Optimum systems design with random input and output applied to solar water heating
NASA Astrophysics Data System (ADS)
Abdel-Malek, L. L.
1980-03-01
Solar water heating systems are evaluated. Models were developed to estimate the percentage of energy supplied from the Sun to a household. Since solar water heating systems have random input and output queueing theory, birth and death processes were the major tools in developing the models of evaluation. Microeconomics methods help in determining the optimum size of the solar water heating system design parameters, i.e., the water tank volume and the collector area.
Varying properties along lengths of temperature limited heaters
Vinegar, Harold J [Bellaire, TX; Xie, Xueying [Houston, TX; Miller, David Scott [Katy, TX; Ginestra, Jean Charles [Richmond, TX
2011-07-26
A system for heating a subsurface formation is described. The system includes an elongated heater in an opening in the formation. The elongated heater includes two or more portions along the length of the heater that have different power outputs. At least one portion of the elongated heater includes at least one temperature limited portion with at least one selected temperature at which the portion provides a reduced heat output. The heater is configured to provide heat to the formation with the different power outputs. The heater is configured so that the heater heats one or more portions of the formation at one or more selected heating rates.
Power enhancement of heat engines via correlated thermalization in a three-level "working fluid".
Gelbwaser-Klimovsky, David; Niedenzu, Wolfgang; Brumer, Paul; Kurizki, Gershon
2015-09-23
We explore means of maximizing the power output of a heat engine based on a periodically-driven quantum system that is constantly coupled to hot and cold baths. It is shown that the maximal power output of such a heat engine whose "working fluid" is a degenerate V-type three-level system is that generated by two independent two-level systems. Hence, level degeneracy is a thermodynamic resource that may effectively double the power output. The efficiency, however, is not affected. We find that coherence is not an essential asset in such multilevel-based heat engines. The existence of two thermalization pathways sharing a common ground state suffices for power enhancement.
Characterization of Magma-Driven Hydrothermal Systems at Oceanic Spreading Centers
NASA Astrophysics Data System (ADS)
Farough, A.; Lowell, R. P.; Corrigan, R.
2012-12-01
Fluid circulation in high-temperature hydrothermal systems involves complex water-rock chemical reactions and phase separation. Numerical modeling of reactive transport in multi-component, multiphase systems is required to obtain a full understanding of the characteristics and evolution of hydrothermal vent systems. We use a single-pass parameterized model of high-temperature hydrothermal circulation at oceanic spreading centers constrained by observational parameters such as vent temperature, heat output, and vent field area, together with surface area and depth of the sub-axial magma chamber, to deduce fundamental hydrothermal parameters such as mass flow rate, bulk permeability, conductive boundary layer thickness at the base of the system, magma replenishment rate, and residence time in the discharge zone. All of these key subsurface characteristics are known for fewer than 10 sites out of 300 known hydrothermal systems. The principal limitations of this approach stem from the uncertainty in heat output and vent field area. For systems where data are available on partitioning of heat and chemical output between focused and diffuse flow, we determined the fraction of high-temperature vent fluid incorporated into diffuse flow using a two-limb single pass model. For EPR 9°50` N and ASHES, the diffuse flow temperatures calculated assuming conservative mixing are nearly equal to the observed temperatures indicating that approximately 80%-90% of the hydrothermal heat output occurs as high-temperature flow derived from magmatic heat even though most of the heat output appears as low-temperature diffuse discharge. For the Main Endeavour Field and Lucky Strike, diffuse flow fluids show significant conductive cooling and heating respectively. Finally, we calculate the transport of various geochemical constituents in focused and diffuse flow at the vent field scale and compare the results with estimates of geochemical transports from the Rainbow hydrothermal field where diffuse flow is absent.
Power enhancement of heat engines via correlated thermalization in a three-level “working fluid”
Gelbwaser-Klimovsky, David; Niedenzu, Wolfgang; Brumer, Paul; Kurizki, Gershon
2015-01-01
We explore means of maximizing the power output of a heat engine based on a periodically-driven quantum system that is constantly coupled to hot and cold baths. It is shown that the maximal power output of such a heat engine whose “working fluid” is a degenerate V-type three-level system is that generated by two independent two-level systems. Hence, level degeneracy is a thermodynamic resource that may effectively double the power output. The efficiency, however, is not affected. We find that coherence is not an essential asset in such multilevel-based heat engines. The existence of two thermalization pathways sharing a common ground state suffices for power enhancement. PMID:26394838
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tricaud, Christophe; Ernst, Timothy C.; Zigan, James A.
The disclosure provides a waste heat recovery system with a system and method for calculation of the net output torque from the waste heat recovery system. The calculation uses inputs from existing pressure and speed sensors to create a virtual pump torque sensor and a virtual expander torque sensor, and uses these sensors to provide an accurate net torque output from the WHR system.
Heat engine generator control system
Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.
1998-05-12
An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.
Heat engine generator control system
Rajashekara, Kaushik; Gorti, Bhanuprasad Venkata; McMullen, Steven Robert; Raibert, Robert Joseph
1998-01-01
An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.
[MICROCLIMATE CONDITION IN SUBWAY CARS IN THE SUMMER PERIOD OF THE YEAR].
Leksin, A G; Evlampieva, M N; Timoshenkova, E V; Morgunov, A V; Kaptsov, V A
2015-01-01
There are presented the results of the work, which aims to identify the relationship between the temperature of air in the salons of subway cars from the heat output of passengers in different people occupancy of cars during "peak hours", and to determine the efficacy offorced air handling regular ventilation or air conditioning system to remove the elevated heat load on passengers. In the work there was used the method of calculating the amount of heat output of 215 passengers (nominal fullness of the chamber) and the simulation method of heat and moisture output of the same number of passengers. The operating system of ventilation has been shown to fail to decline the average temperature of the air in the passenger compartment to the optimum values and most efficient approach for the reducing the heat load on the passengers is the use of air conditioning systems.
An Assessment of Magma-Hydrothermal Heat Output at the Costa Rica Rift
NASA Astrophysics Data System (ADS)
Lowell, R. P.; Morales Maqueda, M. A.; Banyte, D.; Zhang, L.; Tong, V.; Hobbs, R. W.; Harris, R. N.
2016-12-01
A joint geophysical/physical oceanographic investigation of the Costa Rica Ridge as part of the OSCAR (Oceanographic and Seismic Characterization of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge) research program enables us to estimate hydrothermal heat output and its likely link to a sub-axial magma lens (AML). In December 2014, a number of tow-yo casts were made along and near the ridge axis where seismic reflection data collected in 1994 showed the presence of seismic reflector interpreted to be an AML at a depth of about 2800 m below the seafloor. A decline in beam transmission in a ≈ 200 m thick region located approximately 800 to 900 meters above the seafloor indicated the presence of a hydrothermal plume. CTD data collected above the ridge yielded a weighted average buoyancy frequency of approximately 19.3 x 10-8 s-2. Assuming a mean hydrothermal vent temperature of 350°C, buoyant plume theory yields a heat output between 400 and 600 MW. Application of the single-pass modeling approach to the hydrothermal system, yields an estimated mass flow between 210 and 337 kg/s, and the mean product of crustal permeability x discharge area ranges between 6 and 10 x 10-9 m4. A multichannel seismic profile collected in 2015 indicates the presence of a reflector 5 km along-axis and < 100 m wide, in approximately the same location as the 1994 survey, suggesting that magma-driven hydrothermal heat output may have exhibited stability on a decadal time scale. The relatively small size of the inferred AML, when coupled to the heat output estimate and the single-pass model, suggests that the conductive boundary layer at the top the AML is 2m thick and that the AML must be frequently replenished to maintain stable heat output. Assuming the hydrothermal system is driven by magmatic latent heat, a 100 m thick AML could have powered a 100 MW hydrothermal system for 20 years, while inputting 5 x 107 m3 of melt into the axis. These results indicate hydrothermal heat output at the Costa Rica Ridge is time-varying.
Nam, Sung-Ki; Kim, Jung-Kyun; Cho, Sung-Cheon; Lee, Sun-Kyu
2010-01-01
A complementary metal-oxide semiconductor-compatible process was used in the design and fabrication of a suspended membrane microfluidic heat flux sensor with a thermopile for the purpose of measuring the heat flow rate. The combination of a thirty-junction gold and nickel thermoelectric sensor with an ultralow noise preamplifier, a low pass filter, and a lock-in amplifier can yield a resolution 20 nW with a sensitivity of 461 V/W. The thermal modulation method is used to eliminate low-frequency noise from the sensor output, and various amounts of fluidic heat were applied to the sensor to investigate its suitability for microfluidic applications. For sensor design and analysis of signal output, a method of modeling and simulating electro-thermal behavior in a microfluidic heat flux sensor with an integrated electronic circuit is presented and validated. The electro-thermal domain model was constructed by using system dynamics, particularly the bond graph. The electro-thermal domain system model in which the thermal and the electrical domains are coupled expresses the heat generation of samples and converts thermal input to electrical output. The proposed electro-thermal domain system model is in good agreement with the measured output voltage response in both the transient and the steady state. PMID:22163568
Multi-channel temperature measurement amplification system. [solar heating systems
NASA Technical Reports Server (NTRS)
Currie, J. R. (Inventor)
1981-01-01
A number of differential outputs of thermocouples are sequentially amplified by a common amplifier. The amplified outputs are compared with a reference temperature signal in an offset correction amplifier, and a particularly poled output signal is provided when a differential output is of a discrete level compared with a reference temperature signal.
Improved Stirling engine performance using jet impingement
NASA Technical Reports Server (NTRS)
Johnson, D. C.; Britt, E. J.; Thieme, L. G.
1982-01-01
Of the many factors influencing the performance of a Stirling engine, that of transferring the combustion gas heat into the working fluid is crucial. By utilizing the high heat transfer rates obtainable with a jet impingement heat transfer system, it is possible to reduce the flame temperature required for engine operation. Also, the required amount of heater tube surface area may be reduced, resulting in a decrease in the engine nonswept volume and a related increase in engine efficiency. A jet impingement heat transfer system was designed by Rasor Associates, Inc., and tested in the GPU-3 Stirling engine at the NASA Lewis Research Center. For a small penalty in pumping power (less than 0.5% of engine output) the jet impingement heat transfer system provided a higher combustion-gas-side heat transfer coefficient and a smoothing of heater temperature profiles resulting in lower combustion system temperatures and a 5 to 8% increase in engine power output and efficiency.
Investigation of a continuous heating/cooling technique for cardiac output measurement.
Ehlers, K C; Mylrea, K C; Calkins, J M
1987-01-01
Cardiac output is frequently measured to assess patient hemodynamic status in the operating room and intensive care unit. Current research for measuring cardiac output includes continuous sinusoidal heating and synchronous detection of thermal signals. This technique is limited by maximum heating element temperatures and background thermal noise. A continuous heating and cooling technique was investigated in vitro to determine if greater thermal signal magnitudes could be obtained. A fast responding thermistor was employed to measure consecutive ejected temperature plateaus in the thermal signal. A flow bath and mechanical ventricle were used to simulate the cardiovascular system. A thermoelectric module was used to apply heating and cooling energy to the flow stream. Trials encompassing a range of input power, input frequency, and flow rate were conducted. By alternating heating and cooling, thermal signal magnitude can be increased when compared to continuous heating alone. However, the increase was not sufficient to allow for recording in all patients over the expected normal range of cardiac output. Consecutive ejected temperature plateaus were also measured on the thermal signal and ejection fraction calculations were made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusa, Y.; Ohsawa, S.; Kitaoka, K.
The central part of Kyushu Island, southwest Japan, is located at the junction of the Southwest Japan Arc and the Ryukyu Arc, where a graben (Beppu-Shimabara Graben) has been formed by the rifting tectonic movement. There are many Quaternary volcanoes and active geo- and hydro-thermal fields within the Graben. The Beppu hydrothermal system extends around the Tsurumi-Garandake volcanoes at the eastern end of the Graben. This report will deal with the hydrothermal system beneath the volcanoes specially focusing on Garandake. Modest or violent fumarolic activities are visible near the summit of Garandake (1045 m in height). The total water(steam) outputmore » is 1.4 kg/s and its heat output 3.8 MW, while the heat output from the ground surface of 5.5 x 10{sup 4} m{sup 2} is 19.5 MW estimated by a heat balance analysis based on infrared radiation measurements (Yuhara et al., 1987). Thus the main process of heat discharge from Garandake, totally 23.3 MW, is the radiation from the ground surface. The geothermal gradient observed in a well drilled near the summit indicates that the large heat output is caused by some special process different from conduction because the heat flow by conduction is estimated to be 0.03 MW, which is very small compared with the observed output. Allis and Yusa (1989) suggested that a two-phase flow system is developed in Garandake. The two-phase flow, steam rising and water failing, acts as a heat pipe, by which a large quantity of (latent) heat can be transported upwards. Applying the theory of two-phase flow (Yusa and Oishi, 1989) to the Garandake system, the upflow rate of steam is estimated to be 10.3 kg/s at 100{degrees}C; the temperature near the ground surface, A part of rising steam (1.4 kg/s) flows out through fumaroles, and the remnant condenses to flow downwards. If the system is vapor-dominated, the intrinsic permeability at the shallow part should be about 1 darcy.« less
Work and power fluctuations in a critical heat engine.
Holubec, Viktor; Ryabov, Artem
2017-09-01
We investigate fluctuations of output work for a class of Stirling heat engines with working fluid composed of interacting units and compare these fluctuations to an average work output. In particular, we focus on engine performance close to a critical point where Carnot's efficiency may be attained at a finite power as reported by M. Campisi and R. Fazio [Nat. Commun. 7, 11895 (2016)2041-172310.1038/ncomms11895]. We show that the variance of work output per cycle scales with the same critical exponent as the heat capacity of the working fluid. As a consequence, the relative work fluctuation diverges unless the output work obeys a rather strict scaling condition, which would be very hard to fulfill in practice. Even under this condition, the fluctuations of work and power do not vanish in the infinite system size limit. Large fluctuations of output work thus constitute inseparable and dominant element in performance of the macroscopic heat engines close to a critical point.
Work and power fluctuations in a critical heat engine
NASA Astrophysics Data System (ADS)
Holubec, Viktor; Ryabov, Artem
2017-09-01
We investigate fluctuations of output work for a class of Stirling heat engines with working fluid composed of interacting units and compare these fluctuations to an average work output. In particular, we focus on engine performance close to a critical point where Carnot's efficiency may be attained at a finite power as reported by M. Campisi and R. Fazio [Nat. Commun. 7, 11895 (2016), 10.1038/ncomms11895]. We show that the variance of work output per cycle scales with the same critical exponent as the heat capacity of the working fluid. As a consequence, the relative work fluctuation diverges unless the output work obeys a rather strict scaling condition, which would be very hard to fulfill in practice. Even under this condition, the fluctuations of work and power do not vanish in the infinite system size limit. Large fluctuations of output work thus constitute inseparable and dominant element in performance of the macroscopic heat engines close to a critical point.
