Science.gov

Sample records for outlying insulin sensitivity

  1. Neferine enhances insulin sensitivity in insulin resistant rats.

    PubMed

    Pan, Yang; Cai, Baochang; Wang, Kelin; Wang, Sumin; Zhou, Shuyuan; Yu, Xiaochun; Xu, Bin; Chen, Long

    2009-07-06

    Neferine was isolated from green seed embryo of Nelumbo nucifera Gaertn which has been used as an anti-obesity agent in traditional Chinese herbal medicine. This study was conducted to investigate the effects of neferine on enhancing insulin sensitivity in insulin resistant rats compared with rosiglitazone and to potentially reveal its role in mediating the anti-obesity properties of Nelumbo nucifera Gaertn. Fasting blood glucose (FBG), fasting blood insulin (FINS), triglycerides (TG) and tumor necrosis factor-alpha (TNF-alpha) were measured, and the oral glucose tolerance test for 2-h plasma glucose level (2-h PG) was carried out. The glucose infusion rate (GIR) was used to measure the insulin sensitivity by hyperinsulinemic euglycemic clamp technique. The levels of FBG, FINS, TG, TNF-alpha and 2-h PG all decreased significantly in the rosiglitazone and neferine groups compared with the insulin resistance (IR) model group. Neferine diminished the 2-h PG more than did rosiglitazone treatment. Compared to the IR model group, the treatments of neferine and rosiglitazone remarkably increased GIRs but no difference between these two treatments themselves was evident. These data demonstrate that neferine has effects similar to rosiglitazone in decreasing fasting blood glucose, insulin, TG, TNF-alpha and enhancing insulin sensitivity in insulin resistant rats.

  2. Antidiabetic plants improving insulin sensitivity.

    PubMed

    Eddouks, Mohamed; Bidi, Amina; El Bouhali, Bachir; Hajji, Lhoussain; Zeggwagh, Naoufel Ali

    2014-09-01

    Globally, the prevalence of diabetes mellitus is increasing at an alarming rate. This chronic pathology gravely troubled the human health and quality of life. Both insulin deficiency and insulin resistance are involved in the pathophysiology of diabetes mellitus. Moreover, insulin resistance is being diagnosed nowadays in a growing population of diabetic and obese patients, especially in industrialized societies. There are lots of conventional agents available to control and to treat diabetes, but total recovery from this disorder has not been reported up to this date. Plants provided a potential source of hypoglycemic drugs and are widely used in several traditional systems of medicine to prevent diabetes. A few reviews with less attention paid to mechanisms of action have been published on antidiabetic plants. The present review focuses on the various plants that have been reported to be effective in improving insulin sensitivity associated with diabetes. In this work, an updated systematic review of the published literature has been conducted to review the antidiabetic plants improving insulin sensitivity and 111 medicinal plants have been reported to have a beneficial effect on insulin sensitivity using several in-vitro and in-vivo animal models of diabetes. The different metabolic and cellular effects of the antidiabetic plants improving insulin sensitivity are reported indicating the important role of medicinal plants as potential alternative or complementary use in controlling insulin resistance associated with diabetes mellitus. © 2014 Royal Pharmaceutical Society.

  3. Quantification of adipose tissue insulin sensitivity.

    PubMed

    Søndergaard, Esben; Jensen, Michael D

    2016-06-01

    In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and weaknesses. Copyright © 2016 American Federation for Medical Research.

  4. Insulin sensitizing and insulinotropic action of berberine from Cortidis rhizoma.

    PubMed

    Ko, Byoung-Seob; Choi, Soo Bong; Park, Seong Kyu; Jang, Jin Sun; Kim, Yeong Eun; Park, Sunmin

    2005-08-01

    Our preliminary study demonstrated that 70% ethanol Cortidis Rhizoma extracts (CR) had a hypoglycemic action in diabetic animal models. We determined whether CR fractions acted as anti-diabetic agent, and a subsequent investigation of the action mechanism of the major compound, berberine ([C(20)H(18)NO(4)](+)), was carried out in vitro. The 20, 40 and 60% methanol fractions from the XAD-4 column contained the most insulin sensitizing activities in 3T3-L1 adipocytes. The common major peak in these fractions was berberine. Treatment with 50 microM berberine plus differentiation inducers significantly reduced triglyceride accumulation by decreased differentiation of 3T3-L1 fibroblasts to adipocytes and triglyceride synthesis. Significant insulin sensitizing activity was observed in 3T3-L1 adipocytes which were given 50 microM berberine plus 0.2 nM insulin to reach a glucose uptake level increased by 10 nM of insulin alone. This was associated with increased glucose transporter-4 translocation into the plasma membrane via enhancing insulin signaling pathways and the insulin receptor substrate-1-phosphoinositide 3 Kinase-Akt. Berberine also increased glucose-stimulated insulin secretion and proliferation in Min6 cells via an enhanced insulin/insulin-like growth factor-1 signaling cascade. Data suggested that berberine can act as an effective insulin sensitizing and insulinotropic agent. Therefore, berberine can be used as anti-diabetic agent for obese diabetic patients.

  5. Psychological Symptoms and Insulin Sensitivity in Adolescents

    PubMed Central

    Shomaker, Lauren B.; Tanofsky-Kraff, Marian; Young-Hyman, Deborah; Han, Joan C.; Yanoff, Lisa B.; Brady, Sheila M.; Yanovski, Susan Z.; Yanovski, Jack A.

    2010-01-01

    Purpose Symptoms of psychological distress have been linked to low insulin sensitivity in adults; however, little is known about this relationship in pediatric samples. We therefore examined symptoms of depression and anxiety in relation to insulin sensitivity in adolescents. Methods Participants were 136 non-treatment seeking, healthy adolescents (53.2% female) of all weight strata (BMI-z = 1.08±1.08) between the ages of 12 and 18 years (M = 15.16, SD = 1.55). Adolescents completed questionnaire measures assessing depression and anxiety symptoms. Fasting blood samples for serum insulin and plasma glucose were obtained to estimate insulin sensitivity with the quantitative insulin sensitivity check index (QUICKI). Fat mass and fat-free mass were measured with air displacement plethysmography or dual-energy x-ray absorptiometry. Results Depressive symptoms were associated with higher fasting insulin and decreased insulin sensitivity even after controlling for fat mass, fat-free mass, height, age, pubertal status, race, and sex (ps < 0.01). Conclusions As has been described for adults, depressive symptoms are associated with low insulin sensitivity among healthy adolescents. Further experimental and prospective studies are required to determine the directionality of this link. PMID:19912553

  6. Caffeine can decrease insulin sensitivity in humans.

    PubMed

    Keijzers, Gerben B; De Galan, Bastiaan E; Tack, Cees J; Smits, Paul

    2002-02-01

    Caffeine is a central stimulant that increases the release of catecholamines. As a component of popular beverages, caffeine is widely used around the world. Its pharmacological effects are predominantly due to adenosine receptor antagonism and include release of catecholamines. We hypothesized that caffeine reduces insulin sensitivity, either due to catecholamines and/or as a result of blocking adenosine-mediated stimulation of peripheral glucose uptake. Hyperinsulinemic-euglycemic glucose clamps were used to assess insulin sensitivity. Caffeine or placebo was administered intravenously to 12 healthy volunteers in a randomized, double-blind, crossover design. Measurements included plasma levels of insulin, catecholamines, free fatty acids (FFAs), and hemodynamic parameters. Insulin sensitivity was calculated as whole-body glucose uptake corrected for the insulin concentration. In a second study, the adenosine reuptake inhibitor dipyridamole was tested using an identical protocol in 10 healthy subjects. Caffeine decreased insulin sensitivity by 15% (P < 0.05 vs. placebo). After caffeine administration, plasma FFAs increased (P < 0.05) and remained higher than during placebo. Plasma epinephrine increased fivefold (P < 0.0005), and smaller increases were recorded in plasma norepinephrine (P < 0.02) and blood pressure (P < 0.001). Dipyridamole did not alter insulin sensitivity and only increased plasma norepinephrine (P < 0.01). Caffeine can decrease insulin sensitivity in healthy humans, possibly as a result of elevated plasma epinephrine levels. Because dipyridamole did not affect glucose uptake, peripheral adenosine receptor antagonism does not appear to contribute to this effect.

  7. How to Measure Adipose Tissue Insulin Sensitivity.

    PubMed

    Søndergaard, Esben; Espinosa De Ycaza, Ana Elena; Morgan-Bathke, Maria; Jensen, Michael D

    2017-04-01

    Adipose tissue insulin resistance may cause hepatic and skeletal muscle insulin resistance by releasing excess free fatty acids (FFAs). Because no consensus exists on how to quantify adipose tissue insulin sensitivity we compared three methods for measuring adipose tissue insulin sensitivity: the single step insulin clamp, the multistep pancreatic clamp, and the adipose tissue insulin resistance index (Adipo-IR). We studied insulin sensitivity in 25 adults by measuring the insulin concentration resulting in 50% suppression of palmitate flux (IC50) using both a multistep pancreatic clamp and a one-step hyperinsulinemic-euglycemic clamp. Palmitate kinetics were measured using a continuous infusion of [U-13C]palmitate. Adipo-IR was calculated from fasting insulin and fasting FFA concentrations. Adipo-IR was reproducible (sample coefficient of variability, 10.0%) and correlated with the IC50 measured by the multistep pancreatic clamp technique (r, 0.86; P < 0.001). Age and physical fitness were significant predictors of the residual variation between Adipo-IR and IC50, with a positive relationship with age (r, 0.47; P = 0.02) and a negative association with VO2 peak (r, -0.46; P = 0.02). Likewise, IC50 measured by the multistep pancreatic clamp technique correlated with IC50 measured using the one-step hyperinsulinemic-euglycemic clamp technique (r, 0.73; P < 0.001). Adipo-IR and the one-step hyperinsulinemic-euglycemic clamp technique using a palmitate tracer are good predictors of a gold standard measure of adipose tissue insulin sensitivity. However, age and physical fitness systematically affect the predictive values. Although Adipo-IR is suitable for larger population studies, the multistep pancreatic clamp technique is probably needed for mechanistic studies of adipose tissue insulin action.

  8. Fenofibrate Decreases Insulin Clearance and Insulin Secretion to Maintain Insulin Sensitivity.

    PubMed

    Ramakrishnan, Sadeesh K; Russo, Lucia; Ghanem, Simona S; Patel, Payal R; Oyarce, Ana Maria; Heinrich, Garrett; Najjar, Sonia M

    2016-11-11

    High fat diet reduces the expression of CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a transmembrane glycoprotein that promotes insulin clearance and down-regulates fatty acid synthase activity in the liver upon its phosphorylation by the insulin receptor. Because peroxisome proliferator-activated receptor α (PPARα) transcriptionally suppresses CEACAM1 expression, we herein examined whether high fat down-regulates CEACAM1 expression in a PPARα-dependent mechanism. By activating PPARα, the lipid-lowering drug fenofibrate reverses dyslipidemia and improves insulin sensitivity in type 2 diabetes in part by promoting fatty acid oxidation. Despite reducing glucose-stimulated insulin secretion, fenofibrate treatment does not result in insulin insufficiency. To examine whether this is mediated by a parallel decrease in CEACAM1-dependent hepatic insulin clearance pathways, we fed wild-type and Pparα(-/-) null mice a high fat diet supplemented with either fenofibrate or Wy14643, a selective PPARα agonist, and examined their effect on insulin metabolism and action. We demonstrated that the decrease in insulin secretion by fenofibrate and Wy14643 is accompanied by reduction in insulin clearance in wild-type but not Pparα(-/-) mice, thereby maintaining normoinsulinemia and insulin sensitivity despite continuous high fat intake. Intact insulin secretion in L-CC1 mice with protected hepatic insulin clearance and CEACAM1 levels provides in vivo evidence that insulin secretion responds to changes in insulin clearance to maintain physiologic insulin and glucose homeostasis. These results also emphasize the relevant role of hepatic insulin extraction in regulating insulin sensitivity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Effect of tequila on homocysteine, insulin secretion, insulin sensitivity, and metabolic profile in healthy men.

    PubMed

    González-Ortiz, Manuel; Pascoe-González, Sara; Kam-Ramos, Angélica M; Martínez-Abundis, Esperanza

    2005-01-01

    The purpose of this study is to identify the effect of a low dose of tequila on homocysteine, insulin secretion, insulin sensitivity, and metabolic profile in healthy young men. An open clinical trial was carried out in eight healthy nonobese, young male volunteers. The study was divided in two phases. The first one evaluated metabolic changes, including insulin secretion and sensitivity due to acute administration of 30 ml of straight tequila. The second phase of the study evaluated metabolic effects due to the daily administration of 30 ml of tequila during 30 days. There were no significant metabolic changes after the single oral administration of 30 ml of straight tequila. After the administration of tequila during 30 days, a significant increase in homocysteine levels and a tendency to increase the glucose concentration and to decrease the insulin sensitivity were found. Detrimental metabolic changes were observed with the daily administration of 30 ml of tequila during 30 days.

  10. Resistive Training Improves Insulin Sensitivity after Stroke

    PubMed Central

    Ivey, Frederick M.; Ryan, Alice S.

    2013-01-01

    Background Insulin resistance is highly prevalent after stroke, contributing to comorbid cardiovascular conditions that are the leading cause of death in the stroke population. This study determined the effects of unilateral resistive training (RT) of both the paretic and nonparetic legs on insulin sensitivity in stroke survivors. Methods We studied 10 participants (mean age 65 ± 2 years; mean body mass index 27 ± 4 kg/m2) with hemiparetic gait after remote (>6 months) ischemic stroke. All subjects underwent 1-repetition maximum (1-RM) strength testing, 9 had an oral glucose tolerance test (OGTT), and 7 completed a 2-hour hyperglycemic clamp (with glucose elevation targeted at 98 mg/dL above baseline fasting level) before and after 12 weeks (3×/week) of progressive, high repetition, high-intensity RT. Body composition was assessed by dual-energy x-ray absorbtiometry in all participants. Results Leg press and leg extension 1-RM increased in the paretic leg by 22% (P < .05) and 45% (P < .01), respectively. Fasting insulin decreased 23% (P < .05), with no change in fasting glucose. The 16% reduction in OGTT insulin area under the curve (AUC) across training was not statistically significant (P = .18). There was also no change in glucose AUC. First-phase insulin response during the hyperglycemic clamp (0–10 minutes) decreased 24% (P < .05), and second-phase insulin response (10–120 minutes) decreased 26% (P < .01). Insulin sensitivity increased by 31% after RT according to clamp calculations (P < .05). Conclusions These findings provide the first preliminary evidence that RT may reduce hyperinsulinemia and improve insulin sensitivity after disabling stroke. PMID:23352685

  11. Resistive training improves insulin sensitivity after stroke.

    PubMed

    Ivey, Frederick M; Ryan, Alice S

    2014-02-01

    Insulin resistance is highly prevalent after stroke, contributing to comorbid cardiovascular conditions that are the leading cause of death in the stroke population. This study determined the effects of unilateral resistive training (RT) of both the paretic and nonparetic legs on insulin sensitivity in stroke survivors. We studied 10 participants (mean age 65 ± 2 years; mean body mass index 27 ± 4 kg/m2) with hemiparetic gait after remote (>6 months) ischemic stroke. All subjects underwent 1-repetition maximum (1-RM) strength testing, 9 had an oral glucose tolerance test (OGTT), and 7 completed a 2-hour hyperglycemic clamp (with glucose elevation targeted at 98 mg/dL above baseline fasting level) before and after 12 weeks (3×/week) of progressive, high repetition, high-intensity RT. Body composition was assessed by dual-energy x-ray absorbtiometry in all participants. Leg press and leg extension 1-RM increased in the paretic leg by 22% (P < .05) and 45% (P < .01), respectively. Fasting insulin decreased 23% (P < .05), with no change in fasting glucose. The 16% reduction in OGTT insulin area under the curve (AUC) across training was not statistically significant (P = .18). There was also no change in glucose AUC. First-phase insulin response during the hyperglycemic clamp (0-10 minutes) decreased 24% (P < .05), and second-phase insulin response (10-120 minutes) decreased 26% (P < .01). Insulin sensitivity increased by 31% after RT according to clamp calculations (P < .05). These findings provide the first preliminary evidence that RT may reduce hyperinsulinemia and improve insulin sensitivity after disabling stroke. Published by Elsevier Inc.

  12. Assessment of insulin sensitivity in glucokinase-deficient subjects.

    PubMed

    Clément, K; Pueyo, M E; Vaxillaire, M; Rakotoambinina, B; Thuillier, F; Passa, P; Froguel, P; Robert, J J; Velho, G

    1996-01-01

    The chronic hyperglycaemia of glucokinase-deficient diabetes results from a glucose-sensing defect in pancreatic beta cells and abnormal hepatic glucose phosphorylation. We have evaluated the contribution of insulin resistance to this form of chronic hyperglycaemia. Insulin sensitivity, assessed by the homeostasis model assessment (HOMA) method in 35 kindreds with glucokinase mutations, was found to be significantly decreased in 125 glucokinase-deficient subjects as compared to 141 unaffected first-degree relatives. Logistic regression analysis showed that in glucokinase-deficient subjects a decrease in insulin sensitivity was associated with deterioration of the glucose tolerance status. A euglycaemic hyperinsulinaemic clamp was performed in 14 glucokinase-deficient subjects and 12 unrelated control subjects. In six patients and six control subjects the clamp was coupled to dideutero-glucose infusion to measure glucose turnover. Average glucose infusion rates (GIR) at 1 and 5 mU.kg body weight.min-1 insulin infusion rates were significantly lower in (the glucokinase-deficient) patients than in control subjects. Although heterogeneous results were observed, in 8 out of the 14 patients GIRs throughout the experiment were lower than 1 SD below the mean of the control subjects. Hepatic glucose production at 1 mU.kg body weight-1.min-1 insulin-infusion rate was significantly higher in patients than in control subjects. In conclusion, insulin resistance correlates with the deterioration of glucose tolerance and contributes to the hyperglycaemia of glucokinase-deficient diabetes. Taken together, our results are most consistent with insulin resistance being considered secondary to the chronic hyperglycaemia and/or hypoinsulinaemia of glucokinase-deficiency. Insulin resistance might also result from interactions between the unbalanced glucose metabolism and susceptibility gene(s) to low insulin sensitivity likely to be present in this population.

  13. The DASH diet and insulin sensitivity.

    PubMed

    Hinderliter, Alan L; Babyak, Michael A; Sherwood, Andrew; Blumenthal, James A

    2011-02-01

    Lifestyle modifications, including adoption of the Dietary Approaches to Stop Hypertension (DASH) dietary pattern, weight loss in individuals who are overweight or obese, and physical activity, are effective in the prevention and treatment of hypertension. A healthy lifestyle may also have beneficial effects on metabolic abnormalities, such as insulin resistance, that are associated with high blood pressure. This review examines the independent and combined effects of the DASH diet and weight loss plus exercise on blood pressure and insulin sensitivity, with a focus on recently published results from the ENCORE study. Our data suggest that the DASH eating plan alone lowers blood pressure in overweight individuals with higher than optimal blood pressure, but significant improvements in insulin sensitivity are observed only when the DASH diet is implemented as part of a more comprehensive lifestyle modification program that includes exercise and weight loss.

  14. Discipline-specific insulin sensitivity in athletes.

    PubMed

    Chen, Yi-Liang; Huang, Chih-Yang; Lee, Shin-Da; Chou, Shih-Wei; Hsieh, Po-Shiuan; Hsieh, City C; Huang, Yueh-Guey; Kuo, Chia-Hua

    2009-01-01

    Weight status and abnormal liver function are the two factors that influence whole-body insulin sensitivity. The main goal of the study was to compare insulin sensitivity in athletes (n=757) and physically active controls (n=670) in relation to the two factors. Homeostatic metabolic assessment for insulin resistance (HOMA-IR), weight status, and abnormal liver function (alanine aminotransferase and aspartate aminotransferase) were determined from 33 sports disciplines under morning fasted condition. This study was initiated in autumn 2006 and repeated in autumn 2007 (n=1508) to ensure consistency of all observations. In general, HOMA-IR and blood pressure levels in athletes were significantly greater than those in physically active controls but varied widely with sport disciplines. Rowing and short-distance track athletes had significantly lower HOMA-IR values and archery and field-throwing athletes had significantly higher values than the control group. Intriguingly, athletes from 22 sports disciplines displayed significantly greater body mass index values above control values. Multiple regression analysis showed that, for non-athlete controls, body mass index was the only factor that contributed to the variations in HOMA-IR. For athletes, body mass index and alanine aminotransferase independently contributed to the variation of HOMA-IR. This is the first report documenting HOMA-IR values in athletes from a broad range of sport disciplines. Weight status and abnormal liver function levels appear to be the major contributors predicting insulin sensitivity for the physically active population.

  15. Chromium and Polyphenols from Cinnamon and Insulin Sensitivity

    USDA-ARS?s Scientific Manuscript database

    Factors that improve insulin sensitivity usually lead to improvements in risk factors associated with the metabolic syndrome, diabetes, and cardiovascular diseases. Naturally occurring bioactive compounds that have been shown to improve insulin sensitivity include chromium and polyphenols found in ...

  16. Evaluation of insulin sensitivity and secretion in primary aldosteronism.

    PubMed

    Watanabe, Daisuke; Yatabe, Midori; Ichihara, Atsuhiro

    In primary aldosteronism (PA), insulin response to glucose is not fully understood. Insulin action was elucidated using indices in 32 PA and 21 essential hypertension (EH) patients. These patients were evaluated using homeostasis model assessment (HOMA) indices, quantitative insulin sensitivity check index (QUICKI), and insulinogenic index (IGI), which were expressed for insulin sensitivity/secretion and the early phase of insulin secretion. Insulin sensitivity and early phase of insulin secretion were decreased in PA, and there was a negative correlation between serum potassium concentration and insulin sensitivity indices. These findings suggest that glucose intolerance in PA may be caused by hypokalemia-induced insulin resistance and hypokalemia-independent impairment of early-phase insulin secretion.

  17. Effect of Gymnema sylvestre Administration on Metabolic Syndrome, Insulin Sensitivity, and Insulin Secretion.

    PubMed

    Zuñiga, Laura Y; González-Ortiz, Manuel; Martínez-Abundis, Esperanza

    2017-08-01

    Gymnema sylvestre is a medicinal plant whose consumption has demonstrated benefits on lipid and glucose levels, blood pressure, and body weight (BWt). The aim of this study was to evaluate the effect of G. sylvestre administration on metabolic syndrome (MetS), insulin secretion, and insulin sensitivity. A randomized, double-blind, placebo-controlled clinical trial was carried out in 24 patients (without pharmacological treatment), 30-60 years old, with diagnosis of MetS in accordance with the modified International Diabetes Federation criteria. Patients were randomly assigned to receive G. sylvestre or placebo twice daily before breakfast and dinner in 300 mg capsules for a total of 600 mg per day for 12 weeks. Before and after the intervention, the components of MetS were evaluated as well as BWt, body mass index (BMI), total cholesterol, low-density lipoprotein cholesterol, and very low-density lipoprotein (VLDL). Area under the curve of glucose and insulin, phases of insulin secretion, and insulin sensitivity were calculated. Statistical analysis was performed using Wilcoxon signed-rank, Mann-Whitney U, and chi-square tests; P ≤ .05 was considered statistically significant. After G. sylvestre administration, significant decreases in BWt (81.3 ± 10.6 kg vs. 77.9 ± 8.4 kg, P = .02), BMI (31.2 ± 2.5 kg/m(2) vs. 30.4 ± 2.2 kg/m(2), P = .02), and VLDL levels (0.45 ± 0.15 mmol/dL vs. 0.35 ± 0.15 mmol/dL, P = .05) were observed, without modifying the components of MetS, insulin secretion, and insulin sensitivity. In conclusion, G. sylvestre administration decreased BWt, BMI, and VLDL levels in subjects with MetS, without changes in insulin secretion and insulin sensitivity.

  18. A novel insulin sensitizer (S15511) enhances insulin-stimulated glucose uptake in rat skeletal muscles.

    PubMed

    Jessen, N; Selmer Buhl, E; Pold, R; Schmitz, O; Lund, S

    2008-04-01

    Type 2 diabetes is preceded by the presence of skeletal muscle insulin resistance, and drugs that increase insulin sensitivity in skeletal muscle prevent the disease. S15511 is an original compound with demonstrated effects on insulin sensitivity in animal models of insulin resistance. However, the mechanisms behind the insulin-sensitizing effect of S15511 are unknown. The aim of our study was to explore whether S15511 improves insulin sensitivity in skeletal muscles. Insulin sensitivity was assessed in skeletal muscles from S15511-treated rats by measuring intracellular insulin-signaling activity and insulin-stimulated glucose transport in isolated muscles. In addition, GLUT4 expression and glycogen levels were assessed after treatment. S15511 treatment was associated with an increase in insulin-stimulated glucose transport in type IIb fibers, while type I fibers were unaffected. The enhanced glucose transport was mirrored by a fiber type-specific increase in GLUT4 expression, while no improvement in insulin-signaling activity was observed. S15511 is a novel insulin sensitizer that is capable of improving glucose homeostasis in nondiabetic rats. The compound enhances skeletal muscle insulin sensitivity and specifically targets type IIb muscle fibers by increasing GLUT4 expression. Together these data show S15511 to be a potentially promising new drug in the treatment and prevention of type 2 diabetes.

  19. Vitamin D, Insulin Secretion, Sensitivity, and Lipids

    PubMed Central

    Grimnes, Guri; Figenschau, Yngve; Almås, Bjørg; Jorde, Rolf

    2011-01-01

    OBJECTIVE Vitamin D deficiency is associated with an unfavorable metabolic profile in observational studies. The intention was to compare insulin sensitivity (the primary end point) and secretion and lipids in subjects with low and high serum 25(OH)D (25-hydroxyvitamin D) levels and to assess the effect of vitamin D supplementation on the same outcomes among the participants with low serum 25(OH)D levels. RESEARCH DESIGN AND METHODS Participants were recruited from a population-based study (the Tromsø Study) based on their serum 25(OH)D measurements. A 3-h hyperglycemic clamp was performed, and the participants with low serum 25(OH)D levels were thereafter randomized to receive capsules of 20,000 IU vitamin D3 or identical-looking placebo twice weekly for 6 months. A final hyperglycemic clamp was then performed. RESULTS The 52 participants with high serum 25(OH)D levels (85.6 ± 13.5 nmol/L [mean ± SD]) had significantly higher insulin sensitivity index (ISI) and lower HbA1c and triglycerides (TGs) than the 108 participants with low serum 25(OH)D (40.3 ± 12.8 nmol/L), but the differences in ISI and TGs were not significant after adjustments. After supplementation, serum 25(OH)D was 142.7 ± 25.7 and 42.9 ± 17.3 nmol/L in 49 of 51 completing participants randomized to vitamin D and 45 of 53 randomized to placebo, respectively. At the end of the study, there were no statistically significant differences in the outcome variables between the two groups. CONCLUSIONS Vitamin D supplementation to apparently healthy subjects with insufficient serum 25(OH)D levels does not improve insulin sensitivity or secretion or serum lipid profile. PMID:21911741

  20. The disposition index: adjustment for peripheral vs. hepatic insulin sensitivity?

    PubMed Central

    Færch, K; Brøns, C; Alibegovic, A C; Vaag, A

    2010-01-01

    The assessment of pancreatic β cell function in humans is challenging because of a complex interplay between insulin secretion, insulin sensitivity and hepatic insulin extraction. Simplified, the relationship between insulin secretion and insulin sensitivity can be described by an approximate hyperbola with the product of the two variables being constant for individuals with the same degree of glucose tolerance (the disposition index). Strengths and limitations of the disposition index have been widely debated in the literature. In this review we will focus on another and until recently unrecognized dimension of the disposition index, namely the issue of adjusting insulin secretion for hepatic versus peripheral insulin sensitivity. An underlying assumption of this issue is that the liver as compared to muscle plays a different role in the regulation of in vivo insulin secretion. PMID:20100741

  1. Reproductive tissues maintain insulin sensitivity in diet-induced obesity.

    PubMed

    Wu, Sheng; Divall, Sara; Wondisford, Fredric; Wolfe, Andrew

    2012-01-01

    Reproductive dysfunction is associated with obesity. We previously showed that female mice with diet-induced obesity (DIO) exhibit infertility and thus serve as a model of human polycystic ovary syndrome (PCOS). We postulated that differential insulin signaling of tissues leads to reproductive dysfunction; therefore, a comparison of insulin signaling in reproductive tissues and energy storage tissues was performed. Pituitary-specific insulin receptor knockout mice were used as controls. High-fat diet-induced stress, which leads to insulin resistance, was also investigated by assaying macrophage infiltration and phosphorylated Jun NH(2)-terminal kinase (pJNK) signaling. In lean mice, reproductive tissues exhibited reduced sensitivity to insulin compared with peripheral metabolic tissues. However, in obese mice, where metabolic tissues exhibited insulin resistance, the pituitary and ovary maintained insulin sensitivity. Pituitaries responded to insulin through insulin receptor substrate (IRS)2 but not IRS1, whereas in the ovary, both IRS1 and IRS2 were activated by insulin. Macrophage infiltration and pJNK signaling were not increased in the pituitary or ovary of lean mice relative to DIO mice. The lack of inflammation and cytokine signaling in the pituitary and ovary in DIO mice compared with lean mice may be one of the reasons that these tissues remained insulin sensitive. Retained sensitivity of the pituitary and ovary to insulin may contribute to the pathophysiology of PCOS.

  2. Reproductive Tissues Maintain Insulin Sensitivity in Diet-Induced Obesity

    PubMed Central

    Wu, Sheng; Divall, Sara; Wondisford, Fredric; Wolfe, Andrew

    2012-01-01

    Reproductive dysfunction is associated with obesity. We previously showed that female mice with diet-induced obesity (DIO) exhibit infertility and thus serve as a model of human polycystic ovary syndrome (PCOS). We postulated that differential insulin signaling of tissues leads to reproductive dysfunction; therefore, a comparison of insulin signaling in reproductive tissues and energy storage tissues was performed. Pituitary-specific insulin receptor knockout mice were used as controls. High-fat diet–induced stress, which leads to insulin resistance, was also investigated by assaying macrophage infiltration and phosphorylated Jun NH2-terminal kinase (pJNK) signaling. In lean mice, reproductive tissues exhibited reduced sensitivity to insulin compared with peripheral metabolic tissues. However, in obese mice, where metabolic tissues exhibited insulin resistance, the pituitary and ovary maintained insulin sensitivity. Pituitaries responded to insulin through insulin receptor substrate (IRS)2 but not IRS1, whereas in the ovary, both IRS1 and IRS2 were activated by insulin. Macrophage infiltration and pJNK signaling were not increased in the pituitary or ovary of lean mice relative to DIO mice. The lack of inflammation and cytokine signaling in the pituitary and ovary in DIO mice compared with lean mice may be one of the reasons that these tissues remained insulin sensitive. Retained sensitivity of the pituitary and ovary to insulin may contribute to the pathophysiology of PCOS. PMID:22076926

  3. PPARδ regulates glucose metabolism and insulin sensitivity

    PubMed Central

    Lee, Chih-Hao; Olson, Peter; Hevener, Andrea; Mehl, Isaac; Chong, Ling-Wa; Olefsky, Jerrold M.; Gonzalez, Frank J.; Ham, Jungyeob; Kang, Heonjoong; Peters, Jeffrey M.; Evans, Ronald M.

    2006-01-01

    The metabolic syndrome is a collection of obesity-related disorders. The peroxisome proliferator-activated receptors (PPARs) regulate transcription in response to fatty acids and, as such, are potential therapeutic targets for these diseases. We show that PPARδ (NR1C2) knockout mice are metabolically less active and glucose-intolerant, whereas receptor activation in db/db mice improves insulin sensitivity. Euglycemic–hyperinsulinemic-clamp experiments further demonstrate that a PPARδ-specific agonist suppresses hepatic glucose output, increases glucose disposal, and inhibits free fatty acid release from adipocytes. Unexpectedly, gene array and functional analyses suggest that PPARδ ameliorates hyperglycemia by increasing glucose flux through the pentose phosphate pathway and enhancing fatty acid synthesis. Coupling increased hepatic carbohydrate catabolism with its ability to promote β-oxidation in muscle allows PPARδ to regulate metabolic homeostasis and enhance insulin action by complementary effects in distinct tissues. The combined hepatic and peripheral actions of PPARδ suggest new therapeutic approaches to treat type II diabetes. PMID:16492734

  4. Cerebral blood flow links insulin resistance and baroreflex sensitivity.

    PubMed

    Ryan, John P; Sheu, Lei K; Verstynen, Timothy D; Onyewuenyi, Ikechukwu C; Gianaros, Peter J

    2013-01-01

    Insulin resistance confers risk for diabetes mellitus and associates with a reduced capacity of the arterial baroreflex to regulate blood pressure. Importantly, several brain regions that comprise the central autonomic network, which controls the baroreflex, are also sensitive to the neuromodulatory effects of insulin. However, it is unknown whether peripheral insulin resistance relates to activity within central autonomic network regions, which may in turn relate to reduced baroreflex regulation. Accordingly, we tested whether resting cerebral blood flow within central autonomic regions statistically mediated the relationship between insulin resistance and an indirect indicator of baroreflex regulation; namely, baroreflex sensitivity. Subjects were 92 community-dwelling adults free of confounding medical illnesses (48 men, 30-50 years old) who completed protocols to assess fasting insulin and glucose levels, resting baroreflex sensitivity, and resting cerebral blood flow. Baroreflex sensitivity was quantified by measuring the magnitude of spontaneous and sequential associations between beat-by-beat systolic blood pressure and heart rate changes. Individuals with greater insulin resistance, as measured by the homeostatic model assessment, exhibited reduced baroreflex sensitivity (b = -0.16, p < .05). Moreover, the relationship between insulin resistance and baroreflex sensitivity was statistically mediated by cerebral blood flow in central autonomic regions, including the insula and cingulate cortex (mediation coefficients < -0.06, p-values < .01). Activity within the central autonomic network may link insulin resistance to reduced baroreflex sensitivity. Our observations may help to characterize the neural pathways by which insulin resistance, and possibly diabetes mellitus, relates to adverse cardiovascular outcomes.

  5. Cerebral Blood Flow Links Insulin Resistance and Baroreflex Sensitivity

    PubMed Central

    Ryan, John P.; Sheu, Lei K.; Verstynen, Timothy D.; Onyewuenyi, Ikechukwu C.; Gianaros, Peter J.

    2013-01-01

    Insulin resistance confers risk for diabetes mellitus and associates with a reduced capacity of the arterial baroreflex to regulate blood pressure. Importantly, several brain regions that comprise the central autonomic network, which controls the baroreflex, are also sensitive to the neuromodulatory effects of insulin. However, it is unknown whether peripheral insulin resistance relates to activity within central autonomic network regions, which may in turn relate to reduced baroreflex regulation. Accordingly, we tested whether resting cerebral blood flow within central autonomic regions statistically mediated the relationship between insulin resistance and an indirect indicator of baroreflex regulation; namely, baroreflex sensitivity. Subjects were 92 community-dwelling adults free of confounding medical illnesses (48 men, 30-50 years old) who completed protocols to assess fasting insulin and glucose levels, resting baroreflex sensitivity, and resting cerebral blood flow. Baroreflex sensitivity was quantified by measuring the magnitude of spontaneous and sequential associations between beat-by-beat systolic blood pressure and heart rate changes. Individuals with greater insulin resistance, as measured by the homeostatic model assessment, exhibited reduced baroreflex sensitivity (b = -0.16, p < .05). Moreover, the relationship between insulin resistance and baroreflex sensitivity was statistically mediated by cerebral blood flow in central autonomic regions, including the insula and cingulate cortex (mediation coefficients < -0.06, p-values < .01). Activity within the central autonomic network may link insulin resistance to reduced baroreflex sensitivity. Our observations may help to characterize the neural pathways by which insulin resistance, and possibly diabetes mellitus, relates to adverse cardiovascular outcomes. PMID:24358272

  6. The CB1 endocannabinoid system modulates adipocyte insulin sensitivity.

    PubMed

    Motaghedi, Roja; McGraw, Timothy E

    2008-08-01

    Mounting evidence suggests that the endocannabinoid system regulates energy metabolism through direct effects on peripheral tissues as well as central effects that regulate appetite. Here we examined the effect of cannabinoid receptor 1 (CB1) signaling on insulin action in fat cells. We examined effects of the natural CB1 agonist, 2-Arachidonoylglycerol (2-AG), and the synthetic CB1 antagonist, SR141716, on insulin action in cultured adipocytes. We used translocation of glucose transporter GLUT4 to plasma membrane (PM) as a measure of insulin action. 2-AG activation of the CB1 receptor promoted insulin sensitivity whereas antagonism by SR141716 reduced insulin sensitivity. Neither drug affected GLUT4 translocation in the absence of insulin or with high doses of insulin. Consistent with these results we found that insulin-stimulated phosphorylation of the protein kinase Akt was increased by 2-AG, attenuated by SR141716, and unaffected in the absence of insulin or by addition of high-dose insulin. These data provide a functional and molecular link between the CB1 receptor and insulin sensitivity, because insulin-stimulated phosphorylation of Akt is required for GLUT4 translocation to the PM. The sensitizing effects of 2-AG were abrogated by SR141716 and Pertussis toxin, indicating that the effects are mediated by CB1 receptor. Importantly, neither 2-AG nor SR141716 alone or in combination with maximal dose of insulin had effects on GLUT4 translocation and Akt phosphorylation. These data are consistent with a model in which the endocannabinoid system sets the sensitivity of the insulin response in adipocytes rather than directly regulating the redistribution of GLUT4 or Akt phosphorylation.

  7. Exercise rescues obese mothers’ insulin sensitivity, placental hypoxia and male offspring insulin sensitivity

    PubMed Central

    Fernandez-Twinn, Denise S.; Gascoin, Geraldine; Musial, Barbara; Carr, Sarah; Duque-Guimaraes, Daniella; Blackmore, Heather L.; Alfaradhi, Maria Z.; Loche, Elena; Sferruzzi-Perri, Amanda N.; Fowden, Abigail L.; Ozanne, Susan E.

    2017-01-01

    The prevalence of obesity during pregnancy continues to increase at alarming rates. This is concerning as in addition to immediate impacts on maternal wellbeing, obesity during pregnancy has detrimental effects on the long-term health of the offspring through non-genetic mechanisms. A major knowledge gap limiting our capacity to develop intervention strategies is the lack of understanding of the factors in the obese mother that mediate these epigenetic effects on the offspring. We used a mouse model of maternal-diet induced obesity to define predictive correlations between maternal factors and offspring insulin resistance. Maternal hyperinsulinemia (independent of maternal body weight and composition) strongly associated with offspring insulin resistance. To test causality, we implemented an exercise intervention that improved maternal insulin sensitivity without changing maternal body weight or composition. This maternal intervention prevented excess placental lipid deposition and hypoxia (independent of sex) and insulin resistance in male offspring. We conclude that hyperinsulinemia is a key programming factor and therefore an important interventional target during obese pregnancy, and propose moderate exercise as a promising strategy to improve metabolic outcome in both the obese mother and her offspring. PMID:28291256

  8. AMPK and Exercise: Glucose Uptake and Insulin Sensitivity.

    PubMed

    O'Neill, Hayley M

    2013-02-01

    AMPK is an evolutionary conserved sensor of cellular energy status that is activated during exercise. Pharmacological activation of AMPK promotes glucose uptake, fatty acid oxidation, mitochondrial biogenesis, and insulin sensitivity; processes that are reduced in obesity and contribute to the development of insulin resistance. AMPK deficient mouse models have been used to provide direct genetic evidence either supporting or refuting a role for AMPK in regulating these processes. Exercise promotes glucose uptake by an insulin dependent mechanism involving AMPK. Exercise is important for improving insulin sensitivity; however, it is not known if AMPK is required for these improvements. Understanding how these metabolic processes are regulated is important for the development of new strategies that target obesity-induced insulin resistance. This review will discuss the involvement of AMPK in regulating skeletal muscle metabolism (glucose uptake, glycogen synthesis, and insulin sensitivity).

  9. Insulin sensitivity and carotid intima-media thickness: relationship between insulin sensitivity and cardiovascular risk study.

    PubMed

    Kozakova, Michaela; Natali, Andrea; Dekker, Jacqueline; Beck-Nielsen, Henning; Laakso, Markku; Nilsson, Peter; Balkau, Beverley; Ferrannini, Ele

    2013-06-01

    Despite a wealth of experimental data in animal models, the independent association of insulin resistance with early carotid atherosclerosis in man has not been demonstrated. We studied a European cohort of 525 men and 655 women (mean age, 44 ± 8 years) free of conditions known to affect carotid wall (diabetes mellitus, hypertension, and dyslipidemia). All subjects received an oral glucose tolerance test, a euglycemic hyperinsulinemic clamp (M/I as a measure of insulin sensitivity), and B-mode carotid ultrasound. In 833 participants (380 men), the carotid ultrasound was repeated after 3 years. In men, baseline intima-media thickness in the common carotid artery (CCA-IMT) was significantly higher (P<0.05) in the lowest M/I tertile, whereas in women CCA-IMT was higher (P<0.0005) in the highest fasting plasma glucose tertile (after adjustment for established risk factors). In multiple regression models, with CCA-IMT as the dependent variable and with risk factors and univariate metabolic correlates as independent variables, circulating free fatty acids and the leptin:adiponectin ratio replaced M/I as independent metabolic determinants of CCA-IMT in men. The strongest metabolic determinant of CCA-IMT in women was fasting plasma glucose. Three-year CCA-IMT changes were not associated with any cardio-metabolic risk factor. In young-to-middle aged apparently healthy people, the association of CCA-IMT with insulin sensitivity and its metabolic correlates differs between men and women. Lower insulin sensitivity is associated with higher IMT only in men; this association seems to be mediated by circulating free fatty acids and adipocytokines. In women, CCA-IMT is independently associated with fasting plasma glucose.

  10. New insulin sensitivity index from the oral glucose tolerance test.

    PubMed

    Kazama, Youichiro; Takamura, Toshinari; Sakurai, Masaru; Shindo, Hisakazu; Ohkubo, Eizho; Aida, Kaoru; Harii, Norikazu; Taki, Katsumi; Kaneshige, Masahiro; Tanaka, Shoichiro; Shimura, Hiroki; Endo, Toyoshi; Kobayashi, Tetsuro

    2008-01-01

    A new insulin sensitivity index was devised on the basis of an autoregressive model and its validity was investigated. Using data from the 75-g oral glucose tolerance test (OGTT), 115 subjects were divided into 3 groups: 40 with normal glucose tolerance, 34 with impaired glucose tolerance, and 41 with type 2 diabetes mellitus. The new insulin sensitivity index: oral glucose insulin sensitivity index (GSI) was calculated from five sets of plasma glucose and insulin levels obtained at 0, 30, 60, 90 and 120 min during OGTT using a formula based on an autoregressive model. Forty-three of the 115 subjects were examined for insulin sensitivity index (ISI) by euglycemic hyperinsulinemic clamp. GSI decreased in the order of normal glucose tolerance group>impaired glucose tolerance group>diabetic group. There was a significant correlation between GSI and the ISI derived from euglycemic hyperinsulinemic clamp study data in all 43 subjects who underwent both tests (r=0.72; P<0.0001). The ISI calculated by previous methods poorly correlated with the ISIs obtained by euglycemic hyperinsulinemic clamp study. In conclusion, this new insulin sensitivity index based on the data obtained from OGTT using an autoregressive model is comparable to an insulin sensitivity index by euglycemic hyperinsulinemic clamp technique and may be superior to previous indexes that have been devised to determine insulin sensitivity from OGTT data.

  11. Myocardial Fat Accumulation Is Independent of Measures of Insulin Sensitivity

    PubMed Central

    Noureldin, Radwa; Ouwerkerk, Ronald; Liu, Elizabeth Y.; Madan, Ritu; Abel, Brent S.; Mullins, Katherine; Walter, Mary F.; Skarulis, Monica C.; Gharib, Ahmed M.

    2015-01-01

    Background: Myocardial steatosis, an independent predictor of diastolic dysfunction, is frequently present in type 2 diabetes mellitus. High free fatty acid flux, hyperglycemia, and hyperinsulinemia may play a role in myocardial steatosis. There are no prior studies examining the relationship between insulin sensitivity (antilipolytic and glucose disposal actions of insulin) and cardiac steatosis. Objective: Using a cross-sectional study design of individuals with and without metabolic syndrome (MetSyn), we examined the relationships between cardiac steatosis and the sensitivity of the antilipolytic and glucose disposal actions of insulin. Methods: Pericardial fat (PF) volume, intramyocardial and hepatic fat (MF and HF) content, visceral fat (VF) and sc fat content were assessed by magnetic resonance imaging in 77 subjects (49 without MetSyn and 28 with MetSyn). In a subset of the larger cohort (n = 52), peripheral insulin sensitivity index (SI) and adipocyte insulin sensitivity (Adipo-SI) were determined from an insulin-modified frequently sampled iv glucose tolerance test. The Quantitative Insulin Sensitivity Check Index was used as a surrogate for hepatic insulin sensitivity. Results: Individuals with the MetSyn had significantly higher body mass index, total body fat, and MF, PF, HF, and VF content. HF and VF, but not MF, were negatively correlated with the Quantitative Insulin Sensitivity Check Index, Adipo-SI, and SI. Stepwise regression revealed that waist circumference and serum triglyceride levels independently predicted MF and PF, respectively. Adipo-SI and serum triglyceride levels independently predict HF. Conclusion: Myocardial steatosis is unrelated to hepatic, adipocyte, or peripheral insulin sensitivity. Although it is frequently observed in insulin-resistant subjects, further studies are necessary to identify and delineate pathogenic mechanisms that differentially affect cardiac and hepatic steatosis. PMID:26020762

  12. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

    PubMed

    Carrasco-Benso, Maria P; Rivero-Gutierrez, Belen; Lopez-Minguez, Jesus; Anzola, Andrea; Diez-Noguera, Antoni; Madrid, Juan A; Lujan, Juan A; Martínez-Augustin, Olga; Scheer, Frank A J L; Garaulet, Marta

    2016-09-01

    In humans, insulin sensitivity varies according to time of day, with decreased values in the evening and at night. Mechanisms responsible for the diurnal variation in insulin sensitivity are unclear. We investigated whether human adipose tissue (AT) expresses intrinsic circadian rhythms in insulin sensitivity that could contribute to this phenomenon. Subcutaneous and visceral AT biopsies were obtained from extremely obese participants (body mass index, 41.8 ± 6.3 kg/m(2); 46 ± 11 y) during gastric-bypass surgery. To assess the rhythm in insulin signaling, AKT phosphorylation was determined every 4 h over 24 h in vitro in response to different insulin concentrations (0, 1, 10, and 100 nM). Data revealed that subcutaneous AT exhibited robust circadian rhythms in insulin signaling (P < 0.00001). Insulin sensitivity reached its maximum (acrophase) around noon, being 54% higher than during midnight (P = 0.009). The amplitude of the rhythm was positively correlated with in vivo sleep duration (r = 0.53; P = 0.023) and negatively correlated with in vivo bedtime (r = -0.54; P = 0.020). No circadian rhythms were detected in visceral AT (P = 0.643). Here, we demonstrate the relevance of the time of the day for how sensitive AT is to the effects of insulin. Subcutaneous AT shows an endogenous circadian rhythm in insulin sensitivity that could provide an underlying mechanism for the daily rhythm in systemic insulin sensitivity.-Carrasco-Benso, M. P., Rivero-Gutierrez, B., Lopez-Minguez, J., Anzola, A., Diez-Noguera, A., Madrid, J. A., Lujan, J. A., Martínez-Augustin, O., Scheer, F. A. J. L., Garaulet, M. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

  13. Salt sensitivity is associated with insulin resistance in essential hypertension.

    PubMed

    Fuenmayor, N; Moreira, E; Cubeddu, L X

    1998-04-01

    The relationship between salt sensitivity and insulin resistance was investigated in nondiabetic, nonobese (body mass index < or = 28) untreated patients with uncomplicated, mild-to-moderate essential hypertension. Alterations in insulin-mediated glucose disposal were assessed by means of the insulin suppression test. Subjects were classified as salt sensitive and salt resistant according to their blood pressure response to low and high salt intake. Fasting serum glucose levels were within normal limits and did not differ between salt sensitive and salt resistant hypertensives, irrespectively of the level of salt intake. Fasting serum insulin levels increased in salt sensitive patients when on a high intake of salt. The insulin suppression test revealed the existence of marked differences in insulin-mediated glucose uptake between salt sensitive and salt resistant hypertensives. Much higher steady-state glucose values (nanomoles of glucose/ liter) were obtained during the insulin suppression test in salt sensitive than in salt-resistant hypertensives (7.4+/-1.6 v 3.5+/-0.1 under low salt; and 12.5+/-1.1 v 4.3+/-0.1 under high salt intake). The product of glucose times insulin obtained at steady state during low and high salt intakes were 2.5 and 5 times greater, respectively, in salt sensitive than in salt resistant hypertensives. Therefore, the impairment in insulin-mediated glucose disposal observed in salt sensitive hypertensives was present both under low salt (60 to 70 mEq/day) and high salt intake (300 mEq/day). However, it was exacerbated under high salt intake. These results suggest that untreated salt sensitive hypertensives have a considerable impairment in insulin-mediated glucose disposal because of a state of insulin resistance. High salt intake increased BP, induced hyperinsulinemia, and worsened insulin-mediated glucose disposal only in salt sensitive patients. We propose that salt sensitivity contributes, separately from hypertension, to insulin

  14. Effect of Withania somnifera on insulin sensitivity in non-insulin-dependent diabetes mellitus rats.

    PubMed

    Anwer, Tarique; Sharma, Manju; Pillai, Krishna Kolappa; Iqbal, Muzaffar

    2008-06-01

    We investigated the effect of an aqueous extract of Withania somnifera (WS) on insulin sensitivity in non-insulin-dependent diabetes mellitus (NIDDM) rats. NIDDM was induced by single intraperitoneal injection of streptozotocin (100 mg/kg) to 2 days old rat pups. WS (200 and 400 mg/kg) was administered orally once a day for 5 weeks after the animals were confirmed diabetic (i.e. 75 days after streptozotocin injection). A group of citrate control rats (group I) were also maintained that has received citrate buffer on the second day of their birth. A significant increase in blood glucose, glycosylated haemoglobin (HbA(1)c) and serum insulin levels were observed in NIDDM control rats. Treatment with WS reduced the elevated levels of blood glucose, HbA(1)c and insulin in the NIDDM rats. An oral glucose tolerance test was also performed in the same groups, in which we found a significant improvement in glucose tolerance in the rats treated with WS. The insulin sensitivity was assessed for both peripheral insulin resistance and hepatic insulin resistance. WS treatment significantly improved insulin sensitivity index (K(ITT)) that was significantly decreased in NIDDM control rats. There was significant rise in homeostasis model assessment of insulin resistance (HOMA-R) in NIDDM control rats whereas WS treatment significantly prevented the rise in HOMA-R in NIDDM-treated rats. Our data suggest that aqueous extract of WS normalizes hyperglycemia in NIDDM rats by improving insulin sensitivity.

  15. Importance of hepatitis C virus-associated insulin resistance: Therapeutic strategies for insulin sensitization

    PubMed Central

    Kawaguchi, Takumi; Sata, Michio

    2010-01-01

    Insulin resistance is one of the pathological features in patients with hepatitis C virus (HCV) infection. Generally, persistence of insulin resistance leads to an increase in the risk of life-threatening complications such as cardiovascular diseases. However, these complications are not major causes of death in patients with HCV-associated insulin resistance. Indeed, insulin resistance plays a crucial role in the development of various complications and events associated with HCV infection. Mounting evidence indicates that HCV-associated insulin resistance may cause (1) hepatic steatosis; (2) resistance to anti-viral treatment; (3) hepatic fibrosis and esophageal varices; (4) hepatocarcinogenesis and proliferation of hepatocellular carcinoma; and (5) extrahepatic manifestations. Thus, HCV-associated insulin resistance is a therapeutic target at any stage of HCV infection. Although the risk of insulin resistance in HCV-infected patients has been documented, therapeutic guidelines for preventing the distinctive complications of HCV-associated insulin resistance have not yet been established. In addition, mechanisms for the development of HCV-associated insulin resistance differ from lifestyle-associated insulin resistance. In order to ameliorate HCV-associated insulin resistance and its complications, the efficacy of the following interventions is discussed: a late evening snack, coffee consumption, dietary iron restriction, phlebotomy, and zinc supplements. Little is known regarding the effect of anti-diabetic agents on HCV infection, however, a possible association between use of exogenous insulin or a sulfonylurea agent and the development of HCC has recently been reported. On the other hand, insulin-sensitizing agents are reported to improve sustained virologic response rates. In this review, we summarize distinctive complications of, and therapeutic strategies for, HCV-associated insulin resistance. Furthermore, we discuss supplementation with branched

  16. Signaling mechanisms underlying the insulin-sensitizing effects of adiponectin.

    PubMed

    Cheng, Kenneth K Y; Lam, Karen S L; Wang, Baile; Xu, Aimin

    2014-01-01

    Adiponectin is an insulin-sensitizing adipokine with protective effects against a cluster of obesity-related metabolic and cardiovascular disorders. The adipokine exerts its insulin-sensitizing effects by alleviation of obesity-induced ectopic lipid accumulation, lipotoxicity and chronic inflammation, as well as by direct cross-talk with insulin signaling cascades. Adiponectin and insulin signaling pathways converge at the adaptor protein APPL1. On the one hand, APPL1 interacts with adiponectin receptors and mediates both metabolic and vascular actions of adiponectin through activation of AMP-activated protein kinase and p38 MAP kinase. On the other hand, APPL1 potentiates both the actions and secretion of insulin by fine-tuning the Akt activity in multiple insulin target tissues. In obese animals, reduced APPL1 expression contributes to both insulin resistance and defective insulin secretion. This review summarizes recent advances on the molecular mechanisms by which adiponectin sensitizes insulin actions, and discusses the roles of APPL1 in regulating both adiponectin and insulin signaling cascades.

  17. Role of PKCδ in Insulin Sensitivity and Skeletal Muscle Metabolism

    PubMed Central

    Li, Mengyao; Vienberg, Sara G.; Bezy, Olivier; O’Neill, Brian T.

    2015-01-01

    Protein kinase C (PKC)δ has been shown to be increased in liver in obesity and plays an important role in the development of hepatic insulin resistance in both mice and humans. In the current study, we explored the role of PKCδ in skeletal muscle in the control of insulin sensitivity and glucose metabolism by generating mice in which PKCδ was deleted specifically in muscle using Cre-lox recombination. Deletion of PKCδ in muscle improved insulin signaling in young mice, especially at low insulin doses; however, this did not change glucose tolerance or insulin tolerance tests done with pharmacological levels of insulin. Likewise, in young mice, muscle-specific deletion of PKCδ did not rescue high-fat diet–induced insulin resistance or glucose intolerance. However, with an increase in age, PKCδ levels in muscle increased, and by 6 to 7 months of age, muscle-specific deletion of PKCδ improved whole-body insulin sensitivity and muscle insulin resistance and by 15 months of age improved the age-related decline in whole-body glucose tolerance. At 15 months of age, M-PKCδKO mice also exhibited decreased metabolic rate and lower levels of some proteins of the OXPHOS complex suggesting a role for PKCδ in the regulation of mitochondrial mass at older age. These data indicate an important role of PKCδ in the regulation of insulin sensitivity and mitochondrial homeostasis in skeletal muscle with aging. PMID:26307588

  18. Circulating Palmitoleate Strongly and Independently Predicts Insulin Sensitivity in Humans

    PubMed Central

    Stefan, Norbert; Kantartzis, Konstantinos; Celebi, Nora; Staiger, Harald; Machann, Jürgen; Schick, Fritz; Cegan, Alexander; Elcnerova, Michaela; Schleicher, Erwin; Fritsche, Andreas; Häring, Hans-Ulrich

    2010-01-01

    OBJECTIVE We investigated whether palmitoleate, which prevents insulin resistance in mice, predicts insulin sensitivity in humans. RESEARCH DESIGN AND METHODS The fasting fatty acid pattern in the plasma free fatty acid (FFA) fraction was determined in 100 subjects at increased risk for type 2 diabetes. Insulin sensitivity was estimated during an oral glucose tolerance test (OGTT) at baseline and after 9 months of lifestyle intervention and measured during the euglycemic-hyperinsulinemic clamp (n = 79). RESULTS Circulating palmitoleate (OGTT:F ratio = 8.2, P = 0.005; clamp:F ratio = 7.8, P = 0.007) but not total FFAs (OGTT:F ratio = 0.6, P = 0.42; clamp:F ratio = 0.7, P = 0.40) correlated positively with insulin sensitivity, independently of age, sex, and adiposity. High baseline palmitoleate predicted a larger increase in insulin sensitivity. For 1-SD increase in palmitoleate, the odds ratio for being in the highest versus the lowest tertile of adjusted change in insulin sensitivity was 2.35 (95% CI 1.16–5.35). CONCLUSIONS Circulating palmitoleate strongly and independently predicts insulin sensitivity, suggesting that it plays an important role in the pathophysiology of insulin resistance in humans. PMID:19889804

  19. Effect of Insulin Sensitizer Therapy on Amino Acids and their Metabolites

    PubMed Central

    Irving, B.A.; Carter, R.E.; Soop, M.; Weymiller, A.; Syed, H.; Karakelides, H.; Bhagra, S.; Short, K.R.; Tatpati, L.; Barazzoni, R.; Nair, K.S.

    2015-01-01

    Aims Prior studies have reported that elevated concentrations of several plasma amino acids (AA) in plasma, particularly branched chain (BCAA) and aromatic AA predict the onset of type 2 diabetes. We sought to test the hypothesis that circulating BCAA, aromatic AA and related AA metabolites decline in response to the use of insulin sensitizing agents in overweight/obese adults with impaired fasting glucose or untreated diabetes. Methods We performed a secondary analysis of a randomized, double-blind, placebo, controlled study conducted in twenty five overweight/obese (BMI~30 kg/m2) adults with impaired fasting glucose or untreated diabetes. Participants were randomized to three months of pioglitazone (45 mg per day) plus metformin (1000 mg twice per day, N = 12 participants) or placebo (N = 13). We measured insulin sensitivity by the euglycemic-hyperinsulinemic clamp and fasting concentrations of AA and AA metabolites using ultra-pressure liquid chromatography tandem mass spectrometry before and after the three-month intervention. Results Insulin sensitizer therapy that significantly enhanced insulin sensitivity reduced 9 out of 33 AA and AA metabolites measured compared to placebo treatment. Moreover, insulin sensitizer therapy significantly reduced three functionally clustered AA and metabolite pairs: i) phenylalanine/tyrosine, ii) citrulline/arginine, and iii) lysine/α-aminoadipic acid. Conclusions Reductions in plasma concentrations of several AA and AA metabolites in response to three months of insulin sensitizer therapy support the concept that reduced insulin sensitivity alters AA and AA metabolites. PMID:25733201

  20. Wear-Out Sensitivity Analysis Project Abstract

    NASA Technical Reports Server (NTRS)

    Harris, Adam

    2015-01-01

    During the course of the Summer 2015 internship session, I worked in the Reliability and Maintainability group of the ISS Safety and Mission Assurance department. My project was a statistical analysis of how sensitive ORU's (Orbital Replacement Units) are to a reliability parameter called the wear-out characteristic. The intended goal of this was to determine a worst case scenario of how many spares would be needed if multiple systems started exhibiting wear-out characteristics simultaneously. The goal was also to determine which parts would be most likely to do so. In order to do this, my duties were to take historical data of operational times and failure times of these ORU's and use them to build predictive models of failure using probability distribution functions, mainly the Weibull distribution. Then, I ran Monte Carlo Simulations to see how an entire population of these components would perform. From here, my final duty was to vary the wear-out characteristic from the intrinsic value, to extremely high wear-out values and determine how much the probability of sufficiency of the population would shift. This was done for around 30 different ORU populations on board the ISS.

  1. Insulin sensitivity indices: a proposal of cut-off points for simple identification of insulin-resistant subjects.

    PubMed

    Radikova, Z; Koska, J; Huckova, M; Ksinantova, L; Imrich, R; Vigas, M; Trnovec, T; Langer, P; Sebokova, E; Klimes, I

    2006-05-01

    Demanding measurement of insulin sensitivity using clamp methods does not simplify the identification of insulin resistant subjects in the general population. Other approaches such as fasting- or oral glucose tolerance test-derived insulin sensitivity indices were proposed and validated with the euglycemic clamp. Nevertheless, a lack of reference values for these indices prevents their wider use in epidemiological studies and clinical practice. The aim of our study was therefore to define the cut-off points of insulin resistance indices as well as the ranges of the most frequently obtained values for selected indices. A standard 75 g oral glucose tolerance test was carried out in 1156 subjects from a Caucasian rural population with no previous evidence of diabetes or other dysglycemias. Insulin resistance/sensitivity indices (HOMA-IR, HOMA-IR2, ISI Cederholm, and ISI Matsuda) were calculated. The 75th percentile value as the cut-off point to define IR corresponded with a HOMA-IR of 2.29, a HOMA-IR2 of 1.21, a 25th percentile for ISI Cederholm, and ISI Matsuda of 57 and 5.0, respectively. For the first time, the cut-off points for selected indices and their most frequently obtained values were established for groups of subjects as defined by glucose homeostasis and BMI. Thus, insulin-resistant subjects can be identified using this simple approach.

  2. Attenuated insulin response and normal insulin sensitivity in lean patients with ankylosing spondylitis.

    PubMed

    Penesova, A; Rovensky, J; Zlnay, M; Dedik, L; Radikova, Z; Koska, J; Vigas, M; Imrich, R

    2005-01-01

    Chronic low-grade inflammation is associated with insulin resistance. The aim of this study was to determine insulin response to intravenous glucose load and insulin sensitivity in patients with ankylosing spondylitis (AS). Fourteen nonobese male patients with AS and 14 matched healthy controls underwent frequent-sampling intravenous glucose tolerance test (FSIVGTT). Insulin secretion and insulin sensitivity were calculated using the computer-minimal and homeostasis-model assessment 2 (HOMA2) models. Fasting glucose, insulin, cholesterol, high-density lipoprotein and low-density lipoprotein cholesterol, triglyceride levels, HOMA2, glucose effectiveness, insulin sensitivity and insulin response to FSIVGTT did not differ between patients and controls. Tumor necrosis factor-alpha and interleukin (IL)-6 concentrations tended to be higher in AS patients than in controls. Second-phase beta-cell responsiveness was 37% lower (p = 0.05) in AS patients than in controls. A negative correlation was found between the percentage of beta-cell secretion and IL-6 in all subjects (r = -0.54, p = 0.006). We found normal insulin sensitivity but attenuated glucose utilization in the second phase of FSIVGTT in AS patients. Our results indicate that elevated IL-6 levels may play a pathophysiological role in attenuating beta-cell responsiveness, which may explain the association between elevated IL-6 levels and increased risk for type 2 diabetes.

  3. Circulating retinol-binding protein-4, insulin sensitivity, insulin secretion, and insulin disposition index in obese and nonobese subjects.

    PubMed

    Broch, Montserrat; Vendrell, Joan; Ricart, Wifredo; Richart, Cristóbal; Fernández-Real, José-Manuel

    2007-07-01

    Recent investigations disclosed an upregulation of retinol-binding protein-4 (RBP4) in the adipose tissue of several insulin-resistant mouse models and increased serum RBP4 concentration in subjects with obesity and type 2 diabetes in association with insulin resistance. There is some experimental evidence that RBP4 also could been linked to insulin secretion. We aimed to evaluate insulin secretion, insulin sensitivity, insulin disposition index (minimal model analysis), and circulating RBP4 (enzyme-linked immunosorbent assay) in nondiabetic men with a wide range of obesity (n = 107). Serum RBP4 concentration was nonsignificantly different among lean, overweight, and obese subjects. Circulating RBP4 was not associated with age, BMI, waist-to-hip ratio, or metabolic parameters, including insulin sensitivity (r = -0.03, P = 0.6). On the contrary, circulating RBP4 was negatively associated with insulin secretion, especially in obese subjects (r = -0.48, P = 0.007), in whom RBP4 also was linked to insulin disposition index (r = -0.44, P = 0.01). On multiple regression analyses to predict insulin secretion (acute insulin response [AIR(g)]), insulin sensitivity was the only factor that contributed to 17% of AIR(g) variance in nonobese subjects. In obese subjects, however, RBP4 emerged as an independent factor that contributed independently to AIR(g) variance (23%). Our results suggest that oversecretion of RBP4 may negatively affect beta-cell function directly or by preventing the binding of transthyretin to its receptor. These mechanisms could be behind the association between increased circulating RBP4 and type 2 diabetes. RBP4 could be one signal from insulin-resistant tissues that impacts on beta-cell secretion.

  4. Insulin sensitivity and regional fat gain in response to overfeeding

    PubMed Central

    Votruba, S. B.; Jensen, M. D.

    2013-01-01

    Although insulin resistance and Type 2 diabetes are associated with upper body fat distribution, it is unknown whether insulin resistance predisposes to upper body fat gain or whether upper body fat gain causes insulin resistance. Our objective was to determine whether insulin sensitivity predicts abdominal (subcutaneous and/or visceral) fat gain in normal weight adults. Twenty-eight (15 men) lean (BMI = 22.1±2.5 kg/m2), healthy adults underwent ~8 weeks of overfeeding to gain ~4 kg fat. Body composition was assessed before and after overfeeding using DXA and abdominal CT to measure total and regional (visceral, abdominal, and lower body subcutaneous) fat gain. We assessed insulin sensitivity with an IV glucose tolerance test and the 24h insulin area-under-the-curve(AUC). We found a wide range of insulin sensitivity and a relatively narrow range of body fat distribution in this normal weight cohort. Participants gained 3.8±1.7 kg of body fat (4.6±2.2 kg body weight). The baseline 24h AUC of insulin concentration was positively correlated with percent body fat (r=0.43, p<0.05). The contribution of leg fat gain to total fat gain ranged from 29–79%, while the contributions of abdominal subcutaneous fat and visceral fat gain to total fat gain ranged from 17–69% and −5–22%, respectively. Baseline insulin sensitivity, whether measured by an IVGTT or the 24h AUC insulin Si, did not predict upper body subcutaneous or visceral fat gain in response to overfeeding. We conclude that reduced insulin sensitivity is not an obligate precursor to upper body fat gain. PMID:21127472

  5. Hypertension genes are genetic markers for insulin sensitivity and resistance.

    PubMed

    Guo, Xiuqing; Cheng, Suzanne; Taylor, Kent D; Cui, Jinrui; Hughes, Randall; Quiñones, Manuel J; Bulnes-Enriquez, Isabel; De la Rosa, Roxana; Aurea, George; Yang, Huiying; Hsueh, Willa; Rotter, Jerome I

    2005-04-01

    Insulin resistance is a determinant of blood pressure variation and risk factor for hypertension. Because insulin resistance and blood pressure cosegregate in Mexican American families, we thus investigated the association between variations in 9 previously reported hypertension genes (ACE, AGT, AGTRI, ADDI, NPPA, ADDRB2, SCNN1A, GNB3, and NOS3) and insulin resistance. Families were ascertained via a coronary artery disease proband in the Mexican American Coronary Artery Disease Project. Individuals from 100 Mexican American families (n=656) were genotyped for 14 polymorphisms in the 9 genes and all adult offspring and offspring spouses were phenotyped for insulin sensitivity by hyperinsulinemic euglycemic clamp (n=449). AGT M235T and NOS3 A(-922)G and E298D polymorphisms were significantly associated with insulin sensitivity (P=0.018, 0.036, 0.039) but were not significant after adjusting for body mass index. ADD1 G460W was associated with insulin sensitivity only after adjusting for body mass index. The NPPA T2238C and SCNN1A A663T were associated with decreased fasting insulin levels after adjusting for body mass index (P=0.015 and 0.028). In conclusion, AGT, NOS3, NPPA, ADRB2, ADD1, and SCNN1A may well be genetic markers for insulin resistance, and adiposity was a potential modifier for only some gene/trait combinations. Our data support the hypothesis that genes in the blood pressure pathway may play a role in insulin resistance in Mexican Americans.

  6. [Peroxisome proliferator activated receptors (PPAR) and insulin sensitivity: experimental studies].

    PubMed

    Haluzík, M M; Haluzík, M

    2006-01-01

    Peroxisome proliferator activated receptors (PPARs) belong to the nuclear receptor superfamily, which act as transcription factors. PPARs affect expression of many genes, which products are involved in lipid and carbohydrates metabolism, cell proliferation and differentiation and numerous other processes. Three different subtypes (isoforms) of PPARs have been identified: PPAR-alpha, PPAR-gamma, PPAR-delta. PPAR-alpha receptors play an important role in the regulation of lipid metabolism: they decrease circulating fatty acids and triglyceride levels. Recently, the ability of PPAR-alpha receptors to improve insulin sensitivity in rodent model of insulin resistance have been documented and numerous studies have focused on this topic. One of the possible mechanisms of its action on the insulin sensitivity is lowering of ectopic lipids in liver and muscle tissues with subsequent heightening of insulin signalling cascade. Here we summarize the experimental studies focusing on the role of PPAR-alpha in the regulation of insulin sensitivity and discuss possible mechanisms involved.

  7. FAK signalling controls insulin sensitivity through regulation of adipocyte survival

    PubMed Central

    Luk, Cynthia T.; Shi, Sally Yu; Cai, Erica P.; Sivasubramaniyam, Tharini; Krishnamurthy, Mansa; Brunt, Jara J.; Schroer, Stephanie A.; Winer, Daniel A.; Woo, Minna

    2017-01-01

    Focal adhesion kinase (FAK) plays a central role in integrin signalling, which regulates growth and survival of tumours. Here we show that FAK protein levels are increased in adipose tissue of insulin-resistant obese mice and humans. Disruption of adipocyte FAK in mice or in 3T3 L1 cells decreases adipocyte survival. Adipocyte-specific FAK knockout mice display impaired adipose tissue expansion and insulin resistance on prolonged metabolic stress from a high-fat diet or when crossed on an obese db/db or ob/ob genetic background. Treatment of these mice with a PPARγ agonist does not restore adiposity or improve insulin sensitivity. In contrast, inhibition of apoptosis, either genetically or pharmacologically, attenuates adipocyte death, restores normal adiposity and improves insulin sensitivity. Together, these results demonstrate that FAK is required for adipocyte survival and maintenance of insulin sensitivity, particularly in the context of adipose tissue expansion as a result of caloric excess. PMID:28165007

  8. Discovery of Novel Insulin Sensitizers: Promising Approaches and Targets

    PubMed Central

    Chen, Yadan; Ma, Haiming; Zhu, Dasheng; Zhao, Guowei; Wang, Lili

    2017-01-01

    Insulin resistance is the undisputed root cause of type 2 diabetes mellitus (T2DM). There is currently an unmet demand for safe and effective insulin sensitizers, owing to the restricted prescription or removal from market of certain approved insulin sensitizers, such as thiazolidinediones (TZDs), because of safety concerns. Effective insulin sensitizers without TZD-like side effects will therefore be invaluable to diabetic patients. The specific focus on peroxisome proliferator-activated receptor γ- (PPARγ-) based agents in the past decades may have impeded the search for novel and safer insulin sensitizers. This review discusses possible directions and promising strategies for future research and development of novel insulin sensitizers and describes the potential targets of these agents. Direct PPARγ agonists, selective PPARγ modulators (sPPARγMs), PPARγ-sparing compounds (including ligands of the mitochondrial target of TZDs), agents that target the downstream effectors of PPARγ, along with agents, such as heat shock protein (HSP) inducers, 5′-adenosine monophosphate-activated protein kinase (AMPK) activators, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) selective inhibitors, biguanides, and chloroquines, which may be safer than traditional TZDs, have been described. This minireview thus aims to provide fresh perspectives for the development of a new generation of safe insulin sensitizers. PMID:28659972

  9. Chromium and Polyphenols From Cinnamon Improve Insulin Sensitivity

    USDA-ARS?s Scientific Manuscript database

    Naturally occurring compounds that have been shown to improve insulin sensitivity include chromium and polyphenols found in cinnamon. These compounds also have similar effects on insulin signaling and glucose control. The signs of chromium deficiency are similar to those for the metabolic syndrome ...

  10. Simultaneous measurement of insulin sensitivity, insulin secretion and the disposition index in conscious unhandled mice

    PubMed Central

    Alonso, L. C.; Watanabe, Y.; Stefanovski, D.; Lee, E. J.; Singamsetty, S.; Romano, L. C.; Zou, B.; Garcia-Ocana, A.; Bergman, R. N.; O’Donnell, C. P.

    2012-01-01

    Of the parameters that determine glucose disposal and progression to diabetes in humans: first-phase insulin secretion, glucose effectiveness, insulin sensitivity, and the disposition index, only insulin sensitivity can be reliably measured in conscious mice. To determine the importance of the other parameters in murine glucose homeostasis in lean and obese states, we developed the frequently sampled intravenous glucose tolerance test (FSIVGTT) for use in unhandled mice. We validated the conscious FSIVGTT against the euglycemic clamp for measuring insulin sensitivity in lean and obese mice. Insulin resistant mice had increased first-phase insulin secretion, decreased glucose effectiveness and a reduced disposition index, qualitatively similar to humans. Intriguingly, while insulin secretion explained most of the variation in glucose disposal in lean mice, glucose effectiveness and the disposition index more strongly predicted glucose disposal in obese mice. Disposition index curves identified individual diet-induced obese mice as having compensated or decompensated insulin secretion. Conscious FSIVGTT opens the door to apply mouse genetics to the determinants of in vivo insulin secretion, glucose effectiveness and disposition index, and further validates the mouse as a model of metabolic disease. PMID:22331130

  11. Peripheral insulin-sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer's-like changes.

    PubMed

    Gupta, Amit; Bisht, Bharti; Dey, Chinmoy Sankar

    2011-05-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. Pharmacological treatments presently available can slow down the progression of symptoms but can not cure the disease. Currently there is widening recognition that AD is closely associated with impaired insulin signaling and glucose metabolism in brain, suggesting it to be a brain-specific form of diabetes and so also termed as "type 3 diabetes". Hence investigating the role of pharmacological agents that could ameliorate neuronal insulin resistance merit attention in AD therapeutics, however the therapeutics for pathophysiological condition like neuronal insulin resistance itself is largely unknown. In the present study we have determined the effect of metformin on neuronal insulin resistance and AD-associated characteristics in an in vitro model of "type 3 diabetes" by differentiating neuronal cell line Neuro-2a under prolonged presence of insulin. We observed that prolonged hyperinsulinemic conditions in addition to generating insulin resistance also led to development of hallmark AD-associated neuropathological changes. Treatment with metformin sensitized the impaired insulin actions and also prevented appearance of molecular and pathological characteristics observed in AD. The results thus demonstrate possible therapeutic efficacy of peripheral insulin-sensitizer drug metformin in AD by its ability to sensitize neuronal insulin resistance. These findings also provide direct evidences linking hyperinsulinemia and AD and suggest a unique opportunity for prevention and treatment of "type 3 diabetes".

  12. Role of Vitamin D in Insulin Secretion and Insulin Sensitivity for Glucose Homeostasis

    PubMed Central

    Alvarez, Jessica A.; Ashraf, Ambika

    2010-01-01

    Vitamin D functions are not limited to skeletal health benefits and may extend to preservation of insulin secretion and insulin sensitivity. This review summarizes the literature related to potential vitamin D influences on glucose homeostasis and insulin sensitivity. Cross-sectional data provide some evidence that circulating 25-hydroxyvitamin D (25(OH)D) is inversely associated with insulin resistance, although direct measurements of insulin sensitivity are required for confirmation. Reported associations with insulin secretion, however, are contradictory. Available prospective studies support a protective influence of high 25(OH)D concentrations on type 2 diabetes mellitus risk. There is a general lack of consistency in vitamin D intervention outcomes on insulin secretion and sensitivity, likely due to differences in subject populations, length of interventions, and forms of vitamin D supplementation. Vitamin D receptor gene polymorphisms and vitamin D interactions with the insulin like growth factor system may further influence glucose homeostasis. The ambiguity of optimal vitamin D dosing regimens and optimal therapeutic concentrations of serum 25(OH)D limit available intervention studies. Future studies, including cross-sectional and prospective, should be performed in populations at high risk for both vitamin D deficiency and type 2 diabetes mellitus. Well-designed, placebo-controlled, randomized intervention studies are required to establish a true protective influence of vitamin D on glucose homeostasis. PMID:20011094

  13. Role of vitamin d in insulin secretion and insulin sensitivity for glucose homeostasis.

    PubMed

    Alvarez, Jessica A; Ashraf, Ambika

    2010-01-01

    Vitamin D functions are not limited to skeletal health benefits and may extend to preservation of insulin secretion and insulin sensitivity. This review summarizes the literature related to potential vitamin D influences on glucose homeostasis and insulin sensitivity. Cross-sectional data provide some evidence that circulating 25-hydroxyvitamin D (25(OH)D) is inversely associated with insulin resistance, although direct measurements of insulin sensitivity are required for confirmation. Reported associations with insulin secretion, however, are contradictory. Available prospective studies support a protective influence of high 25(OH)D concentrations on type 2 diabetes mellitus risk. There is a general lack of consistency in vitamin D intervention outcomes on insulin secretion and sensitivity, likely due to differences in subject populations, length of interventions, and forms of vitamin D supplementation. Vitamin D receptor gene polymorphisms and vitamin D interactions with the insulin like growth factor system may further influence glucose homeostasis. The ambiguity of optimal vitamin D dosing regimens and optimal therapeutic concentrations of serum 25(OH)D limit available intervention studies. Future studies, including cross-sectional and prospective, should be performed in populations at high risk for both vitamin D deficiency and type 2 diabetes mellitus. Well-designed, placebo-controlled, randomized intervention studies are required to establish a true protective influence of vitamin D on glucose homeostasis.

