Venus is very similar, i.e. H+ and O+ dominates and the outflow has a stoichiometric H/O ratio of close to 2. The latter implies escape of water. The ion outflow from Mars is dominated by O+, O2+, and H+. Here the stoichiometric ratio between hydrogen and oxygen ion is ≈1, implying that if the ion outflow originates from water, about half of the hydrogen mass disappears by other means. The primary origin of the ion outflow from Earth, Venus and Mars is a complex issue. Nevertheless, a predominant hydrogen and oxygen loss implies that water can easily escape planets orbiting close to the Sun, while Carbon-based molecules (e.g. CO2) resides more easily. Observations shows that the outflow of e.g. CO+ and CO2+ from Mars and Venus is minute compared to the outflow of hydrogen and oxygen ions. Magnetic shielding is an issue affecting the net ion outflow and escape from a planet, because acceleration processes are also the characteristics of magnetized plasmas. Recent findings suggests that, despite magnetic field pile-up at Mars and Venus, the stand-off distance is insufficient to prohibit a direct interaction between the solar wind and the magnetized ionospheric plasma in the induced magnetospheres of Mars and Venus. On the other hand, a planetary magnetic field, such as the Earth's dipole field and the Martian multipole crustal field, may foster shielding as well as plasma acceleration. However, in this case the ion acceleration may be confined in closed planetary magnetic flux tubes, leading to a low escape rates.

  7. Dissecting the Butterfly: Dual Outflows in the Dual AGN NGC 6240

    NASA Astrophysics Data System (ADS)

    Mueller Sanchez, Francisco; Comerford, Julie; Nevin, Rebecca; Davies, Richard; Treister, Ezequiel; Privon, George

    2018-01-01

    Current theories of galaxy evolution invoke some kind of feedback (from the stars or the supermassive black hole) to explain the properties of galaxies. However, numerical simulations and observations have not been able to evaluate the real impact of feedback in galaxies. This is largely because most studies have focused on studying stellar feedback or AGN feedback alone, instead of considering the combined effect of both. In fact, this is an unexplored territory for observations due to the difficulty of separating the contribution from the two sources.In this contribution I present the discovery of a dual outflow of different species of gas in the prototypical merging galaxy NGC 6240 using HST imaging, long-slit and integral-eld spectroscopy: an AGN-driven outflow of highly-ionized gas to the northeast and a starburst-driven outflow of ionized hydrogen to the northwest. The AGN outflow extends up to 4 kpc along a position angle of 56 degrees, has a conical shape with an opening angle of 52 degrees and a maximum line-of-sight velocity of 350 km/s. The WFC3 images also reveal a bubble of Halpha emission in the northwest, which has no counterpart in [O III], consistent with a scenario in which the starburst is ionizing and driving outflowing winds which inflate the bubble at an expansion velocity of 380 km/s. Assuming a spherical geometry for the starburst-driven bubble and a conical geometry for the AGN-driven outflow, we estimate mass outflow rates of 26 Msun/yr and 62 Msun/yr, respectively. We conclude that the AGN contribution to the evolution of the merger remnant and the formation of outflowing winds is signicant in the central 5 kpc of NGC 6240.

  8. An X-ray/SDSS sample. II. AGN-driven outflowing gas plasma properties

    NASA Astrophysics Data System (ADS)

    Perna, M.; Lanzuisi, G.; Brusa, M.; Cresci, G.; Mignoli, M.

    2017-10-01

    Aims: Galaxy-scale outflows are currently observed in many active galactic nuclei (AGNs); however, characterisation of them in terms of their (multi-) phase nature, amount of flowing material, and effects on their host galaxy is still unresolved. In particular, ionised gas mass outflow rate and related energetics are still affected by many sources of uncertainty. In this respect, outflowing gas plasma conditions, being largely unknown, play a crucial role. Methods: We have analysed stacked spectra and sub-samples of sources with high signal-to-noise temperature- and density-sensitive emission lines to derive the plasma properties of the outflowing ionised gas component. We did this by taking advantage of the spectroscopic analysis results we obtained while studying the X-ray/SDSS sample of 563 AGNs at z < 0.8 presented in our companion paper. For these sources, we also studied in detail various diagnostic diagrams to infer information about outflowing gas ionisation mechanisms. Results: We derive, for the first time, median values for electron temperature and density of outflowing gas from medium-size samples ( 30 targets) and stacked spectra of AGNs. Evidence of shock excitation are found for outflowing gas. Conclusions: We measure electron temperatures of the order of 1.7 × 104 K and densities of 1200 cm-3 for faint and moderately luminous AGNs (intrinsic X-ray luminosity 40.5 < log (LX) < 44 in the 2-10 keV band). We note that the electron density that is usually assumed (Ne = 100 cm-3) in ejected material might result in relevant overestimates of flow mass rates and energetics and, as a consequence, of the effects of AGN-driven outflows on the host galaxy.

  9. Effects of Y27632 on aqueous humor outflow facility with changes in hydrodynamic pattern and morphology in human eyes.

    PubMed

    Yang, Chen-Yuan Charlie; Liu, Ye; Lu, Zhaozeng; Ren, Ruiyi; Gong, Haiyan

    2013-08-28

    To determine the effect of Y27632, a Rho-kinase inhibitor on aqueous outflow facility, flow pattern, and juxtacanalicular tissue (JCT)/trabecular meshwork (TM) morphology in human eyes. Sixteen enucleated human eyes were perfused with PBS plus glucose (GPBS) at 15 mm Hg to establish the baseline outflow facility. Six eyes were perfused for short-duration (30 minute) with either 50 μM Y27632 or GPBS (n = 3 per group). Ten eyes were perfused for long duration (3 hours) with either 50 μM Y27632 or GPBS (n = 5 per group). Outflow pattern was labeled using fluorescent microspheres, and effective filtration length (EFL) was measured. Morphologic changes and their relationship to EFL and facility were analyzed. Outflow facility significantly increased after short-duration perfusion with Y27632 compared with its own baseline (P = 0.03), but did not reach statistical significance compared with its controls (P = 0.07). Outflow facility (P = 0.01) and EFL (P < 0.05) were significantly increased after long-duration perfusion with Y27632 compared with its controls. Increases in outflow facility and EFL demonstrated a positive correlation. Morphologically, the TM and JCT of high-tracer regions were more expanded compared with low-tracer regions. A significant increase in JCT thickness was found in the long-duration Y27632 group compared with its control group (10.0 vs. 8.0 μm, P < 0.01). Y27632 increases outflow facility in human eyes. This increase correlates positively with an increase in EFL, which is associated with an increased expansion in the JCT. Our data suggest that EFL could serve as a novel parameter to correlate with outflow facility.

  10. A highly embedded protostar in SFO 18: IRAS 05417+0907

    NASA Astrophysics Data System (ADS)

    Saha, Piyali; Gopinathan, Maheswar; Puravankara, Manoj; Sharma, Neha; Soam, Archana

    2018-04-01

    Bright-rimmed clouds, located at the periphery of relatively evolved HIT regions, are considered to be the sites of star formation possibly triggered by the implosion caused due to the ionizing radiation from nearby massive stars. SFO 18 is one such region showing a bright-rim on the side facing the 0-type star, A Ori. A point source, IRAS 05417+0907, is detected towards the high density region of the cloud. A molecular outflow has been found to be associated with the source. The outflow is directed towards a Herbig-Haro object, HH 175. From the Spitzer and WISE observations, we show evidence of a physical connection between the molecular outflow, IRAS 05417+0907 and the HH object. The spectral energy distribution constructed using multi-wavelength data shows that the point source is most likely a highly embedded protostar.

  11. Arcsecond Resolution Mapping of Sulfur Dioxide Emission in the Circumstellar Envelope of VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Fu, Roger R.; Moullet, Arielle; Patel, Nimesh A.; Biersteker, John; Derose, Kimberly L.; Young, Kenneth H.

    2012-02-01

    We report Submillimeter Array observations of SO2 emission in the circumstellar envelope (CSE) of the red supergiant VY Canis Majoris, with an angular resolution of ≈1''. SO2 emission appears in three distinct outflow regions surrounding the central continuum peak emission that is spatially unresolved. No bipolar structure is noted in the sources. A fourth source of SO2 is identified as a spherical wind centered at the systemic velocity. We estimate the SO2 column density and rotational temperature assuming local thermal equilibrium (LTE) as well as perform non-LTE radiative transfer analysis using RADEX. Column densities of SO2 are found to be ~1016 cm-2 in the outflows and in the spherical wind. Comparison with existing maps of the two parent species OH and SO shows the SO2 distribution to be consistent with that of OH. The abundance ratio f_{SO_{2}}/f_{SO} is greater than unity for all radii larger than 3 × 1016 cm. SO2 is distributed in fragmented clumps compared to SO, PN, and SiS molecules. These observations lend support to specific models of circumstellar chemistry that predict f_{SO_{2}}/f_{SO}>1 and may suggest the role of localized effects such as shocks in the production of SO2 in the CSE.

  12. Broadband observations of the naked-eye gamma-ray burst GRB 080319B.

    PubMed

    Racusin, J L; Karpov, S V; Sokolowski, M; Granot, J; Wu, X F; Pal'shin, V; Covino, S; van der Horst, A J; Oates, S R; Schady, P; Smith, R J; Cummings, J; Starling, R L C; Piotrowski, L W; Zhang, B; Evans, P A; Holland, S T; Malek, K; Page, M T; Vetere, L; Margutti, R; Guidorzi, C; Kamble, A P; Curran, P A; Beardmore, A; Kouveliotou, C; Mankiewicz, L; Melandri, A; O'Brien, P T; Page, K L; Piran, T; Tanvir, N R; Wrochna, G; Aptekar, R L; Barthelmy, S; Bartolini, C; Beskin, G M; Bondar, S; Bremer, M; Campana, S; Castro-Tirado, A; Cucchiara, A; Cwiok, M; D'Avanzo, P; D'Elia, V; Valle, M Della; de Ugarte Postigo, A; Dominik, W; Falcone, A; Fiore, F; Fox, D B; Frederiks, D D; Fruchter, A S; Fugazza, D; Garrett, M A; Gehrels, N; Golenetskii, S; Gomboc, A; Gorosabel, J; Greco, G; Guarnieri, A; Immler, S; Jelinek, M; Kasprowicz, G; La Parola, V; Levan, A J; Mangano, V; Mazets, E P; Molinari, E; Moretti, A; Nawrocki, K; Oleynik, P P; Osborne, J P; Pagani, C; Pandey, S B; Paragi, Z; Perri, M; Piccioni, A; Ramirez-Ruiz, E; Roming, P W A; Steele, I A; Strom, R G; Testa, V; Tosti, G; Ulanov, M V; Wiersema, K; Wijers, R A M J; Winters, J M; Zarnecki, A F; Zerbi, F; Mészáros, P; Chincarini, G; Burrows, D N

    2008-09-11

    Long-duration gamma-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and gamma-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.

  13. Multidecadal variations in the early Holocene outflow of Red Sea Water into the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Jung, S. J. A.; Ganssen, G. M.; Davies, G. R.

    2001-12-01

    We present Holocene stable oxygen isotope data from the deep Arabian Sea off Somalia at a decadal time resolution as a proxy for the history of intermediate/upper deep water. These data show an overall δ18O reduction by 0.5‰ between 10 and ˜6.5 kyr B.P. superimposed upon short-term δ18O variations at a decadal-centennial timescale. The amplitude of the decadal variations is 0.3‰ prior, and up to 0.6‰ subsequent, to ˜8.1 kyr B.P. We conclude from modeling experiments that the short-term δ18O variations between 10 and ˜6.5 kyr B.P. most likely document changes in the evaporation-precipitation balance in the central Red Sea. Changes in water temperature and salinity cause the outflowing Red Sea Water to settle roughly 800 m deeper than today.

  14. An X-shooter survey of star forming regions: Low-mass stars and sub-stellar objects

    NASA Astrophysics Data System (ADS)

    Alcalá, J. M.; Stelzer, B.; Covino, E.; Cupani, G.; Natta, A.; Randich, S.; Rigliaco, E.; Spezzi, L.; Testi, L.; Bacciotti, F.; Bonito, R.; Covino, S.; Flaccomio, E.; Frasca, A.; Gandolfi, D.; Leone, F.; Micela, G.; Nisini, B.; Whelan, E.

    2011-03-01

    We present preliminary results of our X-shooter survey in star forming regions. In this contribution we focus on sub-samples of young stellar and sub-stellar objects (YSOs) in the Lupus star forming region and in the TW Hya association. We show that the X-shooter spectra are suitable for conducting several parallel studies such as YSO + disk fundamental parameters, accretion and outflow activity in the very low-mass (VLM) and sub-stellar regimes, as well as magnetic activity in young VLM YSOs, and Li abundance determinations. The capabilities of X-shooter in terms of wide spectral coverage, resolution and limiting magnitudes, allow us to assess simultaneously the accretion/outflow, magnetic activity, and disk diagnostics, from the UV and optical to the near-IR, avoiding ambiguities due to possible YSO variability. Based on observations collected at the European Southern Observatory, Chile, under Programmes 084.C-0269 and 085.C-0238.

  15. Chandra imaging of the kpc extended outflow in 1H 0419-577

    NASA Astrophysics Data System (ADS)

    Di Gesu, L.; Costantini, E.; Piconcelli, E.; Kaastra, J. S.; Mehdipour, M.; Paltani, S.

    2017-12-01

    The Seyfert 1 galaxy 1H 0419-577 hosts a kpc extended outflow that is evident in the [O III] image and that is also detected as a warm absorber in the UV/X-ray spectrum. Here, we analyze a 30 ks Chandra-ACIS X-ray image, with the aim of resolving the diffuse extranuclear X-ray emission and of investigating its relationship with the galactic outflow. Thanks to its sub-arcsecond spatial resolution, Chandra resolves the circumnuclear X-ray emission, which extends up to a projected distance of at least 16 kpc from the center. The morphology of the diffuse X-ray emission is spherically symmetrical. We could not recover a morphological resemblance between the soft X-ray emission and the ionization bicone that is traced by the [O III] outflow. Our spectral analysis indicates that one of the possible explanations for the extended emission is thermal emission from a low-density (nH 10-3 cm-3) hot plasma (Te 0.22 keV). If this is the case, we may be witnessing the cooling of a shock-heated wind bubble. In this scenario, the [O III] emission line and the X-ray/UV absorption lines may trace cooler clumps that are entrained in the hot outflow. Alternatively, the extended emission could be to due to a blend of emission lines from a photoionized gas component having a hydrogen column density of NH 2.1 × 1022 cm-2 and an ionization parameter of log ξ 1.3. Because the source is viewed almost edge-on we argue that the photoionized gas nebula must be distributed mostly along the polar directions, outside our line of sight. In this geometry, the X-ray/UV warm absorber must trace a different gas component, physically disconnected from the emitting gas, and located closer to the equatorial plane.

  16. Evaluation of human sclera after femtosecond laser ablation using two photon and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Kurtz, Ronald; Juhasz, Tibor

    2012-08-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial thickness intrascleral channels can be created with a femtosecond laser operating at a wavelength of 1700 nm. Such channels have the potential to increase outflow facility and reduce elevated IOP. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in human cadaver eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such channels. This demonstrates that concept of integrating femtosecond laser surgery, and two-photon and confocal imaging has the future potential for image-guided high-precision surgery in transparent and translucent tissue.

  17. Reconstructing Global-scale Ionospheric Outflow With a Satellite Constellation

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Welling, D. T.; Jahn, J. M.; Valek, P. W.; Elliott, H. A.; Ilie, R.; Khazanov, G. V.; Glocer, A.; Ganushkina, N. Y.; Zou, S.

    2017-12-01

    The question of how many satellites it would take to accurately map the spatial distribution of ionospheric outflow is addressed in this study. Given an outflow spatial map, this image is then reconstructed from a limited number virtual satellite pass extractions from the original values. An assessment is conducted of the goodness of fit as a function of number of satellites in the reconstruction, placement of the satellite trajectories relative to the polar cap and auroral oval, season and universal time (i.e., dipole tilt relative to the Sun), geomagnetic activity level, and interpolation technique. It is found that the accuracy of the reconstructions increases sharply from one to a few satellites, but then improves only marginally with additional spacecraft beyond 4. Increased dwell time of the satellite trajectories in the auroral zone improves the reconstruction, therefore a high-but-not-exactly-polar orbit is most effective for this task. Local time coverage is also an important factor, shifting the auroral zone to different locations relative to the virtual satellite orbit paths. The expansion and contraction of the polar cap and auroral zone with geomagnetic activity influences the coverage of the key outflow regions, with different optimal orbit configurations for each level of activity. Finally, it is found that reconstructing each magnetic latitude band individually produces a better fit to the original image than 2-D image reconstruction method (e.g., triangulation). A high-latitude, high-altitude constellation mission concept is presented that achieves acceptably accurate outflow reconstructions.

  18. X-ray evidence for ultra-fast outflows in AGNs

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Sambruna, Rita; Braito, Valentina; Reeves, James; Reynolds, Christopher; Cappi, Massimo

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 radio galaxies observed with XMM-Newton and Suzaku. We assessed the global detection significance of the absorption lines and performed a detailed photo-ionization modeling. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1} and the associated mechanical power is high, in the range ˜10^{43}--10^{45} erg/s. Therefore, UFOs are capable to provide a significant contribution to the AGN cosmological feedback and their study can provide important clues on the connection between accretion disks, winds and jets.