Jet impingement heat transfer enhancement for the GPU-3 Stirling engine
NASA Technical Reports Server (NTRS)
Johnson, D. C.; Congdon, C. W.; Begg, L. L.; Britt, E. J.; Thieme, L. G.
1981-01-01
A computer model of the combustion-gas-side heat transfer was developed to predict the effects of a jet impingement system and the possible range of improvements available. Using low temperature (315 C (600 F)) pretest data in an updated model, a high temperature silicon carbide jet impingement heat transfer system was designed and fabricated. The system model predicted that at the theoretical maximum limit, jet impingement enhanced heat transfer can: (1) reduce the flame temperature by 275 C (500 F); (2) reduce the exhaust temperature by 110 C (200 F); and (3) increase the overall heat into the working fluid by 10%, all for an increase in required pumping power of less than 0.5% of the engine power output. Initial tests on the GPU-3 Stirling engine at NASA-Lewis demonstrated that the jet impingement system increased the engine output power and efficiency by 5% - 8% with no measurable increase in pumping power. The overall heat transfer coefficient was increased by 65% for the maximum power point of the tests.
Primeau, John J.
1983-03-01
A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.
Waste heat driven absorption refrigeration process and system
Wilkinson, William H.
1982-01-01
Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.
14 CFR 27.859 - Heating systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Heat exchangers. Each heat exchanger must be— (1) Of suitable materials; (2) Adequately cooled under... following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air..., the heat output of which is essential for safe operation; and (ii) Keep the heater off until restarted...
14 CFR 27.859 - Heating systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Heat exchangers. Each heat exchanger must be— (1) Of suitable materials; (2) Adequately cooled under... following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air..., the heat output of which is essential for safe operation; and (ii) Keep the heater off until restarted...
14 CFR 27.859 - Heating systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Heat exchangers. Each heat exchanger must be— (1) Of suitable materials; (2) Adequately cooled under... following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air..., the heat output of which is essential for safe operation; and (ii) Keep the heater off until restarted...
14 CFR 27.859 - Heating systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Heat exchangers. Each heat exchanger must be— (1) Of suitable materials; (2) Adequately cooled under... following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air..., the heat output of which is essential for safe operation; and (ii) Keep the heater off until restarted...
Solar assisted heat pump for a swine nursery barn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havard, P.L.
1981-01-01
The raising of hogs in Canada and Northern United States may require heating year round in the nursery area of the operation. The use of a solar assisted heat pump system can lead to substantial energy savings. The heat system and the computer simulation output for a demonstration project built in this area are summarized.
Numerical Modeling of Hydrothermal Circulation at the Longqi-1 Field: Southwest Indian Ridge
NASA Astrophysics Data System (ADS)
Guo, Z.; Lowell, R. P.; Tao, C.; Rupke, L.; Lewis, K. C.
2017-12-01
The Longqi-1(Dragon Flag) hydrothermal field is the first high-temperature hydrothermal system observed on the ultra-slow spreading Southwest Indian Ridge. Hydrothermal vents with temperatures near 380 °C are localized by detachment faulting within which extensional deformation likely increases permeability to provide preferred pathways for hydrothermal discharge. To better understand the Longqi-1 circulation system, we construct a 2-D numerical simulations in a NaCl- H2O fluid constrained by key observational data, such as vent temperature and heat output, crust structure derived from seismic data, and fault zone geometry deduced from seismicity. Heat output from AUV surveys is estimated to be » 300 ± 100 MW, and this value, in conjunction with vent temperature was used with the single-pass modeling approach to obtain an average permeability of 10-13 m-2 within the fault zone. In analogy with other fault-controlled hydrothermal systems such as Logatchev-1 we assume a lower background permeability of 10-14 m-2. The top boundary of the system is permeable and maintained at constant seafloor pressure, which is divided into two parts by the detachment fault. The pressure of the southern part is lower than the northern part to simulate the effect of the seafloor topography. The top boundary is upstream weighted to allow high temperature fluid to exit, while recharging fluid is maintained at 10°C. The bottom boundary is impermeable and is given a fixed temperature distribution at a depth of 7 km below the seafloor. The highest value Tmax is maintained over a distance given lateral distance and decreases linearly towards two ends to 300 °C. The salinity is set to 3.2 wt. % NaCl, and the simulations are assumed to be single phase. The results show that with a 7 km deep circulation system, Tmax = 550 oC gives a reasonable temperature and heat output of venting plume.We infer that the observed high salinity results from serpentinization reactions. Assuming all salinity in excess of seawater comes from uptake of H2O during serpentinization, we can estimate the rate of reaction and heat release of serpentinezation based on a simplified reaction equation, observed heat output and salinity data. The estimated rate of heat release during serpentinization is 20 MW. This is approximately 10% of the heat output of Dragon Flag vent field.
XRF inductive bead fusion and PLC based control system
NASA Astrophysics Data System (ADS)
Zhu, Jin-hong; Wang, Ying-jie; Shi, Hong-xin; Chen, Qing-ling; Chen, Yu-xi
2009-03-01
In order to ensure high-quality X-ray fluorescence spectrometry (XRF) analysis, an inductive bead fusion machine was developed. The prototype consists of super-audio IGBT induction heating power supply, rotation and swing mechanisms, and programmable logic controller (PLC). The system can realize sequence control, mechanical movement control, output current and temperature control. Experimental results show that the power supply can operate at an ideal quasi-resonant state, in which the expected power output and the required temperature can be achieved for rapid heating and the uniform formation of glass beads respectively.
Heat-Pipe-Associated Localized Thermoelectric Power Generation System
NASA Astrophysics Data System (ADS)
Kim, Pan-Jo; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Jang, Ju-Chan; Lee, Wook-Hyun; Lee, Ki-Woo
2014-06-01
The present study focused on how to improve the maximum power output of a thermoelectric generator (TEG) system and move heat to any suitable space using a TEG associated with a loop thermosyphon (loop-type heat pipe). An experimental study was carried out to investigate the power output, the temperature difference of the thermoelectric module (TEM), and the heat transfer performance associated with the characteristic of the researched heat pipe. Currently, internal combustion engines lose more than 35% of their fuel energy as recyclable heat in the exhaust gas, but it is not easy to recycle waste heat using TEGs because of the limited space in vehicles. There are various advantages to use of TEGs over other power sources, such as the absence of moving parts, a long lifetime, and a compact system configuration. The present study presents a novel TEG concept to transfer heat from the heat source to the sink. This technology can transfer waste heat to any location. This simple and novel design for a TEG can be applied to future hybrid cars. The present TEG system with a heat pipe can transfer heat and generate power of around 1.8 V with T TEM = 58°C. The heat transfer performance of a loop-type heat pipe with various working fluids was investigated, with water at high heat flux (90 W) and 0.05% TiO2 nanofluid at low heat flux (30 W to 70 W) showing the best performance in terms of power generation. The heat pipe can transfer the heat to any location where the TEM is installed.
Fluid absorption solar energy receiver
NASA Technical Reports Server (NTRS)
Bair, Edward J.
1993-01-01
A conventional solar dynamic system transmits solar energy to the flowing fluid of a thermodynamic cycle through structures which contain the gas and thermal energy storage material. Such a heat transfer mechanism dictates that the structure operate at a higher temperature than the fluid. This investigation reports on a fluid absorption receiver where only a part of the solar energy is transmitted to the structure. The other part is absorbed directly by the fluid. By proportioning these two heat transfer paths the energy to the structure can preheat the fluid, while the energy absorbed directly by the fluid raises the fluid to its final working temperature. The surface temperatures need not exceed the output temperature of the fluid. This makes the output temperature of the gas the maximum temperature in the system. The gas can have local maximum temperatures higher than the output working temperature. However local high temperatures are quickly equilibrated, and since the gas does not emit radiation, local high temperatures do not result in a radiative heat loss. Thermal radiation, thermal conductivity, and heat exchange with the gas all help equilibrate the surface temperature.
NASA Astrophysics Data System (ADS)
Liu, Tongjun; Wang, Tongcai; Luan, Weiling; Cao, Qimin
2017-05-01
Waste heat recovery through thermoelectric generators is a promising way to improve energy conversion efficiency. This paper proposes a type of heat pipe assisted thermoelectric generator (HP-TEG) system. The expandable evaporator and condenser surface of the heat pipe facilitates the intensive assembly of thermoelectric (TE) modules to compose a compact device. Compared with a conventional layer structure thermoelectric generator, this system is feasible for the installment of more TE couples, thus increasing power output. To investigate the performance of the HP-TEG and the optimal number of TE couples, a theoretical model was presented and verified by experiment results. Further theoretical analysis results showed the performance of the HP-TEG could be further improved by optimizing the parameters, including the inlet air temperature, the thermal resistance of the heating section, and thermal resistance of the cooling structure. Moreover, applying a proper number of TE couples is important to acquire the best power output performance.
21 CFR 880.5130 - Infant radiant warmer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... consisting of an infrared heating element intended to be placed over an infant to maintain the infant's body temperature by means of radiant heat. The device may also contain a temperature monitoring sensor, a heat output control mechanism, and an alarm system (infant temperature, manual mode if present, and failure...
21 CFR 880.5130 - Infant radiant warmer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... consisting of an infrared heating element intended to be placed over an infant to maintain the infant's body temperature by means of radiant heat. The device may also contain a temperature monitoring sensor, a heat output control mechanism, and an alarm system (infant temperature, manual mode if present, and failure...
21 CFR 880.5130 - Infant radiant warmer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... consisting of an infrared heating element intended to be placed over an infant to maintain the infant's body temperature by means of radiant heat. The device may also contain a temperature monitoring sensor, a heat output control mechanism, and an alarm system (infant temperature, manual mode if present, and failure...
21 CFR 880.5130 - Infant radiant warmer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... consisting of an infrared heating element intended to be placed over an infant to maintain the infant's body temperature by means of radiant heat. The device may also contain a temperature monitoring sensor, a heat output control mechanism, and an alarm system (infant temperature, manual mode if present, and failure...
21 CFR 880.5130 - Infant radiant warmer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... consisting of an infrared heating element intended to be placed over an infant to maintain the infant's body temperature by means of radiant heat. The device may also contain a temperature monitoring sensor, a heat output control mechanism, and an alarm system (infant temperature, manual mode if present, and failure...
High temperature thermocouple and heat flux gauge using a unique thin film-hardware hot juncture
NASA Technical Reports Server (NTRS)
Liebert, C. H.; Holanda, R.; Hippensteele, S. A.; Andracchio, C. A.
1984-01-01
A special thin film-hardware material thermocouple (TC) and heat flux gauge concept for a reasonably high temperature and high flux flat plate heat transfer experiment was fabricated and tested to gauge temperatures of 911 K. This concept was developed for minimal disturbance of boundary layer temperature and flow over the plates and minimal disturbance of heat flux through the plates. Comparison of special heat flux gauge Stanton number output at steady-state conditions with benchmark literature data was good and agreement was within a calculated uncertainty of the measurement system. Also, good agreement of special TC and standard TC outputs was obtained and the results are encouraging. Oxidation of thin film thermoelements was a primary failure mode after about 5 of operation.
High-temperature thermocouple and heat flux gauge using a unique thin film-hardware hot junction
NASA Technical Reports Server (NTRS)
Liebert, C. H.; Holanda, R.; Hippensteele, S. A.; Andracchio, C. A.
1985-01-01
A special thin film-hardware material thermocouple (TC) and heat flux gauge concept for a reasonably high temperature and high flux flat plate heat transfer experiment was fabricated and tested to gauge temperatures of 911 K. This concept was developed for minimal disturbance of boundary layer temperature and flow over the plates and minimal disturbance of heat flux through the plates. Comparison of special heat flux gauge Stanton number output at steady-state conditions with benchmark literature data was good and agreement was within a calculated uncertainty of the measurement system. Also, good agreement of special TC and standard TC outputs was obtained and the results are encouraging. Oxidation of thin film thermoelements was a primary failure mode after about 5 of operation.
Human Cardiovascular Responses to Passive Heat Stress
Crandall, Craig G.; Wilson, Thad E.
2016-01-01
Heat stress increases human morbidity and mortality compared to normothermic conditions. Many occupations, disease states, as well as stages of life are especially vulnerable to the stress imposed on the cardiovascular system during exposure to hot ambient conditions. This review focuses on the cardiovascular responses to heat stress that are necessary for heat dissipation. To accomplish this regulatory feat requires complex autonomic nervous system control of the heart and various vascular beds. For example, during heat stress cardiac output increases up to twofold, by increases in heart rate and an active maintenance of stroke volume via increases in inotropy in the presence of decreases in cardiac preload. Baroreflexes retain the ability to regulate blood pressure in many, but not all, heat stress conditions. Central hypovolemia is another cardiovascular challenge brought about by heat stress, which if added to a subsequent central volumetric stress, such as hemorrhage, can be problematic and potentially dangerous, as syncope and cardiovascular collapse may ensue. These combined stresses can compromise blood flow and oxygenation to important tissues such as the brain. It is notable that this compromised condition can occur at cardiac outputs that are adequate during normothermic conditions but are inadequate in heat because of the increased systemic vascular conductance associated with cutaneous vasodilation. Understanding the mechanisms within this complex regulatory system will allow for the development of treatment recommendations and countermeasures to reduce risks during the ever-increasing frequency of severe heat events that are predicted to occur. PMID:25589263
NASA Astrophysics Data System (ADS)
Lowell, R. P.; Lata, C.
2016-12-01
The aim of this work is to model heat output from a cooling, convective, crystallizing, and replenished basaltic magma sill, representing an axial magma lens (AML) at mid oceanic ridges. As a simplified version of basaltic melt, we have assumed the melt to be a two-component eutectic system composed of diopside and anorthite. Convective vigor is expressed through the Rayleigh number and heat flux is scaled through a classical relationship between the Rayleigh number and Nusselt number, where the temperature difference driving the convective heat flux is derived from a "viscous" temperature scale reflecting the strong temperature dependent viscosity of the system. Viscosity is modeled as a function of melt composition and temperature using the Tammann-Vogel-Fulcher equation, with parameters fit to the values of observed viscosities along the diopside-anorthite liquidus. It was observed for the un-replenished case, in which crystals fall rapidly to the floor of the AML, model results show that the higher initial concentration of diopside, the more vigorous the convection and the faster the rate of crystallization and decay of heat output. Replenishment of the AML accompanied by modest thickening of the melt layer stabilizes the heat output at values similar to those observed at ridge-axis hydrothermal systems. This study is an important step forward in quantitative understanding of thermal evolution of the axial magma lens at a mid-ocean ridge and the corresponding effect on high-temperature hydrothermal systems. Future work could involve improved replenishment mechanisms, more complex melts, and direct coupling with hydrothermal circulation models.