  14. Modulating DDAH/NOS Pathway to Discover Vasoprotective Insulin Sensitizers

    PubMed Central

    Lai, Li; Ghebremariam, Yohannes T.

    2016-01-01

    Insulin resistance syndrome (IRS) is a configuration of cardiovascular risk factors involved in the development of metabolic disorders including type 2 diabetes mellitus. In addition to diet, age, socioeconomic, and environmental factors, genetic factors that impair insulin signaling are centrally involved in the development and exacerbation of IRS. Genetic and pharmacological studies have demonstrated that the nitric oxide (NO) synthase (NOS) genes are critically involved in the regulation of insulin-mediated glucose disposal. The generation of NO by the NOS enzymes is known to contribute to vascular homeostasis including insulin-mediated skeletal muscle vasodilation and insulin sensitivity. By contrast, excessive inhibition of NOS enzymes by exogenous or endogenous factors is associated with insulin resistance (IR). Asymmetric dimethylarginine (ADMA) is an endogenous molecule that competitively inhibits all the NOS enzymes and contributes to metabolic perturbations including IR. The concentration of ADMA in plasma and tissue is enzymatically regulated by dimethylarginine dimethylaminohydrolase (DDAH), a widely expressed enzyme in the cardiovascular system. In preclinical studies, overexpression of DDAH has been shown to reduce ADMA levels, improve vascular compliance, and increase insulin sensitivity. This review discusses the feasibility of the NOS/DDAH pathway as a novel target to develop vasoprotective insulin sensitizers. PMID:26770984

  15. Effects of aldosterone on insulin sensitivity and secretion.

    PubMed

    Luther, James M

    2014-12-01

    Dr. Conn originally reported an increased risk of diabetes in patients with hyperaldosteronism in the 1950s, although the mechanism remains unclear. Aldosterone-induced hypokalemia was initially described to impair glucose tolerance by impairing insulin secretion. Correction of hypokalemia by potassium supplementation only partially restored insulin secretion and glucose tolerance, however. Aldosterone also impairs glucose-stimulated insulin secretion in isolated pancreatic islets via reactive oxygen species in a mineralocorticoid receptor-independent manner. Aldosterone-induced mineralocorticoid receptor activation also impairs insulin sensitivity in adipocytes and skeletal muscle. Aldosterone may produce insulin resistance secondarily by altering potassium, increasing inflammatory cytokines, and reducing beneficial adipokines such as adiponectin. Renin-angiotensin system antagonists reduce circulating aldosterone concentrations and also the risk of type 2 diabetes in clinical trials. These data suggest that primary and secondary hyperaldosteronism may contribute to worsening glucose tolerance by impairing insulin sensitivity or insulin secretion in humans. Future studies should define the effects of MR antagonists and aldosterone on insulin secretion and sensitivity in humans.

  16. Insulin sensitivity as a predictor of weight regain.

    PubMed

    Wing, R R

    1997-01-01

    A recent study found that increases in insulin sensitivity following weight loss and stabilization were strongly related to subsequent weight regain. The present paper analyzed this relationship in two behavioral weight-loss programs. In the first study, 125 nondiabetic subjects were followed over 30 months; weight losses averaged 10 kg at six months, and subjects had regained 8 kg of their weight loss by their 30-month follow-up. Neither fasting insulin levels at six months nor changes in fasting insulin from zero to six months were related to subsequent weight regain. Similarly, insulin levels measured two hours after a 75 g glucose load were unrelated to subsequent weight regain. The second study followed 33 individuals with Type II diabetes, treated with behavior modification, and either a low calorie diet or a very low calorie diet. Weight losses averaged 18 kg at six months, and subjects had regained 10 kg by their 24-month follow-up. The Bergman minimal model was used to assess insulin sensitivity at 6-month intervals. Initial analyses suggested that changes in insulin sensitivity from zero to six months were related to subsequent weight regain, but this effect was strongly influenced by an outlier. After removing this individual, there were no significant relationships between the changes in insulin sensitivity that accompanied weight loss and future weight regain. Likewise, insulin sensitivity at 12 months did not predict weight regain from 12 to 24 months. These data do not support the hypothesis that increases in insulin sensitivity with weight loss are associated with subsequent weight regain.

  17. Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin-resistant phenotypes.

    PubMed

    Malin, Steven K; Haus, Jacob M; Solomon, Thomas P J; Blaszczak, Alecia; Kashyap, Sangeeta R; Kirwan, John P

    2013-11-15

    Impaired fasting glucose (IFG) blunts the reversal of impaired glucose tolerance (IGT) after exercise training. Metabolic inflexibility has been implicated in the etiology of insulin resistance; however, the efficacy of exercise on peripheral and hepatic insulin sensitivity or substrate utilization in adults with IFG, IGT, or IFG + IGT is unknown. Twenty-four older (66.7 ± 0.8 yr) obese (34.2 ± 0.9 kg/m(2)) adults were categorized as IFG (n = 8), IGT (n = 8), or IFG + IGT (n = 8) according to a 75-g oral glucose tolerance test (OGTT). Subjects underwent 12-wk of exercise (60 min/day for 5 days/wk at ∼85% HRmax) and were instructed to maintain a eucaloric diet. A euglycemic hyperinsulinemic clamp (40 mU·m(2)·min(-1)) with [6,6-(2)H]glucose was used to determine peripheral and hepatic insulin sensitivity. Nonoxidative glucose disposal and metabolic flexibility [insulin-stimulated respiratory quotient (RQ) minus fasting RQ] were also assessed. Glucose incremental area under the curve (iAUCOGTT) was calculated from the OGTT. Exercise increased clamp-derived peripheral and hepatic insulin sensitivity more in adults with IFG or IGT alone than with IFG + IGT (P < 0.05). Exercise reduced glucose iAUCOGTT in IGT only (P < 0.05), and the decrease in glucose iAUCOGTT was inversely correlated with the increase in peripheral but not hepatic insulin sensitivity (P < 0.01). Increased clamp-derived peripheral insulin sensitivity was also correlated with enhanced metabolic flexibility, reduced fasting RQ, and higher nonoxidative glucose disposal (P < 0.05). Adults with IFG + IGT had smaller gains in clamp-derived peripheral insulin sensitivity and metabolic flexibility, which was related to blunted improvements in postprandial glucose. Additional work is required to assess the molecular mechanism(s) by which chronic hyperglycemia modifies insulin sensitivity following exercise training.

  18. Insulin Sensitivity Determines Effects of Insulin and Meal Ingestion on Systemic Vascular Resistance in Healthy Subjects.

    PubMed

    Woerdeman, Jorn; Meijer, Rick I; Eringa, Etto C; Hoekstra, Trynke; Smulders, Yvo M; Serné, Erik H

    2016-01-01

    In addition to insulin's metabolic actions, insulin can dilate arterioles which increase blood flow to metabolically active tissues. This effect is blunted in insulin-resistant subjects. Insulin's effect on SVR, determined by resistance arterioles, has, however, rarely been examined directly. We determined the effects of both hyperinsulinemia and a mixed meal on SVR and its relationship with insulin sensitivity. Thirty-seven lean and obese women underwent a hyperinsulinemic-euglycemic clamp, and 24 obese volunteers underwent a mixed-meal test. SVR was assessed using CPP before and during hyperinsulinemia as well as before and 60 and 120 minutes after a meal. SVR decreased significantly during hyperinsulinemia (-13%; p < 0.001) and after the meal (-11%; p < 0.001). Insulin decreased SVR more strongly in insulin-sensitive individuals (standardized β: -0.44; p = 0.01). In addition, SVR at 60 minutes after meal ingestion was inversely related to the Matsuda index (β: -0.39; p = 0.04) and the change in postprandial SVR was directly related to postprandial glycemia (β: 0.53; p < 0.01). Hyperinsulinemia and meal ingestion decrease SVR, which is directly associated with metabolic insulin resistance. This suggests that resistance to insulin-induced vasodilatation contributes to regulation of vascular resistance. © 2015 John Wiley & Sons Ltd.

  19. Apelin is necessary for the maintenance of insulin sensitivity.

    PubMed

    Yue, Patrick; Jin, Hong; Aillaud, Marissa; Deng, Alicia C; Azuma, Junya; Asagami, Tomoko; Kundu, Ramendra K; Reaven, Gerald M; Quertermous, Thomas; Tsao, Philip S

    2010-01-01

    The recently discovered peptide apelin is known to be involved in the maintenance of insulin sensitivity. However, questions persist regarding its precise role in the chronic setting. Fasting glucose, insulin, and adiponectin levels were determined on mice with generalized deficiency of apelin (APKO). Additionally, insulin (ITT) and glucose tolerance tests (GTT) were performed. To assess the impact of exogenously delivered apelin on insulin sensitivity, osmotic pumps containing pyroglutamated apelin-13 or saline were implanted in APKO mice for 4 wk. Following the infusion, ITT/GTTs were repeated and the animals euthanized. Soleus muscles were harvested and homogenized in lysis buffer, and insulin-induced Akt phosphorylation was determined by Western blotting. Apelin-13 infusion and ITTs/GTTs were also performed in obese diabetic db/db mice. To probe the underlying mechanism for apelin's effects, apelin-13 was also delivered to cultured C2C12 myotubes. 2-[3H]deoxyglucose uptake and Akt phosphorylation were assessed in the presence of various inhibitors. APKO mice had diminished insulin sensitivity, were hyperinsulinemic, and had decreased adiponectin levels. Soleus lysates had decreased insulin-induced Akt phosphorylation. Administration of apelin to APKO and db/db mice resulted in improved insulin sensitivity. In C2C12 myotubes, apelin increased glucose uptake and Akt phosphorylation. These events were fully abrogated by pertussis toxin, compound C, and siRNA knockdown of AMPKalpha1 but only partially diminished by LY-294002 and not at all by L-NAME. We conclude that apelin is necessary for the maintenance of insulin sensitivity in vivo. Apelin's effects on glucose uptake and Akt phosphorylation are in part mediated by a G(i) and AMPK-dependent pathway.

  20. Bioactives in Blueberries Improve Insulin Sensitivity in Obese, Insulin-Resistant Men and Women1234

    PubMed Central

    Stull, April J.; Cash, Katherine C.; Johnson, William D.; Champagne, Catherine M.; Cefalu, William T.

    2010-01-01

    Dietary supplementation with whole blueberries in a preclinical study resulted in a reduction in glucose concentrations over time. We sought to evaluate the effect of daily dietary supplementation with bioactives from blueberries on whole-body insulin sensitivity in men and women. A double-blinded, randomized, and placebo-controlled clinical study design was used. After screening to resolve study eligibility, baseline (wk 0) insulin sensitivity was measured on 32 obese, nondiabetic, and insulin-resistant subjects using a high-dose hyperinsulinemic-euglycemic clamp (insulin infusion of 120 mU(861 pmol)⋅m−2⋅min−1). Serum inflammatory biomarkers and adiposity were measured at baseline. At the end of the study, insulin sensitivity, inflammatory biomarkers, and adiposity were reassessed. Participants were randomized to consume either a smoothie containing 22.5 g blueberry bioactives (blueberry group, n = 15) or a smoothie of equal nutritional value without added blueberry bioactives (placebo group, n = 17) twice daily for 6 wk. Both groups were instructed to maintain their body weight by reducing ad libitum intake by an amount equal to the energy intake of the smoothies. Participants’ body weights were evaluated weekly and 3-d food records were collected at baseline, the middle, and end of the study. The mean change in insulin sensitivity improved more in the blueberry group (1.7 ± 0.5 mg⋅kg FFM−1⋅min−1) than in the placebo group (0.4 ± 0.4 mg⋅kg FFM−1⋅min−1) (P = 0.04). Insulin sensitivity was enhanced in the blueberry group at the end of the study without significant changes in adiposity, energy intake, and inflammatory biomarkers. In conclusion, daily dietary supplementation with bioactives from whole blueberries improved insulin sensitivity in obese, nondiabetic, and insulin-resistant participants. PMID:20724487

  1. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women.

    PubMed

    Stull, April J; Cash, Katherine C; Johnson, William D; Champagne, Catherine M; Cefalu, William T

    2010-10-01

    Dietary supplementation with whole blueberries in a preclinical study resulted in a reduction in glucose concentrations over time. We sought to evaluate the effect of daily dietary supplementation with bioactives from blueberries on whole-body insulin sensitivity in men and women. A double-blinded, randomized, and placebo-controlled clinical study design was used. After screening to resolve study eligibility, baseline (wk 0) insulin sensitivity was measured on 32 obese, nondiabetic, and insulin-resistant subjects using a high-dose hyperinsulinemic-euglycemic clamp (insulin infusion of 120 mU(861 pmol)⋅m(-2)⋅min(-1)). Serum inflammatory biomarkers and adiposity were measured at baseline. At the end of the study, insulin sensitivity, inflammatory biomarkers, and adiposity were reassessed. Participants were randomized to consume either a smoothie containing 22.5 g blueberry bioactives (blueberry group, n = 15) or a smoothie of equal nutritional value without added blueberry bioactives (placebo group, n = 17) twice daily for 6 wk. Both groups were instructed to maintain their body weight by reducing ad libitum intake by an amount equal to the energy intake of the smoothies. Participants' body weights were evaluated weekly and 3-d food records were collected at baseline, the middle, and end of the study. The mean change in insulin sensitivity improved more in the blueberry group (1.7 ± 0.5 mg⋅kg FFM(-1)⋅min(-1)) than in the placebo group (0.4 ± 0.4 mg⋅kg FFM(-1)⋅min(-1)) (P = 0.04). Insulin sensitivity was enhanced in the blueberry group at the end of the study without significant changes in adiposity, energy intake, and inflammatory biomarkers. In conclusion, daily dietary supplementation with bioactives from whole blueberries improved insulin sensitivity in obese, nondiabetic, and insulin-resistant participants.

  2. Exercise Dose and Insulin Sensitivity: Relevance for Diabetes Prevention

    PubMed Central

    Dubé, John J.; Fleishman, Katelyn; Rousson, Valentin; Goodpaster, Bret H.; Amati, Francesca

    2012-01-01

    Purpose Exercise improves insulin resistance and is a first line for the prevention and treatment of type 2 diabetes. The extent, however, to which these response are dose-dependent is not known. The purpose of this study was to examine whether or not exercise dose was associated with improvements in insulin sensitivity following four months of exercise training in previously sedentary adults. Methods Fifty-five healthy volunteers participated in a 16-week supervised endurance exercise intervention with a pre/post intervention design. Insulin sensitivity was assessed by euglycemic hyperinsulinemic clamp, peak oxygen uptake by a graded exercise test and body composition by DXA. The exercise intervention consisted of 3 to 5 sessions/week with a minimum of 3 sessions supervised. A ramped exercise prescription protocol was used to achieve 75% of peak HR for 45 minutes/session. Exercise dose, expressed as average kcal expended per week, was computed as the product of exercise intensity, duration and frequency. Results Improved insulin sensitivity was significantly related to exercise dose in a graded dose-response relationship. No evidence of threshold or maximal dose-response effect was observed. Age and gender did not influence this dose-response relationship. Exercise intensity was also significantly related to improvements in insulin sensitivity, while frequency was not. Conclusion This study identifies a graded dose-response relationship between exercise dose and improvements in insulin sensitivity. The implication of this observation is of importance for the adaptation of exercise prescription in clinical situations. PMID:22051572

  3. Lipid-anthropometric index optimization for insulin sensitivity estimation

    NASA Astrophysics Data System (ADS)

    Velásquez, J.; Wong, S.; Encalada, L.; Herrera, H.; Severeyn, E.

    2015-12-01

    Insulin sensitivity (IS) is the ability of cells to react due to insulińs presence; when this ability is diminished, low insulin sensitivity or insulin resistance (IR) is considered. IR had been related to other metabolic disorders as metabolic syndrome (MS), obesity, dyslipidemia and diabetes. IS can be determined using direct or indirect methods. The indirect methods are less accurate and invasive than direct and they use glucose and insulin values from oral glucose tolerance test (OGTT). The accuracy is established by comparison using spearman rank correlation coefficient between direct and indirect method. This paper aims to propose a lipid-anthropometric index which offers acceptable correlation to insulin sensitivity index for different populations (DB1=MS subjects, DB2=sedentary without MS subjects and DB3=marathoners subjects) without to use OGTT glucose and insulin values. The proposed method is parametrically optimized through a random cross-validation, using the spearman rank correlation as comparator with CAUMO method. CAUMO is an indirect method designed from a simplification of the minimal model intravenous glucose tolerance test direct method (MINMOD-IGTT) and with acceptable correlation (0.89). The results show that the proposed optimized method got a better correlation with CAUMO in all populations compared to non-optimized. On the other hand, it was observed that the optimized method has better correlation with CAUMO in DB2 and DB3 groups than HOMA-IR method, which is the most widely used for diagnosing insulin resistance. The optimized propose method could detect incipient insulin resistance, when classify as insulin resistant subjects that present impaired postprandial insulin and glucose values.

  4. Characterization of the insulin sensitivity of ghrelin receptor KO mice using glycemic clamps

    PubMed Central

    2011-01-01

    Background We and others have demonstrated previously that ghrelin receptor (GhrR) knock out (KO) mice fed a high fat diet (HFD) have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI-E) clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity. Results Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd), and decreased hepatic glucose production (HGP). HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice. Conclusions These results indicate that improved glucose homeostasis of GhrR KO mice is characterized by robust

  5. Half-Unit Insulin Pens: Disease Management in Patients With Diabetes Who Are Sensitive to Insulin.

    PubMed

    Klonoff, David C; Nayberg, Irina; Stauder, Udo; Oualali, Hamid; Domenger, Catherine

    2017-05-01

    Insulin pens represent a significant technological advancement in diabetes management. While the vast majority have been designed with 1U-dosing increments, improved accuracy and precision facilitated by half-unit increments may be particularly significant in specific patients who are sensitive to insulin. These include patients with low insulin requirements and in those requiring more precise dose adjustments, such as the pediatric patient population. This review summarized functional characteristics of insulin half-unit pens (HUPs) and their effect on user experience. The literature search was restricted to articles published in English between January 1, 2000, and January 1, 2015. A total of 17 publications met the set criteria and were included in the review. Overall, studies outlined characteristics for 4 insulin HUPs. Based on their functionality, the pens were generally similar and all met the ISO 11608-1 criteria for accuracy. However, some had specific advantageous features in terms of size, weight, design, dialing torque, and injection force. Although limited, the currently available user preference studies in children and adolescents with diabetes and their carers suggest that the selection of an HUP is likely to be influenced by a combination of factors such as these, in addition to the prescribed insulin and dosing regimen. Insulin HUPs are likely to be a key diabetes management tool for patients who are sensitive to insulin; specific pen features may further advance diabetes management in these populations.

  6. Biomarkers of insulin sensitivity and insulin resistance: Past, present and future.

    PubMed

    Park, Se Eun; Park, Cheol-Young; Sweeney, Gary

    2015-01-01

    Insulin resistance in insulin target tissues including liver, skeletal muscle and adipose tissue is an early step in the progression towards type 2 diabetes. Accurate diagnostic parameters reflective of insulin resistance are essential. Longstanding tests for fasting blood glucose and HbA1c are useful and although the hyperinsulinemic euglycemic clamp remains a "gold standard" for accurately determining insulin resistance, it cannot be implemented on a routine basis. The study of adipokines, and more recently myokines and hepatokines, as potential biomarkers for insulin sensitivity is now an attractive and relatively straightforward approach. This review discusses potential biomarkers including adiponectin, RBP4, chemerin, A-FABP, FGF21, fetuin-A, myostatin, IL-6, and irisin, all of which may play significant roles in determining insulin sensitivity. We also review potential future directions of new biological markers for measuring insulin resistance, including metabolomics and gut microbiome. Collectively, these approaches will provide clinicians with the tools for more accurate, and perhaps personalized, diagnosis of insulin resistance.

  7. Iron stores, blood donation, and insulin sensitivity and secretion.

    PubMed

    Fernández-Real, José Manuel; López-Bermejo, Abel; Ricart, Wifredo

    2005-07-01

    Epidemiologists have observed that blood donation is associated with decreased risk of type 2 diabetes and cardiovascular disease. We investigated the relationship between iron stores and insulin sensitivity, after controlling for known confounding factors, and compared insulin sensitivity between blood donors and individuals who had never donated blood (nondonors). In 181 men, insulin sensitivity and insulin secretion were evaluated through frequently sampled intravenous glucose tolerance tests with minimal model analysis. Men who donated blood between 6 months and 5 years before inclusion (n = 21) were carefully matched with nondonors (n = 66) for age, body mass index, waist-to-hip ratio, and cardiovascular risk profile, including blood lipids, blood pressure, and smoking status. Frequent blood donors (2-10 donations) had increased insulin sensitivity [3.42 (1.03) vs 2.45 (1.2) x 10(-4) x min(-1) x mIU/L; P = 0.04], decreased insulin secretion [186 (82) vs 401.7 (254) mIU/L x min; P <0.0001], and significantly lower iron stores [serum ferritin, 101.5 (74) vs 162 (100) microg/L; P = 0.017] than nondonors, but the 2 groups had similar blood hematocrits and blood hemoglobin concentrations. Blood donation is simultaneously associated with increased insulin sensitivity and decreased iron stores. Stored iron seems to impact negatively on insulin action even in healthy people, and not just in classic pathologic conditions associated with iron overload (hemochromatosis and hemosiderosis). According to these observations, it is imperative that a definition of excessive iron stores in healthy people be formulated.

  8. Threshold for Improvement in Insulin Sensitivity with Adolescent Weight Loss

    PubMed Central

    Levitt Katz, Lorraine E.; Moore, Reneé H.; Xanthopoulos, Melissa S.; Bishop-Gilyard, Chanelle T.; Wadden, Thomas A.; Berkowitz, Robert I.

    2013-01-01

    Objectives To assess the association of weight loss and insulin sensitivity, glucose tolerance, and metabolic syndrome (MS) in obese adolescents following weight loss treatment, and to determine the threshold amount of weight loss required to observe improvements in these measures. Study design A randomized, controlled behavioral weight loss trial was conducted with 113 obese adolescents. Changes in fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR), whole body insulin sensitivity index (WBISI), body-mass index (BMI), and MS criteria were assessed at baseline and at month 4. Results There was significant improvement in all measures of insulin sensitivity at month 4. Mean fasting insulin dropped to 16.6 from 22.3 μU/mL (p<0.0001). HOMA-IR decreased significantly from 4.9 to 3.7 (p=0.001) and WBISI increased significantly from 2.87 to 3.98 (p<0.0001). An 8% reduction in BMI led to a significant improvement in WBISI (p=0.03) and was the optimal threshold. Fewer individuals met criteria for MS after weight loss (p=0.0038), although there were no significant changes in the individual features of the syndrome. Conclusions In this trial, weight loss at month 4 was associated with improved insulin sensitivity in obese adolescents. An approximate decrease in BMI of 8% was the threshold level at which insulin sensitivity improved. As more weight loss programs are designed for obese adolescents, it will be important to have reasonable weight loss goals that will yield improvements in metabolic and cardiovascular disease risk factors. PMID:23706362

  9. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production.

    PubMed

    Merovci, Aurora; Solis-Herrera, Carolina; Daniele, Giuseppe; Eldor, Roy; Fiorentino, Teresa Vanessa; Tripathy, Devjit; Xiong, Juan; Perez, Zandra; Norton, Luke; Abdul-Ghani, Muhammad A; DeFronzo, Ralph A

    2014-02-01

    Chronic hyperglycemia impairs insulin action, resulting in glucotoxicity, which can be ameliorated in animal models by inducing glucosuria with renal glucose transport inhibitors. Here, we examined whether reduction of plasma glucose with a sodium-glucose cotransporter 2 (SGLT2) inhibitor could improve insulin-mediated tissue glucose disposal in patients with type 2 diabetes. Eighteen diabetic men were randomized to receive either dapagliflozin (n = 12) or placebo (n = 6) for 2 weeks. We measured insulin-mediated whole body glucose uptake and endogenous glucose production (EGP) at baseline and 2 weeks after treatment using the euglycemic hyperinsulinemic clamp technique. Dapagliflozin treatment induced glucosuria and markedly lowered fasting plasma glucose. Insulin-mediated tissue glucose disposal increased by approximately 18% after 2 weeks of dapagliflozin treatment, while placebo-treated subjects had no change in insulin sensitivity. Surprisingly, following dapagliflozin treatment, EGP increased substantially and was accompanied by an increase in fasting plasma glucagon concentration. Together, our data indicate that reduction of plasma glucose with an agent that works specifically on the kidney to induce glucosuria improves muscle insulin sensitivity. However, glucosuria induction following SGLT2 inhibition is associated with a paradoxical increase in EGP. These results provide support for the glucotoxicity hypothesis, which suggests that chronic hyperglycemia impairs insulin action in individuals with type 2 diabetes.

  10. Morning Circadian Misalignment during Short Sleep Duration Impacts Insulin Sensitivity.

    PubMed

    Eckel, Robert H; Depner, Christopher M; Perreault, Leigh; Markwald, Rachel R; Smith, Mark R; McHill, Andrew W; Higgins, Janine; Melanson, Edward L; Wright, Kenneth P

    2015-11-16

    Short sleep duration and circadian misalignment are hypothesized to causally contribute to health problems including obesity, diabetes, metabolic syndrome, heart disease, mood disorders, cognitive impairment, and accidents. Here, we investigated the influence of morning circadian misalignment induced by an imposed short nighttime sleep schedule on impaired insulin sensitivity, a precursor to diabetes. Imposed short sleep duration resulted in morning wakefulness occurring during the biological night (i.e., circadian misalignment)-a time when endogenous melatonin levels were still high indicating the internal circadian clock was still promoting sleep and related functions. We show the longer melatonin levels remained high after wake time, insulin sensitivity worsened. Overall, we find a simulated 5-day work week of 5-hr-per-night sleep opportunities and ad libitum food intake resulted in ∼20% reduced oral and intravenous insulin sensitivity in otherwise healthy men and women. Reduced insulin sensitivity was compensated by an increased insulin response to glucose, which may reflect an initial physiological adaptation to maintain normal blood sugar levels during sleep loss. Furthermore, we find that transitioning from the imposed short sleep schedule to 9-hr sleep opportunities for 3 days restored oral insulin sensitivity to baseline, but 5 days with 9-hr sleep opportunities was insufficient to restore intravenous insulin sensitivity to baseline. These findings indicate morning wakefulness and eating during the biological night is a novel mechanism by which short sleep duration contributes to metabolic dysregulation and suggests food intake during the biological night may contribute to other health problems associated with short sleep duration.

  11. Circulating Docosahexaenoic Acid Levels Are Associated with Fetal Insulin Sensitivity

    PubMed Central

    Zhao, Jin-Ping; Levy, Emile; Fraser, William D.; Julien, Pierre; Delvin, Edgard; Montoudis, Alain; Spahis, Schohraya; Garofalo, Carole; Nuyt, Anne Monique; Luo, Zhong-Cheng

    2014-01-01

    Background Arachidonic acid (AA; C20∶4 n-6) and docosahexaenoic acid (DHA; C22∶6 n-3) are important long-chain polyunsaturated fatty acids (LC-PUFA) in maintaining pancreatic beta-cell structure and function. Newborns of gestational diabetic mothers are more susceptible to the development of type 2 diabetes in adulthood. It is not known whether low circulating AA or DHA is involved in perinatally “programming” this susceptibility. This study aimed to assess whether circulating concentrations of AA, DHA and other fatty acids are associated with fetal insulin sensitivity or beta-cell function, and whether low circulating concentrations of AA or DHA are involved in compromised fetal insulin sensitivity in gestational diabetic pregnancies. Methods and Principal Findings In a prospective singleton pregnancy cohort, maternal (32-35 weeks gestation) and cord plasma fatty acids were assessed in relation to surrogate indicators of fetal insulin sensitivity (cord plasma glucose-to-insulin ratio, proinsulin concentration) and beta-cell function (proinsulin-to-insulin ratio) in 108 mother-newborn pairs. Cord plasma DHA levels (in percentage of total fatty acids) were lower comparing newborns of gestational diabetic (n = 24) vs. non-diabetic pregnancies (2.9% vs. 3.5%, P = 0.01). Adjusting for gestational age at blood sampling, lower cord plasma DHA levels were associated with lower fetal insulin sensitivity (lower glucose-to-insulin ratio, r = 0.20, P = 0.036; higher proinsulin concentration, r = −0.37, P <0.0001). The associations remained after adjustment for maternal and newborn characteristics. Cord plasma saturated fatty acids C18∶0 and C20∶0 were negatively correlated with fetal insulin sensitivity, but their levels were not different between gestational diabetic and non-diabetic pregnancies. Cord plasma AA levels were not correlated with fetal insulin sensitivity. Conclusion Low circulating DHA levels are associated with compromised

  12. Insulin sensitivity in Chinese ovo-lactovegetarians compared with omnivores.

    PubMed

    Kuo, C-S; Lai, N-S; Ho, L-T; Lin, C-L

    2004-02-01

    To compare the insulin sensitivity indices between Chinese vegetarians and omnivores. The study included 36 healthy volunteers (vegetarian, n=19; omnivore, n=17) who had normal fasting plasma glucose levels. Each participant completed an insulin suppression test. We compared steady-state plasma glucose (SSPG), fasting insulin, the homeostasis model assessment for insulin sensitivity (HOMA-IR and HOMA %S) and beta-cell function (HOMA %beta) between the groups. We also tested the correlation of SSPG with years on a vegetarian diet. The omnivore subjects were younger than the vegetarians (55.7+/-3.7 vs 58.6+/-3.6 year of age, P=0.022). There was no difference between the two groups in sex, blood pressure, renal function tests and lipid profiles. The omnivores had higher serum uric acid levels than vegetarians (5.25+/-0.84 vs 4.54+/-0.75 mg/dl, P=0.011). The results of the indices were different between omnivores and vegetarians (SSPG (mean+/-s.d.) 105.4+/-10.2 vs 80.3+/-11.3 mg/dl, P<0.001; fasting insulin, 4.06+/-0.77 vs 3.02+/-1.19 microU/ml, P=0.004; HOMA-IR, 6.75+/-1.31 vs 4.78+/-2.07, P=0.002; HOMA %S, 159.2+/-31.7 vs 264.3+/-171.7%, P=0.018) except insulin secretion index, HOMA %beta (65.6+/-18.0 vs 58.6+/-14.8%, P=0.208). We found a clear linear relation between years on a vegetarian diet and SSPG (r=-0.541, P=0.017). The vegetarians were more insulin sensitive than the omnivore counterparts. The degree of insulin sensitivity appeared to be correlated with years on a vegetarian diet.

  13. Pressure to be Thin and Insulin Sensitivity among Adolescents

    PubMed Central

    Schvey, Natasha A.; Shomaker, Lauren B.; Kelly, Nichole R.; Pickworth, Courtney K.; Cassidy, Omni; Galescu, Ovidiu; Demidowich, Andrew P.; Brady, Sheila M.; Tanofsky-Kraff, Marian; Yanovski, Jack A.

    2015-01-01

    Purpose Extant research indicates that some of the comorbidities associated with adult obesity may be adversely affected by the stress resulting from negative body image and weight-related teasing. This study examined the association between weight-related pressure and insulin sensitivity in adolescents, who are vulnerable to both weight-based teasing and the onset of metabolic dysregulation. Methods Participants were 215 adolescent healthy volunteers (55% female; 59% White; 35% overweight/obese; M±SD age = 15.4±1.4y), who completed a self-report measure of pressure to be thin from parents, friends, and romantic partners. Fasting blood samples were obtained to assess serum insulin and glucose, which were used to calculate insulin sensitivity; fat mass (kg) and fat-free mass (%) were measured with air displacement plethysmography. Pubertal stage was determined by physical examination. Results Pressure to be thin was positively associated with fasting insulin (p = .01) and negatively associated with insulin sensitivity (p = .02), after controlling for pubertal stage, sex, race, height, fat-free mass, and adiposity. Pressure to be thin was associated with a greater odds of having hyperinsulinemia (fasting insulin ≥ 15 µIU/mL; Odds Ratio (95% CI): 1.65 (1.08–2.50), p = .02), adjusting for the same covariates. Conclusions Results indicate that adolescents perceiving more pressure to be thin have greater elevations of fasting insulin and poorer insulin sensitivity above and beyond the effect of fat mass. Future research is warranted to elucidate the mechanisms responsible for this relationship. PMID:26707232

  14. Fast track surgery accelerates the recovery of postoperative insulin sensitivity.

    PubMed

    Yang, Dong-jie; Zhang, Sheng; He, Wei-ling; Chen, Hua-yun; Cai, Shi-rong; Chen, Chuang-qi; Song, Xin-ming; Cui, Ji; Ma, Jin-Ping; Zhang, Chang-Hua; He, Yu-Long

    2012-09-01

    Few clinical studies or randomized clinical trial results have reported the impact of fast track surgery on postoperative insulin sensitivity. This study aimed to investigate the effects of fast track surgery on postoperative insulin sensitivity in patients undergoing elective open colorectal resection. Controlled, randomized clinical trial was conducted from November 2008 to January 2009 with one-month post-discharge follow-up. Seventy patients with colorectal carcinoma requiring colorectal resection were randomized into two groups: a fast track group (35 cases) and a conventional care group (35 cases). All included patients received elective open colorectal resection with combined tracheal intubation and general anesthesia. Clinical parameters (complication rates, return of gastrointestinal function and postoperative length of stay), stress index and insulin sensitivity were evaluated in both groups perioperatively. Sixty-two patients finally completed the study, 32 cases in the fast-track group and 30 cases in the conventional care group. Our findings revealed a significantly faster recovery of postoperative insulin sensitivity on postoperative day 7 in the fast-track group than that in the conventional care group. We also found a significantly shorter length of postoperative stay and a significantly faster return of gastrointestinal function in patients undergoing fast-track rehabilitation. Fast track surgery accelerates the recovery of postoperative insulin sensitivity in elective surgery for colorectal carcinoma with a shorter length of postoperative hospital stay.

  15. Normocaloric Diet Restores Weight Gain and Insulin Sensitivity in Obese Mice

    PubMed Central

    Lombardo, Giovanni Enrico; Arcidiacono, Biagio; De Rose, Roberta Francesca; Lepore, Saverio Massimo; Costa, Nicola; Montalcini, Tiziana; Brunetti, Antonio; Russo, Diego; De Sarro, Giovambattista; Celano, Marilena

    2016-01-01

    An increased incidence of obesity is registered worldwide, and its association with insulin resistance and type 2 diabetes is closely related with increased morbidity and mortality for cardiovascular diseases. A major clinical problem in the management of obesity is the non-adherence or low adherence of patients to a hypocaloric dietetic restriction. In this study, we evaluated in obese mice the effects of shifting from high-calorie foods to normal diet on insulin sensitivity. Male C57BL/6JOlaHsd mice (n = 20) were fed with high fat diet (HFD) for a 24-week period. Afterward, body weight, energy, and food intake were measured in all animals, together with parameters of insulin sensitivity by homeostatic model assessment of insulin resistance and plasma glucose levels in response to insulin administration. Moreover, in half of these mice, Glut4 mRNA levels were measured in muscle at the end of the high fat treatment, whereas the rest of the animals (n = 10) were shifted to normocaloric diet (NCD) for 10 weeks, after which the same analyses were carried out. A significant reduction of body weight was found after the transition from high to normal fat diet, and this decrease correlated well with an improvement in insulin sensitivity. In fact, we found a reduction in serum insulin levels and the recovery of insulin responsiveness in terms of glucose disposal measured by insulin tolerance test and Glut4 mRNA and protein expression. These results indicate that obesity-related insulin resistance may be rescued by shifting from HFD to NCD. PMID:27303363

  16. Symplocos cochinchinensis enhances insulin sensitivity via the down regulation of lipogenesis and insulin resistance in high energy diet rat model.

    PubMed

    Antu, Kalathookunnel Antony; Riya, Mariam Philip; Nair, Anupama; Mishra, Arvind; Srivastava, Arvind K; Raghu, Kozhiparambil Gopalan

    2016-12-04

    This plant has been utilized in Indian system of medicine for treatment of diabetes. This is clearly evident from the composition of Ayurvedic preparation for diabetes 'Nisakathakadi Kashayam' where this is one of the main ingredients of this preparation AIM OF THE STUDY: The study aims in elucidating the molecular mechanisms underlying the insulin sensitizing effects of Symplocos cochinchinensis ethanol extract (SCE) using a high fructose and saturated fat (HFS) fed insulin resistant rat model. Experimental groups consisted of normal diet (ND), ND+SCE 500mg/kg bwd, HFS+vehicle, HFS+metformin 100mg/kg bwd, HFS+SCE 250/500mg/kg bwd. Initially the animals were kept under HFS diet for 8 weeks, and at the end of 8 week period, animals were found to develop insulin resistance and dyslipidemia. Post-administration of SCE, metformin or vehicle were carried out for 3 weeks. Gene and protein expressions relevant to insulin signalling pathway were analysed. HFS significantly altered the normal physiology of animals via proteins and genes relevant to metabolism like stearoyl-CoA desaturase (SCD1), sterol regulatory element binding protein 1 (SREBP-1c), fatty acid synthase (FAS), glucose 6 phosphatase (G6Pase), phosphoenol pyruvate carboxykinase (PEPCK), glucose transporter 2 (GLUT2), protein tyrosine phosphatse 1B (PTP1B), peroxisome proliferator activated receptor alpha (PPAR alpha), sirtuin 1 (SIRT1) and glucokinase. SCE administration attenuates the insulin resistance in HFS rat by the down regulation of SCD1 gene expression that modulates SREBP-1c dependent and independent hepatic lipid accumulation. SCE enhances insulin sensitivity via the down regulation of lipogenesis and insulin resistance in HFS rat model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation.

    PubMed

    Nelson, O Lynne; Jansen, Heiko T; Galbreath, Elizabeth; Morgenstern, Kurt; Gehring, Jamie Lauren; Rigano, Kimberly Scott; Lee, Jae; Gong, Jianhua; Shaywitz, Adam J; Vella, Chantal A; Robbins, Charles T; Corbit, Kevin C

    2014-08-05

    The confluence of obesity and diabetes as a worldwide epidemic necessitates the discovery of new therapies. Success in this endeavor requires translatable preclinical studies, which traditionally employ rodent models. As an alternative approach, we explored hibernation where obesity is a natural adaptation to survive months of fasting. Here we report that grizzly bears exhibit seasonal tripartite insulin responsiveness such that obese animals augment insulin sensitivity but only weeks later enter hibernation-specific insulin resistance (IR) and subsequently reinitiate responsiveness upon awakening. Preparation for hibernation is characterized by adiposity coupled to increased insulin sensitivity via modified PTEN/AKT signaling specifically in adipose tissue, suggesting a state of "healthy" obesity analogous to humans with PTEN haploinsufficiency. Collectively, we show that bears reversibly cope with homeostatic perturbations considered detrimental to humans and describe a mechanism whereby IR functions not as a late-stage metabolic adaptation to obesity, but rather a gatekeeper of the fed-fasting transition.

  18. Insulin-Dependent Activation of MCH Neurons Impairs Locomotor Activity and Insulin Sensitivity in Obesity.

    PubMed

    Hausen, A Christine; Ruud, Johan; Jiang, Hong; Hess, Simon; Varbanov, Hristo; Kloppenburg, Peter; Brüning, Jens C

    2016-12-06

    Melanin-concentrating-hormone (MCH)-expressing neurons (MCH neurons) in the lateral hypothalamus (LH) are critical regulators of energy and glucose homeostasis. Here, we demonstrate that insulin increases the excitability of these neurons in control mice. In vivo, insulin promotes phosphatidylinositol 3-kinase (PI3K) signaling in MCH neurons, and cell-type-specific deletion of the insulin receptor (IR) abrogates this response. While lean mice lacking the IR in MCH neurons (IR(ΔMCH)) exhibit no detectable metabolic phenotype under normal diet feeding, they present with improved locomotor activity and insulin sensitivity under high-fat-diet-fed, obese conditions. Similarly, obesity promotes PI3 kinase signaling in these neurons, and this response is abrogated in IR(ΔMCH) mice. In turn, acute chemogenetic activation of MCH neurons impairs locomotor activity but not insulin sensitivity. Collectively, our experiments reveal an insulin-dependent activation of MCH neurons in obesity, which contributes via distinct mechanisms to the manifestation of impaired locomotor activity and insulin resistance.

  19. Dual Effect of Rosuvastatin on Glucose Homeostasis Through Improved Insulin Sensitivity and Reduced Insulin Secretion.

    PubMed

    Salunkhe, Vishal A; Mollet, Inês G; Ofori, Jones K; Malm, Helena A; Esguerra, Jonathan L S; Reinbothe, Thomas M; Stenkula, Karin G; Wendt, Anna; Eliasson, Lena; Vikman, Jenny

    2016-08-01

    Statins are beneficial in the treatment of cardiovascular disease (CVD), but these lipid-lowering drugs are associated with increased incidence of new on-set diabetes. The cellular mechanisms behind the development of diabetes by statins are elusive. Here we have treated mice on normal diet (ND) and high fat diet (HFD) with rosuvastatin. Under ND rosuvastatin lowered blood glucose through improved insulin sensitivity and increased glucose uptake in adipose tissue. In vitro rosuvastatin reduced insulin secretion and insulin content in islets. In the beta cell Ca(2+) signaling was impaired and the density of granules at the plasma membrane was increased by rosuvastatin treatment. HFD mice developed insulin resistance and increased insulin secretion prior to administration of rosuvastatin. Treatment with rosuvastatin decreased the compensatory insulin secretion and increased glucose uptake. In conclusion, our data shows dual effects on glucose homeostasis by rosuvastatin where insulin sensitivity is improved, but beta cell function is impaired. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Biomarkers in Fasting Serum to Estimate Glucose Tolerance, Insulin Sensitivity, and Insulin Secretion

    PubMed Central

    Goldfine, Allison B.; Gerwien, Robert W.; Kolberg, Janice A.; O’Shea, Sheila; Hamren, Sarah; Hein, Glenn P.; Xu, Xiaomei M.; Patti, Mary Elizabeth

    2014-01-01

    BACKGROUND Biomarkers for estimating reduced glucose tolerance, insulin sensitivity, or impaired insulin secretion would be clinically useful, since these physiologic measures are important in the pathogenesis of type 2 diabetes mellitus. METHODS We conducted a cross-sectional study in which 94 individuals, of whom 84 had 1 or more risk factors and 10 had no known risk factors for diabetes, underwent oral glucose tolerance testing. We measured 34 protein biomarkers associated with diabetes risk in 250-μL fasting serum samples. We applied multiple regression selection techniques to identify the most informative biomarkers and develop multivariate models to estimate glucose tolerance, insulin sensitivity, and insulin secretion. The ability of the glucose tolerance model to discriminate between diabetic individuals and those with impaired or normal glucose tolerance was evaluated by area under the ROC curve (AUC) analysis. RESULTS Of the at-risk participants, 25 (30%) were found to have impaired glucose tolerance, and 11 (13%) diabetes. Using molecular counting technology, we assessed multiple biomarkers with high accuracy in small volume samples. Multivariate biomarker models derived from fasting samples correlated strongly with 2-h postload glucose tolerance (R2 = 0.45, P < 0.0001), composite insulin sensitivity index (R2 = 0.91, P < 0.0001), and insulin secretion (R2 = 0.45, P < 0.0001). Additionally, the glucose tolerance model provided strong discrimination between diabetes vs impaired or normal glucose tolerance (AUC 0.89) and between diabetes and impaired glucose tolerance vs normal tolerance (AUC 0.78). CONCLUSIONS Biomarkers in fasting blood samples may be useful in estimating glucose tolerance, insulin sensitivity, and insulin secretion. PMID:21149503

  1. Ethnic Differences in the Relationship Between Insulin Sensitivity and Insulin Response

    PubMed Central

    Kodama, Keiichi; Tojjar, Damon; Yamada, Satoru; Toda, Kyoko; Patel, Chirag J.; Butte, Atul J.

    2013-01-01

    OBJECTIVE Human blood glucose levels have likely evolved toward their current point of stability over hundreds of thousands of years. The robust population stability of this trait is called canalization. It has been represented by a hyperbolic function of two variables: insulin sensitivity and insulin response. Environmental changes due to global migration may have pushed some human subpopulations to different points of stability. We hypothesized that there may be ethnic differences in the optimal states in the relationship between insulin sensitivity and insulin response. RESEARCH DESIGN AND METHODS We identified studies that measured the insulin sensitivity index (SI) and acute insulin response to glucose (AIRg) in three major ethnic groups: Africans, Caucasians, and East Asians. We identified 74 study cohorts comprising 3,813 individuals (19 African cohorts, 31 Caucasian, and 24 East Asian). We calculated the hyperbolic relationship using the mean values of SI and AIRg in the healthy cohorts with normal glucose tolerance. RESULTS We found that Caucasian subpopulations were located around the middle point of the hyperbola, while African and East Asian subpopulations are located around unstable extreme points, where a small change in one variable is associated with a large nonlinear change in the other variable. CONCLUSIONS Our findings suggest that the genetic background of Africans and East Asians makes them more and differentially susceptible to diabetes than Caucasians. This ethnic stratification could be implicated in the different natural courses of diabetes onset. PMID:23704681

  2. Important genetic checkpoints for insulin resistance in salt-sensitive (S) Dahl rats

    PubMed Central

    Shehata, Marlene F

    2008-01-01

    Despite the marked advances in research on insulin resistance (IR) in humans and animal models of insulin resistance, the mechanisms underlying high salt-induced insulin resistance remain unclear. Insulin resistance is a multifactorial disease with both genetic and environmental factors (such as high salt) involved in its pathogenesis. High salt triggers insulin resistance in genetically susceptible patients and animal models of insulin resistance. One of the mechanisms by which high salt might precipitate insulin resistance is through its ability to enhance an oxidative stress-induced inflammatory response that disrupts the insulin signaling pathway. The aim of this hypothesis is to discuss two complementary approaches to find out how high salt might interact with genetic defects along the insulin signaling and inflammatory pathways to predispose to insulin resistance in a genetically susceptible model of insulin resistance. The first approach will consist of examining variations in genes involved in the insulin signaling pathway in the Dahl S rat (an animal model of insulin resistance and salt-sensitivity) and the Dahl R rat (an animal model of insulin sensitivity and salt-resistance), and the putative cellular mechanisms responsible for the development of insulin resistance. The second approach will consist of studying the over-expressed genes along the inflammatory pathway whose respective activation might be predictive of high salt-induced insulin resistance in Dahl S rats. Variations in genes encoding the insulin receptor substrates -1 and/or -2 (IRS-1, -2) and/or genes encoding the glucose transporter (GLUTs) proteins have been found in patients with insulin resistance. To better understand the combined contribution of excessive salt and genetic defects to the etiology of the disease, it is essential to investigate the following question: Question 1: Do variations in genes encoding the IRS -1 and -2 and/or genes encoding the GLUTs proteins predict high salt

  3. How to transform a metabolic syndrome score into an insulin sensitivity value?

    PubMed

    Hermans, Michel P; Bouenizabila, Evariste; Ahn, Sylvie A; Rousseau, Michel F

    2016-01-01

    The metabolic syndrome (MetS) predicts cardiovascular risk and incident type 2 diabetes mellitus. The presence of a MetS is defined by the clustering of ≥3 out of 5 cardiometabolic criteria (hyperglycemia; hypertension; enlarged waist; low high-density lipoprotein-cholesterol; and hypertriglyceridemia), each of which is connected with insulin resistance. It is not known whether the severity of MetS, ranked from the sextet of scores range [0/5 to 5/5], is linearly related to reduced insulin sensitivity (IS) and/or lesser hyperbolic product across the glycemic spectrum. A total of 839 adults (54 normoglycemic; 785 with abnormal glucose homeostasis, among whom 711 type 2 diabetes mellitus) had insulin sensitivity assessed together with their cardiometabolic phenotype. There was a significant gradient according to interval-scale MetS score in insulinemia; body mass index; (visceral) fat; hepatic steatosis; and macroangiopathy. There was an inverse linear relationship between increasing MetS scores and decreased insulin sensitivity, allowing to define an insulin resistance-predicting linear equation: IS (%) = [-15.1 × MetS score] + 109.4 (R(2)  = 0.221). For each MetS category, mean IS values did not significantly differ between groups of patients across the glycemic spectrum. The hyperbolic product (β-cell function × IS) and/or its loss rate were inversely related to MetS severity. Insulin sensitivity is linearly and inversely related to MetS severity across the 6 scores. This novel way to exploit information intrinsic to the MetS criteria provides an easy and low cost means to quantify insulin sensitivity across the glycemic spectrum. Moreover, a higher MetS score is associated with lesser residual insulin secretion, and faster B-cell function loss. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Toll-like receptor 2 deficiency improves insulin sensitivity and hepatic insulin signalling in the mouse.

    PubMed

    Kuo, L-H; Tsai, P-J; Jiang, M-J; Chuang, Y-L; Yu, L; Lai, K-T A; Tsai, Y-S

    2011-01-01

    Substantial evidence suggests a link between elevated inflammation and development of insulin resistance. Toll-like receptor 2 (TLR2) recognises a large number of lipid-containing molecules and transduces inflammatory signalling in a variety of cell types, including insulin-responsive cells. Considering the contribution of the fatty acid composition in TLR2-depedent signalling, we hypothesised that the inflammatory signals transduced by TLR2 contribute to insulin resistance. Mice deficient in TLR2 were used to investigate the in vivo roles of TLR2 in initiating and maintaining inflammation-associated insulin resistance and energy homeostasis. We first recapitulated the observation with elevated expression of TLR2 and inflammatory cytokines in white adipose tissue and liver of ob/ob mice. Aged or high-fat-fed TLR2-deficient mice were protected from obesity and adipocyte hypertrophy compared with wild-type mice. Moreover, mice lacking TLR2 exhibited improved glucose tolerance and insulin sensitivity regardless of feeding them regular chow or a high-fat diet. This is accompanied by reductions in expression of inflammatory cytokines and activation of extracellular signal-regulated kinase (ERK) in a liver-specific manner. The attenuated hepatic inflammatory cytokine expression and related signalling are correlated with increased insulin action specifically in the liver in TLR2-deficient mice, reflected by increased insulin-stimulated protein kinase B (Akt) phosphorylation and IRS1 tyrosine phosphorylation and increased insulin-suppressed hepatocyte glucose production. The absence of TLR2 attenuates local inflammatory cytokine expression and related signalling and increases insulin action specifically in the liver. Thus, our work has identified TLR2 as a key mediator of hepatic inflammation-related signalling and insulin resistance.

  5. Dietary Sodium Restriction Decreases Insulin Secretion Without Affecting Insulin Sensitivity in Humans

    PubMed Central

    Byrne, Loretta M.; Yu, Chang; Wang, Thomas J.; Brown, Nancy J.

    2014-01-01

    Context: Interruption of the renin-angiotensin-aldosterone system prevents incident diabetes in high-risk individuals, although the mechanism remains unclear. Objective: To test the hypothesis that activation of the endogenous renin-angiotensin-aldosterone system or exogenous aldosterone impairs insulin secretion in humans. Design: We conducted a randomized, blinded crossover study of aldosterone vs vehicle and compared the effects of a low-sodium versus a high-sodium diet. Setting: Academic clinical research center. Participants: Healthy, nondiabetic, normotensive volunteers. Interventions: Infusion of exogenous aldosterone (0.7 μg/kg/h for 12.5 h) or vehicle during low or high sodium intake. Low sodium (20 mmol/d; n = 12) vs high sodium (160 mmol/d; n = 17) intake for 5–7 days. Main Outcome Measures: Change in acute insulin secretory response assessed during hyperglycemic clamps while in sodium balance during a low-sodium vs high-sodium diet during aldosterone vs vehicle. Results: A low-sodium diet increased endogenous aldosterone and plasma renin activity, and acute glucose-stimulated insulin (−16.0 ± 5.6%; P = .007) and C-peptide responses (−21.8 ± 8.4%; P = .014) were decreased, whereas the insulin sensitivity index was unchanged (−1.0 ± 10.7%; P = .98). Aldosterone infusion did not affect the acute insulin response (+1.8 ± 4.8%; P = .72) or insulin sensitivity index (+2.0 ± 8.8%; P = .78). Systolic blood pressure and serum potassium were similar during low and high sodium intake and during aldosterone infusion. Conclusions: Low dietary sodium intake reduces insulin secretion in humans, independent of insulin sensitivity. PMID:25029426

  6. Familial longevity is marked by enhanced insulin sensitivity.

    PubMed

    Wijsman, Carolien A; Rozing, Maarten P; Streefland, Trea C M; le Cessie, Saskia; Mooijaart, Simon P; Slagboom, P Eline; Westendorp, Rudi G J; Pijl, Hanno; van Heemst, Diana

    2011-02-01

    Insulin resistance is a risk factor for various age-related diseases. In the Leiden Longevity study, we recruited long-lived siblings and their offspring. Previously, we showed that, compared to controls, the offspring of long-lived siblings had a better glucose tolerance. Here, we compared groups of offspring from long-lived siblings and controls for the relation between insulin and glucose in nonfasted serum (n = 1848 subjects) and for quantitation of insulin action using a two-step hyperinsulinemic-euglycemic clamp (n = 24 subjects). Groups of offspring and controls were similar with regard to sex distribution, age, and body mass index. We observed a positive bi-phasic linear relationship between ln (insulin) levels and nonfasted glucose with a steeper slope from 10.7mU L(-1) insulin onwards in controls compared to offspring (P = 0.02). During the clamp study, higher glucose infusion rate was required to maintain euglycemia during high-dose insulin infusion (P = 0.036) in offspring, reflecting higher whole-body insulin sensitivity. After adjustment for sex, age, and fat mass, the insulin-mediated glucose disposal rate (GDR) was higher in offspring than controls (42.5 ± 2.7 vs. 33.2 ± 2.7 micromol kg(-1) min(-1) , mean ± SE, P = 0.025). The insulin-mediated suppression of endogenous glucose production and lipolysis did not differ between groups (all P > 0.05). Furthermore, GDR was significantly correlated with the mean age of death of the parents. In conclusion, offspring from long-lived siblings are marked by enhanced peripheral glucose disposal. Future research will focus on identifying the underlying biomolecular mechanisms, with the aim to promote health in old age.

  7. p75 neurotrophin receptor regulates glucose homeostasis and insulin sensitivity

    PubMed Central

    Baeza-Raja, Bernat; Li, Pingping; Le Moan, Natacha; Sachs, Benjamin D.; Schachtrup, Christian; Davalos, Dimitrios; Vagena, Eirini; Bridges, Dave; Kim, Choel; Saltiel, Alan R.; Olefsky, Jerrold M.; Akassoglou, Katerina

    2012-01-01

    Insulin resistance is a key factor in the etiology of type 2 diabetes. Insulin-stimulated glucose uptake is mediated by the glucose transporter 4 (GLUT4), which is expressed mainly in skeletal muscle and adipose tissue. Insulin-stimulated translocation of GLUT4 from its intracellular compartment to the plasma membrane is regulated by small guanosine triphosphate hydrolases (GTPases) and is essential for the maintenance of normal glucose homeostasis. Here we show that the p75 neurotrophin receptor (p75NTR) is a regulator of glucose uptake and insulin resistance. p75NTR knockout mice show increased insulin sensitivity on normal chow diet, independent of changes in body weight. Euglycemic-hyperinsulinemic clamp studies demonstrate that deletion of the p75NTR gene increases the insulin-stimulated glucose disposal rate and suppression of hepatic glucose production. Genetic depletion or shRNA knockdown of p75NTR in adipocytes or myoblasts increases insulin-stimulated glucose uptake and GLUT4 translocation. Conversely, overexpression of p75NTR in adipocytes decreases insulin-stimulated glucose transport. In adipocytes, p75NTR forms a complex with the Rab5 family GTPases Rab5 and Rab31 that regulate GLUT4 trafficking. Rab5 and Rab31 directly interact with p75NTR primarily via helix 4 of the p75NTR death domain. Adipocytes from p75NTR knockout mice show increased Rab5 and decreased Rab31 activities, and dominant negative Rab5 rescues the increase in glucose uptake seen in p75NTR knockout adipocytes. Our results identify p75NTR as a unique player in glucose metabolism and suggest that signaling from p75NTR to Rab5 family GTPases may represent a unique therapeutic target for insulin resistance and diabetes. PMID:22460790

  8. Mitochondrial inhibitor as a new class of insulin sensitizer.

    PubMed

    Zhang, Yong; Ye, Jianping

    2012-08-01

    Insulin resistance is a major risk factor for type 2 diabetes. AMP-activated protein kinase (AMPK) is a drug target in the improvement of insulin sensitivity. Several insulin-sensitizing medicines are able to activate AMPK through inhibition of mitochondrial functions. These drugs, such as metformin and STZ, inhibit ATP synthesis in mitochondria to raise AMP/ATP ratio in the process of AMPK activation. However, chemicals that activate AMPK directly or by activating its upstream kinases have not been approved for treatment of type 2 diabetes in humans. In an early study, we reported that berberine inhibited oxygen consumption in mitochondria, and increased AMP/ATP ratio in cells. The observation suggests an indirect mechanism for AMPK activation by berberine. Berberine stimulates glycolysis for ATP production that offsets the cell toxicity after mitochondria inhibition. The study suggests that mitochondrial inhibition is an approach for AMPK activation. In this review article, literature is critically reviewed to interpret the role of mitochondria function in the mechanism of insulin resistance, which supports that mitochondria inhibitors represent a new class of AMPK activator. The inhibitors are promising candidates for insulin sensitizers. This review provides a guideline in search for small molecule AMPK activators in the drug discovery for type 2 diabetes.

  9. Chromogranin A Regulation of Obesity and Peripheral Insulin Sensitivity

    PubMed Central

    Bandyopadhyay, Gautam K.; Mahata, Sushil K.

    2017-01-01

    Chromogranin A (CgA) is a prohormone and granulogenic factor in endocrine and neuroendocrine tissues, as well as in neurons, and has a regulated secretory pathway. The intracellular functions of CgA include the initiation and regulation of dense-core granule biogenesis and sequestration of hormones in neuroendocrine cells. This protein is co-stored and co-released with secreted hormones. The extracellular functions of CgA include the generation of bioactive peptides, such as pancreastatin (PST), vasostatin, WE14, catestatin (CST), and serpinin. CgA knockout mice (Chga-KO) display: (i) hypertension with increased plasma catecholamines, (ii) obesity, (iii) improved hepatic insulin sensitivity, and (iv) muscle insulin resistance. These findings suggest that individual CgA-derived peptides may regulate different physiological functions. Indeed, additional studies have revealed that the pro-inflammatory PST influences insulin sensitivity and glucose tolerance, whereas CST alleviates adiposity and hypertension. This review will focus on the different metabolic roles of PST and CST peptides in insulin-sensitive and insulin-resistant models, and their potential use as therapeutic targets. PMID:28228748

  10. Bromocriptine and insulin sensitivity in lean and obese subjects

    PubMed Central

    Verberne, H J; Brakema, E; Tepaske, R; Booij, J; Hoekstra, J B; Holleman, F

    2016-01-01

    Bromocriptine is a glucose-lowering drug, which was shown to be effective in obese subjects with insulin resistance. It is usually administered in the morning. The exact working mechanism of bromocriptine still has to be elucidated. Therefore, in this open-label randomized prospective cross-over mechanistic study, we assessed whether the timing of bromocriptine administration (morning vs evening) results in different effects and whether these effects differ between lean and obese subjects. We studied the effect of bromocriptine on insulin sensitivity in 8 lean and 8 overweight subjects using an oral glucose tolerance test. The subjects used bromocriptine in randomized cross-over order for 2 weeks in the morning and 2 weeks in the evening. We found that in lean subjects, bromocriptine administration in the evening resulted in a significantly higher post-prandial insulin sensitivity as compared with the pre-exposure visit (glucose area under the curve (AUC) 742 mmol/L * 120 min (695–818) vs 641 (504–750), P = 0.036, AUC for insulin did not change, P = 0.575). In obese subjects, both morning and evening administration of bromocriptine resulted in a significantly higher insulin sensitivity: morning administration in obese: insulin AUC (55,900 mmol/L * 120 min (43,236–96,831) vs 36,448 (25,213–57,711), P = 0.012) and glucose AUC P = 0.069; evening administration in obese: glucose AUC (735 mmol/L * 120 min (614–988) vs 644 (568–829), P = 0.017) and insulin AUC, P = 0.208. In conclusion, bromocriptine increases insulin sensitivity in both lean and obese subjects. In lean subjects, this effect only occurred when bromocriptine was administrated in the evening, whereas in the obese, insulin sensitivity increased independent of the timing of bromocriptine administration. PMID:27758845

  11. MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels

    PubMed Central

    Nagarajan, Arvindhan; Petersen, Max C.; Nasiri, Ali R.; Butrico, Gina; Fung, Annie; Ruan, Hai-Bin; Kursawe, Romy; Caprio, Sonia; Thibodeau, Jacques; Bourgeois-Daigneault, Marie-Claude; Sun, Lisha; Gao, Guangping; Bhanot, Sanjay; Jurczak, Michael J.; Green, Michael R.; Shulman, Gerald I.; Wajapeyee, Narendra

    2016-01-01

    Insulin resistance is a key driver of type 2 diabetes (T2D) and is characterized by defective insulin receptor (INSR) signalling. Although surface INSR downregulation is a well-established contributor to insulin resistance, the underlying molecular mechanisms remain obscure. Here we show that the E3 ubiquitin ligase MARCH1 impairs cellular insulin action by degrading cell surface INSR. Using a large-scale RNA interference screen, we identify MARCH1 as a negative regulator of INSR signalling. March1 loss-of-function enhances, and March1 overexpression impairs, hepatic insulin sensitivity in mice. MARCH1 ubiquitinates INSR to decrease cell surface INSR levels, but unlike other INSR ubiquitin ligases, MARCH1 acts in the basal state rather than after insulin stimulation. Thus, MARCH1 may help set the basal gain of insulin signalling. MARCH1 expression is increased in white adipose tissue of obese humans, suggesting that MARCH1 contributes to the pathophysiology of T2D and could be a new therapeutic target. PMID:27577745

  12. Quantitative Estimation of Insulin Sensitivity in Type 1 Diabetic Subjects Wearing a Sensor-Augmented Insulin Pump

    PubMed Central

    Schiavon, Michele; Dalla Man, Chiara; Kudva, Yogish C.; Basu, Ananda; Cobelli, Claudio

    2014-01-01

    OBJECTIVE The goal was to develop a new index of insulin sensitivity in patients with type 1 diabetes estimated from continuous glucose monitoring (CGM) and subcutaneous insulin delivery data under carefully controlled conditions. RESEARCH DESIGN AND METHODS The database consists of 12 subjects with type 1 diabetes, studied during breakfast, lunch, and dinner, in a clinical research unit, wearing both subcutaneous insulin pump and CGM device. Frequent blood samples were drawn for measurements of plasma glucose and insulin concentrations in order to estimate insulin sensitivity with the oral minimal model (SIMM). The new index of insulin sensitivity (SISP) was calculated with a simple algebraic formula for each meal, using only CGM and insulin pump data and compared with SIMM. RESULTS SISP was well correlated with SIMM (r = 0.825; P < 10−8), and diurnal pattern was also similar to SIMM. CONCLUSIONS A novel method for estimating insulin sensitivity in subjects with type 1 diabetes on sensor-augmented insulin pump therapy has been presented. This new index correlates well with the reference oral minimal model estimate of insulin sensitivity. The knowledge of patient-specific insulin sensitivity and its diurnal variation can help in optimizing insulin therapy in type 1 diabetes and could also inform next-generation closed-loop control systems. PMID:24319120

  13. Quantitative estimation of insulin sensitivity in type 1 diabetic subjects wearing a sensor-augmented insulin pump.

    PubMed

    Schiavon, Michele; Dalla Man, Chiara; Kudva, Yogish C; Basu, Ananda; Cobelli, Claudio

    2014-01-01

    The goal was to develop a new index of insulin sensitivity in patients with type 1 diabetes estimated from continuous glucose monitoring (CGM) and subcutaneous insulin delivery data under carefully controlled conditions. The database consists of 12 subjects with type 1 diabetes, studied during breakfast, lunch, and dinner, in a clinical research unit, wearing both subcutaneous insulin pump and CGM device. Frequent blood samples were drawn for measurements of plasma glucose and insulin concentrations in order to estimate insulin sensitivity with the oral minimal model (SI(MM)). The new index of insulin sensitivity (SI(SP)) was calculated with a simple algebraic formula for each meal, using only CGM and insulin pump data and compared with SI(MM). SI(SP) was well correlated with SI(MM) (r = 0.825; P < 10(-8)), and diurnal pattern was also similar to SI(MM). A novel method for estimating insulin sensitivity in subjects with type 1 diabetes on sensor-augmented insulin pump therapy has been presented. This new index correlates well with the reference oral minimal model estimate of insulin sensitivity. The knowledge of patient-specific insulin sensitivity and its diurnal variation can help in optimizing insulin therapy in type 1 diabetes and could also inform next-generation closed-loop control systems.

  14. Maternal periodontal disease in rats decreases insulin sensitivity and insulin signaling in adult offspring.

    PubMed

    Shirakashi, Daisy J; Leal, Rosana P; Colombo, Natalia H; Chiba, Fernando Y; Garbin, Cléa A S; Jardim, Elerson G; Antoniali, Cristina; Sumida, Doris H

    2013-03-01

    Periodontal disease during pregnancy has been recognized as one of the causes of preterm and low-birth-weight (PLBW) babies. Several studies have demonstrated that PLBW babies are prone to developing insulin resistance as adults. Although there is controversy over the association between periodontal disease and PLBW, the phenomenon known as programming can translate any stimulus or aggression experienced during intrauterine growth into physiologic and metabolic alterations in adulthood. The purpose of the present study is to investigate whether the offspring of rats with periodontal disease develop insulin resistance in adulthood. Ten female Wistar rats were divided into periodontal disease (PED) and control (CN) groups. All rats were mated at 7 days after induction of periodontal disease. Male offspring were divided into two groups: 1) periodontal disease offspring (PEDO; n = 24); and 2) control offspring (CNO; n = 24). Offspring body weight was measured from birth until 75 days. When the offspring reached 75 days old, the following parameters were measured: 1) plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and tumor necrosis factor-α (TNF-α); 2) insulin sensitivity (IS); and 3) insulin signal transduction (IST) in insulin-sensitive tissues. Low birth weight was not detected in the PEDO group. However, plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and TNF-α were increased and IS and IST were reduced (P <0.05) in the PEDO group compared with the CNO group. Maternal periodontal disease may induce insulin resistance and reduce IST in adult offspring, but such alterations are not attributable to low birth weight.

  15. Insulin-Sensitizers, Polycystic Ovary Syndrome and Gynaecological Cancer Risk

    PubMed Central

    Lauretta, Rosa; Lanzolla, Giulia; Vici, Patrizia; Mariani, Luciano; Moretti, Costanzo

    2016-01-01

    Preclinical, early phase clinical trials and epidemiological evidence support the potential role of insulin-sensitizers in cancer prevention and treatment. Insulin-sensitizers improve the metabolic and hormonal profile in PCOS patients and may also act as anticancer agents, especially in cancers associated with hyperinsulinemia and oestrogen dependent cancers. Several lines of evidence support the protection against cancer exerted by dietary inositol, in particular inositol hexaphosphate. Metformin, thiazolidinediones, and myoinositol postreceptor signaling may exhibit direct inhibitory effects on cancer cell growth. AMPK, the main molecular target of metformin, is emerging as a target for cancer prevention and treatment. PCOS may be correlated to an increased risk for developing ovarian and endometrial cancer (up to threefold). Several studies have demonstrated an increase in mortality rate from ovarian cancer among overweight/obese PCOS women compared with normal weight women. Long-term use of metformin has been associated with lower rates of ovarian cancer. Considering the evidence supporting a higher risk of gynaecological cancer in PCOS women, we discuss the potential use of insulin-sensitizers as a potential tool for chemoprevention, hypothesizing a possible rationale through which insulin-sensitizers may inhibit tumourigenesis. PMID:27725832

  16. Abatacept Improves Whole-Body Insulin Sensitivity in Rheumatoid Arthritis

    PubMed Central

    Ursini, Francesco; Russo, Emilio; Letizia Hribal, Marta; Mauro, Daniele; Savarino, Francesca; Bruno, Caterina; Tripolino, Cesare; Rubino, Mariangela; Naty, Saverio; Grembiale, Rosa Daniela

    2015-01-01

    Abstract Rheumatoid arthritis (RA) is characterized by increased insulin resistance, a well-known risk factor for diabetes and cardiovascular diseases. The aim of the present study was to evaluate the effect of abatacept on insulin sensitivity in RA patients with moderate to severe disease despite treatment with methotrexate. Fifteen RA patients were recruited for the present study. Patients were evaluated at time 0 and after 6 months of the treatment with i.v. abatacept at the dosage recommended for weight range. Evaluation included oral glucose tolerance test (OGTT) at both time points. Insulin sensitivity was estimated with insulin sensitivity index (ISI) by Matsuda, a measure of whole-body insulin sensitivity. ISI significantly increased after the treatment with abatacept from 3.7 ± 2.6 to 5.0 ± 3.2 (P = 0.003) with a mean difference of 1.23. Analysis of glucose and insulin values during OGTT revealed a reduction of both glucose (303.9 ± 73.4 mg/dL min versus 269.2 ± 69.5 mg/dL min, P = 0.009) and insulin (208.4 ± 119.7 mg/dL min versus 158.0 ± 95.3 mg/dL min, P = 0.01) area under the curves (AUCs). Accordingly also glycated hemoglobin significantly improved (5.5 ± 0.4% versus 5.3 ± 0.3%, P = 0.04). No significant differences were found for measures of β-cell function insulinogenic index (1.11 ± 1.19 versus 1.32 ± 0.82, P = 0.77) and oral disposition index (2.0 ± 5.4 versus 6.0 ± 6.0, P = 0.25). Treatment with abatacept seems to be able to improve whole-body insulin sensitivity in RA patients without affecting β-cell function. PMID:26020396

  17. Activated Kupffer cells inhibit insulin sensitivity in obese mice

    PubMed Central

    Tencerova, Michaela; Aouadi, Myriam; Vangala, Pranitha; Nicoloro, Sarah M.; Yawe, Joseph C.; Cohen, Jessica L.; Shen, Yuefei; Garcia-Menendez, Lorena; Pedersen, David J.; Gallagher-Dorval, Karen; Perugini, Richard A.; Gupta, Olga T.; Czech, Michael P.

    2015-01-01

    Obesity promotes insulin resistance associated with liver inflammation, elevated glucose production, and type 2 diabetes. Although insulin resistance is attenuated in genetic mouse models that suppress systemic inflammation, it is not clear whether local resident macrophages in liver, denoted Kupffer cells (KCs), directly contribute to this syndrome. We addressed this question by selectively silencing the expression of the master regulator of inflammation, NF-κB, in KCs in obese mice. We used glucan-encapsulated small interfering RNA particles (GeRPs) that selectively silence gene expression in macrophages in vivo. Following intravenous injections, GeRPs containing siRNA against p65 of the NF-κB complex caused loss of NF-κB p65 expression in KCs without disrupting NF-κB in hepatocytes or macrophages in other tissues. Silencing of NF-κB expression in KCs in obese mice decreased cytokine secretion and improved insulin sensitivity and glucose tolerance without affecting hepatic lipid accumulation. Importantly, GeRPs had no detectable toxic effect. Thus, KCs are key contributors to hepatic insulin resistance in obesity and a potential therapeutic target for metabolic disease.—Tencerova, M., Aouadi, M., Vangala, P., Nicoloro, S. M., Yawe, J. C., Cohen, J. L., Shen, Y., Garcia-Menendez, L., Pedersen, D. J., Gallagher-Dorval, K., Perugini, R. A., Gupta, O. T., Czech, M. P. Activated Kupffer cells inhibit insulin sensitivity in obese mice. PMID:25805830

  18. Taiwanese vegetarians have higher insulin sensitivity than omnivores.

    PubMed

    Hung, Chien-Jung; Huang, Po-Chao; Li, Yi-Hwei; Lu, Shao-Chun; Ho, Low-Tone; Chou, Hsu-Fang

    2006-01-01

    The present study was designed to examine the effects of habitual consumption of Taiwanese vegetarian diets on hormonal secretion, and on lipid and glycaemic control. Of the ninety-eight healthy female adults recruited from Hualien, Taiwan (aged 31-45 years), forty-nine were Buddhist lactovegetarians and forty-nine were omnivores. Dietary intakes were measured, and blood levels of nutrients and hormones were analysed. Vegetarians consumed less energy, fat and protein, but more fibre than the omnivores. Compared with the omnivores, the vegetarians had, on average, lower BMI and smaller waist circumference. Except for slightly lower levels of thyroxine (T4) in vegetarians, vegetarians and omnivores both showed similar levels of triiodothyronine (T3), free T4, thyroid-stimulating hormone, T3:T4 ratio and cortisol. Compared with the omnivores, the vegetarians had significantly lower levels of fasting insulin (median: 35.3 v. 50.6 pmol/l) and plasma glucose (mean: 4.7 (se 0.05) v. 4.9 (se 0.05) mmol/l). Insulin resistance, as calculated by the homeostasis model assessment method, was significantly lower in the vegetarians than in the omnivores (median: 1.10 v. 1.56), while beta-cell function was not different between the two groups. BMI and diet were both independent predictors for insulin resistance, and contributed 18 and 15 % of the variation in insulin resistance, respectively. In conclusion, Taiwanese vegetarians had lower glucose and insulin levels and higher insulin sensitivity than did the omnivores. Diet and lower BMI were partially responsible for the high insulin sensitivity observed in young Taiwanese vegetarians.

  19. Insulin secretion and sensitivity in space flight: diabetogenic effects

    NASA Technical Reports Server (NTRS)

    Tobin, Brian W.; Uchakin, Peter N.; Leeper-Woodford, Sandra K.

    2002-01-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  20. Insulin secretion and sensitivity in space flight: diabetogenic effects

    NASA Technical Reports Server (NTRS)

    Tobin, Brian W.; Uchakin, Peter N.; Leeper-Woodford, Sandra K.

    2002-01-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  1. Insulin secretion and sensitivity in space flight: diabetogenic effects.

    PubMed

    Tobin, Brian W; Uchakin, Peter N; Leeper-Woodford, Sandra K

    2002-10-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  2. Determination of Insulin Secretory Defect and Insulin Sensitivity in Type 2 Diabetic Subjects in Bangladesh.

    PubMed

    Ferdous, J; Ahmed, S; Laila, R; Islam, M T; Rahaman, M F; Snigdha, K R; Sarkar, S; Khan, A S; Sarkar, A K

    2016-01-01

    Diabetes mellitus (DM) is defined as a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. This study was undertaken to explore the basic defect in type 2 diabetes patients in Bangladesh. This was an observational study with case control design, was conducted in the Biomedical Research Group, Research Division, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine Metabolic Disorders (BIRDEM), Dhaka, Bangladesh, during the period of July 2008 to June 2009. A total of 153 subjects were included in study of which 63 belonged to type 2 diabetes mellitus group and 90 were healthy controls. Fasting and 2 hours postprandial blood glucose, serum insulin, HOMA%B, HOMA%S, QuickI, Glucose /insulin ratio, TG were measured and age, BMI, WHR were recorded. Waist-hip ratio (WHR), was significantly higher in T2DM as compared to control subjects [WHR, mean±SD, 0.94±0.12 vs. 0.88±0.06, p<0.001]; Glucose and insulin ratio of T2DM was significantly higher as compared to control subject [Glu: Ins, Median (range) of 0.54 (0.17-2.33) vs. 0.37(0.06-1.52)]. Insulin secretion (HOMA%B) was significantly lower in diabetic as compared to control subjects [HOMA%B, median (range), 71(4.90-391) vs. 180(59-634) p<0.001]; The quantitative insulin sensitivity check Index (QUICKI) of diabetic subjects were significantly higher as compared to control [QUICKI median (range) 39.90(4.80-138.10) vs. 0.55(0.36-0.85), <0.001]. Triglyceride (TG) and cholesterol (Chol) were significantly higher [(mg/dl), (mean±SD), TG (142±80.14) vs. (142±80.14); Chol (189±50.76) vs. (172±45), p=0.029] in T2DM as compared to control subjects. Those with diabetes showed significant association with insulin secretory defect (HOMA%B, p=0.006) and insulin resistance as assessed by GINR (p<0.001) and QuickI (p<0.001) but not by HOMA%S (p=0.127). The present data suggest that both insulin secretory defect and insulin

  3. Novel repressor regulates insulin sensitivity through interaction with Foxo1

    PubMed Central

    Nakae, Jun; Cao, Yongheng; Hakuno, Fumihiko; Takemori, Hiroshi; Kawano, Yoshinaga; Sekioka, Risa; Abe, Takaya; Kiyonari, Hiroshi; Tanaka, Toshiya; Sakai, Juro; Takahashi, Shin-Ichiro; Itoh, Hiroshi

    2012-01-01

    Forkhead box-containing protein o (Foxo) 1 is a key transcription factor in insulin and glucose metabolism. We identified a Foxo1-CoRepressor (FCoR) protein in mouse adipose tissue that inhibits Foxo1's activity by enhancing acetylation via impairment of the interaction between Foxo1 and the deacetylase Sirt1 and via direct acetylation. FCoR is phosphorylated at Threonine 93 by catalytic subunit of protein kinase A and is translocated into nucleus, making it possible to bind to Foxo1 in both cytosol and nucleus. Knockdown of FCoR in 3T3-F442A cells enhanced expression of Foxo target and inhibited adipocyte differentiation. Overexpression of FCoR in white adipose tissue decreased expression of Foxo-target genes and adipocyte size and increased insulin sensitivity in Leprdb/db mice and in mice fed a high-fat diet. In contrast, Fcor knockout mice were lean, glucose intolerant, and had decreased insulin sensitivity that was accompanied by increased expression levels of Foxo-target genes and enlarged adipocytes. Taken together, these data suggest that FCoR is a novel repressor that regulates insulin sensitivity and energy metabolism in adipose tissue by acting to fine-tune Foxo1 activity. PMID:22510882

  4. Insulin sensitizers in adolescents with polycystic ovary syndrome.

    PubMed

    LE, Trang N; Wickham, Edmond P; Nestler, John E

    2017-10-01

    Polycystic ovary syndrome (PCOS) is the most common disorder of androgen excess in women of reproductive age. The diagnosis of PCOS can be more challenging in adolescents than in adult women given significant overlap between normal puberty and the signs of PCOS, including acne, menstrual irregularity, and polycystic ovarian morphology. Optimal treatments for adult women with PCOS vary depending on patient risk factors and reproductive goals, but mainly include hormonal contraception and insulin sensitizers. There is continued interest in targeting the intrinsic insulin resistance that contributes to metabolic and hormonal derangements associated with PCOS. The vast majority of published data on insulin sensitizing PCOS treatments are reported in adult women; these have included weight loss, metformin, thiazolidinediones, and the inositols. Furthermore, there is also a small but growing body of evidence in support of the use of insulin sensitizers in adolescents, with or without oral contraceptives. Discussion of the available treatments, including benefits, potential side effects, and incorporation of patient and family preferences is critical in developing a plan of care aimed at achieving patient-important improvements in PCOS signs and symptoms while addressing the longer-term cardiometabolic risks associated with the syndrome.