  19. Photospheric Emission from Stratified Jets

    NASA Astrophysics Data System (ADS)

    Ito, Hirotaka; Nagataki, Shigehiro; Ono, Masaomi; Lee, Shiu-Hang; Mao, Jirong; Yamada, Shoichi; Pe'er, Asaf; Mizuta, Akira; Harikae, Seiji

    2013-11-01

    We explore photospheric emissions from stratified two-component jets, wherein a highly relativistic spine outflow is surrounded by a wider and less relativistic sheath outflow. Thermal photons are injected in regions of high optical depth and propagated until the photons escape at the photosphere. Because of the presence of shear in velocity (Lorentz factor) at the boundary of the spine and sheath region, a fraction of the injected photons are accelerated using a Fermi-like acceleration mechanism such that a high-energy power-law tail is formed in the resultant spectrum. We show, in particular, that if a velocity shear with a considerable variance in the bulk Lorentz factor is present, the high-energy part of observed gamma-ray bursts (GRBs) photon spectrum can be explained by this photon acceleration mechanism. We also show that the accelerated photons might also account for the origin of the extra-hard power-law component above the bump of the thermal-like peak seen in some peculiar bursts (e.g., GRB 090510, 090902B, 090926A). We demonstrate that time-integrated spectra can also reproduce the low-energy spectrum of GRBs consistently using a multi-temperature effect when time evolution of the outflow is considered. Last, we show that the empirical E p-L p relation can be explained by differences in the outflow properties of individual sources.

  20. Simulated O VI Doppler dimming measurements of coronal outflow velocities

    NASA Technical Reports Server (NTRS)

    Strachan, Leonard; Gardner, L. D.; Kohl, John L.

    1992-01-01

    The possibility of determining O(5+) outflow velocities by using a Doppler dimming analysis of the resonantly scattered intensities of O VI lambda 1031.9 and lambda 1037.6 is addressed. The technique is sensitive to outflow velocities, W, in the range W greater than 30 and less than 250 km/s and can be used for probing regions of the inner solar corona, where significant coronal heating and solar wind acceleration may be occurring. These velocity measurements, when combined with measurements of other plasma parameters (temperatures and densities of ions and electrons) can be used to estimate the energy and mass flux of O(5+). In particular, it may be possible to locate where the flow changes from subsonic to supersonic and to identify source regions for the high and low speed solar wind. The velocity diagnostic technique is discussed with emphasis placed on the requirements needed for accurate outflow velocity determinations. Model determinations of outflow velocities based on simulated Doppler observations are presented.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, J. A.; Verth, G.; Fedun, V.

    We investigate the long-term evolution of an initially buoyant magnetic flux tube emerging into a gravitationally stratified coronal hole environment and report on the resulting oscillations and outflows. We perform 2.5-dimensional nonlinear numerical simulations, generalizing the models of McLaughlin et al. and Murray et al. We find that the physical mechanism of oscillatory reconnection naturally generates quasi-periodic vertical outflows, with a transverse/swaying aspect. The vertical outflows consist of both a periodic aspect and evidence of a positively directed flow. The speed of the vertical outflow (20-60 km s{sup -1}) is comparable to those reported in the observational literature. We alsomore » perform a parametric study varying the magnetic strength of the buoyant flux tube and find a range of associated periodicities: 1.75-3.5 minutes. Thus, the mechanism of oscillatory reconnection may provide a physical explanation to some of the high-speed, quasi-periodic, transverse outflows/jets recently reported by a multitude of authors and instruments.« less

  2. Champagne flutes and brandy snifters: modelling protostellar outflow-cloud chemical interfaces

    NASA Astrophysics Data System (ADS)

    Rollins, R. P.; Rawlings, J. M. C.; Williams, D. A.; Redman, M. P.

    2014-10-01

    A rich variety of molecular species has now been observed towards hot cores in star-forming regions and in the interstellar medium. An increasing body of evidence from millimetre interferometers suggests that many of these form at the interfaces between protostellar outflows and their natal molecular clouds. However, current models have remained unable to explain the origin of the observational bias towards wide-angled `brandy snifter' shaped outflows over narrower `champagne flute' shapes in carbon monoxide imaging. Furthermore, these wide-angled systems exhibit unusually high abundances of the molecular ion HCO+. We present results from a chemodynamic model of such regions where a rich chemistry arises naturally as a result of turbulent mixing between cold, dense molecular gas and the hot, ionized outflow material. The injecta drives a rich and rapid ion-neutral chemistry in qualitative and quantitative agreement with the observations. The observational bias towards wide-angled outflows is explained naturally by the geometry-dependent ion injection rate causing rapid dissociation of CO in the younger systems.

  3. Estimation of cold plasma outflow during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Haaland, S.; Eriksson, A.; André, M.; Maes, L.; Baddeley, L.; Barakat, A.; Chappell, R.; Eccles, V.; Johnsen, C.; Lybekk, B.; Li, K.; Pedersen, A.; Schunk, R.; Welling, D.

    2015-12-01

    Low-energy ions of ionospheric origin constitute a significant contributor to the magnetospheric plasma population. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise if continuous longtime observations, such as during a geomagnetic storm, are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized polar cap regions. Throughout the main phase of the storm, outflow rates increase and the polar cap source regions expand. Furthermore, faster transport, resulting from enhanced convection, leads to a much larger supply of cold ions to the near-Earth region during geomagnetic storms.

  4. Estimation of cold plasma outflow during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Haaland, S.; Eriksson, A. I.; Andre, M.; Maes, L.; Baddeley, L. J.; Barakat, A. R.; Chappell, C. R.; Eccles, V.; Johnsen, C.; Lybekk, B.; Li, K.; Pedersen, A.; Schunk, R. W.; Welling, D. T.

    2015-12-01

    Low energy ions of ionospheric origin provide a significant contributon to the magnetospheric plasmapopulation. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise arise if continuous longtime observations such as the during a geomagnetic storms are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized polar cap regions. Throughout the main phase of the storm, outflow rates increase and the polar cap source regions expand. Furthermore, faster transport, resulting from enhanced convection, leads to a much larger supply of cold ions to the near Earth region during gemagnetic storms.

  5. Data-Model and Inter-Model Comparisons of the GEM Outflow Events Using the Space Weather Modeling Framework

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Eccles, J. V.; Barakat, A. R.; Kistler, L. M.; Haaland, S.; Schunk, R. W.; Chappell, C. R.

    2015-12-01

    Two storm periods were selected by the Geospace Environment Modeling Ionospheric Outflow focus group for community collaborative study because of its high magnetospheric activity and extensive data coverage: the September 27 - October 4, 2002 corotating interaction region event and the October 22 - 29 coronal mass ejection event. During both events, the FAST, Polar, Cluster, and other missions made key observations, creating prime periods for data-model comparison. The GEM community has come together to simulate this period using many different methods in order to evaluate models, compare results, and expand our knowledge of ionospheric outflow and its effects on global dynamics. This paper presents Space Weather Modeling Framework (SWMF) simulations of these important periods compared against observations from the Polar TIDE, Cluster CODIF and EFW instruments. Emphasis will be given to the second event. Density and velocity of oxygen and hydrogen throughout the lobes, plasma sheet, and inner magnetosphere will be the focus of these comparisons. For these simulations, the SWMF couples the multifluid version of BATS-R-US MHD to a variety of ionospheric outflow models of varying complexity. The simplest is outflow arising from constant MHD inner boundary conditions. Two first-principles-based models are also leveraged: the Polar Wind Outflow Model (PWOM), a fluid treatment of outflow dynamics, and the Generalized Polar Wind (GPW) model, which combines fluid and particle-in-cell approaches. Each model is capable of capturing a different set of energization mechanisms, yielding different outflow results. The data-model comparisons will illustrate how well each approach captures reality and which energization mechanisms are most important. Inter-model comparisons will illustrate how the different outflow specifications affect the magnetosphere. Specifically, it is found that the GPW provides increased heavy ion outflow over a broader spatial range than the alternative models, improving comparisons in some regions but degrading the agreement in others. This work will also assess our current capability to reproduce ionosphere-magnetosphere mass coupling.

  6. Controlling Factors of the Fate of Ionospheric Outflow at Earth and Mars

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Welling, D. T.; Ilie, R.; Ganushkina, N. Y.; Johnson, B. C.; Xu, S.; Dong, C.

    2015-12-01

    Both Earth and Mars experience ionospheric outflow, but the radically different magnetic field configurations at the two planets yield significantly different patterns of outflow and processes governing outflow. This study examines a set of numerical simulations for Earth and Mars to explore the factors controlling ionospheric outflow and the fate of the escaping ions (immediate precipitation, magnetospheric recirculation, or loss to deep space). Specifically, simulation results from the Space Weather Modeling Framework (SWMF), which is capable of handling both planetary space environments, are analyzed to assess the physical processes governing the fate of ionospheric ions. Velocity streamlines from the SWMF results are traced from the high-latitude inner boundary of the BATS-R-US MHD simulation domain and followed through geospace. Some of these streamlines return to the inner boundary of the simulation domain, others extend to the outer boundary of the domain, while most others eventually cross (or at least approach) the magnetospheric equatorial plane. At Earth, this plane is well defined, while at Mars there are multiple mini-magnetospheres in which ionospheric ions can become trapped. These streamlines are categorized according to their eventual destination. Multi-fluid MHD simulations are examined in this study, assessing the influence of species mass on trajectories through near-planet space. Steady-state numerical experiments with different levels of solar driving are examined to quantify the influence of each driver on outflow characteristics and the fate of outflowing ions. Real event intervals are considered to assess flows in a time-varying magnetospheric system. For Earth, as solar wind dynamic pressure increases, the dominant outflow region moves to lower latitudes and significantly more of the outflowing ions escape to deep space. As the interplanetary magnetic field increases in southward magnitude, the region of dominant outflow shifts to lower latitudes and more is injected into the inner magnetosphere. The ionospheric regions dominantly contributing to mass within the magnetosphere are assessed and compared for the different driving conditions. At Mars, the situation is much more complicated.

  7. Bow shocks as tracers of the environment and stellar outflows near the supermassive black hole.

    NASA Astrophysics Data System (ADS)

    Stofanova, L.; Zajaček, M.; Karas, V.

    2017-10-01

    Bow shocks develop near stars in the supersonic motion with respect to the surrounding interstellar environment. In particular, extended shocks emerge due to the interaction of stars with strong winds. We discuss the expected shape and orientation of bow shocks in the context of fast moving stars near a supermassive black hole (SMBH) embedded within Bondi-type accretion flow (Zajaček et al. 2016, MNRAS; Štofanová 2016, BSc. Thesis). We present models which take into account different velocities of the probe star and also consider various scenarios for the ambient medium near the vicinity of the black hole such as an inflow/outflow of the material towards/outwards SMBH or a model which considers inflow and outflow at the same time. Under suitable circumstances, a bow shock structure can be detected in infrared domain and their properties can trace the environment of the Galactic center. On the other hand, if density of the ambient medium is determined from mm/radio observations, bow shocks can be used to constrain mass-loss rates of massive OB/WR stars. X-rays can supplement the spectral evidence, though, the structures are below the angular resolution of the current instruments even in the most favourable case of the Milky Way's SMBH (Sgr A*).

  8. Chemical and Physical Picture of IRAS 16293–2422 Source B at a Sub-arcsecond Scale Studied with ALMA

    NASA Astrophysics Data System (ADS)

    Oya, Yoko; Moriwaki, Kana; Onishi, Shusuke; Sakai, Nami; López–Sepulcre, Ana; Favre, Cécile; Watanabe, Yoshimasa; Ceccarelli, Cecilia; Lefloch, Bertrand; Yamamoto, Satoshi

    2018-02-01

    We have analyzed the OCS, H2CS, CH3OH, and HCOOCH3 data observed toward the low-mass protostar IRAS 16293–2422 Source B at a sub-arcsecond resolution with ALMA. A clear chemical differentiation is seen in their distributions; OCS and H2CS are extended with a slight rotation signature, while CH3OH and HCOOCH3 are concentrated near the protostar. Such a chemical change in the vicinity of the protostar is similar to the companion (Source A) case. The extended component is interpreted by the infalling-rotating envelope model with a nearly face-on configuration. The radius of the centrifugal barrier of the infalling-rotating envelope is roughly evaluated to be (30–50) au. The observed lines show the inverse P-Cygni profile, indicating the infall motion within a few 10 au from the protostar. The nearly pole-on geometry of the outflow lobes is inferred from the SiO distribution, and thus, the infalling and outflowing motions should coexist along the line of sight to the protostar. This implies that the infalling gas is localized near the protostar and the current launching points of the outflow have an offset from the protostar. A possible mechanism for this configuration is discussed.

  9. Properties of the molecular gas in the fast outflow in the Seyfert galaxy IC 5063

    NASA Astrophysics Data System (ADS)

    Oosterloo, Tom; Raymond Oonk, J. B.; Morganti, Raffaella; Combes, Françoise; Dasyra, Kalliopi; Salomé, Philippe; Vlahakis, Nektarios; Tadhunter, Clive

    2017-12-01

    We present a detailed study of the properties of the molecular gas in the fast outflow driven by the active galactic nucleus (AGN) in the nearby radio-loud Seyfert galaxy IC 5063. By using ALMA observations of a number of tracers of the molecular gas (12CO(1-0), 12CO(2-1), 12CO(3-2), 13CO(2-1) and HCO+(4-3)), we map the differences in excitation, density and temperature of the gas as function of position and kinematics. The results show that in the immediate vicinity of the radio jet, a fast outflow, with velocities up to 800 km s-1, is occurring of which the gas has high excitation with excitation temperatures in the range 30-55 K, demonstrating the direct impact of the jet on the ISM. The relative brightness of the 12CO lines, as well as that of 13CO(2-1) vs. 12CO(2-1), show that the outflow is optically thin. We estimate the mass of the molecular outflow to be at least 1.2 × 106 M⊙ and likely to be a factor between two and three larger than this value. This is similar to that of the outflow of atomic gas, but much larger than that of the ionised outflow, showing that the outflow in IC 5063 is dominated by cold gas. The total mass outflow rate we estimated to be 12 M⊙ yr-1. The mass of the outflow is much smaller than the total gas mass of the ISM of IC 5063. Therefore, although the influence of the AGN and its radio jet is very significant in the inner regions of IC 5063, globally speaking the impact will be very modest. We used RADEX non-LTE modelling to explore the physical conditions of the molecular gas in the outflow. Models with the outflowing gas being quite clumpy give the most consistent results and our preferred solutions have kinetic temperatures in the range 20-100 K and densities between 105 and 106 cm-3. The resulting pressures are 106-107.5 K cm-3, about two orders of magnitude higher than in the outer quiescent disk. The highest densities and temperatures are found in the regions with the fastest outflow. The results strongly suggest that the outflow in IC 5063 is driven by the radio plasma jet expanding into a clumpy gaseous medium and creating a cocoon of (shocked) gas which is pushed away from the jet axis resulting in a lateral outflow, very similar to what is predicted by numerical simulations.

  10. Interannual variation, decadal trend, and future change in ozone outflow from East Asia

    NASA Astrophysics Data System (ADS)

    Zhu, Jia; Liao, Hong; Mao, Yuhao; Yang, Yang; Jiang, Hui

    2017-03-01

    We examine the past and future changes in the O3 outflow from East Asia using a global 3-D chemical transport model, GEOS-Chem. The simulations of Asian O3 outflow for 1986-2006 are driven by the assimilated GEOS-4 meteorological fields, and those for 2000-2050 are driven by the meteorological fields archived by the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM) 3 under the IPCC SRES A1B scenario. The evaluation of the model results against measurements shows that the GEOS-Chem model captures the seasonal cycles and interannual variations of tropospheric O3 concentrations fairly well with high correlation coefficients of 0.82-0.93 at four ground-based sites and 0.55-0.88 at two ozonesonde sites where observations are available. The increasing trends in surface-layer O3 concentrations in East Asia over the past 2 decades are captured by the model, although the modeled O3 trends have low biases. Sensitivity studies are conducted to examine the respective impacts of meteorological parameters and emissions on the variations in the outflow flux of O3. When both meteorological parameters and anthropogenic emissions varied from 1986-2006, the simulated Asian O3 outflow fluxes exhibited a statistically insignificant decadal trend; however, they showed large interannual variations (IAVs) with seasonal values of 4-9 % for the absolute percent departure from the mean (APDM) and an annual APDM value of 3.3 %. The sensitivity simulations indicated that the large IAVs in O3 outflow fluxes were mainly caused by variations in the meteorological conditions. The variations in meteorological parameters drove the IAVs in O3 outflow fluxes by altering the O3 concentrations over East Asia and by altering the zonal winds; the latter was identified to be the key factor, since the O3 outflow was highly correlated with zonal winds from 1986-2006. The simulations of the 2000-2050 changes show that the annual outflow flux of O3 will increase by 2.0, 7.9, and 12.2 % owing to climate change alone, emissions change alone, and changes in both climate and emissions, respectively. Therefore, climate change will aggravate the effects of the increases in anthropogenic emissions on future changes in the Asian O3 outflow. Future climate change is predicted to greatly increase the Asian O3 outflow in the spring and summer seasons as a result of the projected increases in zonal winds. The findings from the present study help us to understand the variations in tropospheric O3 in the downwind regions of East Asia on different timescales and have important implications for long-term air quality planning in the regions downwind of China, such as Japan and the US.