The anode power supply for the ECRH system on the J-TEXT tokamak
NASA Astrophysics Data System (ADS)
Donghui, XIA; Fangtai, CUI; Changhai, LIU; Zhenxiong, YU; Yikun, JIN; Zhijiang, WANG; J-TEXT, Team1
2018-01-01
The electron cyclotron resonance heating (ECRH) system with a 60 GHz/200 kW/0.5 s gyrotron donated by the Culham Science Center is being developed on the J-TEXT tokamak for plasma heating, current drive and MHD studies. Simultaneously, an anode power supply (APS) has been rebuilt and tested for the output power control of the gyrotron, of which the input voltage is derived from an 80 kV negative cathode power supply. The control strategy by controlling the grid voltage of the tetrode TH5186 is applied to obtain an accurate anode climbing voltage, of which the output voltage can be obtained from 0-30 kV with respect to the cathode power supply. The characteristics of the APS, including control, protection, modulation, and output waveform, were tested with a 100 kV/60 A negative cathode power supply, a dummy load and the ECRH control system. The results indicate that the APS can meet the requirements of the ECRH system on J-TEXT.
Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive
NASA Astrophysics Data System (ADS)
Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya
2016-03-01
Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases, the system design that minimizes cost (e.g., the /W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery TEG with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric (TE) treatment of the exhaust waste heat recovery TEG yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of 1/W it is necessary to achieve heat exchanger costs of 1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but preferred TE design regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously identified low cost design regimes. This work shows that the optimum fill factor F opt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have profound implications on the design and operation of various TE waste heat recovery systems. This work highlights the importance of heat exchanger costs on the overall TEG system costs, quantifies the possible TEG performance-cost domain space based on heat exchanger effects, and provides a focus for future system research and development efforts.
Environmental impact of emissions from incineration plants in comparison to typical heating systems
NASA Astrophysics Data System (ADS)
Wielgosiński, Grzegorz; Namiecińska, Olga; Czerwińska, Justyna
2018-01-01
In recent years, five modern municipal waste incineration plants have been built in Poland. Next ones are being constructed and at the same time building of several others is being considered. Despite positive experience with the operation of the existing installations, each project of building a new incinerator raises a lot of emotions and social protests. The main argument against construction of an incineration plant is the emission of pollutants. The work compares emissions from municipal waste incineration plants with those from typical heating plants: in the first part, for comparison large heating plants equipped with pulverized coal-fired boilers (OP-140), stoker-fired boilers (three OR-32 boilers) or gas blocks with heat output of about 100 MW have been selected, while the second part compares WR-10 and WR-25 stoker-fired boilers most popular in our heating industry with thermal treatment systems for municipal waste or refuse-derived-fuel (RDF) with similar heat output. Both absolute emission and impact - immission of pollutants in vicinity of the plant were analyzed.
Increasing the Efficiency of a Thermoelectric Generator Using an Evaporative Cooling System
NASA Astrophysics Data System (ADS)
Boonyasri, M.; Jamradloedluk, J.; Lertsatitthanakorn, C.; Therdyothin, A.; Soponronnarit, S.
2017-05-01
A system for reducing heat from the cold side of a thermoelectric (TE) power generator, based on the principle of evaporative cooling, is presented. An evaporative cooling system could increase the conversion efficiency of a TE generator. To this end, two sets of TE generators were constructed. Both TE generators were composed of five TE power modules. The cold and hot sides of the TE modules were fixed to rectangular fin heat sinks. The hot side heat sinks were inserted in a hot gas duct. The cold side of one set was cooled by the cooling air from a counter flow evaporative cooling system, whereas the other set was cooled by the parallel flow evaporative cooling system. The counter flow pattern had better performance than the parallel flow pattern. A comparison between the TE generator with and without an evaporative cooling system was made. Experimental results show that the power output increased by using the evaporative cooling system. This can significantly increase the TE conversion efficiency. The evaporative cooling system increased the power output of the TE generator from 22.9 W of ambient air flowing through the heat sinks to 28.6 W at the hot gas temperature of 350°C (an increase of about 24.8%). The present study shows the promising potential of using TE generators with evaporative cooling for waste heat recovery.
Solar heating and cooling system design and development
NASA Technical Reports Server (NTRS)
1978-01-01
The progress of the program during the sixth program quarter is reported. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. The William O'Brien single-family heating system was installed and is operational. The New Castle single-family heating residence is under construction. The Kansas University (KU) system is in the final design stages. The 25 ton cooling subsystem for KU is the debugging stage. Pressure drops that were greater than anticipated were encountered. The 3 ton simulation work is being finalized and the design parameters for the Rankine system were determined from simulation output.
Park, Teahoon; Na, Jongbeom; Kim, Byeonggwan; Kim, Younghoon; Shin, Haijin; Kim, Eunkyoung
2015-12-22
Photothermal effects in poly(3,4-ethylenedioxythiophene)s (PEDOTs) were explored for pyroelectric conversion. A poled ferroelectric film was coated on both sides with PEDOT via solution casting polymerization of EDOT, to give highly conductive and effective photothermal thin films of PEDOT. The PEDOT films not only provided heat source upon light exposure but worked as electrodes for the output energy from the pyroelectric layer in an energy harvester hybridized with a thermoelectric layer. Compared to a bare thermoelectric system under NIR irradiation, the photothermal-pyro-thermoelectric device showed more than 6 times higher thermoelectric output with the additional pyroelectric output. The photothermally driven pyroelectric harvesting film provided a very fast electric output with a high voltage output (Vout) of 15 V. The pyroelectric effect was significant due to the transparent and high photothermal PEDOT film, which could also work as an electrode. A hybrid energy harvester was assembled to enhance photoconversion efficiency (PCE) of a solar cell with a thermoelectric device operated by the photothermally generated heat. The PCE was increased more than 20% under sunlight irradiation (AM 1.5G) utilizing the transmitted light through the photovoltaic cell as a heat source that was converted into pyroelectric and thermoelectric output simultaneously from the high photothermal PEDOT electrodes. Overall, this work provides a dynamic and static hybrid energy cell to harvest solar energy in full spectral range and thermal energy, to allow solar powered switching of an electrochromic display.
This presentation describes the importance of output-based regulations in recognizing the environmental and energy benefits of CHP, and how OBR can be designed appropriately to incorporate the characteristics of CHP systems.
Design and evaluation of a flow-to-frequency converter circuit with thermal feedback
NASA Astrophysics Data System (ADS)
Pawlowski, Eligiusz
2017-05-01
A novel thermal flow sensor with a frequency output is presented. The sensor provides a pulse-train output whose frequency is related to the fluid flow rate around a self-heating thermistor. The integrating properties of the temperature sensor have been used, which allowed for realization of the pulse frequency modulator with a thermal feedback loop, stabilizing the temperature of the sensor placed in the flowing medium. The system assures a balance of the amount of heat supplied in the impulses to the sensor and the heat given up by the sensor in a continuous way to the flowing medium. Therefore the frequency of output pulse-train is proportional to the medium flow velocity around the sensor. The special feature of the presented solution is the total integration of the thermal sensor with the measurement signal conditioning system. i.e. the sensor and conditioning system are not separate elements of the measurement circuit, but constitute a whole in the form of a thermal heat-balance mode flow-to-frequency converter. The frequency signal from the converter may be directly connected to the microprocessor digital input, which with use of the standard built-in counters may convert the frequency into a numerical value of high precision. The sensor has been experimentally characterized as a function of the average flow velocity of air at room temperature.
Measured Performance of a Low Temperature Air Source Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.K. Johnson
2013-09-01
A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.
NASA Astrophysics Data System (ADS)
Sugiartha, N.; Sastra Negara, P.
2018-01-01
A thermoelectric module composes of integrated p-n semiconductors as hot and cold side junctions and uses Seebeck effect between them to function as a thermoelectric generator (TEG) to directly convert heat into electrical power. Exhaust heat from engines as otherwise wasted to the atmosphere is one of the heat sources freely available to drive the TEG. This paper evaluates technical feasibility on the use of a Peltier thermoelectric module for energy recovery application of such kind of waste heat. An experimental apparatus has been setup to simulate real conditions of automobile engine exhaust piping system. It includes a square section aluminium ducting, an aluminium fin heat sink and a TEC1 12706 thermoelectric module. A heater and a cooling fan are employed to simulate hot exhaust gas and ambient air flows, respectively. Electrical loading is controlled by resistors. Dependent variables measured during the test are cold and hot side temperatures, open and loaded circuit output voltages and electrical current. The test results revealed a promising application of the Peltier thermoelectric module for the engine exhaust heat recovery, though the loaded output power produced and loaded output voltage are still far lower than the commercially thermoelectric module originally purposed for the TEG application.
Solar energy control system. [temperature measurement
NASA Technical Reports Server (NTRS)
Currie, J. R. (Inventor)
1981-01-01
A solar energy control system for a hot air type solar energy heating system wherein thermocouples are arranged to sense the temperature of a solar collector, a space to be heated, and a top and bottom of a heat storage unit is disclosed. Pertinent thermocouples are differentially connected together, and these are employed to effect the operation of dampers, a fan, and an auxiliary heat source. In accomplishing this, the differential outputs from the thermocouples are amplified by a single amplifier by multiplexing techniques. Additionally, the amplifier is corrected as to offset by including as one multiplex channel a common reference signal.
Space radiator simulation manual for computer code
NASA Technical Reports Server (NTRS)
Black, W. Z.; Wulff, W.
1972-01-01
A computer program that simulates the performance of a space radiator is presented. The program basically consists of a rigorous analysis which analyzes a symmetrical fin panel and an approximate analysis that predicts system characteristics for cases of non-symmetrical operation. The rigorous analysis accounts for both transient and steady state performance including aerodynamic and radiant heating of the radiator system. The approximate analysis considers only steady state operation with no aerodynamic heating. A description of the radiator system and instructions to the user for program operation is included. The input required for the execution of all program options is described. Several examples of program output are contained in this section. Sample output includes the radiator performance during ascent, reentry and orbit.
Investigation of Counter-Flow in a Heat Pipe-Thermoelectric Generator (HPTEG)
NASA Astrophysics Data System (ADS)
Remeli, Muhammad Fairuz; Singh, Baljit; Affandi, Nor Dalila Nor; Ding, Lai Chet; Date, Abhijit; Akbarzadeh, Aliakbar
2017-05-01
This study explores a method of generating electricity while recovering waste heat through the integration of heat pipes and thermoelectric generators (i.e. HPTEG system). The simultaneous waste heat recovery and power generation processes are achieved without the use of any moving parts. The HPTEG system consists of bismuth telluride thermoelectric generators (TEG), which are sandwiched between two finned pipes to achieve a temperature gradient across the TEG for electricity generation. A counter-flow heat exchanger was built using two separate air ducts. The air ducts were thermally coupled using the HPTEG modules. The evaporator section of the heat pipe absorbed the waste heat in a hot air duct. The heat was then transferred across the TEG surfaces. The condenser section of the HPTEG collected the excess heat from the TEG cold side before releasing it to the cold air duct. A 2-kW electrical heater was installed in the hot air duct to simulate the exhaust gas. An air blower was installed at the inlet of each duct to direct the flow of air into the ducts. A theoretical model was developed for predicting the performance of the HPTEG system using the effectiveness-number of transfer units method. The developed model was able to predict the thermal and electrical output of the HPTEG, along with the rate of heat transfer. The results showed that by increasing the cold air velocity, the effectiveness of the heat exchanger was able to be increased from approximately 52% to 58%. As a consequence of the improved heat transfer, maximum power output of 4.3 W was obtained.
Development and Analysis of New Integrated Energy Systems for Sustainable Buildings
NASA Astrophysics Data System (ADS)
Khalid, Farrukh
Excessive consumption of fossil fuels in the residential sector and their associated negative environmental impacts bring a significant challenge to engineers within research and industrial communities throughout the world to develop more environmentally benign methods of meeting energy needs of residential sector in particular. This thesis addresses potential solutions for the issue of fossils fuel consumption in residential buildings. Three novel renewable energy based multigeneration systems are proposed for different types of residential buildings, and a comprehensive assessment of energetic and exergetic performances is given on the basis of total occupancy, energy load, and climate conditions. System 1 is a multigeneration system based on two renewable energy sources. It uses biomass and solar resources. The outputs of System 1 are electricity, space heating, cooling, and hot water. The energy and exergy efficiencies of System 1 are 91.0% and 34.9%, respectively. The results of the optimisation analysis show that the net present cost of System 1 is 2,700,496 and that the levelised cost of electricity is 0.117/kWh. System 2 is a multigeneration system, integrating three renewable energy based subsystems; wind turbine, concentrated solar collector, and Organic Rankine Cycle supplied by a ground source heat exchanger. The outputs of the System 2 are electricity, hot water, heating and cooling. The optimisation analysis shows that net present cost is 35,502 and levelised cost of electricity is 0.186/kWh. The energy and exergy efficiencies of System 2 are found to be 34.6% and 16.2%, respectively. System 3 is a multigeneration system, comprising two renewable energy subsystems-- geothermal and solar to supply power, cooling, heating, and hot water. The optimisation analysis shows that the net present cost of System 3 is 598,474, and levelised cost of electricity of 0.111/kWh. The energy and exergy efficiencies of System 3 are 20.2% and 19.2%, respectively, with outputs of electricity, hot water, cooling and space heating. A performance assessment for identical conditions indicates that System 3 offers the best performance, with the minimum net present cost of 26,001 and levelised cost of electricity of 0.136/kWh.
Entropic bounds on currents in Langevin systems
NASA Astrophysics Data System (ADS)
Dechant, Andreas; Sasa, Shin-ichi
2018-06-01
We derive a bound on generalized currents for Langevin systems in terms of the total entropy production in the system and its environment. For overdamped dynamics, any generalized current is bounded by the total rate of entropy production. We show that this entropic bound on the magnitude of generalized currents imposes power-efficiency tradeoff relations for ratchets in contact with a heat bath: Maximum efficiency—Carnot efficiency for a Smoluchowski-Feynman ratchet and unity for a flashing or rocking ratchet—can only be reached at vanishing power output. For underdamped dynamics, while there may be reversible currents that are not bounded by the entropy production rate, we show that the output power and heat absorption rate are irreversible currents and thus obey the same bound. As a consequence, a power-efficiency tradeoff relation holds not only for underdamped ratchets but also for periodically driven heat engines. For weak driving, the bound results in additional constraints on the Onsager matrix beyond those imposed by the second law. Finally, we discuss the connection between heat and entropy in a nonthermal situation where the friction and noise intensity are state dependent.
Chang, Ho; Yu, Zhi-Rong
2012-08-01
This study self-develops a novel type of photothermoelectric power generation modules. Dye-sensitized solar cells (DSSCs) serve as the photoelectric conversion system and a copper (Cu) heat-transfer nanofilm coating on both sides of the thermoelectric generator (TEG) acts as a thermoelectric conversion system. Thus module assembly absorbs light and generates electricity by DSSCs, and also recycles waste heat and generates power by the TEG. In addition, a set of pulsating heat pipes (PHP) filled with Cu nanofluid is placed on the cooling side to increase cooling effects and enhance the power generation efficiency. Results show that when the heat source of thermoelectric modules reaches 90 degrees C, TEG power output is increased by 85.7%. Besides, after thermoelectric modules are heated by additional heat source at 80 degrees C, the electrical energy generated by them can let a NiMH cell (1.25 V) be sufficiently charged in about 30 minutes. When photothermoelectric modules is illumined by simulated light, the temperature difference of two sides of TEG can reach 7 degrees C and the thermoelectric conversion efficiency is 2.17%. Furthermore, the power output of the thermoelectric modules is 11.48 mW/cm2, enhancing 1.4 % compared to merely using DSSCs module.