  5. Improvements in insulin sensitivity are blunted by subclinical hypothyroidism.

    PubMed

    Amati, Francesca; Dubé, John J; Stefanovic-Racic, Maja; Toledo, Frederico G; Goodpaster, Bret H

    2009-02-01

    Exercise- and weight loss-induced improvements in insulin resistance (IR) are variable; some individuals experience robust enhancements in insulin sensitivity, whereas others do not. Thyroid hormone status is related to IR, but it is not clear whether subclinical hypothyroidism may help to explain the variability in improvements in IR with diet and exercise. The purpose of this study was to examine whether thyroid hormone status is related to the improvement in insulin sensitivity and physical fitness after weight loss and exercise training. By retrospective nested case-control analysis, eight subclinical hypothyroid (sHT) subjects and eight matched euthyroid controls underwent a euglycemic hyperinsulinemic clamp and peak oxygen uptake test, before and after a 16-wk program of moderate aerobic exercise combined with diet-induced weight loss. All subjects were middle-aged (57.3 +/- 3.3 yr), were overweight to obese (body mass index = 33.1 +/- 0.8 kg m(-2)), and had impaired glucose tolerance. The improvement in insulin sensitivity was significantly lower (P < 0.05) in the sHT group than in the euthyroid group. Both groups performed similar amounts of regular exercise and lost a significant amount of body weight during the intervention. VO(2peak) tended to improve in the euthyroid group but not in the sHT group. Subclinical hypothyroidism may interfere with beneficial adaptations on muscle metabolism and physical fitness that typically occur with weight loss and increased physical activity. These results may have significant clinical implications because of the high prevalence of both hypothyroidism and insulin resistance in the aging population.

  6. Mechanical horseback riding improves insulin sensitivity in elder diabetic patients.

    PubMed

    Kubota, Masakazu; Nagasaki, Masaru; Tokudome, Mizuho; Shinomiya, Youichi; Ozawa, Takahisa; Sato, Yuzo

    2006-02-01

    The present study was undertaken to analyze the acute and chronic effects of exercise on insulin sensitivity in elder diabetic patients using a horseback riding therapeutic equipment (Joba). The acute effects of exercise were examined by means of a single session of Joba riding that lasted for 30 min. The average glucose infusion rates (GIR) before and during exercise were regarded as an index of the insulin action in peripheral tissues by the euglycemic clamp. The chronic effects of exercise were studied by training the elder diabetic patients for 12 weeks using the Joba apparatus. The insulin sensitivity was determined pre- and post-training by a 90 min euglycemic clamp. In the acute study, average GIR during exercise was significantly higher than pre-exercise (7.8+/-0.4 versus 5.2+/-0.3 mg kg(-1)min(-1), P<0.01) and average GIR during recovery decreased to almost the same levels of pre-exercise (5.0+/-0.4 mg kg(-1)min(-1); P<0.01). The 12-week training resulted in a significant increase in the steady-state GIR (from 5.2+/-0.3 to 7.4+/-0.8 mg kg(-1)min(-1); P<0.05). The steady-state GIR after 12 weeks of detraining returned to pre-training levels (5.3+/-0.5 mg kg(-1)min(-1); P<0.05). In elder diabetic patients, mechanical horseback riding enhances the insulin-induced glucose uptake.

  7. Glucocorticoid signaling in the arcuate nucleus modulates hepatic insulin sensitivity.

    PubMed

    Yi, Chun-Xia; Foppen, Ewout; Abplanalp, William; Gao, Yuanqing; Alkemade, Anneke; la Fleur, Susanne E; Serlie, Mireille J; Fliers, Eric; Buijs, Ruud M; Tschöp, Matthias H; Kalsbeek, Andries

    2012-02-01

    Glucocorticoid receptors are highly expressed in the hypothalamic paraventricular nucleus (PVN) and arcuate nucleus (ARC). As glucocorticoids have pronounced effects on neuropeptide Y (NPY) expression and as NPY neurons projecting from the ARC to the PVN are pivotal for balancing feeding behavior and glucose metabolism, we investigated the effect of glucocorticoid signaling in these areas on endogenous glucose production (EGP) and insulin sensitivity by local retrodialysis of the glucocorticoid receptor agonist dexamethasone into the ARC or the PVN, in combination with isotope dilution and hyperinsulinemic-euglycemic clamp techniques. Retrodialysis of dexamethasone for 90 min into the ARC or the PVN did not have significant effects on basal plasma glucose concentration. During the hyperinsulinemic-euglycemic clamp, retrodialysis of dexamethasone into the ARC largely prevented the suppressive effect of hyperinsulinemia on EGP. Antagonizing the NPY1 receptors by intracerebroventricular infusion of its antagonist largely blocked the hepatic insulin resistance induced by dexamethasone in the ARC. The dexamethasone-ARC-induced inhibition of hepatic insulin sensitivity was also prevented by hepatic sympathetic denervation. These data suggest that glucocorticoid signaling specifically in the ARC neurons modulates hepatic insulin responsiveness via NPY and the sympathetic system, which may add to our understanding of the metabolic impact of clinical conditions associated with hypercortisolism.

  8. [Insulin sensitizer--anti-diabetic drugs, metformin and pioglitazone that can improve insulin resistance].

    PubMed

    Korenaga, Masaaki; Kawaguchi, Koutaro; Korenaga, Keiko; Uchida, Kouichi; Sakaida, Iso

    2006-06-01

    Nonalcoholic steatohepatitis (NASH), which is considered the hepatic manifestation of the metabolic syndrome is an increasingly cause of chronic liver disease in Japan. NASH is finally lead to liver cirrhosis and hepatocellular carcinoma as viral hepatitis, therefore, medical treatment should be considered, when NASH occurs. Treatment of patients with metabolic syndrome has been focused on the management of associated conditions such as obesity, hyperlipidemia, hypertension and hyperinsulinemia. Insulin resistance, that could accelerate liver inflammation and fibrosis by up-regulation of TNFa seems to be most important factor in many cases of NASH. The insulin-sensitizing drugs, which were biguanides (metformin) and thiazolidinediones (pioglitazone) have been shown to correct not only insulin resistance but also steatosis and inflammation in the liver. Metformin and pioglitazone might be useful drugs against NASH, however further investigations were needed.

  9. [Insulin sensitivity in patients not responding to ovulation induction using clomiphene citrate].

    PubMed

    Vital Reyes, Víctor Saúl; Téllez Velasco, Sergio; Ríos Castillo, Brendha; Badillo Buenfil, Manuel; Hinojosa Cruz, Juan Carlos

    2012-07-01

    The role of insulin resistance (IR) of infertile patients with chronic anovulation in their therapeutic failure to clomiphene citrate (CC) is not quite clear. Determine the sensitivity to insulin in patients with chronic anovulation and failure to the treatment with clomiphene citrate. A cross-sectional clinical study in infertile patients with clomiphene citrate resistance and in patients with adequate response to clomiphene citrate was carried out. In all patients insulin resistance was determined by the rate of glucose/insulin, HOMA (Homestatic Model Assessment) and the insulin sensitivity test. For the inferential statistical analysis, a Student's t test for independent samples was used. The average total basal insulin was 19.6 +/- 8.1 microU/mL. We observed higher concentrations in the clomiphene citrate resistance group (22.1 +/- 8.9 vs. 15.8 +/- 5.1 mU/mL p = 0.07). The glucose/insulin rate was statistically minor in patients with resistance to clomiphene citrate (4.2 +/- 1.9 versus 6.9 +/- 2.1 p = 0.02), but HOMA was not significantly different in both groups (4.3 +/- 1.4 vs. 3.9 +/- 1.3 p = 0.6). The total rate of glucose disappearance (KIIT) was 4.1 +/- 1.2. However, the statistical analysis did not show significant statistical differences between the two groups. Our preliminary results suggest that insulin resistance can be a mechanism involved in the pharmacologic response to ovulation induction in infertile patients, but coexisting pathophysiological mechanisms such as hyperandrogenism might also account for the lack of response to clomiphene citrate.

  10. High Dose Astaxanthin Lowers Blood Pressure and Increases Insulin Sensitivity in Rats: Are These Effects Interdependent?

    PubMed Central

    Preuss, Harry G.; Echard, Bobby; Yamashita, Eiji; Perricone, Nicholas V.

    2011-01-01

    The present investigation in Sprague-Dawley rats (SD) was designed to examine effects of astaxanthin (Asta) at different doses on elevated blood pressure (BP) and glucose-insulin perturbations produced by heavy sucrose ingestion. We also examined effects of Asta on BP during restraint stress. SD were divided into six groups each containing eight rats. All SD ate a basic diet of ground regular rat chow with sucrose added at 30% w/w. The Control group received only the basic diet containing added sucrose, while the other five groups each received the same diet with added test material: captopril, (30 mg/Kg), pioglitazone (15.0 mg/Kg), low Asta (25 mg/Kg), medium Asta (50 mg/kg) or high Asta (100 mg/Kg). Many tests were carried out to examine the mechanisms behind the effects of Asta on BP (serum ACE activity, losartan challenge, and LNAME challenge) and the glucose-insulin system (glucose tolerance, HOMA measurement, and insulin challenge). In SD, a relatively low dose of Asta decreased SBP, but produced no major changes in the glucose-insulin system simulating results from a previous study using Zucker Fatty Rats. Increasing the dose of Asta resulted in both a lowering of elevated systolic BP and enhanced insulin sensitivity determined by many different estimations. BP lowering was consistent with changes in the renin-angiotensin (RAS) and nitric oxide (NO) systems. At the examined doses of each, captopril lowered BP in SD without influencing glucose-insulin metabolism, whereas pioglitazone favorably affected glucose-insulin metabolism while showing essentially no effects on BP. Accordingly, Asta beneficially affects both sucrose-induced elevations of BP and insulin resistance at relatively high doses in SD. Also, Asta at higher doses lessens restraint stress, whereas, captopril and pioglitazone did not at the doses examined, even though they influenced the BP and glucose-insulin systems respectively. PMID:21326955

  11. PROXIMITY TO DELIVERY ALTERS INSULIN SENSITIVITY AND GLUCOSE METABOLISM IN PREGNANT MICE

    PubMed Central

    Musial, Barbara; Fernandez-Twinn, Denise S.; Vaughan, Owen R.; Ozanne, Susan E.; Voshol, Peter; Sferruzzi-Perri, Amanda N.; Fowden, Abigail L.

    2016-01-01

    In late pregnancy, maternal insulin resistance occurs to support fetal growth but little is known about insulin-glucose dynamics close to delivery. This study measured insulin sensitivity in mice in late pregnancy, day (D) 16, and near term, D19, (term 20.5D). Non-pregnant (NP) and pregnant mice were assessed for metabolite and hormone concentrations, body composition by dual energy X-ray absorptiometry, tissue insulin signalling protein abundance by Western blotting, glucose tolerance and utilisation, and insulin sensitivity using acute insulin administration and hyperinsulinaemic-euglycaemic clamps with 3H-glucose infusion. Whole body insulin resistance occurred in D16 pregnant dams in association with basal hyperinsulinaemia, insulin-resistant endogenous glucose production and downregulation of several proteins in hepatic and skeletal muscle insulin signalling pathways relative to NP and D19 values. Insulin resistance was less pronounced at D19 with restoration of NP insulin concentrations, improved hepatic insulin sensitivity and increased abundance of hepatic insulin signalling proteins. At D16, insulin resistance at whole body, tissue and molecular levels will favour fetal glucose acquisition while improved D19 hepatic insulin sensitivity will conserve glucose for maternal use in anticipation of lactation. Tissue sensitivity to insulin, therefore, alters differentially with proximity to delivery in pregnant mice with implications for human and other species. PMID:26740602

  12. Chronic leucine supplementation increases body weight and insulin sensitivity in rats on high-fat diet likely by promoting insulin signaling in insulin-target tissues.

    PubMed

    Li, Xiang; Wang, Xiaolei; Liu, Rui; Ma, Yan; Guo, Huailan; Hao, Liping; Yao, Ping; Liu, Liegang; Sun, Xiufa; He, Ka; Cao, Wenhong; Yang, Xuefeng

    2013-06-01

    This study investigated the effect of chronic leucine supplementation on insulin sensitivity and the associated mechanisms in rats on high-fat diet (HFD). Male Sprague-Dawley rats were fed either normal chow diet or HFD supplemented with 0, 1.5, 3.0, and 4.5% leucine for 24 weeks. We found that chronic leucine supplementation increased insulin sensitivity together with increased body weight in rats on HFD, but had no effect on insulin sensitivity in rats on normal chow diet. The increased insulin sensitivity by leucine supplementation was not associated with altered ectopic fat accumulation in liver and muscle, plasma levels of lipids and cytokines, but is associated with reduced oxidative stress and improved insulin signaling. Chronic leucine supplementation did not enhance insulin receptor substract-1 (IRS-1) phosphorylation on serine 302, but elevated basal IRS-1 phosphorylation on tyrosine 632 and improved insulin-stimulated protein kinase B (Akt) and mammalian target of rapamycin (mTOR) phosphorylation in liver, skeletal muscle, and adipose tissue of rats on HFD rats, indicating leucine supplementation prevented HFD-induced insulin resistance in insulin-target tissues. Chronic leucine supplementation can increase insulin sensitivity and body weight likely by reducing oxidative stress and improving insulin signaling pathway in rats on HFD. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effects of Dietary n-3 Fatty Acids on Hepatic and Peripheral Insulin Sensitivity in Insulin-Resistant Humans

    PubMed Central

    Lalia, Antigoni Z.; Johnson, Matthew L.; Jensen, Michael D.; Hames, Kazanna C.; Port, John D.

    2015-01-01

    OBJECTIVE Dietary n-3 polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), prevent insulin resistance and stimulate mitochondrial biogenesis in rodents, but the findings of translational studies in humans are thus far ambiguous. The aim of this study was to evaluate the influence of EPA and DHA on insulin sensitivity, insulin secretion, and muscle mitochondrial function in insulin-resistant, nondiabetic humans using a robust study design and gold-standard measurements. RESEARCH DESIGN AND METHODS Thirty-one insulin-resistant adults received 3.9 g/day EPA+DHA or placebo for 6 months in a randomized double-blind study. Hyperinsulinemic-euglycemic clamp with somatostatin was used to assess hepatic and peripheral insulin sensitivity. Postprandial glucose disposal and insulin secretion were measured after a meal. Measurements were performed at baseline and after 6 months of treatment. Abdominal fat distribution was evaluated by MRI. Muscle oxidative capacity was measured in isolated mitochondria using high-resolution respirometry and noninvasively by magnetic resonance spectroscopy. RESULTS Compared with placebo, EPA+DHA did not alter peripheral insulin sensitivity, postprandial glucose disposal, or insulin secretion. Hepatic insulin sensitivity, determined from the suppression of endogenous glucose production by insulin, exhibited a small but significant improvement with EPA+DHA compared with placebo. Muscle mitochondrial function was unchanged by EPA+DHA or placebo. CONCLUSIONS This study demonstrates that dietary EPA+DHA does not improve peripheral glucose disposal, insulin secretion, or skeletal muscle mitochondrial function in insulin-resistant nondiabetic humans. There was a modest improvement in hepatic insulin sensitivity with EPA+DHA, but this was not associated with any improvements in clinically meaningful outcomes. PMID:25852206

  14. Acute Sleep Restriction Reduces Insulin Sensitivity in Adolescent Boys.

    PubMed

    Klingenberg, Lars; Chaput, Jean-Philippe; Holmbäck, Ulf; Visby, Trine; Jennum, Poul; Nikolic, Miki; Astrup, Arne; Sjödin, Anders

    2013-07-01

    Short sleep duration has been linked to impaired glucose metabolism in many experimental studies. Moreover, studies have reported indications of an increased metabolic stress following sleep restriction. We aimed to investigate the effects of partial sleep deprivation on markers of glucose metabolism. Additionally, we aimed to investigate if short sleep duration induces a state of endocrine stress. A randomized crossover design, with 2 experimental conditions: 3 consecutive nights of short sleep (SS, 4 h/night) and long sleep (LS, 9 h/night) duration. In 21 healthy, normal-weight male adolescents (mean ± SD age: 16.8 ± 1.3 y) we measured pre- and post-prandial glucose, insulin, C-peptide, and glucagon concentrations. Furthermore, we measured fasting cortisol, 24-h catecholamines, and sympathovagal balance. Fasting insulin was 59% higher (P = 0.001) in the SS than the LS condition as was both fasting (24%, P < 0.001) and post-prandial (11%, P = 0.018) C-peptide. Pre- and post-prandial glucose and glucagon were unchanged between conditions. The homeostasis model assessment of insulin resistance (HOMA-IR) index was 65% higher (P = 0.002) and the Matsuda index was 28% lower (P = 0.007) in the SS condition compared to the LS condition. The awakening cortisol response and 24-h norepinephrine were not affected by sleep duration, whereas 24-h epinephrine was 24% lower (P = 0.013) in the SS condition. Neither daytime nor 24-h sympathovagal balance differed between sleep conditions. Short wave sleep was preserved in the SS condition. Short-term sleep restriction is associated with decreased insulin sensitivity in healthy normal-weight adolescent boys. There were no indications of endocrine stress beyond this. Klingenberg L; Chaput JP; Holmbäck U; Visby T; Jennum P; Nikolic M; Astrup A; Sjödin A. Acute Sleep Restriction Reduces Insulin Sensitivity in Adolescent Boys. SLEEP 2013;36(7):1085-1090.

  15. Aromatase Inhibition Reduces Insulin Sensitivity in Healthy Men

    PubMed Central

    Homer, Natalie Z. M.; Faqehi, Abdullah M. M.; Upreti, Rita; Livingstone, Dawn E.; McInnes, Kerry J.; Andrew, Ruth; Walker, Brian R.

    2016-01-01

    Context: Deficiency of aromatase, the enzyme that catalyzes the conversion of androgens to estrogens, is associated with insulin resistance in humans and mice. Objective: We hypothesized that pharmacological aromatase inhibition results in peripheral insulin resistance in humans. Design: This was a double-blind, randomized, controlled, crossover study. Setting: The study was conducted at a clinical research facility. Participants: Seventeen healthy male volunteers (18–50 y) participated in the study. Intervention: The intervention included oral anastrozole (1 mg daily) and placebo, each for 6 weeks with a 2-week washout period. Main Outcome Measure: Glucose disposal and rates of lipolysis were measured during a stepwise hyperinsulinemic euglycemic clamp. Data are mean (SEM). Results: Anastrozole therapy resulted in significant estradiol suppression (59.9 ± 3.6 vs 102.0 ± 5.7 pmol/L, P = < .001) and a more modest elevation of total T (25.8 ± 1.2 vs 21.4 ± 0.7 nmol/L, P = .003). Glucose infusion rate, during the low-dose insulin infusion, was lower after anastrozole administration (12.16 ± 1.33 vs 14.15 ± 1.55 μmol/kg·min, P = .024). No differences in hepatic glucose production or rate of lipolysis were observed. Conclusion: Aromatase inhibition reduces insulin sensitivity, with respect to peripheral glucose disposal, in healthy men. Local generation and action of estradiol, at the level of skeletal muscle, is likely to be an important determinant of insulin sensitivity. PMID:26967690

  16. Lipid metabolism disturbances contribute to insulin resistance and decrease insulin sensitivity by malathion exposure in Wistar rat.

    PubMed

    Lasram, Mohamed Montassar; Bouzid, Kahena; Douib, Ines Bini; Annabi, Alya; El Elj, Naziha; El Fazaa, Saloua; Abdelmoula, Jaouida; Gharbi, Najoua

    2015-04-01

    Several studies showed that organophosphorus pesticides disturb glucose homeostasis and can increase incidence of metabolic disorders and diabetes via insulin resistance. The current study investigates the influence of malathion on glucose metabolism regulation, in vivo, during subchronic exposure. Malathion was administered orally (200 mg/kg), once a day for 28 consecutive days. Plasma glucose, insulin and Glycated hemoglobin levels were significantly increased while hepatic glycogen content was decreased in intoxicated animals compared with the control group. Furthermore, there was a significant disturbance of lipid content in subchronic treated and post-treated rats deprived of malathion for one month. In addition, we used the homeostasis model assessment (HOMA) to assess insulin resistance (HOMA-IR) and pancreatic β-cell function (HOMA-β). Our results show that malathion increases insulin resistance biomarkers and decreases insulin sensitivity indices. Statistical analysis demonstrates that there was a positive and strong significant correlation between insulin level and insulin resistance indices, HOMA-IR, HOMA-β. Similarly, a negative and significant correlation was also found between insulin level and insulin sensitivity indices. For the first time, we demonstrate that malathion induces insulin resistance in vivo using homeostasis model assessment and these changes were detectable one month after the end of exposure. To explain insulin resistance induced by malathion we focus on lipid metabolism disturbances and their interaction with many proteins involved in insulin signaling pathways.

  17. Diabetes mellitus and insulin in an aspirin sensitive asthmatic.

    PubMed

    Caplin, I

    1976-03-01

    The infrequency of diabetes mellitus and asthma in the same individual is re-examined. The antagonism between epinephrine and insulin, as suggested by Konig in 1935, is indeed accurate. The assays done by the Eli Lilly Research Department revealed no in vitro effect of insulin on the CAMP and GMP level of mast cells as occurs in liver cells. It is felt that this effect is probably an in vivo effect produced via the vagus nerve and alpha-adrenergic receptor system stimulation. This would explain the mechanism of aggravation of asthma by excess insulin. Dr. Petersen's studies, the negative intradermal skin tests to insulin and the absence of change on either beef or pork insulin usage by our patient all point to a nonatopic factor in the aggravation of the asthma of this patient. In the uncommon occurrence of asthma and diabetes in the same patient, insulin dosage should be considered as a factor in all such asthmatics who do not respond well to conventional therapy. Two additional asthmatics who also have diabetes did improve with cessation of nocturnal asthma by a reduction of their evening dose of insulin. A high fat, low carbohydrate diet, as suggested by Abrahamson to avoid dietary hyperinsulinism, is certainly worth considering in patients with nocturnal asthma. If patients cannot be made to follow a diet requiring frequent feedings high in protein and fats and low in carbohydrates, another approach suggests itself. Abrahamson was able to relieve the patients who developed nocturnal asthma with hypoglycemia by having them drink a glass of milk. Assuming other causes have been eliminated and a patient awakens each day at 3:00 a.m., an alarm clock could be set at 2:00 a.m. Milk or a milk substitute in milk sensitive patients could be taken at 2:00 a.m. to raise the blood sugar and hopefully prevent the asthma associated with hypoglycemia. Also to be noted is the ubiquitous use of tartrazine in so many drugs, including those used to relieve asthmatic symptoms

  18. Green Tea Increases Insulin Sensitivity and Decreases Brain Oxidative Stress in Fructose Fed Rats

    USDA-ARS?s Scientific Manuscript database

    Hyperglycemia and insulin resistance are leading causes of early brain alterations. Our objective was to investigate the in vivo effects of green tea extract on insulin sensitivity, insulin signaling, and brain oxidative stress using an experimental rodent model of diet-induced insulin resistance, t...

  19. Variable Hepatic Insulin Clearance with Attendant Insulinemia is the Primary Determinant of Insulin Sensitivity in the Normal Dog

    PubMed Central

    Ader, Marilyn; Stefanovski, Darko; Kim, Stella P.; Richey, Joyce M.; Ionut, Viorica; Catalano, Karyn J.; Hucking, Katrin; Ellmerer, Martin; Van Citters, Gregg; Hsu, Isabel R.; Chiu, Jenny D.; Woolcott, Orison O.; Harrison, Lisa N.; Zheng, Dan; Lottati, Maya; Kolka, Cathryn M.; Mooradian, Vahe; Dittmann, Justin; Yae, Sophia; Liu, Huiwen; Castro, Ana Valeria B.; Kabir, Morvarid; Bergman, Richard N.

    2013-01-01

    OBJECTIVE Insulin resistance is a powerful risk factor for Type 2 diabetes and a constellation of chronic diseases, and is most commonly associated with obesity. We examined if factors other than obesity are more substantial predictors of insulin sensitivity under baseline, non-stimulated conditions. DESIGN AND METHODS Metabolic assessment was performed in healthy dogs (n=90). Whole-body sensitivity from euglycemic clamps (SICLAMP) was the primary outcome variable, and was measured independently by IVGTT (n=36). Adiposity was measured by MRI (n=90), and glucose-stimulated insulin response was measured from hyperglycemic clamp or IVGTT (n=86 and 36, respectively). RESULTS SICLAMP was highly variable (5.9 to 75.9 dl/min per kg per μU/ml). Despite narrow range of body weight (mean, 28.7±0.3 kg), adiposity varied ∼8-fold and was inversely correlated with SICLAMP (p<0.025). SICLAMP was negatively associated with fasting insulin, but most strongly associated with insulin clearance. Clearance was the dominant factor associated with sensitivity (r=0.53, p<0.00001), whether calculated from clamp or IVGTT. CONCLUSIONS These data suggest that insulin clearance contributes substantially to insulin sensitivity, and may be pivotal in understanding the pathogenesis of insulin resistance. We propose that hyperinsulinemia due to reduction in insulin clearance is responsible for insulin resistance secondary to changes in body weight. PMID:24123967

  20. Heart Rate Variability, Insulin Resistance, and Insulin Sensitivity in Japanese Adults: The Toon Health Study

    PubMed Central

    Saito, Isao; Hitsumoto, Shinichi; Maruyama, Koutatsu; Nishida, Wataru; Eguchi, Eri; Kato, Tadahiro; Kawamura, Ryoichi; Takata, Yasunori; Onuma, Hiroshi; Osawa, Haruhiko; Tanigawa, Takeshi

    2015-01-01

    Background Although impaired cardiac autonomic function is associated with an increased risk of type 2 diabetes in Caucasians, evidence in Asian populations with a lower body mass index is limited. Methods Between 2009–2012, the Toon Health Study recruited 1899 individuals aged 30–79 years who were not taking medication for diabetes. A 75-g oral glucose tolerance test was used to diagnose type 2 diabetes, and fasting and 2-h-postload glucose and insulin concentrations were measured. We assessed the homeostasis model assessment index for insulin resistance (HOMA-IR) and Gutt’s insulin sensitivity index (ISI). Pulse was recorded for 5 min, and time-domain heart rate variability (HRV) indices were calculated: the standard deviation of normal-to-normal intervals (SDNN) and the root mean square of successive difference (RMSSD). Power spectral analysis provided frequency domain measures of HRV: high frequency (HF) power, low frequency (LF) power, and the LF:HF ratio. Results Multivariate-adjusted logistic regression models showed decreased SDNN, RMSSD, and HF, and increased LF:HF ratio were associated significantly with increased HOMA-IR and decreased ISI. When stratified by overweight status, the association of RMSSD, HF, and LF:HF ratio with decreased ISI was also apparent in non-overweight individuals. The interaction between LF:HF ratio and decreased ISI in overweight individuals was significant, with the odds ratio for decreased ISI in the highest quartile of LF:HF ratio in non-overweight individuals being 2.09 (95% confidence interval, 1.41–3.10). Conclusions Reduced HRV was associated with insulin resistance and lower insulin sensitivity. Decreased ISI was linked with parasympathetic dysfunction, primarily in non-overweight individuals. PMID:26277879

  1. The effect of insulin dose on the measurement of insulin sensitivity by the minimal model technique. Evidence for saturable insulin transport in humans.

    PubMed Central

    Prigeon, R L; Røder, M E; Porte, D; Kahn, S E

    1996-01-01

    Administration of exogenous insulin during an intravenous glucose tolerance test allows the use of the minimal model technique to determine the insulin sensitivity index in subjects with reduced endogenous insulin responses. To study the effect of different insulin administration protocols, we performed three intravenous glucose tolerance tests in each of seven obese subjects (age, 20-41 yr; body mass index, 30-43 kg/m2). Three different insulin administration protocols were used: a low-dose (0.025 U/kg) infusion given over 10 min, a low-dose (0.025 U/kg) bolus injection, and a high-dose (0.050 U/kg) bolus injection, resulting in peak insulin concentrations of 1,167 +/- 156, 3,014 +/- 483, and 6,596 +/- 547 pM, respectively. The mean insulin sensitivity index was 4.80 +/- 0.95 x 10(-5), 3.56 +/- 0.53 x 10(-5), and 2.42 +/- 0.40 x 10(-5) min-1/pM respectively (chi +/- SEM; P = 0.01). The association of higher peak insulin concentrations with lower measured insulin sensitivity values suggested the presence of a saturable process. Because results were not consistent with the known saturation characteristics of insulin action on tissue, a second saturable site involving the transport of insulin from plasma to interstitium was introduced, leading to a calculated Km of 807 +/- 165 pM for this site, a value near the 1/Kd of the insulin receptor. Thus, the kinetics of insulin action in humans in these studies is consistent with two saturable sites, and supports the hypothesis for transport of insulin to the interstitial space. Saturation may have an impact on minimal model results when high doses of exogenous insulin are given as a bolus, but can be minimized by infusing insulin at a low dose. PMID:8567973

  2. Monomeric Tartrate Resistant Acid Phosphatase Induces Insulin Sensitive Obesity

    PubMed Central

    Lång, Pernilla; van Harmelen, Vanessa; Rydén, Mikael; Kaaman, Maria; Parini, Paolo; Carneheim, Claes; Cassady, A. Ian; Hume, David A.; Andersson, Göran; Arner, Peter

    2008-01-01

    Background Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP) is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer. Principal Findings Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity. Conclusion Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity. PMID:18320034

  3. Insulin sensitivity and counter-regulatory hormones in hypothyroidism and during thyroid hormone replacement therapy.

    PubMed

    Stanická, Sona; Vondra, Karel; Pelikánová, Terezie; Vlcek, Petr; Hill, Martin; Zamrazil, Václav

    2005-01-01

    We examined insulin sensitivity and secretion, together with the levels of selected glucoregulatory hormones, in 15 female patients with severe hypothyroidism (H) and during subsequent thyroid hormone replacement therapy (HRT) using the euglycaemic hyperinsulinaemic clamp technique. Insulin action, as evaluated by glucose disposal, the insulin sensitivity index, and fasting post-hepatic insulin delivery rate were established. The basal levels of insulin, C-peptide and counter-regulatory hormones were measured in basal condition. In H, glucose disposal (p<0.01), the insulin sensitivity index (p<0.01) and post-hepatic insulin delivery rate (p<0.05) were significantly lower than during HRT. No significant changes in the levels of fasting insulin and C-peptide were observed. The levels of counter-regulatory hormones in patients with H were significantly higher than during HRT (glucagon, p<0.05; epinephrine, p<0.01; cortisol, p<0.05; growth hormone, p<0.05). In H, an inverse correlation between insulin sensitivity and insulin secretion was observed (p<0.05). Cortisol was the most important factor affecting the variability of insulin sensitivity values, regardless of thyroid function (p=0.0012). In conclusion, H altered both insulin sensitivity and the levels of selected counter-regulatory hormones. The situation was restored by HRT, as manifested not only by normalisation of insulin sensitivity, secretion and levels of glucoregulatory hormones, but also by improvement of their relationships.

  4. Transmembrane tumor necrosis factor-alpha sensitizes adipocytes to insulin.

    PubMed

    Zhou, Wenjing; Yang, Peng; Liu, Li; Zheng, Shan; Zeng, Qingling; Liang, Huifang; Zhu, Yazhen; Zhang, Zunyue; Wang, Jing; Yin, Bingjiao; Gong, Feili; Wu, Yiping; Li, Zhuoya

    2015-05-05

    Transmembrane TNF-α (tmTNF-α) acts both as a ligand, delivering 'forward signaling' via TNFR, and as a receptor, transducing 'reverse signaling'. The contradiction of available data regarding the effect of tmTNF-α on insulin resistance may be due to imbalance in both signals. Here, we demonstrated that high glucose-induced impairment of insulin-stimulated glucose uptake by 3T3-L1 adipocytes was concomitant with decreased tmTNF-α expression and increased soluble TNF-α (sTNF-α) secretion. However, when TACE was inhibited, preventing the conversion of tmTNF-α to sTNF-α, this insulin resistance was partially reversed, indicating a salutary role of tmTNF-α. Treatment of 3T3-L1 adipocytes with exogenous tmTNF-α promoted insulin-induced phosphorylation of IRS-1 and Akt, facilitated GLUT4 expression and membrane translocation, and increased glucose uptake while addition of sTNF-α resulted in the opposite effect. Furthermore, tmTNF-α downregulated the production of IL-6 and MCP-1 via NF-κB inactivation, as silencing of A20, an inhibitor for NF-κB, by siRNA, abolished this effect of tmTNF-α. However, tmTNF-α upregulated adiponectin expression through the PPAR-γ pathway, as inhibition of PPAR-γ by GW9662 abrogated both tmTNF-α-induced adiponectin transcription and glucose uptake. Our data suggest that tmTNF-α functions as an insulin sensitizer via forward signaling. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Mathematical modeling of the insulin signal transduction pathway for prediction of insulin sensitivity from expression data.

    PubMed

    Ho, Clark K; Rahib, Lola; Liao, James C; Sriram, Ganesh; Dipple, Katrina M

    2015-01-01

    Mathematical models of biological pathways facilitate a systems biology approach to medicine. However, these models need to be updated to reflect the latest available knowledge of the underlying pathways. We developed a mathematical model of the insulin signal transduction pathway by expanding the last major previously reported model and incorporating pathway components elucidated since the original model was reported. Furthermore, we show that inputting gene expression data of key components of the insulin signal transduction pathway leads to sensible predictions of glucose clearance rates in agreement with reported clinical measurements. In one set of simulations, our model predicted that glycerol kinase knockout mice have reduced GLUT4 translocation, and consequently, reduced glucose uptake. Additionally, a comparison of our extended model with the original model showed that the added pathway components improve simulations of glucose clearance rates. We anticipate this expanded model to be a useful tool for predicting insulin sensitivity in mammalian tissues with altered expression protein phosphorylation or mRNA levels of insulin signal transduction pathway components. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues

    PubMed Central

    Baena, Miguel; Sangüesa, Gemma; Dávalos, Alberto; Latasa, María-Jesús; Sala-Vila, Aleix; Sánchez, Rosa María; Roglans, Núria; Laguna, Juan Carlos; Alegret, Marta

    2016-01-01

    Human studies support the relationship between high intake of fructose-sweetened beverages and type 2 diabetes, but there is a debate on whether this effect is fructose-specific or it is merely associated to an excessive caloric intake. Here we investigate the effects of 2 months’ supplementation to female rats of equicaloric 10% w/v fructose or glucose solutions on insulin sensitivity in target tissues. Fructose supplementation caused hepatic deposition of triglycerides and changed the fatty acid profile of this fraction, with an increase in monounsaturated and a decrease in polyunsaturated species, but did not cause inflammation and oxidative stress. Fructose but not glucose-supplemented rats displayed an abnormal glucose tolerance test, and did not show increased phosphorylation of V-akt murine thymoma viral oncogene homolog-2 (Akt) in white adipose tissue and liver after insulin administration. In skeletal muscle, phosphorylation of Akt and of Akt substrate of 160 kDA (AS160) was not impaired but the expression of the glucose transporter type 4 (GLUT4) in the plasma membrane was reduced only in fructose-fed rats. In conclusion, fructose but not glucose supplementation causes fatty liver without inflammation and oxidative stress and impairs insulin signaling in the three major insulin-responsive tissues independently from the increase in energy intake. PMID:27194405

  7. Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues.

    PubMed

    Baena, Miguel; Sangüesa, Gemma; Dávalos, Alberto; Latasa, María-Jesús; Sala-Vila, Aleix; Sánchez, Rosa María; Roglans, Núria; Laguna, Juan Carlos; Alegret, Marta

    2016-05-19

    Human studies support the relationship between high intake of fructose-sweetened beverages and type 2 diabetes, but there is a debate on whether this effect is fructose-specific or it is merely associated to an excessive caloric intake. Here we investigate the effects of 2 months' supplementation to female rats of equicaloric 10% w/v fructose or glucose solutions on insulin sensitivity in target tissues. Fructose supplementation caused hepatic deposition of triglycerides and changed the fatty acid profile of this fraction, with an increase in monounsaturated and a decrease in polyunsaturated species, but did not cause inflammation and oxidative stress. Fructose but not glucose-supplemented rats displayed an abnormal glucose tolerance test, and did not show increased phosphorylation of V-akt murine thymoma viral oncogene homolog-2 (Akt) in white adipose tissue and liver after insulin administration. In skeletal muscle, phosphorylation of Akt and of Akt substrate of 160 kDA (AS160) was not impaired but the expression of the glucose transporter type 4 (GLUT4) in the plasma membrane was reduced only in fructose-fed rats. In conclusion, fructose but not glucose supplementation causes fatty liver without inflammation and oxidative stress and impairs insulin signaling in the three major insulin-responsive tissues independently from the increase in energy intake.

  8. APPL1 potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin receptor.

    PubMed

    Ryu, Jiyoon; Galan, Amanda K; Xin, Xiaoban; Dong, Feng; Abdul-Ghani, Muhammad A; Zhou, Lijun; Wang, Changhua; Li, Cuiling; Holmes, Bekke M; Sloane, Lauren B; Austad, Steven N; Guo, Shaodong; Musi, Nicolas; DeFronzo, Ralph A; Deng, Chuxia; White, Morris F; Liu, Feng; Dong, Lily Q

    2014-05-22

    Binding of insulin receptor substrate proteins 1 and 2 (IRS1/2) to the insulin receptor (IR) is essential for the regulation of insulin sensitivity and energy homeostasis. However, the mechanism of IRS1/2 recruitment to the IR remains elusive. Here, we identify adaptor protein APPL1 as a critical molecule that promotes IRS1/2-IR interaction. APPL1 forms a complex with IRS1/2 under basal conditions, and this complex is then recruited to the IR in response to insulin or adiponectin stimulation. The interaction between APPL1 and IR depends on insulin- or adiponectin-stimulated APPL1 phosphorylation, which is greatly reduced in insulin target tissues in obese mice. appl1 deletion in mice consistently leads to systemic insulin resistance and a significant reduction in insulin-stimulated IRS1/2, but not IR, tyrosine phosphorylation, indicating that APPL1 sensitizes insulin signaling by acting at a site downstream of the IR. Our study uncovers a mechanism regulating insulin signaling and crosstalk between the insulin and adiponectin pathways.

  9. Increased insulin sensitivity and distorted mitochondrial adaptations during muscle unloading.

    PubMed

    Qi, Zhengtang; Zhang, Yuan; Guo, Wei; Ji, Liu; Ding, Shuzhe

    2012-12-11

    We aimed to further investigate mitochondrial adaptations to muscle disuse and the consequent metabolic disorders. Male rats were submitted to hindlimb unloading (HU) for three weeks. Interestingly, HU increased insulin sensitivity index (ISI) and decreased blood level of triglyceride and insulin. In skeletal muscle, HU decreased expression of pyruvate dehydrogenase kinase 4 (PDK4) and its protein level in mitochondria. HU decreased mtDNA content and mitochondrial biogenesis biomarkers. Dynamin-related protein (Drp1) in mitochondria and Mfn2 mRNA level were decreased significantly by HU. Our findings provide more extensive insight into mitochondrial adaptations to muscle disuse, involving the shift of fuel utilization towards glucose, the decreased mitochondrial biogenesis and the distorted mitochondrial dynamics.

  10. The importance of palmitoleic acid to adipocyte insulin resistance and whole-body insulin sensitivity in type 1 diabetes.

    PubMed

    Bergman, Bryan C; Howard, David; Schauer, Irene E; Maahs, David M; Snell-Bergeon, Janet K; Clement, Timothy W; Eckel, Robert H; Perreault, Leigh; Rewers, Marian

    2013-01-01

    Type 1 diabetes is an insulin-resistant state, but it is less clear which tissues are affected. Our previous report implicated skeletal muscle and liver insulin resistance in people with type 1 diabetes, but this occurred independently of generalized, visceral, or ectopic fat. The aim of the study was to measure adipose tissue insulin sensitivity and plasma triglyceride composition in individuals with type 1 diabetes after overnight insulin infusion to lower fasting glucose. Fifty subjects (25 individuals with type 1 diabetes and 25 controls without) were studied. After 3 d of dietary control and overnight insulin infusion, we performed a three-stage hyperinsulinemic/euglycemic clamp infusing insulin at 4, 8, and 40 mU/m(2) · min. Infusions of [1,1,2,3,3-(2)H(2)]glycerol and [1-(13)C]palmitate were used to quantify lipid metabolism. Basal glycerol and palmitate rates of appearance were similar between groups, decreased more in control subjects during the first two stages of the clamp, and similarly suppressed during the highest insulin dose. The concentration of insulin required for 50% inhibition of lipolysis was twice as high in individuals with type 1 diabetes. Plasma triglyceride saturation was similar between groups, but palmitoleic acid in plasma triglyceride was inversely related to adipocyte insulin sensitivity. Unesterified palmitoleic acid in plasma was positively related to insulin sensitivity in controls, but not in individuals with type 1 diabetes. Adipose tissue insulin resistance is a significant feature of type 1 diabetes. Palmitoleic acid is not related to insulin sensitivity in type 1 diabetes, as it was in controls, suggesting a novel mechanism for insulin resistance in this population.

  11. Measuring beta-cell function relative to insulin sensitivity in youth: Does the hyperglycemic clamp suffice?

    USDA-ARS?s Scientific Manuscript database

    To compare beta-cell function relative to insulin sensitivity, disposition index (DI), calculated from two clamps (2cDI, insulin sensitivity from the hyperinsulinemic-euglycemic clamp and first-phase insulin from the hyperglycemic clamp) with the DI calculated from the hyperglycemic clamp alone (hcD...

  12. Effect of oral L-carnitine administration on insulin sensitivity and lipid profile in type 2 diabetes mellitus patients.

    PubMed

    González-Ortiz, Manuel; Hernández-González, Sandra O; Hernández-Salazar, Eduardo; Martínez-Abundis, Esperanza

    2008-01-01

    It was the aim of this study to evaluate the effect of oral L-carnitine administration on insulin sensitivity and lipid profile in subjects with type 2 diabetes mellitus. A randomized, double-blind, placebo-controlled clinical trial was carried out in 12 subjects with type 2 diabetes. Six subjects received L-carnitine 1 g orally 3 times a day before meals for a period of 4 weeks. Six other individuals took a placebo for the same period of time, as the control group. Before and after the intervention, insulin sensitivity and the lipid profile were estimated. To assess insulin sensitivity, the euglycemic-hyperinsulinemic clamp technique was performed. Wilcoxon's signed rank and the Mann-Whitney U test were used for the statistical analyses. There were no significant differences in basal clinical characteristics between the 2 groups. Insulin sensitivity and the basal lipid profile were similar. There were no significant changes in either group after the intervention in insulin sensitivity (3.2 +/- 1.2 vs. 4.5 +/- 1.7 mg/kg/min, p = 0.115, and 3.5 +/- 0.6 vs. 3.5 +/- 0.4 mg/kg/min, p = 0.917, for the placebo and L-carnitine groups, respectively) and in lipid profile. L-Carnitine orally administered for a period of 4 weeks did not modify insulin sensitivity or the lipid profile. 2008 S. Karger AG, Basel.

  13. Mechanism by Which Caloric Restriction Improves Insulin Sensitivity in Sedentary Obese Adults

    PubMed Central

    Johnson, Matthew L.; Distelmaier, Klaus; Lanza, Ian R.; Irving, Brian A.; Robinson, Matthew M.; Konopka, Adam R.; Shulman, Gerald I.

    2016-01-01

    Caloric restriction (CR) improves insulin sensitivity and reduces the incidence of diabetes in obese individuals. The underlying mechanisms whereby CR improves insulin sensitivity are not clear. We evaluated the effect of 16 weeks of CR on whole-body insulin sensitivity by pancreatic clamp before and after CR in 11 obese participants (BMI = 35 kg/m2) compared with 9 matched control subjects (BMI = 34 kg/m2). Compared with the control subjects, CR increased the glucose infusion rate needed to maintain euglycemia during hyperinsulinemia, indicating enhancement of peripheral insulin sensitivity. This improvement in insulin sensitivity was not accompanied by changes in skeletal muscle mitochondrial oxidative capacity or oxidant emissions, nor were there changes in skeletal muscle ceramide, diacylglycerol, or amino acid metabolite levels. However, CR lowered insulin-stimulated thioredoxin-interacting protein (TXNIP) levels and enhanced nonoxidative glucose disposal. These results support a role for TXNIP in mediating the improvement in peripheral insulin sensitivity after CR. PMID:26324180

  14. Anthropometric measurements for assessing insulin sensitivity on patients with metabolic syndrome, sedentaries and marathoners.

    PubMed

    Severeyn, Erika; Wong, Sara; Herrera, Hector; Altuve, Miguel

    2015-08-01

    The diagnosis of low insulin sensitivity is commonly done through the HOMA-IR index, in which fasting insulin and glucose blood levels are evaluated. Insulin and blood glucose levels are used for insulin sensitivity assessment by surrogate methods (HOMA-IR, Matsuda, etc), but anthropometric measurements like body weight, height and waist circumference are not considered, even if these variables also are related to low insulin sensitivity and metabolic syndrome. In this study we evaluate the impact of anthropometric measurements on the HOMA-IR, Matsuda and Caumo indexes to estimate insulin sensitivity. Specifically, we compare insulin sensitivity indexes with and without the anthropometric measurements in their equations on three different groups: patients with metabolic syndrome, sedentaries and marathoners. Results show relationships between anthropometric variables and insulin sensitivity indexes. On the other hand, subjects are mapped differently for insulin sensitivity assessment when anthropometric variables are taken into account. In addition, subjects diagnosed with normal insulin sensitivity could be considered as having low insulin sensitivity when anthropometric variables are considered.

  15. Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene.

    PubMed

    Knowles, Joshua W; Xie, Weijia; Zhang, Zhongyang; Chennamsetty, Indumathi; Chennemsetty, Indumathi; Assimes, Themistocles L; Paananen, Jussi; Hansson, Ola; Pankow, James; Goodarzi, Mark O; Carcamo-Orive, Ivan; Morris, Andrew P; Chen, Yii-Der I; Mäkinen, Ville-Petteri; Ganna, Andrea; Mahajan, Anubha; Guo, Xiuqing; Abbasi, Fahim; Greenawalt, Danielle M; Lum, Pek; Molony, Cliona; Lind, Lars; Lindgren, Cecilia; Raffel, Leslie J; Tsao, Philip S; Schadt, Eric E; Rotter, Jerome I; Sinaiko, Alan; Reaven, Gerald; Yang, Xia; Hsiung, Chao A; Groop, Leif; Cordell, Heather J; Laakso, Markku; Hao, Ke; Ingelsson, Erik; Frayling, Timothy M; Weedon, Michael N; Walker, Mark; Quertermous, Thomas

    2015-04-01

    Decreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 (NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. The rs1208 "A" allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoproterenol-stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support a role for NAT2 in insulin sensitivity.

  16. Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene

    PubMed Central

    Knowles, Joshua W.; Xie, Weijia; Zhang, Zhongyang; Chennemsetty, Indumathi; Assimes, Themistocles L.; Paananen, Jussi; Hansson, Ola; Pankow, James; Goodarzi, Mark O.; Carcamo-Orive, Ivan; Morris, Andrew P.; Chen, Yii-Der I.; Mäkinen, Ville-Petteri; Ganna, Andrea; Mahajan, Anubha; Guo, Xiuqing; Abbasi, Fahim; Greenawalt, Danielle M.; Lum, Pek; Molony, Cliona; Lind, Lars; Lindgren, Cecilia; Raffel, Leslie J.; Tsao, Philip S.; Schadt, Eric E.; Rotter, Jerome I.; Sinaiko, Alan; Reaven, Gerald; Yang, Xia; Hsiung, Chao A.; Groop, Leif; Cordell, Heather J.; Laakso, Markku; Hao, Ke; Ingelsson, Erik; Frayling, Timothy M.; Weedon, Michael N.; Walker, Mark; Quertermous, Thomas

    2015-01-01

    Decreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 (NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. The rs1208 “A” allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoproterenol-stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support a role for NAT2 in insulin sensitivity. PMID:25798622

  17. L-Citrulline increases hepatic sensitivity to insulin by reducing the phosphorylation of serine 1101 in insulin receptor substrate-1.

    PubMed

    Yoshitomi, Hisae; Momoo, Maki; Ma, Xiao; Huang, Yewei; Suguro, Shiori; Yamagishi, Yoshie; Gao, Ming

    2015-06-18

    Insulin resistance is characterized by deficient responses to insulin in its target tissues. In the present study, we examined the effects of L-Citrulline (L-Cit) on insulin sensitivity and signaling cascades in rat hepatoma H4IIE cells and SHRSP.Z-Leprfa/IzmDmcr rats. H4IIE cells were pretreated in the presence or absence of 250 μM L-Cit in serum-free medium and then incubated in the presence or absence of 0.1 nM insulin. Rats were allocated into 2 groups; a control group (not treated) and L-Cit group (2 g/kg/day, L-Cit) and treated for 8 weeks. L-Cit enhanced the insulin-induced phosphorylation of Akt in H4IIE cells. Moreover, the inhibited expression of Dex/cAMP-induced PEPCK mRNA by insulin was enhanced by the L-Cit treatment. The phosphorylation of tyrosine, which is upstream of Akt, in insulin receptor substrate-1 (IRS-1) was increased by the L-Cit treatment. The L-Cit-induced enhancement in insulin signaling was not related to the binding affinity of insulin to the insulin receptor or to the expression of the insulin receptor, but to a decrease in the phosphorylation of serine 1101 in IRS-1. These results were also confirmed in animal experiments. In the livers of L-Cit-treated rats, PI3K/Akt signaling was improved by decreases in the phosphorylation of serine 1101. We herein demonstrated for the first time the beneficial effects of L-Cit on improved insulin resistance associated with enhanced insulin sensitivity. These results may have clinical applications for insulin resistance and the treatment of type-2 diabetes.

  18. Insulin-Mediated FFA Suppression Is Associated with Triglyceridemia and Insulin Sensitivity Independent of Adiposity

    PubMed Central

    Bush, Nikki C.; Basu, Rita; Rizza, Robert A.; Nair, K. Sreekumaran; Khosla, Sundeep

    2012-01-01

    Context: A central/visceral fat distribution and excess free fatty acid (FFA) availability are associated with dyslipidemia and insulin resistance. However, these two characteristics often coexist, making it difficult to detect the independent contributions of each. Whether FFA suppression is more closely linked to metabolic abnormalities is not clear. Objective: The aim of the study was to examine the relationship between FFA suppression, body fat distribution, and fitness as contributors toward insulin resistance and hypertriglyceridemia. Design: We measured systemic palmitate turnover using an iv infusion of [9,10-3H]palmitate; upper body sc adipose tissue (UBSQ) and visceral adipose tissue (VAT) with dual-energy x-ray absorptiometry and a single-slice abdominal computed tomography scan; fitness with a graded exercise treadmill test; and insulin sensitivity with both the iv glucose tolerance test (IVGTT) (SIIVGTT) and mixed meal tolerance test (SIMeal). Setting: The study was conducted at a General Clinical Research Center. Participants: Baseline data were obtained from 140 elderly adults (age, 60–88 yr; 83 males) and 60 young adults (age, 18–31 yr; 31 males) who participated in a previously published trial assessing the effects of 2-yr supplementation of dehydroepiandrosterone or testosterone on body composition, glucose metabolism, and bone density. Interventions: There were no interventions. Main Outcome Measures: We measured fasting plasma triglyceride (TG) concentrations, SIIVGTT, and SIMeal. Results: Using multivariate regression analysis, the strongest combined predictors of TG concentrations were VAT, postmeal nadir FFA concentrations, sex, and age. The best predictors of SIIVGTT were IVGTT nadir palmitate concentration, VAT, UBSQ fat, fitness, and age, whereas the best predictors of SIMeal were meal nadir palmitate concentration, UBSQ fat, fitness, and sex. Conclusions: FFA suppression is associated with both fasting TG concentrations and insulin

  19. Pharmacologic inhibition of ghrelin receptor signaling is insulin sparing and promotes insulin sensitivity.

    PubMed

    Longo, Kenneth A; Govek, Elizabeth K; Nolan, Anna; McDonagh, Thomas; Charoenthongtrakul, Soratree; Giuliana, Derek J; Morgan, Kristen; Hixon, Jeffrey; Zhou, Chaoseng; Kelder, Bruce; Kopchick, John J; Saunders, Jeffrey O; Navia, Manuel A; Curtis, Rory; DiStefano, Peter S; Geddes, Brad J

    2011-10-01

    Ghrelin influences a variety of metabolic functions through a direct action at its receptor, the GhrR (GhrR-1a). Ghrelin knockout (KO) and GhrR KO mice are resistant to the negative effects of high-fat diet (HFD) feeding. We have generated several classes of small-molecule GhrR antagonists and evaluated whether pharmacologic blockade of ghrelin signaling can recapitulate the phenotype of ghrelin/GhrR KO mice. Antagonist treatment blocked ghrelin-induced and spontaneous food intake; however, the effects on spontaneous feeding were absent in GhrR KO mice, suggesting target-specific effects of the antagonists. Oral administration of antagonists to HFD-fed mice improved insulin sensitivity in both glucose tolerance and glycemic clamp tests. The insulin sensitivity observed was characterized by improved glucose disposal with dramatically decreased insulin secretion. It is noteworthy that these results mimic those obtained in similar tests of HFD-fed GhrR KO mice. HFD-fed mice treated for 56 days with antagonist experienced a transient decrease in food intake but a sustained body weight decrease resulting from decreased white adipose, but not lean tissue. They also had improved glucose disposal and a striking reduction in the amount of insulin needed to achieve this. These mice had reduced hepatic steatosis, improved liver function, and no evidence of systemic toxicity relative to controls. Furthermore, GhrR KO mice placed on low- or high-fat diets had lifespans similar to the wild type, emphasizing the long-term safety of ghrelin receptor blockade. We have therefore demonstrated that chronic pharmacologic blockade of the GhrR is an effective and safe strategy for treating metabolic syndrome.

  20. Alcohol acutely increases vascular reactivity together with insulin sensitivity in type 2 diabetic men.

    PubMed

    Schaller, G; Kretschmer, S; Gouya, G; Haider, D G; Mittermayer, F; Riedl, M; Wagner, O; Pacini, G; Wolzt, M; Ludvik, B

    2010-01-01

    Moderate alcohol consumption is associated with increased insulin sensitivity and reduced cardiovascular risk. We hypothesized that this relates to a direct effect of alcohol and therefore investigated whether acute alcohol intake altered insulin sensitivity or endothelial function in patients with type 2 diabetes. In an open-label two period design, the effect of a single oral dose of 40 g of alcohol (168 ml 40% vodka) on an insulin-modified frequently sampled intravenous glucose tolerance test (FSIGT) and on endothelium-dependent (flow mediated, FMD) or endothelium-independent (glyceroltrinitrate (GTN)-induced) vasodilation of the brachial artery measured by ultrasound was studied. Experiments were carried out in twelve male patients with type 2 diabetes mellitus (64+/-6 years, body mass index 28.4+/-5.7 kg/m (2)). Baseline insulin sensitivity index (S (I)) was 1.10+/-0.34 min (-1).microU (-1).ml, baseline FMD was +4.1+/-3.0%, and GTN-induced vasodilation +7.4+/-2.3% from resting brachial artery diameter. Acute alcohol intake increased alcohol plasma levels to 0.33+/-0.04 per thousand, S (I) to 1.86+/-0.45 min (-1).microU (-1).ml (p<0.05), and FMD to +8.2+/-2.8% (p<0.05), while GTN-induced dilation remained unchanged. No relationship was detectable between the observed changes. We conclude that alcohol intake acutely increases endothelium-dependent brachial artery vasodilation in patients with type 2 diabetes together with insulin sensitivity. This acute effect might explain some beneficial effects of low alcohol consumption in epidemiological observations.

  1. Acute Sleep Restriction Reduces Insulin Sensitivity in Adolescent Boys

    PubMed Central

    Klingenberg, Lars; Chaput, Jean-Philippe; Holmbäck, Ulf; Visby, Trine; Jennum, Poul; Nikolic, Miki; Astrup, Arne; Sjödin, Anders

    2013-01-01

    Background: Short sleep duration has been linked to impaired glucose metabolism in many experimental studies. Moreover, studies have reported indications of an increased metabolic stress following sleep restriction. Objective: We aimed to investigate the effects of partial sleep deprivation on markers of glucose metabolism. Additionally, we aimed to investigate if short sleep duration induces a state of endocrine stress. Design: A randomized crossover design, with 2 experimental conditions: 3 consecutive nights of short sleep (SS, 4 h/night) and long sleep (LS, 9 h/night) duration. Subjects and Measurements: In 21 healthy, normal-weight male adolescents (mean ± SD age: 16.8 ± 1.3 y) we measured pre- and post-prandial glucose, insulin, C-peptide, and glucagon concentrations. Furthermore, we measured fasting cortisol, 24-h catecholamines, and sympathovagal balance. Results: Fasting insulin was 59% higher (P = 0.001) in the SS than the LS condition as was both fasting (24%, P < 0.001) and post-prandial (11%, P = 0.018) C-peptide. Pre- and post-prandial glucose and glucagon were unchanged between conditions. The homeostasis model assessment of insulin resistance (HOMA-IR) index was 65% higher (P = 0.002) and the Matsuda index was 28% lower (P = 0.007) in the SS condition compared to the LS condition. The awakening cortisol response and 24-h norepinephrine were not affected by sleep duration, whereas 24-h epinephrine was 24% lower (P = 0.013) in the SS condition. Neither daytime nor 24-h sympathovagal balance differed between sleep conditions. Short wave sleep was preserved in the SS condition. Conclusion: Short-term sleep restriction is associated with decreased insulin sensitivity in healthy normal-weight adolescent boys. There were no indications of endocrine stress beyond this. Citation: Klingenberg L; Chaput JP; Holmbäck U; Visby T; Jennum P; Nikolic M; Astrup A; Sjödin A. Acute Sleep Restriction Reduces Insulin Sensitivity in Adolescent Boys. SLEEP 2013

  2. Insulin sensitivity and secretion in Arab Americans with glucose intolerance.

    PubMed

    Salinitri, Francine D; Pinelli, Nicole R; Martin, Emily T; Jaber, Linda A

    2013-12-01

    This study examined the pathophysiological abnormalities in Arab Americans with impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT). Homeostasis model assessment of insulin resistance (HOMA-IR), homeostasis model assessment of insulin secretion (HOMA-%β), and the Matsuda Insulin Sensitivity Index composite (ISIcomposite) were calculated from the fasting and stimulated glucose and insulin concentrations measured during the oral glucose tolerance test in a population-based, representative, cross-sectional sample of randomly selected Arab Americans. In total, 497 individuals (42±14 years old; 40% males; body mass index [BMI], 29±6 kg/m(2)) were studied. Multivariate linear regression models were performed to compare HOMA-IR, HOMA-%β, and ISIcomposite among individuals with normal glucose tolerance (NGT) (n=191) versus isolated IFG (n=136), isolated IGT (n=22), combined IFG/IGT (n=43), and diabetes (n=105). Compared with individuals with NGT (2.9±1.6), HOMA-IR progressively increased in individuals with isolated IFG (4.8±2.7, P<0.001), combined IFG/IGT (6.0±4.3, P<0.001), and diabetes (9.7±8.3, P<0.001) but not in those with isolated IGT (3.0±1.7, P=0.87). After adjustment for sex and BMI, these associations remained unchanged. Whole-body insulin sensitivity as measured by ISIcomposite was significantly lower in individuals with isolated IFG (3.9±2.3, P<0.001), isolated IGT (2.8±1.5, P<0.001), combined IFG/IGT (1.9±1.1, P<0.001), and diabetes (1.6±1.1, P<0.001) compared with those with NGT (6.1±3.5). HOMA-%β was significantly lower in diabetes (113.7±124.9, P<0.001) compared with NGT (161.3±92.0). After adjustment for age, sex, and BMI, isolated IFG (146.6±80.2) was also significantly associated with a decline in HOMA-%β relative to NGT (P=0.005). This study suggests that differences in the underlying metabolic defects leading to diabetes in Arab Americans with IFG and/or IGT exist and may require different strategies for the

  3. Down-regulation of Risa improves insulin sensitivity by enhancing autophagy.

    PubMed

    Wang, Yuangao; Hu, Yanan; Sun, Chenxia; Zhuo, Shu; He, Zhishui; Wang, Hui; Yan, Menghong; Liu, Jun; Luan, Yi; Dai, Changgui; Yang, Yonggang; Huang, Rui; Zhou, Ben; Zhang, Fang; Zhai, Qiwei

    2016-09-01

    It has been reported that some small noncoding RNAs are involved in the regulation of insulin sensitivity. However, whether long noncoding RNAs also participate in the regulation of insulin sensitivity is still largely unknown. We identified and characterized a long noncoding RNA, regulator of insulin sensitivity and autophagy (Risa), which is a poly(A)(+) cytoplasmic RNA. Overexpression of Risa in mouse primary hepatocytes or C2C12 myotubes attenuated insulin-stimulated phosphorylation of insulin receptor, Akt, and Gsk3β, and knockdown of Risa alleviated insulin resistance. Further studies showed that overexpression of Risa in hepatocytes or myotubes decreased autophagy, and knockdown of Risa up-regulated autophagy. Moreover, knockdown of Atg7 or -5 significantly inhibited the effect of knockdown of Risa on insulin resistance, suggesting that knockdown of Risa alleviated insulin resistance via enhancing autophagy. In addition, tail vein injection of adenovirus to knock down Risa enhanced insulin sensitivity and hepatic autophagy in both C57BL/6 and ob/ob mice. Taken together, the data demonstrate that Risa regulates insulin sensitivity by affecting autophagy and suggest that Risa is a potential target for treating insulin-resistance-related diseases.-Wang, Y., Hu, Y., Sun, C., Zhuo, S., He, Z., Wang, H., Yan, M., Liu, J., Luan, Y., Dai, C., Yang, Y., Huang, R., Zhou, B., Zhang, F., Zhai, Q. Down-regulation of Risa improves insulin sensitivity by enhancing autophagy. © FASEB.

  4. Decreased insulin sensitivity during dietary sodium restriction is not mediated by effects of angiotensin II on insulin action.

    PubMed

    Perry, Colin G; Palmer, Tim; Cleland, Steven J; Morton, Ian J; Salt, Ian P; Petrie, John R; Gould, Gwyn W; Connell, John M C

    2003-08-01

    We have previously reported that modest dietary sodium restriction, as advocated in management guidelines for diabetes, may reduce insulin sensitivity. It has since been suggested that this effect may be mediated via cross-talk between insulin and angiotensin II (AII)-stimulated intracellular second messengers. In order to assess the effect of 5 days of modest sodium restriction (to <80 mmol/day target sodium intake) on insulin sensitivity, 15 healthy males underwent a double-blind, placebo-controlled, randomized, cross-over euglycaemic hyperinsulinaemic clamp study. One phase was supplemented with sodium tablets and the other with matched placebo. Insulin sensitivity (M) was reduced during dietary sodium restriction [median M value, 10.2 mg/kg per min (interquartile range 9.50-13.85) versus 12.8 mg/kg per min (interquartile range 9.60-14.30), P <0.05]. To elucidate potential mechanisms that may explain this observation, we investigated the effect of AII on insulin action in isolated adipocytes obtained from healthy females. No effect of AII on insulin-mediated glucose transport or suppression of lipolysis was observed. In conclusion, despite the observation that dietary sodium restriction was associated with a median 15% reduction in insulin sensitivity, we found no evidence of a direct effect of AII on insulin action in human adipocytes.

  5. 25-hydroxyvitamin D concentrations and in vivo insulin sensitivity and β-cell function relative to insulin sensitivity in black and white youth.

    PubMed

    Rajakumar, Kumaravel; de las Heras, Javier; Lee, SoJung; Holick, Michael F; Arslanian, Silva A

    2012-03-01

    To examine the relationships between plasma 25-hydroxyvitamin D [25(OH)D] and in vivo insulin sensitivity and β-cell function relative to insulin sensitivity, disposition index (DI), in black and white youth. Plasma 25(OH)D concentrations were analyzed in banked specimens in healthy youth aged 8 to 18 years who had existing data on hyperinsulinemic-euglycemic and hyperglycemic clamp to assess insulin sensitivity and secretion, and measurements of body composition, and abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). A total of 183 research volunteers (mean ± SD; age, 12.6 ± 2.2 years; 98 white, 98 male, 92 obese) were studied. Analysis of HbA(1c), fasting glucose and insulin, insulin sensitivity, and DI across quartiles of plasma 25(OH)D revealed no differences among whites. In blacks, the observed significance of higher insulin sensitivity and DI in the highest quartile of 25(OH)D disappeared after adjusting for any of the adiposity measures (BMI or fat mass or VAT or SAT). The difference in insulin sensitivity (9.4 ± 1.2 vs. 5.6 ± 0.5 mg/kg/min per μU/mL; P = 0.006) between 25(OH)D nondeficient (≥20 ng/mL) versus deficient (<20 ng/mL) black youth also was negated when adjusted for adiposity. In healthy youth, plasma 25(OH)D concentrations bear no independent relationship to parameters of glucose homeostasis and in vivo insulin sensitivity and β-cell function relative to insulin sensitivity. It remains to be determined whether in youth with dysglycemia the relationships are different and whether vitamin D optimization enhances insulin sensitivity and β-cell function.

  6. Evaluation of various insulin sensitivity indices in lean idiopathic hirsutism patients.

    PubMed

    Ucak, Sema; Basat, Okcan; Satir, Emine; Altuntas, Yuksel

    2012-01-01

    Hirsutism is characterized by excessive growth of terminal hair in a male pattern. Idiopathic hirsutism (IH) is a common cause of hirsutism. Since there are few data demonstrating IH is associated with insulin resistance, we tried to assess various insulin sensitivity indices in lean IH and compare with healthy subjects. A cross-sectional study was performed in 71 lean (BMI between 20-25 kg/m(2)) women (17-39 years old), 31 with IH and 40 healthy individuals. Blood glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), hepatic insulin sensitivity (ISI (HOMA)), Quicky index, reciprocal fasting insulin resistance index, fasting Belfiore index, and fasting glucose/insulin ration (GIR) were estimated using a single fasting sample of glucose and insulin levels. Raynaud indices calculated using the mathematical estimation in a single fasting sample of insulin levels were determined and compared in two groups. Fasting insulin, Raynaud index, HOMA-IR and Fasting insulin resistance index (FIRI) results were higher in IH group than in controls (p<0.01, for all). Fasting Belfiore index, QUICKI index, ISI(HOMA) and FIRI(-1) results were lower in IH group than in controls (p<0.01, for all). Our study showed that lean IH patients were more insulin resistant than healthy subjects. We propose that insulin sensitivity indices are useful methods for measuring insulin resistance in IH.

  7. Improvement of insulin sensitivity by a novel drug candidate, BGP-15, in different animal studies.

    PubMed

    Literáti-Nagy, Botond; Tory, Kálmán; Peitl, Barna; Bajza, Ágnes; Korányi, László; Literáti-Nagy, Zsuzsanna; Hooper, Philip L; Vígh, László; Szilvássy, Zoltán

    2014-03-01

    Insulin resistance has been recognized as the most significant predictor of further development of type 2 diabetes mellitus (T2DM). Here we investigated the effect of a heat shock protein (HSP) co-inducer, BGP-15, on insulin sensitivity in different insulin-resistant animal models and compared its effect with insulin secretagogues and insulin sensitizers. Insulin sensitivity was assessed by the hyperinsulinemic euglycemic glucose clamp technique in normal and cholesterol-fed rabbits and in healthy Wistar and Goto-Kakizaki (GK) rats in dose-ranging studies. We also examined the effect of BGP-15 on streptozotocin-induced changes in the vasorelaxation of the aorta in Sprague-Dawley rats. BGP-15 doses of 10 and 30 mg/kg increased insulin sensitivity by 50% and 70%, respectively, in cholesterol-fed but not in normal rabbits. After 5 days of treatment with BGP-15, the glucose infusion rate was increased in a dose-dependent manner in genetically insulin-resistant GK rats. The most effective dose was 20 mg/kg, which showed a 71% increase in insulin sensitivity compared to control group. Administration of BGP-15 protected against streptozotocin-induced changes in vasorelaxation, which was similar to the effect of rosiglitazone. Our results indicate that the insulin-sensitizing effect of BGP-15 is comparable to conventional insulin sensitizers. This might be of clinical utility in the treatment of T2DM.

  8. Should we continue or stop insulin sensitizing drugs during pregnancy?

    PubMed

    Norman, Robert J; Wang, Jim X; Hague, William

    2004-06-01

    The use of insulin sensitizing drugs such as metformin in polycystic ovary syndrome has been increasingly popular and validated by systematic reviews. There has also been an interest in the use of metformin for gestational diabetes. However, administration of metformin to prevent miscarriage is controversial and widespread use of this drug in early pregnancy requires investigation. There are claims that miscarriage and gestational diabetes are more common in polycystic ovary syndrome and that use of insulin sensitizers improves outcomes dramatically. This review suggests there is no evidence for increased risk of miscarriage solely due to polycystic ovary syndrome and that there are insufficient data for promoting therapy with metformin. There is some reason for use of metformin in mid-pregnancy for gestational diabetes but better evidence from randomized controlled trials is urgently needed. The use of metformin in early pregnancy for reducing the risk of miscarriage should be avoided outside of the context of properly designed prospective randomized trials. Safety in early pregnancy appears to be reassuring but not completely proven. The use of metformin in mid-pregnancy for gestational diabetes appears more logical but also needs adequate trials before general use is advocated.

  9. Dietary patterns, insulin sensitivity and adiposity in the multi-ethnic Insulin Resistance Atherosclerosis Study population.

    PubMed

    Liese, Angela D; Schulz, Mandy; Moore, Charity G; Mayer-Davis, Elizabeth J

    2004-12-01

    Epidemiological investigations increasingly employ dietary-pattern techniques to fully integrate dietary data. The present study evaluated the relationship of dietary patterns identified by cluster analysis with measures of insulin sensitivity (SI) and adiposity in the multi-ethnic, multi-centre Insulin Resistance Atherosclerosis Study (IRAS, 1992-94). Cross-sectional data from 980 middle-aged adults, of whom 67 % had normal and 33 % had impaired glucose tolerance, were analysed. Usual dietary intake was obtained by an interviewer-administered, validated food-frequency questionnaire. Outcomes included SI, fasting insulin (FI), BMI and waist circumference. The relationship of dietary patterns to log(SI+1), log(FI), BMI and waist circumference was modelled with multivariable linear regressions. Cluster analysis identified six distinct diet patterns--'dark bread', 'wine', 'fruits', 'low-frequency eaters', 'fries' and 'white bread'. The 'white bread' and the 'fries' patterns over-represented the Hispanic IRAS population predominantly from two centres, while the 'wine' and 'dark bread' groups were dominated by non-Hispanic whites. The dietary patterns were associated significantly with each of the outcomes first at the crude, clinical level (P<0.001). Furthermore, they were significantly associated with FI, BMI and waist circumference independent of age, sex, race or ethnicity, clinic, family history of diabetes, smoking and activity (P<0.004), whereas significance was lost for SI. Studying the total dietary behaviour via a pattern approach allowed us to focus both on the qualitative and quantitative dimensions of diet. The present study identified highly consistent associations of distinct dietary patterns with measures of insulin resistance and adiposity, which are risk factors for diabetes and heart disease.

  10. Hepatic Circadian-Clock System Altered by Insulin Resistance, Diabetes and Insulin Sensitizer in Mice

    PubMed Central

    Yang, Shih-Hsien; Shieh, Kun-Ruey

    2015-01-01

    Circadian rhythms are intrinsic rhythms that are coordinated with the rotation of the Earth and are also generated by a set of circadian-clock genes at the intracellular level. Growing evidence suggests a strong link between circadian rhythms and energy metabolism; however, the fundamental mechanisms remain unclear. In the present study, neonatal streptozotocin (STZ)-treated mice were used to model the molecular and physiological progress from insulin resistance to diabetes. Two-day-old male C57BL/6 mice received a single injection of STZ and were tested for non-obese, hyperglycemic and hyperinsulinemic conditions in the early stage, insulin resistance in the middle stage, and diabetes in the late stage. Gene expression levels of the hepatic circadian-clock system were examined by real-time quantitative PCR. Most of the components of the hepatic circadian-clock gene expression system, such as the mRNAs of Bmal1 (brain and muscle Arnt-like protein-1), Per2 (period 2) and Cry1 (cryptochrome 1), were elevated, and circadian patterns were retained in the early and middle stages of insulin-resistant conditions. The insulin sensitizer, rosiglitazone, returns the physiological and molecular changes associated with the diabetic phenotype to normal levels through peroxisome proliferator-activated receptor γ (PPARγ) rather than PPARα. Early and chronic treatment with rosiglitazone has been shown to be effective to counter the diabetic condition. Over time, this effect acts to attenuate the increased gene expression levels of the hepatic circadian-clock system and delay the severity of diabetic conditions. Together, these results support an essential role for the hepatic circadian-clock system in the coordinated regulation and/or response of metabolic pathways. PMID:25799429

  11. Hepatic circadian-clock system altered by insulin resistance, diabetes and insulin sensitizer in mice.

    PubMed

    Tseng, Huey-Ling; Yang, Shu-Chuan; Yang, Shih-Hsien; Shieh, Kun-Ruey

    2015-01-01

    Circadian rhythms are intrinsic rhythms that are coordinated with the rotation of the Earth and are also generated by a set of circadian-clock genes at the intracellular level. Growing evidence suggests a strong link between circadian rhythms and energy metabolism; however, the fundamental mechanisms remain unclear. In the present study, neonatal streptozotocin (STZ)-treated mice were used to model the molecular and physiological progress from insulin resistance to diabetes. Two-day-old male C57BL/6 mice received a single injection of STZ and were tested for non-obese, hyperglycemic and hyperinsulinemic conditions in the early stage, insulin resistance in the middle stage, and diabetes in the late stage. Gene expression levels of the hepatic circadian-clock system were examined by real-time quantitative PCR. Most of the components of the hepatic circadian-clock gene expression system, such as the mRNAs of Bmal1 (brain and muscle Arnt-like protein-1), Per2 (period 2) and Cry1 (cryptochrome 1), were elevated, and circadian patterns were retained in the early and middle stages of insulin-resistant conditions. The insulin sensitizer, rosiglitazone, returns the physiological and molecular changes associated with the diabetic phenotype to normal levels through peroxisome proliferator-activated receptor γ (PPARγ) rather than PPARα. Early and chronic treatment with rosiglitazone has been shown to be effective to counter the diabetic condition. Over time, this effect acts to attenuate the increased gene expression levels of the hepatic circadian-clock system and delay the severity of diabetic conditions. Together, these results support an essential role for the hepatic circadian-clock system in the coordinated regulation and/or response of metabolic pathways.

  12. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    PubMed

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Copyright © 2016 the American Physiological Society.

  13. INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN 1 PREDICTS INSULIN SENSITIVITY AND INSULIN AREA-UNDER-THE-CURVE IN OBESE, NONDIABETIC ADOLESCENTS.

    PubMed

    Lee, Phillip D K; Lustig, Robert H; Lenders, Carine; Baillargeon, Jacques; Wilson, Darrell M

    2016-02-01

    To compare fasting insulin-like growth factor binding protein 1 (IGFBP-1) to other fasting indices as a surrogate marker of insulin sensitivity and resistance calculated from a 3-hour oral glucose tolerance test (oGTT). Fasting IGFBP-1 and oGTT were performed at 0 (n = 77), 52 (n = 54), and 100 (n = 38) weeks in a study investigating metformin treatment of obesity in adolescents. Insulin area-under-the-curve (IAUC) and the composite insulin sensitivity index (CISI) calculated from the oGTT were compared to fasting IGFBP-1, homeostasis model assessment-insulin resistance, and corrected insulin release at the glucose peak (CIRgp). IGFBP-1 and the ratio of IGFBP-1 to fasting insulin were significantly correlated with indices based on timed sampling, including IAUC, CISI, and CIRgp. In addition, a significant effect of IGFBP-1, but not IGFBP-1 to insulin at time zero, was observed for IAUC and CISI. Our results indicate that fasting IGFBP-1 may be a useful marker of insulin sensitivity and secretion.

  14. Insulin-like growth factor I stimulates lipid oxidation, reduces protein oxidation, and enhances insulin sensitivity in humans.