  11. A STUDY OF THE X-RAYED OUTFLOW OF APM 08279+5255 THROUGH PHOTOIONIZATION CODES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saez, Cristian; Chartas, George, E-mail: saez@astro.psu.edu, E-mail: chartasg@cofc.edu

    2011-08-20

    We present new results from our study of the X-rayed outflow of the z = 3.91 gravitationally lensed broad absorption line quasar APM 08279+5255. These results are based on spectral fits to all the long exposure observations of APM 08279+5255 using a new quasar-outflow model. This model is based on CLOUDY{sup 3} CLOUDY is a photoionization code designed to simulate conditions in interstellar matter under a broad range of conditions. We have used version 08.00 of the code last described by Ferland et al. (1998). The atomic database used by CLOUDY is described in Ferguson et al. (2001) and http://www.pa.uky.edu/{approx}verner/atom.html.more » simulations of a near-relativistic quasar outflow. The main conclusions from our multi-epoch spectral re-analysis of Chandra, XMM-Newton, and Suzaku observations of APM 08279+5255 are the following. (1) In every observation, we confirm the presence of two strong features, one at rest-frame energies between 1-4 keV and the other between 7-18 keV. (2) We confirm that the low-energy absorption (1-4 keV rest frame) arises from a low-ionization absorber with log(N{sub H}/cm{sup -2}) {approx} 23 and the high-energy absorption (7-18 keV rest frame) arises from highly ionized (3 {approx}< log {xi} {approx}< 4, where {xi} is the ionization parameter) iron in a near-relativistic outflowing wind. Assuming this interpretation, we find that the velocities on the outflow could get up to {approx}0.7c. (3) We confirm a correlation between the maximum outflow velocity and the photon index and find possible trends between the maximum outflow velocity and the X-ray luminosity, and between the total column density and the photon index. We performed calculations of the force multipliers of material illuminated by absorbed power laws and a Mathews-Ferland spectral energy distribution (SED). We found that variations of the X-ray and UV parts of the SEDs and the presence of a moderate absorbing shield will produce important changes in the strength of the radiative driving force. These results support the observed trend found between the outflow velocity and X-ray photon index in APM 08279+5255. If this result is confirmed it will imply that radiation pressure is an important mechanism in producing quasar outflows.« less

  12. Estimating outflow facility through pressure dependent pathways of the human eye

    PubMed Central

    Gardiner, Bruce S.

    2017-01-01

    We develop and test a new theory for pressure dependent outflow from the eye. The theory comprises three main parameters: (i) a constant hydraulic conductivity, (ii) an exponential decay constant and (iii) a no-flow intraocular pressure, from which the total pressure dependent outflow, average outflow facilities and local outflow facilities for the whole eye may be evaluated. We use a new notation to specify precisely the meaning of model parameters and so model outputs. Drawing on a range of published data, we apply the theory to animal eyes, enucleated eyes and in vivo human eyes, and demonstrate how to evaluate model parameters. It is shown that the theory can fit high quality experimental data remarkably well. The new theory predicts that outflow facilities and total pressure dependent outflow for the whole eye are more than twice as large as estimates based on the Goldman equation and fluorometric analysis of anterior aqueous outflow. It appears likely that this discrepancy can be largely explained by pseudofacility and aqueous flow through the retinal pigmented epithelium, while any residual discrepancy may be due to pathological processes in aged eyes. The model predicts that if the hydraulic conductivity is too small, or the exponential decay constant is too large, then intraocular eye pressure may become unstable when subjected to normal circadian changes in aqueous production. The model also predicts relationships between variables that may be helpful when planning future experiments, and the model generates many novel testable hypotheses. With additional research, the analysis described here may find application in the differential diagnosis, prognosis and monitoring of glaucoma. PMID:29261696

  13. High-mass Star Formation and Its Initial Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, C. P.

    2017-11-01

    In this thesis, we present four works on the infrared dark clouds, fragmentation and deuteration of compact and cold cores, hyper-compact (HC) HII regions, and infrared dust bubbles, respectively. They are not only the products of early high-mass star formation, but reflect different evolutionary sequences of high-mass star formation. (1) Using the IRAM (Institut de Radioastronomie Millimétrique) 30 m telescope, we obtained HCO^+, HNC, N_2^+, and C^{18}O emission in six IRDCs (infrared dark clouds), and study their dynamics, stability, temperature, and density. (2) Fragmentation at the earliest phases is an important process of massive star formation. Eight massive precluster clumps (G18.17, G18.21, G23.97N, G23.98, G23.44, G23.97S, G25.38, and G25.71) were selected from the SCUBA (submillimetre Common-User Bolometer Array) 850 μm and 450 μm data. The VLA (Very Large Array) at 1.3 cm, PbBI at 3.5 mm and 1.3 mm, APEX (Atacama Pathfinder Experiment telescope) at 870 μm observations were followed up, and archival infrared data at 4.5 μm, 8.0 μm, 24 μm, and 70 μm were combined to study the fragmentation and evolution of these clumps. We explored the habitats of the massive clumps at large scale, cores/condensations at small scale, and the fragmentation process at different wavelengths. Star formation in these eight clumps may have been triggered by the UC (ultra-compact) HII regions nearby. (3) The formation of hyper-compact (HC) HII regions is an important stage in massive star formation. We present high angular resolution observations carried out with the SMA (Submillimeter Array) and the VLA (Very Large Array) toward the HC HII region G35.58-0.03. With the 1.3 mm SMA and 1.3 cm VLA, we detected a total of about 25 transitions of 8 different species and their isotopologues (CO, CH_3CN, SO_2, CH_3CCH, OCS, CS, H30α/38β, and NH_{3}). G35.58-0.03 consists of an HC HII core with electron temperature Te* ≥ 5500 K, emission measure EM ≈ 1.9×10^{9} pc\\cdotcm^{-6}, local volume electron density ne= 3.3×10^{5} cm^{-3}, FWHM ≈ 43.2 km\\cdots^{-1} for radio recombination lines from both H30α and H38β at its intrinsic core size 3714 au. The H30α line shows evidence of an ionized outflow driving a molecular outflow. The molecular envelope shows evidence of infall and outflow with an infall rate of 0.033 M_{⊙}\\cdotyr^{-1} and a mass loss rate 0.052 M_{⊙}\\cdotyr^{-1}. The derived momenta (˜0.05 M_{⊙}\\cdot{km}\\cdot{s}^{-1}) are comparable for both the infalling and outflowing gas per year. It is suggested that the infall is predominant and the envelope mass of the dense core is increasing rapidly, but accretion in the inner part might have already been halted. (4) OB type stars have strong free-free radiation. The ultraviolet radiation from ionizing stars may heat the dust and ionize the gas to sweep up an expanding bubble, probably accompanied by formation of next generation of stars. The position-velocity diagram clearly shows that N68 may be expanding outward. The structure of bubble S51, carried with shell and front side, is exhibited with ^{13}CO and C^{18}O emission. Both outflow and inflow may exist in the shell of the bubble S51. They may represent the next generation of stars whose formation was triggered by the bubble expanding into the molecular gas. For the bubble N131, we aim to further explore the molecular clumps and star formation at a higher spatial resolution compared with previous CO observations, and try to speculate its origin. The bubble N131 is likely originated in a filamentary nebula, within which the strong stellar wind from a group of massive stars broke up a pre-existing filamentary nebula into the clumps AD and BC, and sweeped up the surrounded material onto the ringlike shell of the bubble N131.

  14. Gamma-ray burst jet dynamics and their interaction with the progenitor star.

    PubMed

    Lazzati, Davide; Morsony, Brian J; Begelman, Mitchell C

    2007-05-15

    The association of at least some long gamma-ray bursts with type Ic supernova explosions has been established beyond reasonable doubt. Theoretically, the challenge is to explain the presence of a light hyper-relativistic flow propagating through a massive stellar core without losing those properties. We discuss the role of the jet-star interaction in shaping the properties of the outflow emerging on the surface of the star. We show that the nature of the inner engine is hidden from the observer for most of the evolution, well beyond the time of the jet breakout on the stellar surface. The discussion is based on analytical considerations as well as high resolution numerical simulations. Finally, the observational consequences of the scenario are addressed in light of the present capabilities.

  15. Athabasca Valles, Mars: a lava-draped channel system.

    PubMed

    Jaeger, W L; Keszthelyi, L P; McEwen, A S; Dundas, C M; Russell, P S

    2007-09-21

    Athabasca Valles is a young outflow channel system on Mars that may have been carved by catastrophic water floods. However, images acquired by the High-Resolution Imaging Science Experiment camera onboard the Mars Reconnaissance Orbiter spacecraft reveal that Athabasca Valles is now entirely draped by a thin layer of solidified lava-the remnant of a once-swollen river of molten rock. The lava erupted from a fissure, inundated the channels, and drained downstream in geologically recent times. Purported ice features in Athabasca Valles and its distal basin, Cerberus Palus, are actually composed of this lava. Similar volcanic processes may have operated in other ostensibly fluvial channels, which could explain in part why the landers sent to investigate sites of ancient flooding on Mars have predominantly found lava at the surface instead.

  16. TIME-DOMAIN SPECTROSCOPY OF A T TAURI STAR

    NASA Astrophysics Data System (ADS)

    Dupree, Andrea K.; Brickhouse, Nancy S.; Cranmer, Steven R.; Berlind, Perry L.; Strader, Jay; Smith, Graeme H.

    2014-06-01

    High resolution optical and near-infrared spectra of TW Hya, the nearest accreting T Tauri star, cover a decade and reveal the substantial changes in accretion and wind properties. Our spectra suggest that the broad near-IR, optical, and far-uv emission lines, centered on the star, originate in a turbulent post-shock region and can undergo scattering by the overlying stellar wind as well as absorption from infalling material. Stable absorption features appear in H-alpha, apparently caused by an accreting column silhouetted in the stellar wind. The free-fall velocity of material correlates inversely with the strength of the post-shock emission, consistent with a dipole accretion model. Terminal outflow velocities appear to be directly related to the amount of post-shock emission, giving evidence for an accretion-driven stellar wind.

  17. The Highest Resolution X-ray View of the Nuclear Region of NGC 4151

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Fabbiano, G.; Karovska, M.; Elvis, M.; Risaliti, G.; Zezas, A.; Mundell, C. G.

    2009-09-01

    We report high resolution imaging of the nucleus of the Seyfert 1 galaxy NGC 4151 obtained with a 50 ks Chandra HRC observation. The HRC image resolves the emission on spatial scales of 0.5 arcsec (30 pc), showing an extended X-ray morphology overall consistent with the narrow line region seen in optical line emission. Removal of the bright point-like nuclear source and image deconvolution technique both reveal X-ray enhancements that closely match the substructures seen in the HST [OIII] image and prominent knots in the radio jet. We find that most of the NLR clouds in NGC 4151 have [OIII] to soft X-ray ratio consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii and a density dependence ∝ r^{-2} as expected in the disk wind scenario. We examine various X-ray emission mechanisms of the radio jet and consider thermal emission from interaction between radio outflow and the NLR clouds the most probable origin for the X-ray emission associated with the jet.

  18. Finite element modeling of mass transport in high-Péclet cardiovascular flows

    NASA Astrophysics Data System (ADS)

    Hansen, Kirk; Arzani, Amirhossein; Shadden, Shawn

    2016-11-01

    Mass transport plays an important role in many important cardiovascular processes, including thrombus formation and atherosclerosis. These mass transport problems are characterized by Péclet numbers of up to 108, leading to several numerical difficulties. The presence of thin near-wall concentration boundary layers requires very fine mesh resolution in these regions, while large concentration gradients within the flow cause numerical stabilization issues. In this work, we will discuss some guidelines for solving mass transport problems in cardiovascular flows using a stabilized Galerkin finite element method. First, we perform mesh convergence studies in a series of idealized and patient-specific geometries to determine the required near-wall mesh resolution for these types of problems, using both first- and second-order tetrahedral finite elements. Second, we investigate the use of several boundary condition types at outflow boundaries where backflow during some parts of the cardiac cycle can lead to convergence issues. Finally, we evaluate the effect of reducing Péclet number by increasing mass diffusivity as has been proposed by some researchers. This work was supported by the NSF GRFP and NSF Career Award #1354541.

  19. A flattened cloud core in NGC 2024

    NASA Technical Reports Server (NTRS)

    Ho, Paul T. P.; Peng, Yun-Lou; Torrelles, Jose M.; Gomez, Jose F.; Rodriguez, Luis F.; Canto, Jorge

    1993-01-01

    The (J, K) (1, 1) and (2, 2) NH3 lines were mapped toward a molecular cloud core in NGC 2024 using the VLA in its C/D-configuration. This region is associated with one of the most highly collimated molecular outflows. We find that the molecular condensations associated with the far-infrared sources FIR 5, FIR 6, and FIR 7 have kinetic temperatures of about 40 K. We also find line broadening toward FIR 6 and FIR 7. This suggests that these condensations may not be protostars heated by gravitational energy released during collapse but that they have an internal heating source. A flattened structure of ammonia emission is found extending parallel to the unipolar CO outflow structure, but displaced systematically to the east. If the NH3 emission traces the denser gas environment, there is no evidence that a dense gas structure is confining the molecular outflow. Instead, the location of the high-velocity outflow along the surface of the NH3 structure suggests that a wind is sweeping material from the surface of this elongated cloud core.

  20. The nuclear high excitation outflow cone in NGC 1365

    NASA Astrophysics Data System (ADS)

    Per Lindblad, Olof; Hjelm, Maja; Jörsäter, Steven; Kristen, Helmuth

    The morphology and kinematics of the high excitation outflow cone in the nuclear region of the Seyfert 1.5 galaxy NGC 1365 is investigated. An empirical model based on ground-based [OIII] emission line data consists of a somewhat hollow double cone with its apex at the Seyfert nucleus. The cone axis is well aligned in space with the normal to the symmetry plane of the galaxy and the position angle of its projection on the sky coincides closely with that of a jet-like radio feature. The opening angle of the cone is 100° and the orientation such that the line of sight to the Seyfert 1.5 nucleus falls inside the cone. The outflow velocities within the cone are accelerated and fall off towards the edge.

  1. Understanding the build-up of SMBH and Galaxies

    NASA Astrophysics Data System (ADS)

    Carrera, Francisco; Georgakakis, Antonis; Ueda, Yoshihiro; Akylas, Thanassis; Lanzuisi, Giorgio; Castello, N.

    2015-09-01

    One of the main open questions in modern Astrophysics is understanding the coupled growth of supermassive black holes by accretion and their host galaxies via star formation, from their peak at redshifts z~ 1-4 to the present time. The generic scenario proposed involves an early phase of intense black hole growth that takes place behind large obscuring columns of inflowing dust and gas clouds. It is postulated that this is followed by a blow-out stage during which some form of AGN feedback controls the fate of the interstellar medium and hence, the evolution of the galaxy. X-rays are essential for testing this scenario as they uniquely probe AGN at both the early heavily obscured stage and the later blow-out phase. X-ray spectral analysis can identify the smoking gun evidence of heavily obscured black hole growth (e.g. intense iron Kalpha line). It therefore provides the most robust method for compiling clean samples of deeply shrouded AGN with well-defined selection functions and unbiased determinations of their intrinsic properties (accretion luminosity, obscuring column). X-rays are also the best window for studying in detail AGN feedback. This process ultimately originates in the innermost regions close to the supermassive black hole and is dominated, in terms of energy and mass flux, by highly ionised material that remains invisible at other wavelengths. The most important epoch for investigating the relation between AGN and galaxies is the redshift range z~1-4, when most black holes and stars we see in the present-day Universe were put in place. Unfortunately, exhaustive efforts with current high-energy telescopes only scrape the tip of the iceberg of the most obscured AGN population. Moreover, Xray studies of the incidence, nature and energetics of AGN feedback are limited to the local Universe. The Athena observatory will provide the technological leap required for a breakthrough in our understanding of AGN and galaxy evolution at the heyday of the Universe. The excellent survey capabilities of Athena/WFI (effective area, angular resolution, field of view) will allow to measure the incidence of feedback in the shape of warm absorbers and Ultra Fast Outflows among the general population of AGN, as well as to complete the census of black hole growth by detecting and characterising significant samples of the most heavily obscured (including Compton thick) AGN, to redshifts z~3-4. The outstanding spectral throughput and resolution of Athena/X-IFU will permit measuring the energetics of those outflows to assess their influence on their host galaxies. The demographics of the heavily obscured and outflowing populations relative to their hosts are fundamental for understanding how major black hole growth events relate to the build-up of galaxies.

  2. Understanding the build-up of supermassive black holes and galaxies

    NASA Astrophysics Data System (ADS)

    Carrera, Francisco; Ueda, Yoshihiro; Georgakakis, Antonis

    2016-07-01

    One of the main open questions in modern Astrophysics is understanding the coupled growth of supermassive black holes by accretion and their host galaxies via star formation, from their peak at redshifts z~ 1-4 to the present time. The generic scenario proposed involves an early phase of intense black hole growth that takes place behind large obscuring columns of inflowing dust and gas clouds. It is postulated that this is followed by a blow-out stage during which some form of AGN feedback controls the fate of the interstellar medium and hence, the evolution of the galaxy. X-rays are essential for testing this scenario as they uniquely probe AGN at both the early heavily obscured stage and the later blow-out phase. X-ray spectral analysis can identify the smoking gun evidence of heavily obscured black hole growth (e.g. intense iron Kalpha line). It therefore provides the most robust method for compiling clean samples of deeply shrouded AGN with well-defined selection functions and unbiased determinations of their intrinsic properties (accretion luminosity, obscuring column). X-rays are also the best window for studying in detail AGN feedback. This process ultimately originates in the innermost regions close to the supermassive black hole and is dominated, in terms of energy and mass flux, by highly ionisedmaterial that remains invisible at other wavelengths. The most important epoch for investigating the relation between AGN and galaxies is the redshift range z~1-4, when most black holes and stars we see in the present-day Universe were put in place. Unfortunately, exhaustive efforts with current high-energy telescopes only scrape the tip of the iceberg of the most obscured AGN population. Moreover, Xray studies of the incidence, nature and energetics of AGN feedback are limited to the local Universe. The Athena observatory will provide the technological leap required for a breakthrough in our understanding of AGN and galaxy evolution at the heyday of the Universe. The excellent survey capabilities of Athena/WFI (effective area, angular resolution, field of view) will allow to measure the incidence of feedback in the shape of warm absorbers and Ultra Fast Outflows among the general population of AGN, as well as to complete the census of black hole growth by detecting and characterising significant samples of the most heavily obscured (including Compton thick) AGN, to redshifts z~3-4. The outstanding spectral throughput and resolution of Athena/X-IFU will permit measuring the energetics of those outflows to assess their influence on their host galaxies. The demographics of the heavily obscured and outflowing populations relative to their hosts are fundamental for understanding how major black hole growth events relate to the build-up of galaxies.