Quantum heat engine with coupled superconducting resonators
NASA Astrophysics Data System (ADS)
Hardal, Ali Ü. C.; Aslan, Nur; Wilson, C. M.; Müstecaplıoǧlu, Özgür E.
2017-12-01
We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one due to the coupling. A limit cycle, indicating finite power output, emerges in the thermodynamical phase space. The system implements an all-electrical analog of a photonic piston. Instead of mechanical motion, the power output is obtained as a coherent electrical charging in our case. We explore the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean energy to reveal the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures.
Quantum heat engine with coupled superconducting resonators.
Hardal, Ali Ü C; Aslan, Nur; Wilson, C M; Müstecaplıoğlu, Özgür E
2017-12-01
We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one due to the coupling. A limit cycle, indicating finite power output, emerges in the thermodynamical phase space. The system implements an all-electrical analog of a photonic piston. Instead of mechanical motion, the power output is obtained as a coherent electrical charging in our case. We explore the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean energy to reveal the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures.
NASA Astrophysics Data System (ADS)
Liu, Jingjing; Taylor, Mark; Dorreen, Mark
2018-02-01
In the aluminum electrolysis process, new industrial aluminum/electricity power markets demand a new cell technology to extend the cell heat balance and amperage operating window of smelters by shifting the steady states. The current work investigates the responses of lithium-modified bath system when the input/output balance is shifted in a laboratory analogue to the industrial heat balance shift. Li2CO3 is added to the cryolite-AlF3-CaF2-Al2O3 system as a bath modifier. A freeze deposit is formed on a `cold finger' dipped into the bath and investigated by X-ray diffraction analysis and electron probe X-ray microanalysis. The macro- and micro-structure of the freeze lining varies with the bath superheat (bath temperature minus bath liquidus temperature) and an open crystalline layer with entrapped liquid dominates the freeze thickness. Compared with the cryolite-AlF3-CaF2-Al2O3 bath system, the lithium-modified bath freeze is more sensitive to the heat balance shift. This freeze investigation provides primary information to understand the variation of the side ledge in an industrial cell when the lithium-modified bath system is used.
Parametric Optimization of Thermoelectric Generators for Waste Heat Recovery
NASA Astrophysics Data System (ADS)
Huang, Shouyuan; Xu, Xianfan
2016-10-01
This paper presents a methodology for design optimization of thermoelectric-based waste heat recovery systems called thermoelectric generators (TEGs). The aim is to maximize the power output from thermoelectrics which are used as add-on modules to an existing gas-phase heat exchanger, without negative impacts, e.g., maintaining a minimum heat dissipation rate from the hot side. A numerical model is proposed for TEG coupled heat transfer and electrical power output. This finite-volume-based model simulates different types of heat exchangers, i.e., counter-flow and cross-flow, for TEGs. Multiple-filled skutterudites and bismuth-telluride-based thermoelectric modules (TEMs) are applied, respectively, in higher and lower temperature regions. The response surface methodology is implemented to determine the optimized TEG size along and across the flow direction and the height of thermoelectric couple legs, and to analyze their covariance and relative sensitivity. A genetic algorithm is employed to verify the globality of the optimum. The presented method will be generally useful for optimizing heat-exchanger-based TEG performance.
Microcomputer-Aided Control Systems Design.
ERIC Educational Resources Information Center
Roat, S. D.; Melsheimer, S. S.
1987-01-01
Describes a single input/single output feedback control system design program for IBM PC and compatible microcomputers. Uses a heat exchanger temperature control loop to illustrate the various applications of the program. (ML)
Advanced subsystems development
NASA Technical Reports Server (NTRS)
Livingston, F. R.
1978-01-01
The concept design for a small (less than 10 MWe) solar thermal electric generating plant was completed using projected 1985 technology. The systems requirements were defined and specified. The components, including an engineering prototype for one 15 kWe module of the generating plant, were conceptually designed. Significant features of the small solar thermal power plant were identified as the following: (1) 15 kWe Stirling-cycle engine/alternator with constant power output; (2) 10 meter point-focusing paraboloidal concentrator with cantilevered cellular glass reflecting panels; (3) primary heat pipe with 800 C output solar cavity receiver; (4) secondary heat pipe with molten salt thermal energy storage unit; (5) electric energy transport system; and (6) advanced battery energy storage capability.
Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive
NASA Technical Reports Server (NTRS)
Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya
2015-01-01
Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases the system design that minimizes cost (e.g., the $/W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery thermoelectric generator with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric treatment of the exhaust waste heat recovery thermoelectric generator yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of $1/W it is necessary to achieve heat exchanger costs of $1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but Preferred TE Design Regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously-identified low cost design regimes. This work shows that the optimum fill factor Fopt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have profound implications on the design and operation of various thermoelectric (TE) waste heat 3 recovery systems. This work highlights the importance of heat exchanger costs on the overall TEG system costs, quantifies the possible TEG performance-cost domain space based on heat exchanger effects, and provides a focus for future system research and development efforts.
Thermoelectric System Absorbing Waste Heat from a Steel Ladle
NASA Astrophysics Data System (ADS)
Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.
2018-06-01
China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.
Thermoelectric System Absorbing Waste Heat from a Steel Ladle
NASA Astrophysics Data System (ADS)
Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.
2018-01-01
China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.
Thermal gain of CHP steam generator plants and heat supply systems
NASA Astrophysics Data System (ADS)
Ziganshina, S. K.; Kudinov, A. A.
2016-08-01
Heating calculation of the surface condensate heat recovery unit (HRU) installed behind the BKZ-420-140 NGM boiler resulting in determination of HRU heat output according to fire gas value parameters at the heat recovery unit inlet and its outlet, heated water quantity, combustion efficiency per boiler as a result of installation of HRU, and steam condensate discharge from combustion products at its cooling below condensing point and HRU heat exchange area has been performed. Inspection results of Samara CHP BKZ-420-140 NGM power boilers and field tests of the surface condensate heat recovery unit (HRU) made on the bimetal calorifier base KCk-4-11 (KSk-4-11) installed behind station no. 2 Ulyanovsk CHP-3 DE-10-14 GM boiler were the basis of calculation. Integration of the surface condensation heat recovery unit behind a steam boiler rendered it possible to increase combustion efficiency and simultaneously decrease nitrogen oxide content in exit gases. Influence of the blowing air moisture content, the excess-air coefficient in exit gases, and exit gases temperature at the HRU outlet on steam condensate amount discharge from combustion products at its cooling below condensing point has been analyzed. The steam condensate from HRU gases is offered as heat system make-up water after degasification. The cost-effectiveness analysis of HRU installation behind the Samara CHP BKZ-420-140 NGM steam boiler with consideration of heat energy and chemically purified water economy has been performed. Calculation data for boilers with different heat output has been generalized.
Method and apparatus for operating a self-starting air heating system
Heinrich, Charles E.
1983-12-06
A self-starting, fuel fired, air heating system including a fuel burner fired vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser and heating the air. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with a method and apparatus which on start-up prevents the vapor generator's vapor output from being conducted to the turbine until a predetermined pressure differential has been achieved. However, after the vapor flow is once permitted, it cannot again be prevented until after the fuel burner has been shut off and restarted.
Heat flux from magmatic hydrothermal systems related to availability of fluid recharge
Harvey, M. C.; Rowland, J.V.; Chiodini, G.; Rissmann, C.F.; Bloomberg, S.; Hernandez, P.A.; Mazot, A.; Viveiros, F.; Werner, Cynthia A.
2015-01-01
Magmatic hydrothermal systems are of increasing interest as a renewable energy source. Surface heat flux indicates system resource potential, and can be inferred from soil CO2 flux measurements and fumarole gas chemistry. Here we compile and reanalyze results from previous CO2 flux surveys worldwide to compare heat flux from a variety of magma-hydrothermal areas. We infer that availability of water to recharge magmatic hydrothermal systems is correlated with heat flux. Recharge availability is in turn governed by permeability, structure, lithology, rainfall, topography, and perhaps unsurprisingly, proximity to a large supply of water such as the ocean. The relationship between recharge and heat flux interpreted by this study is consistent with recent numerical modeling that relates hydrothermal system heat output to rainfall catchment area. This result highlights the importance of recharge as a consideration when evaluating hydrothermal systems for electricity generation, and the utility of CO2 flux as a resource evaluation tool.
Design and optimization of geothermal power generation, heating, and cooling
NASA Astrophysics Data System (ADS)
Kanoglu, Mehmet
Most of the world's geothermal power plants have been built in 1970s and 1980s following 1973 oil crisis. Urgency to generate electricity from alternative energy sources and the fact that geothermal energy was essentially free adversely affected careful designs of plants which would maximize their performance for a given geothermal resource. There are, however, tremendous potentials to improve performance of many existing geothermal power plants by retrofitting, optimizing the operating conditions, re-selecting the most appropriate binary fluid in binary plants, and considering cogeneration such as a district heating and/or cooling system or a system to preheat water entering boilers in industrial facilities. In this dissertation, some representative geothermal resources and existing geothermal power plants in Nevada are investigated to show these potentials. Economic analysis of a typical geothermal resource shows that geothermal heating and cooling may generate up to 3 times as much revenue as power generation alone. A district heating/cooling system is designed for its incorporation into an existing 27 MW air-cooled binary geothermal power plant. The system as designed has the capability to meet the entire heating needs of an industrial park as well as 40% of its cooling needs, generating potential revenues of $14,040,000 per year. A study of the power plant shows that evaporative cooling can increase the power output by up to 29% in summer by decreasing the condenser temperature. The power output of the plant can be increased by 2.8 percent by optimizing the maximum pressure in the cycle. Also, replacing the existing working fluid isobutane by butane, R-114, isopentane, and pentane can increase the power output by up to 2.5 percent. Investigation of some well-known geothermal power generation technologies as alternatives to an existing 12.8 MW single-flash geothermal power plant shows that double-flash, binary, and combined flash/binary designs can increase the net power output by up to 31 percent, 35 percent, and 54 percent, respectively, at optimum operating conditions. An economic comparison of these designs appears to favor the combined flash/binary design, followed by the double-flash design.
Khan, Pathan Fayaz; Sengottuvel, S; Patel, Rajesh; Gireesan, K; Baskaran, R; Mani, Awadhesh
2018-05-01
Contact heat evoked potentials (CHEPs) are recorded from the brain by giving thermal stimulations through heating pads kept on the surface of the skin. CHEP signals have crucial diagnostic implications in human pain activation studies. This work proposes a novel design of a digital proportional integral (PI) controller based on Arduino microcontroller with a view to explore the suitability of an electric heating pad for use as a thermode in a custom-made, cost-effective CHEP stimulator. The purpose of PI controller is to set, regulate, and deliver desired temperatures on the surface of the heating pad in a user-defined pattern. The transfer function of the heating system has been deduced using the parametric system identification method, and the design parameters of the controller have been identified using the root locus technique. The efficiency of the proposed PI controller in circumventing the well-known integrator windup problem (error in the integral term builds excessively, leading to large transients in the controller output) in tracking the reference input and the controller effort (CE) in rejecting output disturbances to maintain the set temperature of the heating pad have been found to be superior compared with the conventional PI controller and two of the existing anti-windup models.
Final design of a free-piston hydraulic advanced Stirling conversion system
NASA Technical Reports Server (NTRS)
Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.
1991-01-01
Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.
Final design of a free-piston hydraulic advanced Stirling conversion system
NASA Astrophysics Data System (ADS)
Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.
Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.
Fabrication of Thin Film Heat Flux Sensors
NASA Technical Reports Server (NTRS)
Will, Herbert A.
1992-01-01
Prototype thin film heat flux sensors have been constructed and tested. The sensors can be applied to propulsion system materials and components. The sensors can provide steady state and fast transient heat flux information. Fabrication of the sensor does not require any matching of the mounting surface. Heat flux is proportional to the temperature difference across the upper and lower surfaces of an insulation material. The sensor consists of an array of thermocouples on the upper and lower surfaces of a thin insulating layer. The thermocouples for the sensor are connected in a thermopile arrangement. A 100 thermocouple pair heat flux sensor has been fabricated on silicon wafers. The sensor produced an output voltage of 200-400 microvolts when exposed to a hot air heat gun. A 20 element thermocouple pair heat flux sensor has been fabricated on aluminum oxide sheet. Thermocouples are Pt-Pt/Rh with silicon dioxide as the insulating material. This sensor produced an output of 28 microvolts when exposed to the radiation of a furnace operating at 1000 C. Work is also underway to put this type of heat flux sensor on metal surfaces.
Analysis of integrated photovoltaic-thermal systems using solar concentrators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusoff, M.B.
1983-01-01
An integrated photovoltaic-thermal system using solar concentrators utilizes the solar radiation spectrum in the production of electrical and thermal energy. The electrical conversion efficiency of this system decreases with increasing solar cell temperature. Since a high operating temperature is desirable to maximize the quality of thermal output of the planned integrated system, a proper choice of the operating temperature for the unit cell is of vital importance. The analysis predicts performance characteristics of the unit cell by considering the dependence of the heat generation, the heat absorption and the heat transmission on the material properties of the unit cell structure.more » An analytical model has been developed to describe the heat transport phenomena occurring in the unit cell structure. The range of applicability of the one-dimensional and the two-dimensional models, which have closed-form solutions, has been demonstrated. Parametric and design studies point out the requirements for necessary good electrical and thermal performance. A procedure utilizing functional forms of component characteristics in the form of partial coefficients of the dependent variable has been developed to design and operate the integrated system to have a desirable value of the thermal to electrical output ratio both at design and operating modes.« less
Field Performance of Inverter-Driven Heat Pumps in Cold Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, James; Aldrich, Robb
2015-08-01
CARB observed a wide range of operating efficiencies and outputs from site to site. Maximum capacities were found to be generally in line with manufacturer's claims as outdoor temperatures fell to -10°F. The reasons for the wide range in heating performance likely include: low indoor air flow rates, poor placement of outdoor units, relatively high return air temperatures, thermostat set back, integration with existing heating systems, and occupants limiting indoor fan speed. Even with lower efficiencies than published in other studies, most of the heat pumps here still provide heat at lower cost than oil, propane, or certainly electric resistancemore » systems.« less
Divvy Economies Based On (An Abstract) Temperature
NASA Astrophysics Data System (ADS)
Collins, Dennis G.
2004-04-01
The Leontief Input-Output economic system can provide a model for a one-parameter family of economic systems based on an abstract temperature T. In particular, given a normalized input-output matrix R and taking R= R(1), a family of economic systems R(1/T)=R(α) is developed that represents heating (T>1) and cooling (T<1) of the economy relative to T=1. .The economy for a given value of T represents the solution of a constrained maximum entropy problem.
NASA Astrophysics Data System (ADS)
Muñoz, Rodrigo C., Jr.; Manansala, Chad Deo G.