    PubMed Central

    Hussain, M A; Schmitz, O; Mengel, A; Keller, A; Christiansen, J S; Zapf, J; Froesch, E R

    1993-01-01

    To elucidate the effects of insulin-like growth factor I (IGF-I) on fuel oxidation and insulin sensitivity, eight healthy subjects were treated with saline and recombinant human (IGF-I (10 micrograms/kg.h) during 5 d in a crossover, randomized fashion, while receiving an isocaloric diet (30 kcal/kg.d) throughout the study period. On the third and fourth treatment days, respectively, an L-arginine stimulation test and an intravenous glucose tolerance test were performed. A euglycemic, hyperinsulinemic clamp combined with indirect calorimetry and a glucose tracer infusion were performed on the fifth treatment day. IGF-I treatment led to reduced fasting and stimulated (glucose and/or L-arginine) insulin and growth hormone secretion. Basal and stimulated glucagon secretion remained unchanged. Intravenous glucose tolerance was unaltered despite reduced insulin secretion. Resting energy expenditure and lipid oxidation were both elevated, while protein oxidation was reduced, and glucose turnover rates were unaltered on the fifth treatment day with IGF-I as compared to the control period. Enhanced lipolysis was reflected by elevated circulating free fatty acids. Moreover, insulin-stimulated oxidative and nonoxidative glucose disposal (i.e., insulin sensitivity) were enhanced during IGF-I treatment. Thus, IGF-I treatment leads to marked changes in lipid and protein oxidation, whereas, at the dose used, carbohydrate metabolism remains unaltered in the face of reduced insulin levels and enhanced insulin sensitivity. Images PMID:8227340

  15. Enhanced insulin secretion and insulin sensitivity in young lambs with placental insufficiency-induced intrauterine growth restriction.

    PubMed

    Camacho, Leticia E; Chen, Xiaochuan; Hay, William W; Limesand, Sean W

    2017-08-01

    Intrauterine growth restriction (IUGR) is associated with persistent metabolic complications, but information is limited for IUGR infants. We determined glucose-stimulated insulin secretion (GSIS) and insulin sensitivity in young lambs with placental insufficiency-induced IUGR. Lambs with hyperthermia-induced IUGR (n = 7) were compared with control lambs (n = 8). GSIS was measured at 8 ± 1 days of age, and at 15 ± 1 days, body weight-specific glucose utilization rates were measured with radiolabeled d-glucose during a hyperinsulinemic-euglycemic clamp (HEC). IUGR lambs weighed 23% less (P < 0.05) than controls at birth. Fasting plasma glucose and insulin concentrations were not different between IUGR and controls for either study. First-phase insulin secretion was enhanced 2.3-fold in IUGR lambs compared with controls. However, second-phase insulin concentrations, glucose-potentiated arginine-stimulated insulin secretion, and β-cell mass were not different, indicating that IUGR β-cells have an intrinsic enhancement in acute GSIS. Compared with controls, IUGR lambs had higher body weight-specific glucose utilization rates and greater insulin sensitivity at fasting (1.6-fold) and hyperinsulinemic periods (2.4-fold). Improved insulin sensitivity for glucose utilization was not due to differences in skeletal muscle insulin receptor and glucose transporters 1 and 4 concentrations. Plasma lactate concentrations during HEC were elevated in IUGR lambs compared with controls, but no differences were found for glycogen content or citrate synthase activity in liver and muscle. Greater insulin sensitivity for glucose utilization and enhanced acute GSIS in young lambs are predicted from fetal studies but may promote conditions that exaggerate glucose disposal and lead to episodes of hypoglycemia in IUGR infants. Copyright © 2017 the American Physiological Society.

  16. Stimulatory Effect of Insulin on Glucose Uptake by Muscle Involves the Central Nervous System in Insulin-Sensitive Mice

    PubMed Central

    Coomans, Claudia P.; Biermasz, Nienke R.; Geerling, Janine J.; Guigas, Bruno; Rensen, Patrick C.N.; Havekes, Louis M.; Romijn, Johannes A.

    2011-01-01

    OBJECTIVE Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin–stimulated tissue-specific glucose uptake. RESEARCH DESIGN AND METHODS Tolbutamide, an inhibitor of ATP-sensitive K+ channels (KATP channels), or vehicle was infused into the lateral ventricle in the basal state and during hyperinsulinemic-euglycemic conditions in postabsorptive, chow-fed C57Bl/6J mice and in postabsorptive C57Bl/6J mice with diet-induced obesity. Whole-body glucose uptake was measured by d-[14C]glucose kinetics and tissue-specific glucose uptake by 2-deoxy-d-[3H]glucose uptake. RESULTS During clamp conditions, intracerebroventricular administration of tolbutamide impaired the ability of insulin to inhibit EGP by ∼20%. In addition, intracerebroventricular tolbutamide diminished insulin-stimulated glucose uptake in muscle (by ∼59%) but not in heart or adipose tissue. In contrast, in insulin-resistant mice with diet-induced obesity, intracerebroventricular tolbutamide did not alter the effects of insulin during clamp conditions on EGP or glucose uptake by muscle. CONCLUSIONS Insulin stimulates glucose uptake in muscle in part through effects via KATP channels in the central nervous system, in analogy with the inhibitory effects of insulin on EGP. High-fat diet–induced obesity abolished the central effects of insulin on liver and muscle. These observations stress the role of central insulin resistance in the pathophysiology of diet-induced insulin resistance. PMID:22028182

  17. Eicosapentaenoic and docosahexaenoic acids increase insulin sensitivity in growing steers.

    PubMed

    Cartiff, S E; Fellner, V; Eisemann, J H

    2013-05-01

    An experiment was conducted to determine the effect of dietary n-3 long chain PUFA on insulin sensitivity in growing steers. Steers (n = 12, initial BW = 336.3 kg, SEM = 7.7) were adapted to a basal diet that was 70% concentrate mix and 30% orchardgrass hay. Steers were fed a daily amount of 0.26 Mcal ME per kg BW (0.75). After 3 wk steers were transitioned to 1 of 2 treatment (Trt) diets (n = 6 per diet) containing added Ca salts of fatty acids at 4% of DM using a source of fat that was enriched in n-3 fatty acids, including eicosapentaenoic acid and docosahexaenoic acid (FOFA), or a source of fat without n-3 fatty acids and a greater percentage of C16:0 and C18:1 (LCFA). Three intravenous (i.v.) glucose tolerance tests (IVGTT) were conducted, 1 during the basal diet, and 2 after transition to treatment diets at time 1 (T1; d 4 Trt) and time 2 (T2; d 39 Trt). Three i.v. insulin challenge tests (IC) were conducted the day after each IVGTT. Measurements on the basal diet were used as covariates. For IVGTT, there was a diet by time interaction (P < 0.05) for glucose area under the response curve (AUC). The AUC50 (mM glucose × 50 min) at T1 was less (P = 0.02) for LCFA (126.2) than FOFA (151.8), AUC50 at T2 tended to be greater (P = 0.07) for LCFA (165.9) than FOFA (146.0). Preinfusion insulin concentration was greater (P < 0.001) before the IVGTT and IC for steers fed LCFA (40.4 and 40.2 µIU/mL) than for steers fed FOFA (23.7 and 27.1 µIU/mL), respectively. Glucose clearance did not differ between treatments. For IC, minimum glucose concentration was greater (P = 0.02) and glucose AUC150 was less (P < 0.01) for steers fed LCFA than for steers fed FOFA. Values for glucose concentration were 1.8 mM and 1.5 mM and for AUC150 (mM glucose × 150 min) were 203.1 and 263.6 for steers fed LCFA and FOFA, respectively. Insulin clearance (fraction/min) was greater (P < 0.01) for steers fed LCFA (0.121) than FOFA (0.101). The insulin AUC60 (µIU/mL × 60 min) postinfusion was

  18. Cinnamon improves insulin sensitivity and alters body composition in an animal model of the metabolic syndrome

    USDA-ARS?s Scientific Manuscript database

    Polyphenols from cinnamon (CN) have been described recently as insulin sensitizers and antioxidants, but their effects on the glucose/insulin system in vivo have not been totally investigated. The aim of this study was to determine the effects of CN on insulin resistance and body composition, using ...

  19. Validation of insulin sensitivity indices from oral glucose tolerance test parameters in obese children and adolescents.

    PubMed

    Yeckel, Catherine W; Weiss, Ram; Dziura, James; Taksali, Sara E; Dufour, Sylvie; Burgert, Tania S; Tamborlane, William V; Caprio, Sonia

    2004-03-01

    Given the extreme increase in prediabetes, type 2 diabetes, and the potential for metabolic syndrome in obese youth, identifying simplified indexes for assessing stimulated insulin sensitivity is critical. The purpose of this study was validation of two surrogate indexes of insulin sensitivity determined from the oral glucose tolerance test (OGTT): the composite whole body insulin sensitivity index (WBISI) and the insulin sensitivity index (ISI). An obese population (aged 8-18 yr) of normal and impaired glucose tolerance individuals was studied. One group (n = 38) performed both the euglycemic-hyperinsulinemic clamp and OGTT for comparison of insulin sensitivity measurements as well as (1)H-magnetic resonance spectroscopy estimates of intramyocellular lipid content. Another larger (n = 368) cohort participated only in an OGTT. Both the WBISI and ISI represented good estimates (r = 0.78 and 0.74; P < 0.0005) for clamp-derived insulin sensitivity (glucose disposed, M-value), respectively. In the large cohort, the surrogate indexes demonstrated the shift toward poorer function and increased risk profile as a function of insulin resistance. Additionally, the WBISI and ISI correlated with intramyocellular lipid content (r = -0.74 and -0.71; P < 0.0001), a tissue marker for insulin resistance. Insulin sensitivity can be estimated using plasma glucose and insulin responses derived from the OGTT in obese youth with normal and impaired glucose tolerance.

  20. Application of Penalized Regression Techniques in Modelling Insulin Sensitivity by Correlated Metabolic Parameters.

    PubMed

    Göbl, Christian S; Bozkurt, Latife; Tura, Andrea; Pacini, Giovanni; Kautzky-Willer, Alexandra; Mittlböck, Martina

    2015-01-01

    This paper aims to introduce penalized estimation techniques in clinical investigations of diabetes, as well as to assess their possible advantages and limitations. Data from a previous study was used to carry out the simulations to assess: a) which procedure results in the lowest prediction error of the final model in the setting of a large number of predictor variables with high multicollinearity (of importance if insulin sensitivity should be predicted) and b) which procedure achieves the most accurate estimate of regression coefficients in the setting of fewer predictors with small unidirectional effects and moderate correlation between explanatory variables (of importance if the specific relation between an independent variable and insulin sensitivity should be examined). Moreover a special focus is on the correct direction of estimated parameter effects, a non-negligible source of error and misinterpretation of study results. The simulations were performed for varying sample size to evaluate the performance of LASSO, Ridge as well as different algorithms for Elastic Net. These methods were also compared with automatic variable selection procedures (i.e. optimizing AIC or BIC).We were not able to identify one method achieving superior performance in all situations. However, the improved accuracy of estimated effects underlines the importance of using penalized regression techniques in our example (e.g. if a researcher aims to compare relations of several correlated parameters with insulin sensitivity). However, the decision which procedure should be used depends on the specific context of a study (accuracy versus complexity) and moreover should involve clinical prior knowledge.

  1. Effect of body weight gain on insulin sensitivity after retirement from exercise training

    NASA Technical Reports Server (NTRS)

    Dolkas, Constantine B.; Rodnick, Kenneth J.; Mondon, Carl E.

    1990-01-01

    The effect of the body-weight gain after retirement from an exercise-training program on the retained increase in insulin sensitivity elicited by the training was investigated in exercise-trained (ET) rats. Insulin sensitivity was assessed by oral glucose tolerance and insulin suppression tests immediately after training and during retirement. Results show that, compared with sedentary controls, exercise training enhanced insulin-induced glucose uptake, but the enhanced sensitivity was gradually lost with the end of running activity until after seven days of retirement, when it became equal to that of controls. This loss of enhanced sensitivity to insulin was associated with an accelerated gain in body weight beginning one day after the start of retirement. However, those animals that gained weight only at rates similar to those of control rats, retained their enhanced sensitivity to insulin.

  2. Effect of body weight gain on insulin sensitivity after retirement from exercise training

    NASA Technical Reports Server (NTRS)

    Dolkas, Constantine B.; Rodnick, Kenneth J.; Mondon, Carl E.

    1990-01-01

    The effect of the body-weight gain after retirement from an exercise-training program on the retained increase in insulin sensitivity elicited by the training was investigated in exercise-trained (ET) rats. Insulin sensitivity was assessed by oral glucose tolerance and insulin suppression tests immediately after training and during retirement. Results show that, compared with sedentary controls, exercise training enhanced insulin-induced glucose uptake, but the enhanced sensitivity was gradually lost with the end of running activity until after seven days of retirement, when it became equal to that of controls. This loss of enhanced sensitivity to insulin was associated with an accelerated gain in body weight beginning one day after the start of retirement. However, those animals that gained weight only at rates similar to those of control rats, retained their enhanced sensitivity to insulin.

  3. Effect of Ursolic Acid on Metabolic Syndrome, Insulin Sensitivity, and Inflammation.

    PubMed

    Ramírez-Rodríguez, Alejandra M; González-Ortiz, Manuel; Martínez-Abundis, Esperanza; Acuña Ortega, Natalhie

    2017-09-01

    To evaluate the effect of ursolic acid on metabolic syndrome, insulin sensitivity, and inflammation, a randomized, double-blind, placebo-controlled clinical trial was carried out in 24 patients (30-60 years) with a diagnosis of metabolic syndrome without treatment. They were randomly assigned to two groups of 12 patients, each to receive orally 150 mg of ursolic acid or homologated placebo once a day for 12 weeks. Before and after the intervention, the components of metabolic syndrome, insulin sensitivity (Matsuda index), and inflammation profile (interleukin-6 and C-reactive protein) were evaluated. After ursolic acid administration, the remission of metabolic syndrome occurred in 50% of patients (P = .005) with significant differences in body weight (75.7 ± 11.5 vs. 71 ± 11 kg, P = .002), body mass index (BMI) (29.9 + 3.6 vs. 24.9 ± 1.2 kg/m(2), P = .049), waist circumference (93 ± 8.9 vs. 83 + 8.6 cm, P = .008), fasting glucose (6.0 ± 0.5 vs. 4.7 ± 0.4 mmol/L, P = .002), and insulin sensitivity (3.1 ± 1.1 vs. 4.2 ± 1.2, P = .003). Ursolic acid administration leads to transient remission of metabolic syndrome, reducing body weight, BMI, waist circumference and fasting glucose, as well as increasing insulin sensitivity.

  4. GH Receptor Deficiency in Ecuadorian Adults Is Associated With Obesity and Enhanced Insulin Sensitivity

    PubMed Central

    Rosenbloom, Arlan L.; Balasubramanian, Priya; Teran, Enrique; Guevara-Aguirre, Marco; Guevara, Carolina; Procel, Patricio; Alfaras, Irene; De Cabo, Rafael; Di Biase, Stefano; Narvaez, Luis; Saavedra, Jannette

    2015-01-01

    Context: Ecuadorian subjects with GH receptor deficiency (GHRD) have not developed diabetes, despite obesity. Objective: We sought to determine the metabolic associations for this phenomenon. Design: Four studies were carried out: 1) glucose, lipid, adipocytokine concentrations; 2) metabolomics evaluation; 3) metabolic responses to a high-calorie meal; and 4) oral glucose tolerance tests. Setting: Clinical Research Institute in Quito, Ecuador. Subjects: Adults homozygous for the E180 splice mutation of the GH receptor (GHRD) were matched for age, gender, and body mass index with unaffected control relatives (C) as follows: study 1, 27 GHRD and 35 C; study 2, 10 GHRD and 10 C; study 3, seven GHRD and 11 C; and study 4, seven GHRD and seven C. Results: Although GHRD subjects had greater mean percentage body fat than controls, their fasting insulin, 2-hour blood glucose, and triglyceride levels were lower. The indicator of insulin sensitivity, homeostasis model of assessment 2%S, was greater (P < .0001), and the indicator of insulin resistance, homeostasis model of assessment 2-IR, was lower (P = .0025). Metabolomic differences between GHRD and control subjects were consistent with their differing insulin sensitivity, including postprandial decreases of branched-chain amino acids that were more pronounced in controls. High molecular weight and total adiponectin concentrations were greater in GHRD (P = .0004 and P = .0128, respectively), and leptin levels were lower (P = .02). Although approximately 65% the weight of controls, GHRD subjects consumed an identical high-calorie meal; nonetheless, their mean glucose concentrations were lower, with mean insulin levels one-third those of controls. Results of the 2-hour oral glucose tolerance test were similar. Main Outcome Measures: Measures of insulin sensitivity, adipocytokines, and energy metabolites. Conclusions: Without GH counter-regulation, GHRD is associated with insulin efficiency and obesity. Lower leptin levels

  5. Are ethnic differences in insulin sensitivity explained by variation in carbohydrate intake?

    PubMed

    Diaz, V A; Mainous, A G; Koopman, R J; Geesey, M E

    2005-07-01

    Minority populations are disproportionately affected by diabetes. This health disparity may be due to less healthy diets and/or heritable factors in minority populations. These factors must be assessed concurrently to better appreciate their contribution to insulin sensitivity. We analysed overweight, healthy adults using the National Health and Nutrition Examination Survey 1999-2000. Means for dietary intake variables and insulin sensitivity were calculated by ethnicity. Linear regressions were performed to evaluate the association between ethnicity, dietary variables, dietary glycaemic index and insulin sensitivity. Fasting insulin was used to characterise insulin sensitivity. Non-Hispanic whites have higher energy and fat intake, while Hispanics have higher carbohydrate intake and African-Americans have lower fibre intake. In unadjusted analyses both Hispanics and African-Americans have lower insulin sensitivity, but only Hispanics are more likely to have lower insulin sensitivity after controlling for dietary variables and BMI. Ethnic differences in insulin sensitivity remain after controlling for dietary differences and other factors, suggesting that inherent metabolic differences exist. Further studies are needed to define inherent metabolic factors, as well as other non-dietary factors that affect insulin sensitivity.

  6. Residual sympathetic tone is associated with reduced insulin sensitivity in patients with autonomic failure.

    PubMed

    Celedonio, Jorge E; Arnold, Amy C; Dupont, William D; Ramirez, Claudia E; Diedrich, André; Okamoto, Luis E; Raj, Satish R; Robertson, David; Peltier, Amanda C; Biaggioni, Italo; Shibao, Cyndya A

    2015-10-01

    Parkinson disease, an α-synucleinopathy, is associated with reduced insulin sensitivity, impaired glucose tolerance, and diabetes mellitus. Importantly, these metabolic alterations have been shown to contribute to disease progression. The purpose of this study was to determine if reduced insulin sensitivity is also present in other α-synucleinopathies associated with autonomic failure. We studied 19 patients with multiple system atrophy and 26 patients with pure autonomic failure. For comparison, we studied 8 healthy controls matched for body mass index. Insulin sensitivity and beta cell function were calculated using fasting glucose and insulin levels according to the homeostatic model assessment 2. A multiple linear regression model was performed to determine factors that predict insulin sensitivity in autonomic failure. There was a significant difference in insulin sensitivity among groups (P = 0.048). This difference was due to lower insulin sensitivity in multiple system atrophy patients: 64% [interquartile range (IQR), 43 to 117] compared to healthy controls 139% (IQR, 83 to 212), P = 0.032. The main factor that contributed to the reduced insulin sensitivity was the presence of supine hypertension and residual sympathetic tone. Multiple system atrophy patients have reduced insulin sensitivity that is associated with residual sympathetic activation and supine hypertension. These patients may therefore be at high risk for development of impaired glucose tolerance and diabetes mellitus.

  7. Enhanced insulin sensitivity in prepubertal children with constitutional delay of growth and development.

    PubMed

    Wilson, Dyanne A; Hofman, Paul L; Miles, Harriet L; Sato, Tim A; Billett, Nathalie E; Robinson, Elizabeth M; Cutfield, Wayne S

    2010-02-01

    To test the hypothesis that prepubertal children with presumed constitutional delay of growth and development (CDGD) have enhanced insulin sensitivity and, therefore, insulin sensitivity is associated with later onset of puberty. Twenty-one prepubertal children with presumed CDGD and 23 prepubertal control children, underwent a frequently sampled intravenous glucose tolerance test to evaluate insulin sensitivity and other markers of insulin, glucose, and growth regulation. Children in the CDGD group were shorter and leaner than control subjects. Children with presumed CDGD were 40% more insulin sensitive (17.0 x 10(-4) min(-1)/[mU/L] versus 12.1 x 10(-4) min(-1)/[mU/L]; P = .0006) and had reduced acute insulin response, thus maintaining euglycemia (216 mU/L versus 330 mU/L; P = .02) compared with control subjects. In addition, the CDGD group had lower serum insulin-like growth factor binding protein 3 levels (3333 ng/mL versus 3775 ng/mL; P = .0004) and a trend toward lower serum insulin-like growth factor-II levels (794 ng/mL versus 911 ng/mL; P = .06). Prepubertal children with presumed CDGD have enhanced insulin sensitivity, supporting the hypothesis that insulin sensitivity is associated with timing of puberty. It may signify long-term biological advantages with lower risk of metabolic syndrome and malignancy. Copyright 2010 Mosby, Inc. All rights reserved.

  8. Synergic insulin sensitizing effect of rimonabant and BGP-15 in Zucker-obese rats.

    PubMed

    Literati-Nagy, Zsuzsanna; Tory, Kálmán; Literáti-Nagy, Botond; Bajza, Agnes; Vígh, László; Vígh, László; Mandl, József; Szilvássy, Zoltán

    2013-07-01

    Abdominal obesity is referred for as a common pathogenic root of multiple risk factors, which include insulin resistance, dyslipidemia, hypertension, and a pro-atherogenic and pro-inflammatory state. Irrespective of its psychiatric side effects, rimonabant through blocking cannabinoid-1 receptor (CB1R) induces an increase in whole body insulin sensitivity. The aim of this work was to study the effect of selected doses of another insulin sensitizer compound BGP-15, and rimonabant on insulin resistance in Zucker obese rats with a promise of inducing insulin sensitization together at lower doses than would have been expected by rimonabant alone. We found that BGP-15 potentiates the insulin sensitizing effect of rimonabant. The combination at doses, which do not induce insulin sensitization by themselves, improved insulin signaling. Furthermore our results suggest that capsaicin-induced signal may play a role in insulin sensitizing effect of both molecules. Our data might indicate that a lower dose of rimonabant in the treatment of insulin resistance and type 2 diabetes is sufficient to administer, thus a lower incidence of the unfavorable psychiatric side effects of rimonabant are to be expected.

  9. IATA for skin sensitization potential – 1 out of 2 or 2 out of 3? ...

    EPA Pesticide Factsheets

    To meet EU regulatory requirements and to avoid or minimize animal testing, there is a need for non-animal methods to assess skin sensitization potential. Given the complexity of the skin sensitization endpoint, there is an expectation that integrated testing and assessment approaches (IATA) will need to be developed which rely on assays representing key events in the pathway. Three non-animal assays have been formally validated: the direct peptide reactivity assay (DPRA), the KeratinoSensTM assay and the h-CLAT assay. At the same time, there have been many efforts to develop IATA with the “2 out of 3” approach attracting much attention whereby a chemical is classified on the basis of the majority outcome. A set of 271 chemicals with mouse, human and non-animal sensitization test data was evaluated to compare the predictive performances of the 3 individual non-animal assays, their binary combinations and the ‘2 out of 3’ approach. The analysis revealed that the most predictive approach was to use both the DPRA and h-CLAT: 1. Perform DPRA – if positive, classify as a sensitizer; 2. If negative, perform h-CLAT – a positive outcome denotes a sensitizer, a negative, a non-sensitizer. With this approach, 83% (LLNA) and 93% (human) of the non-sensitizer predictions were correct, in contrast to the ‘2 out of 3’ approach which had 69% (LLNA) and 79% (human) of non-sensitizer predictions correct. The views expressed are those of the authors and do not ne

  10. Postprandial whole-body glycolysis is similar in insulin-resistant and insulin-sensitive non-diabetic humans

    PubMed Central

    Ravussin, E.

    2015-01-01

    Aims/hypothesis Insulin resistance is characterised by impaired glucose utilisation when measured by a euglycaemic–hyperinsulinaemic clamp. We hypothesised that, in response to postprandial conditions, non-diabetic individuals would have similar intracellular glycolytic and oxidative glucose metabolism independent of the degree of insulin resistance. Methods Fourteen (seven male) sedentary, insulin-sensitive participants (mean±SD: BMI 25±4 kg/m2; age 39±10 years; glucose disposal rate 9.4±2.1 mg [kg estimated metabolic body size]−1 min−1) and 14 (six male) sedentary, non-diabetic, insulin-resistant volunteers (29±4 kg/m2; 34±13 years; 5.3±1.2 mg [kg estimated metabolic body size]−1 min−1) received after a 10 h fast 60 g glucose plus 15 g [6,6-2H2]glucose. Serum glucose and insulin concentrations, plasma 2H enrichment and whole-body gas exchange were determined before glucose ingestion and hourly thereafter for 4 h. Plasma 2H2O production is an index of glycolytic disposal. On day 2, participants received a weight-maintenance diet. On day 3, a euglycaemic–hyperinsulinaemic clamp was performed. Results Insulin-resistant individuals had about a twofold higher postprandial insulin response than insulin-sensitive individuals (p=0.003). Resting metabolic rate was similar in the two groups before (p=0.29) and after (p=0.33–0.99 over time) glucose ingestion, whereas a trend for blunted glucose-induced thermogenesis was observed in insulin-resistant vs insulin-sensitive individuals (p=0.06). However, over the 4 h after the 75 g glucose ingestion, glycolytic glucose disposal was the same in insulin-sensitive and insulin-resistant individuals (36.5±3.7 and 36.2±6.4 mmol, respectively; p=0.99). Similarly, whole-body carbohydrate oxidation did not differ between the groups either before or after glucose ingestion (p=0.41). Conclusions/interpretation Postprandial hyperinsulinaemia and modest hyperglycaemia overcome insulin resistance by enhancing tissue

  11. Cold Water Swimming Beneficially Modulates Insulin Sensitivity in Middle-Aged Individuals.

    PubMed

    Gibas-Dorna, Magdalena; Chęcińska, Zuzanna; Korek, Emilia; Kupsz, Justyna; Sowińska, Anna; Krauss, Hanna

    2016-10-01

    We determined whether cold water swimming for six consecutive months results in adaptive changes in body composition and insulin sensitivity. Thirty healthy subjects aged 50.2 ± 9.4 years were exposed to cold water at least twice a week. Body composition was determined and serum glucose and insulin served to calculate beta-cell function, insulin sensitivity, and resistance using HOMA2. Compared with control subjects, swimmers were overweight, and had greater percent body fat and beta cell function. Women had lower values of BMI, fat free mass, muscle mass, visceral adipose tissue level, and greater percent body fat than men. Increased insulin sensitivity and decreased insulin secretion and resistance from beginning to middle of swim season was observed in females and in lean subjects. Findings suggest that men and women differ in regard to body composition and response to repeated cold exposure. Cold water swimming may beneficially modulate insulin sensitivity in cold acclimated lean swimmers.

  12. Short-Term Aerobic Exercise Training in Obese Humans with Type 2 Diabetes Mellitus Improves Whole-Body Insulin Sensitivity through Gains in Peripheral, not Hepatic Insulin Sensitivity

    PubMed Central

    Winnick, Jason J.; Sherman, W. Michael; Habash, Diane L.; Stout, Michael B.; Failla, Mark L.; Belury, Martha A.; Schuster, Dara P.

    2008-01-01

    Context: Short-term aerobic exercise training can improve whole-body insulin sensitivity in humans with type 2 diabetes mellitus; however, the contributions of peripheral and hepatic tissues to these improvements are not known. Objective: Our objective was to determine the effect of 7-d aerobic exercise training on peripheral and hepatic insulin sensitivity during isoglycemic/hyperinsulinemic clamp conditions. Design: Subjects were randomly assigned to one of two groups. The energy balance group consumed an isocaloric diet consisting of 50% carbohydrate, 30% fat, and 20% protein for 15 d. The energy balance plus exercise group consumed a similar diet over the 15 d and performed 50-min of treadmill walking at 70% of maximum oxygen consumption maximum during the second 7 d of the 15-d study period. Each subject underwent an initial isoglycemic/hyperinsulinemic clamp after 1-wk dietary control and a second clamp after completing the study. Setting: The study was performed at Ohio State University’s General Clinical Research Center. Participants: There were 18 obese, mildly diabetic humans included in the study. Intervention: Aerobic exercise training was performed for 7 d. Main Outcome Measures: Whole-body, peripheral, and hepatic insulin sensitivity were measured. Results: Exercise training did not have an impact on peripheral glucose uptake or endogenous glucose production during the basal state or low-dose insulin. Likewise, it did not alter endogenous glucose production during high-dose insulin. However, 1-wk of exercise training increased both whole-body (P < 0.05) and peripheral insulin sensitivity (P < 0.0001) during high-dose insulin. Conclusion: Improvements to whole body insulin sensitivity after short-term aerobic exercise training are due to gains in peripheral, not heptic insulin sensitivity. PMID:18073312

  13. Serum 25-hydroxyvitamin D and parathyroid hormone are independent determinants of whole-body insulin sensitivity in women and may contribute to lower insulin sensitivity in African Americans.

    PubMed

    Alvarez, Jessica A; Ashraf, Ambika P; Hunter, Gary R; Gower, Barbara A

    2010-12-01

    Circulating 25-hydroxyvitamin D [25(OH)D] and parathyroid hormone (PTH) concentrations have been shown to be associated with insulin sensitivity; however, adiposity may confound this relation. Furthermore, African Americans (AAs) have lower insulin sensitivity and 25(OH)D concentrations than do European Americans (EAs); whether these differences are associated in a cause-and-effect manner has not been determined. The objectives of this study were to examine the relation of 25(OH)D and PTH concentrations with whole-body insulin sensitivity and to determine whether lower 25(OH)D concentrations in AAs compared with EAs contribute to the lower insulin sensitivity of AAs relative to that of EAs. This was a cross-sectional study of 25 AA and 25 EA women. We determined the whole-body insulin sensitivity index (S(I)) with an intravenous glucose tolerance test and minimal modeling. Percentage body fat was determined with dual-energy X-ray absorptiometry, and intraabdominal adipose tissue (IAAT) was determined with computed tomography. Multiple linear regression analysis indicated that 25(OH)D and PTH concentrations were independent determinants of S(I) [standardized β = 0.24 (P = 0.04) and -0.36 (P = 0.002), respectively] after adjustment for age, race, and IAAT. The mean ethnic difference in S(I) decreased from 2.70 [· 10(-4) · min⁻¹/(μIU/mL)] after adjustment for IAAT and percentage body fat to 1.80 [· 10(-4) · min⁻¹/(μIU/mL)] after further adjustment for 25(OH)D and PTH concentrations. 25(OH)D and PTH concentrations were independently associated with whole-body insulin sensitivity in a cohort of healthy women, which suggested that these variables may influence insulin sensitivity through independent mechanisms. Furthermore, ethnic differences in 25(OH)D concentrations may contribute to ethnic differences in insulin sensitivity.

  14. Effects of stevioside on glucose transport activity in insulin-sensitive and insulin-resistant rat skeletal muscle.

    PubMed

    Lailerd, Narissara; Saengsirisuwan, Vitoon; Sloniger, Julie A; Toskulkao, Chaivat; Henriksen, Erik J

    2004-01-01

    Stevioside (SVS), a natural sweetener extracted from Stevia rebaudiana, has been used as an antihyperglycemic agent. However, little is known regarding its potential action on skeletal muscle, the major site of glucose disposal. Therefore, the purpose of the present study was to determine the effect of SVS treatment on skeletal muscle glucose transport activity in both insulin-sensitive lean (Fa/-) and insulin-resistant obese (fa/fa) Zucker rats. SVS was administered (500 mg/kg body weight by gavage) 2 hours before an oral glucose tolerance test (OGTT). Whereas the glucose incremental area under the curve (IAUC(glucose)) was not affected by SVS in lean Zucker rats, the insulin incremental area under the curve (IAUC(insulin)) and the glucose-insulin index (product of glucose and insulin IAUCs and inversely related to whole-body insulin sensitivity) were decreased (P<.05) by 42% and 45%, respectively. Interestingly, in the obese Zucker rat, SVS also reduced the IAUC(insulin) by 44%, and significantly decreased the IAUC(glucose) (30%) and the glucose-insulin index (57%). Muscle glucose transport was assessed following in vitro SVS treatment. In lean Zucker rats, basal glucose transport in type I soleus and type IIb epitrochlearis muscles was not altered by 0.01 to 0.1 mmol/L SVS. In contrast, 0.1 mmol/L SVS enhanced insulin-stimulated (2 mU/mL) glucose transport in both epitrochlearis (15%) and soleus (48%). At 0.5 mmol/L or higher, the SVS effect was reversed. Similarly, basal glucose transport in soleus and epitrochlearis muscles in obese Zucker rats was not changed by lower doses of SVS (0.01 to 0.1 mmol/L). However, these lower doses of SVS significantly increased insulin-stimulated glucose transport in both obese epitrochlearis and soleus (15% to 20%). In conclusion, acute oral SVS increased whole-body insulin sensitivity, and low concentrations of SVS (0.01 to 0.1 mmol/L) modestly improved in vitro insulin action on skeletal muscle glucose transport in both lean

  15. Meal-induced enhancement in insulin sensitivity is not triggered by hyperinsulinemia in rats.

    PubMed

    Peitl, Barna; Döbrönte, Róbert; Németh, József; Pankucsi, Csaba; Sári, Réka; Varga, Angelika; Szilvássy, Zoltán

    2009-03-01

    Several reports confirmed the phenomenon of postprandial increase in whole-body insulin sensitivity. Although the initial step of this process is unknown, the pivotal role of postprandial hyperinsulinemia has strongly been suggested. The aim of the present study was to determine whether hyperinsulinemia per se induces insulin sensitization in healthy male Wistar rats. Rapid insulin sensitivity test (RIST) were performed in fasted, anesthetized rats before and during stable hyperinsulinemia achieved by hyperinsulinemic euglycemic glucose clamping (HEGC) with insulin infused either through the jugular vein (systemic HEGC) or into the portal circulation (portal HEGC) at a rate of 3 mU/(kg min). Insulin sensitivity expressed by the rapid insulin sensitivity (RIST) index (in milligrams per kilogram) was characterized by the total amount of glucose needed to maintain prestudy blood glucose level succeeding an intravenous bolus infusion of 50 mU/kg insulin over 5 minutes. In fasted animals, the RIST index was 37.4 +/- 3.1 mg/kg. When hyperinsulinemia mimicking the postprandial state was achieved by systemic HEGC, the RIST index (39.7 +/- 10.6 mg/kg) showed no significant changes as compared with the pre-HEGC values. Hyperinsulinemia achieved by portal insulin infusion also failed to modify the RIST index (35.7 +/- 4.3 mg/kg). The results demonstrate that acute hyperinsulinemia, no matter how induced, does not yield any sensitization to the hypoglycemic effect of insulin.

  16. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons

    USDA-ARS?s Scientific Manuscript database

    Glucagon-like peptides (GLP-1/GLP-2) are coproduced and highlighted as key modulators to improve glucose homeostasis and insulin sensitivity after bariatric surgery. However, it is unknown if CNS GLP-2 plays any physiological role in the control of glucose homeostasis and insulin sensitivity. We sho...

  17. Dissociation of in vitro sensitivities of glucose transport and antilipolysis to insulin in NIDDM

    SciTech Connect

    Yki-Jaervinen, H.; Kubo, K.; Zawadzki, J.; Lillioja, S.; Young, A.; Abbott, W.; Foley, J.E.

    1987-09-01

    It is unclear from previous studies whether qualitative or only quantitative differences exist in insulin action in adipocytes obtained from obese subjects with non-insulin-dependent diabetes mellitus (NIDDM) when compared with equally obese nondiabetic subjects. In addition, the role of changes in insulin binding as a cause of insulin resistance in NIDDM is still controversial. The authors compared the sensitivities of (/sup 14/C)-glucose transport and antilipolysis to insulin and measured (/sup 125/I)-insulin binding in abdominal adipocytes obtained from 45 obese nondiabetic, obese diabetic, and 15 nonobese female southwestern American Indians. Compared with the nonobese group, the sensitivities of glucose transport antilipolysis were reduced in both the obese nondiabetic and obese diabetic groups. Compared with the obese nondiabetic subjects, the ED/sub 50/ for stimulation of glucose transport was higher in the obese patients with NIDDM. In contrast, the ED/sub 50/S for antilipolysis were similar in obese diabetic patients and obese nondiabetic subjects. No differences was found in insulin binding in patients with NIDDM when compared with the equally obese nondiabetic subjects. These data indicate 1) the mechanism of insulin resistance differs in NIDDM and obesity, and 2) the selective loss of insulin sensitivity in NIDDM precludes changes in insulin binding as a cause of insulin resistance in this disorder.

  18. Does bicarbonated mineral water rich in sodium change insulin sensitivity of postmenopausal women?

    PubMed

    Schoppen, S; Sánchez-Muniz, F J; Pérez-Granados, M; Gómez-Gerique, J A; Sarriá, B; Navas-Carretero, S; Pilar Vaquero, Ma

    2007-01-01

    To study the effects of drinking 0.5 L of two sodium-rich bicarbonated mineral waters (BMW-1 and 2), with a standard meal, on postprandial insulin and glucose changes. And to determine, if the effects vary depending on insulin resistance, measured by homeostasis model assessment (HOMA). In a 3-way randomized crossover study, 18 healthy postmenopausal women consumed two sodium-rich BMWs and a low-mineral water (LMW) with a standard fat-rich meal. Fasting and postprandial blood samples were taken at 30, 60 and 120 min. Serum glucose, insulin, cholesterol and triacylglycerols were determined. Insulin resistance was estimated by HOMA and insulin sensitivity was calculated by quantitative insulin sensitivity check index (QUICKY). Glucose levels did not change. HOMA and QUICKY values were highly inversely correlated (r = -1,000; p < 0.0001). Insulin concentrations showed a significant time effect (p < 0.0001) and a significant water x time interaction (p < 0.021). At 120 min insulin levels with BMW-1 were significantly lower than with LMW (p = 0.022). Postprandial insulin concentrations showed significantly different patterns of mineral water intake depending on HOMA n-tiles (p = 0.016). Results suggests an increase in insulin sensitivity after BMWs consumption. This effect is more marked in the women, who have higher HOMA values. These waters should be considered part of a healthy diet in order to prevent insulin resistance and cardiovascular disease.

  19. Characterization of metabolically unhealthy overweight/obese African American women: significance of insulin-sensitive and insulin-resistant phenotypes.

    PubMed

    Gaillard, Trudy R; Schuster, Dara; Osei, Kwame

    2012-01-01

    Obesity is often associated with high cardiovascular disease risk factors. Obesity is common in African American women. We investigated the characteristics of metabolically healthy and metabolically unhealthy overweight/obese African American women based on the presence of insulin resistance. We studied 196 apparently healthy overweight/obese African American women with family history of type 2 diabetes. Waist circumference, fasting glucose, insulin, c-peptide, lipids and lipoproteins, and systolic and diastolic blood pressure were obtained in each subject. In addition, insulin sensitivity was calculated using Bergman's Minimal Model Method. We defined insulin-sensitive metabolically healthy African American women as individuals with insulin sensitivity greater than 2.7 x 10(-4) x min(-1) (uU/ mL)(-1) and insulin resistant, metabolically unhealthy as insulin sensitivity less than 2.7 x 10(-4) x min(-1) (uU/mL)(-1). Thirty-three percent of our subjects were metabolically healthy African American women, while 67% were metabolically unhealthy African American women. The metabolically healthy subjects were significantly younger and less obese than the metabolically unhealthy subgroup. Mean fasting serum glucose, insulin, and c-peptide were significantly lower (P = .001) in the metabolically healthy than in metabolically unhealthy subjects. However, the mean blood pressures were within normal in both subgroups. Mean serum cholesterol (p < .05) and triglyceride (p < .001) levels were significantly lower, whereas high-density lipoprotein cholesterol (p < .03) was significantly higher in the metabolically healthy than in the metabolically unhealthy subjects. We found 25.5% of our subjects had metabolic syndrome (30.3% metabolically unhealthy and 15.6% metabolically healthy). We concluded that: (1) despite obesity, metabolically healthy African American women appear to be less prone to type 2 diabetes and cardiovascular disease and (2) in view of the higher prevalence of

  20. Neuronal Sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues.

    PubMed

    Lu, Min; Sarruf, David A; Li, Pingping; Osborn, Olivia; Sanchez-Alavez, Manuel; Talukdar, Saswata; Chen, Ai; Bandyopadhyay, Gautam; Xu, Jianfeng; Morinaga, Hidetaka; Dines, Kevin; Watkins, Steven; Kaiyala, Karl; Schwartz, Michael W; Olefsky, Jerrold M

    2013-04-12

    Sirt1 is a NAD(+)-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. To assess this idea, we generated Sirt1 neuron-specific knockout (SINKO) mice. On both standard chow and HFD, SINKO mice were more insulin sensitive than Sirt1(f/f) mice. Thus, SINKO mice had lower fasting insulin levels, improved glucose tolerance and insulin tolerance, and enhanced systemic insulin sensitivity during hyperinsulinemic euglycemic clamp studies. Hypothalamic insulin sensitivity of SINKO mice was also increased over controls, as assessed by hypothalamic activation of PI3K, phosphorylation of Akt and FoxO1 following systemic insulin injection. Intracerebroventricular injection of insulin led to a greater systemic effect to improve glucose tolerance and insulin sensitivity in SINKO mice compared with controls. In line with the in vivo results, insulin-induced AKT and FoxO1 phosphorylation were potentiated by inhibition of Sirt1 in a cultured hypothalamic cell line. Mechanistically, this effect was traced to a reduced effect of Sirt1 to directly deacetylate and repress IRS-1 function. The enhanced central insulin signaling in SINKO mice was accompanied by increased insulin receptor signal transduction in liver, muscle, and adipose tissue. In summary, we conclude that neuronal Sirt1 negatively regulates hypothalamic insulin signaling, leading to systemic insulin resistance. Interventions that reduce neuronal Sirt1 activity have the potential to improve systemic insulin action and limit weight gain on an obesigenic diet.

  1. Neuronal Sirt1 Deficiency Increases Insulin Sensitivity in Both Brain and Peripheral Tissues*

    PubMed Central

    Lu, Min; Sarruf, David A.; Li, Pingping; Osborn, Olivia; Sanchez-Alavez, Manuel; Talukdar, Saswata; Chen, Ai; Bandyopadhyay, Gautam; Xu, Jianfeng; Morinaga, Hidetaka; Dines, Kevin; Watkins, Steven; Kaiyala, Karl; Schwartz, Michael W.; Olefsky, Jerrold M.

    2013-01-01

    Sirt1 is a NAD+-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. To assess this idea, we generated Sirt1 neuron-specific knockout (SINKO) mice. On both standard chow and HFD, SINKO mice were more insulin sensitive than Sirt1f/f mice. Thus, SINKO mice had lower fasting insulin levels, improved glucose tolerance and insulin tolerance, and enhanced systemic insulin sensitivity during hyperinsulinemic euglycemic clamp studies. Hypothalamic insulin sensitivity of SINKO mice was also increased over controls, as assessed by hypothalamic activation of PI3K, phosphorylation of Akt and FoxO1 following systemic insulin injection. Intracerebroventricular injection of insulin led to a greater systemic effect to improve glucose tolerance and insulin sensitivity in SINKO mice compared with controls. In line with the in vivo results, insulin-induced AKT and FoxO1 phosphorylation were potentiated by inhibition of Sirt1 in a cultured hypothalamic cell line. Mechanistically, this effect was traced to a reduced effect of Sirt1 to directly deacetylate and repress IRS-1 function. The enhanced central insulin signaling in SINKO mice was accompanied by increased insulin receptor signal transduction in liver, muscle, and adipose tissue. In summary, we conclude that neuronal Sirt1 negatively regulates hypothalamic insulin signaling, leading to systemic insulin resistance. Interventions that reduce neuronal Sirt1 activity have the potential to improve systemic insulin action and limit weight gain on an obesigenic diet. PMID:23457303

  2. Increased Insulin Sensitivity in Mice Lacking Collectrin, a Downstream Target of HNF-1α

    PubMed Central

    Malakauskas, Sandra M.; Kourany, Wissam M.; Zhang, Xiao Yin; Lu, Danhong; Stevens, Robert D.; Koves, Timothy R.; Hohmeier, Hans E.; Muoio, Deborah M.; Newgard, Christopher B.; Le, Thu H.

    2009-01-01

    Collectrin is a downstream target of the transcription factor hepatocyte nuclear factor-1α (HNF-1α), which is mutated in maturity-onset diabetes of the young subtype 3 (MODY3). Evidence from transgenic mouse models with collectrin overexpression in pancreatic islets suggests divergent roles for collectrin in influencing β-cell mass and insulin exocytosis. To clarify the function of collectrin in the pancreas, we used a mouse line with targeted deletion of the gene. We examined pancreas morphology, glucose homeostasis by ip glucose tolerance testing (IPGTT) and insulin tolerance testing (IPITT), and pancreas function by in vivo acute-phase insulin response determination and glucose-stimulated insulin secretion from isolated islets. We find no difference in either pancreas morphology or function between wild-type and collectrin-deficient animals (Tmem27−/y). However, we note that by 6 months of age, Tmem27−/y mice exhibit increased insulin sensitivity by IPITT and decreased adiposity by dual-energy x-ray absorptiometry scanning compared with wild-type. We have previously reported that Tmem27−/y mice exhibit profound aminoaciduria due to failed renal recovery. We now demonstrate that Tmem27−/y animals also display inappropriate excretion of some short-chain acylcarnitines derived from amino acid and fatty acid oxidation. We provide further evidence for compensatory up-regulation of oxidative metabolism in Tmem27−/y mice, along with enhanced protein turnover associated with preserved lean mass even out to 1.5 yr of age. Our studies suggest that collectrin-deficient mice activate a number of adaptive mechanisms to defend energy homeostasis in the setting of ongoing nutrient losses. PMID:19246514

  3. Menstrual cycle effects on insulin sensitivity in women with type 1 diabetes: a pilot study.

    PubMed

    Trout, Kimberly K; Rickels, Michael R; Schutta, Mark H; Petrova, Maja; Freeman, Ellen W; Tkacs, Nancy C; Teff, Karen L

    2007-04-01

    Many women complain of difficulty maintaining euglycemia during the luteal phase of the menstrual cycle. This pilot study's objective was to evaluate possible differences in insulin sensitivity between follicular and luteal phases in women with type 1 diabetes. Women using insulin infusion pumps (n = 5, mean age 29.2 +/- 10.9 years, mean body mass index 24 +/- 1.8 kg/m(2)) underwent frequently sampled intravenous glucose tolerance tests during each cycle phase. Insulin sensitivity and glucose effectiveness were determined by Minimal Model analysis. Non-insulin-mediated glucose disposal increased during the luteal phase (0.009 +/- 0.004 min(1)) versus the follicular phase (0.005 +/- 0.003 min(1)) (P < 0.05). Although no significant differences were found in mean insulin sensitivity between follicular (0.76 +/- 0.27 x 10(4)/min(1) /microU/mL) and luteal phase (0.58 +/- 0.26 x 10(4)/min(1) /microU/ mL), three of the five subjects had a decline in insulin sensitivity. Elevated blood glucose during the luteal phase may increase insulin-independent glucose disposal. Some individuals appear more responsive to menstrual cycle effects on insulin sensitivity. Women should be encouraged to use available self-monitoring technology to identify possible cyclical variations in blood glucose that might require clinician review and insulin dosage adjustments.

  4. Beneficial insulin-sensitizing and vascular effects of S15261 in the insulin-resistant JCR:LA-cp rat.

    PubMed

    Russell, J C; Ravel, D; Pégorier, J P; Delrat, P; Jochemsen, R; O'Brien, S F; Kelly, S E; Davidge, S T; Brindley, D N

    2000-11-01

    S15261, a compound developed for the oral treatment of type II diabetes, is cleaved by esterases to the fragments Y415 and S15511. The aim was to define the insulin-sensitizing effects of S15261, the cleavage products, and troglitazone and metformin in the JCR:LA-cp rat, an animal model of the obesity/insulin resistance syndrome that exhibits an associated vasculopathy and cardiovascular disease. Treatment of the animals from 8 to 12 weeks of age with S15261 or S15511 resulted in reductions in food intake and body weights, whereas Y415 had no effect. Troglitazone caused a small increase in food intake (P <.05). Treatment with S15261 or S15511 decreased plasma insulin levels in fed rats and prevented the postprandial peak in insulin levels in a meal tolerance test. Y415 had no effect on insulin levels. Troglitazone halved the insulin response to the test meal, but metformin gave no improvement. S15261 decreased the expression of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase and stimulated the expression of acetyl-CoA carboxylase and acyl-CoA synthase. S15261 also reduced the expression of carnitine palmitoyltransferase I and hydroxymethyl-glutaryl-CoA synthase. S15261, but not troglitazone, reduced the exaggerated contractile response of mesenteric resistance vessels to norepinephrine, and increased the maximal nitric oxide-mediated relaxation. S15261, through S15511, increased insulin sensitivity, decreased insulin levels, and reduced the vasculopathy of the JCR:LA-cp rat. S15261 may thus offer effective treatment for the insulin resistance syndrome and its associated vascular complications.

  5. Effect of sucrose consumption on serum insulin, serum cortisol and insulin sensitivity in migraine: evidence of sex differences.

    PubMed

    Kokavec, Anna

    2015-04-01

    The aim of this study was to compare the effect of sucrose on biomarkers of energy metabolism and utilization in migrainous men and women. A total of 20 participants (7=Migraine (female), 5=Migraine (male), 8=Non-migraine control) submitted to an oral sucrose tolerance test (OSTT), which required them to fast for 15 h overnight and then ingest 75 g sucrose dissolved in 175 g water at 9 AM the next morning. Blood sampling for the assessment of serum insulin, serum cortisol and plasma glucose was conducted upon arrival at 0900 h and then at regular 15-min intervals across a 150-min period. Comparison of insulin sensitivity indexes that rely on fasting glucose and insulin data failed to find evidence of insulin resistance in migraineurs or controls. Prior to sucrose consumption the level of fasting serum cortisol at 0-min on average was significantly higher in migraineurs. However, no significant group differences in the level of fasting serum insulin and plasma glucose at 0-min were noted. Following sucrose consumption: the level of serum insulin was significantly higher in female migraineurs; the level of serum cortisol was significantly higher in male migraineurs; glucose/insulin (G/I) ratio was significantly higher in male migraineurs at 135-min and 150-min; insulin/cortisol (I/C) ratio was significantly different with the I/C ratio lower in male migraineurs and higher in female migraineurs; area under the curve (AUC) insulin was significantly different across groups with AUC insulin lower in male migraineurs and higher in female migraineurs; and AUC cortisol was significantly higher in male migraineurs. It was concluded that the effect of sucrose on biomarkers of energy metabolism and utilization in male and female migraineurs is not the same. Therefore, the factors underlying migraine pathogenesis in men and women may also be different.

  6. Effect of Sodium Fluoride on Bone Biomechanical and Histomorphometric Parameters and on Insulin Signaling and Insulin Sensitivity in Ovariectomized Rats.

    PubMed

    de Cássia Alves Nunes, Rita; Chiba, Fernando Yamamoto; Pereira, Amanda Gomes; Pereira, Renato Felipe; de Lima Coutinho Mattera, Maria Sara; Ervolino, Edilson; Louzada, Mário Jefferson Quirino; Buzalaf, Marília Afonso Rabelo; Silva, Cristina Antoniali; Sumida, Doris Hissako

    2016-09-01

    Osteoporosis is a systemic disease characterized by bone degradation and decreased bone mass that promotes increased bone fragility and eventual fracture risk. Studies have investigated the use of sodium fluoride (NaF) for the treatment of osteoporosis. However, fluoride can alter glucose homeostasis. The aim of this study was to evaluate the effects of NaF intake (50 mg/L) from water on the following parameters of ovariectomized (OVX) rats: (1) tyrosine phosphorylation status of insulin receptor substrate (pp185 (IRS-1/IRS-2)) in white adipose tissue; (2) insulin sensitivity; (3) plasma concentrations of glucose, insulin, total cholesterol, triglyceride, TNF-α, IL-6, osteocalcin, calcium, and fluoride; (4) bone density and biomechanical properties in the tibia; and (5) tibia histomorphometric analysis. Fifty-two Wistar rats (2 months old) were ovariectomized and distributed into two groups: control group (OVX-C) and NaF group (OVX-F), which was subjected to treatment with NaF (50 mg/L) administered in drinking water for 42 days. The chronic treatment with NaF promoted (1) a decrease in pp185 (IRS-1/IRS-2) tyrosine phosphorylation status after insulin infusion in white adipose tissue and in insulin sensitivity; (2) an increase in the plasma concentration of insulin, fluoride, osteocalcin, calcium, triglyceride, VLDL-cholesterol, TNF-α, and IL-6; (3) a reduction in the trabecular width, bone area, stiffness, maximum strength, and tenacity; (4) no changes in body weight, food and water intake, plasma glucose, total cholesterol, HDL-cholesterol, LDL-cholesterol, bone mineral content, and bone mineral density. It was concluded that chronic treatment with NaF (50 mg/L) in OVX rats causes a decrease in insulin sensitivity, insulin signaling transduction, and biochemical, biomechanical, and histomorphometric bone parameters.

  7. Human gut microbes impact host serum metabolome and insulin sensitivity.

    PubMed

    Pedersen, Helle Krogh; Gudmundsdottir, Valborg; Nielsen, Henrik Bjørn; Hyotylainen, Tuulia; Nielsen, Trine; Jensen, Benjamin A H; Forslund, Kristoffer; Hildebrand, Falk; Prifti, Edi; Falony, Gwen; Le Chatelier, Emmanuelle; Levenez, Florence; Doré, Joel; Mattila, Ismo; Plichta, Damian R; Pöhö, Päivi; Hellgren, Lars I; Arumugam, Manimozhiyan; Sunagawa, Shinichi; Vieira-Silva, Sara; Jørgensen, Torben; Holm, Jacob Bak; Trošt, Kajetan; Kristiansen, Karsten; Brix, Susanne; Raes, Jeroen; Wang, Jun; Hansen, Torben; Bork, Peer; Brunak, Søren; Oresic, Matej; Ehrlich, S Dusko; Pedersen, Oluf

    2016-07-21

    Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders.

  8. Adipose tissue (P)RR regulates insulin sensitivity, fat mass and body weight.

    PubMed

    Shamansurova, Zulaykho; Tan, Paul; Ahmed, Basma; Pepin, Emilie; Seda, Ondrej; Lavoie, Julie L

    2016-10-01

    We previously demonstrated that the handle-region peptide, a prorenin/renin receptor [(P)RR] blocker, reduces body weight and fat mass and may improve insulin sensitivity in high-fat fed mice. We hypothesized that knocking out the adipose tissue (P)RR gene would prevent weight gain and insulin resistance. An adipose tissue-specific (P)RR knockout (KO) mouse was created by Cre-loxP technology using AP2-Cre recombinase mice. Because the (P)RR gene is located on the X chromosome, hemizygous males were complete KO and had a more pronounced phenotype on a normal diet (ND) diet compared to heterozygous KO females. Therefore, we challenged the female mice with a high-fat diet (HFD) to uncover certain phenotypes. Mice were maintained on either diet for 9 weeks. KO mice had lower body weights compared to wild-types (WT). Only hemizygous male KO mice presented with lower total fat mass, higher total lean mass as well as smaller adipocytes compared to WT mice. Although food intake was similar between genotypes, locomotor activity during the active period was increased in both male and female KO mice. Interestingly, only male KO mice had increased O2 consumption and CO2 production during the entire 24-hour period, suggesting an increased basal metabolic rate. Although glycemia during a glucose tolerance test was similar, KO males as well as HFD-fed females had lower plasma insulin and C-peptide levels compared to WT mice, suggesting improved insulin sensitivity. Remarkably, all KO animals exhibited higher circulating adiponectin levels, suggesting that this phenotype can occur even in the absence of a significant reduction in adipose tissue weight, as observed in females and, thus, may be a specific effect related to the (P)RR. (P)RR may be an important therapeutic target for the treatment of obesity and its associated complications such as type 2 diabetes.

  9. Quantifying insulin sensitivity and entero-insular responsiveness to hyper- and hypoglycemia in ferrets.

    PubMed

    Sui, Hongshu; Yi, Yaling; Yao, Jianrong; Liang, Bo; Sun, Xingshen; Hu, Shanming; Uc, Aliye; Nelson, Deborah J; Ode, Katie Larson; Philipson, Louis H; Engelhardt, John F; Norris, Andrew W

    2014-01-01

    Ferrets are an important emerging model of cystic fibrosis related diabetes. However, there is little documented experience in the use of advanced techniques to quantify aspects of diabetes pathophysiology in the ferret. Glycemic clamps are the gold standard technique to assess both insulin sensitivity and insulin secretion in humans and animal models of diabetes. We therefore sought to develop techniques for glycemic clamps in ferrets. To assess insulin sensitivity, we performed euglycemic hyperinsulinemic clamps in 5-6 week old ferrets in the anesthetized and conscious states. To assess insulin secretion, we performed hyperglycemic clamps in conscious ferrets. To evaluate responsiveness of ferret islet and entero-insular hormones to low glucose, a portion of the hyperglycemic clamps were followed by a hypoglycemic clamp. The euglycemic hyperinsulinemic clamps demonstrated insulin responsiveness in ferrets similar to that previously observed in humans and rats. The anesthetic isoflurane induced marked insulin resistance, whereas lipid emulsion induced mild insulin resistance. In conscious ferrets, glucose appearance was largely suppressed at 4 mU/kg/min insulin infusion, whereas glucose disposal was progressively increased at 4 and 20 mU/kg/min insulin. Hyperglycemic clamp induced first phase insulin secretion. Hypoglycemia induced a rapid diminishment of insulin, as well as a rise in glucagon and pancreatic polypeptide levels. The incretins GLP-1 and GIP were affected minimally by hyperglycemic and hypoglycemic clamp. These techniques will prove useful in better defining the pathophysiology in ferrets with cystic fibrosis related diabetes.

  10. Quantifying Insulin Sensitivity and Entero-Insular Responsiveness to Hyper- and Hypoglycemia in Ferrets

    PubMed Central

    Sui, Hongshu; Yi, Yaling; Yao, Jianrong; Liang, Bo; Sun, Xingshen; Hu, Shanming; Uc, Aliye; Nelson, Deborah J.; Ode, Katie Larson; Philipson, Louis H.; Engelhardt, John F.; Norris, Andrew W.

    2014-01-01

    Ferrets are an important emerging model of cystic fibrosis related diabetes. However, there is little documented experience in the use of advanced techniques to quantify aspects of diabetes pathophysiology in the ferret. Glycemic clamps are the gold standard technique to assess both insulin sensitivity and insulin secretion in humans and animal models of diabetes. We therefore sought to develop techniques for glycemic clamps in ferrets. To assess insulin sensitivity, we performed euglycemic hyperinsulinemic clamps in 5–6 week old ferrets in the anesthetized and conscious states. To assess insulin secretion, we performed hyperglycemic clamps in conscious ferrets. To evaluate responsiveness of ferret islet and entero-insular hormones to low glucose, a portion of the hyperglycemic clamps were followed by a hypoglycemic clamp. The euglycemic hyperinsulinemic clamps demonstrated insulin responsiveness in ferrets similar to that previously observed in humans and rats. The anesthetic isoflurane induced marked insulin resistance, whereas lipid emulsion induced mild insulin resistance. In conscious ferrets, glucose appearance was largely suppressed at 4 mU/kg/min insulin infusion, whereas glucose disposal was progressively increased at 4 and 20 mU/kg/min insulin. Hyperglycemic clamp induced first phase insulin secretion. Hypoglycemia induced a rapid diminishment of insulin, as well as a rise in glucagon and pancreatic polypeptide levels. The incretins GLP-1 and GIP were affected minimally by hyperglycemic and hypoglycemic clamp. These techniques will prove useful in better defining the pathophysiology in ferrets with cystic fibrosis related diabetes. PMID:24594704

  11. The Relationship between 25-hydroxyvitamin D Levels, Insulin Sensitivity and Insulin Secretion in Women 3 Years after Delivery.

    PubMed

    Tänczer, Tímea; Magenheim, Rita; Fürst, Ágnes; Domján, Beatrix; Janicsek, Zsófia; Szabó, Eszter; Ferencz, Viktória; Tabák, Ádám G

    2017-05-03

    There is a direct correlation between 25-hydroxyvitamin D (25[OH]D) levels and insulin sensitivity. Furthermore, women with gestational diabetes (GDM) may have lower levels of 25(OH)D compared to controls. The present study intended to investigate 25(OH)D levels and their association with insulin sensitivity and insulin secretion in women with prior GDM and in controls 3.2 years after delivery. A total of 87 patients with prior GDM and 45 randomly selected controls (age range, 22 to 44 years) with normal glucose tolerance during pregnancy nested within a cohort of all deliveries at Saint Margit Hospital, Budapest, between January 1 2005, and December 31 2006, were examined. Their 25(OH) D levels were measured by radioimmunoassay. Insulin sensitivity and fasting insulin secretion were estimated using the homeostasis model asssessment (HOMA) calculator and early insulin secretion by the insulinogenic index based on a 75 g oral glucose tolerance test. There was no significant difference in 25(OH)D levels between cases and controls (27.2±13.1 [±SD] vs. 26.9±9.8 ng/L). There was a positive association between HOMA insulin sensitivity and 25(OH)D levels (beta = 0.017; 95% CI 0.001 to 0.034/1 ng/mL) that was robust to adjustment for age and body mass index. There was a nonsignificant association between HOMA insulin secretion and 25(OH)D (p=0.099), while no association was found with the insulinogenic index. Prior GDM status was not associated with 25(OH)D levels; however, 25(OH) D levels were associated with HOMA insulin sensitivity. It is hypothesized that the association between HOMA insulin secretion and 25(OH)D levels is related to the autoregulation of fasting glucose levels because no association between 25(OH)D and insulinogenic index was found. Copyright © 2017 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  12. Predictors of Whole-Body Insulin Sensitivity Across Ages and Adiposity in Adult Humans

    PubMed Central

    Lalia, Antigoni Z.; Dasari, Surendra; Johnson, Matthew L.; Robinson, Matthew M.; Konopka, Adam R.; Distelmaier, Klaus; Port, John D.; Glavin, Maria T.; Esponda, Raul Ruiz; Nair, K. Sreekumaran

    2016-01-01

    Context: Numerous factors are purported to influence insulin sensitivity including age, adiposity, mitochondrial function, and physical fitness. Univariate associations cannot address the complexity of insulin resistance or the interrelationship among potential determinants. Objective: The objective of the study was to identify significant independent predictors of insulin sensitivity across a range of age and adiposity in humans. Design, Setting, and Participants: Peripheral and hepatic insulin sensitivity were measured by two stage hyperinsulinemic-euglycemic clamps in 116 men and women (aged 19–78 y). Insulin-stimulated glucose disposal, the suppression of endogenous glucose production during hyperinsulinemia, and homeostatic model assessment of insulin resistance were tested for associations with 11 potential predictors. Abdominal subcutaneous fat, visceral fat (AFVISC), intrahepatic lipid, and intramyocellular lipid (IMCL) were quantified by magnetic resonance imaging and spectroscopy. Skeletal muscle mitochondrial respiratory capacity (state 3), coupling efficiency, and reactive oxygen species production were evaluated from muscle biopsies. Aerobic fitness was measured from whole-body maximum oxygen uptake (VO2 peak), and metabolic flexibility was determined using indirect calorimetry. Results: Multiple regression analysis revealed that AFVISC (P < .0001) and intrahepatic lipid (P = .002) were independent negative predictors of peripheral insulin sensitivity, whereas VO2 peak (P = .0007) and IMCL (P = .023) were positive predictors. Mitochondrial capacity and efficiency were not independent determinants of peripheral insulin sensitivity. The suppression of endogenous glucose production during hyperinsulinemia model of hepatic insulin sensitivity revealed percentage fat (P < .0001) and AFVISC (P = .001) as significant negative predictors. Modeling homeostatic model assessment of insulin resistance identified AFVISC (P < .0001), VO2 peak (P = .001), and IMCL

  13. The good and bad effects of statins on insulin sensitivity and secretion.

    PubMed

    Muscogiuri, Giovanna; Sarno, Gerardo; Gastaldelli, Amalia; Savastano, Silvia; Ascione, Antonio; Colao, Annamaria; Orio, Francesco

    2014-01-01

    Statins are the main lipid-lowering treatment in both primary and secondary prevention populations. Whether statins deteriorates glycemic control, predisposing to the onset of diabetes mellitus has been a matter of recent concern. Statins may accelerate progression to diabetes via molecular mechanisms that impact insulin sensitivity and secretion. In this review, we debate the relative effect of statins in driving insulin resistance and the impairment of insulin secretion. Narrative overview of the literature synthesizing the findings of literature was retrieved from searches of computerized databases, hand searches, and authoritative texts employing the key words "Statins", "Randomized Clinical Trial", "Insulin sensitivity", "Insulin resistance", "Insulin Secretion", "Diabetes Mellitus" alone and/or in combination. The weight of clinical evidence suggests a worsening effect of statins on insulin resistance and secretion, anyway basic science studies did not find a clear molecular explanation, providing conflicting evidence regarding both the beneficial and the adverse effects of statin therapy on insulin sensitivity. Although most of the clinical studies suggest a worsening of insulin resistance and secretion, the cardiovascular benefits of statin therapy outweigh the risk of developing insulin resistance, thus the data suggest the need to treat dyslipidemia and to make patients aware of the possible risk of developing type 2 diabetes or, if they already are diabetic, of worsening their metabolic control.

  14. β-Cell Sensitivity to GLP-1 in Healthy Humans Is Variable and Proportional to Insulin Sensitivity

    PubMed Central

    Aulinger, Benedikt A.; Vahl, Torsten P.; Wilson-Pérez, Hilary E.; Prigeon, Ron L.

    2015-01-01

    Context: Glucagon-like peptide-1 (GLP-1) is an insulinotropic factor made in the gastrointestinal tract that is essential for normal glucose tolerance. Infusion of GLP-1 increases insulin secretion in both diabetic and nondiabetic humans. However, the degree to which people vary in their β-cell sensitivity to GLP-1 and the factors contributing to this variability have not been reported. Objective: The objective was to measure the sensitivity of insulin secretion to GLP-1 in cohorts of lean and obese subjects across a broad range of insulin sensitivity. Methods: Insulin secretion was measured during clamped hyperglycemia (7.2 mmol/L) and graded GLP-1 infusion in young, healthy subjects, and GLP-1 sensitivity was computed from the insulin secretion rate (ISR) during progressive increases in plasma GLP-1. Results: All subjects had fasting glucose values <5.2 mm. The obese subjects were insulin resistant compared to the lean group (homeostasis model of assessment 2 for insulin resistance: obese, 2.6 ± 0.5; lean, 0.8 ± 0.1; P < .001). ISR increased linearly in both cohorts with escalating doses of GLP-1, but the slope of ISR in response to GLP-1 was greater in the obese than in the lean subjects (obese, 0.17 ± 0.03 nmol/min/pm; lean, 0.05 ± 0.01 nmol/min/pm; P < .001). There was a significant association of β-cell GLP-1 sensitivity and insulin resistance (r = 0.83; P < .001), and after correction for homeostasis model of assessment 2 for insulin resistance, the slopes of ISR vs GLP-1 concentration did not differ in the two cohorts (obese, 0.08 ± 0.01; lean, 0.08 ± 0.01; P = .98). However, within the entire study group, β-cell GLP-1 sensitivity corrected for insulin resistance varied nearly 10-fold. Conclusions: Insulin secretion in response to GLP-1 is proportional to insulin resistance in healthy subjects. However, there is considerable variability in the sensitivity of the β-cell to GLP-1 that is independent of insulin sensitivity. PMID:25825945

  15. High Dietary Magnesium Intake is Significantly and Independently Associated with Higher Insulin Sensitivity in a Mexican-Mestizo Population: A Brief Cross-Sectional Report.

    PubMed

    Moctezuma-Velázquez, Carlos; Gómez-Sámano, Miguel Ángel; Cajas-Sánchez, María Belén; Reyes-Molina, Diana Lorena; Galindo-Guzmán, Mariana; Meza-Arana, Clara-Elena; Cuevas-Ramos, Daniel; Gómez-Pérez, Francisco Javier; Gulias-Herrero, Alfonso

    2017-01-01

    Magnesium acts as a cofactor in many intracellular reactions including phosphorylation of the insulin receptor; therefore, its imbalance can potentially cause insulin resistance. Low serum magnesium concentration has been associated with the development of metabolic syndrome and type 2 diabetes mellitus. To study the association between the daily dietary magnesium intake and insulin resistance estimated by the homeostatic model assessment of insulin resistance and homeostatic model assessment 2, as well as insulin sensitivity estimated by the Matsuda index. In a university affiliated medical center, 32 participants (22 women, 10 men) that had an indication for testing for type 2 diabetes mellitus with an oral glucose tolerance test were enrolled in this cross-sectional, comparative study. Clinical and biochemical evaluations were carried out including an oral glucose tolerance test. Hepatic insulin resistance index, homeostatic model assessment 2, homeostatic model assessment of insulin resistance, and Matsuda insulin sensitivity were calculated for each participant. They were asked to recall their food ingestion (24 hours) of three days of the past week, including a weekend day; magnesium intake was calculated according to the food nutritional information. The low dietary magnesium intake group (< 4.5 mg/kg/day) had a higher two-hour insulin concentration after an oral glucose tolerance test compared to those with high dietary magnesium (119.5 [73.0-190.6] vs. 63.5 [25.4-114.2]; p = 0.008), and insulin sensitivity assessed by the Matsuda index was higher in the high dietary magnesium intake group (4.3 ± 3.1 vs. 2.4 ± 1.5; p = 0.042). In multiple linear regression analysis a higher dietary magnesium intake was independently associated (β = 4.93; p = 0.05) with a better insulin sensitivity estimated by the Matsuda index. Our results suggest that higher magnesium intake is independently associated with better insulin sensitivity in patients at risk for type 2

  16. Dietary supplementation with short-chain fructo-oligosaccharides improves insulin sensitivity in obese horses.

    PubMed

    Respondek, F; Myers, K; Smith, T L; Wagner, A; Geor, R J

    2011-01-01

    Obesity and insulin resistance are risk factors for laminitis in horses and ponies, and diet can play an important role in modulating these risk factors. Dietary supplementation with prebiotic fibers, such as short-chain fructo-oligosaccharides (scFOS), has resulted in improvement of insulin sensitivity in obese dogs and rodents. Thus, we hypothesized that scFOS may reduce insulin resistance in obese horses and designed a study to evaluate the effect of dietary supplementation with scFOS on insulin sensitivity. Eight mature Arabian geldings (BW = 523.0 ± 56.5 kg) with an average BCS of 8 were included in a crossover study. In each period, 4 horses were provided 45 g/d per horse of maltodextrin (control) and 4 horses received the same amount of scFOS for 6 wk, with a 3-wk washout between periods. Resting plasma concentrations of glucose, insulin, triglycerides, and leptin were measured. Minimal model analysis of a frequently sampled intravenous glucose tolerance test was used to evaluate insulin sensitivity, glucose effectiveness, acute insulin response to glucose, and disposition index. Without affecting BW and BCS, dietary supplementation with scFOS increased (P < 0.05) insulin sensitivity and reduced (P < 0.05) acute insulin response to glucose in comparison with maltodextrin but did not alter (P > 0.05) glucose effectiveness and disposition index. Resting serum insulin concentration also was reduced (P < 0.05) by scFOS supplementation but not by maltodextrin (P > 0.05). There was no effect (P > 0.05) of scFOS supplementation on plasma glucose or serum triglyceride and leptin concentrations. This study demonstrated that scFOS can moderately improve insulin sensitivity of obese horses, a finding that has potential relevance to the dietary management of obese, insulin-resistant horses at increased risk for laminitis.

  17. MG53-IRS-1 (Mitsugumin 53-Insulin Receptor Substrate-1) Interaction Disruptor Sensitizes Insulin Signaling in Skeletal Muscle.

    PubMed

    Lee, Hyun; Park, Jung-Jin; Nguyen, Nga; Park, Jun Sub; Hong, Jin; Kim, Seung-Hyeob; Song, Woon Young; Kim, Hak Joong; Choi, Kwangman; Cho, Sungchan; Lee, Jae-Seon; Kim, Bong-Woo; Ko, Young-Gyu

    2016-12-23

    Mitsugumin 53 (MG53) is an E3 ligase that interacts with and ubiquitinates insulin receptor substrate-1 (IRS-1) in skeletal muscle; thus, an MG53-IRS-1 interaction disruptor (MID), which potentially sensitizes insulin signaling with an elevated level of IRS-1 in skeletal muscle, is an excellent candidate for treating insulin resistance. To screen for an MID, we developed a bimolecular luminescence complementation system using an N-terminal luciferase fragment fused with IRS-1 and a C-terminal luciferase fragment fused with an MG53 C14A mutant that binds to IRS-1 but does not have E3 ligase activity. An MID, which was discovered using the bimolecular luminescence complementation system, disrupted the molecular association of MG53 with IRS-1, thus abolishing MG53-mediated IRS-1 ubiquitination and degradation. Thus, the MID sensitized insulin signaling and increased insulin-elicited glucose uptake with an elevated level of IRS-1 in C2C12 myotubes. These data indicate that this MID holds promise as a drug candidate for treating insulin resistance. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Evidence in obese children: contribution of hyperlipidemia, obesity-inflammation, and insulin sensitivity.

    PubMed

    Chang, Chi-Jen; Jian, Deng-Yuan; Lin, Ming-Wei; Zhao, Jun-Zhi; Ho, Low-Tone; Juan, Chi-Chang

    2015-01-01

    Evidence shows a high incidence of insulin resistance, inflammation and dyslipidemia in adult obesity. The aim of this study was to assess the relevance of inflammatory markers, circulating lipids, and insulin sensitivity in overweight/obese children. We enrolled 45 male children (aged 6 to 13 years, lean control = 16, obese = 19, overweight = 10) in this study. The plasma total cholesterol, HDL cholesterol, triglyceride, glucose and insulin levels, the circulating levels of inflammatory factors, such as TNF-α, IL-6, and MCP-1, and the high-sensitive CRP level were determined using quantitative colorimetric sandwich ELISA kits. Compared with the lean control subjects, the obese subjects had obvious insulin resistance, abnormal lipid profiles, and low-grade inflammation. The overweight subjects only exhibited significant insulin resistance and low-grade inflammation. Both TNF-α and leptin levels were higher in the overweight/obese subjects. A concurrent correlation analysis showed that body mass index (BMI) percentile and fasting insulin were positively correlated with insulin resistance, lipid profiles, and inflammatory markers but negatively correlated with adiponectin. A factor analysis identified three domains that explained 74.08% of the total variance among the obese children (factor 1: lipid, 46.05%; factor 2: obesity-inflammation, 15.38%; factor 3: insulin sensitivity domains, 12.65%). Our findings suggest that lipid, obesity-inflammation, and insulin sensitivity domains predominantly exist among obese children. These factors might be applied to predict the outcomes of cardiovascular diseases in the future.

  19. Impact of Major Depressive Disorder on Prediabetes by Impairing Insulin Sensitivity

    PubMed Central

    Li, Li; Shelton, Richard Charles; Chassan, Rachel Ann; Hammond, John Charles; Gower, Barbara Ann; Garvey, Timothy W

    2016-01-01

    Reports regarding the associations between major depressive disorder (MDD) and diabetes remain heterogeneous. Our aim was to investigate whether glucose homeostasis and insulin sensitivity were impaired in the MDD patients and its mechanisms. A total of 30 patients with MDD and 30 matched controls were recruited. The oral glucose tolerance test and dual-energy X-ray absorptiometry scan were performed in each participant. Insulin signaling in postmortem brain tissues from other depressive patients and controls (obtained from Alabama brain bank) was examined. Insulin sensitivity was reduced substantially in the MDD patients, however, the fasting and 2-h glucose concentrations remained within the normal range through compensatory insulin secretion. Despite increased insulin secretion, 1-h glucose concentrations in the MDD patients were significantly elevated compared with the controls. MDD patients had greater visceral fat mass but lower adiponectin levels compared with the controls. Furthermore, phosphorylated-AKT levels in insulin signaling were decreased in postmortem brain tissues in patients with MDD. These results suggest that MDD patients are at a greater risk for diabetes due to decreased insulin sensitivity, reduced disposition index, and impaired glucose tolerance as manifested by elevated 1-h glucose concentrations following an oral glucose challenge. Mechanistic studies reveal that decreased insulin sensitivity is associated with increased visceral fat mass, lower adiponectin levels and impaired insulin action in postmortem brain tissues in the MDD patients. Our findings emphasize the importance of screening depressive patients to identify susceptible individuals for developing future diabetes with the hope of improving their health outcomes. PMID:27274905

  20. Resistance training improves skeletal muscle insulin sensitivity in elderly offspring of overweight and obese mothers.