  3. Simplified models of stellar wind anatomy for interpreting high-resolution data. Analytical approach to embedded spiral geometries

    NASA Astrophysics Data System (ADS)

    Homan, Ward; Decin, Leen; de Koter, Alex; van Marle, Allard Jan; Lombaert, Robin; Vlemmings, Wouter

    2015-07-01

    Context. Recent high-resolution observations have shown that stellar winds harbour complexities that strongly deviate from spherical symmetry, which generally is assumed as standard wind model. One such morphology is the Archimedean spiral, which is generally believed to be formed by binary interactions, as has been directly observed in multiple sources. Aims: We seek to investigate the manifestation in the observables of spiral structures embedded in the spherical outflows of cool stars. We aim to provide an intuitive bedrock with which upcoming ALMA data can be compared and interpreted. Methods: By means of an extended parameter study, we modelled rotational CO emission from the stellar outflow of asymptotic giant branch stars. To this end, we developed a simplified analytical parametrised description of a 3D spiral structure. This model is embedded into a spherical wind and fed into the 3D radiative transfer code LIME, which produces 3D intensity maps throughout velocity space. Subsequently, we investigated the spectral signature of rotational transitions of CO in the models, as well as the spatial aspect of this emission by means of wide-slit position-velocity (PV) diagrams. Additionally, we quantified the potential for misinterpreting the 3D data in a 1D context. Finally, we simulated ALMA observations to explore the effect of interferometric noise and artefacts on the emission signatures. Results: The spectral signatures of the CO rotational transition v = 0J = 3 - 2 are very efficient at concealing the dual nature of the outflow. Only a select few parameter combinations allow for the spectral lines to disclose the presence of the spiral structure. If the spiral cannot be distinguished from the spherical signal, this might result in an incorrect interpretation in a 1D context. Consequently, erroneous mass-loss rates would be calculated. The magnitude of these errors is mainly confined to a factor of a few, but in extreme cases can exceed an order of magnitude. CO transitions of different rotationally excited levels show a characteristical evolution in their line shape that can be brought about by an embedded spiral structure. However, if spatial information on the source is also available, the use of wide-slit PV diagrams systematically expose the embedded spiral. The PV diagrams also readily provide most of the geometrical and physical properties of the spiral-harbouring wind. Simulations of ALMA observations prove that the choice of antenna configuration is strongly dependent on the geometrical properties of the spiral. We conclude that exploratory endeavours should observe the object of interest with a range of different maximum-baseline configurations. Appendix A is available in electronic form at http://www.aanda.org

  4. Star formation quenching in quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Carniani, Stefano

    2017-10-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionised and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ˜2.4 obtained with SINFONI in the H- and K-band. All the quasars show [OIII]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e. star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50 - 100 M⊙/yr, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  5. An Extreme, Blueshifted Iron Line in the Narrow Line Seyfert 1 PG 1402+261

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; Porquet, D.; Turner, T. J.

    2004-01-01

    We report on a short, XMM-Newton observation of the radio-quiet Narrow Line Seyfert 1 PG 1402+261. The EPIC X-ray spectrum of PG 1402+261 shows a strong excess of counts between 6 - 9 keV in the rest frame. This feature can be modeled by an unusually strong (equivalent width 2 keV) and very broad energy at 7.3 keV appears blue-shifted with respect to the iron Kalpha emission band between 6.4 - 6.97 keV, whilst the blue-wing of the line extends to 9 keV in the quasar rest frame. The line profile can be fitted by reflection from the inner accretion disk, but an inclination angle of greater than 60 degrees is required to model the extreme blue-wing of the line. Furthermore the extreme strength of the line requires a geometry whereby the hard X-ray emission from PG1402+261 above 2 keV is dominated by the pure-reflection component from the disk, whilst little or none of the direct hard power-law is observed. Alternatively the spectrum above 2 keV may instead be explained by an ionized absorber, if the column density is sufficiently high (NH greater than 3 x 10(exp 23) per square centimeter) and if the matter is ionized enough to produce a deep (tau approximately equal to 1) iron K-shell absorption edge at 9 keV. This absorber could originate in a large column density, high velocity outflow, perhaps similar to those which appear to be observed in several other high accretion rate AGN. Further observations, especially at higher spectral resolution, are required to distinguish between the accretion disk reflection or outflow scenarios.

  6. Clinical and manometric characteristics of patients with Parkinson's disease and esophageal symptoms.

    PubMed

    Su, A; Gandhy, R; Barlow, C; Triadafilopoulos, G

    2017-04-01

    Dysphagia is a common problem in patients with Parkinson's disease (PD); its etiology is multifactorial and its management is challenging. In this retrospective cohort analysis using prospectively collected data, we aimed to objectively characterize dysphagia and/or other esophageal symptoms in patients with PD, assess the prevalence of outflow obstruction as well as major or minor disorders of esophageal peristalsis leading to impaired esophageal clearance and highlight objective parameters that can help in the current management algorithm. Thirty-three consecutive patients with PD presenting with dysphagia, odynophagia, heartburn, regurgitation, chest pain, and weight loss underwent clinical and functional evaluation by high-resolution manometry (HRM). Esophagogastric junction (EGJ) outflow obstruction and major as well as minor disorders of peristalsis were then assessed using the Chicago classification (v3). Thirty-three PD patients with esophageal symptoms were enrolled in the study; 12 of them reported weight loss that was considered as potentially reflecting underlying esophageal dysfunction. The median age of the patients was 70 years (range: 53-89 years), 24 (75%) were men. The majority (62%) experienced dysphagia, likely contributing to weight loss in 41% of patients. Odynophagia was rare (6%) while GER symptoms, such as heartburn, regurgitation, and chest pain were noted in 37%, 31%, and 28% of patients, respectively. Using the hierarchy of the Chicago classification, 12 patients (39%) exhibited EGJ outflow obstruction, 16 (48%) diffuse esophageal spasm (DES), 18 (55%), ineffective esophageal peristalsis (IEM), 16 (48%) fragmented peristalsis, and only 2 patients (6%) had normal HRM tracings. There were no patients with HRM features of achalasia. Dysphagia is common in patients with PD and is associated with a high prevalence of underlying motility disturbances as identified by HRM. The exact impact of these motility abnormalities on symptom induction and their role in influencing clinical management are unclear and will require further study. © The Authors 2017. Published by Oxford University Press on behalf of International Society for Diseases of the Esophagus. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Effect of amiodarone-induced hyperthyroidism on left ventricular outflow obstruction after septal myectomy for hypertrophic cardiomyopathy.

    PubMed

    Pokorney, Sean D; Stone, Neil J; Passman, Rod; Oyer, David; Rigolin, Vera H; Bonow, Robert O

    2010-12-01

    Patients with obstructive hypertrophic cardiomyopathy who undergo septal myectomy are at risk for developing postoperative atrial fibrillation. Amiodarone is effective in treating this arrhythmia but is associated with multiple adverse effects, often with delayed onset. A novel case is described of a patient who developed type 2 amiodarone-induced hyperthyroidism that presented as recurrence of outflow obstruction after septal myectomy. The patient's symptoms and echocardiographic findings of outflow obstruction resolved substantially with the treatment of the amiodarone-induced hyperthyroidism. Amiodarone-induced hyperthyroidism of delayed onset can be a subtle diagnosis, requiring a high index of suspicion. In conclusion, recognition of this diagnosis in patients with recurrence of outflow obstruction by symptoms and cardiac imaging after septal myectomy may avoid unnecessary repeat surgical intervention. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. ALMA Images of the Orion Hot Core at 349 GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, M. C. H.; Plambeck, R. L., E-mail: wright@astro.berkeley.edu

    We present ALMA images of the dust and molecular line emission in the Orion Hot Core at 349 GHz. At 0.″2 angular resolution the images reveal multiple clumps in an arc ∼1″ east of Orion Source I, the protostar at the center of the Kleinmann–Low Nebula, and another chain of peaks from IRc7 toward the southwest. The molecular line images show narrow filamentary structures at velocities >10 km s{sup −1} away from the heavily resolved ambient cloud velocity ∼5 km s{sup −1}. Many of these filaments trace the SiO outflow from Source I, and lie along the edges of themore » dust emission. Molecular line emission at excitation temperatures 300–2000 K, and velocities >10 km s{sup −1} from the ambient cloud, suggest that the Hot Core may be heated in shocks by the outflow from Source I or from the Becklin–Neugebauer (BN)/SrcI explosion. The spectral line observations also reveal a remarkable molecular ring, ∼2″ south of SrcI, with a diameter ∼600 au. The ring is seen in high-excitation transitions of HC{sub 3}N, HCN v 2 = 1, and SO{sub 2}. An impact of ejecta from the BN/SrcI explosion with a dense dust clump could result in the observed ring of shocked material.« less

  9. Discovery of Variable Hydrogen Balmer Absorption Lines with Inverse Decrement in PG 1411+442

    NASA Astrophysics Data System (ADS)

    Shi, Xi-Heng; Pan, Xiang; Zhang, Shao-Hua; Sun, Lu-Ming; Wang, Jian-Guo; Ji, Tuo; Yang, Chen-Wei; Liu, Bo; Jiang, Ning; Zhou, Hong-Yan

    2017-07-01

    We present new optical spectra of the well-known broad absorption line (BAL) quasar PG 1411+442, using the DBSP spectrograph at the Palomar 200 inch telescope in 2014 and 2017 and the YFOSC spectrograph at the Lijiang 2.4 m telescope in 2015. A blueshifted narrow absorption line system is clearly revealed in 2014 and 2015 consisting of hydrogen Balmer series and metastable He I lines. The velocity of these lines is similar to the centroid velocity of the UV BALs, suggesting that both originate from the outflow. The Balmer lines vary significantly between the two observations and vanished in 2017. They were also absent in the archived spectra obtained before 2001. The variation is thought to be driven by photoionization change. Besides, the absorption lines show inversed Balmer decrement, I.e., the apparent optical depths of higher-order Balmer absorption lines are larger than those of lower-order lines, which is inconsistent with the oscillator strengths of the transitions. We suggest that such anomalous line ratios can be naturally explained by the thermal structure of a background accretion disk, which allows the obscured part of the disk to contribute differently to the continuum flux at different wavelengths. High-resolution spectroscopic and photometric monitoring would be very useful to probe the structure of the accretion disk as well as the geometry and physical conditions of the outflow.

  10. Discovery of Variable Hydrogen Balmer Absorption Lines with Inverse Decrement in PG 1411+442

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xi-Heng; Pan, Xiang; Zhang, Shao-Hua

    We present new optical spectra of the well-known broad absorption line (BAL) quasar PG 1411+442, using the DBSP spectrograph at the Palomar 200 inch telescope in 2014 and 2017 and the YFOSC spectrograph at the Lijiang 2.4 m telescope in 2015. A blueshifted narrow absorption line system is clearly revealed in 2014 and 2015 consisting of hydrogen Balmer series and metastable He i lines. The velocity of these lines is similar to the centroid velocity of the UV BALs, suggesting that both originate from the outflow. The Balmer lines vary significantly between the two observations and vanished in 2017. Theymore » were also absent in the archived spectra obtained before 2001. The variation is thought to be driven by photoionization change. Besides, the absorption lines show inversed Balmer decrement, i.e., the apparent optical depths of higher-order Balmer absorption lines are larger than those of lower-order lines, which is inconsistent with the oscillator strengths of the transitions. We suggest that such anomalous line ratios can be naturally explained by the thermal structure of a background accretion disk, which allows the obscured part of the disk to contribute differently to the continuum flux at different wavelengths. High-resolution spectroscopic and photometric monitoring would be very useful to probe the structure of the accretion disk as well as the geometry and physical conditions of the outflow.« less

  11. THREE-DIMENSIONAL SIMULATIONS OF TEARING AND INTERMITTENCY IN CORONAL JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyper, P. F.; DeVore, C. R.; Karpen, J. T.

    Observations of coronal jets increasingly suggest that local fragmentation and intermittency play an important role in the dynamics of these events. In this work, we investigate this fragmentation in high-resolution simulations of jets in the closed-field corona. We study two realizations of the embedded-bipole model, whereby impulsive helical outflows are driven by reconnection between twisted and untwisted field across the domed fan plane of a magnetic null. We find that the reconnection region fragments following the onset of a tearing-like instability, producing multiple magnetic null points and flux-rope structures within the current layer. The flux ropes formed within the weak-fieldmore » region in the center of the current layer are associated with “blobs” of density enhancement that become filamentary threads as the flux ropes are ejected from the layer, whereupon new flux ropes form behind them. This repeated formation and ejection of flux ropes provides a natural explanation for the intermittent outflows, bright blobs of emission, and filamentary structure observed in some jets. Additional observational signatures of this process are discussed. Essentially all jet models invoke reconnection between regions of locally closed and locally open field as the jet-generation mechanism. Therefore, we suggest that this repeated tearing process should occur at the separatrix surface between the two flux systems in all jets. A schematic picture of tearing-mediated jet reconnection in three dimensions is outlined.« less

  12. Martian channels and valleys: Their characteristics, distribution, and age

    USGS Publications Warehouse

    Carr, M.H.; Clow, G.D.

    1981-01-01

    All Martian channels and valleys visible at a resolution of 125 to 300 meters between 65??N and 65??S were mapped at a scale of 1:5,000,000 and the maps then digitized. Correlations of valley presence with other surface features show that almost all valleys are in the old cratered terrain. preferentially in areas of low albedo, low violet/red ratios, and high elevation. The networks are open, the individual drainage basins are small relative to Earth, and large distances separate the basins, features which all suggest an immature drainage system. The simplest explanation of the correlations and the restriction of valley networks to old terrain is that the channels themselves are old, and that the climatic conditions necessary for their formation did not prevail for long after the decline in the cratering rate around 3.9 billion years ago. Two types of outflow channel are distinguished: unconfined, in which broad swaths of terrain are scoured, and confined, in which flow is restricted to discrete channels. The outflow channels have a wide range of ages and may form under present climatic conditions. Fretted channels are largely restrited to two latitude belts centered on 40??N and 45??S, where relatively rapid erosion along escarpments results from mass wasting. They probably form by enlargement of preexisting channels by escarpment retreat. ?? 1981.

  13. Mechanisms of cardiac cell damage due to catecholamines: significance of drugs regulating central sympathetic outflow.

    PubMed

    Rupp, H; Dhalla, K S; Dhalla, N S

    1994-01-01

    A chronically increased rate of catecholamine release has various deleterious actions. Isoproterenol injections (80 mg/kg body weight) resulted in depressed Ca2+ transport in the sarcolemma (ATP-dependent Ca2+ uptake, Na(+)-dependent Ca2+ uptake) and sarcoplasmic reticulum (Ca2+ uptake) of rat heart. The formation of malondialdehyde owing to lipid peroxidation was increased. Pretreatment with vitamin E (10-25 mg/kg/day) strongly inhibited the membrane damage. The toxic effects of catecholamines arise most probably from their oxidation, and it is therefore important either to reduce the central sympathetic outflow or to prevent the oxidation. An inappropriately high sympathetic outflow is a typical feature of Western affluent societies, and is linked to psychosocial stress and hypercaloric nutrition. However, established pharmacologic interventions to reduce sympathetic outflow have proven not practicable because of marked side effects. Using radiotelemetry for monitoring cardiovascular parameters of spontaneously hypertensive rats treated with clonidine or moxonidine, we showed that clonidine, unlike moxonidine, resulted in rebound hypertension after drug withdrawal. Because the rebound blood pressure and the typical side effects of clonidine associated with low patient compliance are mainly mediated by alpha-adrenoceptors, it can be inferred that the I1-imidazoline agonist moxonidine does not exhibit the side effects commonly seen with clonidine and therefore represents a promising approach for reducing an inappropriately high central sympathetic outflow.

  14. Lakes as organic matter upgraders - seasonal variation in biochemical compositions of in- and outflowing particles in pre-alpine Lake Lunz, Austria

    NASA Astrophysics Data System (ADS)

    Khan, Samiullah; Hollaus, Lisa-Maria; Schelker, Jakob; Ejarque, Elisabet; Battin, Tom; Kainz, Martin

    2016-04-01

    Lakes are typically recharged by inflowing stream water and discharge into outflowing streams. In this multiannual field study on pre-alpine, oligotrophic Lake Lunz, Lower Austria, we hypothesized that, irrespective of seasons, stream water recharging the lake contains predominantly recalcitrant particular organic matter (POM; >1.2 um particle size), whereas outflowing lake water is mostly composed of more labile, algae-derived POM. We collected POM for 3 years (2013-2015) at a monthly basis from the inflowing and outflowing streams of Lake Lunz, analyzed POM content, its carbon and nitrogen, their stable isotopes, and fatty acids as biochemical indicators of POM sources. Preliminary results show that, independent of seasons, inflowing POM is rich in terrestrial markers, as evidenced by long-chain saturated fatty acids (>C22:0), with little contribution of autochthonous stream POM, such as algae-derived long-chain polyunsaturated fatty acids (LC-PUFA). However, POM in outflowing water contained considerably less terrestrial markers, but clearly higher contents of highly nutritious, algae-derived LC-PUFA. These results suggest that oligotrophic Lake Lunz acts as a biochemical upgrader within the fluvial network of this drainage basin and supplies highly nutritional POM to consumers further downstream. Ongoing research is aimed at identifying how much of the terrestrial and autochthonous POM is retained and processed in the lake (biota, sediments, or respired).