2018-01-01
This study is based on the potential of thermoelectric coupling such as the thermoelectric cooler module. A thermoelectric cooler converts the heat coming from the cook stove into electricity and store in a battery. A dc-dc boost converter will be used to produce enough voltage to light a minimum house dwelling or charge phone battery. This device will be helpful to those that faces a problem on electricity especially in the isolated areas. The study aims (1) to harness heat from the cook stove up to 110 °C (2) To automatically cool-off the system to protect the thermoelectric cooler from damage due to excessive heat using an electronic solenoid; (3) To store energy harnessed in the battery; (4) To amplify the output voltages of the battery using DC to DC boost converter for lighting system and charging of mobile phone battery. From various tests conducted, it can fully charge a mobile phone in 3 hours observing the unit’s battery voltage drop from 4.06V to 3.98V. In the testing it used different orientation of steel rod by conduction to transfer heat and by radiation through tubular steel with its different dimensions. Most recent testing proved that the 2x2x9 tubular steel by radiation had the best result. The temperature reached more than a hundred degree Celsius that met the objective. The test resulted of boosting the voltage of the battery output from 3.7V to 4.96V on the average. The boosted voltage decrease as the system’s cool-off mechanism operated when the temperature reached above 110 degree Celsius decreasing output voltage to 0.8V resulting the boosted voltage to drop to zero. Therefore, the proponents concluded that heat waste can be converted to electrical energy by harnessing heat through radiation, with the help of TEC that generates voltage for lighting and can be boosted to be used for mobile charging. Furthermore, the study proved that the excess heat can damaged the TEC which was prevented by using of cooling-off mechanism, making it more useful for longer time.
Heat engine development for solar thermal power systems
NASA Technical Reports Server (NTRS)
Pham, H. Q.; Jaffe, L. D.
1981-01-01
The technical status of three heat engines (Stirling, high-temperature Brayton, and Combined cycle) for use in solar thermal power systems is presented. Performance goals necessary to develop a system competitive with conventional power requirements include an external heated engine output less than 40 kW, and efficiency power conversion subsystem at least 40% at rated output, and a half-power efficiency of at least 37%. Results show that the Stirling engine can offer a 39% efficiency with 100 hours of life, and a 20% efficiency with 10,000 hours of life, but problems with seals and heater heads exist. With a demonstrated efficiency near 31% at 1500 F and a minimum lifetime of 100,000 hours, the Brayton engine does not offer sufficient engine lifetime, efficiency, and maintenance for solar thermal power systems. Examination of the Rankine bottoming cycle of the Combined cycle engine reveals a 30 year lifetime, but a low efficiency. Additional development of engines for solar use is primarily in the areas of components to provide a long lifetime, high reliability, and low maintenance (no more than $0.001/kW-hr).
Thermal heat-balance mode flow-to-frequency converter
NASA Astrophysics Data System (ADS)
Pawlowski, Eligiusz
2016-11-01
This paper presents new type of thermal flow converter with the pulse frequency output. The integrating properties of the temperature sensor have been used, which allowed for realization of pulse frequency modulator with thermal feedback loop, stabilizing temperature of sensor placed in the flowing medium. The system assures balancing of heat amount supplied in impulses to the sensor and heat given up by the sensor in a continuous way to the flowing medium. Therefore the frequency of output impulses is proportional to the heat transfer coefficient from sensor to environment. According to the King's law, the frequency of those impulses is a function of medium flow velocity around the sensor. The special feature of presented solution is total integration of thermal sensor with the measurement signal conditioning system. Sensor and conditioning system are not the separate elements of the measurement circuit, but constitute a whole in form of thermal heat-balance mode flow-to-frequency converter. The advantage of such system is easiness of converting the frequency signal to the digital form, without using any additional analogue-to-digital converters. The frequency signal from the converter may be directly connected to the microprocessor input, which with use of standard built-in counters may convert the frequency into numerical value of high precision. Moreover, the frequency signal has higher resistance to interference than the voltage signal and may be transmitted to remote locations without the information loss.
A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.
de Jong, J A; Wijnant, Y H; de Boer, A
2014-03-01
A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.
Performance of deep geothermal energy systems
NASA Astrophysics Data System (ADS)
Manikonda, Nikhil
Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation of electricity. The design involves the extraction of heat from the Earth and its conversion into electricity. This is performed by allowing fluid deep into the Earth where it gets heated due to the surrounding rock. The fluid gets vaporized and returns to the surface in a heat pipe. Finally, the energy of the fluid is converted into electricity using turbine or organic rankine cycle (ORC). The main feature of the system is the employment of side channels to increase the amount of thermal energy extracted. A finite difference computer model is developed to solve the heat transport equation. The numerical model was employed to evaluate the performance of the design. The major goal was to optimize the output power as a function of parameters such as thermal diffusivity of the rock, depth of the main well, number and length of lateral channels. The sustainable lifetime of the system for a target output power of 2 MW has been calculated for deep geothermal systems with drilling depths of 8000 and 10000 meters, and a financial analysis has been performed to evaluate the economic feasibility of the system for a practical range of geothermal parameters. Results show promising an outlook for deep geothermal systems for practical applications.
Thermal anomalies of the transmitter experiment package on the communications technology satellite
NASA Technical Reports Server (NTRS)
Alexovich, R. E.; Curren, A. N.
1979-01-01
The causes of four temporary thermal-control-system malfunctions that gave rise to unexpected temperature excursions in the 12-gigahertz, 200-watt transmitter experiment package (TEP) on the Communications Technology Satellite were investigated. The TEP consists of a nominal 200-watt output stage tube (OST), a supporting power-processing system (PPS), and a variable-conductance heat-pipe system (VCHPS). The VCHPS, which uses three heat pipes to conduct heat from the body of the OST to a radiator fin, was designed to maintain the TEP at safe operating temperatures at all operating conditions. On four occasions during 1977, all near the spring and fall equinoxes, the OST body temperature and related temperatures displayed sudden, rapid, and unexpected rises above normal levels while the TEP was operating at essentially constant, normal conditions. The temperature excursions were terminated without TEP damage by reducing the radio frequency (RF) output power of the OST. Between the anomalies and since the fourth, the thermal control system has apparently functioned as designed. The results indicate the most probable cause of the temperature anomalies is depriming of the arteries in the variable-conductance heat pipes. A mode was identified in which the TEP, as presently configured, may operate with stable temperatures and with minimum change in performance level.
Power measurement system of ECRH on HL-2A
NASA Astrophysics Data System (ADS)
Wang, He; Lu, Zhihong; Kubo, Shin; Chen, Gangyu; Wang, Chao; Zhou, Jun; Huang, Mei; Rao, Jun
2015-03-01
Electron Cyclotron Resonance Heating (ECRH) is one of the main auxiliary heating systems for HL-2A tokamak. The ECRH system with total output power 5MW has been equipped on HL-2A which include 6 sets of 0.5MW/1.0s at a frequency of 68GHz and 2 sets of 1MW/3s at a frequency of 140GHz. The power is one of important parameters in ECRH system. In this paper, the method for measuring the power of ECRH system on HL-2A is introduced which include calorimetric techniques and directional coupler. Calorimetric techniques is an existing method, which is used successfully in ECRH commissioning and experiment, and the transmission efficiency of ECRH system is achieved by measuring the absorbed microwave power in the Match Optical Unit (MOU), gyrotron output window and tours window of the EC system use this method. Now base on the theory of electromagnetic coupling through apertures, directional couplers are being designed, which is a new way for us.
Thermoelectric properties of an interacting quantum dot based heat engine
NASA Astrophysics Data System (ADS)
Erdman, Paolo Andrea; Mazza, Francesco; Bosisio, Riccardo; Benenti, Giuliano; Fazio, Rosario; Taddei, Fabio
2017-06-01
We study the thermoelectric properties and heat-to-work conversion performance of an interacting, multilevel quantum dot (QD) weakly coupled to electronic reservoirs. We focus on the sequential tunneling regime. The dynamics of the charge in the QD is studied by means of master equations for the probabilities of occupation. From here we compute the charge and heat currents in the linear response regime. Assuming a generic multiterminal setup, and for low temperatures (quantum limit), we obtain analytical expressions for the transport coefficients which account for the interplay between interactions (charging energy) and level quantization. In the case of systems with two and three terminals we derive formulas for the power factor Q and the figure of merit Z T for a QD-based heat engine, identifying optimal working conditions which maximize output power and efficiency of heat-to-work conversion. Beyond the linear response we concentrate on the two-terminal setup. We first study the thermoelectric nonlinear coefficients assessing the consequences of large temperature and voltage biases, focusing on the breakdown of the Onsager reciprocal relation between thermopower and Peltier coefficient. We then investigate the conditions which optimize the performance of a heat engine, finding that in the quantum limit output power and efficiency at maximum power can almost be simultaneously maximized by choosing appropriate values of electrochemical potential and bias voltage. At last we study how energy level degeneracy can increase the output power.
CFAVC scheme for high frequency series resonant inverter-fed domestic induction heating system
NASA Astrophysics Data System (ADS)
Nagarajan, Booma; Reddy Sathi, Rama
2016-01-01
This article presents the investigations on the constant frequency asymmetric voltage cancellation control in the AC-AC resonant converter-fed domestic induction heating system. Conventional fixed frequency control techniques used in the high frequency converters lead to non-zero voltage switching operation and reduced output power. The proposed control technique produces higher output power than the conventional fixed-frequency control strategies. In this control technique, zero-voltage-switching operation is maintained during different duty cycle operation for reduction in the switching losses. Complete analysis of the induction heating power supply system with asymmetric voltage cancellation control is discussed in this article. Simulation and experimental study on constant frequency asymmetric voltage cancellation (CFAVC)-controlled full bridge series resonant inverter is performed. Time domain simulation results for the open and closed loop of the system are obtained using MATLAB simulation tool. The simulation results prove the control of voltage and power in a wide range. PID controller-based closed loop control system achieves the voltage regulation of the proposed system for the step change in load. Hardware implementation of the system under CFAVC control is done using the embedded controller. The simulation and experimental results validate the performance of the CFAVC control technique for series resonant-based induction cooking system.
Zhang, Yifei; Kang, Jian
2017-11-01
The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity coefficient for local roads. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, X.; Wen, X.; Zheng, Z.
2017-12-01
For better prediction and understanding of land-atmospheric interaction, in-situ observed meteorological data acquired from the China Meteorological Administration (CMA) were assimilated in the Weather Research and Forecasting (WRF) model and the monthly Green Vegetation Coverage (GVF) data, which was calculated using the Normalized Difference Vegetation Index (NDVI) of the Earth Observing System Moderate-Resolution Imaging Spectroradiometer (EOS-MODIS) and Digital Elevation Model (DEM) data of the Shuttle Radar Topography Mission (SRTM) system. Furthermore, the WRF model produced a High-Resolution Assimilation Dataset of the water-energy cycle in China (HRADC). This dataset has a horizontal resolution of 25 km for near surface meteorological data, such as air temperature, humidity, wind vectors and pressure (19 levels); soil temperature and moisture (four levels); surface temperature; downward/upward short/long radiation; 3-h latent heat flux; sensible heat flux; and ground heat flux. In this study, we 1) briefly introduce the cycling 3D-Var assimilation method and 2) compare results of meteorological elements, such as 2 m temperature and precipitation generated by the HRADC with the gridded observation data from CMA, and surface temperature and specific humidity with Global LandData Assimilation System (GLDAS) output data from the National Aeronautics and Space Administration (NASA). We found that the satellite-derived GVF from MODIS increased over southeast China compared with the default model over the whole year. The simulated results of soil temperature, net radiation and surface energy flux from the HRADC are improved compared with the control simulation and are close to GLDAS outputs. The values of net radiation from HRADC are higher than the GLDAS outputs, and the differences in the simulations are large in the east region but are smaller in northwest China and on the Qinghai-Tibet Plateau. The spatial distribution of the sensible heat flux and the ground heat flux from HRADC is consistent with the GLDAS outputs in summer. In general, the simulated results from HRADC are an improvement on the control simulation and can present the characteristics of the spatial and temporal variation of the water-energy cycle in China.
Performance Analysis and Optimization of Concentrating Solar Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Lamba, Ravita; Manikandan, S.; Kaushik, S. C.
2018-06-01
A thermodynamic model for a concentrating solar thermoelectric generator considering the Thomson effect combined with Fourier heat conduction, Peltier, and Joule heating has been developed and optimized in MATLAB environment. The temperatures at the hot and cold junctions of the thermoelectric generator were evaluated by solving the energy balance equations at both junctions. The effects of the solar concentration ratio, input electrical current, number of thermocouples, and electrical load resistance ratio on the power output and energy and exergy efficiencies of the system were studied. Optimization studies were carried out for the STEG system, and the optimum number of thermocouples, concentration ratio, and resistance ratio determined. The results showed that the optimum values of these parameters are different for conditions of maximum power output and maximum energy and exergy efficiency. The optimum values of the concentration ratio and load resistance ratio for maximum energy efficiency of 5.85% and maximum exergy efficiency of 6.29% were found to be 180 and 1.3, respectively, with corresponding power output of 4.213 W. Furthermore, at higher concentration ratio (C = 600), the optimum number of thermocouples was found to be 101 for maximum power output of 13.75 W, maximum energy efficiency of 5.73%, and maximum exergy efficiency of 6.16%. Moreover, the optimum number of thermocouple was the same for conditions of maximum power output and energy and exergy efficiency. The results of this study may provide insight for design of actual concentrated solar thermoelectric generator systems.
Heat simulation via Scilab programming
NASA Astrophysics Data System (ADS)
Hasan, Mohammad Khatim; Sulaiman, Jumat; Karim, Samsul Arifin Abdul
2014-07-01
This paper discussed the used of an open source sofware called Scilab to develop a heat simulator. In this paper, heat equation was used to simulate heat behavior in an object. The simulator was developed using finite difference method. Numerical experiment output show that Scilab can produce a good heat behavior simulation with marvellous visual output with only developing simple computer code.
Heat flow calorimeter. [measures output of Ni-Cd batteries
NASA Technical Reports Server (NTRS)
Fletcher, J. C.; Johnston, W. V. (Inventor)
1974-01-01
Heat flow calorimeter devices are used to measure heat liberated from or absorbed by an object. This device is capable of measuring the thermal output of sealed nickel-cadmium batteries or cells during charge-discharge cycles. An elongated metal heat conducting rod is coupled between the calorimeter vessel and a heat sink, thus providing the only heat exchange path from the calorimeter vessel itself.
Heat-load simulator for heat sink design
NASA Technical Reports Server (NTRS)
Dunleavy, A. M.; Vaughn, T. J.
1968-01-01
Heat-load simulator is fabricated from 1/4-inch aluminum plate with a contact surface equal in dimensions and configuration to those of the electronic installation. The method controls thermal output to simulate actual electronic component thermal output.
Water augmented indirectly-fired gas turbine systems and method
Bechtel, Thomas F.; Parsons, Jr., Edward J.