    PubMed

    Bucci, Marco; Huovinen, Ville; Guzzardi, Maria Angela; Koskinen, Suvi; Raiko, Juho R; Lipponen, Heta; Ahsan, Shaila; Badeau, Robert M; Honka, Miikka-Juhani; Koffert, Jukka; Savisto, Nina; Salonen, Minna K; Andersson, Jonathan; Kullberg, Joel; Sandboge, Samuel; Iozzo, Patricia; Eriksson, Johan G; Nuutila, Pirjo

    2016-01-01

    Maternal obesity predisposes offspring to adulthood morbidities, including type 2 diabetes. Type 2 diabetes and insulin resistance have been associated with shortened telomere length. First, we aimed to investigate whether or not maternal obesity influences insulin sensitivity and its relationship with leucocyte telomere length (LTL) in elderly women. Second, we tested whether or not resistance exercise training improves insulin sensitivity in elderly frail women. Forty-six elderly women, of whom 20 were frail offspring of lean/normal weight mothers (OLM, BMI ≤26.3 kg/m2) and 17 were frail offspring of overweight/obese mothers (OOM,BMI ≥28.1 kg/m2), were studied before and after a 4 month resistance training (RT) intervention. Muscle insulin sensitivity of glucose uptake was measured using 18F-fluoro-2-deoxyglucose and positron emission tomography with computed tomography during a hyperinsulinaemic–euglycaemic clamp. Muscle mass and lipid content were measured using magnetic resonance and LTL was measured using real-time PCR. The OOM group had lower thigh muscle insulin sensitivity compared with the OLM group (p=0.048) but similar whole body insulin sensitivity. RT improved whole body and skeletal muscle insulin sensitivity in the OOM group only (p=0.004 and p=0.013, respectively), and increased muscle mass in both groups (p <0 .01). In addition, in the OOM group, LTL correlated with different thigh muscle groups insulin sensitivity (ρ ≥ 0.53; p ≤ 0.05). Individuals with shorter LTL showed a higher increase in skeletal muscle insulin sensitivity after training (ρ ≥ −0.61; p ≤ 0.05). Maternal obesity and having telomere shortening were associated with insulin resistance in adult offspring. A resistance exercise training programme may reverse this disadvantage among offspring of obese mothers. Trial registration: ClinicalTrials.gov NCT01931540.

  1. Patterns of Exogenous Insulin Requirement Reflect Insulin Sensitivity Changes in Trauma

    DTIC Science & Technology

    2007-01-01

    Other molecules involved in glycemic regulation dis- play similar circadian rhythms, including insulin, cortisol, and leptin [17–20]. Plasma insulin... regulation in healthy subjects is characterized by maintenance of blood glucose within narrow parameters [16]; however, within this tight range...remain to be char- acterized, and insulin patterns have not been examined in any ICU population. Glycemic dysregulation in critical injury is common, and

  2. A modified minimal model analysis of insulin sensitivity and glucose-mediated glucose disposal in insulin-dependent diabetes.

    PubMed

    Ward, G M; Weber, K M; Walters, I M; Aitken, P M; Lee, B; Best, J D; Boston, R C; Alford, F P

    1991-01-01

    Although glucose utilization is impaired in insulin-dependent diabetes mellitus (IDDM), it is unclear whether this is due to reductions in insulin sensitivity (Si) and/or glucose-mediated glucose disposal (SG). The minimal model of Bergman et al can be applied to a frequently sampled intravenous glucose tolerance test (FSIGT) to simultaneously estimate Sl and SG, but cannot accommodate data from diabetics. Exogenous insulin approximating the normal pattern of insulin secretion was infused during FSIGTs in eight young non-obese C-peptide-negative IDDM subjects, but with the total dose modified to achieve sufficient glucose disappearance rates (KG) to allow analysis of data. The minimal model was modified to model the effects of the exogenous insulin on glucose kinetics to estimate SI and SG. Despite deliberately achieving supranormal plasma-free insulin levels during the FSIGT ("first-phase insulin" = 62 +/- 9 SE mU/L; "second phase insulin" = 34 +/- 9 mU/L), the diabetics showed low-normal KG values (1.3 +/- 0.29 min-1 X 10(2). Using the model, good parameter resolution (fractional SD [FSD] less than .5) was achieved (IDDM v controls: SI = 2.5 +/- 0.6 v 8.3 +/- 1.5 min-1.mU-1.L-1 X 10(4); SG = 1.6 +/- 0.5 v 2.6 +/- 0.2 min-1 X 10(2); P less than .05). This reduction in SG was confirmed in the same IDDM subjects by FSIGT during basal insulin infusion only (SG = 1.0 +/- 0.3 min-1 X 10(2)).(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Insulin Causes Hyperthermia by Direct Inhibition of Warm-Sensitive Neurons

    PubMed Central

    Sanchez-Alavez, Manuel; Tabarean, Iustin V.; Osborn, Olivia; Mitsukawa, Kayo; Schaefer, Jean; Dubins, Jeffrey; Holmberg, Kristina H.; Klein, Izabella; Klaus, Joe; Gomez, Luis F.; Kolb, Hartmuth; Secrest, James; Jochems, Jeanine; Myashiro, Kevin; Buckley, Peter; Hadcock, John R.; Eberwine, James; Conti, Bruno; Bartfai, Tamas

    2010-01-01

    OBJECTIVE Temperature and nutrient homeostasis are two interdependent components of energy balance regulated by distinct sets of hypothalamic neurons. The objective is to examine the role of the metabolic signal insulin in the control of core body temperature (CBT). RESEARCH DESIGN AND METHODS The effect of preoptic area administration of insulin on CBT in mice was measured by radiotelemetry and respiratory exchange ratio. In vivo 2-[18F]fluoro-2-deoxyglucose uptake into brown adipose tissue (BAT) was measured in rats after insulin treatment by positron emission tomography combined with X-ray computed tomography imaging. Insulin receptor–positive neurons were identified by retrograde tracing from the raphe pallidus. Insulin was locally applied on hypothalamic slices to determine the direct effects of insulin on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. RESULTS Injection of insulin into the preoptic area of the hypothalamus induced a specific and dose-dependent elevation of CBT mediated by stimulation of BAT thermogenesis as shown by imaging and respiratory ratio measurements. Retrograde tracing indicates that insulin receptor–expressing warm-sensitive neurons activate BAT through projection via the raphe pallidus. Insulin applied on hypothalamic slices acted directly on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. The hyperthermic effects of insulin were blocked by pretreatment with antibodies to insulin or with a phosphatidylinositol 3–kinase inhibitor. CONCLUSIONS Our findings demonstrate that insulin can directly modulate hypothalamic neurons that regulate thermogenesis and CBT and indicate that insulin plays an important role in coupling metabolism and thermoregulation at the level of anterior hypothalamus. PMID:19846801

  4. Bioactives from Artemisia dracunculus L. Enhance Insulin Sensitivity via Modulation of Skeletal Muscle Protein Phosphorylation

    PubMed Central

    Kheterpal, Indu; Scherp, Peter; Kelley, Lauren; Wang, Zhong; Johnson, William; Ribnicky, David; Cefalu, William T.

    2014-01-01

    A botanical extract from Artemisia dracunculus L., termed PMI 5011, has been shown previously to improve insulin sensitivity by increasing cellular insulin signaling in in vitro and in vivo studies. These studies suggest that PMI 5011 effects changes in phosphorylation levels of proteins involved in insulin signaling. To explore effects of this promising botanical extract on the human skeletal muscle phosphoproteome, changes in site-specific protein phosphorylation levels in primary skeletal muscle cultures from obese, insulin resistant individuals were evaluated with and without insulin stimulation. Insulin resistance is a condition in which a normal or elevated insulin level results in an abnormal biologic response, e.g., glucose uptake. Using isobaric tagging for relative and absolute quantification (iTRAQ™) followed by phosphopeptide enrichment and liquid chromatography – tandem mass spectrometry, 125 unique phosphopeptides and 159 unique phosphorylation sites from 80 unique proteins were identified and quantified. Insulin stimulation of primary cultured muscle cells from insulin resistant individuals resulted in minimal increase in phosphorylation, demonstrating impaired insulin action in this condition. Treatment with PMI 5011 resulted in significant up regulation of 35 phosphopeptides that were mapped to proteins participating in the regulation of transcription, translation, actin cytoskeleton signaling, caveolae translocation and GLUT4 transport. These data further showed that PMI 5011 increased phosphorylation levels of specific amino acids in proteins in the insulin resistant state that are normally phosphorylated by insulin (thus, increasing cellular insulin signaling) and PMI 5011 also increased the abundance of phosphorylation sites of proteins regulating anti-apoptotic effects. Thus, the phosphoproteomics analysis demonstrated conclusively that PMI 5011 effects changes in phosphorylation levels of proteins and identified novel pathways by which

  5. Assessment of the Role of Metabolic Determinants on the Relationship between Insulin Sensitivity and Secretion

    PubMed Central

    Galgani, Jose E.; Gómez, Carmen; Mizgier, Maria L.; Gutierrez, Juan; Santos, Jose L.; Olmos, Pablo; Mari, Andrea

    2016-01-01

    Background Insulin secretion correlates inversely with insulin sensitivity, which may suggest the existence of a crosstalk between peripheral organs and pancreas. Such interaction might be mediated through glucose oxidation that may drive the release of circulating factors with action on insulin secretion. Aim To evaluate the association between whole-body carbohydrate oxidation and circulating factors with insulin secretion to consecutive oral glucose loading in non-diabetic individuals. Methods Carbohydrate oxidation was measured after an overnight fast and for 6 hours after two 3-h apart 75-g oral glucose tolerance tests (OGTT) in 53 participants (24/29 males/females; 34±9 y; 27±4 kg/m2). Insulin secretion was estimated by deconvolution of serum C-peptide concentration, β cell function by mathematical modelling and insulin sensitivity from an OGTT. Circulating lactate, free-fatty acids (FFA) and candidate chemokines were assessed before and after OGTT. The effect of recombinant RANTES (regulated on activation, normal T cell expressed and secreted) and IL8 (interleukin 8) on insulin secretion from isolated mice islets was also measured. Results Carbohydrate oxidation assessed over the 6-h period did not relate with insulin secretion (r = -0.11; p = 0.45) or β cell function indexes. Circulating lactate and FFA showed no association with 6-h insulin secretion. Circulating chemokines concentration increased upon oral glucose stimulation. Insulin secretion associated with plasma IL6 (r = 0.35; p<0.05), RANTES (r = 0.30; p<0.05) and IL8 (r = 0.41; p<0.05) determined at 60 min OGTT. IL8 was independently associated with in vivo insulin secretion; however, it did not affect in vitro insulin secretion. Conclusion Whole-body carbohydrate oxidation appears to have no influence on insulin secretion or putative circulating mediators. IL8 may be a potential factor influencing insulin secretion. PMID:28002466

  6. Assessment of the Role of Metabolic Determinants on the Relationship between Insulin Sensitivity and Secretion.

    PubMed

    Galgani, Jose E; Gómez, Carmen; Mizgier, Maria L; Gutierrez, Juan; Santos, Jose L; Olmos, Pablo; Mari, Andrea

    2016-01-01

    Insulin secretion correlates inversely with insulin sensitivity, which may suggest the existence of a crosstalk between peripheral organs and pancreas. Such interaction might be mediated through glucose oxidation that may drive the release of circulating factors with action on insulin secretion. To evaluate the association between whole-body carbohydrate oxidation and circulating factors with insulin secretion to consecutive oral glucose loading in non-diabetic individuals. Carbohydrate oxidation was measured after an overnight fast and for 6 hours after two 3-h apart 75-g oral glucose tolerance tests (OGTT) in 53 participants (24/29 males/females; 34±9 y; 27±4 kg/m2). Insulin secretion was estimated by deconvolution of serum C-peptide concentration, β cell function by mathematical modelling and insulin sensitivity from an OGTT. Circulating lactate, free-fatty acids (FFA) and candidate chemokines were assessed before and after OGTT. The effect of recombinant RANTES (regulated on activation, normal T cell expressed and secreted) and IL8 (interleukin 8) on insulin secretion from isolated mice islets was also measured. Carbohydrate oxidation assessed over the 6-h period did not relate with insulin secretion (r = -0.11; p = 0.45) or β cell function indexes. Circulating lactate and FFA showed no association with 6-h insulin secretion. Circulating chemokines concentration increased upon oral glucose stimulation. Insulin secretion associated with plasma IL6 (r = 0.35; p<0.05), RANTES (r = 0.30; p<0.05) and IL8 (r = 0.41; p<0.05) determined at 60 min OGTT. IL8 was independently associated with in vivo insulin secretion; however, it did not affect in vitro insulin secretion. Whole-body carbohydrate oxidation appears to have no influence on insulin secretion or putative circulating mediators. IL8 may be a potential factor influencing insulin secretion.

  7. Endurance training improves insulin sensitivity and body composition in prostate cancer patients treated with androgen deprivation therapy.

    PubMed

    Hvid, Thine; Winding, Kamilla; Rinnov, Anders; Dejgaard, Thomas; Thomsen, Carsten; Iversen, Peter; Brasso, Klaus; Mikines, Kari J; van Hall, Gerrit; Lindegaard, Birgitte; Solomon, Thomas P J; Pedersen, Bente K

    2013-10-01

    Insulin resistance and changes in body composition are side effects of androgen deprivation therapy (ADT) given to prostate cancer patients. The present study investigated whether endurance training improves insulin sensitivity and body composition in ADT-treated prostate cancer patients. Nine men undergoing ADT for prostate cancer and ten healthy men with normal testosterone levels underwent 12 weeks of endurance training. Primary endpoints were insulin sensitivity (euglycemic-hyperinsulinemic clamps with concomitant glucose-tracer infusion) and body composition (dual-energy X-ray absorptiometry and magnetic resonance imaging). The secondary endpoint was systemic inflammation. Statistical analysis was carried out using two-way ANOVA. Endurance training increased VO2max (ml(O2)/min per kg) by 11 and 13% in the patients and controls respectively (P<0.0001). The patients and controls demonstrated an increase in peripheral tissue insulin sensitivity of 14 and 11% respectively (P<0.05), with no effect on hepatic insulin sensitivity (P=0.32). Muscle protein content of GLUT4 (SLC2A4) and total AKT (AKT1) was also increased in response to the training (P<0.05 and P<0.01 respectively). Body weight (P<0.0001) and whole-body fat mass (FM) (P<0.01) were reduced, while lean body mass (P=0.99) was unchanged. Additionally, reductions were observed in abdominal (P<0.01), subcutaneous (P<0.05), and visceral (P<0.01) FM amounts. The concentrations of plasma markers of systemic inflammation were unchanged in response to the training. No group × time interactions were observed, except for thigh intermuscular adipose tissue (IMAT) (P=0.01), reflecting a significant reduction in the amount of IMAT in the controls (P<0.05) not observed in the patients (P=0.64). In response to endurance training, ADT-treated prostate cancer patients exhibited improved insulin sensitivity and body composition to a similar degree as eugonadal men.

  8. Muscle Sympathetic Nerve Activity Is Associated with Liver Insulin Sensitivity in Obese Non-Diabetic Men

    PubMed Central

    Chen, Daniel L. T.; Brown, Rachael; Liess, Carsten; Poljak, Anne; Xu, Aimin; Zhang, Jialiang; Trenell, Michael; Jenkins, Arthur; Chisholm, Donald; Samocha-Bonet, Dorit; Macefield, Vaughan G.; Greenfield, Jerry R.

    2017-01-01

    Introduction: Muscle sympathetic nerve activity (MSNA) may play a role in insulin resistance in obesity. However, the direction and nature of the relationship between MSNA and insulin resistance in obesity remain unclear. We hypothesized that resting MSNA would correlate inversely with both muscle and liver insulin sensitivity and that it would be higher in insulin-resistant vs. insulin-sensitive subjects. Materials and methods: Forty-five non-diabetic obese subjects were studied. As no significant relationships were found in women, the data presented in on 22 men aged 48 ± 12 years. Two-step (15 and 80 mU/m2/min) hyperinsulinaemic-euglycaemic clamps were performed using deuterated glucose to determine liver and muscle insulin sensitivity. Clinical and metabolic parameters were assessed. MSNA was measured via a microelectrode inserted percutaneously into the common peroneal nerve. Results: MSNA burst frequency correlated inversely with liver insulin sensitivity (r = −0.53, P = 0.02) and positively with the hepatokines C-reactive protein (CRP) and fibroblast growth factor (FGF)-19 (r = 0.57, P = 0.006, and r = −0.47, P = 0.03, respectively). MSNA burst frequency was lower in Liversen compared to Liverres (27 ± 5 vs. 38 ± 2 bursts per minute; P = 0.03). Muscle insulin sensitivity was unrelated to MSNA. Discussion: Sympathetic neural activation is related to liver insulin sensitivity and circulating hepatokines CRP and FGF-19 in non-diabetic obese men. These results suggest a potential hepato-endocrine-autonomic axis. Future studies are needed to clarify the influence of MSNA on liver insulin sensitivity in men. PMID:28293196

  9. Muscle Sympathetic Nerve Activity Is Associated with Liver Insulin Sensitivity in Obese Non-Diabetic Men.

    PubMed

    Chen, Daniel L T; Brown, Rachael; Liess, Carsten; Poljak, Anne; Xu, Aimin; Zhang, Jialiang; Trenell, Michael; Jenkins, Arthur; Chisholm, Donald; Samocha-Bonet, Dorit; Macefield, Vaughan G; Greenfield, Jerry R

    2017-01-01

    Introduction: Muscle sympathetic nerve activity (MSNA) may play a role in insulin resistance in obesity. However, the direction and nature of the relationship between MSNA and insulin resistance in obesity remain unclear. We hypothesized that resting MSNA would correlate inversely with both muscle and liver insulin sensitivity and that it would be higher in insulin-resistant vs. insulin-sensitive subjects. Materials and methods: Forty-five non-diabetic obese subjects were studied. As no significant relationships were found in women, the data presented in on 22 men aged 48 ± 12 years. Two-step (15 and 80 mU/m(2)/min) hyperinsulinaemic-euglycaemic clamps were performed using deuterated glucose to determine liver and muscle insulin sensitivity. Clinical and metabolic parameters were assessed. MSNA was measured via a microelectrode inserted percutaneously into the common peroneal nerve. Results: MSNA burst frequency correlated inversely with liver insulin sensitivity (r = -0.53, P = 0.02) and positively with the hepatokines C-reactive protein (CRP) and fibroblast growth factor (FGF)-19 (r = 0.57, P = 0.006, and r = -0.47, P = 0.03, respectively). MSNA burst frequency was lower in Liversen compared to Liverres (27 ± 5 vs. 38 ± 2 bursts per minute; P = 0.03). Muscle insulin sensitivity was unrelated to MSNA. Discussion: Sympathetic neural activation is related to liver insulin sensitivity and circulating hepatokines CRP and FGF-19 in non-diabetic obese men. These results suggest a potential hepato-endocrine-autonomic axis. Future studies are needed to clarify the influence of MSNA on liver insulin sensitivity in men.

  10. Application of Penalized Regression Techniques in Modelling Insulin Sensitivity by Correlated Metabolic Parameters

    PubMed Central

    Göbl, Christian S.; Bozkurt, Latife; Tura, Andrea; Pacini, Giovanni; Kautzky-Willer, Alexandra; Mittlböck, Martina

    2015-01-01

    This paper aims to introduce penalized estimation techniques in clinical investigations of diabetes, as well as to assess their possible advantages and limitations. Data from a previous study was used to carry out the simulations to assess: a) which procedure results in the lowest prediction error of the final model in the setting of a large number of predictor variables with high multicollinearity (of importance if insulin sensitivity should be predicted) and b) which procedure achieves the most accurate estimate of regression coefficients in the setting of fewer predictors with small unidirectional effects and moderate correlation between explanatory variables (of importance if the specific relation between an independent variable and insulin sensitivity should be examined). Moreover a special focus is on the correct direction of estimated parameter effects, a non-negligible source of error and misinterpretation of study results. The simulations were performed for varying sample size to evaluate the performance of LASSO, Ridge as well as different algorithms for Elastic Net. These methods were also compared with automatic variable selection procedures (i.e. optimizing AIC or BIC).We were not able to identify one method achieving superior performance in all situations. However, the improved accuracy of estimated effects underlines the importance of using penalized regression techniques in our example (e.g. if a researcher aims to compare relations of several correlated parameters with insulin sensitivity). However, the decision which procedure should be used depends on the specific context of a study (accuracy versus complexity) and moreover should involve clinical prior knowledge. PMID:26544569

  11. Bitter gourd (Momordica charantia) improves insulin sensitivity by increasing skeletal muscle insulin-stimulated IRS-1 tyrosine phosphorylation in high-fat-fed rats.

    PubMed

    Sridhar, M G; Vinayagamoorthi, R; Arul Suyambunathan, V; Bobby, Z; Selvaraj, N

    2008-04-01

    The aim of this present study was to investigate the effect of bitter gourd extract on insulin sensitivity and proximal insulin signalling pathways in high-fat-fed rats. High-fat feeding of male Wistar rats for 10 weeks decreased the glucose tolerance and insulin sensitivity compared to chow-fed control rats. Bitter gourd extract supplementation for 2 weeks (9th and 10th) of high-fat feeding improved the glucose tolerance and insulin sensitivity. In addition bitter gourd extract reduced the fasting insulin (43 (se 4.4) v. 23 (se 5.2) microU/ml, P < 0.05), TAG (134 (se 12) v. 96 (se 5.5) mg/dl, P < 0.05), cholesterol (97 (se 6.3) v. 72 (se 5.2) mg/dl, P < 0.05) and epidydimal fat (4.8 (se 0.29) v. 3.6 (se 0.24) g, P < 0.05), which were increased by high-fat diet (HFD). High-fat feeding and bitter gourd supplementation did not have any effect on skeletal muscle insulin receptor, insulin receptor subtrate-1 (IRS-1) and insulin- stimulated insulin receptor tyrosine phosphorylation compared to chow-fed control rats. However high-fat feeding for 10 weeks reduced the insulin-stimulated IRS-1 tyrosine phosphorylation compared to control rats. Bitter gourd supplementation together with HFD for 2 weeks improved the insulin-stimulated IRS-1 tyrosine phosphorylation compared to rats fed with HFD alone. Our results show that bitter gourd extract improves insulin sensitivity, glucose tolerance and insulin signalling in HFD-induced insulin resistance. Identification of potential mechanism(s) by which bitter gourd improves insulin sensitivity and insulin signalling in high-fat-fed rats may open new therapeutic targets for the treatment of obesity/dyslipidemia-induced insulin resistance.

  12. Contraction-induced increase in muscle insulin sensitivity: requirement for a serum factor.

    PubMed

    Gao, J; Gulve, E A; Holloszy, J O

    1994-02-01

    The insulin sensitivity of glucose transport is enhanced in skeletal muscle after a bout of exercise. In a previous study, stimulation of washed muscles to contract in vitro, in contrast to exercise, did not result in an increase in insulin sensitivity. The purpose of the present study was to explain this apparent discrepancy. We found that, although rat epitrochlearis muscles stimulated to contract in vitro after 15 min of incubation in Krebs-Henseleit buffer did not develop increased insulin sensitivity, muscles stimulated to contract immediately after being dissected showed a small but significant enhancement of the stimulation of 3-O-methyl-D-glucose transport by 30 microU/ml insulin. Furthermore, muscles stimulated to contract in situ and then allowed to recover in vitro showed as large an increase in insulin sensitivity as that which occurs after a bout of swimming. To follow up these findings suggesting involvement of a humoral factor, we incubated epitrochlearis muscles in serum before and during contractile activity in vitro. Epitrochlearis muscle insulin sensitivity was enhanced to as great an extent after in vitro contractile activity in serum as after swimming. Experiments involving charcoal treatment, ultrafiltration, or trypsin digestion provided evidence that the serum factor that interacts with contractions to enhance insulin sensitivity is a protein.

  13. Insulin Sensitivity and Inflammation Mediate the Impact of Fitness on Cerebrovascular Health in Adolescents.

    PubMed

    Yau, Po Lai; Ross, Naima; Tirsi, Andrew; Arif, Arslan; Ozinci, Zeynep; Convit, Antonio

    2017-06-01

    To investigate in adolescents the relationships between retinal vessel diameter, physical fitness, insulin sensitivity, and systemic inflammation. We evaluated 157 adolescents, 112 with excessive weight and 45 lean, all without type 2 diabetes mellitus. All received detailed evaluations, including measurements of retinal vessel diameter, insulin sensitivity, levels of inflammation, and physical fitness. Overweight/obese adolescents had significantly narrower retinal arteriolar and wider venular diameters, significantly lower insulin sensitivity, and physical fitness. They also had decreased levels of anti-inflammatory and increased levels of proinflammatory markers as well as an overall higher inflammation balance score. Fitness was associated with larger retinal arteriolar and narrower venular diameters and these relationships were mediated by insulin sensitivity. We demonstrate that inflammation also mediates the relationship between fitness and retinal venular, but not arterial diameter; insulin sensitivity and inflammation balance score jointly mediate this relationship with little overlap in their effects. Increasing fitness and insulin sensitivity and reducing inflammation among adolescents carrying excess weight may improve microvascular integrity. Interventions to improve physical fitness and insulin function and reduce inflammation in adolescents, a group likely to benefit from such interventions, may reduce not only cardiovascular disease in middle age, but also improve cerebrovascular function later in life.

  14. Vitamin D3 supplementation improves insulin sensitivity in subjects with impaired fasting glucose

    PubMed Central

    Nazarian, Shaban; Peter, John V St; Boston, Raymond C; Jones, Sidney A; Mariash, Cary N

    2011-01-01

    Vitamin D has in vitro and in vivo effects on β-cells and insulin sensitivity. Vitamin D deficiency (VDD) has been associated with onset and progression of type 2 diabetes mellitus (DM-2). However, studies involving supplementation of vitamin D in subjects with previously established diabetes have demonstrated inconsistent effects on insulin sensitivity. The aim of this open-label study was to assess the effects of high dose vitamin D3 supplementation on insulin sensitivity in subjects with VDD and impaired fasting glucose. We studied 8 subjects with VDD and pre-diabetes with the modified frequently sampled intravenous glucose tolerance (mFSIGT) test before and after vitamin D supplementation. Vitamin D3 was administered as 10,000 IU daily for 4 weeks. The mFSIGT was analyzed with MinMod Millennnium to obtain estimates of Acute Insulin Response to Glucose (AIRg), Insulin Sensitivity (SI), and Disposition Index (DI). We found that AIRg decreased (p = 0.011) and insulin sensitivity, expressed as SI, increased (p = 0.012) after a intervention with vitamin D. If these findings are repeated in a randomized, double-blind, sudy the results indicate that orally administered high dose vitamin D3 supplementation improves insulin sensitivity in subjects with impaired fasting glucose and suggests that high dose vitamin D3 supplementation might provide an inexpensive public health measure in preventing, or at least delaying, the progression from impaired fasting glucose to diabetes. PMID:22005267

  15. Age, Obesity, and Sex Effects on Insulin Sensitivity and Skeletal Muscle Mitochondrial Function

    PubMed Central

    Karakelides, Helen; Irving, Brian A.; Short, Kevin R.; O'Brien, Peter; Nair, K. Sreekumaran

    2010-01-01

    OBJECTIVE Reductions in insulin sensitivity in conjunction with muscle mitochondrial dysfunction have been reported to occur in many conditions including aging. The objective was to determine whether insulin resistance and mitochondrial dysfunction are directly related to chronological age or are related to age-related changes in body composition. RESEARCH DESIGN AND METHODS Twelve young lean, 12 young obese, 12 elderly lean, and 12 elderly obese sedentary adults were studied. Insulin sensitivity was measured by a hyperinsulinemic-euglycemic clamp, and skeletal muscle mitochondrial ATP production rates (MAPRs) were measured in freshly isolated mitochondria obtained from vastus lateralis biopsy samples using the luciferase reaction. RESULTS Obese participants, independent of age, had reduced insulin sensitivity based on lower rates of glucose infusion during a hyperinsulinemic-euglycemic clamp. In contrast, age had no independent effect on insulin sensitivity. However, the elderly participants had lower muscle MAPRs than the young participants, independent of obesity. Elderly participants also had higher levels inflammatory cytokines and total adiponectin. In addition, higher muscle MAPRs were also noted in men than in women, whereas glucose infusion rates were higher in women. CONCLUSIONS The results demonstrate that age-related reductions in insulin sensitivity are likely due to an age-related increase in adiposity rather than a consequence of advanced chronological age. The results also indicate that an age-related decrease in muscle mitochondrial function is neither related to adiposity nor insulin sensitivity. Of interest, a higher mitochondrial ATP production capacity was noted in the men, whereas the women were more insulin sensitive, demonstrating further dissociation between insulin sensitivity and muscle mitochondrial function. PMID:19833885

  16. The Effects of Carbohydrate, Unsaturated Fat, and Protein Intake on Measures of Insulin Sensitivity

    PubMed Central

    Gadgil, Meghana D.; Appel, Lawrence J.; Yeung, Edwina; Anderson, Cheryl A.M.; Sacks, Frank M.; Miller, Edgar R.

    2013-01-01

    OBJECTIVE Impaired insulin sensitivity increases the risk of cardiovascular disease. Although calorie restriction and weight loss increase insulin sensitivity, the effects of modifying macronutrient composition on insulin sensitivity are uncertain. The purpose of this study is to determine the effects on insulin sensitivity of a carbohydrate-rich diet (CARB; similar to the Dietary Approaches to Stop Hypertension [DASH] diet), a protein-rich diet (PROT; protein predominantly from plant sources), and an unsaturated fat–rich diet (UNSAT; predominantly monounsaturated). RESEARCH DESIGN AND METHODS This study was a randomized, controlled, three-period, crossover feeding study. The study participants were 164 individuals with prehypertension or stage 1 hypertension without diabetes. Diets were administered for 6 weeks each, with a washout period between diets of 2–4 weeks. Weight was held constant throughout the study. For our primary outcome, we calculated the quantitative insulin sensitivity check index (QUICKI) using the end-of-period fasting serum glucose and insulin. QUICKI is a validated measure of insulin sensitivity. The primary analyses used generalized estimating equations. RESULTS At baseline, mean (SD) BMI was 30.2 (6.1) kg/m2, and mean (SD) QUICKI was 0.35 (0.04). The UNSAT diet increased QUICKI by 0.005, more than the CARB diet (P = 0.04). PROT had no significant effect compared with CARB. CONCLUSIONS A diet that partially replaces carbohydrate with unsaturated fat may improve insulin sensitivity in a population at risk for cardiovascular disease. Given the well-recognized challenges of sustaining weight loss, our results suggest an alternative approach for improving insulin sensitivity. PMID:23223345

  17. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer

    PubMed Central

    Suh, Jae Myoung; Jonker, Johan W.; Ahmadian, Maryam; Goetz, Regina; Lackey, Denise; Osborn, Olivia; Huang, Zifeng; Liu, Weilin; Yoshihara, Eiji; van Dijk, Theo; Havinga, Rick; Fan, Weiwei; Yin, Yun-Qiang; Yu, Ruth T.; Liddle, Christopher; Atkins, Annette R.; Olefsky, Jerrold M.; Mohammadi, Moosa; Downes, Michael; Evans, Ronald M.

    2014-01-01

    FGF1 is an autocrine/paracrine regulator whose binding to heparan sulfate proteoglycans effectively precludes its circulation 1,2. Though known as a mitogenic factor, FGF1 knockout mice develop insulin resistance when stressed by a high fat diet, suggesting a potential role in nutrient homeostasis 3,4. Here we show that parenteral delivery of a single dose of recombinant FGF1 (rFGF1) results in potent, insulin-dependent glucose lowering in diabetic mice that is dose-dependent, but does not lead to hypoglycemia. Chronic pharmacological rFGF1 treatment increases insulin-dependent glucose uptake in skeletal muscle and suppresses hepatic glucose production to achieve whole-body insulin sensitization. The sustained glucose lowering and insulin sensitization attributed to rFGF1 are not accompanied by the side effects of weight gain, liver steatosis and bone loss associated with current insulin sensitizing therapies. Furthermore, we demonstrate that the glucose lowering activity of FGF1 can be dissociated from its mitogenic activity and is mediated predominantly via FGF receptor 1 (FGFR1) signaling. In summary, we have uncovered an unexpected, neomorphic insulin sensitizing action for exogenous non-mitogenic human FGF1 with therapeutic potential for treatment of insulin resistance and type 2 diabetes. PMID:25043058

  18. Aerobic exercise increases peripheral and hepatic insulin sensitivity in sedentary adolescents

    USDA-ARS?s Scientific Manuscript database

    Data are limited on the effects of controlled aerobic exercise programs (without weight loss) on insulin sensitivity and glucose metabolism in children and adolescents. To determine whether a controlled aerobic exercise program (without weight loss) improves peripheral and hepatic insulin sensitivi...

  19. Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus.

    PubMed Central

    Cohen, N; Halberstam, M; Shlimovich, P; Chang, C J; Shamoon, H; Rossetti, L

    1995-01-01

    We examined the in vivo metabolic effects of vanadyl sulfate (VS) in non-insulin-dependent diabetes mellitus (NIDDM). Six NIDDM subjects treated with diet and/or sulfonylureas were examined at the end of three consecutive periods: placebo for 2 wk, VS (100 mg/d) for 3 wk, and placebo for 2 wk. Euglycemic hyperinsulinemic (30 mU/m2.min) clamps and oral glucose tolerance tests were performed at the end of each study period. Glycemic control at baseline was poor (fasting plasma glucose 210 +/- 19 mg/dl; HbA1c 9.6 +/- 0.6%) and improved after treatment (181 +/- 14 mg/dl [P < 0.05], 8.8 +/- 0.6%, [P < 0.002]); fasting and post-glucose tolerance test plasma insulin concentrations were unchanged. After VS, the glucose infusion rate during the clamp was increased (by approximately 88%, from 1.80 to 3.38 mg/kg.min, P < 0.0001). This improvement was due to both enhanced insulin-mediated stimulation of glucose uptake (rate of glucose disposal [Rd], +0.89 mg/kg.min) and increased inhibition of HGP (-0.74 mg/kg.min) (P < 0.0001 for both). Increased insulin-stimulated glycogen synthesis (+0.74 mg/kg.min, P < 0.0003) accounted for > 80% of the increased Rd after VS, and the improvement in insulin sensitivity was maintained after the second placebo period. The Km of skeletal muscle glycogen synthase was lowered by approximately 30% after VS treatment (P < 0.05). These results indicate that 3 wk of treatment with VS improves hepatic and peripheral insulin sensitivity in insulin-resistant NIDDM humans. These effects were sustained for up to 2 wk after discontinuation of VS. Images PMID:7769096

  20. Insulin

    MedlinePlus

    ... Information by Audience For Women Women's Health Topics Insulin Share Tweet Linkedin Pin it More sharing options ... medicines. You can do it. Back to Top Insulin Safety Tips Never drink insulin. Do not share ...

  1. Low iron status and enhanced insulin sensitivity in lacto-ovo vegetarians.

    PubMed

    Hua, N W; Stoohs, R A; Facchini, F S

    2001-10-01

    The efficacy of insulin in stimulating whole-body glucose disposal (insulin sensitivity) was quantified using direct methodology in thirty lacto-ovo vegetarians and in thirty meat-eaters. All subjects were adult, lean (BMI <23 kg/m2), healthy and glucose tolerant. Lacto-ovo vegetarians were more insulin sensitive than meat-eaters, with a steady-state plasma glucose (mmol/l) of 4.1 (95 % CI 3.5, 5.0) v. 6.9 (95 % CI 5.2, 7.5; respectively. In addition, lacto-ovo vegetarians had lower body Fe stores, as indicated by a serum ferritin concentration (microg/l) of 35 (95 % CI 21, 49) compared with 72 (95 % CI 45, 100) for meat-eaters To test whether or not Fe status might modulate insulin sensitivity, body Fe was lowered by phlebotomy in six male meat-eaters to levels similar to that seen in vegetarians, with a resultant approximately 40 % enhancement of insulin-mediated glucose disposal Our results demonstrate that lacto-ovo vegetarians are more insulin sensitive and have lower Fe stores than meat-eaters. In addition, it seems that reduced insulin sensitivity in meat-eaters is amenable to improvement by reducing body Fe. The latter finding is in agreement with results from animal studies where, no matter how induced, Fe depletion consistently enhanced glucose disposal.

  2. Insulin Sensitivity and β-Cell Function Improve after Gastric Bypass in Severely Obese Adolescents

    PubMed Central

    Inge, Thomas H.; Prigeon, Ronald L.; Elder, Deborah A.; Jenkins, Todd M.; Cohen, Robert M.; Xanthakos, Stavra A.; Benoit, Stephen C.; Dolan, Lawrence M.; Daniels, Stephen R.; D’Alessio, David A.

    2016-01-01

    Objective To test the hypothesis that insulin secretion and insulin sensitivity would be improved in adolescents after Roux-en-Y gastric bypass (RYGB). Study design A longitudinal study of 22 adolescents and young adults without diabetes undergoing laparoscopic RYGB (mean age 17.1 ± 1.42 years; range 14.5–20.1; male/female 8/14; Non-Hispanic White/African American 17/5) was conducted. Intravenous glucose tolerance tests were done to obtain insulin sensitivity (insulin sensitivity index), insulin secretion (acute insulin response to glucose), and the disposition index as primary outcome variables. These variables were compared over the 1 year of observation using linear mixed modeling. Results In the 1-year following surgery, body mass index fell by 38% from a mean of 61 ± 12.3 to 39 ± 8.0 kg/m2 (P < .01). Over the year following surgery, fasting glucose and insulin values declined by 54% and 63%, respectively. Insulin sensitivity index increased 300% (P < .01), acute insulin response to glucose decreased 56% (P < .01), leading to a nearly 2-fold increase in the disposition index (P < .01). Consistent with improved β-cell function, the proinsulin to C-peptide ratio decreased by 21% (P < .01). Conclusions RYGB reduced body mass index and improved both insulin sensitivity and β-cell function in severely obese teens and young adults. These findings demonstrate that RYGB is associated with marked metabolic improvements in obese young people even as significant obesity persists. Trial registration ClinicalTrials.gov: NCT00360373. PMID:26363548

  3. Insulin Sensitivity and β-Cell Function Improve after Gastric Bypass in Severely Obese Adolescents.

    PubMed

    Inge, Thomas H; Prigeon, Ronald L; Elder, Deborah A; Jenkins, Todd M; Cohen, Robert M; Xanthakos, Stavra A; Benoit, Stephen C; Dolan, Lawrence M; Daniels, Stephen R; D'Alessio, David A

    2015-11-01

    To test the hypothesis that insulin secretion and insulin sensitivity would be improved in adolescents after Roux-en-Y gastric bypass (RYGB). A longitudinal study of 22 adolescents and young adults without diabetes undergoing laparoscopic RYGB (mean age 17.1 ± 1.42 years; range 14.5-20.1; male/female 8/14; Non-Hispanic White/African American 17/5) was conducted. Intravenous glucose tolerance tests were done to obtain insulin sensitivity (insulin sensitivity index), insulin secretion (acute insulin response to glucose ), and the disposition index as primary outcome variables. These variables were compared over the 1 year of observation using linear mixed modeling. In the 1-year following surgery, body mass index fell by 38% from a mean of 61 ± 12.3 to 39 ± 8.0 kg/m(2) (P < .01). Over the year following surgery, fasting glucose and insulin values declined by 54% and 63%, respectively. Insulin sensitivity index increased 300% (P < .01), acute insulin response to glucose decreased 56% (P < .01), leading to a nearly 2-fold increase in the disposition index (P < .01). Consistent with improved β-cell function, the proinsulin to C-peptide ratio decreased by 21% (P < .01). RYGB reduced body mass index and improved both insulin sensitivity and β-cell function in severely obese teens and young adults. These findings demonstrate that RYGB is associated with marked metabolic improvements in obese young people even as significant obesity persists. ClinicalTrials.gov: NCT00360373. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Endocrine Determinants of Changes in Insulin Sensitivity and Insulin Secretion during a Weight Cycle in Healthy Men

    PubMed Central

    Karschin, Judith; Lagerpusch, Merit; Enderle, Janna; Eggeling, Ben; Müller, Manfred J.; Bosy-Westphal, Anja

    2015-01-01

    Objective Changes in insulin sensitivity (IS) and insulin secretion occur with perturbations in energy balance and glycemic load (GL) of the diet that may precede the development of insulin resistance and hyperinsulinemia. Determinants of changes in IS and insulin secretion with weight cycling in non-obese healthy subjects remain unclear. Methods In a 6wk controlled 2-stage randomized dietary intervention 32 healthy men (26±4y, BMI: 24±2kg/m2) followed 1wk of overfeeding (OF), 3wks of caloric restriction (CR) containing either 50% or 65% carbohydrate (CHO) and 2wks of refeeding (RF) with the same amount of CHO but either low or high glycaemic index at ±50% energy requirement. Measures of IS (basal: HOMA-index, postprandial: Matsuda-ISI), insulin secretion (early: Stumvoll-index, total: tAUC-insulin/tAUC-glucose) and potential endocrine determinants (ghrelin, leptin, adiponectin, thyroid hormone levels, 24h-urinary catecholamine excretion) were assessed. Results IS improved and insulin secretion decreased due to CR and normalized upon RF. Weight loss-induced improvements in basal and postprandial IS were associated with decreases in leptin and increases in ghrelin levels, respectively (r = 0.36 and r = 0.62, p<0.05). Weight regain-induced decrease in postprandial IS correlated with increases in adiponectin, fT3, TSH, GL of the diet and a decrease in ghrelin levels (r-values between -0.40 and 0.83, p<0.05) whereas increases in early and total insulin secretion were associated with a decrease in leptin/adiponectin-ratio (r = -0.52 and r = -0.46, p<0.05) and a decrease in fT4 (r = -0.38, p<0.05 for total insulin secretion only). After controlling for GL associations between RF-induced decrease in postprandial IS and increases in fT3 and TSH levels were no longer significant. Conclusion Weight cycling induced changes in IS and insulin secretion were associated with changes in all measured hormones, except for catecholamine excretion. While leptin, adiponectin and

  5. Gut microbiota composition strongly correlates to peripheral insulin sensitivity in obese men but not in women.

    PubMed

    Most, J; Goossens, G H; Reijnders, D; Canfora, E E; Penders, J; Blaak, E E

    2017-08-24

    Gut microbiota composition may play an important role in the development of obesity-related comorbidities. However, only few studies have investigated gender-differences in microbiota composition and gender-specific associations between microbiota or microbial products and insulin sensitivity. Insulin sensitivity (hyperinsulinemic-euglycemic clamp), body composition (dual energy X-ray absorptiometry), substrate oxidation (indirect calorimetry), systemic inflammatory markers and microbiota composition (PCR) were determined in male (n=15) and female (n=14) overweight and obese subjects. Bacteroidetes/Firmicutes-ratio was higher in men than in women (P=0.001). Bacteroidetes/Firmicutes-ratio was inversely related to peripheral insulin sensitivity only in men (men: P=0.003, women: P=0.882). This association between Bacteroidetes/Firmicutes-ratio and peripheral insulin sensitivity did not change after adjustment for dietary fibre and saturated fat intake, body composition, fat oxidation and markers of inflammation. Bacteroidetes/Firmicutes-ratio was not associated with hepatic insulin sensitivity. Men and women differ in microbiota composition and its impact on insulin sensitivity, implying that women might be less sensitive to gut microbiota-induced metabolic aberrations than men. This trial was registered at clinicaltrials.gov as NCT02381145.

  6. Intramuscular triglyceride and muscle insulin sensitivity: evidence for a relationship in nondiabetic subjects.

    PubMed

    Phillips, D I; Caddy, S; Ilic, V; Fielding, B A; Frayn, K N; Borthwick, A C; Taylor, R

    1996-08-01

    Intracellular triglyceride (TG) is an important energy source for skeletal muscle. However, recent evidence suggests that if muscle contains abnormally high TG stores its sensitivity to insulin may be reduced, and this could predispose to type II diabetes. To test this hypothesis, we measured muscle lipid content in 27 women aged 47 to 55 years (mean, 52) and related it to their glucose tolerance, insulin resistance, and muscle insulin sensitivity as measured by insulin activation of glycogen synthase, an insulin-regulated enzyme that is rate-limiting for insulin action in muscle. Both muscle TG content and intracellular lipid determined by Oil red O staining of muscle fibers were negatively associated with glycogen synthase activation (r = .43, P = .03 and r = -.47, P = .02, respectively). In addition, intracellular lipid correlated with features of the insulin resistance syndrome, including an increased waist to hip ratio (r = .47, P = .01) and fasting nonesterified fatty acids ([NEFA] r = .44, P = .04). These data demonstrate that increased muscle TG stores are associated with decreased insulin-stimulated glycogen synthase activity. Intracellular fat may underlie a major part of the insulin resistance in normal subjects, as well as type II diabetics.

  7. High selenium impairs hepatic insulin sensitivity through opposite regulation of ROS.

    PubMed

    Wang, Xin; Zhang, Wei; Chen, Hongli; Liao, Nai; Wang, Zhao; Zhang, Xiaodi; Hai, Chunxu

    2014-01-03

    Insulin resistance is the hallmark of type 2 diabetes. As an essential trace element, selenium (Se) is recommended worldwide for supplementation to prevent Se-deficient pathological conditions, including diabetes and insulin resistance. However, recent evidence has shown that supra-nutritional Se intake is positively associated with the prevalence of diabetes. In the present research, we examined the effect of high Se on insulin sensitivity, and studied possible mechanisms in rats and in rat hepatocytes. Insulin sensitivity and glucose/lipid metabolism were determined by glucose/insulin tolerance test, western blot, immunofluorescence, specific probes and other biochemical assays. We show that high Se activates selenoproteins, including glutathione peroxidase and selenoprotein P, and depletes chromium, leading to a common metabolic intersection-lipolysis in adipose tissue and influx of fatty acids in liver. Fatty acid β-oxidation generates acetyl-CoA, which is metabolized in trichloroacetic acid cycle, supplying excessive electrons for mitochondrial oxidative phosphorylation and leading to increased "bad" reactive oxygen species (ROS) production in mitochondria and final disturbance of insulin signaling. Furthermore, high Se-activated selenoproteins also weaken insulin-stimulated "good" ROS signal generated by NAD(P)H oxidase, leading to attenuation of insulin signaling. Taken together, these data suggest that excessive intake of Se induces hepatic insulin resistance through opposite regulation of ROS. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. A highly sensitive peptide substrate for detecting two Aß-degrading enzymes: neprilysin and insulin-degrading enzyme.

    PubMed

    Chen, Po-Ting; Liao, Tai-Yan; Hu, Chaur-Jong; Wu, Shu-Ting; Wang, Steven S-S; Chen, Rita P-Y

    2010-06-30

    Neprilysin has been singled out as the most promising candidate for use in the degradation of Abeta as a therapy for Alzheimer's disease. In this study, a quenched fluorogenic peptide substrate containing the first seven residues of the Abeta peptide plus a C-terminal Cysteine residue was synthesized to detect neprilysin activity. A fluorophore was attached to the C-terminal Cysteine and its fluorescence was quenched by a quencher linked to the N-terminus of the peptide. When this peptide substrate was degraded by an endopeptidase, fluorescence was produced and proved to be a sensitive detection system for endopeptidase activity. Our results showed that this assay system was extremely sensitive to neprilysin and insulin-degrading enzyme, but insensitive, or much less sensitive, to other Abeta-degrading enzymes. As low as 0.1 nM of neprilysin and 0.2 nM of insulin-degrading enzyme can be detected.

  9. Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci.

    PubMed

    Walford, Geoffrey A; Gustafsson, Stefan; Rybin, Denis; Stančáková, Alena; Chen, Han; Liu, Ching-Ti; Hong, Jaeyoung; Jensen, Richard A; Rice, Ken; Morris, Andrew P; Mägi, Reedik; Tönjes, Anke; Prokopenko, Inga; Kleber, Marcus E; Delgado, Graciela; Silbernagel, Günther; Jackson, Anne U; Appel, Emil V; Grarup, Niels; Lewis, Joshua P; Montasser, May E; Landenvall, Claes; Staiger, Harald; Luan, Jian'an; Frayling, Timothy M; Weedon, Michael N; Xie, Weijia; Morcillo, Sonsoles; Martínez-Larrad, María Teresa; Biggs, Mary L; Chen, Yii-Der Ida; Corbaton-Anchuelo, Arturo; Færch, Kristine; Gómez-Zumaquero, Juan Miguel; Goodarzi, Mark O; Kizer, Jorge R; Koistinen, Heikki A; Leong, Aaron; Lind, Lars; Lindgren, Cecilia; Machicao, Fausto; Manning, Alisa K; Martín-Núñez, Gracia María; Rojo-Martínez, Gemma; Rotter, Jerome I; Siscovick, David S; Zmuda, Joseph M; Zhang, Zhongyang; Serrano-Rios, Manuel; Smith, Ulf; Soriguer, Federico; Hansen, Torben; Jørgensen, Torben J; Linnenberg, Allan; Pedersen, Oluf; Walker, Mark; Langenberg, Claudia; Scott, Robert A; Wareham, Nicholas J; Fritsche, Andreas; Häring, Hans-Ulrich; Stefan, Norbert; Groop, Leif; O'Connell, Jeff R; Boehnke, Michael; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Tuomilehto, Jaakko; März, Winfried; Kovacs, Peter; Stumvoll, Michael; Psaty, Bruce M; Kuusisto, Johanna; Laakso, Markku; Meigs, James B; Dupuis, Josée; Ingelsson, Erik; Florez, Jose C

    2016-10-01

    Genome-wide association studies (GWAS) have found few common variants that influence fasting measures of insulin sensitivity. We hypothesized that a GWAS of an integrated assessment of fasting and dynamic measures of insulin sensitivity would detect novel common variants. We performed a GWAS of the modified Stumvoll Insulin Sensitivity Index (ISI) within the Meta-Analyses of Glucose and Insulin-Related Traits Consortium. Discovery for genetic association was performed in 16,753 individuals, and replication was attempted for the 23 most significant novel loci in 13,354 independent individuals. Association with ISI was tested in models adjusted for age, sex, and BMI and in a model analyzing the combined influence of the genotype effect adjusted for BMI and the interaction effect between the genotype and BMI on ISI (model 3). In model 3, three variants reached genome-wide significance: rs13422522 (NYAP2; P = 8.87 × 10(-11)), rs12454712 (BCL2; P = 2.7 × 10(-8)), and rs10506418 (FAM19A2; P = 1.9 × 10(-8)). The association at NYAP2 was eliminated by conditioning on the known IRS1 insulin sensitivity locus; the BCL2 and FAM19A2 associations were independent of known cardiometabolic loci. In conclusion, we identified two novel loci and replicated known variants associated with insulin sensitivity. Further studies are needed to clarify the causal variant and function at the BCL2 and FAM19A2 loci. © 2016 by the American Diabetes Association.

  10. High levels of dietary stearate promote adiposity and deteriorate hepatic insulin sensitivity

    PubMed Central

    2010-01-01

    Background Relatively little is known about the role of specific saturated fatty acids in the development of high fat diet induced obesity and insulin resistance. Here, we have studied the effect of stearate in high fat diets (45% energy as fat) on whole body energy metabolism and tissue specific insulin sensitivity. Methods C57Bl/6 mice were fed a low stearate diet based on palm oil or one of two stearate rich diets, one diet based on lard and one diet based on palm oil supplemented with tristearin (to the stearate level of the lard based diet), for a period of 5 weeks. Ad libitum fed Oxidative metabolism was assessed by indirect calorimetry at week 5. Changes in body mass and composition was assessed by DEXA scan analysis. Tissue specific insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp analysis and Western blot at the end of week 5. Results Indirect calorimetry analysis revealed that high levels of dietary stearate resulted in lower caloric energy expenditure characterized by lower oxidation of fatty acids. In agreement with this metabolic phenotype, mice on the stearate rich diets gained more adipose tissue mass. Whole body and tissue specific insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp and analysis of insulin induced PKBser473 phosphorylation. Whole body insulin sensitivity was decreased by all high fat diets. However, while insulin-stimulated glucose uptake by peripheral tissues was impaired by all high fat diets, hepatic insulin sensitivity was affected only by the stearate rich diets. This tissue-specific pattern of reduced insulin sensitivity was confirmed by similar impairment in insulin-induced phosphorylation of PKBser473 in both liver and skeletal muscle. Conclusion In C57Bl/6 mice, 5 weeks of a high fat diet rich in stearate induces a metabolic state favoring low oxidative metabolism, increased adiposity and whole body insulin resistance characterized by severe hepatic insulin resistance. These results

  11. Insulin sensitivity as a risk factor for common carotid intima media thickness (IMT): its relation to atherosclerosis.

    PubMed

    Deo, S S; Mahadik, S R; Chogle, A R; Soneji, S L; Lulla, C P

    2007-10-01

    The relationship between insulin resistance and atherosclerosis (ATH) in non-diabetic hypertensive patients from the Asian Indian population remains poorly understood. To resolve this issue, the present study was designed to analyze whether insulin sensitivity in a non-diabetic individual is related to the development of ATH.(by using IMT as an index) and whether this relationship is dependent on the presence of other cardiovascular disease (CVD) risk factors such as dyslipidemia and hypertension. This study included 68 healthy controls with no diabetes and hypertension and 41 hypertensive patients who underwent four-point oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT). A biochemical profile, beta mode ultrasonography for intima media thickness of carotid artery, and ECG determination was carried out. Hypertensive patients in our study exhibited significantly increased abdominal obesity. Blood pressure, fasting and 2 hr plasma glucose (4.62 +/- 0.08 and 5.55 +/- 0.17 mmol/l), and triglyceride (1.47 +/- 0.067 mmol/l) levels were compared to those of control subjects (p < 0.05). The fasting insulin levels and HOMA-IR were also significantly increased and Composite Insulin Sensitivity Index (CISI) reduced compared to controls with p < 0.01. Intima media thickness of the left (0.08 +/- 0.01) and right (0.069 +/- 0.008) CA were both significantly increased in hypertensives (p < 0.01). Correlation analysis showed that IMT of the left carotid artery was significantly associated with triglyceride levels (r = 0.813, p < 0.05) but not with insulin measures such as HOMA-IR and CISI. Hyperinsulinemia was observed in our non-diabetic hypertensive patients, but no association was found between IMT and insulin resistance. That IMT of hypertensives was associated with triglyceride levels suggests that high levels of insulin may be related to the development of ATH indirectly through its effects on lipid metabolism in our population.

  12. Relationship between Insulin Sensitivity and Muscle Lipids may Differ with Muscle Group and Ethnicity

    PubMed Central

    Lawrence, Jeannine C.; Gower, Barbara A.; Garvey, W. Timothy; Muñoz, A. Julian; Darnell, Betty E.; Oster, Robert A.; Buchthal, Steven D.; Goran, Michael I.; Newcomer, Bradley R.

    2011-01-01

    Intramyocellular lipid (IMCL) has been inversely associated with insulin sensitivity in some, but not all, studies. This study utilized fast, high-resolution, magnetic resonance spectroscopic imaging (MRSI) to: investigate relationships between muscle lipids (IMCL and extramyocellular lipid (EMCL)) and insulin sensitivity in muscles of varying oxidative capacity, explore ethnic differences in these relationships, and determine whether a eucaloric, low-fat dietary intervention would reduce IMCL and increase insulin sensitivity. Subjects were 30 healthy, African-American (AA; n=14) and European-American (EA; n=16) males, BMI 26.49 (±5.57) kg/m2, age 21.80 (±7.84) yrs. Soleus and tibialis anterior muscle lipids were quantified using MRSI. Insulin sensitivity was assessed via intravenous glucose tolerance test. A 2-week, eucaloric, low-fat diet intervention was conducted in a sub-group (n=12) subjects with assessments at baseline and post-intervention. Neither IMCL nor EMCL levels differed between ethnicities. In the total group, and within EA (but not AA), both tibialis anterior IMCL and EMCL were inversely associated with insulin sensitivity (P<0.05 for both); soleus muscle lipids were not associated with insulin sensitivity. Soleus, but not tibialis anterior, IMCL declined in both ethnic groups (average 25.3%; p<0.01) following dietary intervention; insulin sensitivity was unchanged. Results suggest that an association of muscle lipids with insulin sensitivity may be influenced by the oxidative capacity of the muscle group studied and may vary with ethnicity. PMID:22039395

  13. AgRP Neurons Control Systemic Insulin Sensitivity via Myostatin Expression in Brown Adipose Tissue.

    PubMed

    Steculorum, Sophie M; Ruud, Johan; Karakasilioti, Ismene; Backes, Heiko; Engström Ruud, Linda; Timper, Katharina; Hess, Martin E; Tsaousidou, Eva; Mauer, Jan; Vogt, Merly C; Paeger, Lars; Bremser, Stephan; Klein, Andreas C; Morgan, Donald A; Frommolt, Peter; Brinkkötter, Paul T; Hammerschmidt, Philipp; Benzing, Thomas; Rahmouni, Kamal; Wunderlich, F Thomas; Kloppenburg, Peter; Brüning, Jens C

    2016-03-24

    Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis.

  14. Genome-wide DNA methylation pattern in visceral adipose tissue differentiates insulin-resistant from insulin-sensitive obese subjects.

    PubMed

    Crujeiras, A B; Diaz-Lagares, A; Moreno-Navarrete, J M; Sandoval, J; Hervas, D; Gomez, A; Ricart, W; Casanueva, F F; Esteller, M; Fernandez-Real, J M

    2016-12-01

    Elucidating the potential mechanisms involved in the detrimental effect of excess body weight on insulin action is an important priority in counteracting obesity-associated diseases. The present study aimed to disentangle the epigenetic basis of insulin resistance by performing a genome-wide epigenetic analysis in visceral adipose tissue (VAT) from morbidly obese patients depending on the insulin sensitivity evaluated by the clamp technique. The global human methylome screening performed in VAT from 7 insulin-resistant (IR) and 5 insulin-sensitive (IS) morbidly obese patients (discovery cohort) analyzed using the Infinium HumanMethylation450 BeadChip array identified 982 CpG sites able to perfectly separate the IR and IS samples. The identified sites represented 538 unique genes, 10% of which were diabetes-associated genes. The current work identified novel IR-related genes epigenetically regulated in VAT, such as COL9A1, COL11A2, CD44, MUC4, ADAM2, IGF2BP1, GATA4, TET1, ZNF714, ADCY9, TBX5, and HDACM. The gene with the largest methylation fold-change and mapped by 5 differentially methylated CpG sites located in island/shore and promoter region was ZNF714. This gene presented lower methylation levels in IR than in IS patients in association with increased transcription levels, as further reflected in a validation cohort (n = 24; 11 IR and 13 IS). This study reveals, for the first time, a potential epigenetic regulation involved in the dysregulation of VAT that could predispose patients to insulin resistance and future type 2 diabetes in morbid obesity, providing a potential therapeutic target and biomarkers for counteracting this process. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Effects of exercise training on glucose control, lipid metabolism, and insulin sensitivity in hypertriglyceridemia and non-insulin dependent diabetes mellitus.

    PubMed

    Lampman, R M; Schteingart, D E

    1991-06-01

    Exercise training has potential benefits for patients with hyperlipidemia and/or non-insulin dependent diabetes mellitus. In nondiabetic, nonobese subjects with hypertriglyceridemia, exercise training alone increased insulin sensitivity, improved glucose tolerance, and lowered serum triglyceride and cholesterol levels. These improvements did not occur when exercise training alone was given to similar patients with impaired glucose tolerance. In severely obese (X = 125 kg) subjects without diabetes melitus, a 600 calorie diet alone decreased glucose and insulin concentrations and improved glucose tolerance but did not increase insulin sensitivity. The addition of exercise training improved insulin sensitivity. Obese, non-insulin dependent diabetes mellitus subjects on sulfonylurea therapy alone increased insulin levels but failed to improve insulin sensitivity or glucose levels. In contrast, the addition of exercise training to this medication resulted in improved insulin sensitivity and lowered glucose levels. We conclude that exercise training has major effects on lowering triglyceride levels in hyperlipidemic subjects and can potentiate the effect of diet or drug therapy on glucose metabolism in patients with non-insulin dependent diabetes mellitus.

  16. Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity.

    PubMed

    Federici, M; Porzio, O; Lauro, D; Borboni, P; Giovannone, B; Zucaro, L; Hribal, M L; Sesti, G

    1998-08-01

    We reported that in noninsulin-dependent diabetes melitus (NIDDM) patients expression of insulin/insulin-like growth factor I (IGF-I) hybrid receptors is increased in insulin target tissues. Whether this is a defect associated with NIDDM or represents a generalized abnormality associated with insulin resistant states is still unsettled. To address this, we applied a microwell-based immunoassay to measure abundance of insulin receptors, type 1 IGF receptors, and hybrid receptors in muscle of eight normal and eight obese subjects. Maximal insulin binding to insulin receptors was lower in obese than in control subjects (B/T = 1.8 +/- 0.20 and 2.6 +/- 0.30; P < 0.03, respectively) and was negatively correlated with insulinemia (r = -0.60; P < 0.01). Maximal IGF-I binding to type 1 IGF receptors was higher in obese than in controls (B/T = 1.9 +/- 0.20 and 0.86 +/- 0.10; P < 0.0001, respectively) and was negatively correlated with plasma IGF-I levels (r = -0.69; P < 0.003). Hybrid receptor abundance was higher in obese than in normal subjects (B/T = 1.21 +/- 0.14 and 0.44 +/- 0.06; P < 0.0003, respectively) and was negatively correlated with insulin binding (r = -0.60; P < 0.01) and positively correlated with IGF-I binding (r = 0.92; P < 0.0001). Increased abundance of hybrids was correlated with insulinemia (r = 0.70; P < 0.002) and body mass index (r = 0.71; P < 0.0019), whereas it was negatively correlated with in vivo insulin sensitivity measured by ITT (r = -0.67; P < 0.016). These results indicate that downregulation of insulin receptors or upregulation of type 1 IGF receptors because of changes in plasma insulin and IGF-I levels may result in modifications in hybrid receptor abundance.

  17. Hormetic modulation of hepatic insulin sensitivity by advanced glycation end products.

    PubMed

    Fabre, Nelly T; Thieme, Karina; Silva, Karolline S; Catanozi, Sérgio; Cavaleiro, Ana Mercedes; Pinto, Danilo A C; Okamoto, Maristela M; Morais, Mychel Raony P T; Falquetto, Bárbara; Zorn, Telma M; Machado, Ubiratan F; Passarelli, Marisa; Correa-Giannella, Maria Lúcia

    2017-05-15

    Because of the paucity of information regarding metabolic effects of advanced glycation end products (AGEs) on liver, we evaluated effects of AGEs chronic administration in (1) insulin sensitivity; (2) hepatic expression of genes involved in AGEs, glucose and fat metabolism, oxidative stress and inflammation and; (3) hepatic morphology and glycogen content. Rats received intraperitoneally albumin modified (AlbAGE) or not by advanced glycation for 12 weeks. AlbAGE induced whole-body insulin resistance concomitantly with increased hepatic insulin sensitivity, evidenced by activation of AKT, inactivation of GSK3, increased hepatic glycogen content, and decreased expression of gluconeogenesis genes. Additionally there was reduction in hepatic fat content, in expression of lipogenic, pro-inflamatory and pro-oxidative genes and increase in reactive oxygen species and in nuclear expression of NRF2, a transcription factor essential to cytoprotective response. Although considered toxic, AGEs become protective when administered chronically, stimulating AKT signaling, which is involved in cellular defense and insulin sensitivity.

  18. Fitness, Insulin Sensitivity and Frontal Lobe Integrity in Overweight and Obese Adults

    PubMed Central

    Castro, Mary Grace; Venutolo, Christopher; Yau, Po Lai; Convit, Antonio

    2016-01-01

    Objective To formally test whether insulin sensitivity mediates the relationship between fitness and brain integrity. Methods Eighty-four non-diabetic, middle-aged participants received a 6-minute walk test from which maximal oxygen uptake (VO2 max) was derived, a structural MR scan, and a medical evaluation including fasting glucose and insulin levels. Results We showed significant associations between fitness, abdominal obesity, and insulin sensitivity and anterior cingulate cortex (ACC) volume as well as between ACC thickness and quantitative insulin-sensitivity check index (QUICKI). We showed that the relationship between ACC volume and VO2 max was completely mediated through QUICKI, see Figure 3. Further, this strong association was confirmed by a single and very significant cluster on the ACC linking gray matter volume and QUICKI in a voxel-based morphometry analysis. Conclusions As expected, increased abdominal obesity was associated with reductions in fitness, ACC volumes, and insulin sensitivity. Importantly, we demonstrate a significant mediation of the relationship between VO2 max and ACC volume by QUICKI. This suggests that the links between impaired insulin sensitivity and brain abnormalities in adults carrying excess weight could be alleviated through increased physical activity and fitness. PMID:27123868

  19. Fitness, insulin sensitivity, and frontal lobe integrity in adults with overweight and obesity.

    PubMed

    Castro, Mary Grace; Venutolo, Christopher; Yau, Po Lai; Convit, Antonio

    2016-06-01

    To formally test whether insulin sensitivity mediates the relationship between fitness and brain integrity. Eighty-four middle-aged participants without diabetes received a 6-min walk test from which maximal oxygen uptake (VO2 max) was derived, a structural magnetic resonance scan, and a medical evaluation including fasting glucose and insulin levels. This study showed significant associations between fitness, abdominal obesity, and insulin sensitivity and anterior cingulate cortex (ACC) volume as well as between ACC thickness and quantitative insulin-sensitivity check index (QUICKI). The relationship between ACC volume and VO2 max was completely mediated through QUICKI. Further, this strong association was confirmed by a single and very significant cluster on the ACC linking gray matter volume and QUICKI in a voxel-based morphometry analysis. As expected, increased abdominal obesity was associated with reductions in fitness, ACC volumes, and insulin sensitivity. Importantly, this study demonstrated a significant mediation of the relationship between VO2 max and ACC volume by QUICKI. This suggests that the links between impaired insulin sensitivity and brain abnormalities in adults carrying excess weight could be alleviated through increased physical activity and fitness. © 2016 The Obesity Society.

  20. Genetic variants associated with glycine metabolism and their role in insulin sensitivity and type 2 diabetes.

    PubMed

    Xie, Weijia; Wood, Andrew R; Lyssenko, Valeriya; Weedon, Michael N; Knowles, Joshua W; Alkayyali, Sami; Assimes, Themistocles L; Quertermous, Thomas; Abbasi, Fahim; Paananen, Jussi; Häring, Hans; Hansen, Torben; Pedersen, Oluf; Smith, Ulf; Laakso, Markku; Dekker, Jacqueline M; Nolan, John J; Groop, Leif; Ferrannini, Ele; Adam, Klaus-Peter; Gall, Walter E; Frayling, Timothy M; Walker, Mark

    2013-06-01

    Circulating metabolites associated with insulin sensitivity may represent useful biomarkers, but their causal role in insulin sensitivity and diabetes is less certain. We previously identified novel metabolites correlated with insulin sensitivity measured by the hyperinsulinemic-euglycemic clamp. The top-ranking metabolites were in the glutathione and glycine biosynthesis pathways. We aimed to identify common genetic variants associated with metabolites in these pathways and test their role in insulin sensitivity and type 2 diabetes. With 1,004 nondiabetic individuals from the RISC study, we performed a genome-wide association study (GWAS) of 14 insulin sensitivity-related metabolites and one metabolite ratio. We replicated our results in the Botnia study (n = 342). We assessed the association of these variants with diabetes-related traits in GWAS meta-analyses (GENESIS [including RISC, EUGENE2, and Stanford], MAGIC, and DIAGRAM). We identified four associations with three metabolites-glycine (rs715 at CPS1), serine (rs478093 at PHGDH), and betaine (rs499368 at SLC6A12; rs17823642 at BHMT)-and one association signal with glycine-to-serine ratio (rs1107366 at ALDH1L1). There was no robust evidence for association between these variants and insulin resistance or diabetes. Genetic variants associated with genes in the glycine biosynthesis pathways do not provide consistent evidence for a role of glycine in diabetes-related traits.

  1. Influence of Maternal Obesity on Insulin Sensitivity and Secretion in Offspring

    PubMed Central

    Mingrone, Geltrude; Manco, Melania; Valera Mora, Maria Elena; Guidone, Caterina; Iaconelli, Amerigo; Gniuli, Donatella; Leccesi, Laura; Chiellini, Chiara; Ghirlanda, Giovanni

    2008-01-01

    OBJECTIVE—The purpose of this study was to clarify the effects of maternal obesity on insulin sensitivity and secretion in offspring. RESEARCH DESIGN AND METHODS—Fifty-one offspring of both sexes of obese (Ob group) and 15 offspring of normal-weight (control group) mothers were studied. Plasma glucose, insulin, and C-peptide were measured during an oral glucose tolerance test (OGTT). Insulin sensitivity was calculated using the oral glucose insulin sensitivity index, and insulin secretion and β-cell glucose sensitivity were computed by a mathematical model. Fasting leptin and adiponectin were also measured. Body composition was assessed by dual-X-ray absorptiometry. RESULTS—No birth weight statistical difference was observed in the two groups. Of the Ob group, 69% were obese and 19% were overweight. The Ob group were more insulin resistant than the control group (398.58 ± 79.32 vs. 513.81 ± 70.70 ml−1 · min−1 · m−2 in women, P < 0.0001; 416.42 ± 76.17 vs. 484.242 ± 45.76 ml−1 · min−1 · m−2 in men, P < 0.05). Insulin secretion after OGTT was higher in Ob group than in control group men (63.94 ± 21.20 vs. 35.71 ± 10.02 nmol · m−2, P < 0.01) but did not differ significantly in women. β-Cell glucose sensitivity was not statistically different between groups. A multivariate analysis of variance showed that maternal obesity and offspring sex concurred together with BMI and β-cell glucose sensitivity to determine the differences in insulin sensitivity and secretion observed in offspring. CONCLUSIONS—Obese mothers can give birth to normal birth weight babies who later develop obesity and insulin resistance. The maternal genetic/epigenetic transmission shows a clear sexual dimorphism, with male offspring having a higher value of insulin sensitivity (although not statistically significant) associated with significantly higher insulin secretion than female offspring. PMID:18535193

  2. Sleep Restriction for 1 Week Reduces Insulin Sensitivity in Healthy Men

    PubMed Central

    Buxton, Orfeu M.; Pavlova, Milena; Reid, Emily W.; Wang, Wei; Simonson, Donald C.; Adler, Gail K.

    2010-01-01

    OBJECTIVE Short sleep duration is associated with impaired glucose tolerance and an increased risk of diabetes. The effects of sleep restriction on insulin sensitivity have not been established. This study tests the hypothesis that decreasing nighttime sleep duration reduces insulin sensitivity and assesses the effects of a drug, modafinil, that increases alertness during wakefulness. RESEARCH DESIGN AND METHODS This 12-day inpatient General Clinical Research Center study included 20 healthy men (age 20–35 years and BMI 20–30 kg/m2). Subjects spent 10 h/night in bed for ≥8 nights including three inpatient nights (sleep-replete condition), followed by 5 h/night in bed for 7 nights (sleep-restricted condition). Subjects received 300 mg/day modafinil or placebo during sleep restriction. Diet and activity were controlled. On the last 2 days of each condition, we assessed glucose metabolism by intravenous glucose tolerance test (IVGTT) and euglycemic-hyperinsulinemic clamp. Salivary cortisol, 24-h urinary catecholamines, and neurobehavioral performance were measured. RESULTS IVGTT-derived insulin sensitivity was reduced by (means ± SD) 20 ± 24% after sleep restriction (P = 0.001), without significant alterations in the insulin secretory response. Similarly, insulin sensitivity assessed by clamp was reduced by 11 ± 5.5% (P < 0.04) after sleep restriction. Glucose tolerance and the disposition index were reduced by sleep restriction. These outcomes were not affected by modafinil treatment. Changes in insulin sensitivity did not correlate with changes in salivary cortisol (increase of 51 ± 8% with sleep restriction, P < 0.02), urinary catecholamines, or slow wave sleep. CONCLUSIONS Sleep restriction (5 h/night) for 1 week significantly reduces insulin sensitivity, raising concerns about effects of chronic insufficient sleep on disease processes associated with insulin resistance. PMID:20585000

  3. Changes in subcutaneous fat cell volume and insulin sensitivity after weight loss.

    PubMed

    Andersson, Daniel P; Eriksson Hogling, Daniel; Thorell, Anders; Toft, Eva; Qvisth, Veronica; Näslund, Erik; Thörne, Anders; Wirén, Mikael; Löfgren, Patrik; Hoffstedt, Johan; Dahlman, Ingrid; Mejhert, Niklas; Rydén, Mikael; Arner, Erik; Arner, Peter

    2014-07-01

    Large subcutaneous fat cells associate with insulin resistance and high risk of developing type 2 diabetes. We investigated if changes in fat cell volume and fat mass correlate with improvements in the metabolic risk profile after bariatric surgery in obese patients. Fat cell volume and number were measured in abdominal subcutaneous adipose tissue in 62 obese women before and 2 years after Roux-en-Y gastric bypass (RYGB). Regional body fat mass by dual-energy X-ray absorptiometry; insulin sensitivity by hyperinsulinemic-euglycemic clamp; and plasma glucose, insulin, and lipid profile were assessed. RYGB decreased body weight by 33%, which was accompanied by decreased adipocyte volume but not number. Fat mass in the measured regions decreased and all metabolic parameters were improved after RYGB (P < 0.0001). Whereas reduced subcutaneous fat cell size correlated strongly with improved insulin sensitivity (P = 0.0057), regional changes in fat mass did not, except for a weak correlation between changes in visceral fat mass and insulin sensitivity and triglycerides. The curve-linear relationship between fat cell size and fat mass was altered after weight loss (P = 0.03). After bariatric surgery in obese women, a reduction in subcutaneous fat cell volume associates more strongly with improvement of insulin sensitivity than fat mass reduction per se. An altered relationship between adipocyte size and fat mass may be important for improving insulin sensitivity after weight loss. Fat cell size reduction could constitute a target to improve insulin sensitivity. © 2014 by the American Diabetes Association.

  4. Treatment with Sildenafil Improves Insulin Sensitivity in Prediabetes: A Randomized, Controlled Trial

    PubMed Central

    Ramirez, Claudia E.; Nian, Hui; Yu, Chang; Gamboa, Jorge L.; Luther, James M.; Shibao, Cyndya A.

    2015-01-01

    Context: Sildenafil increases insulin sensitivity in mice. In humans, phosphodiesterase 5 inhibition improves disposition index, but the mechanism of this effect has not been elucidated and may depend on duration. In addition, increasing cyclic GMP without increasing nitric oxide could have beneficial effects on fibrinolytic balance. Objective: The objective was to test the hypothesis that chronic phosphodiesterase 5 inhibition with sildenafil improves insulin sensitivity and secretion without diminishing fibrinolytic function. Design: This was a randomized, double-blind, placebo-controlled study. Setting: This trial was conducted at Vanderbilt Clinical Research Center. Participants: Participants included overweight individuals with prediabetes. Interventions: Subjects were randomized to treatment with sildenafil 25 mg three times a day or matching placebo for 3 months. Subjects underwent a hyperglycemic clamp prior to and at the end of treatment. Main Outcome Measures: The primary outcomes of the study were insulin sensitivity and glucose-stimulated insulin secretion. Result: Twenty-one subjects completed each treatment arm. After 3 months, the insulin sensitivity index was significantly greater in the sildenafil group compared to the placebo group by 1.84 mg/kg/min per μU/mL*100 (95% confidence interval, 0.01 to 3.67 mg/kg/min per μU/mL*100; P = .049), after adjusting for baseline insulin sensitivity index and body mass index. In contrast, there was no effect of 3-month treatment with sildenafil on acute- or late-phase glucose-stimulated insulin secretion (P > .30). Sildenafil decreased plasminogen activator inhibitor-1 (P = .01), without altering tissue-plasminogen activator. In contrast to placebo, sildenafil also decreased the urine albumin-to-creatinine ratio from 12.67 ± 14.67 to 6.84 ± 4.86 μg/mg Cr. This effect persisted 3 months after sildenafil discontinuation. Conclusions: Three-month phosphodiesterase 5 inhibition enhances insulin sensitivity and

  5. Statin Intake Is Associated With Decreased Insulin Sensitivity During Cardiac Surgery

    PubMed Central

    Sato, Hiroaki; Carvalho, George; Sato, Tamaki; Hatzakorzian, Roupen; Lattermann, Ralph; Codere-Maruyama, Takumi; Matsukawa, Takashi; Schricker, Thomas

    2012-01-01

    OBJECTIVE Surgical trauma impairs intraoperative insulin sensitivity and is associated with postoperative adverse events. Recently, preprocedural statin therapy is recommended for patients with coronary artery disease. However, statin therapy is reported to increase insulin resistance and the risk of new-onset diabetes. Thus, we investigated the association between preoperative statin therapy and intraoperative insulin sensitivity in nondiabetic, dyslipidemic patients undergoing coronary artery bypass grafting. RESEARCH DESIGN AND METHODS In this prospective, nonrandomized trial, patients taking lipophilic statins were assigned to the statin group and hypercholesterolemic patients not receiving any statins were allocated to the control group. Insulin sensitivity was assessed by the hyperinsulinemic-normoglycemic clamp technique during surgery. The mean, SD of blood glucose, and the coefficient of variation (CV) after surgery were calculated for each patient. The association between statin use and intraoperative insulin sensitivity was tested by multiple regression analysis. RESULTS We studied 120 patients. In both groups, insulin sensitivity gradually decreased during surgery with values being on average ∼20% lower in the statin than in the control group. In the statin group, the mean blood glucose in the intensive care unit was higher than in the control group (153 ± 20 vs. 140 ± 20 mg/dL; P < 0.001). The oscillation of blood glucose was larger in the statin group (SD, P < 0.001; CV, P = 0.001). Multiple regression analysis showed that statin use was independently associated with intraoperative insulin sensitivity (β = −0.16; P = 0.03). CONCLUSIONS Preoperative use of lipophilic statins is associated with increased insulin resistance during cardiac surgery in nondiabetic, dyslipidemic patients. PMID:22829524

  6. Variable reliability of surrogate measures of insulin sensitivity after Roux-en-Y gastric bypass.

    PubMed

    Bojsen-Møller, Kirstine N; Dirksen, Carsten; Svane, Maria S; Jørgensen, Nils B; Holst, Jens J; Richter, Erik A; Madsbad, Sten

    2017-05-01

    Roux-en-Y gastric bypass (RYGB) induces weight loss and improves insulin sensitivity when evaluated by the hyperinsulinemic-euglycemic clamp (HEC). Surrogate indices of insulin sensitivity calculated from insulin and glucose concentrations at fasting or after an oral glucose tolerance test (OGTT) are frequently used, but have not been validated after RYGB. Our aim was to evaluate whether surrogate indices reliably estimate changes in insulin sensitivity after RYGB. Four fasting surrogates (inverse-HOMA-IR, HOMA2-%S, QUICKI, revised-QUICKI) and three OGTT-derived surrogates (Matsuda, Gutt, OGIS) were compared with HEC-estimated peripheral insulin sensitivity (Rd or Rd/I, depending on how the index was originally validated) and the tracer-determined hepatic insulin sensitivity index (HISI) in patients with preoperative type 2 diabetes (n = 10) and normal glucose tolerance (n = 10) 1 wk, 3 mo, and 1 yr postoperatively. Post-RYGB changes in inverse-HOMA-IR and HOMA2-%S did not correlate with changes in Rd at any visit, but were comparable to changes in HISI at 1 wk. Changes in QUICKI and revised-QUICKI correlated with Rd/I after surgery. Changes in the Matsuda and Gutt indices did not correlate with changes in Rd/I and Rd, respectively, whereas OGIS changes correlated with Rd changes at 1 yr post-RYGB. In conclusion, surrogate measures of insulin sensitivity may not reflect results obtained with gold standard methodology after RYGB, underscoring the importance of critical reflection when surrogate endpoints are used. Fasting surrogate indices may be particularly affected by post-RYGB changes in insulin clearance, whereas the validity of OGTT-derived surrogates may be compromised by surgical rearrangements of the gut. Copyright © 2017 the American Physiological Society.