  15. Simulating the interaction of jets with the intracluster medium

    NASA Astrophysics Data System (ADS)

    Weinberger, Rainer; Ehlert, Kristian; Pfrommer, Christoph; Pakmor, Rüdiger; Springel, Volker

    2017-10-01

    Jets from supermassive black holes in the centres of galaxy clusters are a potential candidate for moderating gas cooling and subsequent star formation through depositing energy in the intracluster gas. In this work, we simulate the jet-intracluster medium interaction using the moving-mesh magnetohydrodynamics code arepo. Our model injects supersonic, low-density, collimated and magnetized outflows in cluster centres, which are then stopped by the surrounding gas, thermalize and inflate low-density cavities filled with cosmic rays. We perform high-resolution, non-radiative simulations of the lobe creation, expansion and disruption, and find that its dynamical evolution is in qualitative agreement with simulations of idealized low-density cavities that are dominated by a large-scale Rayleigh-Taylor instability. The buoyant rising of the lobe does not create energetically significant small-scale chaotic motion in a volume-filling fashion, but rather a systematic upward motion in the wake of the lobe and a corresponding back-flow antiparallel to it. We find that, overall, 50 per cent of the injected energy ends up in material that is not part of the lobe, and about 25 per cent remains in the inner 100 kpc. We conclude that jet-inflated, buoyantly rising cavities drive systematic gas motions that play an important role in heating the central regions, while mixing of lobe material is subdominant. Encouragingly, the main mechanisms responsible for this energy deposition can be modelled already at resolutions within reach in future, high-resolution cosmological simulations of galaxy clusters.

  16. CSO CO (2–1) and Spitzer IRAC observations of a bipolar outflow in high-mass star-forming region IRAS 22506+5944

    NASA Astrophysics Data System (ADS)

    Xie, Ze-Qiang; Qiu, Ke-Ping

    2018-02-01

    We present Caltech Submillimeter Observatory CO (2–1) and Spitzer IRAC observations toward IRAS 22506+5944, which is a 104 L ⊙ massive star-forming region. The CO (2–1) maps show an east-west bipolar molecular outflow originating from the 3 mm dust continuum peak. The Spitzer IRAC color-composite image reveals a pair of bow-shaped tips which are prominent in excess 4.5μm emission and are located at the leading fronts of the bipolar outflow, providing compelling evidence for the existence of bow-shocks as the driving agents of the molecular outflow. By comparing our CO (2–1) observations with previously published CO (1–0) data, we find that the CO (2–1)/(1–0) line ratio increases from low (∼5 kms‑1) to moderate (∼8–12 kms‑1) velocities, and then decreases at higher velocities. This is qualitatively consistent with the scenario that the molecular outflow is driven by multiple bow-shocks. We also revisit the position-velocity diagram of the CO (1–0) data, and find two spur structures along the outflow axis, which are further evidence for the presence of multiple jet bowshocks. Finally, power-law fittings to the mass spectrum of the outflow gives power law indexes more consistent with the jet bow-shock model than the wide-angle wind model.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf-Chase, Grace; Arvidsson, Kim; Smutko, Michael, E-mail: gwolfchase@adlerplanetarium.org

    We present the results of a narrow-band near-infrared imaging survey for Molecular Hydrogen emission-line Objects (MHOs) toward 26 regions containing high-mass protostellar candidates and massive molecular outflows. We have detected a total of 236 MHOs, 156 of which are new detections, in 22 out of the 26 regions. We use H{sub 2} 2.12 μ m/H{sub 2} 2.25 μ m flux ratios, together with morphology, to separate the signatures of fluorescence associated with photo-dissociation regions (PDRs) from shocks associated with outflows in order to identify the MHOs. PDRs have typical low flux ratios of ∼1.5–3, while the vast majority of MHOsmore » display flux ratios typical of C-type shocks (∼6–20). A few MHOs exhibit flux ratios consistent with expected values for J-type shocks (∼3–4), but these are located in regions that may be contaminated with fluorescent emission. Some previously reported MHOs have low flux ratios, and are likely parts of PDRs rather than shocks indicative of outflows. We identify a total of 36 outflows across the 22 target regions where MHOs were detected. In over half these regions, MHO arrangements and fluorescent structures trace features present in CO outflow maps, suggesting that the CO emission traces a combination of dynamical effects, which may include gas entrained in expanding PDRs as well as bipolar outflows. Where possible, we link MHO complexes to distinct outflows and identify candidate driving sources.« less

  18. Early transformation of the Mediterranean Outflow Water (MOW) in the Gulf Of Cádiz, SW Iberian Peninsula: pathways, mixing and temporal variability.

    NASA Astrophysics Data System (ADS)

    Sánchez Leal, Ricardo F.; Sánchez Garrido, José Carlos; Jesús Bellanco Esteban, María; Ruiz Villarreal, Manuel; González-Pola Muñiz, César

    2014-05-01

    The inverse estuarine circulation through the strait of Gibraltar is responsible for the overflow of dense, saline MOW towards the Atlantic basin. Initially as a gravity undercurrent, the MOW entrains large amounts of the overlying Eastern North Atlantic Central Water to become a multi-layered, buoyant plume at depths of 800-1300 m past Cape St. Vincent. Much of the entrainment occurs within 100 km of the Strait over a highly abrupt topography. In this work we analyze a repeated series of high-resolution CTD-LADCP observations along a number of standard sections crossing the early MOW. These data show that from the Strait of Gibraltar, the bottom-trapped flow bifurcates in the vicinity of the topographic features, diverting or rejoining the main MOW path as a function of the orientation of channels and valleys. As it turns anticyclonically, the undercurrent exhibits a cross-axis geostrophic gradient, with the margin closer to the slope being in near-geostrophic balance whereas the distal band is largely ageostrophic due to the flow curvature. Mixing is steered by the interplay of tidal stirring, bottom roughness, shear instability and double diffusion along the MOW path. Data also shows that seasonal variability is mostly related to the fluctuations in the overlying layer rather than to MOW dynamics. This is a contribution to INGRES3 project (Mediterranean outflow at Gibraltar, its influence on deep Mediterranean water ventilation and first transformation and coupling with North-Atlantic central waters in the Gulf of Cádiz, CTM2010_21229)

  19. CO outflows from high-mass Class 0 protostars in Cygnus-X

    NASA Astrophysics Data System (ADS)

    Duarte-Cabral, A.; Bontemps, S.; Motte, F.; Hennemann, M.; Schneider, N.; André, Ph.

    2013-10-01

    Context. The earliest phases of the formation of high-mass stars are not well known. It is unclear whether high-mass cores in monolithic collapse exist or not, and what the accretion process and origin of the material feeding the precursors of high-mass stars are. As outflows are natural consequences of the accretion process, they represent one of the few (indirect) tracers of accretion. Aims: We aim to search for individual outflows from high-mass cores in Cygnus X and to study the characteristics of the detected ejections. We compare these to what has been found for the low-mass protostars, to understand how ejection and accretion change and behave with final stellar mass. Methods: We used CO (2-1) PdBI observations towards six massive dense clumps, containing a total of 9 high-mass cores. We estimated the bolometric luminosities and masses of the 9 high-mass cores and measured the energetics of outflows. We compared our sample to low-mass objects studied in the literature and developed simple evolutionary models to reproduce the observables. Results: We find that 8 out of 9 high-mass cores are driving clear individual outflows. They are therefore true equivalents of Class 0 protostars in the high-mass regime. The remaining core, CygX-N53 MM2, has only a tentative outflow detection. It could be one of the first examples of a true individual high-mass prestellar core. We also find that the momentum flux of high-mass objects has a linear relation to the reservoir of mass in the envelope, as a scale up of the relations previously found for low-mass protostars. This suggests a fundamental proportionality between accretion rates and envelope masses. The linear dependency implies that the timescale for accretion is similar for high- and low-mass stars. Conclusions: The existence of strong outflows driven by high-mass cores in Cygnus X clearly indicates that high-mass Class 0 protostars exist. The collapsing envelopes of these Class 0 objects have similar sizes and a similar fragmentation scale to the low-mass equivalents, and have enough mass to directly form high-mass stars from a monolithic collapse. If the pre-collapse evolution is quasi-static, the fragmentation scale is expected to limit the size of the initial mass reservoirs for all masses leading to higher densities at birth and therefore shorter free-fall times for higher mass stars. However, we find the collapse timescales to be similar for both low- and high-mass objects. This implies that in a quasi-static view, we would require significant turbulent/magnetic support to slow down the collapse of the more massive envelopes. But with this support still to be discovered, and based on independent indications of large dynamics in pre-collapse gas for high-mass star formation, we propose that such an identical collapse timescale implies that the initial densities, which should set the duration of the collapse, should be similar for all masses. Since the fragmentation scale is identical for all masses, a lower initial density requires that the mass that incorporates massive stars has to have been accreted from larger scales than those of low-mass stars and in a dynamical way. Appendices are available in electronic form at http://www.aanda.org

  20. Isotopic tracing of the outflow during artificial rain-on-snow event

    NASA Astrophysics Data System (ADS)

    Juras, Roman; Pavlásek, Jirka; Vitvar, Tomáš; Šanda, Martin; Holub, Jirka; Jankovec, Jakub; Linda, Miloslav

    2016-10-01

    The frequency of rain-on-snow (ROS) occurrence is increasing and this natural phenomenon is beginning to play an important role in temperate climate regions. Present knowledge of outflow generation mechanisms and rainwater dynamics during ROS is still insufficient. The study introduces a combined method of artificial ROS, isotopic tracing and energy balance to partition the event rainwater and the pre-event non-rainwater in the outflow. A rainfall simulator and water enriched with deuterium were used for identifying event rainwater and pre-event non-rainwater during an ROS event. The ROS experiment was conducted in the Krkonoše Mountains in the Czech Republic. An experimental snow block consisting of ripe and isothermal snow was sprayed with deuterium enriched water. The outflow from the snowpack was continuously monitored to gain quantitative and qualitative information about outflow water. The isotopic deuterium content was further analysed from the samples by means of laser spectroscopy in order to separate the hydrograph components. The deuterium content was also analysed from the snow samples gathered before and after the experiment to identify the retention of event rainwater in the snowpack. Isotopic hydrograph separation revealed that although high rain intensity was applied, the event rainwater represented one half (52.7%) of the total outflow volume. The ripe snowpack retained about one third of the rainwater input (33.6%). Significant changes in the outflowing water quality can therefore be expected during ROS events. This experiment also shows that rainwater during ROS firstly pushes-out the non-rainwater and then contributes to the outflow. These results show that the presented technique allows us to gain sufficient information about rainwater dynamics during ROS.

  1. Export of nutrients and major ionic solutes from a rain forest catchment in the Central Amazon Basin

    NASA Astrophysics Data System (ADS)

    Lesack, Lance F. W.

    1993-03-01

    The relative roles of base flow runoff versus storm flow runoff versus subsurface outflow in controlling total export of solutes from a 23.4-ha catchment of undisturbed rain forest in the central Amazon Basin were evaluated from water and solute flux measurements performed over a 1 year period. Solutes exported via 173 storms during the study were estimated from stream water samples collected during base flow conditions and during eight storms, and by utilizing a hydrograph separation technique in combination with a mixing model to partition storm flow from base flow fluxes. Solutes exported by subsurface outflow were estimated from groundwater samples from three nests of piezometers installed into the streambed, and concurrent measurements of hydraulic conductivity and hydraulic head gradients. Base flow discharge represented 92% of water outflow from the basin and was the dominant pathway of solute export. Although storm flow discharge represented only 5% of total water outflow, storm flow solute fluxes represented up to 25% of the total annual export flux, though for many solutes the portion was less. Subsurface outflow represented only 2.5% of total water outflow, and subsurface solute fluxes never represented more than 5% of the total annual export flux. Measurement errors were relatively high for storm flow and subsurface outflow fluxes, but cumulative measurement errors associated with the total solute fluxes exported from the catchment, in most cases, ranged from only ±7% to 14% because base flow fluxes were measured relatively well. The export fluxes of most solutes are substantially less than previously reported for comparable small catchments in the Amazon basin, and these differences cannot be reconciled by the fact that storm flow and subsurface outflows were not appropriately measured in previous studies.

  2. Understanding Satellite-based Monthly-to-Seasonal Reservoir Outflow Estimation as a function of Hydrologic Controls

    NASA Astrophysics Data System (ADS)

    Bonnema, M.; Sikder, M. S.; Hossain, F.; Chen, X.; Miao, Y.; Lee, H.

    2015-12-01

    Growing population and increased demand for water in developing nations is causing an increase in dam construction in these regions. Entities and stakeholders downstream of dams experience drastically altered river flows. When rivers cross international boundaries, these downstream stakeholders often have little knowledge of upstream reservoir operation practices. Satellite remote sensing in the form of radar altimetry and multi-sensor precipitation products can be used as a way to provide downstream stakeholders with the upstream information needed to make important water management decisions. This study uses a mass balance between three hydraulic controls, precipitation induced inflow, evaporation, and reservoir storage change, to estimate reservoir outflow at a monthly time scale. Two reservoirs were examined in differing regions of the world, the Hungry Horse Reservoir in a mountainous region in northwest U.S. and the Kaptai Reservoir in a low-lying, forested region of Bangladesh. It was found that this mass balance method estimated the outflow of Kaptai Reservoir with reasonable skill when compared with observed flows. The estimation of outflow from Hungry Horse Reservoir was similarly skillful for outflows in winter and fall months, but summer and spring outflow estimates had high errors due to snowmelt effects. Furthermore, it was found that the important hydrologic controls for reservoir outflow estimation at the monthly time scale differs between the two reservoirs, with precipitation induced inflow being the most important control for the Kaptai Reservoir and storage change being the most important for Hungry Horse Reservoir. In both cases, a standard energy balance approach of evaporation estimation appeared to have little effect on the accuracy of outflow estimation.

  3. The Retrograde Transvenous Push-Through Method: A Novel Treatment of Peripheral Arteriovenous Malformations with Dominant Venous Outflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohlgemuth, Walter A., E-mail: walter.wohlgemuth@ukr.de; Müller-Wille, René, E-mail: Rene.Mueller-Wille@ukr.de; Teusch, Veronika I., E-mail: Veronika.Teusch@gmx.de

    2015-06-15

    PurposeTo evaluate the efficacy and safety of a novel retrograde transvenous embolization technique of peripheral arteriovenous malformations (AVMs) using Onyx.Materials and MethodsWe conducted a retrospective analysis of all patients who underwent transvenous retrograde Onyx embolization of peripheral AVMs with dominant venous outflow over a 29-month period. The embolization is aimed at retrograde filling of the nidus after building a solid plug in the dominant venous outflow (push-through). Classification, clinical signs, technical aspects, clinical and technical success rates, and complications were recorded. Short-term outcome was assessed.Results11 Symptomatic patients (8 female; mean age 31.4 years) were treated at our Vascular Anomalies Center withmore » this method between January 2012 and May 2014. The AVMs were located on the upper extremity (n = 3), pelvis (n = 2), buttock (n = 2), and lower extremity (n = 4). Retrograde embolization was successfully carried out after preparatory transarterial-flow reduction in eight cases (73 %) and venous-flow reduction with Amplatzer Vascular Plugs in four cases (36 %). Complete devascularization (n = 10; 91 %) or 95 % devascularization (n = 1; 9 %) led to complete resolution (n = 8; 73 %) or improvement of clinical symptoms (n = 3; 27 %). One minor complication occurred (pain and swelling). During a mean follow-up time of 8 months, one clinically asymptomatic recurrence of AVM was detected.ConclusionInitial results suggest that retrograde transvenous Onyx embolization of peripheral AVMs with dominant venous outflow is a safe and effective novel technique with a low complication rate.« less

  4. An ultra-relativistic outflow from a neutron star accreting gas from a companion.

    PubMed

    Fender, Rob; Wu, Kinwah; Johnston, Helen; Tzioumis, Tasso; Jonker, Peter; Spencer, Ralph; Van Der Klis, Michiel

    2004-01-15

    Collimated relativistic outflows-also known as jets-are amongst the most energetic phenomena in the Universe. They are associated with supermassive black holes in distant active galactic nuclei, accreting stellar-mass black holes and neutron stars in binary systems and are believed to be responsible for gamma-ray bursts. The physics of these jets, however, remains something of a mystery in that their bulk velocities, compositions and energetics remain poorly determined. Here we report the discovery of an ultra-relativistic outflow from a neutron star accreting gas within a binary stellar system. The velocity of the outflow is comparable to the fastest-moving flows observed from active galactic nuclei, and its strength is modulated by the rate of accretion of material onto the neutron star. Shocks are energized further downstream in the flow, which are themselves moving at mildly relativistic bulk velocities and are the sites of the observed synchrotron emission from the jet. We conclude that the generation of highly relativistic outflows does not require properties that are unique to black holes, such as an event horizon.

  5. A Molecular-line Study of the Interstellar Bullet Engine IRAS05506+2414

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Lee, Chin-Fei; Sánchez Contreras, Carmen; Patel, Nimesh; Morris, Mark R.; Claussen, Mark

    2017-12-01

    We present interferometric and single-dish molecular line observations of the interstellar bullet-outflow source IRAS 05506+2414, whose wide-angle bullet spray is similar to the Orion BN/KL explosive outflow and likely arises from an entirely different mechanism than the classical accretion-disk-driven bipolar flows in young stellar objects. The bullet-outflow source is associated with a large pseudo-disk and three molecular outflows—a high-velocity outflow (HVO), a medium-velocity outflow (MVO), and a slow, extended outflow (SEO). The size (mass) of the pseudo-disk is 10,350 au × 6400 au (0.64-0.17 M ⊙) from a model-fit assuming infall and rotation, we derive a central stellar mass of 8-19 M ⊙. The HVO (MVO) has an angular size ˜5180 (˜3330) au and a projected outflow velocity of ˜140 km s-1 (˜30 km s-1). The SEO size (outflow speed) is ˜0.9 pc (˜6 km s-1). The HVO’s axis is aligned with (orthogonal to) that of the SEO (pseudo-disk). The velocity structure of the MVO is unresolved. The scalar momenta in the HVO and SEO are very similar, suggesting that the SEO has resulted from the HVO interacting with ambient-cloud material. The bullet spray shares a common axis with the pseudo-disk and has an age comparable to that of MVO (few hundred years), suggesting that these three structures are intimately linked. We discuss several models for the outflows in IRAS 05506+2414 (including dynamical decay of a stellar cluster, chance encounter of a runaway star with a dense cloud, and close passage of two protostars), and conclude that second-epoch imaging to derive proper motions of the bullets and nearby stars can help to discriminate between them.