1992-01-01
An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A new generation of central, ducted variable-capacity heat pump systems has come on the market, promising very high cooling and heating efficiency. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they vary their cooling and heating output over a wide range (approximately 40 to 118% of nominal full capacity); thus, staying 'on' for 60% to 100% more hours per day compared to fixed-capacity systems. Current Phase 4 experiments in an instrumented lab home with simulated occupancy evaluate the impact of duct R-value enhancement on the overall operating efficiency of the variable-capacity systemmore » compared to the fixed-capacity system.« less
User's Manual: Thermal Radiation Analysis System TRASYS 2
NASA Technical Reports Server (NTRS)
Jensen, C. L.
1981-01-01
A digital computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems is presented. When used in conjunction with a generalized thermal analysis program such as the systems improved numerical differencing analyzer program, any thermal problem that can be expressed in terms of a lumped parameter R-C thermal network can be solved. The function of TRASYS is twofold. It provides: (a) Internode radiation interchange data; and (b) Incident and absorbed heat rate data from environmental radiant heat sources. Data of both types is provided in a format directly usable by the thermal analyzer programs. The system allows the user to write his own executive or driver program which organizes and directs the program library routines toward solution of each specific problem in the most expeditious manner. The user also may write his own output routines, thus the system data output can directly interface with any thermal analyzer using the R-C network concept.
NASA Astrophysics Data System (ADS)
Lim, Mikyung; Song, Jaeman; Kim, Jihoon; Lee, Seung S.; Lee, Ikjin; Lee, Bong Jae
2018-05-01
The present work successfully achieves a strong enhancement in performance of a near-field thermophotovoltaic (TPV) system operating at low temperature and large-vacuum-gap width by introducing a hyperbolic-metamaterial (HMM) emitter, multilayered graphene, and an Au-backside reflector. Design variables for the HMM emitter and the multilayered-graphene-covered TPV cell are optimized for maximizing the power output of the near-field TPV system with the genetic algorithm. The near-field TPV system with the optimized configuration results in 24.2 times of enhancement in power output compared with that of the system with a bulk emitter and a bare TPV cell. Through the analysis of the radiative heat transfer together with surface-plasmon-polariton (SPP) dispersion curves, it is found that coupling of SPPs generated from both the HMM emitter and the multilayered-graphene-covered TPV cell plays a key role in a substantial increase in the heat transfer even at a 200-nm vacuum gap. Further, the backside reflector at the bottom of the TPV cell significantly increases not only the conversion efficiency, but also the power output by generating additional polariton modes which can be readily coupled with the existing SPPs of the HMM emitter and the multilayered-graphene-covered TPV cell.
Lunar Surface Stirling Power Systems Using Isotope Heat Sources
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.
2010-01-01
For many years, NASA has used the decay of plutonium-238 (Pu-238) (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTGs), which have provided electrical power for many NASA missions. While RTGs have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency and the scarcity of plutonium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14.75 Earth days), isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 W with two GPHS modules at the beginning of life (BOL) (32% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a four-fold reduction in the number of GPHS modules. This study considers the use of americium-241 (Am-241) as a substitute for the Pu-238 in Stirling- convertor-based Radioisotope Power Systems (RPS) for power levels from tens of watts to 5 kWe. The Am-241 is used as a substitute for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about one-fifth while maintaining approximately the same system mass. In order to obtain the nominal 160 W of electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot end and water pumped loop/heat pipe radiator is considered for the heat rejection side for power levels above 1 kWe.
NASA Astrophysics Data System (ADS)
Whitney, Robert S.
2015-03-01
We investigate the nonlinear scattering theory for quantum systems with strong Seebeck and Peltier effects, and consider their use as heat engines and refrigerators with finite power outputs. This paper gives detailed derivations of the results summarized in a previous paper [R. S. Whitney, Phys. Rev. Lett. 112, 130601 (2014), 10.1103/PhysRevLett.112.130601]. It shows how to use the scattering theory to find (i) the quantum thermoelectric with maximum possible power output, and (ii) the quantum thermoelectric with maximum efficiency at given power output. The latter corresponds to a minimal entropy production at that power output. These quantities are of quantum origin since they depend on system size over electronic wavelength, and so have no analog in classical thermodynamics. The maximal efficiency coincides with Carnot efficiency at zero power output, but decreases with increasing power output. This gives a fundamental lower bound on entropy production, which means that reversibility (in the thermodynamic sense) is impossible for finite power output. The suppression of efficiency by (nonlinear) phonon and photon effects is addressed in detail; when these effects are strong, maximum efficiency coincides with maximum power. Finally, we show in particular limits (typically without magnetic fields) that relaxation within the quantum system does not allow the system to exceed the bounds derived for relaxation-free systems, however, a general proof of this remains elusive.
Study on heat pipe assisted thermoelectric power generation system from exhaust gas
NASA Astrophysics Data System (ADS)
Chi, Ri-Guang; Park, Jong-Chan; Rhi, Seok-Ho; Lee, Kye-Bock
2017-11-01
Currently, most fuel consumed by vehicles is released to the environment as thermal energy through the exhaust pipe. Environmentally friendly vehicle technology needs new methods to increase the recycling efficiency of waste exhaust thermal energy. The present study investigated how to improve the maximum power output of a TEG (Thermoelectric generator) system assisted with a heat pipe. Conventionally, the driving energy efficiency of an internal combustion engine is approximately less than 35%. TEG with Seebeck elements is a new idea for recycling waste exhaust heat energy. The TEG system can efficiently utilize low temperature waste heat, such as industrial waste heat and solar energy. In addition, the heat pipe can transfer heat from the automobile's exhaust gas to a TEG. To improve the efficiency of the thermal power generation system with a heat pipe, effects of various parameters, such as inclination angle, charged amount of the heat pipe, condenser temperature, and size of the TEM (thermoelectric element), were investigated. Experimental studies, CFD simulation, and the theoretical approach to thermoelectric modules were carried out, and the TEG system with heat pipe (15-20% charged, 20°-30° inclined configuration) showed the best performance.
Heating and cooling system for an on-board gas adsorbent storage vessel
Tamburello, David A.; Anton, Donald L.; Hardy, Bruce J.; Corgnale, Claudio
2017-06-20
In one aspect, a system for controlling the temperature within a gas adsorbent storage vessel of a vehicle may include an air conditioning system forming a continuous flow loop of heat exchange fluid that is cycled between a heated flow and a cooled flow. The system may also include at least one fluid by-pass line extending at least partially within the gas adsorbent storage vessel. The fluid by-pass line(s) may be configured to receive a by-pass flow including at least a portion of the heated flow or the cooled flow of the heat exchange fluid at one or more input locations and expel the by-pass flow back into the continuous flow loop at one or more output locations, wherein the by-pass flow is directed through the gas adsorbent storage vessel via the by-pass line(s) so as to adjust an internal temperature within the gas adsorbent storage vessel.
Energy dashboard for real-time evaluation of a heat pump assisted solar thermal system
NASA Astrophysics Data System (ADS)
Lotz, David Allen
The emergence of net-zero energy buildings, buildings that generate at least as much energy as they consume, has lead to greater use of renewable energy sources such as solar thermal energy. One example is a heat pump assisted solar thermal system, which uses solar thermal collectors with an electrical heat pump backup to supply space heating and domestic hot water. The complexity of such a system can be somewhat problematic for monitoring and maintaining a high level of performance. Therefore, an energy dashboard was developed to provide comprehensive and user friendly performance metrics for a solar heat pump system. Once developed, the energy dashboard was tested over a two-week period in order to determine the functionality of the dashboard program as well as the performance of the heating system itself. The results showed the importance of a user friendly display and how each metric could be used to better maintain and evaluate an energy system. In particular, Energy Factor (EF), which is the ratio of output energy (collected energy) to input energy (consumed energy), was a key metric for summarizing the performance of the heating system. Furthermore, the average EF of the solar heat pump system was 2.29, indicating an efficiency significantly higher than traditional electrical heating systems.
Closed cycle electric discharge laser design investigation
NASA Technical Reports Server (NTRS)
Baily, P. K.; Smith, R. C.
1978-01-01
Closed cycle CO2 and CO electric discharge lasers were studied. An analytical investigation assessed scale-up parameters and design features for CO2, closed cycle, continuous wave, unstable resonator, electric discharge lasing systems operating in space and airborne environments. A space based CO system was also examined. The program objectives were the conceptual designs of six CO2 systems and one CO system. Three airborne CO2 designs, with one, five, and ten megawatt outputs, were produced. These designs were based upon five minute run times. Three space based CO2 designs, with the same output levels, were also produced, but based upon one year run times. In addition, a conceptual design for a one megawatt space based CO laser system was also produced. These designs include the flow loop, compressor, and heat exchanger, as well as the laser cavity itself. The designs resulted in a laser loop weight for the space based five megawatt system that is within the space shuttle capacity. For the one megawatt systems, the estimated weight of the entire system including laser loop, solar power generator, and heat radiator is less than the shuttle capacity.
Overview of free-piston Stirling engine technology for space power application
NASA Technical Reports Server (NTRS)
Slaby, Jack G.
1987-01-01
An overview is presented of free-piston Stirling engine activities, directed toward space power applications. One of the major elements of the program is the development of advanced power conversion. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Initial differences between predicted and experimental power outputs and power output influenced by variations in regenerators are discussed. Technology work was conducted on heat-exchanger concepts to minimize the number of joints as well as to enhance the heat transfer in the heater. Design parameters and conceptual design features are also presented for a 25 kWe, single-cylinder free-piston Stirling space power converter. Projections are made for future space power requirements over the next few decades along with a recommendation to consider the use of dynamic power conversion systems, either solar or nuclear. A cursory comparison is presented showing the mass benefits of a Stirling system over a Brayton system for the same peak temperature and output power. A description of a study to investigate the feasibility of scaling a single-cylinder free-piston Stirling space power module to the 150 kWe power range is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, J. P.; Sun, Y.; Harris, J. R.
In this paper we derive analytical expressions for the output current of an un-gated thermionic cathode RF gun in the presence of back-bombardment heating. We provide a brief overview of back-bombardment theory and discuss comparisons between the analytical back-bombardment predictions and simulation models. We then derive an expression for the output current as a function of the RF repetition rate and discuss relationships between back-bombardment, fieldenhancement, and output current. We discuss in detail the relevant approximations and then provide predictions about how the output current should vary as a function of repetition rate for some given system configurations.
Thermal Analysis of LED Phosphor Layer
NASA Astrophysics Data System (ADS)
Perera, Ukwatte Lokuliyanage Indika Upendra
Solid-state lighting technology has progressed to a level where light-emitting diode (LED) products are either on par or better than their traditional lighting technology counterparts with respect to efficacy and lifetime. At present, the most common method to create "white" light from LEDs for illumination applications is by using the LED primary radiation and wavelength-converting materials. In this method, the re-emission from the wavelength-converting materials excited by the LED primary radiation is combined with the LED primary radiation to create the "white" light. During this conversion process, heat is generated as a result of conversion inefficiencies and other loss mechanisms in the LED and the wavelength-converting materials. This generated heat, if not properly dissipated, increases the operating temperature, thereby increasing the light output degradation of the system over both the short and long term. The heat generation of the LED and thermal management of the LED have been studied extensively. Methods to effectively dissipate heat from the LEDs and maintain lower LED operating temperature are well understood. However, investigation of factors driving heat generation, the resulting temperature distribution in the phosphor layer, and the influence of the phosphor layer temperature on LED performance and reliability have not received the same focus. The goal of this dissertation was to understand the main factors driving heat and light generation and the transport of light and heat in the wavelength-converting layer of an LED system. Another goal was to understand the interaction between heat and light in the system and to develop and analyze a solution to reduce the wavelength-converting layer operating temperature, thereby improving light output and reliability. Even though past studies have explored generation and transfer separately for light and heat, to the best of the author's knowledge, this is the first study that has analyzed both factors simultaneously to optimize the performance of a phosphor-converted LED system, thus contributing new knowledge to the field. In this dissertation, a theoretical model was developed that modeled both light propagation and heat transfer in the wavelength-converting layer for identifying the factors influencing heat generation. This theoretical model included temperature-dependent phosphor efficiency and light absorption in the phosphor layer geometry. Experimental studies were used to validate the developed model. The model indicated good agreement with the experimental results. The developed theoretical model was then used to model experimental studies. These experiment results were compared with the model predicted results for total radiant power output of LED systems and phosphor layer surface temperature. These comparisons illustrated the effectiveness of a dedicated heat dissipation method in reducing the operating temperature of the wavelength-converting layer, and the contribution of different heat dissipation mechanisms were quantified using the developed numerical model. In addition to these short-term studies, an experiment was conducted to validate the effectiveness of the dedicated wavelength-converting heat sink design to improve system lifetime by reducing phosphor layer operating temperature. The proposed heat sink design decreased the operating temperature of the phosphor layer by ~10°C, improving lifetime by twofold. Finally, this dissertation investigated the potential of the developed theoretical model being used as a tool for prioritizing research tasks and as a design tool during the material selection and system configuration phases.
Design and evaluation of fluidized bed heat recovery for diesel engine systems
NASA Technical Reports Server (NTRS)
Hamm, J. R.; Newby, R. A.; Vidt, E. J.; Lippert, T. E.
1985-01-01
The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases.
The Potential for Volcanism and Tectonics on Extrasolar Terrestrial Planets
NASA Astrophysics Data System (ADS)
Quick, Lynnae C.; Roberge, Aki
2018-01-01
JWST and other next-generation space telescopes (e.g., LUVOIR, HabEx, & OST) will usher in a new era of exoplanet characterization that may lead to the identification of habitable, Earth-like worlds. Like the planets and moons in our solar system, the surfaces and interiors of terrestrial exoplanets may be shaped by volcanism and tectonics (Fu et al., 2010; van Summeren et al., 2011; Henning and Hurford, 2014). The magnitude and rate of occurrence of these dynamic processes can either facilitate or preclude the existence of habitable environments. Likewise, it has been suggested that detections of cryovolcanism on icy exoplanets, in the form of geyser-like plumes, could indicate the presence of subsurface oceans (Quick et al., 2017).The presence of volcanic and tectonic activity on solid exoplanets will be intimately linked to planet size and heat output in the form of radiogenic and/or tidal heating. In order to place bounds on the potential for such activity, we estimated the heat output of a variety of exoplanets observed by Kepler. We considered planets whose masses and radii range from 0.067 ME (super-Ganymede) to 8 ME (super-Earth), and 0.5 to 1.8 RE, respectively. These heat output estimates were then compared to those of planets, moons, and dwarf planets in our solar system for which we have direct evidence for the presence/absence of volcanic and tectonic activity. After exoplanet heating rates were estimated, depths to putative molten layers in their interiors were also calculated. For planets such as TRAPPIST-1h, whose densities, orbital parameters, and effective temperatures are consistent with the presence of significant amounts of H2O (Luger et al., 2017), these calculations reveal the depths to internal oceans which may serve as habitable niches beneath surface ice layers.
MM-wave cyclotron auto-resonance maser for plasma heating
NASA Astrophysics Data System (ADS)
Ceccuzzi, S.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Mirizzi, F.; Spassovsky, I.; Ravera, G. L.; Surrenti, V.; Tuccillo, A. A.