  7. Fish oil supplementation and insulin sensitivity: a systematic review and meta-analysis.

    PubMed

    Gao, Huanqing; Geng, Tingting; Huang, Tao; Zhao, Qinghua

    2017-07-03

    Fish oil supplementation has been shown to be associated with a lower risk of metabolic syndrome and benefit a wide range of chronic diseases, such as cardiovascular disease, type 2 diabetes and several types of cancers. However, the evidence of fish oil supplementation on glucose metabolism and insulin sensitivity is still controversial. This meta-analysis summarized the exist evidence of the relationship between fish oil supplementation and insulin sensitivity and aimed to evaluate whether fish oil supplementation could improve insulin sensitivity. We searched the Cochrane Library, PubMed, Embase database for the relevant studies update to Dec 2016. Two researchers screened the literature independently by the selection and exclusion criteria. Studies were pooled using random effect models to estimate a pooled SMD and corresponding 95% CI. This meta-analysis was performed by Stata 13.1 software. A total of 17 studies with 672 participants were included in this meta-analysis study after screening from 498 published articles found after the initial search. In a pooled analysis, fish oil supplementation had no effects on insulin sensitivity compared with the placebo (SMD 0.17, 95%CI -0.15 to 0.48, p = 0.292). In subgroup analysis, fish oil supplementation could benefit insulin sensitivity among people who were experiencing at least one symptom of metabolic disorders (SMD 0.53, 95% CI 0.17 to 0.88, p < 0.001). Similarly, there were no significant differences between subgroups of methods of insulin sensitivity, doses of omega-3 polyunsaturated fatty acids (n-3 PUFA) of fish oil supplementation or duration of the intervention. The sensitivity analysis indicated that the results were robust. Short-term fish oil supplementation is associated with increasing the insulin sensitivity among those people with metabolic disorders.

  8. HOMA and Matsuda indices of insulin sensitivity: poor correlation with minimal model-based estimates of insulin sensitivity in longitudinal settings

    PubMed Central

    Xiang, A. H.; Watanabe, R. M.; Buchanan, T. A.

    2014-01-01

    Aims/hypothesis Little is known about the performance of surrogates in assessing changes in insulin sensitivity over time. This report compared updated HOMA of insulin sensitivity (HOMA2-%S) and the Matsuda index from OGTTs with minimal model-based estimates of insulin sensitivity (SI) from frequently sampled IVGTTs (FSIGTs) in longitudinal settings and cross-sectional settings. Methods Two longitudinal studies were used: one a natural observational study in which 338 individuals were followed for a median of 4 years; one a clinical treatment study in which 97 individuals received pioglitazone treatment and were followed for 1 year. Pairs of OGTTs and FSIGTs were performed at baseline and follow-up. Correlations were computed. Impact of measurement uncertainty was investigated through simulation studies. Results Correlations between HOMA2-%S and SI from baseline or follow-up data were in the range reported previously (0.61-0.69). By contrast, correlations for changes over time were only 0.35-0.39. The corresponding correlations between the Matsuda index and SI were 0.66-0.72 for cross-sectional data and 0.40-0.48 for longitudinal change. Correlations for changes were significantly lower than the cross-sectional correlations in both studies (p<0.03). Simulation results demonstrated that the reduced correlations for change were not explained by error propagation, supporting a real limitation of surrogates to fully capture longitudinal changes in insulin sensitivity. Conclusions/interpretation HOMA and Matsuda indices derived from cross-sectional data should be used cautiously in assessing longitudinal changes in insulin sensitivity. PMID:24305964

  9. Angiotensin 1-7 improves insulin sensitivity by increasing skeletal muscle glucose uptake in vivo.

    PubMed

    Echeverría-Rodríguez, Omar; Del Valle-Mondragón, Leonardo; Hong, Enrique

    2014-01-01

    The renin-angiotensin system (RAS) regulates skeletal muscle insulin sensitivity through different mechanisms. The overactivation of the ACE (angiotensin-converting enzyme)/Ang (angiotensin) II/AT1R (Ang II type 1 receptor) axis has been associated with the development of insulin resistance, whereas the stimulation of the ACE2/Ang 1-7/MasR (Mas receptor) axis improves insulin sensitivity. The in vivo mechanisms by which this axis enhances skeletal muscle insulin sensitivity are scarcely known. In this work, we investigated whether rat soleus muscle expresses the ACE2/Ang 1-7/MasR axis and determined the effect of Ang 1-7 on rat skeletal muscle glucose uptake in vivo. Western blot analysis revealed the expression of ACE2 and MasR, while Ang 1-7 levels were detected in rat soleus muscle by capillary zone electrophoresis. The euglycemic clamp exhibited that Ang 1-7 by itself did not promote glucose transport, but it increased insulin-stimulated glucose disposal in the rat. In a similar manner, captopril (an ACE inhibitor) enhanced insulin-induced glucose uptake and this effect was blocked by the MasR antagonist A-779. Our results show for the first time that rat soleus muscle expresses the ACE2/Ang 1-7/MasR axis of the RAS, and Ang 1-7 improves insulin sensitivity by enhancing insulin-stimulated glucose uptake in rat skeletal muscle in vivo. Thus, endogenous (systemic and/or local) Ang 1-7 could regulate insulin-mediated glucose transport in vivo.

  10. Increase of insulin sensitivity by stevioside in fructose-rich chow-fed rats.

    PubMed

    Chang, J-C; Wu, M C; Liu, I-M; Cheng, J-T

    2005-10-01

    The intake of dietary fructose has undergone a marked increase around the world, especially the developed countries, in recent times. Stevioside, a glycoside contained in the leaves of Stevia rebaudiana Bertoni (Compositae), was used to screen the effect induced by a diet containing 60% fructose on insulin resistance in rats. Single oral administration of stevioside for 90 min decreased plasma glucose concentrations in a dose-dependent manner in rats receiving fructose-rich chow for four weeks. In addition, insulin action on glucose disposal rate was measured using the glucose-insulin index, the product of the areas under the curve of glucose, and insulin during the intraperitoneal glucose tolerance test. Oral administration of stevioside (5.0 mg/kg) in rats given four weeks of fructose-rich chow for 90 min reversed the value of glucose-insulin index, indicating that stevioside has the ability to improve insulin sensitivity in this insulin-resistant animal model. Time for the loss of plasma glucose lowering response to tolbutamide (10.0 mg/kg, i. p.) in fructose-rich chow fed rats was also markedly delayed by repeated stevioside treatment three times daily compared to the vehicle-treated group. The plasma glucose-lowering activity of tolbutamide was introduced to account for varying levels of endogenous insulin secretion, and is widely used as the indicator of insulin resistance development. Thus, it provided the supportive data that repeated oral administration of stevioside delayed the development of insulin resistance in rats on a high-fructose diet. Increased insulin sensitivity by stevioside administration was further identified using the plasma glucose-lowering action of exogenous insulin in streptozotocin-induced diabetic rats (STZ-diabetic rats). Oral administration of stevioside at 0.2 mg/kg three times daily into STZ-diabetic rats for ten days increased the response to exogenous insulin. Taken together, this demonstrated that oral administration of

  11. Increasing peripheral insulin sensitivity by PTP1B deletion improves control of blood pressure in obesity

    PubMed Central

    de Chantemèle, Eric J. Belin; Ali, Mohammed. Irfan; Mintz, James D.; Rainey, William E.; Tremblay, Michel L.; Fulton, David J.; Stepp, David W.

    2012-01-01

    Obesity is a major risk factor for hypertension (HT). The co-presentation of HT and insulin resistance (IR) suggests a role for IR in blood pressure (BP) dysregulation. To test this hypothesis peripheral IR has been genetically subtracted in a model of obesity by crossing leptin receptor mutant mice (KdbHPTP) with mice lacking protein tyrosine phosphatase 1B (insulin desensitizer, HdbKPTP) to generate obese insulin sensitive mice (KdbKPTP). BP was recorded in lean (HdbHPTP, HdbKPTP) and obese (KdbHPTP, KdbKPTP) mice via telemetry and a frequency analysis of the recording was performed to determine BP variability. Correction of IR in obese mice normalized BP values to baseline levels (HdbHPTP: 116±2 mmHg; KdbHPTP: 129±4; KdbKPTP: 114±5mmHg) and restored BP variability by decreasing its standard deviation and the frequency of BP values over the upper autoregulatory limit of the kidneys. However, while IR-induced increases in proteinuria (vs. 53±13μg/day, HdbHPTP) were corrected in KdbKPTP (112±39 vs. 422±159 μg/day, KdbHPTP), glomerular hypertrophy was not. IR reduced plasma aldosterone levels ruling out a role for mineralocorticoids in the development of hypertension. Taken together, these data indicate that correction of IR prevents hypertension, BP variability and microalbuminuria in obese mice. While the mechanism remains to be fully determined, increases in aldosterone or sympathoactivation of the cardiovascular system seem to be less likely contributors. PMID:23045458

  12. Femoral-gluteal adiposity is not associated with insulin sensitivity in type 1 diabetes.

    PubMed

    Shay, C M; Secrest, A M; Miller, R G; Strotmeyer, E S; Goodpaster, B H; Kelsey, S F; Orchard, T J

    2012-11-01

    To quantify and compare associations between femoral-gluteal adiposity and insulin sensitivity in adults with Type 1 diabetes mellitus with adults with normal glucose tolerance. Individuals with Type 1 diabetes (n = 28) were recruited from the Pittsburgh Epidemiology of Diabetes Complication study, a 24-year prospective study of childhood-onset diabetes, and compared cross-sectionally with individuals with normal glucose tolerance (n = 56) of similar age, sex and BMI. Insulin sensitivity was defined as whole-body glucose disposal measured by hyperinsulinaemic-euglycaemic clamps. Adiposity was quantified by dual energy X-ray absorptiometry. Individuals with Type 1 diabetes exhibited lower insulin sensitivity (5.8 vs. 8.2 mg min(-1) kg fat-free mass(-1), P < 0.01), lower total fat mass (20.1 vs. 29.0 kg, P < 0.001) and lower proportional leg fat mass (36.0 vs.37.7%, P = 0.03), but similar proportional trunk fat (% trunk fat mass) compared with individuals with normal glucose tolerance. Overall, results from linear regression demonstrated that higher % leg fat mass (P < 0.01) and lower % trunk fat mass (P < 0.01) were independently associated with lower insulin sensitivity after adjustments for age, sex, height, total fat mass (kg) and diabetes status. Higher % leg fat mass was independently associated with higher insulin sensitivity in individuals with normal glucose tolerance (P < 0.01) after similar adjustment; significant associations were not observed in Type 1 diabetes. Reduced insulin sensitivity is a prominent feature of Type 1 diabetes and is associated with total and abdominal adiposity. Compared with adults with normal glucose tolerance, leg fat mass does not show any positive association with insulin sensitivity in Type 1 diabetes. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  13. Differential effects of hypercaloric choice diets on insulin sensitivity in rats.

    PubMed

    Diepenbroek, Charlene; Eggels, Leslie; Ackermans, Mariëtte T; Fliers, Eric; Kalsbeek, Andries; Serlie, Mireille J; la Fleur, Susanne E

    2017-01-01

    We showed previously that rats on a free-choice high-fat, high-sugar (fcHFHS) diet become rapidly obese and develop glucose intolerance within a week. Interestingly, neither rats on a free-choice high-fat diet (fcHF), although equally obese and hyperphagic, nor rats on a free-choice high-sugar (fcHS) diet consuming more sugar water, develop glucose intolerance. Here, we investigate whether changes in insulin sensitivity contribute to the observed glucose intolerance and whether this is related to consumption of saturated fat and/or sugar water. Rats received either a fcHFHS, fcHF, fcHS or chow diet for one week. We performed a hyperinsulinemic-euglycemic clamp with stable isotope dilution to measure endogenous glucose production (EGP; hepatic insulin sensitivity) and glucose disappearance (Rd; peripheral insulin sensitivity). Rats on all free-choice diets were hyperphagic, but only fcHFHS-fed rats showed significantly increased adiposity. EGP suppression by hyperinsulinemia in fcHF-fed and fcHFHS-fed rats was significantly decreased compared with chow-fed rats. One week fcHFHS diet also significantly decreased Rd. Neither EGP suppression nor Rd was affected in fcHS-fed rats. Our results imply that, short-term fat feeding impaired hepatic insulin sensitivity, whereas short-term consumption of both saturated fat and sugar water impaired hepatic and peripheral insulin sensitivity. The latter likely contributed to glucose intolerance observed previously. In contrast, overconsumption of only sugar water affected insulin sensitivity slightly, but not significantly, in spite of similar adiposity as fcHF-fed rats and higher sugar intake compared with fcHFHS-fed rats. These data imply that the palatable component consumed plays a role in the development of site-specific insulin sensitivity. © 2017 Society for Endocrinology.

  14. Genetic Variants Associated With Glycine Metabolism and Their Role in Insulin Sensitivity and Type 2 Diabetes

    PubMed Central

    Xie, Weijia; Wood, Andrew R.; Lyssenko, Valeriya; Weedon, Michael N.; Knowles, Joshua W.; Alkayyali, Sami; Assimes, Themistocles L.; Quertermous, Thomas; Abbasi, Fahim; Paananen, Jussi; Häring, Hans; Hansen, Torben; Pedersen, Oluf; Smith, Ulf; Laakso, Markku; Dekker, Jacqueline M.; Nolan, John J.; Groop, Leif; Ferrannini, Ele; Adam, Klaus-Peter; Gall, Walter E.; Frayling, Timothy M.; Walker, Mark

    2013-01-01

    Circulating metabolites associated with insulin sensitivity may represent useful biomarkers, but their causal role in insulin sensitivity and diabetes is less certain. We previously identified novel metabolites correlated with insulin sensitivity measured by the hyperinsulinemic-euglycemic clamp. The top-ranking metabolites were in the glutathione and glycine biosynthesis pathways. We aimed to identify common genetic variants associated with metabolites in these pathways and test their role in insulin sensitivity and type 2 diabetes. With 1,004 nondiabetic individuals from the RISC study, we performed a genome-wide association study (GWAS) of 14 insulin sensitivity–related metabolites and one metabolite ratio. We replicated our results in the Botnia study (n = 342). We assessed the association of these variants with diabetes-related traits in GWAS meta-analyses (GENESIS [including RISC, EUGENE2, and Stanford], MAGIC, and DIAGRAM). We identified four associations with three metabolites—glycine (rs715 at CPS1), serine (rs478093 at PHGDH), and betaine (rs499368 at SLC6A12; rs17823642 at BHMT)—and one association signal with glycine-to-serine ratio (rs1107366 at ALDH1L1). There was no robust evidence for association between these variants and insulin resistance or diabetes. Genetic variants associated with genes in the glycine biosynthesis pathways do not provide consistent evidence for a role of glycine in diabetes-related traits. PMID:23378610

  15. Physiological hyperinsulinemia in dogs augments access of macromolecules to insulin-sensitive tissues.

    PubMed

    Ellmerer, Martin; Kim, Stella P; Hamilton-Wessler, Marianthe; Hücking, Katrin; Kirkman, Erlinda; Bergman, Richard N

    2004-11-01

    Pharmacological doses of insulin increase limb blood flow and enhance tissue recruitment for small solutes such as glucose. We investigated whether elevating insulin within the physiological range (68 +/- 6 vs. 425 +/- 27 pmol/l) can influence tissue recruitment of [(14)C]inulin, an inert diffusionary marker of molecular weight similar to that of insulin itself. During hyperinsulinemic-euglycemic clamps, transport parameters and distribution volumes of [(14)C]inulin were determined in conscious dogs by applying a three-compartment model to the plasma clearance data of intravenously injected [(14)C]inulin (0.8 microCi/kg). In a second set of experiments in anesthetized dogs with direct cannulation of the hindlimb skeletal muscle lymphatics, we measured a possible effect of physiological hyperinsulinemia on the response of the interstitial fluid of skeletal muscle to intravenously injected [(14)C]inulin and compared this response with the model prediction from plasma data. Physiological hyperinsulinemia caused a 48 +/- 10% (P < 0.005) and a 35 +/- 15% (P < 0.05) increase of peripheral and splanchnic interstitial distribution volumes for [(14)C]inulin. Hindlimb lymph measurements directly confirmed the ability of insulin to enhance the access of macromolecules to the peripheral interstitial fluid compartment. The present results show that physiological hyperinsulinemia will enhance the delivery of a substance of similar molecular size to insulin to previously less intensively perfused regions of insulin-sensitive tissues. Our data suggest that the delivery of insulin itself to insulin-sensitive tissues could be a mechanism of insulin action on cellular glucose uptake independent of and possibly synergistic with either enhanced blood flow distribution or GLUT4 transporter recruitment to enhance glucose utilization. Because of the differences between inulin and insulin itself, whether delivery of the bioactive hormone is increased remains speculative.

  16. Temporal changes in sphingolipids and systemic insulin sensitivity during the transition from gestation to lactation

    PubMed Central

    Rico, J. Eduardo; Saed Samii, Sina; Mathews, Alice T.; Lovett, Jacqueline; Haughey, Norman J.; McFadden, Joseph W.

    2017-01-01

    Reduced insulin action develops naturally during the peripartum to ensure maternal nutrient delivery to the fetus and neonate. However, increased insulin resistance can facilitate excessive lipolysis which in turn promotes metabolic disease in overweight dairy cattle. Increased fatty acid availability favors the accumulation of the sphingolipid ceramide and is implicated in the pathogenesis of insulin resistance, however, the relationship between sphingolipid metabolism and insulin resistance during the peripartum remains largely unknown. Our objectives were to characterize temporal responses in plasma and tissue sphingolipids in lean and overweight peripartal cows and to establish the relationships between sphingolipid supply and lipolysis, hepatic lipid deposition, and systemic insulin action. Twenty-one multiparous lean and overweight Holstein cows were enrolled in a longitudinal study spanning the transition from gestation to lactation (d -21 to 21, relative to parturition). Plasma, liver, and skeletal muscle samples were obtained, and sphingolipids were profiled using LC/MS/MS. Insulin sensitivity was assessed utilizing intravenous insulin and glucose challenges. Our results demonstrated the following: first, insulin resistance develops postpartum concurrently with increased lipolysis and hepatic lipid accumulation; second, ceramides and glycosylated ceramides accumulate during the transition from gestation to lactation and are further elevated in overweight cows; third, ceramide accrual is associated with lipolysis and liver lipid accumulation, and C16:0- and C24:0-ceramide are inversely associated with systemic insulin sensitivity postpartum; fourth, plasma sphingomyelin, a potential source of ceramides reaches a nadir at parturition and is closely associated with feed intake; fifth, select sphingomyelins are lower in the plasma of overweight cows during the peripartal period. Our results demonstrate that dynamic changes occur in peripartal sphingolipids

  17. One week treatment with the IL-1 receptor antagonist anakinra leads to a sustained improvement in insulin sensitivity in insulin resistant patients with type 1 diabetes mellitus.

    PubMed

    van Asseldonk, Edwin J P; van Poppel, Pleun C M; Ballak, Dov B; Stienstra, Rinke; Netea, Mihai G; Tack, Cees J

    2015-10-01

    Inflammation associated with obesity is involved in the development of insulin resistance. We hypothesized that anti-inflammatory treatment with the Interleukin-1 receptor antagonist anakinra would improve insulin sensitivity. In an open label proof-of-concept study, we included overweight patients diagnosed with type 1 diabetes with an HbA1c level over 7.5%. Selecting insulin resistant patients with longstanding type 1 diabetes allowed us to study the effects of anakinra on insulin sensitivity. Patients were treated with 100mg anakinra daily for one week. Insulin sensitivity, insulin need and blood glucose profiles were measured before, after one week and after four weeks of follow-up. Fourteen patients completed the study. One week of anakinra treatment led to an improvement of insulin sensitivity, an effect that was sustained for four weeks. Similarly, glucose profiles, HbA1c levels and insulin needs improved. In conclusion, one week of treatment with anakinra improves insulin sensitivity in patients with type 1 diabetes.

  18. Improvement in insulin sensitivity after human islet transplantation for type 1 diabetes.

    PubMed

    Rickels, Michael R; Kong, Stephanie M; Fuller, Carissa; Dalton-Bakes, Cornelia; Ferguson, Jane F; Reilly, Muredach P; Teff, Karen L; Naji, Ali

    2013-11-01

    Islet transplantation can improve metabolic control for type 1 diabetes (T1D), an effect anticipated to improve insulin sensitivity. However, current immunosuppression regimens containing tacrolimus and sirolimus have been shown to induce insulin resistance in rodents. The objective of the study was to evaluate the effect of islet transplantation on insulin sensitivity in T1D using euglycemic clamps with the isotopic dilution method to distinguish between effects at the liver and skeletal muscle. Twelve T1D subjects underwent evaluation in the Clinical and Translational Research Center before and between 6 and 7 months after the transplant and were compared with normal control subjects. The intervention included intrahepatic islet transplantation according to a Clinical Islet Transplantation Consortium protocol under low-dose tacrolimus and sirolimus immunosuppression. Total body (M/Δinsulin), hepatic (1/endogenous glucose production ·basal insulin) and peripheral [(Rd - endogenous glucose production)/Δinsulin] insulin sensitivity assessed by hyperinsulinemic (1 mU·kg(-1)·min(-1)) euglycemic (∼90 mg/dL) clamps with 6,6-(2)H2-glucose tracer infusion were measured. Glycosylated hemoglobin was reduced in the transplant recipients from 7.0% ± 0.3% to 5.6% ± 0.1% (P < .01). There were increases in total (0.11 ± 0.01 to 0.15 ± 0.02 dL/min·kg per microunit per milliliter), hepatic [2.3 ± 0.1 to 3.7 ± 0.4 × 10(2) ([milligrams per kilogram per minute](-1)·(microunits per milliliter)(-1))], and peripheral (0.08 ± 0.01 to 0.12 ± 0.02 dL/min·kg per microunit per milliliter) insulin sensitivity from before to after transplantation (P < .05 for all). All insulin sensitivity measures were less than normal in T1D before (P ≤ .05) and not different from normal after transplantation. Islet transplantation results in improved insulin sensitivity mediated by effects at both the liver and skeletal muscle. Modern dosing of glucocorticoid-free immunosuppression with

  19. Zinc in Pancreatic Islet Biology, Insulin Sensitivity, and Diabetes

    PubMed Central

    Maret, Wolfgang

    2017-01-01

    About 20 chemical elements are nutritionally essential for humans with defined molecular functions. Several essential and nonessential biometals are either functional nutrients with antidiabetic actions or can be diabetogenic. A key question remains whether changes in the metabolism of biometals and biominerals are a consequence of diabetes or are involved in its etiology. Exploration of the roles of zinc (Zn) in this regard is most revealing because 80 years of scientific discoveries link zinc and diabetes. In pancreatic β- and α-cells, zinc has specific functions in the biochemistry of insulin and glucagon. When zinc ions are secreted during vesicular exocytosis, they have autocrine, paracrine, and endocrine roles. The membrane protein ZnT8 transports zinc ions into the insulin and glucagon granules. ZnT8 has a risk allele that predisposes the majority of humans to developing diabetes. In target tissues, increased availability of zinc enhances the insulin response by inhibiting protein tyrosine phosphatase 1B, which controls the phosphorylation state of the insulin receptor and hence downstream signalling. Inherited diseases of zinc metabolism, environmental exposures that interfere with the control of cellular zinc homeostasis, and nutritional or conditioned zinc deficiency influence the patho-biochemistry of diabetes. Accepting the view that zinc is one of the many factors in multiple gene-environment interactions that cause the functional demise of β-cells generates an immense potential for treating and perhaps preventing diabetes. Personalized nutrition, bioactive food, and pharmaceuticals targeting the control of cellular zinc in precision medicine are among the possible interventions. PMID:28401081

  20. Global Gene Expression Profiles of Subcutaneous Adipose and Muscle From Glucose-Tolerant, Insulin-Sensitive, and Insulin-Resistant Individuals Matched for BMI

    PubMed Central

    Elbein, Steven C.; Kern, Philip A.; Rasouli, Neda; Yao-Borengasser, Aiwei; Sharma, Neeraj K.; Das, Swapan K.

    2011-01-01

    OBJECTIVE To determine altered gene expression profiles in subcutaneous adipose and skeletal muscle from nondiabetic, insulin-resistant individuals compared with insulin-sensitive individuals matched for BMI. RESEARCH DESIGN AND METHODS A total of 62 nondiabetic individuals were chosen for extremes of insulin sensitivity (31 insulin-resistant and 31 insulin-sensitive subjects; 40 were European American and 22 were African American) and matched for age and obesity measures. Global gene expression profiles were determined and compared between ethnic groups and between insulin-resistant and insulin-sensitive participants individually and using gene-set enrichment analysis. RESULTS African American and European American subjects differed in 58 muscle and 140 adipose genes, including many inflammatory and metabolically important genes. Peroxisome proliferator–activated receptor γ cofactor 1A (PPARGC1A) was 1.75-fold reduced with insulin resistance in muscle, and fatty acid and lipid metabolism and oxidoreductase activity also were downregulated. Unexpected categories included ubiquitination, citrullination, and protein degradation. In adipose, highly represented categories included lipid and fatty acid metabolism, insulin action, and cell-cycle regulation. Inflammatory genes were increased in European American subjects and were among the top Kyoto Encyclopedia of Genes and Genomes pathways on gene-set enrichment analysis. FADS1, VEGFA, PTPN3, KLF15, PER3, STEAP4, and AGTR1 were among genes expressed differentially in both adipose and muscle. CONCLUSIONS Adipose tissue gene expression showed more differences between insulin-resistant versus insulin-sensitive groups than the expression of genes in muscle. We confirm the role of PPARGC1A in muscle and show some support for inflammation in adipose from European American subjects but find prominent roles for lipid metabolism in insulin sensitivity independent of obesity in both tissues. PMID:21266331

  1. Effects of tumor necrosis factor α inhibitors extend beyond psoriasis: insulin sensitivity in psoriasis patients with type 2 diabetes mellitus.

    PubMed

    Al-Mutairi, Nawaf; Shabaan, Dalia

    2016-03-01

    Psoriasis is a chronic inflammatory disease that has been associated with an increased incidence of insulin resistance and diabetes mellitus (DM). Tumor necrosis factor (TNF) α inhibitors and IL-6 blockers, which are routinely used for the treatment of psoriasis, have been positively associated with insulin sensitivity. The aim of this study was to assess the effects of treatment with TNF-α inhibitors on insulin sensitivity in psoriatic patients with type 2 DM. This study confirms a beneficial effect of anti-TNF-α agents on insulin resistance and insulin sensitivity in psoriasis patients with type 2 DM.

  2. Comparative effects of lisinopril and losartan on insulin sensitivity in the treatment of non diabetic hypertensive patients

    PubMed Central

    Fogari, Roberto; Zoppi, Annalisa; Corradi, Luca; Lazzari, Pierangelo; Mugellini, Amedeo; Lusardi, Paola

    1998-01-01

    Aims The aim of this study was to compare the effects of the ACE-inhibitor lisinopril and the angiotensin II receptor antagonist losartan on insulin sensitivity in the treatment of non diabetic hypertensives. Methods Twenty-five non diabetic subjects with mild to moderate hypertension, 11 females and 14 males, aged 44–63 years, after a 4-week wash-out period on placebo, were randomized to receive lisinopril 20 mg once daily or losartan 50 mg once daily for 6 weeks. Following another 4-week wash-out period, patients were crossed to the alternative regimen for further 6 weeks. At the end of the placebo and of the active treatment periods, blood pressure (BP) was measured (by standard mercury sphygmomanometer, Korotkoff I and V) and insulin sensitivity was assessed by the euglycaemic hyperinsulinaemic clamp technique. Glucose infusion rate (GIR) during the last 30 min of clamp and total glucose requirement (TGR) were evaluated. Results Both lisinopril and losartan significantly reduced SBP (by a mean of 20.2 and 17.2 mmHg, respectively) and DBP (by a mean of 15.2 and 12.3 mmHg, respectively), with no difference between the two treatments. GIR, used as an indicator of insulin sensitivity, was significantly increased by lisinopril (+1.5 mg min−1 kg−1, P < 0.05 vs baseline) but not by losartan (+0.42 mg min−1 kig−1, NS), the difference between the two drugs being statistically significant (P < 0.05). TGR was increased by lisinopril (+7.3 g, P < 0.05 vs baseline), whereas losartan did not significantly modify it (+1.9 g, NS). Conclusions In conclusion, with all cautions due to an absence in this study of a randomized placebo phase, our findings suggest that lisinopril improved insulin sensitivity whereas losartan did not affect it. PMID:9833600

  3. Thazolidinediones and the Promise of Insulin Sensitization in Type 2 Diabetes

    PubMed Central

    Soccio, Raymond E.; Chen, Eric R.; Lazar, Mitchell A.

    2014-01-01

    Type 2 diabetes is caused by insulin resistance coupled with an inability to produce enough insulin to control blood glucose, and thiazolidinediones (TZDs) are the only current antidiabetic agents that function primarily by increasing insulin sensitivity. However, despite clear benefits in glycemic control, this class of drugs has recently fallen into disuse due to concerns over side effects and adverse events. Here we review the clinical data and attempt to balance the benefits and risks of TZD therapy. We also examine potential mechanisms of action for the beneficial and harmful effects of TZDs, mainly via agonism of the nuclear receptor PPARγ. Based on critical appraisal of both preclinical and clinical studies, we discuss the prospect of harnessing the insulin sensitizing effects of PPARγ for more effective, safe, and potentially personalized treatments of type 2 diabetes. PMID:25242225

  4. Insulin modulates cocaine-sensitive monoamine transporter function and impulsive behavior.

    PubMed

    Schoffelmeer, Anton N M; Drukarch, Benjamin; De Vries, Taco J; Hogenboom, François; Schetters, Dustin; Pattij, Tommy

    2011-01-26

    Because insulin acutely enhances the function of dopamine transporters, the tyrosine kinase receptors activated by this hormone may modulate transporter-dependent neurochemical and behavioral effects of psychoactive drugs. In this respect, we examined the effects of insulin on exocytotic monoamine release and the efficacy of the monoamine transporter blocker cocaine in rat nucleus accumbens. Whereas insulin reduced electrically evoked exocytotic [(3)H]dopamine release in nucleus accumbens slices, the hormone potentiated the release-enhancing effect of cocaine thereon. The phosphatidylinositol 3-kinase inhibitor LY294002 abolished these effects, indicating the involvement of insulin receptors. Similar insulin effects were observed on the release of [(3)H]norepinephrine in nucleus accumbens slices, but not on that of [(3)H]serotonin, and were also apparent in medial prefrontal cortex slices. As might then be expected, insulin also potentiated the dopamine and norepinephrine release-enhancing effects of the selective monoamine uptake inhibitors GBR12909 and desmethylimipramine, respectively. In subsequent behavioral experiments, we investigated the role of insulin in motor impulsivity that depends on monoamine neurotransmission in the nucleus accumbens. Intracranial administration of insulin in the nucleus accumbens alone reduced premature responses in the five-choice serial reaction time task and enhanced the stimulatory effect of peripheral cocaine administration on impulsivity, resembling the observed neurochemical effects of the hormone. In contrast, cocaine-induced locomotor activity remained unchanged by intra-accumbal insulin application. These data reveal that insulin presynaptically regulates cocaine-sensitive monoamine transporter function in the nucleus accumbens and, as a consequence, impulsivity. Therefore, insulin signaling proteins may represent targets for the treatment of inhibitory control deficits such as addictive behaviors.

  5. Mechanisms of enhanced insulin secretion and sensitivity with n-3 unsaturated fatty acids.

    PubMed

    Bhaswant, Maharshi; Poudyal, Hemant; Brown, Lindsay

    2015-06-01

    The widespread acceptance that increased dietary n-3 polyunsaturated fatty acids (PUFAs), especially α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), improve health is based on extensive studies in animals, isolated cells and humans. Visceral adiposity is part of the metabolic syndrome, together with insulin resistance, dyslipidemia, hypertension and inflammation. Alleviation of metabolic syndrome requires normalization of insulin release and responses. This review assesses our current knowledge of the mechanisms that allow n-3 PUFAs to improve insulin secretion and sensitivity. EPA has been more extensively studied than either ALA or DHA. The complex actions of EPA include increased G-protein-receptor-mediated release of glucagon-like peptide 1 (GLP-1) from enteroendocrine L-cells in the intestine, up-regulation of the apelin pathway and down-regulation of other control pathways to promote insulin secretion by the pancreatic β-cells, together with suppression of inflammatory responses to adipokines, inhibition of peroxisome proliferator-activated receptor α actions and prevention of decreased insulin-like growth factor-1 secretion to improve peripheral insulin responses. The receptors involved and the mechanisms of action probably differ for ALA and DHA, with antiobesity effects predominating for ALA and anti-inflammatory effects for DHA. Modifying both GLP-1 release and the actions of adipokines by n-3 PUFAs could lead to additive improvements in both insulin secretion and sensitivity.

  6. Enhanced skeletal muscle insulin sensitivity in year-old rats adapted to hypergravity

    NASA Technical Reports Server (NTRS)

    Mondon, C. E.; Dolkas, C. B.; Oyama, J.

    1981-01-01

    Rats induced into a hypermetabolic state by exposure to chronic (7 mo) centrifugation at 4.15 g exhibited increased glucose uptake at lower plasma insulin levels than weight-matched control animals following oral glucose administration. In order to determine the insulin sensitivity of specific tissues, the effect of exogenous insulin on glucose uptake by isolated perfused livers and hindlim skeletal muscle from rats adapted to chronic centrifugation for one year was compared with perfused tissue from 2.5 mo-old noncentrifuged control animals of equal body weight. Metabolic glucose clearance by skeletal muscle from hypergravic rats did not prove significantly greater than control muscle when perfused in the absence of insulin (10.6 vs 8.1 microliters/min-g-muscle), but was twice as fast (23.0 vs 9.5) at perfusate insulin levels of 35 micro-U/ml. Conversely, glucose uptake by hypergravic livers was significantly decreased (P is less than 0.001) compared with control livers (10.3 vs 27.8) at perfusate insulin levels of 40 micro-U/ml. Results suggest that skeletal muscle rather than liver is primarily responsible for the enhanced sensitivity to insulin and the increased energy expenditure observed in rats subjected to hypergravity.

  7. Ecscr regulates insulin sensitivity and predisposition to obesity by modulating endothelial cell functions.

    PubMed

    Akakabe, Yoshiki; Koide, Masahiro; Kitamura, Youhei; Matsuo, Kiyonari; Ueyama, Tomomi; Matoba, Satoaki; Yamada, Hiroyuki; Miyata, Keishi; Oike, Yuichi; Ikeda, Koji

    2013-01-01

    Insulin resistance is closely associated with obesity and is one of the earliest symptoms of type-2 diabetes. Endothelial cells are involved in the pathogenesis of insulin resistance through their role in insulin delivery and adipose tissue angiogenesis. Here we show that Ecscr (endothelial cell surface expressed chemotaxis and apoptosis regulator; also known as ARIA), the transmembrane protein that regulates endothelial cell signalling, is highly expressed in white and brown adipose tissues, and regulates energy metabolism and glucose homeostasis by modulating endothelial cell functions. Ecscr-deficient mice fed a normal chow show improved glucose tolerance and enhanced insulin sensitivity. We demonstrate that Ecscr deletion enhances the insulin-mediated Akt/endothelial nitric oxide synthase activation in endothelial cells, which increases insulin delivery into the skeletal muscle. Ecscr deletion also protects mice on a high-fat diet from obesity and obesity-related metabolic disorders by enhancing adipose tissue angiogenesis. Conversely, targeted activation of Ecscr in endothelial cells impairs glucose tolerance and predisposes mice to diet-induced obesity. Our results suggest that the inactivation of Ecscr enhances insulin sensitivity and may represent a new therapeutic strategy for treating metabolic syndrome.

  8. Glut4 expression defines an insulin-sensitive hypothalamic neuronal population.

    PubMed

    Ren, Hongxia; Yan, Shijun; Zhang, Baifang; Lu, Taylor Y; Arancio, Ottavio; Accili, Domenico

    2014-07-01

    Insulin signaling in the CNS modulates satiety and glucose metabolism, but insulin target neurons are poorly defined. We have previously shown that ablation of insulin receptors (InsR) in Glut4-expressing tissues results in systemic abnormalities of insulin action. We propose that Glut4 neurons constitute an insulin-sensitive neuronal subset. We determined their gene expression profiles using flow-sorted hypothalamic Glut4 neurons. Gene ontology analyses demonstrated that Glut4 neurons are enriched in olfacto-sensory receptors, M2 acetylcholine receptors, and pathways required for the acquisition of insulin sensitivity. Following genetic ablation of InsR, transcriptome profiling of Glut4 neurons demonstrated impairment of the insulin, peptide hormone, and cAMP signaling pathways, with a striking upregulation of anion homeostasis pathway. Accordingly, hypothalamic InsR-deficient Glut4 neurons showed reduced firing activity. The molecular signature of Glut4 neurons is consistent with a role for this neural population in the integration of olfacto-sensory cues with hormone signaling to regulate peripheral metabolism.

  9. Bilirubin Increases Insulin Sensitivity by Regulating Cholesterol Metabolism, Adipokines and PPARγ Levels.

    PubMed

    Liu, Jinfeng; Dong, Huansheng; Zhang, Yong; Cao, Mingjun; Song, Lili; Pan, Qingjie; Bulmer, Andrew; Adams, David B; Dong, Xiao; Wang, Hongjun

    2015-05-28

    Obesity can cause insulin resistance and type 2 diabetes. Moderate elevations in bilirubin levels have anti-diabetic effects. This study is aimed at determining the mechanisms by which bilirubin treatment reduces obesity and insulin resistance in a diet-induced obesity (DIO) mouse model. DIO mice were treated with bilirubin or vehicle for 14 days. Body weights, plasma glucose, and insulin tolerance tests were performed prior to, immediately, and 7 weeks post-treatment. Serum lipid, leptin, adiponectin, insulin, total and direct bilirubin levels were measured. Expression of factors involved in adipose metabolism including sterol regulatory element-binding protein (SREBP-1), insulin receptor (IR), and PPARγ in liver were measured by RT-PCR and Western blot. Compared to controls, bilirubin-treated mice exhibited reductions in body weight, blood glucose levels, total cholesterol (TC), leptin, total and direct bilirubin, and increases in adiponectin and expression of SREBP-1, IR, and PPARγ mRNA. The improved metabolic control achieved by bilirubin-treated mice was persistent: at two months after treatment termination, bilirubin-treated DIO mice remained insulin sensitive with lower leptin and higher adiponectin levels, together with increased PPARγ expression. These results indicate that bilirubin regulates cholesterol metabolism, adipokines and PPARγ levels, which likely contribute to increased insulin sensitivity and glucose tolerance in DIO mice.

  10. Enhanced skeletal muscle insulin sensitivity in year-old rats adapted to hypergravity

    NASA Technical Reports Server (NTRS)

    Mondon, C. E.; Dolkas, C. B.; Oyama, J.

    1981-01-01

    Rats induced into a hypermetabolic state by exposure to chronic (7 mo) centrifugation at 4.15 g exhibited increased glucose uptake at lower plasma insulin levels than weight-matched control animals following oral glucose administration. In order to determine the insulin sensitivity of specific tissues, the effect of exogenous insulin on glucose uptake by isolated perfused livers and hindlim skeletal muscle from rats adapted to chronic centrifugation for one year was compared with perfused tissue from 2.5 mo-old noncentrifuged control animals of equal body weight. Metabolic glucose clearance by skeletal muscle from hypergravic rats did not prove significantly greater than control muscle when perfused in the absence of insulin (10.6 vs 8.1 microliters/min-g-muscle), but was twice as fast (23.0 vs 9.5) at perfusate insulin levels of 35 micro-U/ml. Conversely, glucose uptake by hypergravic livers was significantly decreased (P is less than 0.001) compared with control livers (10.3 vs 27.8) at perfusate insulin levels of 40 micro-U/ml. Results suggest that skeletal muscle rather than liver is primarily responsible for the enhanced sensitivity to insulin and the increased energy expenditure observed in rats subjected to hypergravity.

  11. The Association between Alcohol Consumption and β-Cell Function and Insulin Sensitivity in Korean Population

    PubMed Central

    Yoo, Min-Gyu; Kim, Hyo-Jin; Jang, Han Byul; Lee, Hye-Ja; Park, Sang Ick

    2016-01-01

    This cross-sectional study was performed to examine the association between alcohol consumption and insulin secretion and sensitivity using the Korean Genome and Epidemiology Study. Alcohol consumption levels were categorized into four groups: (i) abstainers, (ii) low (<5 g/day), (iii) intermediate (<30 g/day), and (iv) high (≥30 g/day) alcohol consumption. β-cell function and insulin sensitivity were estimated using the insulinogenic index (IGI60), and Matsuda insulin sensitivity index (ISI), respectively. IGI60 and ISI were dichotomized into high and low groups using median cut-off values and four groups were defined (G-I: high IGI60/high ISI; G-II: high IGI60/low ISI; G-III: low IGI60/high ISI; and G-IV: low IGI60/low ISI). Men consumed 26.5 g alcohol per day on average, whereas women only consumed 5.7 g/day, so women were excluded from subsequent analyses due to their low drinking levels. Alcohol consumption was positively associated with high-density lipoprotein (HDL) cholesterol, aspartate aminotransferase (AST), and triglycerides (TG) in men, but was negatively associated with IGI60 (p < 0.05). TG levels were only increased in individuals with decreased insulin sensitivity (G-II) or decreased β-cell function (G-III) with high alcohol consumption. In addition, alcohol consumption increased HDL cholesterol in the four groups (p < 0.001). In subjects with decreased insulin sensitivity (G-II), intermediate and high alcohol consumption increased the risk of high cholesterol and TG. In individuals with decreased β-cell function (G-III), alcohol consumption increased the risk of high TG and high AST levels. High alcohol consumption was significantly associated with reduced insulin secretion. In addition, alcohol consumption was related to some metabolic risk factors depending on insulin secretion or sensitivity. PMID:27854254

  12. Reduced access to insulin-sensitive tissues in dogs with obesity secondary to increased fat intake.

    PubMed

    Ellmerer, Martin; Hamilton-Wessler, Marianthe; Kim, Stella P; Huecking, Katrin; Kirkman, Erlinda; Chiu, Jenny; Richey, Joyce; Bergman, Richard N

    2006-06-01

    Physiological hyperinsulinemia provokes hemodynamic actions and augments access of macromolecules to insulin-sensitive tissues. We investigated whether induction of insulin resistance by a hypercaloric high-fat diet has an effect on the extracellular distribution of macromolecules to insulin-sensitive tissues. Male mongrel dogs were randomly selected into two groups: seven dogs were fed an isocaloric control diet ( approximately 3,900 kcal, 35% from fat), and six dogs were fed a hypercaloric high-fat diet ( approximately 5,300 kcal, 54% from fat) for a period of 12 weeks. During hyperinsulinemic-euglycemic clamps, we determined transport parameters and distribution volumes of [(14)C]inulin by applying a three-compartment model to the plasma clearance data of intravenously injected [(14)C]inulin (0.8 microCi/kg). In another study with direct cannulation of the hindlimb skeletal muscle lymphatics, we investigated the effect of physiological hyperinsulinemia on the appearance of intravenously injected [(14)C]inulin in skeletal muscle interstitial fluid and compared the effect of insulin between control and high-fat diet groups. The hypercaloric high-fat diet resulted in significant weight gain (18%; P<0.001) associated with marked increases of subcutaneous (140%; P<0.001) and omental (83%; P<0.001) fat depots, as well as peripheral insulin resistance, measured as a significant reduction of insulin-stimulated glucose uptake during clamps (-35%; P<0.05). Concomitantly, we observed a significant reduction of the peripheral distribution volume of [(14)C]inulin (-26%; P<0.05), whereas the vascular distribution volume and transport and clearance parameters did not change as a cause of the diet. The second study directly confirmed our findings, suggesting a marked reduction of insulin action to stimulate access of macromolecules to insulin-sensitive tissues (control diet 32%, P<0.01; high-fat diet 18%, NS). The present results indicate that access of macromolecules to

  13. Pubertal Changes of Insulin Sensitivity, Acute Insulin Response and β-Cell function in Overweight Latino Youth

    PubMed Central

    Kelly, Louise A.; Lane, Christianne J.; Weigensberg, Marc J.; Toledo-Corral, Claudia M; Goran, Michael I.

    2010-01-01

    Objective To examine changes in insulin sensitivity (SI), compensatory acute insulin response (AIR) and β-cell function/disposition index (DI) across puberty in overweight Latino boys and girls. Study design 253 Latino children followed annually for up to 5 years. Longitudinal modeling was used to examine changes in SI, AIR, DI and fasting and 2-hr glucose and insulin across Tanner stage. Results In boys, SI decreased in early puberty with a recovery by late puberty. The compensatory increase in AIR was appropriate in early maturation, but after Tanner 3, AIR declined by more than that predicted from the recovery in SI. For girls, SI decreased in early puberty and across all stages of maturation. In early maturation, there was an appropriate compensatory increase in AIR, but after Tanner 3 AIR decreased. Thus, DI deteriorated across puberty in boys and girls. Conclusions In overweight Hispanic youth, compensatory changes in insulin secretion fails after Tanner 3 in both sexes, indicating β-cell deterioration during this critical period of development, thus increasing risk for Type 2 diabetes. PMID:20888012

  14. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans.

    PubMed

    Stefan, Norbert; Vozarova, Barbora; Funahashi, Tohru; Matsuzawa, Yuji; Weyer, Christian; Lindsay, Robert S; Youngren, Jack F; Havel, Peter J; Pratley, Richard E; Bogardus, Clifton; Tataranni, P Antonio

    2002-06-01

    Adiponectin, the most abundant adipose-specific protein, has been found to be negatively associated with degree of adiposity and positively associated with insulin sensitivity in Pima Indians and other populations. Moreover, adiponectin administration to rodents has been shown to increase insulin-induced tyrosine phosphorylation of the insulin receptor (IR) and also increase whole-body insulin sensitivity. To further characterize the relationship between plasma adiponectin concentration and insulin sensitivity in humans, we examined 1) the cross-sectional association between plasma adiponectin concentration and skeletal muscle IR tyrosine phosphorylation and 2) the prospective effect of plasma adiponectin concentration at baseline on change in insulin sensitivity. Fasting plasma adiponectin concentration, body composition (hydrodensitometry or dual energy X-ray absorptiometry), insulin sensitivity (insulin-stimulated glucose disposal, hyperinsulinemic clamp), and glucose tolerance (75-g oral glucose tolerance test) were measured in 55 Pima Indians (47 men and 8 women, aged 31 +/- 8 years, body fat 29 +/- 8% [mean +/- SD]; 50 with normal glucose tolerance, 3 with impaired glucose tolerance, and 2 with diabetes). Group 1 (19 subjects) underwent skeletal muscle biopsies for the measurement of basal and insulin-stimulated tyrosine phosphorylation of the IR (stimulated by 100 nmol/l insulin). The fold increase after insulin stimulation was calculated as the ratio between maximal and basal phosphorylation. Group 2 (38 subjects) had follow-up measurements of insulin-stimulated glucose disposal. Cross-sectionally, plasma adiponectin concentration was positively associated with insulin-stimulated glucose disposal (r = 0.58, P < 0.0001) and negatively associated with percent body fat (r = -0.62, P < 0.0001) in the whole group. In group 1 plasma adiponectin was negatively associated with the basal (r = -0.65, P = 0.003) and positively associated with the fold increase in IR

  15. Detection of Independent Associations of Plasma Lipidomic Parameters with Insulin Sensitivity Indices Using Data Mining Methodology

    PubMed Central

    Schuhmann, Kai; Xu, Aimin; Schulte, Klaus-Martin; Simeonovic, Charmaine J.; Schwarz, Peter E. H.; Bornstein, Stefan R.; Shevchenko, Andrej; Graessler, Juergen

    2016-01-01

    Objective Glucolipotoxicity is a major pathophysiological mechanism in the development of insulin resistance and type 2 diabetes mellitus (T2D). We aimed to detect subtle changes in the circulating lipid profile by shotgun lipidomics analyses and to associate them with four different insulin sensitivity indices. Methods The cross-sectional study comprised 90 men with a broad range of insulin sensitivity including normal glucose tolerance (NGT, n = 33), impaired glucose tolerance (IGT, n = 32) and newly detected T2D (n = 25). Prior to oral glucose challenge plasma was obtained and quantitatively analyzed for 198 lipid molecular species from 13 different lipid classes including triacylglycerls (TAGs), phosphatidylcholine plasmalogen/ether (PC O-s), sphingomyelins (SMs), and lysophosphatidylcholines (LPCs). To identify a lipidomic signature of individual insulin sensitivity we applied three data mining approaches, namely least absolute shrinkage and selection operator (LASSO), Support Vector Regression (SVR) and Random Forests (RF) for the following insulin sensitivity indices: homeostasis model of insulin resistance (HOMA-IR), glucose insulin sensitivity index (GSI), insulin sensitivity index (ISI), and disposition index (DI). The LASSO procedure offers a high prediction accuracy and and an easier interpretability than SVR and RF. Results After LASSO selection, the plasma lipidome explained 3% (DI) to maximal 53% (HOMA-IR) variability of the sensitivity indexes. Among the lipid species with the highest positive LASSO regression coefficient were TAG 54:2 (HOMA-IR), PC O- 32:0 (GSI), and SM 40:3:1 (ISI). The highest negative regression coefficient was obtained for LPC 22:5 (HOMA-IR), TAG 51:1 (GSI), and TAG 58:6 (ISI). Conclusion Although a substantial part of lipid molecular species showed a significant correlation with insulin sensitivity indices we were able to identify a limited number of lipid metabolites of particular importance based on the LASSO approach. These

  16. Pegvisomant improves insulin sensitivity and reduces overnight free fatty acid concentrations in patients with acromegaly.

    PubMed

    Higham, C E; Rowles, S; Russell-Jones, D; Umpleby, A M; Trainer, P J

    2009-07-01

    Acromegaly is complicated by an increased incidence of diabetes mellitus caused by impaired insulin sensitivity and reduced beta-cell function. Pegvisomant blocks activity at GH receptors, normalizing IGF-I in over 90% of patients and improving insulin sensitivity. The mechanisms for this increase in insulin sensitivity are not fully determined. We used stable isotope techniques to investigate the effects of pegvisomant on glucose and lipid metabolism in acromegaly. Five patients (age, 43 yr +/- sd) with active acromegaly were studied on two occasions: before pegvisomant and after 4 wk of pegvisomant (20 mg daily sc). (2)H(5)-glycerol was infused overnight to measure overnight and early morning (basal) glycerol production rate (Ra). The next morning (2)H(2)-glucose was infused for 2 h before and throughout a hyperinsulinemic euglycemic (1.5 mU/kg x min insulin) clamp to measure basal glucose Ra and insulin-stimulated peripheral glucose disposal (Rd). Mean IGF-I was significantly reduced after pegvisomant treatment (mean, 539 +/- 176 vs. 198 +/- 168 microg/ml; P = 0.001). The insulin sensitivity of endogenous glucose production was significantly increased after pegvisomant [mean glucose Ra *insulin, 118.5 +/- 28 vs. 69.2 +/- 22 micromol/kg x min *(mU/liter); P = 0.04]. No differences in glucose Rd were seen after pegvisomant. All patients showed a reduction in glycerol Ra adjusted for insulin [mean, 18.12 +/- 1.75 vs. 14.4 +/- 4.75 micromol/kg x min *(mU/liter); P = 0.08] and overnight FFA concentrations (mean area under the curve, 278 +/- 84 vs. 203 +/- 71; P < 0.05) after pegvisomant. Short-term administration of pegvisomant leads to a reduction in overnight endogenous glucose production, and this may be related to reduced levels of FFA.

  17. Fibrinolysis and insulin sensitivity in imidapril and candesartan (FISIC study) recipients with hypertension.

    PubMed

    Fogari, Roberto; Zoppi, Annalisa; Salvadeo, Sibilla A T; Mugellini, Amedeo; Lazzari, Pierangelo; Santoro, Tara; Derosa, Giuseppe

    2011-04-01

    The aim of this study was to evaluate the effects of imidapril and candesartan on fibrinolysis and insulin sensitivity in normoweight hypertensive patients. After a 2-week wash-out period, 61 patients with mild-to-moderate hypertension were randomized to imidapril or candesartan for 12 weeks. Blood pressure (BP), plasma tissue plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) antigen activities were evaluated at baseline and during treatment. The patients underwent a euglycemic-hyperinsulinemic clamp (insulin sensitivity was evaluated as glucose infusion rate during the last 30 min) and a desmopressin test (with desmopressin infusion in the brachial artery) to evaluate endothelial ability to release t-PA. Imidapril and candesartan induced similar systolic/diastolic BP reductions (-16/12.6 and -16.1/12.2 mm Hg, respectively, P<0.001 vs. baseline). Imidapril increased glucose infusion rate (+1.1 mg min(-1) per kg, P<0.02), whereas candesartan did not change it. Both drugs decreased PAI-1 antigen activity after 4 weeks of treatment; subsequently, only the decreasing effect of imidapril was sustained throughout the 12 weeks, whereas candesartan increased PAI-1 activity at week 12 (P<0.05 vs. baseline, P<0.01 vs. imidapril). Activity of t-PA decreased with candesartan (from 0.48±0.16 to 0.43±0.14 IU ml(-1), P<0.05) but not with imidapril. Activity of t-PA in response to desmopressin was increased more by imidapril (+4.45 IU ml(-1)) than by candesartan (+2.73 IU ml(-1), P<0.01 vs. imidapril). These results indicate that in normoweight hypertensive patients, despite similar BP reduction, imidapril but not candesartan improved the fibrinolytic balance, suggesting that mechanisms other than Ang II inhibition, possibly including bradykinin-mediated effects on insulin sensitivity and endothelial function, may be responsible for these different effects.

  18. Deconvolution of insulin secretion, insulin hepatic extraction post-hepatic delivery rates and sensitivity during 24-hour standardized meals: time course of glucose homeostasis in leptin replacement treatment.

    PubMed

    Andreev, V P; Paz-Filho, G; Wong, M-L; Licinio, J

    2009-02-01

    Minimally invasive methodology, mathematical model, and software for analysis of glucose homeostasis by deconvolution of insulin secretion, hepatic extraction, post-hepatic delivery, and sensitivity from 24-hour standardized meals test have been developed and illustrated by the study of glucose homeostasis of a genetically based leptin-deficient patient before and after leptin replacement treatment. The only genetically leptin-deficient adult man identified in the world was treated for 24 months with recombinant methionyl human leptin. Blood was collected every 7 minutes for 24 hours, with standardized meals consumed during the 4 visits: at baseline, one-week, 18-months, and 24-months after initiation of the treatment. Concentrations of insulin, C-peptide, and plasma glucose were measured. Insulin secretion was obtained by deconvolution of C-peptide data. Hepatic insulin extraction was determined based on our modifications of the insulin kinetics model . Insulin sensitivity for each of the four meals was calculated by using the minimal glucose model approach. Hepatic extraction of insulin was the first element of glucose homeostasis to respond to leptin replacement treatment and increased 2-fold after one week of treatment. Insulin secretion and delivery rates decreased more than 2-fold and insulin sensitivity increased 10-fold after 24 months of treatment. Computer programs for analysis of 24-hour insulin secretion, extraction, delivery, and action are available upon request.

  19. Effect of H1- and H2-histamine receptor blockade on postexercise insulin sensitivity

    PubMed Central

    Pellinger, Thomas K; Dumke, Breanna R; Halliwill, John R

    2013-01-01

    Following a bout of dynamic exercise, humans experience sustained postexercise vasodilatation in the previously exercised skeletal muscle which is mediated by activation of histamine (H1 and H2) receptors. Skeletal muscle glucose uptake is also enhanced following dynamic exercise. Our aim was to determine if blunting the vasodilatation during recovery from exercise would have an adverse effect on blood glucose regulation. Thus, we tested the hypothesis that insulin sensitivity following exercise would be reduced with H1- and H2-receptor blockade versus control (no blockade). We studied 20 healthy young subjects (12 exercise; eight nonexercise sham) on randomized control and H1- and H2-receptor blockade (fexofenadine and ranitidine) days. Following 60 min of upright cycling at 60% VO2 peak or nonexercise sham, subjects consumed an oral glucose tolerance beverage (1.0 g/kg). Blood glucose was determined from “arterialized” blood samples (heated hand vein). Postexercise whole-body insulin sensitivity (Matsuda insulin sensitivity index) was reduced 25% with H1- and H2-receptor blockade (P < 0.05), whereas insulin sensitivity was not affected by histamine receptor blockade in the sham trials. These results indicate that insulin sensitivity following exercise is blunted by H1- and H2-receptor blockade and suggest that postexercise H1- and H2-receptor–mediated skeletal muscle vasodilatation benefits glucose regulation in healthy humans. PMID:24303118

  20. Measurement of hepatic insulin sensitivity early after the bypass of the proximal small bowel in humans

    PubMed Central

    Herring, R.; Vusirikala, A.; Shojaee‐Moradi, F.; Jackson, N. C.; Chandaria, S.; Jackson, S. N.; Goldstone, A. P.; Hakim, N.; Patel, A. G.; Umpleby, A. M.; Le Roux, C. W.

    2016-01-01

    Summary Objective Unlike gastric banding or sleeve gastrectomy procedures, intestinal bypass procedures, Roux‐en‐Y gastric bypass in particular, lead to rapid improvements in glycaemia early after surgery. The bypass of the proximal small bowel may have weight loss and even caloric restriction‐independent glucose‐lowering properties on hepatic insulin sensitivity. In this first human mechanistic study, we examined this hypothesis by investigating the early effects of the duodeno‐jejunal bypass liner (DJBL; GI Dynamics, USA) on the hepatic insulin sensitivity by using the gold standard euglycaemic hyperinsulinaemic clamp methodology. Method Seven patients with obesity underwent measurement of hepatic insulin sensitivity at baseline, 1 week after a low‐calorie liquid diet and after a further 1 week following insertion of the DJBL whilst on the same diet. Results Duodeno‐jejunal bypass liner did not improve the insulin sensitivity of hepatic glucose production beyond the improvements achieved with caloric restriction. Conclusions Caloric restriction may be the predominant driver of early increases in hepatic insulin sensitivity after the endoscopic bypass of the proximal small bowel. The same mechanism may be at play after Roux‐en‐Y gastric bypass and explain, at least in part, the rapid improvements in glycaemia.

  1. Insulin sensitivity is not impaired in Mexican-American women without a family history of diabetes.

    PubMed

    Bonora, E; Gulli, G; Bonadonna, R; Del Prato, S; Solini, A; DeFronzo, R A

    1995-06-01

    The purpose of this research was to compare insulin sensitivity in Mexican-Americans and non-Hispanic whites without a family history of diabetes to establish whether insulin resistance is a defect intrinsically related to subjects of Mexican origin. In study A, we compared insulin sensitivity in 12 Mexican-American and 12 non-Hispanic white women with normal glucose tolerance and no family history of diabetes. In study B, we compared insulin sensitivity in two groups of normal glucose-tolerant Mexican-Americans, nine with a positive (FHD+) and nine with a negative (FHD-) family history of diabetes. In both studies, the groups were closely matched for age, total body fat content, and fat topography. Insulin sensitivity was assessed with the euglycemic insulin clamp (20 microU.min-1.m2 surface area) which was performed in combination with tritiated glucose infusion and indirect calorimetry. Total fat mass and fat-free mass (FFM) were assessed by a tritiated water dilution technique, and regional fat distribution was evaluated by anthropometry and magnetic resonance imaging. During a 4-h euglycemic insulin clamp (study A), rates (mg.min-1.kg FFM-1) of total (6.32 +/- 0.64 vs. 6.62 +/- 0.81), oxidative (3.54 +/- 0.24 vs. 3.51 +/- 0.19), and nonoxidative (2.78 +/- 0.48 vs. 3.11 +/- 0.75) glucose utilization were similar in Mexican-Americans and non-Hispanic whites; hepatic glucose production (0.33 +/- 0.13 vs. 0.35 +/- 0.13) was suppressed similarly in both groups. During a 2-h euglycemic insulin clamp (study B), Mexican-Americans with FHD+ had lower rates of insulin-mediated total (3.55 +/- 0.39 vs. 5.93 +/- 0.59, P < 0.001), oxidative (3.31 +/- 0.25 vs. 4.32 +/- 0.17, P < 0.01), and nonoxidative (0.24 +/- 0.28 vs. 1.61 +/- 0.49, P < 0.01) glucose disposal than subjects with FHD-; suppression of hepatic glucose production (0.24 +/- 0.14 vs. 0.18 +/- 0.12) was similar in both groups. These results indicate that in the absence of a family history of non-insulin

  2. G protein–coupled receptor 21 deletion improves insulin sensitivity in diet-induced obese mice

    PubMed Central

    Osborn, Olivia; Oh, Da Young; McNelis, Joanne; Sanchez-Alavez, Manuel; Talukdar, Saswata; Lu, Min; Li, PingPing; Thiede, Lucinda; Morinaga, Hidetaka; Kim, Jane J.; Heinrichsdorff, Jan; Nalbandian, Sarah; Ofrecio, Jachelle M.; Scadeng, Miriam; Schenk, Simon; Hadcock, John; Bartfai, Tamas; Olefsky, Jerrold M.

    2012-01-01

    Obesity-induced inflammation is a key component of systemic insulin resistance, which is a hallmark of type 2 diabetes. A major driver of this inflammation/insulin resistance syndrome is the accumulation of proinflammatory macrophages in adipose tissue and liver. We found that the orphan GPCR Gpr21 was highly expressed in the hypothalamus and macrophages of mice and that whole-body KO of this receptor led to a robust improvement in glucose tolerance and systemic insulin sensitivity and a modest lean phenotype. The improvement in insulin sensitivity in the high-fat diet–fed (HFD-fed) Gpr21 KO mouse was traced to a marked reduction in tissue inflammation caused by decreased chemotaxis of Gpr21 KO macrophages into adipose tissue and liver. Furthermore, mice lacking macrophage expression of Gpr21 were protected from HFD-induced inflammation and displayed improved insulin sensitivity. Results of in vitro chemotaxis studies in human monocytes suggested that the defect in chemotaxis observed ex vivo and in vivo in mice is also translatable to humans. Cumulatively, our data indicate that GPR21 has a critical function in coordinating macrophage proinflammatory activity in the context of obesity-induced insulin resistance. PMID:22653059

  3. Adipose tissue monomethyl branched chain fatty acids and insulin sensitivity: effects of obesity and weight loss

    PubMed Central

    Su, Xiong; Magkos, Faidon; Zhou, Dequan; Eagon, J. Christopher; Fabbrini, Elisa; Okunade, Adewole L.; Klein, Samuel

    2014-01-01

    Objective An increase in circulating branched-chain amino acids (BCAA) is associated with insulin resistance. Adipose tissue is a potentially important site for BCAA metabolism. We evaluated whether monomethyl branched chain fatty acids (mmBCFA) in adipose tissue, which are likely derived from BCAA catabolism, are associated with insulin sensitivity. Design and Methods Insulin-stimulated glucose disposal was determined by using the hyperinsulinemic-euglycemic clamp procedure with stable isotope glucose tracer infusion, in 9 lean and 9 obese subjects, and in a separate group of 9 obese subjects before and 1 year after Roux-en-Y gastric bypass (RYGB) surgery (38% weight loss). Adipose tissue mmBCFA content was measured in tissue biopsies taken in the basal state. Results Total adipose tissue mmBCFA content was ~30% lower in obese than lean subjects (P = 0.02), and increased by ~65% after weight loss in the RYGB group (P = 0.01). Adipose tissue mmBCFA content correlated positively with skeletal muscle insulin sensitivity (R2 = 35%, P = 0.01, n = 18). Conclusions These results demonstrate a novel association between adipose tissue mmBCFA content and obesity-related insulin resistance. Additional studies are needed to determine whether the association between adipose tissue mmBCFA and muscle insulin sensitivity is causal or a simple association. PMID:25328153

  4. Prolactin Promotes Adipose Tissue Fitness and Insulin Sensitivity in Obese Males.

    PubMed

    Ruiz-Herrera, Xarubet; de Los Ríos, Ericka A; Díaz, Juan M; Lerma-Alvarado, Ricardo M; Martínez de la Escalera, Lucía; López-Barrera, Fernando; Lemini, María; Arnold, Edith; Martínez de la Escalera, Gonzalo; Clapp, Carmen; Macotela, Yazmín

    2017-01-01

    Excessive accumulation of body fat triggers insulin resistance and features of the metabolic syndrome. Recently, evidence has accumulated that obesity, type 2 diabetes, and metabolic syndrome are associated with reduced levels of serum prolactin (PRL) in humans and rodents, raising the question of whether low PRL levels contribute to metabolic dysfunction. Here, we have addressed this question by investigating the role of PRL in insulin sensitivity and adipose tissue fitness in obese rodents and humans. In diet-induced obese rats, treatment with PRL delivered via osmotic mini-pumps, improved insulin sensitivity, prevented adipocyte hypertrophy, and reduced inflammatory cytokine expression in visceral fat. PRL also induced increased expression of Pparg and Xbp1s in visceral adipose tissue and elevated circulating adiponectin levels. Conversely, PRL receptor null mice challenged with a high-fat diet developed greater insulin resistance, glucose intolerance, and increased adipocyte hypertrophy compared with wild-type mice. In humans, serum PRL values correlated positively with systemic adiponectin levels and were reduced in insulin-resistant patients. Furthermore, PRL circulating levels and PRL produced by adipose tissue correlated directly with the expression of PPARG, ADIPOQ, and GLUT4 in human visceral and sc adipose tissue. Thus, PRL, acting through its cognate receptors, promotes healthy adipose tissue function and systemic insulin sensitivity. Increasing the levels of PRL in the circulation may have therapeutic potential against obesity-induced metabolic diseases. Copyright © 2017 by the Endocrine Society.

  5. The TZD insulin sensitizer clue provides a new route into diabetes drug discovery.

    PubMed

    Colca, Jerry R

    2015-12-01

    Thiazolidinedione (TZD) insulin sensitizers have a pleotropic pharmacology including reduction of insulin resistance, a root cause of diabetes. Importantly, these agents also preserve pancreatic beta cell function. TZDs are not widely used, especially early on in disease progression when they might have the greatest benefit, because of side effects, principally volume expansion, weight gain, and increased bone reabsorption. Incomplete understanding of their mechanism of action has prevented the development of new agents. Recent studies suggest that these compounds modify mitochondrial metabolism and metabolic signals that coordinate downstream cell function. The author provides a brief history of the development of the first generation insulin sensitizer TZDs, which coincided with the expansion of the concept of insulin resistance in disease. Furthermore, the article summarizes ideas as to how a newly identified mitochondrial target might explain the activity of new clinical candidates. Recognition of the pyruvate carrier complex as a mitochondrial target of the TZDs provides a new direction for discovery and development of anti-diabetic agents. Recent clinical studies have suggested that reduction of direct agonism of PPARγ may prove to be useful therapeutically by reducing dose-limiting side effects. The study of the mechanism of insulin resistance produced by metabolic signals (metabolic inflammation) and the counterbalance of these signals by insulin sensitizers is likely to be useful in providing more target and discovery approaches to metabolic diseases.

  6. Effects of hiking at altitude on body composition and insulin sensitivity in recovering drug addicts.

    PubMed

    Lee, Wen-Chih; Chen, Jin-Jong; Hunt, Desmond D; Hou, Chien-Wen; Lai, Yu-Chiang; Lin, Fang-Ching; Chen, Chung-Yu; Lin, Ching-Hung; Liao, Yi-Hung; Kuo, Chia-Hua

    2004-10-01

    In the current study individuals with a history of drug abuse (users of heroin, cocaine, or amphetamine) displayed a 13-100% increase in body weight (self-reported) and exhibited a trend toward insulin resistance. Therefore, we investigated the effects of long-term altitude hiking on insulin sensitivity in this special population. Nine males recovering from drug addiction (ex-addicts) (age 28.7 +/- 1.3 years) and 17 control subjects (age 29 +/- 1.1 years) voluntarily participated in a 25-day hiking activity (altitude 2200-3800 M). On the 25th day of hiking, oral glucose tolerance test (OGTT), insulin response, lean body mass, fat mass, and waist-to-hip ratio (WHR) were measured in all subjects. After the altitude expedition, insulin levels during the OGTT in ex-addicts were similar to controls, suggesting that insulin sensitivity in this special population was normalized by long-term altitude activity. Along with improvements in insulin sensitivity, a significant reduction in WHR, but small increase in lean body mass, was observed. Twenty-five days of altitude activity significantly reverses hyperinsulinemia in the ex-addicts and this improvement appears to be partially associated with the reduction in central fatness.

  7. Insulin Sensitivity Is Reflected by Characteristic Metabolic Fingerprints - A Fourier Transform Mass Spectrometric Non-Targeted Metabolomics Approach

    PubMed Central

    Lucio, Marianna; Fekete, Agnes; Weigert, Cora; Wägele, Brigitte; Zhao, Xinjie; Chen, Jing; Fritsche, Andreas; Häring, Hans-Ulrich; Schleicher, Erwin D.; Xu, Guowang; Schmitt-Kopplin, Philippe; Lehmann, Rainer

    2010-01-01

    Background A decline in body insulin sensitivity in apparently healthy individuals indicates a high risk to develop type 2 diabetes. Investigating the metabolic fingerprints of individuals with different whole body insulin sensitivity according to the formula of Matsuda, et al. (ISIMatsuda) by a non-targeted metabolomics approach we aimed a) to figure out an unsuspicious and altered metabolic pattern, b) to estimate a threshold related to these changes based on the ISI, and c) to identify the metabolic pathways responsible for the discrimination of the two patterns. Methodology and Principal Findings By applying infusion ion cyclotron resonance Fourier transform mass spectrometry, we analyzed plasma of 46 non-diabetic subjects exhibiting high to low insulin sensitivities. The orthogonal partial least square model revealed a cluster of 28 individuals with alterations in their metabolic fingerprints associated with a decline in insulin sensitivity. This group could be separated from 18 subjects with an unsuspicious metabolite pattern. The orthogonal signal correction score scatter plot suggests a threshold of an ISIMatsuda of 15 for the discrimination of these two groups. Of note, a potential subgroup represented by eight individuals (ISIMatsuda value between 8.5 and 15) was identified in different models. This subgroup may indicate a metabolic transition state, since it is already located within the cluster of individuals with declined insulin sensitivity but the metabolic fingerprints still show some similarities with unaffected individuals (ISI >15). Moreover, the highest number of metabolite intensity differences between unsuspicious and altered metabolic fingerprints was detected in lipid metabolic pathways (arachidonic acid metabolism, metabolism of essential fatty acids and biosynthesis of unsaturated fatty acids), steroid hormone biosyntheses and bile acid metabolism, based on data evaluation using the metabolic annotation interface MassTRIX. Conclusions Our

  8. Unacylated ghrelin is associated with changes in insulin sensitivity and lipid profile during an exercise intervention.

    PubMed

    Cederberg, Henna; Koivisto, Vesa-Matti; Jokelainen, Jari; Surcel, Heljä-Marja; Keinänen-Kiukaanniemi, Sirkka; Rajala, Ulla

    2012-01-01

    Ghrelin has been implicated in energy homeostasis, body weight regulation and glucose metabolism. Level of unacylated ghrelin (UAG), but not acylated ghrelin (AG), has been suggested to increase during long-term exercise. However, the association of the level of UAG with exercise-induced changes of insulin sensitivity and lipid metabolism has not been previously investigated. We hypothesized that an increase in UAG level in response to a long-term exercise programme improves insulin sensitivity and associated lipid profile, independently of weight loss. A prospective study of 552 young men (mean age 19·3 and range 19-28 years) undergoing military service with structured 6-month exercise training programme. Exercise performance, clinical and biochemical measurements were obtained at baseline and follow-up. Association between UAG level and fasting glucose, insulin, insulin sensitivity and lipid levels were evaluated. An overall increase in the level of UAG was observed during the 6-month follow-up (P < 0·001), which was largest among those with weight loss ≥ 2·5% or among those whose reduction in waist circumference was largest (P = 0·007 and P < 0·001, respectively). A change in UAG level correlated inversely with a change in fasting glucose and insulin levels, HOMA-IR, total cholesterol and total triglyceride levels (P < 0·001 for all). The association between change in the UAG level and the change in insulin sensitivity was independent of weight loss or reduction in waist circumference. Increase in UAG level was associated with improved insulin sensitivity via mechanisms independent of weight loss during an intensive, long-term exercise intervention in young healthy men. © 2011 Blackwell Publishing Ltd.

  9. Comparison between surrogate indexes of insulin sensitivity/resistance and hyperinsulinemic euglycemic clamp estimates in rats

    PubMed Central

    Muniyappa, Ranganath; Chen, Hui; Muzumdar, Radhika H.; Einstein, Francine H.; Yan, Xu; Yue, Lilly Q.; Barzilai, Nir

    2009-01-01

    Assessing insulin resistance in rodent models gives insight into mechanisms that cause type 2 diabetes and the metabolic syndrome. The hyperinsulinemic euglycemic glucose clamp, the reference standard for measuring insulin sensitivity in humans and animals, is labor intensive and technically demanding. A number of simple surrogate indexes of insulin sensitivity/resistance have been developed and validated primarily for use in large human studies. These same surrogates are also frequently used in rodent studies. However, in general, these indexes have not been rigorously evaluated in animals. In a recent validation study in mice, we demonstrated that surrogates have a weaker correlation with glucose clamp estimates of insulin sensitivity/resistance than in humans. This may be due to increased technical difficulties in mice and/or intrinsic differences between human and rodent physiology. To help distinguish among these possibilities, in the present study, using data from rats substantially larger than mice, we compared the clamp glucose infusion rate (GIR) with surrogate indexes, including QUICKI, HOMA, 1/HOMA, log (HOMA), and 1/fasting insulin. All surrogates were modestly correlated with GIR (r = 0.34–0.40). Calibration analyses of surrogates adjusted for body weight demonstrated similar predictive accuracy for GIR among all surrogates. We conclude that linear correlations of surrogate indexes with clamp estimates and predictive accuracy of surrogate indexes in rats are similar to those in mice (but not as substantial as in humans). This additional rat study (taken with the previous mouse study) suggests that application of surrogate insulin sensitivity indexes developed for humans may not be appropriate for determining primary outcomes in rodent studies due to intrinsic differences in metabolic physiology. However, use of surrogates may be appropriate in rodents, where feasibility of clamps is an obstacle and measurement of insulin sensitivity is a secondary

  10. A Small Insulinomimetic Molecule Also Improves Insulin Sensitivity in Diabetic Mice

    PubMed Central

    Mukherjee, Sandip; Chattopadhyay, Mrittika; Bhattacharya, Sushmita; Dasgupta, Suman; Hussain, Sahid; Bharadwaj, Saitanya K.; Talukdar, Dhrubajyoti; Usmani, Abul; Pradhan, Bhola S; Majumdar, Subeer S; Chattopadhyay, Pronobesh; Mukhopadhyay, Satinath; Maity, Tushar K; Chaudhuri, Mihir K.; Bhattacharya, Samir

    2017-01-01

    Dramatic increase of diabetes over the globe is in tandem with the increase in insulin requirement. This is because destruction and dysfunction of pancreatic β-cells are of common occurrence in both Type1 diabetes and Type2 diabetes, and insulin injection becomes a compulsion. Because of several problems associated with insulin injection, orally active insulin mimetic compounds would be ideal substitute. Here we report a small molecule, a peroxyvanadate compound i.e. DmpzH[VO(O2)2(dmpz)], henceforth referred as dmp, which specifically binds to insulin receptor with considerable affinity (KD-1.17μM) thus activating insulin receptor tyrosine kinase and its downstream signaling molecules resulting increased uptake of [14C] 2 Deoxy-glucose. Oral administration of dmp to streptozotocin treated BALB/c mice lowers blood glucose level and markedly stimulates glucose and fatty acid uptake by skeletal muscle and adipose tissue respectively. In db/db mice, it greatly improves insulin sensitivity through excess expression of PPARγ and its target genes i.e. adiponectin, CD36 and aP2. Study on the underlying mechanism demonstrated that excess expression of Wnt3a decreased PPARγ whereas dmp suppression of Wnt3a gene increased PPARγ expression which subsequently augmented adiponectin. Increased production of adiponectin in db/db mice due to dmp effected lowering of circulatory TG and FFA levels, activates AMPK in skeletal muscle and this stimulates mitochondrial biogenesis and bioenergetics. Decrease of lipid load along with increased mitochondrial activity greatly improves energy homeostasis which has been found to be correlated with the increased insulin sensitivity. The results obtained with dmp, therefore, strongly indicate that dmp could be a potential candidate for insulin replacement therapy. PMID:28072841

  11. A Small Insulinomimetic Molecule Also Improves Insulin Sensitivity in Diabetic Mice.

    PubMed

    Mukherjee, Sandip; Chattopadhyay, Mrittika; Bhattacharya, Sushmita; Dasgupta, Suman; Hussain, Sahid; Bharadwaj, Saitanya K; Talukdar, Dhrubajyoti; Usmani, Abul; Pradhan, Bhola S; Majumdar, Subeer S; Chattopadhyay, Pronobesh; Mukhopadhyay, Satinath; Maity, Tushar K; Chaudhuri, Mihir K; Bhattacharya, Samir

    2017-01-01

    Dramatic increase of diabetes over the globe is in tandem with the increase in insulin requirement. This is because destruction and dysfunction of pancreatic β-cells are of common occurrence in both Type1 diabetes and Type2 diabetes, and insulin injection becomes a compulsion. Because of several problems associated with insulin injection, orally active insulin mimetic compounds would be ideal substitute. Here we report a small molecule, a peroxyvanadate compound i.e. DmpzH[VO(O2)2(dmpz)], henceforth referred as dmp, which specifically binds to insulin receptor with considerable affinity (KD-1.17μM) thus activating insulin receptor tyrosine kinase and its downstream signaling molecules resulting increased uptake of [14C] 2 Deoxy-glucose. Oral administration of dmp to streptozotocin treated BALB/c mice lowers blood glucose level and markedly stimulates glucose and fatty acid uptake by skeletal muscle and adipose tissue respectively. In db/db mice, it greatly improves insulin sensitivity through excess expression of PPARγ and its target genes i.e. adiponectin, CD36 and aP2. Study on the underlying mechanism demonstrated that excess expression of Wnt3a decreased PPARγ whereas dmp suppression of Wnt3a gene increased PPARγ expression which subsequently augmented adiponectin. Increased production of adiponectin in db/db mice due to dmp effected lowering of circulatory TG and FFA levels, activates AMPK in skeletal muscle and this stimulates mitochondrial biogenesis and bioenergetics. Decrease of lipid load along with increased mitochondrial activity greatly improves energy homeostasis which has been found to be correlated with the increased insulin sensitivity. The results obtained with dmp, therefore, strongly indicate that dmp could be a potential candidate for insulin replacement therapy.