  6. Toward a Prescription for Feedback from Quasar Outflows

    NASA Astrophysics Data System (ADS)

    Ganguly, Rajib; Bourjaily, M.; Munsell, J.; Brotherton, M. S.; Bhattacharjee, A.; Runnoe, J.; Charlton, J. C.; Eracleous, M.

    2011-01-01

    Models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, distance, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 14000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) estimates of the quasar black hole mass. To this, we are adding photometry from GALEX, 2MASS, and ROSAT in an effort to characterize more fully the quasar SEDs. ROSAT photometry provides estimates of the level of soft X-ray absorption, which helps regulate the velocity of outflows. GALEX photometry samples the extreme ultraviolet range where several high ionization species, that may be present in the outflows, absorb light. 2MASS photometry samples the rest-frame optical, where the effects of absorption and dust reddening are minimal, yield better estimates of the bolometric luminosity (hence, Eddington ratio). In this poster, we will present preliminary measurements of the amount of absorption in the soft X-ray and extreme ultraviolet bands as a function of both outflow properties and quasar physical properties. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.

  7. Outflows in low-mass galaxies at z >1

    NASA Astrophysics Data System (ADS)

    Maseda, Michael V.; MUSE GTO Consortium

    2017-03-01

    Star formation histories of local dwarf galaxies, derived through resolved stellar populations, appear complex and varied. The general picture derived from hydrodynamical simulations is one of cold gas accretion and bursty star formation, followed by feedback from supernovae and winds that heat and eject the central gas reservoirs. This ejection halts star formation until the material cools and re-accretes, resulting in an episodic SFH, particularly at stellar masses below ~ 109 M⊙. Such feedback has often been cited as the driving force behind the observed slowly-rising rotation curves in local dwarfs, due to an under-density of dark matter compared to theoretical models, which is one of the primary challenges to LCDM cosmology. However, these events have not yet been directly observed at high-redshift. Recently, using HST imaging and grism spectroscopy, we have uncovered an abundant population of low-mass galaxies (M* < 109 M⊙) at z = 1 - 2 that are undergoing strong bursts of star formation, in agreement with the theoretical predictions. These Extreme Emission Line Galaxies, with high specific SFRs and shallow gravitational potential wells, are ideal places to test the theoretical prediction of strong feedback-driven outflows. Here we use deep MUSE spectroscopy to search these galaxies for signatures of outflowing material, namely kinematic offsets between absorption lines (in the restframe optical and UV), which trace cool gas, and the nebular emission lines, which define the systemic redshift of the galaxy. Although the EELGs are intrinsically very faint, stacked spectra reveal blueshifted velocity centroids for Fe II absorption, which is indicative of outflowing cold gas. This represents the first constraint on outflows in M* < 109 M⊙ galaxies at z = 1 - 2. These outflows should regulate the star formation histories of low-mass galaxies at early cosmic times and thus play a crucial role in galaxy growth and evolution.

  8. Low-Altitude Reconnection Inflow-Outflow Observations During a 2010 November 3 Solar Eruption

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina L.a; Holman, Gordon; Reeves, Katharine K.; Seaton, Daniel B.; McKenzie, David E.; Su, Yang

    2012-01-01

    For a solar flare occurring on 2010 November 3, we present observations us- ing several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope followed by inflows sweeping into a current sheet region. The inflows are soon followed by outflows appearing to originate from near the termination point of the inflowing motion an observation in line with standard magnetic reconnection models. We measure average inflow plane-of-sky speeds to range from approximately 150 - 690 km s-1 with the initial, high-temperature inflows being the fastest. Using the inflow speeds and a range of Alfven speeds, we estimate the Alfvenic Mach number which appears to decrease with time. We also provide inflow and outflow times with respect to RHESSI count rates and find that the fast, high- temperature inflows occur simultaneously with a peak in the RHESSI thermal light curve. Five candidate inflow-outflow pairs are identified with no more than a minute delay between detections. The inflow speeds of these pairs are measured to be approximately 10(exp 2) km s-1 with outflow speeds ranging from approximately 10(exp 2) - 10(exp 33 km s-1 indicating acceleration during the reconnection process. The fastest of these outflows are in the form of apparently traveling density enhancements along the legs of the loops rather than the loop apexes themselves. These flows could possibly either be accelerated plasma, shocks, or waves prompted by reconnection. The measurements presented here show an order of magnitude difference between the retraction speeds of the loops and the speed of the density enhancements within the loops presumably exiting the reconnection site.

  9. LOW-ALTITUDE RECONNECTION INFLOW-OUTFLOW OBSERVATIONS DURING A 2010 NOVEMBER 3 SOLAR ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Sabrina L.; Holman, Gordon; Su, Yang

    For a solar flare occurring on 2010 November 3, we present observations using several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope followed by inflows sweeping into a current sheet region. The inflows are soon followed by outflows appearing to originate from near the termination point of the inflowing motion-an observation in line with standard magnetic reconnection models. We measure average inflow plane-of-sky speeds to range from {approx}150 to 690 km s{sup -1} with the initial, high-temperature inflows being the fastest. Using the inflow speeds and a range of Alfven speeds, we estimate the Alfvenic Mach number which appearsmore » to decrease with time. We also provide inflow and outflow times with respect to RHESSI count rates and find that the fast, high-temperature inflows occur simultaneously with a peak in the RHESSI thermal light curve. Five candidate inflow-outflow pairs are identified with no more than a minute delay between detections. The inflow speeds of these pairs are measured to be {approx}10{sup 2} km s{sup -1} with outflow speeds ranging from {approx}10{sup 2} to 10{sup 3} km s{sup -1}-indicating acceleration during the reconnection process. The fastest of these outflows are in the form of apparently traveling density enhancements along the legs of the loops rather than the loop apexes themselves. These flows could possibly either be accelerated plasma, shocks, or waves prompted by reconnection. The measurements presented here show an order of magnitude difference between the retraction speeds of the loops and the speed of the density enhancements within the loops-presumably exiting the reconnection site.« less

  10. AGN-enhanced outflows of low-ionization gas in star-forming galaxies at 1.7 < z < 4.6*

    NASA Astrophysics Data System (ADS)

    Talia, M.; Brusa, M.; Cimatti, A.; Lemaux, B. C.; Amorin, R.; Bardelli, S.; Cassarà, L. P.; Cucciati, O.; Garilli, B.; Grazian, A.; Guaita, L.; Hathi, N. P.; Koekemoer, A.; Le Fèvre, O.; Maccagni, D.; Nakajima, K.; Pentericci, L.; Pforr, J.; Schaerer, D.; Vanzella, E.; Vergani, D.; Zamorani, G.; Zucca, E.

    2017-11-01

    Fast and energetic winds are invoked by galaxy formation models as essential processes in the evolution of galaxies. These outflows can be powered either by star formation (SF) and/or active galactic nucleus (AGN) activity, but the relative dominance of the two mechanisms is still under debate. We use spectroscopic stacking analysis to study the properties of the low-ionization phase of the outflow in a sample of 1330 star-forming galaxies (SFGs) and 79 X-ray-detected (1042 < LX < 1045 erg s-1) Type 2 AGN at 1.7 < z < 4.6 selected from a compilation of deep optical spectroscopic surveys, mostly zCOSMOS-Deep and VIMOS Ultra Deep Survey (VUDS). We measure mean velocity offsets of ˜- 150 km s-1 in the SFGs, while in the AGN sample the velocity is much higher (˜- 950 km s-1), suggesting that the AGN is boosting the outflow up to velocities that could not be reached only with the SF contribution. The sample of X-ray AGN has on average a lower SF rate than non-AGN SFGs of similar mass: this, combined with the enhanced outflow velocity in AGN hosts, is consistent with AGN feedback in action. We further divide our sample of AGN into two X-ray luminosity bins: we measure the same velocity offsets in both stacked spectra, at odds with results reported for the highly ionized phase in local AGN, suggesting that the two phases of the outflow may be mixed only up to relatively low velocities, while the highest velocities can be reached only by the highly ionized phase.

  11. Complex Organic Molecules tracing shocks along the outflow cavity in the high-mass protostar IRAS 20126+4104.

    PubMed

    Palau, Aina; Walsh, Catherine; Sánchez-Monge, Álvaro; Girart, Josep M; Cesaroni, Riccardo; Jiménez-Serra, Izaskun; Fuente, Asunción; Zapata, Luis A; Neri, Roberto

    2017-06-01

    We report on subarcsecond observations of complex organic molecules (COMs) in the high-mass protostar IRAS 20126+4104 with the Plateau de Bure Interferometer in its most extended configurations. In addition to the simple molecules SO, HNCO and H 2 13 CO, we detect emission from CH 3 CN, CH 3 OH, HCOOH, HCOOCH 3 , CH 3 OCH 3 , CH 3 CH 2 CN, CH 3 COCH 3 , NH 2 CN, and (CH 2 OH) 2 . SO and HNCO present a X-shaped morphology consistent with tracing the outflow cavity walls. Most of the COMs have their peak emission at the putative position of the protostar, but also show an extension towards the south(east), coinciding with an H 2 knot from the jet at about 800-1000 au from the protostar. This is especially clear in the case of H 2 13 CO and CH 3 OCH 3 . We fitted the spectra at representative positions for the disc and the outflow, and found that the abundances of most COMs are comparable at both positions, suggesting that COMs are enhanced in shocks as a result of the passage of the outflow. By coupling a parametric shock model to a large gas-grain chemical network including COMs, we find that the observed COMs should survive in the gas phase for ∼ 2000 yr, comparable to the shock lifetime estimated from the water masers at the outflow position. Overall, our data indicate that COMs in IRAS 20126+4104 may arise not only from the disc, but also from dense and hot regions associated with the outflow.

  12. Complex Organic Molecules tracing shocks along the outflow cavity in the high-mass protostar IRAS 20126+4104

    PubMed Central

    Palau, Aina; Walsh, Catherine; Sánchez-Monge, Álvaro; Girart, Josep M.; Cesaroni, Riccardo; Jiménez-Serra, Izaskun; Fuente, Asunción; Zapata, Luis A.; Neri, Roberto

    2017-01-01

    We report on subarcsecond observations of complex organic molecules (COMs) in the high-mass protostar IRAS 20126+4104 with the Plateau de Bure Interferometer in its most extended configurations. In addition to the simple molecules SO, HNCO and H213CO, we detect emission from CH3CN, CH3OH, HCOOH, HCOOCH3, CH3OCH3, CH3CH2CN, CH3COCH3, NH2CN, and (CH2OH)2. SO and HNCO present a X-shaped morphology consistent with tracing the outflow cavity walls. Most of the COMs have their peak emission at the putative position of the protostar, but also show an extension towards the south(east), coinciding with an H2 knot from the jet at about 800–1000 au from the protostar. This is especially clear in the case of H213CO and CH3OCH3. We fitted the spectra at representative positions for the disc and the outflow, and found that the abundances of most COMs are comparable at both positions, suggesting that COMs are enhanced in shocks as a result of the passage of the outflow. By coupling a parametric shock model to a large gas-grain chemical network including COMs, we find that the observed COMs should survive in the gas phase for ∼ 2000 yr, comparable to the shock lifetime estimated from the water masers at the outflow position. Overall, our data indicate that COMs in IRAS 20126+4104 may arise not only from the disc, but also from dense and hot regions associated with the outflow. PMID:28579644

  13. THE SPECTRALLY RESOLVED Lyα EMISSION OF THREE Lyα-SELECTED FIELD GALAXIES AT z ∼ 2.4 FROM THE HETDEX PILOT SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chonis, Taylor S.; Finkelstein, Steven L.; Gebhardt, Karl

    2013-10-01

    We present new results on the spectrally resolved Lyα emission of three Lyα-emitting field galaxies at z ∼ 2.4 with high Lyα equivalent width (>100 Å) and Lyα luminosity (∼10{sup 43} erg s{sup –1}). At 120 km s{sup –1} (FWHM) spectral resolution, the prominent double-peaked Lyα profile straddles the systemic velocity, where the velocity zero point is determined from spectroscopy of the galaxies' rest-frame optical nebular emission lines. The average velocity offset from systemic of the stronger redshifted emission component for our sample is 176 km s{sup –1} while the average total separation between the redshifted and main blueshifted emissionmore » components is 380 km s{sup –1}. These measurements are a factor of ∼2 smaller than for UV-continuum-selected galaxies that show Lyα in emission with lower Lyα equivalent widths. We compare our Lyα spectra to the predicted line profiles of a spherical 'expanding shell' Lyα radiative transfer grid that models large-scale galaxy outflows. Specifically, blueward of the systemic velocity where two galaxies show a weak, highly blueshifted (by ∼1000 km s{sup –1}) tertiary emission peak, the model line profiles are a relatively poor representation of the observed spectra. Since the neutral gas column density has a dominant influence over the shape of the Lyα line profile, we caution against equating the observed Lyα velocity offset with a physical outflow velocity, especially at lower spectral resolution where the unresolved Lyα velocity offset is a convoluted function of several degenerate parameters. Referring to rest-frame ultraviolet and optical Hubble Space Telescope imaging, we find that galaxy-galaxy interactions may play an important role in inducing a starburst that results in copious Lyα emission as well as perturbing the gas distribution and velocity field, both of which have strong influence over the Lyα emission line profile.« less

  14. EPE The Extreme Physics Explorer

    NASA Technical Reports Server (NTRS)

    Garcia, Michael; Elvis, Martin; Bookbinder, Jay; Brenneman, Laura; Bulbul, Esra; Nulsen, Paul; Patnaude, Dan; Smith, Randall; Bandler, Simon; Okajima, Takashi; hide

    2012-01-01

    The Extreme Physics Explorer (EPE) is a mission concept that will address fundamental and timely questions in astrophysics which are primary science objectives of IXO. The reach of EPE to the areas outlined in NASA RFI NNH11ZDA018L is shown as a table. The dark green indicates areas in which EPE can do the basic IXO science, and the light green areas where EPE can contribute but will not reach the full IXO capability. To address these science questions, EPE will trace orbits close to the event horizon of black holes, measure black hole spin in active galactic nuclei (AGN), use spectroscopy to characterize outflows and the environment of AGN, map bulk motions and turbulence in galaxy clusters, and observe the process of cosmic feedback where black holes inject energy on galactic and intergalactic scales. EPE gives up the high resolution imaging of IXO in return for lightweight, high TRL foil mirrors which will provide >20 times the effective area of ASTRO-H and similar spatial resolution, with a beam sufficient to study point sources and nearby galaxies and clusters. Advances in micro-calorimeters allow improved performance at high rates with twice the energy resolution of ASTRO-H. A lower TRL option would provide 200 times the area of ASTRO-H using a micro-channel plate optic (MCPO) and a deployable optical bench. Both options are in the middle range of RFI missions at between $600M and $1000M. The EPE foil optic has direct heritage to ASTRO-H, allowing robust cost estimates. The spacecraft is entirely off the shelf and introduces no difficult requirements. The mission could be started and launched in this decade to an L2 orbit, with a three-year lifetime and consumables for 5 years. While ASTRO-H will give us the first taste of high-resolution, non-dispersive X-ray spectroscopy, it will be limited to small numbers of objects in many categories. EPE will give us the first statistically significant samples in each of these categories.

  15. Suzaku Observations Of Near-relativistic Outflows In The Bal Quasar APM 08279+5255.

    NASA Astrophysics Data System (ADS)

    Saez, Cristian; Chartas, G.; Brandt, N.

    2009-12-01

    We present results from three Suzaku observations of the z =3.91 gravitationally lensed broad absorption line quasar APM 08279+5255. We detect strong and broad absorption at rest-frame energies of <2 keV (low-energy) and 7-12 keV (high-energy). The detection of these features confirms the results of previous long-exposure (80-90 ks) Chandra and XMM-Newton observations. The low and high-energy absorption is detected in both the back-illuminated (BI) and front-illuminated (FI) Suzaku XIS spectra (with an F-test significance of <99%). We interpret the low-energy absorption as arising from a low ionization absorber with logNH 23 and the high-energy absorption as due to lines arising from highly ionized iron in a near-relativistic outflowing wind. Assuming this interpretation we find that the velocities in the outflow range between 0.1c and 0.6c. We constrain the angle between the outflow direction of the X-ray absorber and our line of sight to be <36 degrees. We also detect possible variability of the absorption lines (at the <99.9% and <98% significance levels in the FI and BI spectra, respectively) with a rest-frame time scale of 1 month. Assuming that the detected high-energy absorption features arise from FeXXV, we estimate that the fraction of the total bolometric energy injected over the quasar's lifetime into the intergalactic medium in the form of kinetic energy to be >10%.