2014-02-01
Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R&D development.
Code of Federal Regulations, 2014 CFR
2014-01-01
... serve the load. Eligible borrower means a utility system that has direct or indirect responsibility for... analysis of energy flows in a building, process, or system with the goal of identifying opportunities to... output. HVAC means heating, ventilation, and air conditioning. Load means the Power delivered to power...
Heat fluxes across the Antarctic Circumpolar Current
NASA Astrophysics Data System (ADS)
Ferrari, Ramiro; Provost, Christine; Hyang Park, Young; Sennéchael, Nathalie; Garric, Gilles; Bourdallé-Badie, Romain
2014-05-01
Determining the processes responsible for the Southern Ocean heat balance is fundamental to our understanding of the weather and climate systems. Therefore, in the last decades, various studies aimed at analyzing the major mechanisms of the oceanic poleward heat flux in this region. Previous works stipulated that the cross-stream heat flux due to the mesoscale transient eddies was responsible for the total meridional heat transport across the Antarctic Circumpolar Current (ACC). Several numerical modelling and current meters data studies have recently challenged this idea. These showed that the heat flux due to the mean flow in the southern part of the Antarctic Circumpolar Current could be larger than the eddy heat flux contribution by two orders of magnitude. Eddy heat flux and heat flux by the mean flow distributions of were examined in Drake Passage using in situ measurements collected during the DRAKE 2006-9 project (from January 2006 to March 2009), available observations from the historical DRAKE 79 experiment and high resolution model outputs (ORCA 12, MERCATOR). The Drake Passage estimations provided a limited view of heat transport in the Southern Ocean. The small spatial scales shown by the model derived heat flux by the mean flow indicate that circumpolar extrapolations from a single point observation are perilous. The importance of the heat flux due by the mean flow should be further investigated using other in situ observations and numerical model outputs. Similar situation has been observed, with important implication for heat flux due to the mean flow, in other topographically constricted regions with strong flow across prominent submarine ridges (choke points). We have estimated the heat flux due to the mean flow revisiting other ACC mooring sites where in situ time series are available, e.g. south of Australia (Tasmania) (Phillips and Rintoul, 2000), southeast of New Zealand (Campbell Plateau) (Bryden and Heath, 1985). Heat fluxes due to the mean flow at those choke points were compared to model outputs and provided new circumpolar estimates indicating that the choke points are a potential overwhelming contribution for the heat flux needed to balance heat lost to the atmosphere in the Southern Ocean.
System for controlling the operating temperature of a fuel cell
Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.
2006-06-06
A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.
NASA Technical Reports Server (NTRS)
1977-01-01
Measured performance characteristics of the transmitter experiment package (TEP) aboard the Communications Technology Satellite for the first 90 operating days in orbit are presented. The TEP consists of a nominal 200-watt output stage tube (OST), a supporting power processing system (PPS), and a variable-conductance heat pipe system (VCHPS). The OST, a traveling-wave tube augmented with a 10-stage depressed collector, has an overall saturated average efficiency of 51.5 percent and an average saturated radiofrequency (RF) output power at center-band frequency of 240 watts. The PPS operated with a measured efficiency of 86.5 percent to 88.5 percent. The VCHPS, using three pipes to conduct heat from the PPS and the body of the OST to a 52-centimeter by 124-centimeter (20.5-in. by 48.75-in.) radiator fin, maintained by the PPS baseplate temperature below 50 C for all operating conditions. The TEP performance characteristics presented include frequency response, RF output power, efficiency, and distortions. Communications characteristics were evaluated by using both video and audio modulated signals.
NASA Astrophysics Data System (ADS)
Saadon, S.; Abu Talib, A. R.
2016-10-01
Due to energy shortage and global warming, issues of energy saving have become more important. To increase the energy efficiency and reduce the fuel consumption, waste heat recovery is a significant method for energy saving. The organic Rankine cycle (ORC) has great potential to recover the waste heat from the core jet exhaust of a turbofan engine and use it to produce power. Preliminary study of the design concept and thermodynamic performance of this ORC system would assist researchers to predict the benefits of using the ORC system to extract the exhaust heat engine. In addition, a mathematical model of the heat transfer of this ORC system is studied and developed. The results show that with the increment of exhaust heat temperature, the mass flow rate of the working fluid, net power output and the system thermal efficiency will also increase. Consequently, total consumption of jet fuel could be significantly saved as well.
Performance of OSC's initial Amtec generator design, and comparison with JPL's Europa Orbiter goals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, A.; Noravian, H.; Or, C.
1998-07-01
The procedure for the analysis (with overpotential correction) of multitube AMTEC (Alkali Metal Thermal-to-Electrical Conversion) cells described in Paper IECEC 98-243 was applied to a wide range of multicell radioisotope space power systems. System design options consisting of one or two generators, each with 2, 3, or 4 stacked GPHS (General Purpose Heat Source) modules, identical to those used on previous NASA missions, were analyzed and performance-mapped. The initial generators analyzed by OSC had 8 AMTEC cells on each end of the heat source stack, with five beta-alumina solid electrolyte (BASE) tubes per cell. The heat source and converters inmore » the Orbital generator designs are embedded in a thermal insulation system consisting of Min-K fibrous insulation surrounded by graded-length molybdenum multifoils. Detailed analyses in previous Orbital studies found that such an insulation system could reduce extraneous heat losses to about 10%. For the above design options, the present paper presents the system mass and performance (i.e., the EOM system efficiency and power output and the BOM evaporator and clad temperatures) for a wide range of heat inputs and load voltages, and compares the results with JPL's preliminary goals for the Europa Orbiter mission to be launched in November 2003. The analytical results showed that the initial 16-cell generator designs resulted in either excessive evaporator and clad temperatures and/or insufficient power outputs to meet the JPL-specified mission goals. The computed performance of modified OSC generators with different numbers of AMTEC cells, cell diameters, cell lengths, cell materials, BASE tube lengths, and number of tubes per cell are described in Paper IECEC.98.245 in these proceedings.« less
Lunar Surface Stirling Power Systems Using Am-241
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.
2009-01-01
For many years NASA has used the decay of Pu-238 (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTG), which have provided electrical power for many NASA missions. While RTG's have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency (-5% efficiency) and the scarcity of Plutoinium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14 earth days) isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 watts with 2 GPHS modules at the beginning of life (BOL) (-30% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a 4-fold reduction in the number of GPHS modules. This study considers the use of Americium 241 (Am-241) as a substitute for the Pu-238 in Stirling convertor based Radioisotope Power Systems (RPS) for power levels from 1 O's of watts to 5 kWe. The Am-241 is used as a replacement for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about 1/5 while maintaining approximately the same system mass. In order to obtain the nominal 160 watts electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot end and water pumped loop/heat pipe radiator is considered for the heat rejection side for power levels above 1 kWe.
NASA Astrophysics Data System (ADS)
Luchau, David W.; Sinkevich, Valery G.; Wernsman, Bernard; Mulder, Daniel M.
1996-03-01
A final report on the output power characteristics and capabilities of the TOPAZ II Space Nuclear Power Unit Ya-21u is presented. Results showed that after a total of almost 8,000 hours of system testing in the U.S. and Russia, several emergency cooldowns, and three inadvertent air introductions to the interelectrode gap (IEG) that the TOPAZ II demonstrates the potential for providing reliable power in a space environment. Output power optimizations and system characteristics following a shock and vibration test are shown. These tests were performed using electrical heaters that simulate nuclear fuel heating. This paper will focus primarily on the changes in output power characteristics over the lifetime of Ya-21u. All U.S. testing was conducted at the Thermionic System Evaluation Test (TSET) Facility of the New Mexico Engineering Research Institute (NMERI) as a part of the TOPAZ International Program (TIP). TIP is managed by the Air Force Phillips Laboratory (PL) for the Ballistic Missile Defense Organization (BMDO).
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Withers, J. Cummings, B. Nigusse, E. Martin
A new generation of central, ducted variable-capacity heat pump systems has come on the market, promising very high cooling and heating efficiency. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they vary their cooling and heating output over a wide range (approximately 40 to 118% of nominal full capacity); thus, staying 'on' for 60% to 100% more hours per day compared to fixed-capacity systems. Current Phase 4 experiments in an instrumented lab home with simulated occupancy evaluate the impact of duct R-value enhancement on the overall operating efficiency of the variable-capacity systemmore » compared to the fixed-capacity system.« less
Apertet, Y; Ouerdane, H; Goupil, C; Lecoeur, Ph
2012-03-01
Energy conversion efficiency at maximum output power, which embodies the essential characteristics of heat engines, is the main focus of the present work. The so-called Curzon and Ahlborn efficiency η(CA) is commonly believed to be an absolute reference for real heat engines; however, a different but general expression for the case of stochastic heat engines, η(SS), was recently found and then extended to low-dissipation engines. The discrepancy between η(CA) and η(SS) is here analyzed considering different irreversibility sources of heat engines, of both internal and external types. To this end, we choose a thermoelectric generator operating in the strong-coupling regime as a physical system to qualitatively and quantitatively study the impact of the nature of irreversibility on the efficiency at maximum output power. In the limit of pure external dissipation, we obtain η(CA), while η(SS) corresponds to the case of pure internal dissipation. A continuous transition between from one extreme to the other, which may be operated by tuning the different sources of irreversibility, also is evidenced.
Life cycle biological efficiency of mice divergently selected for heat loss.
Bhatnagar, A S; Nielsen, M K
2014-08-01
Divergent selection in mice for heat loss was conducted in 3 independent replicates creating a high maintenance, high heat loss (MH) and low maintenance, low heat loss (ML) line and unselected control (MC). Improvement in feed efficiency was observed in ML mice due to a reduced maintenance energy requirement but there was also a slight decline in reproductive performance, survivability, and lean content, particularly when compared to MC animals. The objective of this study was to model a life cycle scenario similar to a livestock production system and calculate total inputs and outputs to estimate overall biological efficiency of these lines and determine if reduced feed intake resulted in improved life cycle efficiency. Feed intake, reproductive performance, growth, and body composition were recorded on 21 mating pairs from each line × replicate combination, cohabitated at 7 wk of age and maintained for up to 1 yr unless culled. Proportion of animals at each parity was calculated from survival rates estimated from previous research when enforcing a maximum of 4, 8, or 12 allowed parities. This parity distribution was then combined with values from previous studies to calculate inputs and outputs of mating pairs and offspring produced in a single cycle at equilibrium. Offspring output was defined as kilograms of lean output of offspring at 49 d. Offspring input was defined as megacalories of energy intake for growing offspring from 21 to 49 d. Parent output was defined as kilograms of lean output of culled parents. Parent input was defined as megacalories of energy intake for mating pairs from weaning of one parity to weaning of the next. Offspring output was greatest in MC mice due to superior BW and numbers weaned, while output was lowest in ML mice due to smaller litter sizes and lean content. Parent output did not differ substantially between lines but was greatest in MH mice due to poorer survival rates resulting in more culled animals. Input was greatest in MH and lowest for ML mice for both offspring and parent pairs, consistent with previous results in these lines. Life cycle efficiency was similar in MC and ML mice, while MH mice were least efficient. Ultimately, superior output in MC mice slightly outweighed the lower inputs in ML animals resulting from decreased maintenance energy requirements. Therefore, selection to reduce maintenance energy requirements may be more useful in terminal crosses or in a selection index to reduce possible negative effects on output, especially reproductive performance.
Kano, Shinya; Fujii, Minoru
2017-03-03
We study the conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage. Heat leakage current from a hot electrode to a cold electrode is taken into account in the analysis of the harvester operation. Modeling of electrical output indicates that a maximum heat leakage current is not negligible because it is larger than that of the heat current harvested into electrical power. A reduction of heat leakage is required in this energy harvester in order to obtain efficient heat-to-electrical conversion. Multiple energy levels of a quantum dot can increase the output power of the harvester. Heavily doped colloidal semiconductor quantum dots are a possible candidate for a quantum-dot monolayer in the energy harvester to reduce heat leakage, scaling down device size, and increasing electrical output via multiple discrete energy levels.
Hurwitz, Shaul; Harris, Robert; Werner, Cynthia Anne; Murphy, Fred
2012-01-01
Characterizing the vigor of magmatic activity in Yellowstone requires knowledge of the mechanisms and rates of heat transport between magma and the ground surface. We present results from a heat flow study in two vapor dominated, acid-sulfate thermal areas in the Yellowstone Caldera, the 0.11 km2 Obsidian Pool Thermal Area (OPTA) and the 0.25 km2 Solfatara Plateau Thermal Area (SPTA). Conductive heat flux through a low permeability layer capping large vapor reservoirs is calculated from soil temperature measurements at >600 locations and from laboratory measurements of soil properties. The conductive heat output is 3.6 ± 0.4 MW and 7.5 ± 0.4 MW from the OPTA and the SPTA, respectively. The advective heat output from soils is 1.3 ± 0.3 MW and 1.2 ± 0.3 MW from the OPTA and the SPTA, respectively and the heat output from thermal pools in the OPTA is 6.8 ± 1.4 MW. These estimates result in a total heat output of 11.8 ± 1.4 MW and 8.8 ± 0.4 MW from OPTA and SPTA, respectively. Focused zones of high heat flux in both thermal areas are roughly aligned with regional faults suggesting that faults in both areas serve as conduits for the rising acid vapor. Extrapolation of the average heat flux from the OPTA (103 ± 2 W·m−2) and SPTA (35 ± 3 W·m−2) to the ~35 km2 of vapor dominated areas in Yellowstone yields 3.6 and 1.2 GW, respectively, which is less than the total heat output transported by steam from the Yellowstone Caldera as estimated by the chloride inventory method (4.0 to 8.0 GW).
The structure and timescales of heat perception in larval zebrafish.
Haesemeyer, Martin; Robson, Drew N; Li, Jennifer M; Schier, Alexander F; Engert, Florian
2015-11-25
Avoiding temperatures outside the physiological range is critical for animal survival, but how temperature dynamics are transformed into behavioral output is largely not understood. Here, we used an infrared laser to challenge freely swimming larval zebrafish with "white-noise" heat stimuli and built quantitative models relating external sensory information and internal state to behavioral output. These models revealed that larval zebrafish integrate temperature information over a time-window of 400 ms preceding a swimbout and that swimming is suppressed right after the end of a bout. Our results suggest that larval zebrafish compute both an integral and a derivative across heat in time to guide their next movement. Our models put important constraints on the type of computations that occur in the nervous system and reveal principles of how somatosensory temperature information is processed to guide behavioral decisions such as sensitivity to both absolute levels and changes in stimulation.
Ground Source Geothermal District Heating and Cooling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowe, James William
2016-10-21
Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reducemore » worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx« less
Photonic crystal enhanced silicon cell based thermophotovoltaic systems
Yeng, Yi Xiang; Chan, Walker R.; Rinnerbauer, Veronika; ...