  12. Out of the blue: the spectral sensitivity of hummingbird hawkmoths.

    PubMed

    Telles, Francismeire Jane; Lind, Olle; Henze, Miriam Judith; Rodríguez-Gironés, Miguel Angel; Goyret, Joaquin; Kelber, Almut

    2014-06-01

    The European hummingbird hawkmoth Macroglossum stellatarum is a diurnal nectar forager like the honeybee, and we expect similarities in their sensory ecology. Using behavioural tests and electroretinograms (ERGs), we studied the spectral sensitivity of M. stellatarum. By measuring ERGs in the dark-adapted eye and after adaptation to green light, we determined that M. stellatarum has ultraviolet (UV), blue and green receptors maximally sensitive at 349, 440 and 521 nm, and confirmed that green receptors are most frequent in the retina. To determine the behavioural spectral sensitivity (action spectrum) of foraging moths, we trained animals to associate a disk illuminated with spectral light, with a food reward, and a dark disk with no reward. While the spectral positions of sensitivity maxima found in behavioural tests agree with model predictions based on the ERG data, the sensitivity to blue light was 30 times higher than expected. This is different from the honeybee but similar to earlier findings in the crepuscular hawkmoth Manduca sexta. It may indicate that the action spectrum of foraging hawkmoths does not represent their general sensory capacity. We suggest that the elevated sensitivity to blue light is related to the innate preference of hawkmoths for blue flowers.

  13. Disclosing caffeine action on insulin sensitivity: effects on rat skeletal muscle.

    PubMed

    Sacramento, Joana F; Ribeiro, Maria J; Yubero, Sara; Melo, Bernardete F; Obeso, Ana; Guarino, Maria P; Gonzalez, Constancio; Conde, Silvia V

    2015-04-05

    Caffeine, a non-selective adenosine antagonist, has distinct effects on insulin sensitivity when applied acutely or chronically. Herein, we investigated the involvement of adenosine receptors on insulin resistance induced by single-dose caffeine administration. Additionally, the mechanism behind adenosine receptor-mediated caffeine effects in skeletal muscle was assessed. The effect of the administration of caffeine, 8-cycle-1,3-dipropylxanthine (DPCPX, A1 antagonist), 2-(2-Furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH58261, A2A antagonist) and 8-(4-{[(4-cyanophenyl)carbamoylmethyl]-oxy}phenyl)-1,3-di(n-propyl)xanthine (MRS1754, A2B antagonist) on whole-body insulin sensitivity was tested. Skeletal muscle Glut4,5'-AMP activated protein kinase (AMPK) and adenosine receptor protein expression were also assessed. The effect of A1 and A2B adenosine agonists on skeletal muscle glucose uptake was evaluated in vitro. Sodium nitroprussiate (SNP, 10nM), a nitric oxide (NO) donor, was used to evaluate the effect of NO on insulin resistance induced by adenosine antagonists. Acute caffeine decreased insulin sensitivity in a concentration dependent manner (Emax=55.54±5.37%, IC50=11.61nM), an effect that was mediated by A1 and A2B adenosine receptors. Additionally, acute caffeine administration significantly decreased Glut4, but not AMPK expression, in skeletal muscle. We found that A1, but not A2B agonists increased glucose uptake in skeletal muscle. SNP partially reversed DPCPX and MRS1754 induced-insulin resistance. Our results suggest that insulin resistance induced by acute caffeine administration is mediated by A1 and A2B adenosine receptors. Both Glut4 and NO seem to be downstream effectors involved in insulin resistance induced by acute caffeine.

  14. Increased activin bioavailability enhances hepatic insulin sensitivity while inducing hepatic steatosis in male mice.

    PubMed

    Ungerleider, Nathan A; Bonomi, Lara M; Brown, Melissa L; Schneyer, Alan L

    2013-06-01

    The development of insulin resistance is tightly linked to fatty liver disease and is considered a major health concern worldwide, although their mechanistic relationship remains controversial. Activin has emerging roles in nutrient homeostasis, but its metabolic effects on hepatocytes remain unknown. In this study, we investigated the effects of increased endogenous activin bioactivity on hepatic nutrient homeostasis by creating mice with inactivating mutations that deplete the circulating activin antagonists follistatin-like-3 (FSTL3) or the follistatin 315 isoform (FST315; FST288-only mice). We investigated liver histology and lipid content, hepatic insulin sensitivity, and metabolic gene expression including the HepG2 cell and primary hepatocyte response to activin treatment. Both FSTL3-knockout and FST288-only mice had extensive hepatic steatosis and elevated hepatic triglyceride content. Unexpectedly, insulin signaling, as assessed by phospho-Akt (a.k.a. protein kinase B), was enhanced in both mouse models. Pretreatment of HepG2 cells with activin A increased their response to subsequent insulin challenge. Gene expression analysis suggests that increased lipid uptake, enhanced de novo lipid synthesis, decreased lipolysis, and/or enhanced glucose uptake contribute to increased hepatic triglyceride content in these models. However, activin treatment recapitulated only some of these gene changes, suggesting that increased activin bioactivity may be only partially responsible for this phenotype. Nevertheless, our results indicate that activin enhances hepatocyte insulin response, which ultimately leads to hepatic steatosis despite the increased insulin sensitivity. Thus, regulation of activin bioactivity is critical for maintaining normal liver lipid homeostasis and response to insulin, whereas activin agonists may be useful for increasing liver insulin sensitivity.

  15. Rosiglitazone improves insulin sensitivity and baroreflex gain in rats with diet-induced obesity.

    PubMed

    Zhao, Ding; McCully, Belinda H; Brooks, Virginia L

    2012-10-01

    Obesity decreases baroreflex gain (BRG); however, the mechanisms are unknown. We tested the hypothesis that impaired BRG is related to the concurrent insulin resistance, and, therefore, BRG would be improved after treatment with the insulin-sensitizing drug rosiglitazone. Male rats fed a high-fat diet diverged into obesity-prone (OP) and obesity-resistant (OR) groups after 2 weeks. Then, OP and OR rats, as well as control (CON) rats fed a standard diet, were treated daily for 2 to 3 weeks with rosiglitazone (3 or 6 mg/kg) or its vehicle by gavage. Compared with OR and CON rats, conscious OP rats exhibited reductions in BRG (OP, 2.9 ± 0.1 bpm/mm Hg; OR, 4.0 ± 0.2 bpm/mm Hg; CON, 3.9 ± 0.2 bpm/mm Hg; P < 0.05) and insulin sensitivity (hyperinsulinemic euglycemic clamp; OP, 6.8 ± 0.9 mg/kg · min; OR, 22.2 ± 1.2 mg/kg · min; CON, 17.7 ± 0.8 mg/kg · min; P < 0.05), which were well correlated (r(2) = 0.49; P < 0.01). In OP rats, rosiglitazone dose-dependently improved (P < 0.05) insulin sensitivity (12.8 ± 0.6 mg/kg · min at 3 mg/kg; 16.0 ± 1.5 mg/kg · min at 6 mg/kg) and BRG (3.8 ± 0.4 bpm/mm Hg at 3 mg/kg; 5.3 ± 0.7 bpm/mm Hg at 6 mg/kg). However, 6 mg/kg rosiglitazone also increased BRG in OR rats without increasing insulin sensitivity, disrupted the correlation between BRG and insulin sensitivity (r(2) = 0.08), and, in OP and OR rats, elevated BRG relative to insulin sensitivity (analysis of covariance; P < 0.05). Moreover, in OP rats, stimulation of the aortic depressor nerve, to activate central baroreflex pathways, elicited markedly reduced decreases in heart rate and arterial pressure, but these responses were not improved by rosiglitazone. In conclusion, diet-induced obesity impairs BRG via a central mechanism that is related to the concurrent insulin resistance. Rosiglitazone normalizes BRG, but not by improving brain baroreflex processing or insulin sensitivity.

  16. Brown Adipose Tissue Improves Whole-Body Glucose Homeostasis and Insulin Sensitivity in Humans

    PubMed Central

    Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Porter, Craig; Annamalai, Palam; Enerbäck, Sven; Lidell, Martin E.; Saraf, Manish K.; Labbe, Sebastien M.; Hurren, Nicholas M.; Yfanti, Christina; Chao, Tony; Andersen, Clark R.; Cesani, Fernando; Hawkins, Hal

    2014-01-01

    Brown adipose tissue (BAT) has attracted scientific interest as an antidiabetic tissue owing to its ability to dissipate energy as heat. Despite a plethora of data concerning the role of BAT in glucose metabolism in rodents, the role of BAT (if any) in glucose metabolism in humans remains unclear. To investigate whether BAT activation alters whole-body glucose homeostasis and insulin sensitivity in humans, we studied seven BAT-positive (BAT+) men and five BAT-negative (BAT−) men under thermoneutral conditions and after prolonged (5–8 h) cold exposure (CE). The two groups were similar in age, BMI, and adiposity. CE significantly increased resting energy expenditure, whole-body glucose disposal, plasma glucose oxidation, and insulin sensitivity in the BAT+ group only. These results demonstrate a physiologically significant role of BAT in whole-body energy expenditure, glucose homeostasis, and insulin sensitivity in humans, and support the notion that BAT may function as an antidiabetic tissue in humans. PMID:25056438

  17. High intensity interval training improves liver and adipose tissue insulin sensitivity.

    PubMed

    Marcinko, Katarina; Sikkema, Sarah R; Samaan, M Constantine; Kemp, Bruce E; Fullerton, Morgan D; Steinberg, Gregory R

    2015-12-01

    Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine-alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC.

  18. Association of short and long sleep durations with insulin sensitivity in adolescents.

    PubMed

    Javaheri, Sogol; Storfer-Isser, Amy; Rosen, Carol L; Redline, Susan

    2011-04-01

    To characterize the relationship between insulin sensitivity, assessed with the homeostasis model of insulin (HOMA), and objective measurements of sleep duration in adolescents. We conducted a cross-sectional analysis from two examinations conducted in the Cleveland Children's Sleep and Health Cohort (n = 387; 43% minorities). Biochemical and anthropometry measurements were made in a clinical research unit. Sleep duration was measured with actigraphy. Decreased sleep duration was associated with increased adiposity and minority race. Sleep duration had a quadratic "u-shape" association with HOMA. When adjusted for age, sex, race, preterm status, and activity, adolescents who slept 7.75 hours had the lowest predicted HOMA (1.96, 95% confidence interval [CI], 1.82-2.10), and adolescents who slept 5.0 hours or 10.5 hours had HOMA indices that were approximately 20% higher (2.36; 95% CI, 1.94-2.86; and 2.41; 95% CI, 1.93-3.01, respectively). After adjusting for adiposity, the association between shorter sleep and HOMA was appreciably attenuated, but the association with longer sleep persisted. Shorter and longer sleep durations are associated with decreased insulin sensitivity in adolescents. Although the association between shorter sleep duration with insulin sensitivity likely is explained by the association between short sleep duration and obesity, the association between longer sleep and insulin sensitivity is independent of obesity. Copyright © 2011 Mosby, Inc. All rights reserved.

  19. Ginsenoside Rb1 increases insulin sensitivity through suppressing 11β-hydroxysteroid dehydrogenase type I

    PubMed Central

    Song, Bing; Ding, Li; Zhang, Haoqiang; Chu, Yafen; Chang, Zhaohui; Yu, Yali; Guo, Dandan; Zhang, Shuping; Liu, Xuezheng

    2017-01-01

    Ginsenoside Rb1 (GRb1) is a major component of ginseng, which has been shown to ameliorate hyperglycemia in rodents and in humans with undetermined mechanisms. Here, we analyzed the molecular mechanisms by which GRb1 reduces the insulin resistance in high-fat diet (HFD)-induced mouse model for type 2 diabetes (T2D). HFD was applied for 4 weeks to induce T2D in mice, after which GRb1 was administrated and the effects on the fasting blood glucose, glucose tolerance and insulin sensitivity were analyzed. We found that HFD increased fasting blood glucose, glucose tolerance and reduced insulin sensitivity, which were all ameliorated by GRb1. GRb1 seemed to reduce the levels of 11β-Hydroxysteroid dehydrogenase type I (11β-HSD1) in liver and adipose tissue, to exert its anti-diabetes effects. Overexpression of 11β-HSD1 completely abolished the effects of GRb1 on HFD-induced increases in fasting blood glucose and glucose tolerance, and decreases in insulin sensitivity. Together, our data suggest that GRb1 may increase insulin sensitivity through suppressing 11β-HSD1 in treatment of T2D. PMID:28386332

  20. Effect of cabergoline on insulin sensitivity, inflammation, and carotid intima media thickness in patients with prolactinoma.

    PubMed

    Inancli, Serap Soytac; Usluogullari, Alper; Ustu, Yusuf; Caner, Sedat; Tam, Abbas Ali; Ersoy, Reyhan; Cakir, Bekir

    2013-08-01

    The aim of this study was to evaluate the effect of Cabergoline on insulin sensitivity, inflammatory markers, and carotid intima media thickness in prolactinoma patients. Twenty-one female, newly diagnosed patients with prolactinoma were included in the study. None of the patients were treated previously. Cabergoline was given as treatment, starting with 0.5 mg/day and tapered necessarily. Blood samples were taken for prolactin, highly sensitive C-reactive protein, homocysteine, total cholesterol, low density lipoprotein (LDL) cholesterol, fasting glucose, insulin, and HOMA (homeostasis model assessment of insulin resistance) score was calculated, prior to and 6 months after starting treatment. The body mass index (BMI) was measured and carotid intima media thickness (CIMT) was evaluated for each patient prior to and 6 months after the treatment. The prolactin levels and LDL decreased significantly after cabergoline treatment. Insulin sensitivity improved independently from the decrease in prolactin levels and BMI. The significant decrease in homocysteine and hs-CRP was not related with the decrease in prolactin levels. The significant decrease in CIMT was independent from the decrease in prolactin levels, HOMA score, and BMI. Our data suggest that cabergoline treatment causes an improvement in insulin sensitivity and inflammatory markers and causes a decrease in CIMT independent from the decrease in prolactin, LDL cholesterol, and BMI. We conclude that short term cabergoline treatment can improve endothelial function independently from the changes in metabolic disturbances and inflammatory markers.

  1. High intensity interval training improves liver and adipose tissue insulin sensitivity

    PubMed Central

    Marcinko, Katarina; Sikkema, Sarah R.; Samaan, M. Constantine; Kemp, Bruce E.; Fullerton, Morgan D.; Steinberg, Gregory R.

    2015-01-01

    Objective Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. Methods In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine–alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. Results HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. Conclusions These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC. PMID:26909307

  2. Central Administration of Galanin Receptor 1 Agonist Boosted Insulin Sensitivity in Adipose Cells of Diabetic Rats.

    PubMed

    Zhang, Zhenwen; Fang, Penghua; He, Biao; Guo, Lili; Runesson, Johan; Langel, Ülo; Shi, Mingyi; Zhu, Yan; Bo, Ping

    2016-01-01

    Our previous studies testified the beneficial effect of central galanin on insulin sensitivity of type 2 diabetic rats. The aim of the study was further to investigate whether central M617, a galanin receptor 1 agonist, can benefit insulin sensitivity. The effects of intracerebroventricular administration of M617 on insulin sensitivity and insulin signaling were evaluated in adipose tissues of type 2 diabetic rats. The results showed that central injection of M617 significantly increased plasma adiponectin contents, glucose infusion rates in hyperinsulinemic-euglycemic clamp tests, GLUT4 mRNA expression levels, GLUT4 contents in plasma membranes, and total cell membranes of the adipose cells but reduced the plasma C-reactive protein concentration in nondiabetic and diabetic rats. The ratios of GLUT4 contents were higher in plasma membranes to total cell membranes in both nondiabetic and diabetic M617 groups than each control. In addition, the central administration of M617 enhanced the ratios of pAkt/Akt and pAS160/AS160, but not phosphorylative cAMP response element-binding protein (pCREB)/CREB in the adipose cells of nondiabetic and diabetic rats. These results suggest that excitation of central galanin receptor 1 facilitates insulin sensitivity via activation of the Akt/AS160 signaling pathway in the fat cells of type 2 diabetic rats.

  3. Central Administration of Galanin Receptor 1 Agonist Boosted Insulin Sensitivity in Adipose Cells of Diabetic Rats

    PubMed Central

    Zhang, Zhenwen; Fang, Penghua; He, Biao; Guo, Lili; Runesson, Johan; Langel, Ülo; Shi, Mingyi; Zhu, Yan; Bo, Ping

    2016-01-01

    Our previous studies testified the beneficial effect of central galanin on insulin sensitivity of type 2 diabetic rats. The aim of the study was further to investigate whether central M617, a galanin receptor 1 agonist, can benefit insulin sensitivity. The effects of intracerebroventricular administration of M617 on insulin sensitivity and insulin signaling were evaluated in adipose tissues of type 2 diabetic rats. The results showed that central injection of M617 significantly increased plasma adiponectin contents, glucose infusion rates in hyperinsulinemic-euglycemic clamp tests, GLUT4 mRNA expression levels, GLUT4 contents in plasma membranes, and total cell membranes of the adipose cells but reduced the plasma C-reactive protein concentration in nondiabetic and diabetic rats. The ratios of GLUT4 contents were higher in plasma membranes to total cell membranes in both nondiabetic and diabetic M617 groups than each control. In addition, the central administration of M617 enhanced the ratios of pAkt/Akt and pAS160/AS160, but not phosphorylative cAMP response element-binding protein (pCREB)/CREB in the adipose cells of nondiabetic and diabetic rats. These results suggest that excitation of central galanin receptor 1 facilitates insulin sensitivity via activation of the Akt/AS160 signaling pathway in the fat cells of type 2 diabetic rats. PMID:27127795

  4. Leucine Deprivation Increases Hepatic Insulin Sensitivity via GCN2/mTOR/S6K1 and AMPK Pathways

    PubMed Central

    Xiao, Fei; Huang, Zhiying; Li, Houkai; Yu, Junjie; Wang, Chunxia; Chen, Shanghai; Meng, Qingshu; Cheng, Ying; Gao, Xiang; Li, Jia; Liu, Yong; Guo, Feifan

    2011-01-01

    OBJECTIVE We have previously shown that serum insulin levels decrease threefold and blood glucose levels remain normal in mice fed a leucine-deficient diet, suggesting increased insulin sensitivity. The goal of the current study is to investigate this possibility and elucidate the underlying cellular mechanisms. RESEARCH DESIGN AND METHODS Changes in metabolic parameters and expression of genes and proteins involved in regulation of insulin sensitivity were analyzed in mice, human HepG2 cells, and mouse primary hepatocytes under leucine deprivation. RESULTS We show that leucine deprivation improves hepatic insulin sensitivity by sequentially activating general control nonderepressible (GCN)2 and decreasing mammalian target of rapamycin/S6K1 signaling. In addition, we show that activation of AMP-activated protein kinase also contributes to leucine deprivation–increased hepatic insulin sensitivity. Finally, we show that leucine deprivation improves insulin sensitivity under insulin-resistant conditions. CONCLUSIONS This study describes mechanisms underlying increased hepatic insulin sensitivity under leucine deprivation. Furthermore, we demonstrate a novel function for GCN2 in the regulation of insulin sensitivity. These observations provide a rationale for short-term dietary restriction of leucine for the treatment of insulin resistance and associated metabolic diseases. PMID:21282364

  5. Infection with Soil-Transmitted Helminths Is Associated with Increased Insulin Sensitivity

    PubMed Central

    Wiria, Aprilianto E.; Hamid, Firdaus; Wammes, Linda J.; Prasetyani, Margaretta A.; Dekkers, Olaf M.; May, Linda; Kaisar, Maria M. M.; Verweij, Jaco J.; Guigas, Bruno; Partono, Felix; Sartono, Erliyani

    2015-01-01

    Objective Given that helminth infections have been shown to improve insulin sensitivity in animal studies, which may be explained by beneficial effects on energy balance or by a shift in the immune system to an anti-inflammatory profile, we investigated whether soil-transmitted helminth (STH)-infected subjects are more insulin sensitive than STH-uninfected subjects. Design We performed a cross-sectional study on Flores island, Indonesia, an area with high prevalence of STH infections. Methods From 646 adults, stool samples were screened for Trichuris trichiura by microscopy and for Ascaris lumbricoides, Necator americanus, Ancylostoma duodenale, and Strongyloides stercoralis by qPCR. No other helminth was found. We collected data on body mass index (BMI, kg/m2), waist-to-hip ratio (WHR), fasting blood glucose (FBG, mmol/L), insulin (pmol/L), high sensitive C-reactive protein (ng/ml) and Immunoglobulin E (IU/ml). The homeostatic model assessment for insulin resistance (HOMAIR) was calculated and regression models were used to assess the association between STH infection status and insulin resistance. Results 424 (66%) participants had at least one STH infection. STH infected participants had lower BMI (23.2 vs 22.5 kg/m2, p value = 0.03) and lower HOMAIR (0.97 vs 0.81, p value = 0.05). In an age-, sex- and BMI-adjusted model a significant association was seen between the number of infections and HOMAIR: for every additional infection with STH species, the HOMAIR decreased by 0.10 (p for linear trend 0.01). This effect was mainly accounted for by a decrease in insulin of 4.9 pmol/L for every infection (p for trend = 0.07). Conclusion STH infections are associated with a modest improvement of insulin sensitivity, which is not accounted for by STH effects on BMI alone. PMID:26061042

  6. Effect of insulin sensitivity on corticolimbic responses to food picture in women with polycystic ovary syndrome.

    PubMed

    Van Vugt, Dean A; Krzemien, Alicja; Alsaadi, Hanin; Palerme, Stephanie; Reid, Robert L

    2013-06-01

    Insulin is one of several molecules that transmit information about energy balance to the brain. It has been hypothesized that insulin resistance fosters non-homeostatic eating. The objective of the current study was to characterize corticolimbic brain responses to appetitive stimuli in subjects with insulin sensitivities ranging from resistant to normal. Sixteen women diagnosed with polycystic ovary syndrome (PCOS) underwent functional magnetic resonance imaging (fMRI) while viewing pictures of high calorie (HC) foods, low calorie (LC) foods, and control (C) pictures. A region of interest analysis of the blood oxygen level dependent (BOLD) signal revealed widespread activation within corticolimbic regions in response to food pictures. Activated regions included the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (mPFC) , insula, nucleus accumbens (NAc), pallidum, ventral tegmental area (VTA), putamen, amygdala, caudate, substantia nigra, hippocampus, pulvinar, and midbrain. Activation of the anterior cingulate, dorsolateral prefrontal cortex (DLPFC), and midbrain by HC food pictures (HC - C) and activation of the lateral orbitofrontal cortex (OFC), pallidum, substantia nigra, ventral tegmental area (VTA), pulvinar, and midbrain by LC food pictures (LC - C) was negatively correlated with insulin sensitivity. In contrast, activation of the OFC, DLPFC, insula, hypothalamus, pallidum, substantia nigra, VTA, pulvinar, and midbrain by the HC - LC contrast was positively correlated with insulin sensitivity, whereas activation of the caudate was negatively correlated. The association between insulin sensitivity and corticolimbic responses to food pictures may reflect abnormal brain responses to insulin feedback that contribute to the development and or perpetuation of obesity in PCOS. Copyright © 2012 The Obesity Society.

  7. Insulin sensitivity and its relation to hormones in adolescent boys and girls.

    PubMed

    Aldhoon-Hainerová, Irena; Zamrazilová, Hana; Hill, Martin; Hainer, Vojtěch

    2017-02-01

    A subset of obese individuals lacks cardiometabolic impairment. We aimed to analyze hormonal profiles of insulin-sensitive obese (ISO) and insulin-resistant obese (IRO) adolescents and determine hormonal predictors of homeostasis model of insulin resistance (HOMA-IR). A threshold of 3.16 of HOMA-IR was used to classify ISO (<3.16) IRO (≥3.16). In 702 individuals aged 13-18years (55.8% girls) anthropometric and laboratory [blood glucose, insulin, thyrotropin (TSH), free thyroxine (fT4), free triiodothyronine (fT3), sex hormone-binding globulin (SHBG), steroid hormones, luteinizing hormone, follicle stimulating hormone, prolactin, ghrelin, glucose-dependent insulinotropic polypeptide, glucagon-like-peptide 1glucagon, leptin, resistin, visfatin, leptin, adiponectin and adipsin] assessments were performed. Orthogonal projections to latent structures and Mann-Whitney tests with Bonferroni correction were applied for statistical analysis. 52.6% girls and 42.9% boys were insulin sensitive. In the predictive model of HOMA-IR thyroid function tests, adiponectin, ghrelin and leptin concentrations played an important role in both genders. Prolactin, testosterone and glucagon contributed to the model only in boys, while progesterone and dehydroepiandrosterone sulfate levels only in girls. After Bonferroni correction levels of leptin, adiponectin, leptin/adiponectin ratio, SHBG and fT4/TSH ratio in both genders, testosterone and glucagon levels in boys and levels of TSH and fT3 in girls were related to insulin sensitivity. Metabolic health defined by HOMA-IR is partly predicted by various hormones. Some of them are gender specific. Free T4/TSH and leptin/adiponectin ratios are related to insulin sensitivity in both genders. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Effects of Exercise Intensity on Postprandial Improvement in Glucose Disposal and Insulin Sensitivity in Prediabetic Adults

    PubMed Central

    Rynders, Corey A.; Weltman, Judy Y.; Jiang, Boyi; Breton, Marc; Patrie, James; Barrett, Eugene J.

    2014-01-01

    Background: A single bout of exercise improves postprandial glycemia and insulin sensitivity in prediabetic patients; however, the impact of exercise intensity is not well understood. The present study compared the effects of acute isocaloric moderate (MIE) and high-intensity (HIE) exercise on glucose disposal and insulin sensitivity in prediabetic adults. Methods: Subjects (n = 18; age 49 ± 14 y; fasting glucose 105 ± 11 mg/dL; 2 h glucose 170 ± 32 mg/dL) completed a peak O2 consumption/lactate threshold (LT) protocol plus three randomly assigned conditions: 1) control, 1 hour of seated rest, 2) MIE (at LT), and 3) HIE (75% of difference between LT and peak O2 consumption). One hour after exercise, subjects received an oral glucose tolerance test (OGTT). Plasma glucose, insulin, and C-peptide concentrations were sampled at 5- to 10-minute intervals at baseline, during exercise, after exercise, and for 3 hours after glucose ingestion. Total, early-phase, and late-phase area under the glucose and insulin response curves were compared between conditions. Indices of insulin sensitivity (SI) were derived from OGTT data using the oral minimal model. Results: Compared with control, SI improved by 51% (P = .02) and 85% (P < .001) on the MIE and HIE days, respectively. No differences in SI were observed between the exercise conditions (P = .62). Improvements in SI corresponded to significant reductions in the glucose, insulin, and C-peptide area under the curve values during the late phase of the OGTT after HIE (P < .05), with only a trend for reductions after MIE. Conclusion: These results suggest that in prediabetic adults, acute exercise has an immediate and intensity-dependent effect on improving postprandial glycemia and insulin sensitivity. PMID:24243632

  9. Limitations of fasting indices in the measurement of insulin sensitivity in Afro-Caribbean adults.

    PubMed

    Thompson, Debbie S; Boyne, Michael S; Osmond, Clive; Ferguson, Trevor S; Tulloch-Reid, Marshall K; Wilks, Rainford J; Barnett, Alan T; Forrester, Terrence E

    2014-02-20

    Insulin sensitivity can be estimated using glucose disposal rate (M) measured during a hyperinsulinemic euglycemic clamp (HEC) or insulin sensitivity index (SI) derived from a frequently sampled intravenous glucose tolerance test (FSIVGTT). The commonly used homeostatic model assessment of insulin resistance (HOMA-IR) which utilizes fasting glucose and insulin has been validated against M across several populations (r = 0.5-0.8). This study sought to validate HOMA-IR against SI and M in an Afro-Caribbean population. Sixty participants completed a 180-minute FSIVGTT and another 50 completed a 150-minute hyperinsulinemic euglycemic clamp. In both groups, HOMA-IR was calculated and anthropometry and body composition using dual energy x-ray absorptiometry (DEXA) were measured.FSIVGTT: The participants were 55% male, age 23.1 ± 0.05 years, BMI 24.8 ± 6.3 kg/m2 and % body fat 25.0 ± 15.2 (mean ± SD). HEC: The participants were 44% male, age 27.3 ± 8.1 years, BMI 23.6 ± 5.0 kg/m2 and % body fat 24.7 ± 14.2 (mean ± SD). While HOMA-IR, SI and M correlated with waist, BMI and % body fat (P-values < 0.01) there were no significant correlations between HOMA-IR with either SI or M-value (P-values > 0.2). In young Afro-Caribbean adults, HOMA-IR compared poorly with other measures of insulin sensitivity. It remains important to determine whether similar findings occur in a more insulin resistant population. However, HOMA-IR correlated with clinical measures of insulin sensitivity (i.e. adiposity), so it may still be useful in epidemiological studies.

  10. Infection with Soil-Transmitted Helminths Is Associated with Increased Insulin Sensitivity.

    PubMed

    Wiria, Aprilianto E; Hamid, Firdaus; Wammes, Linda J; Prasetyani, Margaretta A; Dekkers, Olaf M; May, Linda; Kaisar, Maria M M; Verweij, Jaco J; Guigas, Bruno; Partono, Felix; Sartono, Erliyani; Supali, Taniawati; Yazdanbakhsh, Maria; Smit, Johannes W A

    2015-01-01

    Given that helminth infections have been shown to improve insulin sensitivity in animal studies, which may be explained by beneficial effects on energy balance or by a shift in the immune system to an anti-inflammatory profile, we investigated whether soil-transmitted helminth (STH)-infected subjects are more insulin sensitive than STH-uninfected subjects. We performed a cross-sectional study on Flores island, Indonesia, an area with high prevalence of STH infections. From 646 adults, stool samples were screened for Trichuris trichiura by microscopy and for Ascaris lumbricoides, Necator americanus, Ancylostoma duodenale, and Strongyloides stercoralis by qPCR. No other helminth was found. We collected data on body mass index (BMI, kg/m2), waist-to-hip ratio (WHR), fasting blood glucose (FBG, mmol/L), insulin (pmol/L), high sensitive C-reactive protein (ng/ml) and Immunoglobulin E (IU/ml). The homeostatic model assessment for insulin resistance (HOMAIR) was calculated and regression models were used to assess the association between STH infection status and insulin resistance. 424 (66%) participants had at least one STH infection. STH infected participants had lower BMI (23.2 vs 22.5 kg/m2, p value = 0.03) and lower HOMAIR (0.97 vs 0.81, p value = 0.05). In an age-, sex- and BMI-adjusted model a significant association was seen between the number of infections and HOMAIR: for every additional infection with STH species, the HOMAIR decreased by 0.10 (p for linear trend 0.01). This effect was mainly accounted for by a decrease in insulin of 4.9 pmol/L for every infection (p for trend = 0.07). STH infections are associated with a modest improvement of insulin sensitivity, which is not accounted for by STH effects on BMI alone.

  11. Insulin sensitizers in treatment of nonalcoholic fatty liver disease: Systematic review

    PubMed Central

    Chavez-Tapia, Norberto C; Barrientos-Gutierrez, Tonatiuh; Tellez-Ávila, Felix I; Sánchez-Ávila, Francisco; Montaño-Reyes, Maria Antonieta; Uribe, Misael

    2006-01-01

    AIM: To summarize the evidence available for the clinical effectiveness of insulin sensitizers in the treatment of nonalcoholic fatty liver disease (NAFLD) systematically. METHODS: Relevant articles were located using computer-assisted searches of Medline (1966-March 2006), EMBASE (1988-March 2006), CINAHL (1982-March 2003), Educational Resource Information Center (1966-March 2006), Library, Information Science & Technology Abstracts (1967-March 2006), Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects (1994-2006), dissertations in ProQuest and FirstSearch databases. Manual searches were made in the abstracts from meetings of the American Gastroenterological Association (1999-2006), and the American Association for the Study of Liver Diseases (2003-2005). Studies were retrieved using the following selection criteria: (1) clinical trials using insulin sensitizers in subjects with NAFLD, (2) adult patients, (3) published as full manuscripts or abstracts, and (4) English, Spanish, German, and French languages only. Data were abstracted independently by two reviewers following standardized procedures. A face-to-face comparison of data was conducted to ensure the completeness and reliability of the abstraction process. RESULTS: Nine studies were included, six using metformin and three using thiazolidinediones. Only two studies were placebo-controlled trials. The median sample size for all studies was 18 subjects. In the placebo-controlled trials, metformin improved insulin resistance markers and liver function tests, but not histological scores. In the single-arm trials, metformin and thiazolidinediones improved insulin resistance markers and liver function tests, and beneficial histological changes were reported. There is limited high-quality information available from which to draw categorical conclusions about the clinical use of insulin sensitizers in NAFLD. CONCLUSION: Current information indicates that the use of insulin

  12. Metabolomics reveals the protective of Dihydromyricetin on glucose homeostasis by enhancing insulin sensitivity

    PubMed Central

    Le, Liang; Jiang, Baoping; Wan, Wenting; Zhai, Wei; Xu, Lijia; Hu, Keping; Xiao, Peigen

    2016-01-01

    Dihydromyricetin (DMY), an important flavanone found in Ampelopsis grossedentata, possesses antioxidative properties that ameliorate skeletal muscle insulin sensitivity and exert a hepatoprotective effect. However, little is known about the effects of DMY in the context of high-fat diet (HFD)-induced hepatic insulin resistance. Male Sprague-Dawley(SD) rats were fed a HFD(60% fat) supplemented with DMY for 8 weeks. The administration of DMY to the rats with HFD-induced insulin resistance reduces hyperglycemia, plasma levels of insulin, and steatosis in the liver. Furthermore, DMY treatment modulated 24 metabolic pathways, including glucose metabolism, the TCA cycle. DMY significantly enhanced glucose uptake and improved the translocation of glucose transporter 1. The specificity of DMY promoted the phosphorylation of AMP-activated protein kinase (AMPK). In addition, the exposure of HepG2 cells to high glucose concentrations impaired the insulin-stimulated phosphorylation of Akt2 Ser474 and insulin receptor substrate-1 (IRS-1) Ser612, increased GSK-3β phosphorylation, and upregulated G6Pase and PEPCK expression. Collectively, DMY improved glucose-related metabolism while reducing lipid levels in the HFD-fed rats. These data suggest that DMY might be a useful drug for use in type 2 diabetes insulin resistance therapy and for the treatment of hepatic steatosis. PMID:27796348

  13. Proteasome inhibitors, including curcumin, improve pancreatic β-cell function and insulin sensitivity in diabetic mice

    PubMed Central

    Weisberg, S; Leibel, R; Tortoriello, D V

    2016-01-01

    Background: Type 2 diabetes stems from obesity-associated insulin resistance, and in the genetically susceptible, concomitant pancreatic β-cell failure can occur, which further exacerbates hyperglycemia. Recent work by our group and others has shown that the natural polyphenol curcumin attenuates the development of insulin resistance and hyperglycemia in mouse models of hyperinsulinemic or compensated type 2 diabetes. Although several potential downstream molecular targets of curcumin exist, it is now recognized to be a direct inhibitor of proteasome activity. We now show that curcumin also prevents β-cell failure in a mouse model of uncompensated obesity-related insulin resistance (Leprdb/db on the Kaliss background). Results: In this instance, dietary supplementation with curcumin prevented hyperglycemia, increased insulin production and lean body mass, and prolonged lifespan. In addition, we show that short-term in vivo treatment with low dosages of two molecularly distinct proteasome inhibitors celastrol and epoxomicin reverse hyperglycemia in mice with β-cell failure by increasing insulin production and insulin sensitivity. Conclusions: These studies suggest that proteasome inhibitors may prove useful for patients with diabetes by improving both β-cell function and relieving insulin resistance. PMID:27110686

  14. The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity.

    PubMed

    Viollet, Benoit; Andreelli, Fabrizio; Jørgensen, Sebastian B; Perrin, Christophe; Geloen, Alain; Flamez, Daisy; Mu, James; Lenzner, Claudia; Baud, Olivier; Bennoun, Myriam; Gomas, Emmanuel; Nicolas, Gaël; Wojtaszewski, Jørgen F P; Kahn, Axel; Carling, David; Schuit, Frans C; Birnbaum, Morris J; Richter, Erik A; Burcelin, Rémy; Vaulont, Sophie

    2003-01-01

    AMP-activated protein kinase (AMPK) is viewed as a fuel sensor for glucose and lipid metabolism. To better understand the physiological role of AMPK, we generated a knockout mouse model in which the AMPKalpha2 catalytic subunit gene was inactivated. AMPKalpha2(-/-) mice presented high glucose levels in the fed period and during an oral glucose challenge associated with low insulin plasma levels. However, in isolated AMPKalpha2(-/-) pancreatic islets, glucose- and L-arginine-stimulated insulin secretion were not affected. AMPKalpha2(-/-) mice have reduced insulin-stimulated whole-body glucose utilization and muscle glycogen synthesis rates assessed in vivo by the hyperinsulinemic euglycemic clamp technique. Surprisingly, both parameters were not altered in mice expressing a dominant-negative mutant of AMPK in skeletal muscle. Furthermore, glucose transport was normal in incubated isolated AMPKalpha2(-/-) muscles. These data indicate that AMPKalpha2 in tissues other than skeletal muscles regulates insulin action. Concordantly, we found an increased daily urinary catecholamine excretion in AMPKalpha2(-/-) mice, suggesting altered function of the autonomic nervous system that could explain both the impaired insulin secretion and insulin sensitivity observed in vivo. Therefore, extramuscular AMPKalpha2 catalytic subunit is important for whole-body insulin action in vivo, probably through modulation of sympathetic nervous activity.

  15. The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity

    PubMed Central

    Viollet, Benoit; Andreelli, Fabrizio; Jørgensen, Sebastian B.; Perrin, Christophe; Geloen, Alain; Flamez, Daisy; Mu, James; Lenzner, Claudia; Baud, Olivier; Bennoun, Myriam; Gomas, Emmanuel; Nicolas, Gaël; Wojtaszewski, Jørgen F.P.; Kahn, Axel; Carling, David; Schuit, Frans C.; Birnbaum, Morris J.; Richter, Erik A.; Burcelin, Rémy; Vaulont, Sophie

    2003-01-01

    AMP-activated protein kinase (AMPK) is viewed as a fuel sensor for glucose and lipid metabolism. To better understand the physiological role of AMPK, we generated a knockout mouse model in which the AMPKα2 catalytic subunit gene was inactivated. AMPKα2–/– mice presented high glucose levels in the fed period and during an oral glucose challenge associated with low insulin plasma levels. However, in isolated AMPKα2–/– pancreatic islets, glucose- and L-arginine–stimulated insulin secretion were not affected. AMPKα2–/– mice have reduced insulin-stimulated whole-body glucose utilization and muscle glycogen synthesis rates assessed in vivo by the hyperinsulinemic euglycemic clamp technique. Surprisingly, both parameters were not altered in mice expressing a dominant-negative mutant of AMPK in skeletal muscle. Furthermore, glucose transport was normal in incubated isolated AMPKα2–/– muscles. These data indicate that AMPKα2 in tissues other than skeletal muscles regulates insulin action. Concordantly, we found an increased daily urinary catecholamine excretion in AMPKα2–/– mice, suggesting altered function of the autonomic nervous system that could explain both the impaired insulin secretion and insulin sensitivity observed in vivo. Therefore, extramuscular AMPKα2 catalytic subunit is important for whole-body insulin action in vivo, probably through modulation of sympathetic nervous activity. PMID:12511592

  16. Anti-Hyperglycemic and Insulin Sensitizer Effects of Turmeric and Its Principle Constituent Curcumin

    PubMed Central

    Ghorbani, Zeinab; Hekmatdoost, Azita; Mirmiran, Parvin

    2014-01-01

    Context: Turmeric is obtained from the plant Curcuma longa L; its major constituent, curcumin, is a polyphenol with multiple effects which can modulate some signaling pathways. Evidence Acquisition: Insulin resistance is a major risk factor for chronic diseases such as type 2 diabetes, atherosclerotic, metabolic syndrome and cardiovascular disease. In addition, Insulin resistance in peripheral tissue is one of the most important reasons of hyperglycemia which can cause global or systemic effects. The present study reviewed studies published in PubMed from 1998 to 2013, indicating the role of curcumin in attenuation of many pathophysiological processes involved in development and progression of hyperglycemia and insulin resistance. Results: Curcumin can reduce blood glucose level by reducing the hepatic glucose production, suppression of hyperglycemia-induced inflammatory state, stimulation of glucose uptake by up-regulation of GLUT4, GLUT2 and GLUT3 genes expressions, activation of AMP kinase, promoting the PPAR ligand-binding activity, stimulation of insulin secretion from pancreatic tissues, improvement in pancreatic cell function, and reduction of insulin resistance. Conclusions: Curcumin has antihyperglycemic and insulin sensitizer effects. Thereby, more studies evaluating the effects of curcumin on hyperglycemic state and insulin resistance in related disorders such as diabetes are recommended. PMID:25745485

  17. The Macrophage A2b Adenosine Receptor Regulates Tissue Insulin Sensitivity

    PubMed Central

    Koupenova, Milka; Carroll, Shannon; Ravid, Katya

    2014-01-01

    High fat diet (HFD)-induced type 2 diabetes continues to be an epidemic with significant risk for various pathologies. Previously, we identified the A2b adenosine receptor (A2bAR), an established regulator of inflammation, as a regulator of HFD-induced insulin resistance. In particular, HFD was associated with vast upregulation of liver A2bAR in control mice, and while mice lacking this receptor showed augmented liver inflammation and tissue insulin resistance. As the A2bAR is expressed in different tissues, here, we provide the first lead to cellular mechanism by demonstrating that the receptor's influence on tissue insulin sensitivity is mediated via its expression in macrophages. This was shown using a newly generated transgenic mouse model expressing the A2bAR gene in the macrophage lineage on an otherwise A2bAR null background. Reinstatement of macrophage A2bAR expression in A2bAR null mice fed HFD restored insulin tolerance and tissue insulin signaling to the level of control mice. The molecular mechanism for this effect involves A2bAR-mediated changes in cyclic adenosine monophosphate in macrophages, reducing the expression and release of inflammatory cytokines, which downregulate insulin receptor-2. Thus, our results illustrate that macrophage A2bAR signaling is needed and sufficient for relaying the protective effect of the A2bAR against HFD-induced tissue inflammation and insulin resistance in mice. PMID:24892847

  18. pH-Sensitive oral insulin delivery systems using Eudragit microspheres.

    PubMed

    Mundargi, Raghavendra C; Rangaswamy, Vidhya; Aminabhavi, Tejraj M

    2011-08-01

    In this paper, we present in vitro and in vivo release data on pH-sensitive microspheres of Eudragit L100, Eudragit RS100 and their blend systems prepared by double emulsion-solvent evaporation technique for oral delivery of insulin. Of the three systems developed, Eudragit L100 was chosen for preclinical studies. Insulin was encapsulated and in vitro experiments performed on insulin-loaded microspheres in pH 1.2 media did not release insulin during the first 2 h, but maximum insulin was released in pH 7.4 buffer media from 4 to 6 h. The microspheres were characterized by scanning electron microscopy to understand particle size, shape and surface morphology. The size of microspheres ranged between 1 and 40 μm. Circular dichroism spectra indicated the structural integrity of insulin during encapsulation as well as after its release in pH 7.4 buffer media. The in vivo release studies on diabetic-induced rat models exhibited maximum inhibition of up to 86%, suggesting absorption of insulin in the intestine.

  19. Insulin sensitivity and brain reward activation in overweight Hispanic girls: a pilot study

    PubMed Central

    Adam, Tanja C.; Tsao, Sinchai; Page, Kathleen A.; Hu, Houchun; Hasson, Rebecca E.; Goran, Michael I.

    2014-01-01

    Background Insulin resistance is a link between obesity and the associated disease risk. In addition to its role as an energy regulatory signal to the hypothalamus, insulin also modulates food reward. Objective To examine the relationship of insulin sensitivity (SI) and fasting insulin with cerebral activation in response to food and non-food cues in children. Methods Twelve overweight Hispanic girls (age: 8–11) participated in two study visits, a frequently sampled intravenous glucose tolerance test and a functional neuroimaging (fMRI) session (GE HDxt 3.0Tesla)) with visual stimulation tasks. Blocks of images (high calorie (HC), low calorie (LC) and non-food (NF)) were presented in randomized order. Results Comparing HC with NF, SI was inversely associated with activation in the anterior cingulate (r2 = 0.65; p < 0.05), the insula (r2 = 0.69; p < 0.05), the orbitofrontal cortex (r2 = 0.74; p < 0.05), and the frontal and rolandic operculum (r2 = 0.76; p < 0.001). Associations remained significant after adjustment for BMI. Association of fasting insulin and cerebral activation dissapeared after adjustment for waist circumference. Conclusion In addition to weight loss insulin sensitivity may pose an important target to regulate neural responses to food cues in the prevention of excessive weight gain. PMID:24357646

  20. Artemisia Extract Improves Insulin Sensitivity in Women With Gestational Diabetes Mellitus by Up-Regulating Adiponectin.

    PubMed

    Sun, Xia; Sun, Hong; Zhang, Jing; Ji, Xianghong

    2016-12-01

    Gestational diabetes mellitus (GDM) has affected a great number of pregnant women worldwide. Artemisia extracts have been found to exhibit a potent antidiabetic effect in the treatment of type 2 diabetes mellitus. We aimed to examine the effects of Artemisia extract on insulin resistance and lipid profiles in pregnant GDM patients. Patients in their second trimester were randomly assigned to the Artemisia extract group (AE) or to a placebo group (PO). They were instructed to consume either AE or PO daily for a period of 10 weeks. Glucose and insulin profiles and adiponectin level were assessed at baseline (week 0) and after the treatment (week 10). Compared to the PO group, fasting plasma glucose, serum insulin levels, homeostasis model of assessment of insulin resistance (HOMA-IR), and β-cell function (HOMA-B) were significantly reduced in the AE group participants. Moreover, levels of circulating adiponectin were also significantly up-regulated in the AE group, which also positively contributed to improved insulin sensitivity. Daily administration of Artemisia extract improves insulin sensitivity by up-regulating adiponectin in women with gestational diabetes mellitus. © 2016, The American College of Clinical Pharmacology.

  1. Beneficial effect of the insulin sensitizer (HSP inducer) BGP-15 on olanzapine-induced metabolic disorders.

    PubMed

    Literáti-Nagy, B; Péterfai, E; Kulcsár, E; Literáti-Nagy, Zs; Buday, B; Tory, K; Mandl, J; Sümegi, B; Fleming, A; Roth, J; Korányi, L

    2010-11-20

    Olanzapine is a widely used atypical antipsychotic, with well known metabolic side effects such as weight gain, insulin resistance and blood glucose abnormalities. It has been previously shown in a phase II clinical trial that BGP-15, an amidoxim derivative has insulin-sensitizing effects. The aim of this study was to investigate the efficacy of BGP-15 for the treatment of olanzapine-induced metabolic side effects, in healthy volunteers. Thirty-seven (37) subjects (ages 18-55 years) with normal glucose metabolism were randomly assigned to 17 days of once-daily treatment with 400mg of BGP-15 or placebo and 5mg of olanzapine for 3 days followed by 10mg for 14 days. Total body and muscle tissue glucose utilization was determined by hyperinsulinemic-euglycemic clamp technique. As expected the 17-day olanzapine treatment provoked insulin resistance and body weight gain (p<0.05) in both groups. Administration of BGP-15 significantly reduced olanzapine-induced insulin resistance. The protective effect of BGP-15 on insulin stimulated glucose utilization had the highest magnitude in the values calculated for the muscle tissue (p=0.002). In healthy individuals BGP-15 was safe and well tolerated during the whole study period. It is suggested that BGP-15 can be a successful insulin sensitizer agent to prevent side effects of olanzapine treatment. 2010 Elsevier Inc. All rights reserved.

  2. Effect of pro- and antioxidants on insulin sensitivity and glucose tolerance.

    PubMed

    Volchegorskii, I A; Rassokhina, L M; Miroshnichenko, I Yu; Mester, K M; Novoselov, P N; Astakhova, T V

    2011-01-01

    We studied the correlation between the effect of α-lipoic acid, emoxipin, reamberin, and mexidol on LPO in vitro and the action of these drugs on insulin sensitivity and tolerance to glucose load in vivo. It was found that the preparations producing prooxidant effect in vitro (α-lipoic acid and reamberin) are characterized by pronounced insulin-potentiating activity, but only slightly increase (α-lipoic acid) or even decrease (reamberin) tolerance to glucose load. 3-Hydroxypyridine derivatives (emoxipin and mexidol) producing an antioxidant effect in vitro increase glucose tolerance, but exhibit relatively weak insulin-potentiating activity. These results suggest that differential use of the studied drugs in patients with diabetes mellitus depending on the type of the disease and individual insulin requirement is a promising trend in medical studies.

  3. Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery.

    PubMed

    Oroval, Mar; Díez, Paula; Aznar, Elena; Coll, Carmen; Marcos, María Dolores; Sancenón, Félix; Villalonga, Reynaldo; Martínez-Máñez, Ramón

    2017-01-26

    We describe herein the preparation of glucose-sensitive capped mesoporous silica nanoparticles for insulin delivery. The new material consists of an expanded-pore nanometric silica support grafted with 1-propyl-1-H-benzimidazole groups, loaded with fluorescein isothiocyanate-labeled insulin (FITC-Ins) and capped by the formation of inclusion complexes between cyclodextrin-modified glucose oxidase (CD-GOx) and the benzimidazole groups grafted on the mesoporous support. Insulin delivery from the gated material in simulated blood plasma was assessed upon addition of glucose. Glucose is transformed by GOx into gluconic acid, which promoted the dethreading of the benzimidazole-CD-GOx inclusion complexes, allowing cargo release. Small quantities of this support would be needed to release the amount of insulin necessary to decrease diabetic blood glucose concentrations to regular levels.

  4. Insulin sensitization of human preadipocytes through glucocorticoid hormone induction of forkhead transcription factors.

    PubMed

    Tomlinson, Julianna J; Boudreau, Adèle; Wu, Dongmei; Abdou Salem, Houssein; Carrigan, Amanda; Gagnon, AnneMarie; Mears, Alan J; Sorisky, Alexander; Atlas, Ella; Haché, Robert J G

    2010-01-01

    Glucocorticoids are synthesized locally in adipose tissue and contribute to metabolic disease through the facilitation of adipose tissue expansion. Here we report that exposure of human primary preadipocytes to glucocorticoids increases their sensitivity to insulin and enhances their subsequent response to stimuli that promote differentiation. This effect was observed in primary human preadipocytes but not in immortalized 3T3-L1 murine preadipocytes or in fully differentiated primary human adipocytes. Stimulation of insulin signaling was mediated through induction of insulin receptor (IR), IR substrate protein 1 (IRS1), IRS2, and the p85 regulatory subunit of phosphoinositide-3-3-kinase, which led to enhanced insulin-mediated activation of Akt. Although induction of IRS2 was direct, induction of IR and IRS1 by glucocorticoids occurred subsequent to primary induction of the forkhead family transcription factors FoxO1A and FoxO3A. These results reveal a new role for glucocorticoids in preparing preadipocytes for differentiation.

  5. Cattle temperament influences metabolism: metabolic response to glucose tolerance and insulin sensitivity tests in beef steers.

    PubMed

    Burdick Sanchez, N C; Carroll, J A; Broadway, P R; Hughes, H D; Roberts, S L; Richeson, J T; Schmidt, T B; Vann, R C

    2016-07-01

    Cattle temperament, defined as the reactivity of cattle to humans or novel environments, can greatly influence several physiological systems in the body, including immunity, stress, and most recently discovered, metabolism. Greater circulating concentrations of nonesterified fatty acids (NEFAs) found in temperamental cattle suggest that temperamental cattle are metabolically different than calm cattle. Further, elevated NEFA concentrations have been reported to influence insulin sensitivity. Therefore, the objective of this study was to determine whether cattle temperament would influence the metabolic response to a glucose tolerance test (GTT) and insulin sensitivity test (IST). Angus-cross steers (16 calm and 15 temperamental; 216 ± 6 kg BW) were selected based on temperament score measured at weaning. On day 1, steers were moved into indoor stanchions to allow measurement of individual ad libitum feed intake. On day 6, steers were fitted with indwelling rectal temperature probes and jugular catheters. At 9 AM on day 7, steers received the GTT (0.5-mL/kg BW of a 50% dextrose solution), and at 2 PM on day 7, steers received the IST (2.5 IU bovine insulin/kg BW). Blood samples were collected and serum isolated at -60, -45, -30, -15, 0, 10, 20, 30, 45, 60, 90, 120, and 150 min relative to each challenge. Serum was stored at -80°C until analyzed for cortisol, glucose, NEFA, and blood urea nitrogen concentrations. All variables changed over time (P < 0.01). For the duration of the study, temperamental steers maintained greater (P < 0.01) serum NEFA and less (P ≤ 0.01) serum blood urea nitrogen and insulin sensitivity (calculated using Revised Quantitative Insulin Sensitivity Check Index) compared with calm steers. During the GTT, temperamental steers had greater (P < 0.01) serum glucose, yet decreased (P = 0.03) serum insulin and (P < 0.01) serum insulin: serum glucose compared to calm cattle. During the IST, temperamental steers had greater (P < 0.01) serum

  6. Evidence That the Sympathetic Nervous System Elicits Rapid, Coordinated, and Reciprocal Adjustments of Insulin Secretion and Insulin Sensitivity During Cold Exposure.

    PubMed

    Morton, Gregory J; Muta, Kenjiro; Kaiyala, Karl J; Rojas, Jennifer M; Scarlett, Jarrad M; Matsen, Miles E; Nelson, Jarrell T; Acharya, Nikhil K; Piccinini, Francesca; Stefanovski, Darko; Bergman, Richard N; Taborsky, Gerald J; Kahn, Steven E; Schwartz, Michael W

    2017-04-01

    Dynamic adjustment of insulin secretion to compensate for changes of insulin sensitivity that result from alteration of nutritional or metabolic status is a fundamental aspect of glucose homeostasis. To investigate the role of the brain in this coupling process, we used cold exposure as an experimental paradigm because the sympathetic nervous system (SNS) helps to coordinate the major shifts of tissue glucose utilization needed to ensure that increased thermogenic needs are met. We found that glucose-induced insulin secretion declined by 50% in rats housed at 5°C for 28 h, and yet, glucose tolerance did not change, owing to a doubling of insulin sensitivity. These potent effects on insulin secretion and sensitivity were fully reversed by returning animals to room temperature (22°C) for 4 h or by intravenous infusion of the α-adrenergic receptor antagonist phentolamine for only 30 min. By comparison, insulin clearance was not affected by cold exposure or phentolamine infusion. These findings offer direct evidence of a key role for the brain, acting via the SNS, in the rapid, highly coordinated, and reciprocal changes of insulin secretion and insulin sensitivity that preserve glucose homeostasis in the setting of cold exposure.

  7. C-reactive protein genotype affects exercise training—induced changes in insulin sensitivity

    PubMed Central

    Obisesan, Thomas O.; Leeuwenburgh, Christiaan; Ferrell, Robert E.; Phares, Dana A.; McKenzie, Jennifer A.; Prior, Steven J.; Hagberg, James M.

    2009-01-01

    An etiologic role for chronic inflammation in the development of insulin resistance has been hypothesized. We determined whether the -732A/G and +219G/A C-reactive protein (CRP) gene variants affect insulin and glucose measures and whether these variants affect training-related changes in insulin sensitivity and glucose measures. Men and women 50 to 75 years old (n = 61) underwent baseline testing that included glucose tolerance, maximal oxygen consumption, body composition, CRP levels, and genotyping assessments. Tests were repeated after 24 weeks of aerobic exercise training. In bivariate analyses, CRP -732A/G G allele carriers had significantly lower baseline postprandial plasma glucose and after-training CRP levels. After exercise training, the -732A/G G allele carriers had ∼28% increase in insulin sensitivity index (ISI) and ∼26% reduction in insulin area under the curve (AUC), compared with the ∼7% increase in ISI and ∼15% reduction in insulin AUC in the A allele homozygotes ( P = .03). The significant enhancement of ISI in -732A/G G allele carriers remained evident in analyses limited to those with normal glucose tolerance. Multivariate analyses adjusted for demographic and biologic variables confirmed the significant enhancement of training-induced improvement in ISI by the CRP gene variant. In addition, the CRP -732A/G and +219G/A haplotype significantly associated with training-induced improvements in ISI and insulin AUC in separate multivariate models. In conclusion, the CRP -732A/G variant modulates exercise training—related improvements in ISI and glucose AUC, and the haplotype of the CRP -732A/G and +219G/A variants significantly affected training-induced changes in ISI and insulin AUC. PMID:16546475

  8. Chronic hyperinsulinemia reduces insulin sensitivity and metabolic functions of brown adipocyte.

    PubMed

    Rajan, Sujith; Shankar, Kripa; Beg, Muheeb; Varshney, Salil; Gupta, Abhishek; Srivastava, Ankita; Kumar, Durgesh; Mishra, Raj K; Hussain, Zakir; Gayen, Jiaur R; Gaikwad, Anil N

    2016-09-01

    The growing pandemics of diabetes have become a real threat to world economy. Hyperinsulinemia and insulin resistance are closely associated with the pathophysiology of type 2 diabetes. In pretext of brown adipocytes being considered as the therapeutic strategy for the treatment of obesity and insulin resistance, we have tried to understand the effect of hyperinsulinemia on brown adipocyte function. We here with for the first time report that hyperinsulinemia-induced insulin resistance in brown adipocyte is also accompanied with reduced insulin sensitivity and brown adipocyte characteristics. CI treatment decreased expression of brown adipocyte-specific markers (such as PRDM16, PGC1α, and UCP1) and mitochondrial content as well as activity. CI-treated brown adipocytes showed drastic decrease in oxygen consumption rate (OCR) and spare respiratory capacity. Morphological study indicates increased accumulation of lipid droplets in CI-treated brown adipocytes. We have further validated these findings in vivo in C57BL/6 mice implanted with mini-osmotic insulin pump for 8weeks. CI treatment in mice leads to increased body weight gain, fat mass and impaired glucose intolerance with reduced energy expenditure and insulin sensitivity. CI-treated mice showed decreased BAT characteristics and function. We also observed increased inflammation and ER stress markers in BAT of CI-treated animals. The above results conclude that hyperinsulinemia has deleterious effect on brown adipocyte function, making it susceptible to insulin resistance. Thus, the above findings have greater implication in designing approaches for the treatment of insulin resistance and diabetes via recruitment of brown adipocytes.

  9. Dietary Fat Modifies the Effects of FTO Genotype on Changes in Insulin Sensitivity.

    PubMed

    Zheng, Yan; Huang, Tao; Zhang, Xiaomin; Rood, Jennifer; Bray, George A; Sacks, Frank M; Qi, Lu

    2015-05-01

    The common variants in the fat mass and obesity-associated (FTO) gene have been associated with obesity and insulin resistance. Recently, studies also linked FTO variants with macronutrient intakes. We aimed to investigate whether diet interventions varying in macronutrients modified the effects of FTO genotypes on changes in insulin resistance. We genotyped FTO variants rs1558902 and rs9939609 and measured insulin resistance in fasting plasma samples at baseline and at 6-mo and 2-y visits in 743 overweight or obese adults (aged 30-70 y, 60% women) from a randomized weight-loss dietary interventional trial, the Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial. We assessed interactions between FTO variants and intakes of dietary fat and protein in relation to change in body weight and insulin resistance using generalized estimating equation models. We found significant interactions between rs1558902 and dietary fat on changes in homeostasis model assessment of insulin resistance (HOMA-IR) and insulin (P = 0.003 and 0.004, respectively). Each risk allele (A) of rs1558902 showed a trend to be related to a 0.05-unit less reduction in both log(insulin) and log(HOMA-IR) among the participants assigned to low-fat diets (both P = 0.06), but this was not significantly related to reduction in those assigned to high-fat diets (both P > 0.1) during the 2-y period of intervention. Our data showed that the association between rs9939609 and changes in insulin resistance was not modified by diet macronutrient intakes. Our results show that carriers of the risk alleles of rs1558902 benefit differently in improving insulin sensitivity by consuming high-fat weight-loss diets rather than low-fat diets. Still, given our data, we acknowledge it is difficult to determine whether fat or carbohydrate contributed to the observed associations. © 2015 American Society for Nutrition.

  10. Muscle Arnt/Hif1β Is Dispensable in Myofiber Type Determination, Vascularization and Insulin Sensitivity.

    PubMed

    Badin, Pierre-Marie; Sopariwala, Danesh H; Lorca, Sabina; Narkar, Vihang A

    2016-01-01

    Aryl Hydrocarbon Receptor Nuclear Translocator/ hypoxia-inducible factor 1 beta (ARNT/ HIF1β), a member of bHLH-PAS family of transcriptional factors, plays a critical role in metabolic homeostasis, insulin resistance and glucose intolerance. The contributions of ARNT in pancreas, liver and adipose tissue to energy balance through gene regulation have been described. Surprisingly, the impact of ARNT signaling in the skeletal muscles, one of the major organs involved in glucose disposal, has not been investigated, especially in type II diabetes. Here we report that ARNT is expressed in the skeletal muscles, particularly in the energy-efficient oxidative slow-twitch myofibers, which are characterized by increased oxidative capacity, mitochondrial content, vascular supply and insulin sensitivity. However, muscle-specific deletion of ARNT did not change myofiber type distribution, oxidative capacity, mitochondrial content, capillarity, or the expression of genes associated with these features. Consequently, the lack of ARNT in the skeletal muscle did not affect weight gain, lean/fat mass, insulin sensitivity and glucose tolerance in lean mice, nor did it impact insulin resistance and glucose intolerance in high fat diet-induced obesity. Therefore, skeletal muscle ARNT is dispensable for controlling muscle fiber type and metabolic regulation, as well as diet-induced weight control, insulin sensitivity and glucose tolerance.

  11. Association of oxidative status and insulin sensitivity in periparturient dairy cattle: an observational study.

    PubMed

    Abuelo, A; Hernández, J; Benedito, J L; Castillo, C

    2016-04-01

    Post-parturient insulin resistance (IR) is a common feature in all mammalian animals. However, in dairy cows, it can be exacerbated because of high milk yield, leading to excessive negative energy balance, which is related with increased disease incidence, reduced milk production and worsened reproductive performance. IR has been extensively investigated in humans suffering from diabetes mellitus. In these subjects, it is known that oxidative stress (OS) plays a causative role in the onset of IR. Although OS occurs in transitional dairy cattle, there are yet no studies that investigated the association between IR and OS in dairy cattle. Therefore, the aim of this study was to investigate whether there is a relationship between OS and IR in dairy cattle. Serum samples were taken repeatedly from 22 dairy cows from 2 months prior to the expected calving date to 2 months after calving and were analysed for markers of metabolic and redox balance. Surrogate indices of insulin sensitivity were also calculated. Generalised linear mixed models revealed an effect of the oxidative status on peripheral insulin concentration and on indices of insulin sensitivity. Hence, field trials should investigate the effectiveness of antioxidant therapy on insulin sensitivity in peripheral tissues during the transition period of dairy cattle.

  12. Adipogenesis and insulin sensitivity in obesity are regulated by retinoid-related orphan receptor gamma

    PubMed Central

    Meissburger, Bettina; Ukropec, Jozef; Roeder, Eva; Beaton, Nigel; Geiger, Matthias; Teupser, Daniel; Civan, Burcak; Langhans, Wolfgang; Nawroth, Peter P; Gasperikova, Daniela; Rudofsky, Gottfried; Wolfrum, Christian

    2011-01-01

    Obesity is a well-known risk factor for the development of secondary complications such as type 2 diabetes. However, only a part of the obese population develops secondary metabolic disorders. Here, we identify the transcription factor retinoid-related orphan receptor gamma (RORγ) as a negative regulator of adipocyte differentiation through expression of its newly identified target gene matrix metalloproteinase 3. In vivo differentiation of adipocyte progenitor cells from Rorγ-deficient mice is enhanced and obese Rorγ−/− mice show decreased adipocyte sizes. These small adipocytes are highly insulin sensitive, leading to an improved control of circulating free fatty acids. Ultimately, Rorγ−/− mice are protected from hyperglycemia and insulin resistance in the state of obesity. In adipose stromal-vascular fraction from obese human subjects, Rorγ expression is correlated with adipocyte size and negatively correlated with adipogenesis and insulin sensitivity. Taken together, our findings identify RORγ as a factor, which controls adipogenesis as well as adipocyte size and modulates insulin sensitivity in obesity. RORγ might therefore serve as a novel pharmaceutical target to treat obesity-associated insulin resistance. PMID:21853531

  13. Muscle Arnt/Hif1β Is Dispensable in Myofiber Type Determination, Vascularization and Insulin Sensitivity

    PubMed Central

    Badin, Pierre-Marie; Sopariwala, Danesh H.; Lorca, Sabina

    2016-01-01

    Aryl Hydrocarbon Receptor Nuclear Translocator/ hypoxia-inducible factor 1 beta (ARNT/ HIF1β), a member of bHLH-PAS family of transcriptional factors, plays a critical role in metabolic homeostasis, insulin resistance and glucose intolerance. The contributions of ARNT in pancreas, liver and adipose tissue to energy balance through gene regulation have been described. Surprisingly, the impact of ARNT signaling in the skeletal muscles, one of the major organs involved in glucose disposal, has not been investigated, especially in type II diabetes. Here we report that ARNT is expressed in the skeletal muscles, particularly in the energy-efficient oxidative slow-twitch myofibers, which are characterized by increased oxidative capacity, mitochondrial content, vascular supply and insulin sensitivity. However, muscle-specific deletion of ARNT did not change myofiber type distribution, oxidative capacity, mitochondrial content, capillarity, or the expression of genes associated with these features. Consequently, the lack of ARNT in the skeletal muscle did not affect weight gain, lean/fat mass, insulin sensitivity and glucose tolerance in lean mice, nor did it impact insulin resistance and glucose intolerance in high fat diet-induced obesity. Therefore, skeletal muscle ARNT is dispensable for controlling muscle fiber type and metabolic regulation, as well as diet-induced weight control, insulin sensitivity and glucose tolerance. PMID:28005939

  14. Vasopeptidase inhibition improves insulin sensitivity and endothelial function in the JCR:LA-cp rat.

    PubMed

    Russell, James C; Kelly, Sandra E; Schäfer, Stefan

    2004-08-01

    The insulin-resistant, hyperinsulinemic, normoglycemic, and obese JCR:LA-cp rat was used to study the effects of ramipril (an ACE inhibitor) and AVE7688 (a dual inhibitor of ACE and neutral endopeptidases) on insulin sensitivity and vascular function. Both compounds reduced the surge of plasma insulin in a meal tolerance test by approximately 50%. Ramipril had no effect on acetylcholine-induced relaxation but increased the sensitivity to sodium nitroprus-side at low concentrations. AVE7688 significantly reduced the EC50 for acetylcholine to relax phenylephrine-contracted aortic rings. None of the compounds affected the baseline coronary flow and reactive hyperemia. Coronary flow response to bradykinin in AVE7688- and ramipril-treated rat hearts showed a significantly lower EC50 than in control rats. Maximum flow rate was not different between groups. In summary, both ramipril and AVE7688 had significant hypoinsulinemic and insulin-sensitizing effects. Whereas ramipril had limited vascular effects, AVE7688 had more marked beneficial vascular effects, probably of endothelial origin and possibly related to lowered insulin levels.

  15. Resveratrol regulates neuronal glucose uptake and insulin sensitivity via P21-activated kinase 2 (PAK2).

    PubMed

    Varshney, Pallavi; Dey, Chinmoy Sankar

    2017-04-01

    We have recently reported P21-activated kinase 2 (PAK2), a serine/threonine kinase as a negative regulator of neuronal glucose uptake and insulin sensitivity. Resveratrol (RSV), a natural polyphenol with anti-oxidative, anti-inflammatory and anti-diabetic properties, regulates PAK2 activity in HepG2 and ESC-B5 cell apoptosis. However, regulation of PAK2 by RSV in neuronal insulin signaling pathway, if any, is still unknown. In the present study, RSV treatment significantly increased PAK2 activity under insulin-sensitive and insulin-resistant condition, along with a marked decrease in glucose uptake in differentiated N2A cells. Pretreatment with AMPK inhibitor, followed by RSV treatment resulted in reduction in PAK2 activity whereas glucose uptake showed an increase. However, pretreatment with Akt inhibitor and then RSV exposure significantly increased PAK2 activity, with a corresponding decrease in glucose uptake. RSV treatment increased AMPK activity and decreased Akt activity. In conclusion, RSV negatively regulates neuronal glucose uptake and insulin sensitivity via PAK2. Copyright © 2017. Published by Elsevier Inc.

  16. Effects of restrained eating behaviour on insulin sensitivity in normal-weight individuals.

    PubMed

    Martins, C; Morgan, L M; Robertson, M D

    2009-03-23

    Restrained eating behaviour has been linked to abnormalities in metabolic and endocrine functions. However, the impact of restraint on fasting insulin and glucose plasma levels and insulin sensitivity remains controversial. Moreover, the few postprandial studies to date are limited by an inappropriate sampling time frame and a low "net" energy and carbohydrate load. The aims of this study are to assess the role of dietary restraint on fasting and postprandial plasma levels of insulin, glucose, triacylglycerol (TAG) and non esterified fatty acids (NEFA) in healthy volunteers with a normal and stable body weight and to determine whether the effect of restraint on the plasma levels of the previous hormones/metabolites is load dependent. Normal-weight participants (21 women and 12 men) were classified as restrained/unrestrained based on the restraint scale of the Three Factor Eating Questionnaire-18R and Dutch Eating Behaviour Questionnaire. The impact of restraint on the plasma levels of different hormones/metabolites was measured, in response to a 500 kcal and 1000 kcal breakfast, using a randomised crossover design. Restraint was associated with lower fasting insulin plasma levels (P<0.05) and a lower insulin (P<0.015) and glucose (P<0.05) plasma levels in the postprandial state, but did not impact on TAG or NEFA. Moreover, restrained eaters showed a better fasting (P<0.05) and postprandial insulin sensitivity (P<0.01). Restrained eating behaviour has, therefore, a significant impact on both fasting and postprandial glucose metabolism, being associated with increased insulin sensitivity. These findings suggest the need for adjusting for restraint level in studies where glucose metabolism is a major outcome.

  17. Fasting Indicators of Insulin Sensitivity: Effects of Ethnicity and Pubertal Status

    PubMed Central

    Adam, Tanja C.; Hasson, Rebecca E.; Lane, Christianne J.; Davis, Jaimie N.; Weigensberg, Marc J.; Spruijt-Metz, Donna; Goran, Michael I.

    2011-01-01

    OBJECTIVE To examine the relationship of fasting indicators of insulin sensitivity with a more invasive measure of insulin sensitivity (frequently sampled intravenous glucose tolerance test [FSIVGTT]) and the effect of Tanner stage and ethnicity on that relationship. RESEARCH DESIGN AND METHODS Data were analyzed from 149 overweight girls (97 Hispanic and 52 African American) who were either in the early stages of maturation defined by Tanner stages 1 or 2 (52 Hispanic and 18 African American) or in the later stages of maturation defined by Tanner stages 4 and 5 (45 Hispanic and 34 African American). Fasting indicators of insulin sensitivity (IS) included fasting insulin and glucose and the homeostasis model assessment of insulin resistance (HOMA-IR). IS was derived from an FSIVGTT with minimal modeling. RESULTS In Tanner stages 1 and 2, all fasting indicators were significantly associated with IS: (fasting insulin: r = −0.67, P < 0.01; HOMA: r = −0.66, P < 0.01) with no significant influence of ethnicity on these relationships. In Tanner stages 4 and 5, however, all fasting indicators were associated with IS in African American girls (fasting insulin: r = −0.55, P < 0.01; HOMA: r = −0.47, P < 0.01), but none of the indicators were significantly associated with IS in Hispanic girls. CONCLUSIONS Fasting indicators were reflective of IS for girls in Tanner stages 1 and 2, regardless of ethnicity and may provide a clinical measure of future risk for type 2 diabetes. In the latter stages of maturation, however, more invasive measures are warranted to adequately determine IS in clinical practice. PMID:21357795

  18. Transthyretin Antisense Oligonucleotides Lower Circulating RBP4 Levels and Improve Insulin Sensitivity in Obese Mice

    PubMed Central

    Zemany, Laura; Bhanot, Sanjay; Peroni, Odile D.; Murray, Susan F.; Moraes-Vieira, Pedro M.; Castoldi, Angela; Manchem, Prasad; Guo, Shuling; Monia, Brett P.

    2015-01-01

    Circulating transthyretin (TTR) is a critical determinant of plasma retinol-binding protein 4 (RBP4) levels. Elevated RBP4 levels cause insulin resistance, and the lowering of RBP4 levels improves glucose homeostasis. Since lowering TTR levels increases renal clearance of RBP4, we determined whether decreasing TTR levels with antisense oligonucleotides (ASOs) improves glucose metabolism and insulin sensitivity in obesity. TTR-ASO treatment of mice with genetic or diet-induced obesity resulted in an 80–95% decrease in circulating levels of TTR and RBP4. Treatment with TTR-ASOs, but not control ASOs, decreased insulin levels by 30–60% and improved insulin sensitivity in ob/ob mice and high-fat diet–fed mice as early as after 2 weeks of treatment. The reduced insulin levels were sustained for up to 9 weeks of treatment and were associated with reduced adipose tissue inflammation. Body weight was not changed. TTR-ASO treatment decreased LDL cholesterol in high-fat diet–fed mice. The glucose infusion rate during a hyperinsulinemic-euglycemic clamp was increased by 50% in high-fat diet–fed mice treated with TTR-ASOs, demonstrating improved insulin sensitivity. This was also demonstrated by 20% greater inhibition of hepatic glucose production, a 45–60% increase of glucose uptake into skeletal and cardiac muscle, and a twofold increase in insulin signaling in muscle. These data show that decreasing circulating TTR levels or altering TTR-RBP4 binding could be a potential therapeutic approach for the treatment of type 2 diabetes. PMID:25524914

  19. Caffeine ingestion impairs insulin sensitivity in a dose-dependent manner in both men and women.

    PubMed

    Beaudoin, Marie-Soleil; Allen, Brian; Mazzetti, Gillian; Sullivan, Peter J; Graham, Terry E

    2013-02-01

    The effects of alkaloid caffeine on insulin sensitivity have been investigated primarily in men, and with a single caffeine dose most commonly of 5-6 mg·kg(-1) of body weight (BW). It is unknown if the effects of caffeine on glucose homeostasis are sex-specific and (or) dose-dependent. This study examined whether caffeine ingestion would disrupt glucose homeostasis in a dose-dependent or threshold manner. It also examined whether sex-specific responses to caffeine exist. It was hypothesized that women would have an exaggerated response to caffeine, and that caffeine would only impair glucose metabolism once a threshold was reached. Twenty-four healthy volunteers (12 males, 12 females) participated in 4 trials, in a crossover, randomized, and double-blind fashion. They ingested caffeine (1, 3, or 5 mg·kg(-1) of BW) or placebo followed, 1 h later, by a 2-h oral glucose tolerance test. Glucose, insulin, C-peptide area under the curve (AUC), and insulin sensitivity index data were fitted to a segmented linear model to determine dose-responses. There were no differences between sexes for any endpoints. Regression slopes were significantly different from zero (p < 0.05) for glucose, insulin, and C-peptide AUCs, with thresholds being no different from zero. Increasing caffeine consumption by 1 mg·kg(-1) of BW increased insulin and C-peptide AUCs by 5.8% and 8.7%, respectively. Despite this exaggerated insulin response, glucose AUC increased by 11.2 mmol per 120 min·L(-1) for each mg·kg(-1) BW consumed. These results showed that caffeine ingestion disrupted insulin sensitivity in a dose-dependent fashion beginning at very low doses (0-1 mg·kg(-1) BW) in both healthy men and women.