  16. Understand the Air-Sea Coupling Processes in High Wind Conditions Using a Synthesized Data Analysis/modeling Approach

    DTIC Science & Technology

    2007-09-30

    secondary gap outflow that appeared in COAMPS simulations ( Cherrett 2006). Figure 3d shows similar SST spatial variations as in Fig. 3c with slight... Cherrett , R. C. 2006: Observed and Simulated temporal and spatial variations of the gap outflow region, M.S. Thesis, Meteorology Department, Naval

  17. Arcus: An Overview of the Soft X-ray Grating Explorer

    NASA Astrophysics Data System (ADS)

    Smith, Randall; Arcus Collaboration

    2018-01-01

    The Arcus MIDEX Explorer, which NASA selected for a Phase A study in August 2017, provides high-resolution soft X-ray spectroscopy in the 12-50Å bandpass with unprecedented sensitivity. Its capabilities include spectral resolution >2500 and effective areas in the range 200-600 cm^2. The three top science goals for Arcus are (1) to measure the effects of structure formation imprinted upon the hot baryons that are predicted to lie in extended halos around galaxies, groups, and clusters, (2) to trace the propagation of outflowing mass, energy, and momentum from the vicinity of the black hole to extragalactic scales as a measure of their feedback and (3) to explore how stars, circumstellar disks and exoplanet atmospheres form and evolve. Arcus relies upon the same 12m focal length grazing-incidence silicon pore X-ray optics (SPO) that ESA has developed for the Athena mission; the focal length is achieved on orbit via an extendable optical bench. The focused X-rays from these optics are diffracted by high-efficiency Critical-Angle Transmission (CAT) gratings, and the results are imaged with flight-proven CCD detectors and electronics. The power and telemetry requirements on the spacecraft are modest and mission operations are straightforward, as most observations will be long (~100 ksec), uninterrupted, and pre-planned.

  18. Predicting Tropical Cyclogenesis with a Global Mesoscale Model: Hierarchical Multiscale Interactions During the Formation of Tropical Cyclone Nargis(2008)

    NASA Technical Reports Server (NTRS)

    Shen, B.-W.; Tao, W.-K.; Lau, W. K.; Atlas, R.

    2010-01-01

    Very severe cyclonic storm Nargis devastated Burma (Myanmar) in May 2008, caused tremendous damage and numerous fatalities, and became one of the 10 deadliest tropical cyclones (TCs) of all time. To increase the warning time in order to save lives and reduce economic damage, it is important to extend the lead time in the prediction of TCs like Nargis. As recent advances in high-resolution global models and supercomputing technology have shown the potential for improving TC track and intensity forecasts, the ability of a global mesoscale model to predict TC genesis in the Indian Ocean is examined in this study with the aim of improving simulations of TC climate. High-resolution global simulations with real data show that the initial formation and intensity variations of TC Nargis can be realistically predicted up to 5 days in advance. Preliminary analysis suggests that improved representations of the following environmental conditions and their hierarchical multiscale interactions were the key to achieving this lead time: (1) a westerly wind burst and equatorial trough, (2) an enhanced monsoon circulation with a zero wind shear line, (3) good upper-level outflow with anti-cyclonic wind shear between 200 and 850 hPa, and (4) low-level moisture convergence.

  19. A Keplerian Disk around Orion SrCI, a ∼ 15 M ⊙ YSO

    NASA Astrophysics Data System (ADS)

    Ginsburg, Adam; Bally, John; Goddi, Ciriaco; Plambeck, Richard; Wright, Melvyn

    2018-06-01

    We report ALMA long-baseline observations of Orion Source I (SrcI), with a resolution 0.″03–0.″06 (12–24 au) at 1.3 and 3.2 mm. We detect both continuum and spectral line emission from SrcI’s disk. We also detect a central weakly resolved source that we interpret as a hot spot in the inner disk, which may indicate the presence of a binary system. The high angular resolution and sensitivity of these observations allows us to measure the outer envelope of the rotation curve of the H2O {5}5,0}{--}{6}4,3} line, which gives a mass M I ≈ 15 ± 2 {M}ȯ . We detected several other lines that more closely trace the disk, but were unable to identify their parent species. Using centroid-of-channel methods on these other lines, we infer a similar mass. These measurements solidify SrcI as a genuine high-mass protostar system and support the theory that SrcI and the Becklin-Neugebauer Object were ejected from the dynamical decay of a multiple-star system ∼500 years ago, an event that also launched the explosive molecular outflow in Orion.

  20. On the X-Ray Low- and High-Velocity Outflows in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Ramirez, J. M.; Tombesi, F.

    2012-01-01

    An exploration of the relationship between bolometric luminosity and outflow velocity for two classes of X-ray outflows in a large sample of active galactic nuclei has been performed. We find that line radiation pressure could be one physical mechanism that might accelerate the gas we observe in warm absorber, v approx. 100-1000 km/s, and on comparable but less stringent grounds the ultrafast outflows, v approx. 0.03-0.3c. If comparable with the escape velocity of the system, the first is naturally located at distances of the dusty torus, '" I pc, and the second at subparsec scales, approx.0.01 pc, in accordance with large set of observational evidence existing in the literature. The presentation of this relationship might give us key clues for our understanding of the different physical mechanisms acting in the centre of galaxies, the feedback process and its impact on the evolution of the host galaxy.

  1. Ice in Channels and Ice-Rock Mixtures in Valleys on Mars: Did They Slide on Deformable Rubble Like Antarctic Ice Streams?

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1997-01-01

    Recent studies of ice streams in Antarctica reveal a mechanism of basal motion that may apply to channels and valleys on Mars. The mechanism is sliding of the ice on deformable water-saturated till under high pore pressures. It has been suggested by Lucchitta that ice was present in outflow channels on Mars and gave them their distinctive morphology. This ice may have slid like Antarctic ice streams but on rubbly weathering products rather than till. However, to generate water under high pore pressures, elevated heatflow is needed to melt the base of the ice. Either volcanism or higher heatflow more than 2 b.y. ago could have raised the basal temperature. Regarding valley networks, higher heatflow 3 b.y. ago could have allowed sliding of ice-saturated overburden at a few hundred meters depth. If the original, pristine valleys were somewhat deeper than they are now, they could have formed by the same mechanism. Recent sounding of the seafloor in front of the Ross Ice Shelf in Antarctica reveals large persistent patterns of longitudinal megaflutes and drumlinoid forms, which bear remarkable resemblance to longitudinal grooves and highly elongated streamlined islands found on the floors of martian outflow channels. The flutes are interpreted to have formed at the base of ice streams during the last glacial advance. Additional similarities of Antarctic ice streams with martian outflow channels are apparent. Antarctic ice streams are 30 to 80 km wide and hundreds of kilometers long. Martian outflow channels have similar dimensions. Ice stream beds are below sea level. Carr determined that most common floor elevations of martian outflow channels lie below martian datum, which may have been close to or below past martian sea levels. The Antarctic ice stream bed gradient is flat and locally may go uphill, and surface slopes are exceptionally. Martian channels also have floor gradients that are shallow or go uphill locally and have low surface gradients. The depth to the bed in ice streams is 1 to 1.5 km. At bankful stage, the depth of the fluid in outflow channels was 1 to 2 km, according to the height of bordering scarps. The similarity between Antarctic ice streams and martian outflow channels suggests that ice may have flowed through and shaped the outflow channels, and that perhaps the mechanism of motion of Antarctic ice streams also operated in outflow channels. In addition, sliding on deformable rubble may explain the formation of small valley networks. The large Siple Coast Antarctic ice streams are thought to slide over longitudinally grooved, deforming till, where much of the movement is within the till. The till is saturated with water at high pore pressures that nearly supports all of the weight of the ice. The small differential between overburden pressure and pore pressure at the bed is more important than the volume of water, but water needs to be supplied to the till interface. For pore pressures to remain high, the ice streams have to act as a seal that blocks the flow of water through them, and the rock underneath has to be of low permeability to prevent the water from draining away.

  2. Constraining the geometry of AGN outflows with reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Parker, M. L.; Buisson, D. J. K.; Jiang, J.; Gallo, L. C.; Kara, E.; Matzeu, G. A.; Walton, D. J.

    2018-06-01

    We collate active galactic nuclei (AGN) with reported detections of both relativistic reflection and ultra-fast outflows. By comparing the inclination of the inner disc from reflection with the line-of-sight velocity of the outflow, we show that it is possible to meaningfully constrain the geometry of the absorbing material. We find a clear relation between the velocity and inclination, and demonstrate that it can potentially be explained either by simple wind geometries or by absorption from the disc surface. Due to systematic errors and a shortage of high-quality simultaneous measurements our conclusions are tentative, but this study represents a proof-of-concept that has great potential.

  3. V694 Mon (MWC 560) spectroscopy requested

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2017-05-01

    The observing campaign from 2016 on V694 Mon (MWC 560) (AAVSO Alert Notice 538) has been continued, but with different requirements. Photometry is no longer specifically requested on a regular basis (although ongoing observations that do not interfere with other obligations are welcome). Spectroscopy on a cadence of a week or two is requested to monitor changes in the disk outflow. Investigator Adrian Lucy writes: "Adrian Lucy and Dr. Jeno Sokoloski (Columbia University) have requested spectroscopic monitoring of the broad-absorption-line symbiotic star V694 Mon (MWC 560), as a follow-up to coordinated multi-wavelength observations obtained during its recent outburst (ATel #8653, #8832, #8957; #10281). This system is a perfect place in which to study the relationship between an accretion disk and disk winds/jets, and a high-value target for which even low-resolution spectra can be extraordinarily useful...Optical brightening in MWC 560 tends to predict higher-velocity absorption, but sometimes jumps in absorption velocity also appear during optical quiescence (e.g., Iijima 2001, ASPCS, 242, 187). If such a velocity jump occurs during photometric quiescence, it may prompt radio observations to confirm and test the proposed outflow origin for recently-discovered flat-spectrum radio emission (Lucy et al. ATel #10281)...Furthermore, volunteer spectroscopic monitoring of this system has proved useful in unpredictable ways. For example, 'amateur' spectra obtained by Somogyi Péter in 2015 December demonstrated that the velocity of absorption was very low only a month before an optical outburst peak prompted absorption troughs up to 3000 km/s, which constrains very well the timing of the changes to the outflow to a degree that would not have been otherwise possible. Any resolution can be useful. A wavelength range that can accommodate a blueshift of at least 140 angstroms (6000 km/s) from the rest wavelengths of H-alpha at 6562 angstroms and/or H-beta at 4861 angstroms is ideal, though spectra with a smaller range can still be useful. Photometry could potentially still be useful, but will be supplementary to medium-cadence photometry being collected by the ANS collaboration." "Spectroscopy may be uploaded to the ARAS database (http://www.astrosurf.com/aras/Aras_DataBase/DataBase.htm), or sent to Adrian and Jeno directly at . Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Photometry should be submitted to the AAVSO International Database. See full Special Notice for more details.

  4. ALMA Reveals Sequential High-mass Star Formation in the G9.62+0.19 Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tie; Kim, Kee-Tae; Lacy, John

    Stellar feedback from high-mass stars (e.g., H ii regions) can strongly influence the surrounding interstellar medium and regulate star formation. Our new ALMA observations reveal sequential high-mass star formation taking place within one subvirial filamentary clump (the G9.62 clump) in the G9.62+0.19 complex. The 12 dense cores (MM1–MM12) detected by ALMA are at very different evolutionary stages, from the starless core phase to the UC H ii region phase. Three dense cores (MM6, MM7/G, MM8/F) are associated with outflows. The mass–velocity diagrams of the outflows associated with MM7/G and MM8/F can be well-fit by broken power laws. The mass–velocity diagrammore » of the SiO outflow associated with MM8/F breaks much earlier than other outflow tracers (e.g., CO, SO, CS, HCN), suggesting that SiO traces newly shocked gas, while the other molecular lines (e.g., CO, SO, CS, HCN) mainly trace the ambient gas continuously entrained by outflow jets. Five cores (MM1, MM3, MM5, MM9, MM10) are massive starless core candidates whose masses are estimated to be larger than 25 M {sub ☉}, assuming a dust temperature of ≤20 K. The shocks from the expanding H ii regions (“B” and “C”) to the west may have a great impact on the G9.62 clump by compressing it into a filament and inducing core collapse successively, leading to sequential star formation. Our findings suggest that stellar feedback from H ii regions may enhance the star formation efficiency and suppress low-mass star formation in adjacent pre-existing massive clumps.« less

  5. Data-Model Comparisons of the October, 2002 Event Using the Space Weather Modeling Framework

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Chappell, C. R.; Schunk, R. W.; Barakat, A. R.; Eccles, V.; Glocer, A.; Kistler, L. M.; Haaland, S.; Moore, T. E.

    2014-12-01

    The September 27 - October 4, 2002 time period has been selected by the Geospace Environment Modeling Ionospheric Outflow focus group for community collaborative study because of its high magnetospheric activity and extensive data coverage. The FAST, Polar, and Cluster missions, as well as others, all made key observations during this period, creating a prime event for data-model comparisons. The GEM community has come together to simulate this period using many different methods in order to evaluate models, compare results, and expand our knowledge of ionospheric outflow and its effects on global dynamics. This paper presents Space Weather Modeling Framework (SWMF) simulations of this important period compared against observations from the Polar TIDE, Cluster CODIF and EFW instruments. Density and velocity of oxygen and hydrogen throughout the lobes, plasmasheet, and inner magnetosphere will be the focus of these comparisons. For these simulations, the SWMF couples the multifluid version of BATS-R-US MHD to a variety of ionospheric outflow models of varying complexity. The simplest is outflow arising from constant MHD inner boundary conditions. Two first-principles-based models are also leveraged: the Polar Wind Outflow Model (PWOM), a fluid treatment of outflow dynamics, and the Generalized Polar Wind (GPW) model, which combines fluid and particle-in-cell approaches. Each model is capable of capturing a different set of energization mechanisms, yielding different outflow results. The data-model comparisons will illustrate how well each approach captures reality and which energization mechanisms are most important. This work will also assess our current capability to reproduce ionosphere-magnetosphere mass coupling.

  6. Metal flows of the circumgalactic medium, and the metal budget in galactic haloes

    NASA Astrophysics Data System (ADS)

    Muratov, Alexander L.; Kereš, Dušan; Faucher-Giguère, Claude-André; Hopkins, Philip F.; Ma, Xiangcheng; Anglés-Alcázar, Daniel; Chan, T. K.; Torrey, Paul; Hafen, Zachary H.; Quataert, Eliot; Murray, Norman

    2017-07-01

    We present an analysis of the flow of metals through the circumgalactic medium (CGM) in the Feedback in Realistic Environments (FIRE) simulations of galaxy formation, ranging from isolated dwarfs to L* galaxies. We find that nearly all metals produced in high-redshift galaxies are carried out in winds that reach 0.25Rvir. When measured at 0.25Rvir the metallicity of outflows is slightly higher than the interstellar medium (ISM) metallicity. Many metals thus reside in the CGM. Cooling and recycling from this reservoir determine the metal budget in the ISM. The outflowing metal flux decreases by a factor of ˜2-5 between 0.25Rvir and Rvir. Furthermore, outflow metallicity is typically lower at Rvir owing to dilution of the remaining outflow by metal-poor material swept up from the CGM. The inflow metallicity at Rvir is generally low, but outflow and inflow metallicities are similar in the inner halo. At low redshift, massive galaxies no longer generate outflows that reach the CGM, causing a divergence in CGM and ISM metallicity. Dwarf galaxies continue to generate outflows, although they preferentially retain metal ejecta. In all but the least massive galaxy considered, a majority of the metals are within the halo at z = 0. We measure the fraction of metals in CGM, ISM and stars, and quantify the thermal state of CGM metals in each halo. The total amount of metals in the low-redshift CGM of two simulated L* galaxies is consistent with estimates from the Cosmic Origin Spectrograph haloes survey, while for the other two it appears to be lower.

  7. Shining a light on star formation driven outflows: the physical conditions within galactic outflows

    NASA Astrophysics Data System (ADS)

    Chisholm, John P.; Tremonti, Christina A.; Leitherer, Claus; Wofford, Aida; Chen, Yanmei

    2016-01-01

    Stellar feedback drives energy and momentum into the surrounding gas, which drives gas and metals out of galaxies through a galactic outflow. Unfortunately, galactic outflows are difficult to observe and characterize because they are extremely diffuse, and contain gas at many different temperatures. Here we present results from a sample of 37 nearby (z < 0.27) star forming galaxies observed in the ultraviolet with the Cosmic Origins Spectrograph on the Hubble Space Telescope. The sample covers over three decades in stellar mass and star formation rate, probing different morphologies such as dwarf irregulars and high-mass merging systems. Using four different UV absorption lines (O I, Si II, Si III and Si IV) that trace a wide range of temperatures (ionization potentials between 13.6 eV and 45 eV), we find shallow correlations between the outflow velocity or the equivalent width of absorption lines with stellar mass or star formation rate. Absorption lines probing different temperature phases have similar centroid velocities and line widths, indicating that they are comoving. Using the equivalent width ratios of the four different transitions, we find the ratios to be consistent with photo-ionized outflows, with moderately strong ionization parameters. By constraining the ionization mechanism we model the ionization fractions for each transition, but find the ionization fractions depend crucially on input model parameters. The shallow velocity scalings imply that low-mass galaxies launch outflows capable of escaping their galactic potential, while higher mass galaxies retain all of their gas, unless they undergo a merger.

  8. Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ru; Fernández, Rodrigo; Martínez-Pinedo, Gabriel; Metzger, Brian D.

    2016-12-01

    We consider r-process nucleosynthesis in outflows from black hole accretion discs formed in double neutron star and neutron star-black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important - and in some cases dominant - contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disc outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second r-process peak (mass number A ˜ 130), independent of model parameters, with significant production of A < 130 nuclei. This implies that dynamical ejecta with high electron fraction may not be required to explain the observed abundances of r-process elements in metal poor stars. Disc outflows reach the third peak (A ˜ 195) in most of our simulations, although the amounts produced depend sensitively on the disc viscosity, initial mass or entropy of the torus, and nuclear physics inputs. Some of our models produce an abundance spike at A = 132 that is absent in the Solar system r-process distribution. The spike arises from convection in the disc and depends on the treatment of nuclear heating in the simulations. We conclude that disc outflows provide an important - and perhaps dominant - contribution to the r-process yields of compact binary mergers, and hence must be included when assessing the contribution of these systems to the inventory of r-process elements in the Galaxy.