  20. Circulating insulin stimulates fatty acid retention in white adipose tissue via KATP channel activation in the central nervous system only in insulin-sensitive mice.

    PubMed

    Coomans, Claudia P; Geerling, Janine J; Guigas, Bruno; van den Hoek, Anita M; Parlevliet, Edwin T; Ouwens, D Margriet; Pijl, Hanno; Voshol, Peter J; Rensen, Patrick C N; Havekes, Louis M; Romijn, Johannes A

    2011-09-01

    Insulin signaling in the central nervous system (CNS) is required for the inhibitory effect of insulin on glucose production. Our aim was to determine whether the CNS is also involved in the stimulatory effect of circulating insulin on the tissue-specific retention of fatty acid (FA) from plasma. In wild-type mice, hyperinsulinemic-euglycemic clamp conditions stimulated the retention of both plasma triglyceride-derived FA and plasma albumin-bound FA in the various white adipose tissues (WAT) but not in other tissues, including brown adipose tissue (BAT). Intracerebroventricular (ICV) administration of insulin induced a similar pattern of tissue-specific FA partitioning. This effect of ICV insulin administration was not associated with activation of the insulin signaling pathway in adipose tissue. ICV administration of tolbutamide, a K(ATP) channel blocker, considerably reduced (during hyperinsulinemic-euglycemic clamp conditions) and even completely blocked (during ICV administration of insulin) WAT-specific retention of FA from plasma. This central effect of insulin was absent in CD36-deficient mice, indicating that CD36 is the predominant FA transporter in insulin-stimulated FA retention by WAT. In diet-induced insulin-resistant mice, these stimulating effects of insulin (circulating or ICV administered) on FA retention in WAT were lost. In conclusion, in insulin-sensitive mice, circulating insulin stimulates tissue-specific partitioning of plasma-derived FA in WAT in part through activation of K(ATP) channels in the CNS. Apparently, circulating insulin stimulates fatty acid uptake in WAT but not in BAT, directly and indirectly through the CNS.

  1. Insulin modulation of ATP-sensitive K+ channel of rat skeletal muscle is impaired in the hypokalaemic state.

    PubMed

    Tricarico, D; Capriulo, R; Conte Camerino, D

    1999-01-01

    In the present work, we examined the effects of in vivo administration of insulin to rats made hypokalaemic by feeding a K+-free diet. The i.p. injection of insulin in the hypokalaemic rats provoked muscle paralysis within 3-5 h. Consistent with this observation, the skeletal muscle fibres of the paralysed rats were depolarized. In contrast, in the normokalaemic animals, insulin neither provoked paralysis nor produced significant fibre hyperpolarization. In the hypokalaemic rats, insulin almost completely abolished the sarcolemma adenosine triphosphate (ATP)-sensitive K+ currents without altering the sensitivity of the channels to ATP or glibenclamide. In contrast, in the normokalaemic rats, insulin enhanced ATP-sensitive K+ currents that became also resistant to ATP and glibenclamide. Our experiments indicate that the modulation of the sarcolemma ATP-sensitive K+ channels by insulin is impaired in the hypokalaemic state. This phenomenon appears to be related to the fibre depolarization and paralysis observed in the same animals.

  2. Fibroblast growth factor-21 restores insulin sensitivity but induces aberrant bone microstructure in obese insulin-resistant rats.

    PubMed

    Charoenphandhu, Narattaphol; Suntornsaratoon, Panan; Krishnamra, Nateetip; Sa-Nguanmoo, Piangkwan; Tanajak, Pongpun; Wang, Xiaojie; Liang, Guang; Li, Xiaokun; Jiang, Chao; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2017-03-01

    Fibroblast growth factor (FGF)-21 is a potent endocrine factor that improves insulin resistance and obesity-associated metabolic disorders. However, concomitant activation of peroxisome proliferator-activated receptor-γ by FGF-21 makes bone susceptible to osteopenia and fragility fracture. Since an increase in body weight often induced adaptive change in bone by making it resistant to fracture, it was unclear whether FGF-21 would still induce bone defects in overweight rats. Therefore, the present study aimed to investigate bone microstructure and its mechanical properties in high fat diet (HF)-fed rats treated with 0.1 mg/kg/day FGF-21. Eighteen male rats were divided into two groups to receive either a normal diet or HF for 12 weeks. HF rats were then divided into two subgroups to receive either vehicle or FGF-21 for 4 weeks. The results showed that HF led to obesity, dyslipidemia and insulin resistance, as indicated by hyperinsulinemia with euglycemia. In HF rats, there was an increase in tibial yield displacement (an indicator of ability to be deformed without losing toughness, as determined by 3-point bending) without changes in tibial trabecular volumetric bone mineral density (vBMD) or cortical bone parameters, e.g., cortical thickness and bone area. FGF-21 treatment strongly improved the metabolic parameters and increased insulin sensitivity in HF rats. However, FGF-21-treated HF rats showed lower yield displacement, trabecular vBMD, trabecular bone volume, trabecular thickness, and osteoblast surface compared with vehicle-treated HF rats. These findings suggest that, despite being a potent antagonist of insulin resistance and visceral fat accumulation, FGF-21 is associated with bone defects in HF rats.

  3. Alfalfa-derived HSP70 administered intranasally improves insulin sensitivity in mice.

    PubMed

    Tytell, Michael; Davis, Ashley T; Giles, Jareca; Snider, Lauren C; Xiao, Ruoyu; Dozier, Stephen G; Presley, Tennille D; Kavanagh, Kylie

    2017-08-18

    Heat shock protein (HSP) 70 is an abundant cytosolic chaperone protein that is deficient in insulin-sensitive tissues in diabetes and unhealthy aging, and is considered a longevity target. It is also protective in neurological disease models. Using HSP70 purified from alfalfa and administered as an intranasal solution, we tested in whether the administration of Hsp70 to diet-induced diabetic mice would improve insulin sensitivity. Both the 10 and 40 μg given three times per week for 26 days significantly improved the response to insulin. The HSP70 was found to pass into the olfactory bulbs within 4-6 hours of a single dose. These results suggest that a relatively inexpensive, plentiful source of HSP70 administered in a simple, non-invasive manner, has therapeutic potential in diabetes.

  4. Strawberry and cranberry polyphenols improve insulin sensitivity in insulin-resistant, non-diabetic adults: a parallel, double-blind, controlled and randomised clinical trial.

    PubMed

    Paquette, Martine; Medina Larqué, Ana S; Weisnagel, S J; Desjardins, Yves; Marois, Julie; Pilon, Geneviève; Dudonné, Stéphanie; Marette, André; Jacques, Hélène

    2017-02-01

    Plant-derived foods rich in polyphenols are associated with several cardiometabolic health benefits, such as reduced postprandial hyperglycaemia. However, their impact on whole-body insulin sensitivity using the hyperinsulinaemic-euglycaemic clamp technique remains under-studied. We aimed to determine the effects of strawberry and cranberry polyphenols (SCP) on insulin sensitivity, glucose tolerance, insulin secretion, lipid profile, inflammation and oxidative stress markers in free-living insulin-resistant overweight or obese human subjects (n 41) in a parallel, double-blind, controlled and randomised clinical trial. The experimental group consumed an SCP beverage (333 mg SCP) daily for 6 weeks, whereas the Control group received a flavour-matched Control beverage that contained 0 mg SCP. At the beginning and at the end of the experimental period, insulin sensitivity was assessed by a hyperinsulinaemic-euglycaemic clamp, and glucose tolerance and insulin secretion by a 2-h oral glucose tolerance test (OGTT). Insulin sensitivity increased in the SCP group as compared with the Control group (+0·9 (sem 0·5)×10-3 v. -0·5 (sem 0·5)×10-3 mg/kg per min per pmol, respectively, P=0·03). Compared with the Control group, the SCP group had a lower first-phase insulin secretion response as measured by C-peptide levels during the first 30 min of the OGTT (P=0·002). No differences were detected between the two groups for lipids and markers of inflammation and oxidative stress. A 6-week dietary intervention with 333 mg of polyphenols from strawberries and cranberries improved insulin sensitivity in overweight and obese non-diabetic, insulin-resistant human subjects but was not effective in improving other cardiometabolic risk factors.

  5. Serum Resistin Levels Are Associated with Adiposity and Insulin Sensitivity in Obese Hispanic Subjects

    PubMed Central

    Nieva-Vazquez, Adriana; Torres-Rasgado, Enrique; López-López, José G.; Romero, Jose R.

    2014-01-01

    Abstract Background and Aims: Resistin is involved in the development of obesity and insulin resistance (IR) in mice and may play a similar role in humans through mechanisms that remain unresolved. The objective of this study was to characterize the relationship between resistin levels in obese subjects with and without IR among Hispanic subjects. Material and Methods: A cross-sectional study was performed on 117 nondiabetic Hispanic subjects of both genders that were allocated into three study groups: A control group (n=47) of otherwise healthy individuals in metabolic balance, a group with obesity (OB) (n=36), and a group with obesity and IR (OB-IR) (n=34). Anthropometric and clinical characterization was carried out, and resistin levels were determined by enzyme-linked immunosorbent assay (ELISA). Results: We found that resistin levels were higher in OB and OB-IR groups when compared to the control group (1331.79±142.15 pg/mL, 1266.28±165.97 pg/mL vs. 959.21±171.43 pg/mL; P<0.05), an effect that was not confounded by age (control, 34.04±10.00 years; OB, 37.30±10.78 years; and OB-IR, 35.67±10.15 years). In addition, we observed a significant correlation (P<0.001) between resistin levels and higher adiposity and insulin sensitivity (IS) in our cohort. Conclusions: Our results suggest that higher resistin levels are associated with higher adiposity and lower IS among obese Hispanic subjects. PMID:24266722

  6. Associations of reallocating sitting time into standing or stepping with glucose, insulin and insulin sensitivity: a cross-sectional analysis of adults at risk of type 2 diabetes

    PubMed Central

    Edwardson, Charlotte L; Henson, Joe; Bodicoat, Danielle H; Bakrania, Kishan; Khunti, Kamlesh; Davies, Melanie J; Yates, Thomas

    2017-01-01

    Objective To quantify associations between sitting time and glucose, insulin and insulin sensitivity by considering reallocation of time into standing or stepping. Design Cross-sectional. Setting Leicestershire, UK, 2013. Participants Adults aged 30–75 years at high risk of impaired glucose regulation (IGR) or type 2 diabetes. 435 adults (age 66.8±7.4 years; 61.7% male; 89.2% white European) were included. Methods Participants wore an activPAL3 monitor 24 hours/day for 7 days to capture time spent sitting, standing and stepping. Fasting and 2-hour postchallenge glucose and insulin were assessed; insulin sensitivity was calculated by Homeostasis Model Assessment of Insulin Secretion (HOMA-IS) and Matsuda-Insulin Sensitivity Index (Matsuda-ISI). Isotemporal substitution regression modelling was used to quantify associations of substituting 30 min of waking sitting time (accumulated in prolonged (≥30 min) or short (<30 min) bouts) for standing or stepping on glucose regulation and insulin sensitivity. Interaction terms were fitted to assess whether the associations with measures of glucose regulation and insulin sensitivity was modified by sex or IGR status. Results After adjustment for confounders, including waist circumference, reallocation of prolonged sitting to short sitting time and to standing was associated with 4% lower fasting insulin and 4% higher HOMA-IS; reallocation of prolonged sitting to standing was also associated with a 5% higher Matsuda-ISI. Reallocation to stepping was associated with 5% lower 2-hour glucose, 7% lower fasting insulin, 13% lower 2-hour insulin and a 9% and 16% higher HOMA-IS and Matsuda-ISI, respectively. Reallocation of short sitting time to stepping was associated with 5% and 10% lower 2-hour glucose and 2-hour insulin and 12% higher Matsuda-ISI. Results were not modified by IGR status or sex. Conclusions Reallocating a small amount of short or prolonged sitting time with standing or stepping may improve 2-hour

  7. The effect of dietary phytosphingosine on cholesterol levels and insulin sensitivity in subjects with the metabolic syndrome.

    PubMed

    Snel, M; Sleddering, M A; Pijl, H; Nieuwenhuizen, W F; Frölich, M; Havekes, L M; Romijn, J A; Jazet, I M

    2010-04-01

    Sphingolipids, like phytosphingosine (PS) are part of cellular membranes of yeasts, vegetables and fruits. Addition of PS to the diet decreases serum cholesterol and free fatty acid (FFA) levels in rodents and improves insulin sensitivity. To study the effect of dietary supplementation with PS on cholesterol and glucose metabolism in humans. Twelve men with the metabolic syndrome (MetS) (according to the International Diabetes Federation (IDF) criteria; age 51+/-2 years (mean+/-s.e.m.); body mass index (BMI) 32+/-1 kg/m(2)) were randomly assigned to 4 weeks of PS (500 mg twice daily) and 4 weeks of placebo (P) in a double-blind cross-over study, with a 4-week wash-out period between both interventions. At the end of each intervention anthropometric measures and serum lipids were measured and an intravenous glucose tolerance test (IVGTT) was performed. Phytosphingosine did not affect body weight and fat mass compared with P. PS decreased serum total cholesterol (5.1+/-0.3 (PS) vs 5.4+/-0.3 (P) mmol/l; P<0.05) and low-density lipoprotein (LDL)-cholesterol levels (3.1+/-0.3 (PS) vs 3.4+/-0.3 (P) mmol/l; P<0.05), whereas it did not alter serum triglyceride and high-density lipoprotein (HDL)-cholesterol levels. In addition, PS lowered fasting plasma glucose levels (6.2+/-0.3 (PS) vs 6.5+/-0.3 (P) mmol/l; P<0.05). PS increased the glucose disappearance rate (K-value) by 9.9% during the IVGTT (0.91+/-0.06 (PS) vs 0.82+/-0.05 (P) %/min; P<0.05) at similar insulin levels, compared with P, thus implying enhanced insulin sensitivity. PS induced only minor gastrointestinal side effects. Dietary supplementation of PS decreases plasma cholesterol levels and enhances insulin sensitivity in men with the MetS.

  8. Glucose turnover and insulin sensitivity in rats with pancreatic islet transplants.

    PubMed

    Guan, J; Behme, M T; Zucker, P; Atkison, P; Hramiak, I; Zhong, R; Dupré, J

    1998-07-01

    To study the metabolic effects of insulin derived from islet grafts, oral glucose tolerance (OGT) and glucose turnover were examined in streptozotocin-induced diabetic Lewis rats rendered normoglycemic by syngeneic islet grafts in the renal subcapsular space (REN), in REN with renal vein-to-mesenteric vein anastomosis (REN-RMA), in the liver (intrahepatic [IH]), or in a parahepatic omental pouch (POP) and compared with normal rats. Normal OGT was found at 1 month posttransplant in all animals receiving approximately 3,000 islets, with hyperinsulinemic responses in the REN group compared with the other groups, and with higher C-peptide responses in the IH group than in the other groups (P < 0.05 by one-way analysis of variance). Glucose turnover studies in the insulin-stimulated steady state (INS-SS; infusion of insulin at 10 pmol x kg(-1) x min(-1)) at 2 months posttransplant showed that whole body glucose disappearance rates (Rd) were similar in all groups, but the REN group had higher steady-state insulin levels than the other groups. Glucose infusion rates (GIRs) were lower in the REN and IH groups than in the other groups. Apparent endogenous glucose production (EGP) was not completely inhibited in the REN and IH groups, while complete inhibition was observed in the other groups. When INS-SS insulin levels were matched to the level in REN rats by increasing the insulin infusion rate to 20 pmol x kg(-1) x min(-1) in REN-RMA, IH, and normal rats, GIR and Rd were elevated, exceeding those values in REN rats, but GIR in IH rats was still lower than in REN-RMA and normal rats. Thus, 1) in the REN group, impairment of inhibition of EGP and of stimulation of Rd by exogenous insulin contribute to insulin resistance; 2) in the IH group, incomplete inhibition of EGP is the major determinant of insulin resistance; and 3) with portal delivery of insulin in the REN-RMA and POP groups, normal insulin sensitivity is preserved. The present study confirms that hepatic portal

  9. Modulation of age-related insulin sensitivity by VEGF-dependent vascular plasticity in adipose tissues

    PubMed Central

    Honek, Jennifer; Seki, Takahiro; Iwamoto, Hideki; Fischer, Carina; Li, Jingrong; Lim, Sharon; Samani, Nilesh J.; Zang, Jingwu; Cao, Yihai

    2014-01-01

    Mechanisms underlying age-related obesity and insulin resistance are generally unknown. Here, we report age-related adipose vascular changes markedly modulated fat mass, adipocyte functions, blood lipid composition, and insulin sensitivity. Notably, VEGF expression levels in various white adipose tissues (WATs) underwent changes uninterruptedly in different age populations. Anti-VEGF and anti- VEGF receptor 2 treatment in different age populations showed marked variations of vascular regression, with midaged mice exhibiting modest sensitivity. Interestingly, anti-VEGF treatment produced opposing effects on WAT adipocyte sizes in different age populations and affected vascular density and adipocyte sizes in brown adipose tissue. Consistent with changes of vasculatures and adipocyte sizes, anti-VEGF treatment increased insulin sensitivity in young and old mice but had no effects in the midaged group. Surprisingly, anti-VEGF treatment significantly improved insulin sensitivity in midaged obese mice fed a high-fat diet. Our findings demonstrate that adipose vasculatures show differential responses to anti-VEGF treatment in various age populations and have therapeutic implications for treatment of obesity and diabetes with anti-VEGF-based antiangiogenic drugs. PMID:25271320

  10. Insulin sensitivity in relation to fat distribution and plasma adipocytokines among abusers of anabolic androgenic steroids.

    PubMed

    Rasmussen, Jon Jarløv; Schou, Morten; Selmer, Christian; Johansen, Marie Louise; Gustafsson, Finn; Frystyk, Jan; Dela, Flemming; Faber, Jens; Kistorp, Caroline

    2017-09-01

    Abuse of anabolic androgenic steroids (AAS) is prevalent among young men, but information regarding effects on insulin sensitivity and fat distribution is limited. The objective was to investigate insulin sensitivity in relation to fat distribution and adipocytokines among current and former AAS abusers compared with controls. Cross-sectional study among men involved in recreational strength training. Current and former AAS abusers (n=37 and n=33) and controls (n=30) volunteered from the community. We assessed insulin sensitivity by Matsuda index (oral glucose tolerance test). Using overnight fasting blood samples, adiponectin and leptin were measured. Body composition and fat distribution, including visceral adipose tissue (VAT), were assessed by dual energy X-ray absorptiometry. Current and former AAS abusers displayed lower Matsuda index than controls (%-difference (95%CI) from controls, -26% (-45; -1) and -39% (-55; -18)). Testosterone was markedly higher among current AAS abusers and subnormal among former AAS abusers compared with controls. Current AAS abusers displayed higher mean VAT than controls (388 (17) vs 293 (12) cm(3) , P<.001) whereas body fat %, adiponectin and leptin concentrations were lower. In contrast, former AAS abusers showed highest leptin concentrations and body fat %. Multivariate linear regressions identified VAT as independent predictor of lower Matsuda index among current AAS abusers compared with controls; while body fat % independently predicted lower Matsuda index among former AAS abusers. Both current and former AAS abusers displayed lower insulin sensitivity which could be mediated by higher VAT and total body fat %, respectively. © 2017 John Wiley & Sons Ltd.

  11. Metabolomic profiling of amino acids and beta-cell function relative to insulin sensitivity in youth

    USDA-ARS?s Scientific Manuscript database

    In longitudinal studies of adults, elevated amino acid (AA) concentrations predicted future type 2 diabetes mellitus (T2DM). The aim of the present investigation was to examine whether increased plasma AA concentrations are associated with impaired beta-cell function relative to insulin sensitivity ...

  12. Increased adipose tissue aromatase activity improves insulin sensitivity and reduces adipose tissue inflammation in male mice.

    PubMed

    Ohlsson, Claes; Hammarstedt, Ann; Vandenput, Liesbeth; Saarinen, Niina; Ryberg, Henrik; Windahl, Sara H; Farman, Helen H; Jansson, John-Olov; Movérare-Skrtic, Sofia; Smith, Ulf; Zhang, Fu-Ping; Poutanen, Matti; Hedjazifar, Shahram; Sjögren, Klara

    2017-10-01

    Females are, in general, more insulin sensitive than males. To investigate whether this is a direct effect of sex-steroids (SS) in white adipose tissue (WAT), we developed a male mouse model overexpressing the aromatase enzyme, converting testosterone (T) to estradiol (E2), specifically in WAT (Ap2-arom mice). Adipose tissue E2 levels were increased while circulating SS levels were unaffected in male Ap2-arom mice. Importantly, male Ap2-arom mice were more insulin sensitive compared with WT mice and exhibited increased serum adiponectin levels and upregulated expression of Glut4 and Irs1 in WAT. The expression of markers of macrophages and immune cell infiltration was markedly decreased in WAT of male Ap2-arom mice. The adipogenesis was enhanced in male Ap2-arom mice, supported by elevated Pparg expression in WAT and enhanced differentiation of preadipocyte into mature adipocytes. In summary, increased adipose tissue aromatase activity reduces adipose tissue inflammation and improves insulin sensitivity in male mice. We propose that estrogen increases insulin sensitivity via a local effect in WAT on adiponectin expression, adipose tissue inflammation, and adipogenesis. Copyright © 2017 the American Physiological Society.

  13. Modulation of age-related insulin sensitivity by VEGF-dependent vascular plasticity in adipose tissues.

    PubMed

    Honek, Jennifer; Seki, Takahiro; Iwamoto, Hideki; Fischer, Carina; Li, Jingrong; Lim, Sharon; Samani, Nilesh J; Zang, Jingwu; Cao, Yihai

    2014-10-14

    Mechanisms underlying age-related obesity and insulin resistance are generally unknown. Here, we report age-related adipose vascular changes markedly modulated fat mass, adipocyte functions, blood lipid composition, and insulin sensitivity. Notably, VEGF expression levels in various white adipose tissues (WATs) underwent changes uninterruptedly in different age populations. Anti-VEGF and anti- VEGF receptor 2 treatment in different age populations showed marked variations of vascular regression, with midaged mice exhibiting modest sensitivity. Interestingly, anti-VEGF treatment produced opposing effects on WAT adipocyte sizes in different age populations and affected vascular density and adipocyte sizes in brown adipose tissue. Consistent with changes of vasculatures and adipocyte sizes, anti-VEGF treatment increased insulin sensitivity in young and old mice but had no effects in the midaged group. Surprisingly, anti-VEGF treatment significantly improved insulin sensitivity in midaged obese mice fed a high-fat diet. Our findings demonstrate that adipose vasculatures show differential responses to anti-VEGF treatment in various age populations and have therapeutic implications for treatment of obesity and diabetes with anti-VEGF-based antiangiogenic drugs.

  14. Phylloquinone intake is associated with greater insulin sensitivity and glycemic status in adult men and women

    USDA-ARS?s Scientific Manuscript database

    Limited published evidence suggests that vitamin K may have a beneficial role in glucose homeostasis. No observational data exist on the associations between vitamin K intake and insulin sensitivity. The objective of this study was to examine cross-sectional associations between self-reported phyl...

  15. Resistance exercise increase lean body mass and improves basal and hepatic insulin sensitivity in obese adolescents

    USDA-ARS?s Scientific Manuscript database

    Little is known about the metabolic effects of resistance exercise, for instance, weight lifting. We studied whether a resistance exercise program improves insulin sensitivity and glucose metabolism in sedentary obese adolescents. Elevn obese subjects (15.7 +/- 0.4 year; 35.4 +/- 0.8 kg/m2; 41.3 +/-...

  16. Aerobic exercise increases peripheral and hepatic insulin sensitivity in sedentary adolescents

    USDA-ARS?s Scientific Manuscript database

    The increasing prevalence of obesity and its consequences is a serious public health concern. The present study was undertaken to determine whether a controlled aerobic exercise program (without weight loss) improves insulin sensitivity and glucose metabolism in sedentary adolescents. Twenty nine p...

  17. Effects of different degrees of insulin sensitivity on endothelial function in obese patients.

    PubMed

    Galvão, Roberto; Plavnik, Frida Liane; Ribeiro, Fernando Flexa; Ajzen, Sérgio Aron; Christofalo, Dejaldo M de J; Kohlmann, Osvaldo

    2012-01-01

    Obesity derived from intra-abdominal fat deposition tends to increase hormonal and cytokine production, thus worsening insulin sensitivity and leading to endothelial dysfunction. Hyperinsulinemia is considered an independent risk factor for ischemic heart disease and cause of endothelial dysfunction in healthy individuals. To assess the impact of different degrees of insulin resistance, measured by HOMA-IR (Homeostasis Model Assessment of Insulin Resistance), on endothelial function in obese, non-diabetic patients without prior history of cardiovascular events and different metabolic syndrome components. Forty obese individuals were submitted to anthropometric measurements, BP measurements at office and ABPM and laboratory tests, in addition to non-invasive ultrasound assessment of endothelial function. Patients were divided into 3 groups according to the level of insulin resistance: patients with HOMA-IR values from 0.590 to 1.082 were assigned to Group 1 (n=13), from 1.083 to 1.410 to Group 2 (n=14) and from 1.610 to 2.510 to Group 3 (n=13). We found a significant difference in flow-mediated dilation in group 3 compared to group 1 (9.2 ± 7.0 vs 18.0 ± 7.5 %, p=0.006). There was a negative correlation between endothelial function and insulin, HOMA-IR and triglycerides. Our data suggest that mild changes in insulin resistance levels assessed by HOMA-IR may have an impact on vasodilatatory endothelial function in uncomplicated obese individuals with different cardiovascular risk factors.

  18. Leptin Rapidly Improves Glucose Homeostasis in Obese Mice by Increasing Hypothalamic Insulin Sensitivity

    PubMed Central

    Koch, Christiane; Augustine, Rachael A.; Steger, Juliane; Ganjam, Goutham K.; Benzler, Jonas; Pracht, Corinna; Lowe, Chrishanthi; Schwartz, Michael W.; Shepherd, Peter R.; Anderson, Greg M.; Grattan, David R.; Tups, Alexander

    2013-01-01

    Obesity is associated with resistance to the actions of both leptin and insulin via mechanisms that remain incompletely understood. To investigate whether leptin resistance per se contributes to insulin resistance and impaired glucose homeostasis, we investigated the effect of acute leptin administration on glucose homeostasis in normal as well as leptin- or leptin receptor-deficient mice. In hyperglycemic, leptin-deficient Lepob/ob mice, leptin acutely and potently improved glucose metabolism, before any change of body fat mass, via a mechanism involving the p110α and β isoforms of phosphatidylinositol-3-kinase (PI3K). Unlike insulin, however, the anti-diabetic effect of leptin occurred independently of phospho-AKT, a major downstream target of PI3K, and instead involved enhanced sensitivity of the hypothalamus to insulin action upstream of PI3K, through modulation of IRS1 (insulin receptor substrate 1) phosphorylation. These data suggest that leptin resistance, as occurs in obesity, reduces the hypothalamic response to insulin and thereby impairs peripheral glucose homeostasis, contributing to the development of type 2 diabetes. PMID:21123564

  19. Liver-specific deletion of Ppp2cα enhances glucose metabolism and insulin sensitivity.

    PubMed

    Xian, Li; Hou, Siyuan; Huang, Zan; Tang, An; Shi, Peiliang; Wang, Qinghua; Song, Anying; Jiang, Shujun; Lin, Zhaoyu; Guo, Shiying; Gao, Xiang

    2015-04-01

    Protein phosphatase 2A (PP2A) is a key negative regulator of phosphatidylinositol 3-kinase/Akt pathway. Previous study showed that, in the liver, the catalytic subunit of PP2A (PP2Ac) is closely associated with insulin resistance syndrome, which is characterized by glucose intolerance and dyslipidemia. Here we studied the role of liver PP2Ac in glucose metabolism and evaluated whether PP2Ac is a suitable therapeutic target for treating insulin resistance syndrome. Liver-specific Ppp2cα knockout mice (Ppp2cα(loxp/loxp): Alb) exhibited improved glucose homeostasis compared with littermate controls in both normal and high-fat diet conditions, despite no significant changes in body weight and liver weight under chow diet. Ppp2cα(loxp/loxp): Alb mice showed enhanced glycogen deposition, serum triglyceride, cholesterol, low density lipoprotein and high density lipoprotein, activated insulin signaling, decreased expressions of gluconeogenic genes G6P and PEPCK, and lower liver triglyceride. Liver-specific Ppp2cα knockout mice showed enhanced glucose homeostasis and increased insulin sensitivity by activation of insulin signaling through Akt. These findings suggest that inhibition of hepatic Ppp2cα may be a useful strategy for the treatment of insulin resistance syndrome.

  20. Evidence that the brain of the conscious dog is insulin sensitive.

    PubMed Central

    Davis, S N; Colburn, C; Dobbins, R; Nadeau, S; Neal, D; Williams, P; Cherrington, A D

    1995-01-01

    The aim of this study was to determine whether a selective increase in the level of insulin in the blood perfusing the brain is a determinant of the counterregulatory response to hypoglycemia. Experiments were carried out on 15 conscious 18-h-fasted dogs. Insulin was infused (2 mU/kg per min) in separate, randomized studies into a peripheral vein (n = 7) or both carotid and vertebral arteries (n = 8). This resulted in equivalent systemic insulinemia (84 +/- 6 vs. 86 +/- 6 microU/ml) but differing insulin levels in the head (84 +/- 6 vs. 195 +/- 5 microU/ml, respectively). Glucose was infused during peripheral insulin infusion to maintain the glucose level (56 +/- 2 mg/dl) at a value similar to that seen during head insulin infusion (58 +/- 2 mg/dl). Despite equivalent peripheral insulin levels and similar hypoglycemia; steady state plasma epinephrine (792 +/- 198 vs. 2394 +/- 312 pg/ml), norepinephrine (404 +/- 33 vs. 778 +/- 93 pg/ml), cortisol (6.8 +/- 1.8 vs. 9.8 +/- 1.6 micrograms/dl) and pancreatic polypeptide (722 +/- 273 vs. 1061 +/- 255 pg/ml) levels were all increased to a greater extent during head insulin infusion (P < 0.05). Hepatic glucose production, measured with [3-3H]glucose, rose from 2.6 +/- 0.2 to 4.3 +/- 0.4 mg/kg per min (P < 0.01) in response to head insulin infusion but remained unchanged (2.6 +/- 0.5 mg/kg per min) during peripheral insulin infusion. Similarly, gluconeogenesis, lipolysis, and ketogenesis were increased twofold (P < 0.001) during head compared with peripheral insulin infusion. Cardiovascular parameters were also significantly higher (P < 0.05) during head compared with peripheral insulin infusion. We conclude that during hypoglycemia in the conscious dog (a) the brain is directly responsive to physiologic elevations of insulin and (b) the response includes a profound stimulation of the autonomic nervous system with accompanying metabolic and cardiovascular changes. PMID:7860743

  1. Co-administration of glutathione and nitric oxide enhances insulin sensitivity in Wistar rats

    PubMed Central

    Guarino, Maria P; Macedo, M Paula

    2006-01-01

    The liver modulates insulin sensitivity through a prandial-dependent mechanism that requires activation of the hepatic parasympathetic nerves, hepatic nitric oxide (NO) and hepatic glutathione (GSH). We tested the hypothesis that co-administration of GSH and NO to the liver enhances insulin sensitivity in a GSH and NO dose-dependent manner. 24 h fasted Wistar rats were used. Hepatic GSH was supplemented by administration of glutathione monoethylester (GSH-E; 0.1/0.25/0.5/1/2 mmol kg−1) and 3-morpholinosidnonimine (SIN-1; 5/10 mg kg−1) was used as a NO donor. The drugs were administered either systemically (i.v.) or intraportally (i.p.v.). Insulin sensitivity was assessed using a transient euglycemic clamp. Neither GSH-E nor SIN-1 increased insulin sensitivity when administered alone, both i.v. and i.p.v. Moreover, changes in insulin sensitivity were not observed when GSH-E was administered i.v. followed by either i.v. or i.p.v. SIN-1 at any of the doses tested. However, i.p.v. administration of GSH-E followed by i.p.v. SIN-1 10 mg kg−1 significantly increased insulin sensitivity in a GSH-E dose-dependent manner: 26.1±9.4% after 0.1 mmol kg−1 GSH-E; 44.6±7.9% after 0.25 mmol kg−1 GSH-E; 59.4±15.1% after 0.5 mmol kg−1 GSH-E; 138.9±12.7% after 1 mmol kg−1 GSH-E and 117.3±29.2% after a dose of 2 mmol kg−1 (n=23, P<0.005). Our results confirm that insulin sensitivity is enhanced in a dose-dependent manner by co-administration of NO and GSH donors to the liver. PMID:16491098

  2. Insulin-Sensitizing Effects of Omega-3 Fatty Acids: Lost in Translation?

    PubMed Central

    Lalia, Antigoni Z.; Lanza, Ian R.

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFA) of marine origin, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), have been long studied for their therapeutic potential in the context of type 2 diabetes, insulin resistance, and glucose homeostasis. Glaring discordance between observations in animal and human studies precludes, to date, any practical application of n-3 PUFA as nutritional therapeutics against insulin resistance in humans. Our objective in this review is to summarize current knowledge and provide an up-to-date commentary on the therapeutic value of EPA and DHA supplementation for improving insulin sensitivity in humans. We also sought to discuss potential mechanisms of n-3 PUFA action in target tissues, in specific skeletal muscle, based on our recent work, as well as in liver and adipose tissue. We conducted a literature search to include all preclinical and clinical studies performed within the last two years and to comment on representative studies published earlier. Recent studies support a growing consensus that there are beneficial effects of n-3 PUFA on insulin sensitivity in rodents. Observational studies in humans are encouraging, however, the vast majority of human intervention studies fail to demonstrate the benefit of n-3 PUFA in type 2 diabetes or insulin-resistant non-diabetic people. Nevertheless, there are still several unanswered questions regarding the potential impact of n-3 PUFA on metabolic function in humans. PMID:27258299

  3. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids

    PubMed Central

    Fu, Xianghui; Dong, Bingning; Tian, Yan; Lefebvre, Philippe; Meng, Zhipeng; Wang, Xichun; Pattou, François; Han, Weidong; Wang, Xiaoqiong; Lou, Fang; Jove, Richard; Staels, Bart; Moore, David D.; Huang, Wendong

    2015-01-01

    Type 2 diabetes (T2D) is characterized by insulin resistance and increased hepatic glucose production, yet the molecular mechanisms underlying these abnormalities are poorly understood. MicroRNAs (miRs) are a class of small, noncoding RNAs that have been implicated in the regulation of human diseases, including T2D. miR-26a is known to play a critical role in tumorigenesis; however, its function in cellular metabolism remains unknown. Here, we determined that miR-26a regulates insulin signaling and metabolism of glucose and lipids. Compared with lean individuals, overweight humans had decreased expression of miR-26a in the liver. Moreover, miR-26 was downregulated in 2 obese mouse models compared with control animals. Global or liver-specific overexpression of miR-26a in mice fed a high-fat diet improved insulin sensitivity, decreased hepatic glucose production, and decreased fatty acid synthesis, thereby preventing obesity-induced metabolic complications. Conversely, silencing of endogenous miR-26a in conventional diet–fed mice impaired insulin sensitivity, enhanced glucose production, and increased fatty acid synthesis. miR-26a targeted several key regulators of hepatic metabolism and insulin signaling. These findings reveal miR-26a as a regulator of liver metabolism and suggest miR-26a should be further explored as a potential target for the treatment of T2D. PMID:25961460

  4. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids.

    PubMed

    Fu, Xianghui; Dong, Bingning; Tian, Yan; Lefebvre, Philippe; Meng, Zhipeng; Wang, Xichun; Pattou, François; Han, Weidong; Wang, Xiaoqiong; Lou, Fang; Jove, Richard; Staels, Bart; Moore, David D; Huang, Wendong

    2015-06-01

    Type 2 diabetes (T2D) is characterized by insulin resistance and increased hepatic glucose production, yet the molecular mechanisms underlying these abnormalities are poorly understood. MicroRNAs (miRs) are a class of small, noncoding RNAs that have been implicated in the regulation of human diseases, including T2D. miR-26a is known to play a critical role in tumorigenesis; however, its function in cellular metabolism remains unknown. Here, we determined that miR-26a regulates insulin signaling and metabolism of glucose and lipids. Compared with lean individuals, overweight humans had decreased expression of miR-26a in the liver. Moreover, miR-26 was downregulated in 2 obese mouse models compared with control animals. Global or liver-specific overexpression of miR-26a in mice fed a high-fat diet improved insulin sensitivity, decreased hepatic glucose production, and decreased fatty acid synthesis, thereby preventing obesity-induced metabolic complications. Conversely, silencing of endogenous miR-26a in conventional diet-fed mice impaired insulin sensitivity, enhanced glucose production, and increased fatty acid synthesis. miR-26a targeted several key regulators of hepatic metabolism and insulin signaling. These findings reveal miR-26a as a regulator of liver metabolism and suggest miR-26a should be further explored as a potential target for the treatment of T2D.

  5. Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms.

    PubMed

    Kang, Changkeun; Lee, Hyunkyoung; Jung, Eun-Sun; Seyedian, Ramin; Jo, MiNa; Kim, Jehein; Kim, Jong-Shu; Kim, Euikyung

    2012-12-15

    Saffron (Crocus sativus Linn.) has been an important subject of research in the past two decades because of its various biological properties, including anti-cancer, anti-inflammatory, and anti-atherosclerotic activities. On the other hand, the molecular bases of its actions have been scarcely understood. Here, we elucidated the mechanism of the hypoglycemic actions of saffron through investigating its signaling pathways associated with glucose metabolism in C(2)C(12) skeletal muscle cells. Saffron strongly enhanced glucose uptake and the phosphorylation of AMPK (AMP-activated protein kinase)/ACC (acetyl-CoA carboxylase) and MAPKs (mitogen-activated protein kinases), but not PI 3-kinase (Phosphatidylinositol 3-kinase)/Akt. Interestingly, the co-treatment of saffron and insulin further improved the insulin sensitivity via both insulin-independent (AMPK/ACC and MAPKs) and insulin-dependent (PI 3-kinase/Akt and mTOR) pathways. It also suggested that there is a crosstalk between the two signaling pathways of glucose metabolism in skeletal muscle cells. These results could be confirmed from the findings of GLUT4 translocation. Taken together, AMPK plays a major role in the effects of saffron on glucose uptake and insulin sensitivity in skeletal muscle cells. Our study provides important insights for the possible mechanism of action of saffron and its potential as a therapeutic agent in diabetic patients.

  6. Effect of NAD on PARP-mediated insulin sensitivity in oleic acid treated hepatocytes.

    PubMed

    Pang, Jing; Cui, Ju; Gong, Huan; Xi, Chao; Zhang, Tie-Mei

    2015-07-01

    High serum free fatty acids levels are associated with the development of insulin resistance in type 2 diabetes; however, the precise mechanisms underlying this lipid toxicity are unclear. To investigate whether PARP1 activation and NAD depletion are involved in the impairment of insulin sensitivity associated with lipotoxicity, HepG2 cells were cultured with 500 μM oleic acid for 48 h. Oleic acid-treated cells exhibited increased ROS generation, lipid accumulation and PARP1 activation. Treatment with the PARP1 inhibitor PJ34 and transfection with PARP1 small interfering RNA both prevented the oleic acid-induced impairment of the insulin signaling pathway. Furthermore, treatment with PJ34 reversed the oleic acid-induced decrease in intracellular NAD concentration, while exogenous NAD protected cells against oleic acid-induced insulin insensitivity. Combined NAD and PJ34 administration did not enhance the effects obtained by treatment with either NAD or PJ34 alone. Interestingly, when cells were treated with the SIRT1 inhibitor EX527, the protective effects of PJ34 and NAD treatment were diminished. Taken together, these data suggest that NAD depletion by PARP1 activation is essential for the modulation of insulin sensitivity in oleic acid-induced lipotoxicity.

  7. Insulin sensitivity in African-American children with and without family history of type 2 diabetes.

    PubMed

    Danadian, K; Balasekaran, G; Lewy, V; Meza, M P; Robertson, R; Arslanian, S A

    1999-08-01

    African-Americans are at increased risk for type 2 diabetes. We have previously demonstrated that African-American children are hyperinsulinemic and insulin resistant compared with their white American peers. The aim of the present investigation was to assess the impact of family history of type 2 diabetes on insulin sensitivity in African-American children. A total of 13 prepubertal healthy children with negative family history (FH-) and 9 with positive family history (FH+) of type 2 diabetes underwent a 3-h hyperinsulinemic (40 mU x m(-2) x min(-1))-euglycemic clamp study to assess insulin sensitivity. The groups were comparable for age, pubertal status, total body adiposity determined by dual-energy X-ray absorptiometry, abdominal adiposity assessed by computed tomography scan at the level of L4-5 lumbar vertebra, and physical fitness measured by maximal oxygen consumption (VO2max). The FH+, compared with the FH-, group had lower insulin-stimulated glucose disposal (10.9+/-1.2 vs. 14.2+/-0.9 mg x kg(-1) x min(-1), P = 0.035) and lower nonoxidative glucose disposal (5.7+/-0.8 vs. 8.3+/-0.6 mg x kg(-1) x min(-1), P = 0.015), with no differences in rates of glucose oxidation, fat oxidation, or insulin-mediated free fatty acid suppression. Fasting hepatic glucose production assessed with [6,6-2H2]glucose and basal rates of glucose and fat oxidation were not different between the two groups. These data suggest that in African-American children, family history of type 2 diabetes is a risk factor for insulin resistance. These children manifest important metabolic alterations, including impaired insulin-stimulated total and nonoxidative glucose disposal early in the first decade of life. We propose that this familial tendency, combined with environmental influences, could lead to type 2 diabetes decades later.

  8. Analysis of insulin sensitivity in adipose tissue of patients with primary aldosteronism.

    PubMed

    Urbanet, Riccardo; Pilon, Catia; Calcagno, Alessandra; Peschechera, Alessandro; Hubert, Edwige-Ludiwyne; Giacchetti, Gilberta; Gomez-Sanchez, Celso; Mulatero, Paolo; Toffanin, Mariacristina; Sonino, Nicoletta; Zennaro, Maria-Christina; Giorgino, Francesco; Vettor, Roberto; Fallo, Francesco

    2010-08-01

    The objective of the study was to assess the effect of high aldosterone levels on insulin sensitivity of adipose tissue in humans. Visceral adipose tissue (VAT) was obtained from patients with aldosterone-producing adenoma (APA; n=14) and, as controls, nonfunctioning adenoma (NFA; n=14) undergoing laparoscopic adrenalectomy. Homeostasis model assessment index was higher and potassium was lower in APA than NFA (P<0.05). Immunohistochemistry, Western blotting, and real-time PCR were used to detect and quantify mineralocorticoid receptor (MR) expression. Transcript levels of peroxisome proliferative-activated receptor-gamma, insulin receptor, glucose transporter 4, insulin receptor substrate-1 and -2, leptin, adiponectin, IL-6, monocyte chemoattractant protein-1, glucocorticoid receptor (GR)-alpha, 11beta-hydroxysteroid dehydrogenase (HSD11B) type 1, and HSD11B2 were quantified. The effect of increasing aldosterone concentrations on 2-deoxy-[3H]d-glucose uptake was tested in human sc abdominal adipocytes. Expression of MR was demonstrated in VAT, with no difference between APA and NFA as to mRNA levels of MR, GRalpha, HSD11B1, and glucose metabolism and inflammation factors. In cultured adipocytes, basal and insulin-stimulated glucose uptake were unaffected by 1-100 nM (normal/hyperaldosteronism) and impaired only by much higher, up to 10 microM, aldosterone concentrations. The impairment was prevented by RU486 but not by eplerenone. Gene expression of insulin signaling/inflammatory molecules was similar in VAT of APA and NFA patients, not supporting an effect of aldosterone excess on insulin sensitivity of adipose tissues. Only at pharmacological concentrations and through GR activation, aldosterone reduced glucose uptake in adipocytes. Insulin resistance in primary aldosteronism might occur in compartments other than fat and/or depend on concurrent environmental factors.

  9. Caloric restriction and L-carnitine administration improves insulin sensitivity in patients with impaired glucose metabolism.

    PubMed

    Molfino, Alessio; Cascino, Antonia; Conte, Caterina; Ramaccini, Cesarina; Rossi Fanelli, Filippo; Laviano, Alessandro

    2010-01-01

    Reduced circulating and tissue carnitine levels, possibly leading to impaired mitochondrial function, have been postulated to be involved in the pathogenesis of insulin resistance. However, whether L-carnitine administration may improve insulin sensitivity in patients with impaired fasting glucose (IFG) or type 2 diabetes mellitus (DM-2) is still controversial. The aim of the study was to explore the role of L-carnitine supplementation in influencing insulin sensitivity. A randomized controlled study involving adult outpatients was designed. Adult patients referred to the outpatient clinic and within 10 days of the diagnosis of IFG or DM-2 were consecutively enrolled. Exclusion criteria were concomitant antidiabetic therapy and modifications of lifestyle during the previous 4 weeks. Patients were randomly assigned to receive a hypocaloric diet for 10 days (group C; n = 8) or the same dietetic regimen in addition to oral L-carnitine (2 g twice daily) supplementation (group LC; n = 8). Oral glucose tolerance test (OGTT), fasting plasma insulin levels, and homeostasis model assessment of insulin resistance (HOMA-IR) were assessed at the beginning and end of the study. Data were statistically analyzed using the Student t test for paired and unpaired data. OGTT at 2 hours improved in both groups. Only in the L-carnitine-supplemented group did plasma insulin levels and HOMA-IR significantly decrease when compared to baseline values. Considering the role of caloric restriction in increasing the intestinal uptake of carnitine, the results suggest that oral L-carnitine administration, when associated with a hypocaloric feeding regimen, improves insulin resistance and may represent an adjunctive treatment for IFG and DM-2.

  10. B cell secretion and insulin sensitivity in hypertensive and normotensive obese subjects.

    PubMed

    Bonora, E; Moghetti, P; Zenere, M; Tosi, F; Travia, D; Muggeo, M

    1990-09-01

    To test the hypothesis that in obesity hypertension is associated with more pronounced hyperinsulinaemia and insulin resistance we compared plasma insulin levels and insulin sensitivity in a group of 6 obese subjects with untreated hypertension and in a group of 6 obese subjects with normal blood pressure. The two groups were similar for sex, age, body mass index and glucose tolerance. Six nonobese subjects served as controls. The study consisted of a 2-h hyperglycaemic clamp (steady-state plasma glucose = 11 mmol/l) and a 15-min insulin tolerance test (0.1 U/kg body wt). During hyperglycaemic clamp, insulin and C-peptide plasma levels were similar in normotensive and hypertensive obese subjects: the area under the plasma insulin curve was 36,000 +/- 3000 pmol/l X 120 min in the former and 34,000 +/- 1000 pmol/l X 120 min in the latter; the area under the plasma C-peptide curve was 298,000 +/- 26,000 pmol/l X 120 min in the former and 246,000 +/- 26,000 pmol/l X 120 min in the latter (P = n.s.). The ratio M/I between the amount of glucose metabolized (M) and the mean plasma insulin levels (I) during hyperglycaemic clamp was similar in the two groups: 0.59 +/- 0.09 in normotensive and 0.58 +/- 0.08 mg/min X m2 per pmol/l in hypertensive obese subjects (P = n.s.). Also the rate coefficient of glucose disappearance from plasma (K(itt)) after i.v. insulin injection was similar in the two groups (4.08 +/- 0.51 vs. 3.87 +/- 0.53 per cent/min).(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Artemisia dracunculus L. extract ameliorates insulin sensitivity by attenuating inflammatory signalling in human skeletal muscle culture

    PubMed Central

    Vandanmagsar, Bolormaa; Haynie, Kimberly R.; Wicks, Shawna E.; Bermudez, Estrellita M.; Mendoza, Tamra M.; Ribnicky, David; Cefalu, William T.; Mynatt, Randall L.

    2014-01-01

    Aims Bioactives of Artemisia dracunculus L. (termed PMI 5011) have been shown to improve insulin action by increasing insulin signalling in skeletal muscle. However, it has not known if PMI 5011’s effects are retained during an inflammatory condition. We examined the attenuation of insulin action and whether PMI 5011 enhances insulin signalling in the inflammatory environment with elevated cytokines. Methods Muscle cell cultures derived from lean, overweight and diabetic obese subjects were used. Expression of pro-inflammatory genes and inflammatory response of human myotubes were evaluated by RT-PCR. Insulin signalling and activation of inflammatory pathways in human myotubes were evaluated by Multiplex protein assays. Results We found increased gene expression of MCP1 and TNFα, and basal activity of the NFkB pathway in myotubes derived from diabetic-obese subjects as compared to myotubes derived from normal-lean subjects. In line with this, basal Akt phosphorylation (Ser473) was significantly higher, while insulin-stimulated phosphorylation of Akt (Ser473) was lower in myotubes from normal-overweight and diabetic-obese subjects compared to normal-lean subjects. PMI 5011 treatment reduced basal phosphorylation of Akt and enhanced insulin-stimulated phosphorylation of Akt in the presence of cytokines in human myotubes. PMI 5011 treatment led to an inhibition of cytokine-induced activation of inflammatory signalling pathways such as Erk1/2 and IkBα-NFkB and moreover, NFkB target gene expression, possibly by preventing further propagation of the inflammatory response within muscle tissue. Conclusions PMI 5011 improved insulin sensitivity in diabetic-obese myotubes to the level of normal-lean myotubes despite the presence of pro-inflammatory cytokines. PMID:24521217

  12. Nuclear co-repressor (NCoR) is required to maintain insulin sensitivity in C2 C12 myotubes.

    PubMed

    Choudhary, Abhijeet K; Dey, Chinmoy S

    2017-02-01

    Nuclear co-repressor (NCoR) regulates peripheral insulin sensitivity; however, its role in modulating insulin sensitivity in skeletal muscle remains elusive. Present study investigated protein expression and effect of NCoR on insulin sensitivity in murine skeletal muscle cell line C2 C12 . Myotubes as compared to myoblasts of C2 C12 cells were found to be more sensitive in response to insulin as increase in insulin-stimulated phosphorylation of AKT at serine 473 residue (pAKT(S473) ) was significantly higher in myotubes. Incidentally, reduced protein level of NCoR coincided with differentiation of myoblasts into myotubes of C2 C12 cells. However, insulin stimulation per se failed to affect protein level of NCoR either in myoblasts or myotubes of C2 C12 cells. To assess the role of NCoR on insulin sensitivity, NCoR was transiently knocked down using siRNA in myotubes of C2 C12 . In fact, transient silencing of NCoR led to significant reduction in insulin-stimulated pAKT(S473) and impaired glucose uptake. This observation is in contrast to published studies where NCoR has been reported to negatively regulate insulin signaling cascade. Furthermore, transient silencing of NCoR failed to improve insulin sensitivity in chronic hyperinsulinemia-induced insulin-resistant model of C2 C12 cells. Importantly, inhibition of lysosomal protein degradation pathway using ammonium chloride restored protein level of NCoR but failed to increase glucose uptake in serum-starved C2 C12 myotubes. Collectively, data from present study show differential protein level of NCoR under different cell state (myoblast and myotubes) of C2 C12 cells and NCoR proves to be vital for maintaining insulin sensitivity in C2 C12 myotubes.

  13. Chronic renin inhibition with aliskiren improves glucose tolerance, insulin sensitivity, and skeletal muscle glucose transport activity in obese Zucker rats

    PubMed Central

    Marchionne, Elizabeth M.; Diamond-Stanic, Maggie K.; Prasonnarong, Mujalin

    2012-01-01

    We have demonstrated previously that overactivity of the renin-angiotensin system (RAS) is associated with whole body and skeletal muscle insulin resistance in obese Zucker (fa/fa) rats. Moreover, this obesity-associated insulin resistance is reduced by treatment with angiotensin-converting enzyme inhibitors or angiotensin receptor (type 1) blockers. However, it is currently unknown whether specific inhibition of renin itself, the rate-limiting step in RAS functionality, improves insulin action in obesity-associated insulin resistance. Therefore, the present study assessed the effect of chronic, selective renin inhibition using aliskiren on glucose tolerance, whole body insulin sensitivity, and insulin action on the glucose transport system in skeletal muscle of obese Zucker rats. Obese Zucker rats were treated for 21 days with either vehicle or aliskiren (50 mg/kg body wt ip). Renin inhibition was associated with a significant lowering (10%, P < 0.05) of resting systolic blood pressure and induced reductions in fasting plasma glucose (11%) and free fatty acids (46%) and homeostatic model assessment for insulin resistance (13%). Glucose tolerance (glucose area under the curve) and whole body insulin sensitivity (inverse of the glucose-insulin index) during an oral glucose tolerance test were improved by 15% and 16%, respectively, following chronic renin inhibition. Moreover, insulin-stimulated glucose transport activity in isolated soleus muscle of renin inhibitor-treated animals was increased by 36% and was associated with a 2.2-fold greater Akt Ser473 phosphorylation. These data provide evidence that chronic selective inhibition of renin activity leads to improvements in glucose tolerance and whole body insulin sensitivity in the insulin-resistant obese Zucker rat. Importantly, chronic renin inhibition is associated with upregulation of insulin action on skeletal muscle glucose transport, and it may involve improved Akt signaling. These data support the strategy

  14. Chronic renin inhibition with aliskiren improves glucose tolerance, insulin sensitivity, and skeletal muscle glucose transport activity in obese Zucker rats.

    PubMed

    Marchionne, Elizabeth M; Diamond-Stanic, Maggie K; Prasonnarong, Mujalin; Henriksen, Erik J

    2012-01-01

    We have demonstrated previously that overactivity of the renin-angiotensin system (RAS) is associated with whole body and skeletal muscle insulin resistance in obese Zucker (fa/fa) rats. Moreover, this obesity-associated insulin resistance is reduced by treatment with angiotensin-converting enzyme inhibitors or angiotensin receptor (type 1) blockers. However, it is currently unknown whether specific inhibition of renin itself, the rate-limiting step in RAS functionality, improves insulin action in obesity-associated insulin resistance. Therefore, the present study assessed the effect of chronic, selective renin inhibition using aliskiren on glucose tolerance, whole body insulin sensitivity, and insulin action on the glucose transport system in skeletal muscle of obese Zucker rats. Obese Zucker rats were treated for 21 days with either vehicle or aliskiren (50 mg/kg body wt ip). Renin inhibition was associated with a significant lowering (10%, P < 0.05) of resting systolic blood pressure and induced reductions in fasting plasma glucose (11%) and free fatty acids (46%) and homeostatic model assessment for insulin resistance (13%). Glucose tolerance (glucose area under the curve) and whole body insulin sensitivity (inverse of the glucose-insulin index) during an oral glucose tolerance test were improved by 15% and 16%, respectively, following chronic renin inhibition. Moreover, insulin-stimulated glucose transport activity in isolated soleus muscle of renin inhibitor-treated animals was increased by 36% and was associated with a 2.2-fold greater Akt Ser(473) phosphorylation. These data provide evidence that chronic selective inhibition of renin activity leads to improvements in glucose tolerance and whole body insulin sensitivity in the insulin-resistant obese Zucker rat. Importantly, chronic renin inhibition is associated with upregulation of insulin action on skeletal muscle glucose transport, and it may involve improved Akt signaling. These data support the

  15. An assessment of pancreatic endocrine function and insulin sensitivity in patients with transient neonatal diabetes in remission

    PubMed Central

    Shield, J; Temple, I; Sabin, M; Mackay, D; Robinson, D; Betts, P; Carson, D; Cave, H; Chevenne, D; Polak, M

    2004-01-01

    Aims: To examine derived indices of ß cell function, peripheral insulin sensitivity, and the pancreatic response to intravenous glucose loading in children with a previous history of transient neonatal diabetes currently in remission, repeated after a period of two or more years. Methods: The standard intravenous glucose tolerance test (IVGTT) was used to measure the first phase insulin response (FPIR) cumulatively at one and three minutes. In addition, fasting insulin and glucose values were used to estimate insulinogenic indices (ß cell function) and QUICKI (insulin sensitivity). Patients: Six patients with known previous transient neonatal diabetes currently in remission with no exogenous insulin requirement were tested. Control data from 15 children of a similar age were available for derived fasting indices of ß cell functional capacity and insulin sensitivity. Results: One child had a subnormal insulin secretory response to intravenous glucose that remained abnormal two and four years later. The other children had relatively normal or entirely normal responses over two years. Measures of ß cell function and insulin sensitivity in the fasting state showed comparable results to those obtained from normal controls. Conclusions: Most children with transient neonatal diabetes in remission have no evidence of ß cell dysfunction or insulin resistance in the fasting state, although they might have been expected to show subtle defects given the tendency to relapse in adolescence. Measures of insulin response to intravenous glucose loading are often normal but suggest future recurrence if profoundly abnormal. PMID:15210671

  16. Earlier Menarche Is Associated with Lower Insulin Sensitivity and Increased Adiposity in Young Adult Women

    PubMed Central

    Wilson, Dyanne A.; Derraik, José G. B.; Rowe, Deborah L.; Hofman, Paul L.; Cutfield, Wayne S.

    2015-01-01

    Objective We aimed to assess whether age at menarche was associated with insulin sensitivity in young adult women. Methods We studied 54 healthy young women aged 20–30 years. Participants were grouped according to age at menarche: Early (≤11.0 years; n=13), Average (>12.0 and ≤13.0 years; n=28), and Late (≥14.0 years, n=13). Primary outcome was insulin sensitivity measured using intravenous glucose tolerance tests and Bergman’s minimal model. Body composition was assessed using whole-body dual-energy X-ray absorptiometry. Results Earlier menarche was associated with lower insulin sensitivity (p=0.015). There was also a continuous increase in adiposity with younger age at menarche, which was associated with increased weight (p=0.001), BMI (p=0.002), total body fat (p=0.049), and truncal fat (p=0.020). Stratified analyses showed that insulin sensitivity in Early women (5.5 x10-4·min-1(mU/l)) was lower than in Average (8.0 x10-4·min-1(mU/l), p=0.021) and Late (8.6 x10-4·min-1(mU/l), p=0.033) groups. Early women (weight=66.1 kg; BMI=24.1 kg/m2) were considerably heavier and fatter than Average (59.0 kg, p=0.004; 21.4 kg/m2, p=0.002) and Late (57.0 kg, p=0.001; 20.8 kg/m2, p=0.0009) women. Conclusions Early menarche is associated with lower insulin sensitivity and increased adiposity in young adulthood, potentially increasing the risk of type 2 diabetes and the metabolic syndrome later in life. PMID:26061526

  17. Exercise-induced lowering of fetuin-A may increase hepatic insulin sensitivity.

    PubMed

    Malin, Steven K; del Rincon, Juan Pablo; Huang, Hazel; Kirwan, John P

    2014-11-01

    Fetuin-A is a novel hepatokine, and there is preliminary evidence that it may contribute to the pathogenesis of type 2 diabetes. Exercise reduces fetuin-A, but the specific metabolic effects particularly as they relate to the regulation of insulin resistance are unknown. This led us to examine the effect of exercise training on circulating fetuin-A in relation to skeletal muscle and/or hepatic insulin resistance in obese adults. Twenty older adults (66.3 ± 0.9 yr; body mass index, 34.1 ± 1.2 kg · m(-1)) participated in this prospective 12-wk study and underwent supervised exercise training (5 d · wk(-1), 60 min · d(-1) at approximately 85% HRmax). Insulin resistance was assessed using the euglycemic-hyperinsulinemic clamp (40 mU · m(-2) · min(-1)) with isotope dilution ([6,6-H2]-glucose). Skeletal muscle insulin sensitivity (rate of glucose disposal), hepatic insulin resistance (rate of glucose appearance × fasting insulin), metabolic flexibility (respiratory quotient clamp - respiratory quotient fasting), fetuin-A, high-molecular weight adiponectin, high-sensitivity C-reactive protein, leptin, and body fat (dual energy x-ray absorptiometry) were measured before and after the intervention. Exercise reduced body fat, high-sensitivity C-reactive protein, leptin and hepatic as well as skeletal muscle insulin resistance (each, P < 0.05). Fetuin-A was decreased by approximately 8% (pre, 1.01 ± 0.08, vs post, 0.89 ± 0.06 g · L(-1); P < 0.05) after the intervention, and lower fetuin-A after exercise correlated with lower hepatic insulin resistance (r = -0.46, P < 0.01), increased metabolic flexibility (r = -0.70, P < 0.01) and high-molecular weight adiponectin (r = -0.57, P < 0.01). Fetuin-A may contribute to exercise training-induced improvements in hepatic insulin resistance, CHO utilization, and inflammation in older obese adults. Further work is required to determine the cellular mechanism(s) of action for fetuin-A because this hepatokine is related to type

  18. Effects of acarbose treatment on markers of insulin sensitivity and systemic inflammation.

    PubMed

    Rudovich, Natalia N; Weickert, Martin O; Pivovarova, Olga; Bernigau, Wolfgang; Pfeiffer, Andreas F H

    2011-06-01

    This study assessed the effect of postprandial glucose reduction by acarbose on insulin sensitivity and biomarkers of systemic inflammation. This was a single-center, double-blind, randomized, placebo-controlled, crossover study <40 weeks in duration, involving 66 subjects with varying degrees of glucose tolerance. Eligible patients completed a 3-week run-in period and were randomized to receive either 100 mg of acarbose three times daily followed by placebo, or vice versa, lasting 12 weeks each with a 12-week washout between interventions. Liquid meal challenges and hyperinsulinemic-euglycemic glucose clamp were performed at weeks 0, 12, 24, and 36. Fasting proinsulin levels and proinsulin-to-adiponectin ratios but not fasting adiponectin levels were significantly lower during acarbose versus placebo treatment. Clamp-derived insulin sensitivity index and body weight were unchanged by the intervention. Levels of fasting insulin, fasting glucose, monocyte chemoattractant protein-1, interleukin-6, and interleukin-1β were comparable between treatments. In the liquid meal challenge tests, postprandial glucose and insulin responses were significantly lower during acarbose versus placebo treatment. The effects of acarbose on the reduction of fasting proinsulin was most pronounced in subjects with impaired fasting glucose/impaired glucose tolerance (n = 24). Reduction of the glycemic load by acarbose decreased fasting levels of proinsulin but had no effect on adiponectin and whole-body insulin sensitivity as well as biomarkers reflecting inflammation. The preventive effects of acarbose on type 2 diabetes mellitus and cardiovascular risk need further investigation and cannot be explained by changes of insulin resistance and inflammatory biomarkers.

  19. Modeling hepatic insulin sensitivity during a meal: validation against the euglycemic hyperinsulinemic clamp

    PubMed Central

    Dalla Man, Chiara; Piccinini, Francesca; Basu, Rita; Basu, Ananda; Rizza, Robert A.

    2013-01-01

    Recently, we proposed a model describing the suppression of endogenous glucose production (EGP) during a meal. It assumes that EGP suppression depends on glucose concentration and its rate of change and on delayed insulin action. Hepatic insulin sensitivity (SILmeal) can be derived from EGP model parameters. This model was shown to adequately describe EGP profiles measured with multiple tracer techniques; however, SILmeal has never been compared directly with its euglycemic hyperinsulinemic clamp counterpart (SILclamp). To do so, 62 subjects with different degrees of glucose tolerance underwent a triple-tracer mixed meal. Fifty-seven subjects also underwent a labeled ([3-3H]glucose) euglycemic hyperinsulinemic clamp. From the triple-tracer meal data, virtually model-independent estimates of EGP were obtained using the tracer-to-tracee clamp technique, and the EGP model was identified in each subject. Model fit was satisfactory, and SILmeal was estimated with good precision. Correlation between SILclamp and SILmeal was good (r = 0.72, P < 0.001); however, SILmeal was lower than SILclamp (4.60 ± 0.64 vs. 8.73 ± 1.07 10−4 dl·kg−1·min−1 per μU/ml, P < 0.01). This difference may be due to different ranges of insulin explored during the two tests (ΔIclamp = 15.60 ± 1.61 vs. ΔImeal= 83.37 ± 10.71 μU/ml) as well as steady- vs. non-steady-state glucose and insulin profiles. In conclusion, the new EGP model provides an estimate of hepatic insulin sensitivity during a meal that is in good agreement with that derived in the same individuals with a hyperinsulinemic clamp. When used in conjunction with the minimal model, the approach potentially enables estimation of hepatic insulin sensitivity from a single-tracer labeled meal or oral glucose tolerance test. PMID:23443923

  20. Effects of exercise training on adiposity, insulin sensitivity, and plasma hormone and lipid concentrations in overweight or obese, insulin-resistant horses.

    PubMed

    Carter, Rebecca A; McCutcheon, L Jill; Valle, Emanuela; Meilahn, Elaine N; Geor, Raymond J

    2010-03-01

    To determine effects of exercise training without dietary restriction on adiposity, basal hormone and lipid concentrations and glucose and insulin dynamics in overweight or obese, insulin-resistant horses. 12 overweight or obese (body condition score > or = 7), insulin-resistant (insulin sensitivity < or = 1.2 x 10(-4) L/min/mU) geldings. 4 horses remained sedentary, and 8 horses were exercised for 4 weeks at low intensity and 4 weeks at higher intensity, followed by 2 weeks of detraining. Prior to and after each training period, frequently sampled IV glucose tolerance tests with minimal model analysis were performed and baseline plasma insulin, glucose, triglycerides, non-esterified fatty acids, and leptin concentrations were analyzed. Adiposity was assessed by use of morphometrics, ultrasonic subcutaneous fat thickness, and estimation of fat mass from total body water (deuterium dilution method). Body weight and fat mass decreased by 4% (mean +/- SD, 20 +/- 8 kg) and 34% (32 +/- 9 kg), respectively, compared with pre-exercise values, with similar losses during low- and higher-intensity training. There was no effect of exercise training on subcutaneous fat thickness, plasma hormone and lipid concentrations, or minimal model parameters of glucose and insulin dynamics. Results suggested that moderate exercise training without concurrent dietary restriction does not mitigate insulin resistance in overweight or obese horses. A more pronounced reduction in adiposity or higher volume or intensity of exercise may be necessary for improvement in insulin sensitivity in such horses.

  1. Essential role of chicken ovalbumin upstream promoter-transcription factor II in insulin secretion and insulin sensitivity revealed by conditional gene knockout.

    PubMed

    Bardoux, Pascale; Zhang, Pili; Flamez, Daisy; Perilhou, Anaïs; Lavin, Tiphaine Aguirre; Tanti, Jean-François; Hellemans, Karine; Gomas, Emmanuel; Godard, Cécile; Andreelli, Fabrizio; Buccheri, Maria Antonietta; Kahn, Axel; Le Marchand-Brustel, Yannick; Burcelin, Rémy; Schuit, Frans; Vasseur-Cognet, Mireille

    2005-05-01

    Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) has been implicated in the control of blood glucose by its potent effect on expression and signaling of various nuclear receptors. To understand the role of COUP-TFII in glucose homeostasis, conditional COUP-TFII-deficient mice were generated and crossed with mice expressing Cre under the control of rat insulin II gene promoter, resulting in deletion of COUP-TFII in pancreatic beta-cells. Homozygous mutants died before birth for yet undetermined reasons. Heterozygous mice appeared healthy at birth and showed normal growth and fertility. When challenged intraperitoneally, the animals had glucose intolerance associated with reduced glucose-stimulated insulin secretion. Moreover, these heterozygous mice presented a mild increase in fasting and random-fed circulating insulin levels. In accordance, islets isolated from these animals exhibited higher insulin secretion in low glucose conditions and markedly decreased glucose-stimulated insulin secretion. Their pancreata presented normal microscopic architecture and insulin content up to 16 weeks of study. Altered insulin secretion was associated with peripheral insulin resistance in whole animals. It can be concluded that COUP-TFII is a new, important regulator of glucose homeostasis and insulin sensitivity.

  2. Apelin administration improves insulin sensitivity in overweight men during hyperinsulinaemic-euglycaemic clamp.

    PubMed

    Gourdy, Pierre; Cazals, Laurent; Thalamas, Claire; Sommet, Agnès; Calvas, Fabienne; Galitzky, Monique; Vinel, Claire; Dray, Cédric; Hanaire, Hélène; Castan-Laurell, Isabelle; Valet, Philippe

    2017-07-06

    Apelin is a recently identified adipokine known to improve glucose tolerance and insulin sensitivity in murine models. This study was dedicated to the proof of concept that apelin administration also enhances insulin sensitivity in humans. Healthy overweight men were enrolled in this randomized, double-blind, placebo-controlled, cross-over study that successively considered the efficacy and the tolerance of 2 doses of (pyr1)-Apelin-13. A first group of subjects received 9 nmol/kg (n = 8) of (pyr1)-Apelin-13 and, after examination of safety data, a second group received 30 nmol/kg (n = 8). Each volunteer underwent 2 hyperinsulinaemic-euglycaemic clamps where the basal level of glucose infusion rate (GIR) was measured from the 90th to the 120th minute (level 1). Continuous intravenous administration of apelin or placebo was ongoing for 2 hours and GIR was finally evaluated from the 210th to the 240th minute (level 2). Primary evaluation endpoint was the difference in GIR between level 2 and level 1 (ΔGIR). A slight increase in ΔGIR was observed with the low apelin dose (0.65 ± 0.71 mg/kg/min, P = .055) whereas the highest dose significantly improved insulin sensitivity (0.82 ± 0.71 mg/kg/min, P = .033). Cardiovascular monitoring and safety reports did not reveal any side effect of apelin administration. As the first demonstration of the insulin-sensitizing action of apelin in humans, alongside numerous studies in rodents, this trial confirms that the apelin/APJ pathway should be considered as a new target to design alternative therapeutic strategies to control insulin resistance in type 2 diabetic patients. © 2017 John Wiley & Sons Ltd.

  3. Complement C3 Is the Strongest Predictor of Whole-Body Insulin Sensitivity in Psoriatic Arthritis

    PubMed Central

    D’Angelo, Salvatore; Russo, Emilio; Nicolosi, Kassandra; Gallucci, Antonio; Chiaravalloti, Agostino; Bruno, Caterina; Naty, Saverio; De Sarro, Giovambattista; Olivieri, Ignazio; Grembiale, Rosa Daniela

    2016-01-01

    Objectives To evaluate the correlation between inflammatory measures and whole-body insulin sensitivity in psoriatic arthritis (PsA) patients. Methods For the present study, 40 nondiabetic PsA patients were recruited. A standard oral glucose tolerance test (OGTT) was performed. The insulin sensitivity index (ISI), insulinogenic index (IGI) and oral disposition index (ODI) were calculated from dynamic values of glucose and insulin obtained during OGTT. Results In our study population, mean ISI was 3.5 ± 2.5, median IGI was 1.2 (0.7–1.8), mean ODI 4.5 ± 4.5. In univariate correlation analysis, ISI correlated inversely with systolic blood pressure (sBP) (R = -0.52, p = 0.001), diastolic blood pressure (dBP) (R = -0.45, p = 0.004) and complement C3 (R = -0.43, p = 0.006) and ODI correlated inversely with sBP (R = -0.38, p = 0.02), dBP (R = -0.35, p = 0.03) and complement C3 (R = -0.37, p = 0.02). No significant correlations were found between analyzed variables and IGI. In a stepwise multiple regression, only complement C3 entered in the regression equation and accounted for approximately 50% of the variance of ISI. Using a receiver operating characteristic (ROC) curve we identified the best cut-off for complement C3 of 1.32 g/L that yielded a sensitivity of 56% and a specificity of 96% for classification of insulin resistant patients. Conclusions In conclusion, our data suggest that serum complement C3 could represent a useful marker of whole-body insulin sensitivity in PsA patients. PMID:27656896

  4. Diet and Exercise Interventions Reduce Intrahepatic Fat Content and Improve Insulin Sensitivity in Obese Older Adults

    PubMed Central

    Shah, Krupa; Stufflebam, Abby; Hilton, Tiffany N.; Sinacore, David R.; Klein, Samuel; Villareal, Dennis T.

    2009-01-01

    Both obesity and aging increase intrahepatic fat (IHF) content, which leads to non-alcoholic fatty liver disease and metabolic abnormalities such as insulin resistance. We evaluated the effects of diet and diet in conjunction with exercise on IHF content and associated metabolic abnormalities in obese older adults. Eighteen obese (BMI ≥30 kg/m2) older (≥65 years old) adults completed a 6-month clinical trial. Participants were randomized to diet (D group; n=9) or diet+exercise (D+E group; n=9). Primary outcome was IHF quantified by magnetic resonance spectroscopy. Secondary outcomes included insulin sensitivity (assessed by oral glucose tolerance), body composition (assessed by DXA), physical function (VO2peak and strength), glucose, lipids, and blood pressure. Body weight (D: −9±1%, D+E: −10±2%, both p<0.05) and fat mass (D: −13±3%, D+E −16±3%, both p<0.05) decreased in both groups but there was no difference between groups. IHF decreased to a similar extent in both groups (D: −46±11%, D+E: −45 ± 8%, both p<0.05), which was accompanied by comparable improvements in insulin sensitivity (D: 66±25%, D+E: 68±28%, both p<0.05). The relative decreases in IHF correlated directly with relative increases in insulin sensitivity index (r=−0.52; p<0.05). Improvements in VO2peak, strength, plasma triglyceride and HDL-cholesterol concentration, and diastolic blood pressure occurred in the D+E group (all p<0.05) but not in the D group. Diet with or without exercise results in significant decreases in IHF content accompanied by considerable improvements in insulin sensitivity in obese older adults. The addition of exercise to diet therapy improves physical function and other obesity- and aging-related metabolic abnormalities. PMID:19390517

  5. Modification and Validation of the Triglyceride-to-HDL Cholesterol Ratio as a Surrogate of Insulin Sensitivity in White Juveniles and Adults without Diabetes Mellitus: The Single Point Insulin Sensitivity Estimator (SPISE).

    PubMed

    Paulmichl, Katharina; Hatunic, Mensud; Højlund, Kurt; Jotic, Aleksandra; Krebs, Michael; Mitrakou, Asimina; Porcellati, Francesca; Tura, Andrea; Bergsten, Peter; Forslund, Anders; Manell, Hannes; Widhalm, Kurt; Weghuber, Daniel; Anderwald, Christian-Heinz

    2016-09-01

    The triglyceride-to-HDL cholesterol (TG/HDL-C) ratio was introduced as a tool to estimate insulin resistance, because circulating lipid measurements are available in routine settings. Insulin, C-peptide, and free fatty acids are components of other insulin-sensitivity indices but their measurement is expensive. Easier and more affordable tools are of interest for both pediatric and adult patients. Study participants from the Relationship Between Insulin Sensitivity and Cardiovascular Disease [43.9 (8.3) years, n = 1260] as well as the Beta-Cell Function in Juvenile Diabetes and Obesity study cohorts [15 (1.9) years, n = 29] underwent oral-glucose-tolerance tests and euglycemic clamp tests for estimation of whole-body insulin sensitivity and calculation of insulin sensitivity indices. To refine the TG/HDL ratio, mathematical modeling was applied including body mass index (BMI), fasting TG, and HDL cholesterol and compared to the clamp-derived M-value as an estimate of insulin sensitivity. Each modeling result was scored by identifying insulin resistance and correlation coefficient. The Single Point Insulin Sensitivity Estimator (SPISE) was compared to traditional insulin sensitivity indices using area under the ROC curve (aROC) analysis and χ(2) test. The novel formula for SPISE was computed as follows: SPISE = 600 × HDL-C(0.185)/(TG(0.2) × BMI(1.338)), with fasting HDL-C (mg/dL), fasting TG concentrations (mg/dL), and BMI (kg/m(2)). A cutoff value of 6.61 corresponds to an M-value smaller than 4.7 mg · kg(-1) · min(-1) (aROC, M:0.797). SPISE showed a significantly better aROC than the TG/HDL-C ratio. SPISE aROC was comparable to the Matsuda ISI (insulin sensitivity index) and equal to the QUICKI (quantitative insulin sensitivity check index) and HOMA-IR (homeostasis model assessment-insulin resistance) when calculated with M-values. The SPISE seems well suited to surrogate whole-body insulin sensitivity from inexpensive fasting single-point blood draw and BMI

  6. PGC-1α regulation by exercise training and its influences on muscle function and insulin sensitivity

    PubMed Central

    Lira, Vitor A.; Benton, Carley R.; Yan, Zhen

    2010-01-01

    The peroxisome proliferator-activated receptor-γ (PPARγ) coactivator-1α (PGC-1α) is a major regulator of exercise-induced phenotypic adaptation and substrate utilization. We provide an overview of 1) the role of PGC-1α in exercise-mediated muscle adaptation and 2) the possible insulin-sensitizing role of PGC-1α. To these ends, the following questions are addressed. 1) How is PGC-1α regulated, 2) what adaptations are indeed dependent on PGC-1α action, 3) is PGC-1α altered in insulin resistance, and 4) are PGC-1α-knockout and -transgenic mice suitable models for examining therapeutic potential of this coactivator? In skeletal muscle, an orchestrated signaling network, including Ca2+-dependent pathways, reactive oxygen species (ROS), nitric oxide (NO), AMP-dependent protein kinase (AMPK), and p38 MAPK, is involved in the control of contractile protein expression, angiogenesis, mitochondrial biogenesis, and other adaptations. However, the p38γ MAPK/PGC-1α regulatory axis has been confirmed to be required for exercise-induced angiogenesis and mitochondrial biogenesis but not for fiber type transformation. With respect to a potential insulin-sensitizing role of PGC-1α, human studies on type 2 diabetes suggest that PGC-1α and its target genes are only modestly downregulated (≤34%). However, studies in PGC-1α-knockout or PGC-1α-transgenic mice have provided unexpected anomalies, which appear to suggest that PGC-1α does not have an insulin-sensitizing role. In contrast, a modest (∼25%) upregulation of PGC-1α, within physiological limits, does improve mitochondrial biogenesis, fatty acid oxidation, a