  9. Spin properties of supermassive black holes with powerful outflows

    NASA Astrophysics Data System (ADS)

    Daly, Ruth. A.

    2016-05-01

    Relationships between beam power and accretion disc luminosity are studied for a sample of 55 high excitation radio galaxies (HERG), 13 low excitation radio galaxies (LERG), and 29 radio loud quasars (RLQ) with powerful outflows. The ratio of beam power to disc luminosity tends to be high for LERG, low for RLQ, and spans the full range of values for HERG. Writing general expressions for the disc luminosity and beam power and applying the empirically determined relationships allows a function that parametrizes the spins of the holes to be estimated. Interestingly, one of the solutions that is consistent with the data has a functional form that is remarkably similar to that expected in the generalized Blandford-Znajek model with a magnetic field that is similar in form to that expected in magnetically arrested disk (MAD) and advection-dominated accretion flow (ADAF) models. Values of the spin function, obtained independent of specific outflow models, suggest that spin and active galactic nucleus type are not related for these types of sources. The spin function can be used to solve for black hole spin in the context of particular outflow models, and one example is provided.

  10. Long-range pollution transport during the MILAGRO-2006 campaign: a case study of a major Mexico City outflow event using free-floating altitude-controlled balloons

    NASA Astrophysics Data System (ADS)

    Voss, P. B.; Zaveri, R. A.; Flocke, F. M.; Mao, H.; Hartley, T. P.; Deamicis, P.; Deonandan, I.; Contreras-Jiménez, G.; Martínez-Antonio, O.; Figueroa Estrada, M.; Greenberg, D.; Campos, T. L.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Crounse, J. D.; Wennberg, P. O.; Apel, E.; Madronich, S.; de Foy, B.

    2010-02-01

    One of the major objectives of the Megacities Initiative: Local And Global Research Observations (MILAGRO-2006) campaign was to investigate the long-range transport of polluted Mexico City Metropolitan Area (MCMA) outflow and determine its downwind impacts on air quality and climate. Six research aircraft, including the National Center for Atmospheric Research (NCAR) C-130, made extensive chemical, aerosol, and radiation measurements above MCMA and more than 1000 km downwind in order to characterize the evolution of the outflow as it aged and dispersed over the Mesa Alta and Gulf of Mexico. As part of this effort, free-floating Controlled-Meteorological (CMET) balloons, commanded to change altitude via satellite, made repeated profile measurements of winds and state variables within the advecting outflow. In this paper, we present an analysis based on the data from two CMET balloons that were launched near Mexico City on the afternoon of 18 March 2006 and floated downwind with the MCMA pollution for nearly 30 h. The repeating profile measurements show the evolving structure of the outflow in considerable detail: its stability and stratification, interaction with other air masses, mixing episodes, and dispersion into the regional background. Air parcel trajectories, computed directly from the balloon wind profiles, show three different transport pathways on 18-19 March: (a) high-altitude advection of the top of the MCMA mixed layer, (b) mid-level outflow over the Sierra Madre Oriental followed by decoupling and isolated transport over the Gulf, and (c) low-altitude outflow with entrainment into a cleaner westerly jet below the plateau. The C-130 aircraft intercepted the balloon-based trajectories three times on 19 March, once along each of these pathways. In all three cases, distinct peaks in the urban tracer signatures and LIDAR backscatter imagery were consistent with MCMA pollution. The coherence of the high-altitude outflow was well preserved after one day whereas that lower in the atmosphere was more widely dispersed over the same time period. Other C-130 intercepts of polluted air are shown to have likely originated outside of MCMA. These findings, and the aircraft intercepts in particular, should prove useful in answering a range of scientific questions pertaining to the transport, transformation, and downwind impacts of megacity air pollution.

  11. The response of relativistic outflowing gas to the inner accretion disk of a black hole.

    PubMed

    Parker, Michael L; Pinto, Ciro; Fabian, Andrew C; Lohfink, Anne; Buisson, Douglas J K; Alston, William N; Kara, Erin; Cackett, Edward M; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C; Garcia, Javier; Harrison, Fiona A; King, Ashley L; Middleton, Matthew J; Miller, Jon M; Miniutti, Giovanni; Reynolds, Christopher S; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J; Wilkins, Daniel R; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different scales: the X-ray emission from within a few gravitational radii of the black hole ionizing the disk wind hundreds of gravitational radii further away as the X-ray flux rises.

  12. The development of hurricane Inez, 1966, as shown by satellite nighttime radiometric and daytime television coverage

    NASA Technical Reports Server (NTRS)

    Allison, L. J.

    1972-01-01

    A complete documentation of Numbus 2 High Resolution infrared Radiometer data and ESSA-1 and 3 television photographs is presented for the life-time of Hurricane Inez, 1966. Ten computer produced radiation charts were analyzed in order to delineate the three dimensional cloud structure during the formative, mature and dissipating stages of this tropical cyclone. Time sections were drawn throughout the storm's life cycle to relate the warm core development and upper level outflow of the storm with their respective cloud canopies, as shown by the radiation data. Aerial reconnaissance weather reports, radar photographs and conventional weather analyses were used to complement the satellite data. A computer program was utilized to accept Nimbus 2 HRIR equivalent blackbody temperatures within historical maximum and minimum sea surface temperature limits over the tropical Atlantic Ocean.

  13. Anterior-Posterior Cerebral Blood Volume Gradient in Human Subiculum

    PubMed Central

    Talati, Pratik; Rane, Swati; Kose, Samet; Gore, John; Heckers, Stephan

    2014-01-01

    The human hippocampal formation is characterized by anterior-posterior gradients of cell density, neurochemistry and hemodynamics. In addition, some functions are associated with specific subfields (subiculum, CA1–4, dentate gyrus) and regions (anterior and posterior). We performed contrast-enhanced, high-resolution T1-weighted 3T steady state (SS) imaging to investigate cerebral blood volume (CBV) gradients of the hippocampal formation. We studied 14 healthy subjects and found significant CBV gradients (anterior > posterior) in the subiculum but not in other hippocampal subfields. Since CBV is a marker of basal metabolism, these results indicate a greater baseline activity in the anterior compared to the posterior subiculum. This gradient might be related to the role of the subiculum as the main outflow station of the hippocampal formation and might have implications for the mechanisms of neuropsychiatric disorders. PMID:24677295

  14. The Reddy maker

    NASA Astrophysics Data System (ADS)

    Nof, Doron; Paldor, Nathan; Gorder, Stephen Van

    2002-09-01

    A new mechanism for the formation of high-amplitude anticyclonic eddies (lenses) from outflows emptying into the ocean at mid-depth is proposed. The essence of the new mechanism is that, in order for an inviscid outflow to exist as a continuous (uninterrupted) current, the condition g' S/ f> α( g' H) 1/2 [where g' is the "reduced gravity", S the bottom slope, f the Coriolis parameter, α a coefficient of order unity whose value depends on the outflow's potential vorticity (it is 2 for a zero potential vorticity outflow and unity for a uniform potential vorticity) and H the maximum thickness] must hold. When the above condition is not met, i.e., when g' S/ f< α( g' H) 1/2, the outflow can only exist as a chain of propagating lenses. Nonlinear analytical considerations leading to the above conclusion are (successfully) compared to numerical simulations which we have conducted (using a reduced gravity layer-and-a-half model). The experiments show that an outflow situated on a bottom whose (uniform) slope gradually varies in the downstream direction is continuous (i.e., is not broken into eddies) where the slope is supercritical [ g' S/ f> α( g' H) 1/2] and discontinuous (i.e., constitutes a chain of eddies) where the slope is subcritical [ g' S/ f< α( g' H) 1/2]. Hence, the eddies are generated by the gradual reduction in the bottom slope rather than by an instability process. Namely, the eddies are not formed by the breakdown of a known steady solution because such a steady solution does not exist. We note that after reaching its "balanced depth", an outflow usually continues to (slowly) descend toward the bottom of the ocean due to frictional effects associated with an energy loss. [Note that the "balanced depth" is the depth at which the outflow has completed its initial adjustment in the sense that it has adjusted to a state where it no longer flows primarily offshore but rather propagates primarily along the isobaths. This depth needs to be distinguished from the (sometimes significantly greater) equilibrium depth corresponding to the point where the outflow's density equals the environmental density.] Most of the time, the outflow descent is accompanied by a reduction in the bottom slope S, and an entrainment which causes both a reduction in g' and an increase in H. All of these alterations bring the outflow closer and closer to the critical condition and it is, therefore, argued that all outflows ultimately reach the critical point (unless diffusion and mixing destroy them prior to that stage). It is suggested that Reddies (i.e., isolated lenses containing Red Sea water) are formed by the above processes. Namely, we propose that the "Reddy maker" is a combination of three processes, the natural reduction in the bottom slope which the outflow senses as it approaches the bottom of the ocean, the entrainment-induced increase in the outflow's thickness, and the entrainment-induced decrease in the outflow's density. An animation of the eddy generation process can be viewed at http://doronnof.net/features.html#video (click on "Reddy maker video").

  15. Ionospheric Outflow in the Magnetosphere: Circulation and Consequences

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Liemohn, M. W.

    2017-12-01

    Including ionospheric outflow in global magnetohydrodynamic models of near-Earth outer space has become an important step towards understanding the role of this plasma source in the magnetosphere. Such simulations have revealed the importance of outflow in populating the plasma sheet and inner magnetosphere as a function of outflow source characteristics. More importantly, these experiments have shown how outflow can control global dynamics, including tail dynamics and dayside reconnection rate. The broad impact of light and heavy ion outflow can create non-linear feedback loops between outflow and the magnetosphere. This paper reviews some of the most important revelations from global magnetospheric modeling that includes ionospheric outflow of light and heavy ions. It also introduces new advances in outflow modeling and coupling outflow to the magnetosphere.

  16. DISCOVERY OF COLLIMATED BIPOLAR OUTFLOWS IN THE PLANETARY NEBULA TH 2-A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danehkar, A., E-mail: ashkbiz.danehkar@cfa.harvard.edu

    We present a comprehensive set of spatially resolved, integral field spectroscopic mapping of the Wolf–Rayet planetary nebula Th 2-A, obtained using the Wide Field Spectrograph on the Australian National University 2.3-m telescope. Velocity-resolved Hα channel maps with a resolution of 20 km s{sup −1} allow us to identify different kinematic components within the nebula. This information is used to develop a three-dimensional morpho-kinematic model of the nebula using the interactive kinematic modeling tool shape. These results suggest that Th 2-A has a thick toroidal shell with an expansion velocity of 40 ± 10 km s{sup −1}, and a thin prolate ellipsoid withmore » collimated bipolar outflows toward its axis reaching velocities in the range of 70–110 km s{sup −1}, with respect to the central star. The relationship between its morpho-kinematic structure and peculiar [WO]-type stellar characteristics deserves further investigation.« less

  17. Brain Circuitry Supporting Multi-Organ Autonomic Outflow in Response to Nausea.

    PubMed

    Sclocco, Roberta; Kim, Jieun; Garcia, Ronald G; Sheehan, James D; Beissner, Florian; Bianchi, Anna M; Cerutti, Sergio; Kuo, Braden; Barbieri, Riccardo; Napadow, Vitaly

    2016-02-01

    While autonomic outflow is an important co-factor of nausea physiology, central control of this outflow is poorly understood. We evaluated sympathetic (skin conductance level) and cardiovagal (high-frequency heart rate variability) modulation, collected synchronously with functional MRI (fMRI) data during nauseogenic visual stimulation aimed to induce vection in susceptible individuals. Autonomic data guided analysis of neuroimaging data, using a stimulus-based (analysis windows set by visual stimulation protocol) and percept-based (windows set by subjects' ratings) approach. Increased sympathetic and decreased parasympathetic modulation was associated with robust and anti-correlated brain activity in response to nausea. Specifically, greater autonomic response was associated with reduced fMRI signal in brain regions such as the insula, suggesting an inhibitory relationship with premotor brainstem nuclei. Interestingly, some sympathetic/parasympathetic specificity was noted. Activity in default mode network and visual motion areas was anti-correlated with parasympathetic outflow at peak nausea. In contrast, lateral prefrontal cortical activity was anti-correlated with sympathetic outflow during recovery, soon after cessation of nauseogenic stimulation. These results suggest divergent central autonomic control for sympathetic and parasympathetic response to nausea. Autonomic outflow and the central autonomic network underlying ANS response to nausea may be an important determinant of overall nausea intensity and, ultimately, a potential therapeutic target. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Molecular line study of massive star-forming regions from the Red MSX Source survey

    NASA Astrophysics Data System (ADS)

    Yu, Naiping; Wang, Jun-Jie

    2014-05-01

    In this paper, we have selected a sample of massive star-forming regions from the Red MSX Source survey, in order to study star formation activities (mainly outflow and inflow signatures). We have focused on three molecular lines from the Millimeter Astronomy Legacy Team Survey at 90 GHz: HCO+(1-0), H13CO+(1-0) and SiO(2-1). According to previous observations, our sources can be divided into two groups: nine massive young stellar object candidates (radio-quiet) and 10 H II regions (which have spherical or unresolved radio emissions). Outflow activities have been found in 11 sources, while only three show inflow signatures in all. The high outflow detection rate means that outflows are common in massive star-forming regions. The inflow detection rate was relatively low. We suggest that this was because of the beam dilution of the telescope. All three inflow candidates have outflow(s). The outward radiation and thermal pressure from the central massive star(s) do not seem to be strong enough to halt accretion in G345.0034-00.2240. Our simple model of G318.9480-00.1969 shows that it has an infall velocity of about 1.8 km s-1. The spectral energy distribution analysis agrees our sources are massive and intermediate-massive star formation regions.

  19. AEGIS: An Astrophysics Experiment for Grating and Imaging Spectroscopy---a Soft X-ray, High-resolution Spectrometer

    NASA Astrophysics Data System (ADS)

    Huenemoerder, David; Bautz, M. W.; Davis, J. E.; Heilmann, R. K.; Houck, J. C.; Marshall, H. L.; Neilsen, J.; Nicastro, F.; Nowak, M. A.; Schattenburg, M. L.; Schulz, N. S.; Smith, R. K.; Wolk, S.; AEGIS Team

    2012-01-01

    AEGIS is a concept for a high-resolution soft X-ray spectroscopic observatory developed in response to NASA's request for definitions of the next X-ray astronomy mission. At a small fraction of the cost of the once-planned International X-ray Observatory (IXO), AEGIS has capabilities that surpass IXO grating spectrometer requirements, and which are far superior to those of existing soft X-ray spectrometers. AEGIS incorporates innovative technology in X-ray optics, diffraction gratings and detectors. The mirror uses high area-to-mass ratio segmented glass architecture developed for IXO, but with smaller aperture and larger graze angles optimized for high-throughput grating spectroscopy with low mass and cost. The unique Critical Angle Transmission gratings combine low mass and relaxed figure and alignment tolerances of Chandra transmission gratings but with high diffraction efficiency and resolving power of blazed reflection gratings. With more than an order of magnitude better performance over Chandra and XMM grating spectrometers, AEGIS can obtain high quality spectra of bright AGN in a few hours rather than 10 days. Such high resolving power allows detailed kinematic studies of galactic outflows, hot gas in galactic haloes, and stellar accretion flows. Absorption line spectroscopy will be used to study large scale structure, cosmic feedback, and growth of black holes in thousands of sources to great distances. AEGIS will enable powerful multi-wavelength investigations, for example with Hubble/COS in the UV to characterize the intergalactic medium. AEGIS will be the first observatory with sufficient resolution below 1 keV to resolve thermally-broadened lines in hot ( 10 MK) plasmas. Here we describe key science investigations enable by Aegis, its scientific payload and mission plan. Acknowledgements: Support was provided in part by: NASA SAO contract SV3-73016 to MIT for the Chandra X-ray Center and Science Instruments; NASA grant NNX08AI62G; and the MKI Instrumentation Development Fund.

  20. Nascent bipolar outflows associated with the first hydrostatic core candidates Barnard 1b-N and 1b-S

    NASA Astrophysics Data System (ADS)

    Gerin, M.; Pety, J.; Fuente, A.; Cernicharo, J.; Commerçon, B.; Marcelino, N.

    2015-05-01

    In the theory of star formation, the first hydrostatic core (FHSC) phase is a critical step in which a condensed object emerges from a prestellar core. This step lasts about one thousand years, a very short time compared with the lifetime of prestellar cores, and therefore is hard to detect unambiguously. We present IRAM Plateau de Bure observations of the Barnard 1b dense molecular core, combining detections of H2CO and CH3OH spectral lines and dust continuum at 2.3'' resolution (~500 AU). The two compact cores B1b-N and B1b-S are detected in the dust continuum at 2 mm, with fluxes that agree with their spectral energy distribution. Molecular outflows associated with both cores are detected. They are inclined relative to the direction of the magnetic field, in agreement with predictions of collapse in turbulent and magnetized gas with a ratio of mass to magnetic flux somewhat higher than the critical value, μ ~ 2-7. The outflow associated with B1b-S presents sharp spatial structures, with ejection velocities of up to ~7 km s-1 from the mean velocity. Its dynamical age is estimated to be ~2000 yr. The B1b-N outflow is smaller and slower, with a short dynamical age of ~1000 yr. The B1b-N outflow mass, mass-loss rate, and mechanical luminosity agree well with theoretical predictions of FHSC. These observations confirm the early evolutionary stage of B1b-N and the slightly more evolved stage of B1b-S. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Appendices are available in electronic form at http://www.aanda.orgFITS files for the H2CO and CH3OH mosaics are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/L2

Top