2015-01-30
We report the design, optimization, and experimental results of large area commercial silicon solar cell based thermophotovoltaic (TPV) energy conversion systems. Using global non-linear optimization tools, we demonstrate theoretically a maximum radiative heat-to-electricity efficiency of 6.4% and a corresponding output electrical power density of 0.39 W cm⁻² at temperature T = 1660 K when implementing both the optimized two-dimensional (2D) tantalum photonic crystal (PhC) selective emitter, and the optimized 1D tantalum pentoxide – silicon dioxide PhC cold-side selective filter. In addition, we have developed an experimental large area TPV test setup that enables accurate measurement of radiative heat-to-electricity efficiency formore » any emitter-filter-TPV cell combination of interest. In fact, the experimental results match extremely well with predictions of our numerical models. Our experimental setup achieved a maximum output electrical power density of 0.10W cm⁻² and radiative heat-to-electricity efficiency of 1.18% at T = 1380 K using commercial wafer size back-contacted silicon solar cells.« less
NASA Astrophysics Data System (ADS)
Powell, M. A.; Rawlinson, K. S.
A kinetic Stirling cycle engine, the Stirling Thermal Motors (STM) STM4-120, was tested at the Sandia National Laboratories Engine Test Facility (ETF) from March 1989-August 1992. Sandia is interested in determining this engine's potential for solar-thermal-electric applications. The last round of testing was conducted from July-August 1992 using Sandia-designed gas-fired heat pipe evaporators as the heat input system to the engine. The STM4-120 was performance mapped over a range of sodium vapor temperatures, cooling water temperatures, and cycle pressures. The resulting shaft power output levels ranged from 5-9 kW. The engine demonstrated high conversion efficiency (24-31%) even though the power output level was less than 40% of the rated output of 25 kW. The engine had been previously derated from 25 kW to 10 kW shaft power due to mechanical limitations that were identified by STM during parallel testing at their facility in Ann Arbor, MI. A statistical method was used to design the experiment, to choose the experimental points, and to generate correlation equations describing the engine performance given the operating parameters. The testing was truncated due to a failure of the heat pipe system caused by entrainment of liquid sodium in the condenser section of the heat pipes. Enough data was gathered to generate the correlations and to demonstrate the experimental technique. The correlation is accurate in the experimental space and is simple enough for use in hand calculations and spreadsheet-based system models. Use of this method can simplify the construction of accurate performance and economic models of systems in which the engine is a component. The purpose of this paper is to present the method used to design the experiments and to analyze the performance data.
NASA Astrophysics Data System (ADS)
Bugarin, Luz Irene
During the summer, high inlet temperatures affect the power output of gas turbine systems. Evaporative coolers have gained popularity as an inlet cooling method for these systems. Wet compression has been one of the common evaporative cooling methods implemented to increase power output of gas turbine systems due to its simple installation and low cost. This process involves injection of water droplets into the continuous phase of compressor to reduce the temperature of the flow entering the compressor and in turn increase the power output of the whole gas turbine system. This study focused on a single stage rotor-stator compressor model with varying inlet temperature between 300K and 320K, as well as relative humidity between 0% and 100%. The simulations are carried out using the commercial CFD tool ANSYS: FLUENT. The study modeled the interaction between the two phases including mass and heat transfer, given different inlet relative humidity (RH) and temperature conditions. The Reynolds Averaged Navier-Stokes (RANS) equations with k-epsilon turbulence model were applied as well as the droplet coalescence and droplet breakup model considered in the simulation. Sliding mesh theory was implemented to simulate the compressor movement in 2-D. The interaction between the blade and droplets were modeled to address all possible interactions; which include: stick spread, splash, or rebound and compared to an interaction of only reflect. The goal of this study is to quantify the relation between RH, inlet temperature, overall heat transfer coefficient, and the heat transferred from the droplets to the blades surface. The result of this study lead to further proof that wet compression yields higher pressure ratios and lower temperatures in the domain under all of the cases. Additionally, droplet-wall interaction has an interesting effect on the heat transfer coefficient at the compressor blades.
NASA Astrophysics Data System (ADS)
Xiao, Longjie; He, Tianming; Mei, Binyu; Wang, Yiping; Wang, Zongsong; Tan, Gangfeng
2018-01-01
Automobile exhaust energy thermoelectric utilization can promote energy-saving and emission-reduction. Unexpected urban traffic conditions lead to the hot-end temperature instability of the exhaust pipe-mounted thermoelectric generator (TEG), and influence the TEG power generation efficiency. The heat conduction oil circulation located at the hot-end could smooth the temperature fluctuation, at the expense of larger system size and additional energy supply. This research improves the TEG hot-end temperature stability by installing solid heat capacity material (SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, light weight and no additional energy consumption. The exhaust temperature and flow rate characteristics with various driving conditions are firstly studied for the target engine. Then the convective heat transfer models of SHCM's hot-end and thermoelectric material's cold-end are established. Meanwhile, SHCM thermal properties' effects on the amplitude and response speed of the TEG hot-end temperature are studied. The candidate SHCM with the characteristics of low thermal resistance and high heat capacity is determined. And the heat transfer model going through from TEG's hot-end to the cold-end is established. The results show that the SHCM significantly improves the TEG hot-end temperature stability but slightly reduces the average power output. When the engine working conditions change a lot, the SHCM's improvement on the TEG hot-end temperature stability is more significant, but the reduction of the average power output becomes more remarkable.
NASA Astrophysics Data System (ADS)
Xiao, Longjie; He, Tianming; Mei, Binyu; Wang, Yiping; Wang, Zongsong; Tan, Gangfeng
2018-06-01
Automobile exhaust energy thermoelectric utilization can promote energy-saving and emission-reduction. Unexpected urban traffic conditions lead to the hot-end temperature instability of the exhaust pipe-mounted thermoelectric generator (TEG), and influence the TEG power generation efficiency. The heat conduction oil circulation located at the hot-end could smooth the temperature fluctuation, at the expense of larger system size and additional energy supply. This research improves the TEG hot-end temperature stability by installing solid heat capacity material (SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, light weight and no additional energy consumption. The exhaust temperature and flow rate characteristics with various driving conditions are firstly studied for the target engine. Then the convective heat transfer models of SHCM's hot-end and thermoelectric material's cold-end are established. Meanwhile, SHCM thermal properties' effects on the amplitude and response speed of the TEG hot-end temperature are studied. The candidate SHCM with the characteristics of low thermal resistance and high heat capacity is determined. And the heat transfer model going through from TEG's hot-end to the cold-end is established. The results show that the SHCM significantly improves the TEG hot-end temperature stability but slightly reduces the average power output. When the engine working conditions change a lot, the SHCM's improvement on the TEG hot-end temperature stability is more significant, but the reduction of the average power output becomes more remarkable.
NASA Astrophysics Data System (ADS)
Piskunov, Maksim V.; Voytkov, Ivan S.; Vysokomornaya, Olga V.; Vysokomorny, Vladimir S.
2015-01-01
The new approach was developed to analyze the failure causes in operation of linear facilities independent power supply sources (mini-CHP-plants) of gas-transmission system in Eastern part of Russia. Triggering conditions of ceiling operation substance temperature at condenser output were determined with mathematical simulation use of unsteady heat and mass transfer processes in condenser of mini-CHP-plants. Under these conditions the failure probability in operation of independent power supply sources is increased. Influence of environmental factors (in particular, ambient temperature) as well as output electric capability values of power plant on mini-CHP-plant operation reliability was analyzed. Values of mean time to failure and power plant failure density during operation in different regions of Eastern Siberia and Far East of Russia were received with use of numerical simulation results of heat and mass transfer processes at operation substance condensation.
NASA Technical Reports Server (NTRS)
Crosson, William L; Al-Hamdan, Mohammad Z.; Economou, Sigrid, A.; Estes, Maurice G.; Estes, Sue M.; Puckett, Mark; Quattrochi, Dale A
2013-01-01
In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. In a NASA-funded project supporting the National Climate Assessment, we are providing historical and future measures of extreme heat to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The project s emphasis is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM output, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons, 2040 and 2090, are the focus of future assessments; these are compared to the recent past period of 1981-2000. We are characterizing regional-scale temperature and humidity conditions using GCM output for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM output have been analyzed to develop a heat stress climatology based on statistics of extreme heat indicators. Differences between the two future and past periods have been used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes, combined with hourly historical meteorological data at a spatial scale (12 km) much finer than that of GCMs, enable us to create future climate realizations, from which we compute the daily heat stress measures and related spatially-specific climatological fields. These include the mean annual number of days above certain thresholds of maximum and minimum air temperatures, heat indices and a new heat stress variable that gives an integrated measure of heat stress (and relief) over the course of a day. Comparisons are made between projected (2040 and 2090) and past (1990) heat stress statistics. All output is being provided at the 12 km spatial scale and will also be aggregated to the county level, which is a popular scale of analysis for public health researchers. County-level statistics will be made available by our collaborators at the Centers for Disease Control and Prevention (CDC) via the Wide-ranging Online Data for Epidemiologic Research (WONDER) system. CDC WONDER makes the information resources of the CDC available to public health professionals and the general public. This addition of heat stress measures to CDC WONDER will allow decision and policy makers to assess the impact of alternative approaches to optimize the public health response to EHEs. It will also allow public health researchers and policy makers to better include such heat stress measures in the context of national health data available in the CDC WONDER system. The users will be able to spatially and temporally query public health and heat-related data sets and create county-level maps and statistical charts of such data across the coterminous U.S.
Central Data Processing System (CDPS) user's manual: Solar heating and cooling program
NASA Technical Reports Server (NTRS)
1976-01-01
The software and data base management system required to assess the performance of solar heating and cooling systems installed at multiple sites is presented. The instrumentation data associated with these systems is collected, processed, and presented in a form which supported continuity of performance evaluation across all applications. The CDPS consisted of three major elements: communication interface computer, central data processing computer, and performance evaluation data base. Users of the performance data base were identified, and procedures for operation, and guidelines for software maintenance were outlined. The manual also defined the output capabilities of the CDPS in support of external users of the system.
Carrier fluid temperature data in vertical ground heat exchangers with a varying pipe separation.
Makasis, Nikolas; Narsilio, Guillermo A; Bidarmaghz, Asal; Johnston, Ian W
2018-06-01
The dataset in this article is related to shallow geothermal energy systems, which efficiently provide renewable heating and cooling to buildings, and specifically to the performance of the vertical ground heat exchangers (GHE) embedded in the ground. GHEs incorporate pipes with a circulating (carrier) fluid, exchanging heat between the ground and the building. The data show the average and inlet temperatures of the carrier fluid circulating in the pipes embedded in the GHEs (which directly relate to the performance of these systems). These temperatures were generated using detailed finite element modelling and comprise part of the daily output of various one-year simulations, accounting for numerous design parameters (including different pipe geometries) and ground conditions. An expanded explanation of the data as well as comprehensive analyses on how they were used can be found in the article titled "Ground-source heat pump systems: the effect of variable pipe separation in ground heat exchangers" (Makasis N, Narsilio GA, Bidarmaghz A, Johnston IW, 2018) [1].
NASA Technical Reports Server (NTRS)
Binsley, R. L.; Maddox, J. P.; Marcy, R. D.; Siegler, R. S.; Spies, R.
1971-01-01
The auxiliary power unit (APU) for the space shuttle is required to provide hydraulic and electrical power on board the booster and orbiter vehicles. Five systems and their associated components, which utilize hot gas turbines to supply horsepower at gearbox output pads, were studied. Hydrogen-oxygen and storable propellants were considered for the hot gas supply. All APU's were required to be self-contained with respect to dissipating internally generated heat. These five systems were evaluated relative to a consistent criteria. The system supplied with high pressure gaseous hydrogen and oxygen was recommended as the best approach. It included a two-stage pressure-compounded partial-admission turbine, a propellant conditioning system with recuperation, a control system, and a gearbox. The gearbox output used was 240 hp. At the close of the study a 400 hp level was considered more appropriate for meeting the prime shuttle vehicle needs, and an in-depth analysis of the system at the 400 hp output level was recommended.
NASA Technical Reports Server (NTRS)
Smetana, J.; Curren, A. N.
1979-01-01
The performance characteristics of the transmitter experiment package (TEP) aboard the Communications Technology Satellite (CTS) measured during its first 2 years in orbit are presented. The TEP consists of a nominal 200 watt output stage tube (OST), a supporting power processing system (PPS), and a variable conductance heat pipe system (VCHPS). The OST, a traveling wave tube augmented with a 10 stage depressed collector has an overall saturated average efficiency of 51.5 percent and an average saturated radio frequency (rf) output power at center band frequency of 240 watts. The PPS operated with a measured efficiency of 86.5 to 88.5 percent. The VCHPS, using three pipes to conduct heat from the PPS and the OST to a 52 by 124 centimeter radiator fin, maintained the PPS baseplate temperature below 50 C for all operating conditions. The TEP performance characteristics presented include frequency response, rf output power, thermal performance, and efficiency. Communications characteristics were evaluated by using both video and audio modulated signals. On four occasions, the TEP experienced temporary thermal control system malfunctions. The anomalies were terminated safely, and the problem was investigated because of the potential for TEP damage due to the signficant temperature increases. Safe TEP operating procedures were established.
Solar tower power plant using a particle-heated steam generator: Modeling and parametric study
NASA Astrophysics Data System (ADS)
Krüger, Michael; Bartsch, Philipp; Pointner, Harald; Zunft, Stefan
2016-05-01
Within the framework of the project HiTExStor II, a system model for the entire power plant consisting of volumetric air receiver, air-sand heat exchanger, sand storage system, steam generator and water-steam cycle was implemented in software "Ebsilon Professional". As a steam generator, the two technologies fluidized bed cooler and moving bed heat exchangers were considered. Physical models for the non-conventional power plant components as air- sand heat exchanger, fluidized bed coolers and moving bed heat exchanger had to be created and implemented in the simulation environment. Using the simulation model for the power plant, the individual components and subassemblies have been designed and the operating parameters were optimized in extensive parametric studies in terms of the essential degrees of freedom. The annual net electricity output for different systems was determined in annual performance calculations at a selected location (Huelva, Spain) using the optimized values for the studied parameters. The solution with moderate regenerative feed water heating has been found the most advantageous. Furthermore, the system with moving bed heat exchanger prevails over the system with fluidized bed cooler due to a 6 % higher net electricity yield.
Operation and maintenance of the SOL-DANCE building solar system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-07-29
The Sol-Dance building solar heating system consists of 136 flat plate solar collectors divided evenly into two separate building systems, each providing its total output to a common thermal storage tank. An aromatic base transformer oil is circulated through a closed loop consisting of the collectors and a heat exchanger. Water from the thermal storage tank is passed through the same heat exchanger where heat from the oil is given up to the thermal storage. Back-up heat is provided by air source heat pumps. Heat is transferred from the thermal storage to the living space by liquid-to-air coils in themore » distribution ducts. Separate domestic hot water systems are provided for each building. The system consists of 2 flat plate collectors with a single 66 gallon storage tank with oil circulated in a closed loop through an external tube and shell heat exchanger. Some problems encountered and lessons learned during the project construction are listed as well as beneficial aspects and a project description. As-built drawings are provided as well as system photographs. An acceptance test plan is provided that checks the collection, thermal storage, and space and water heating subsystems and the total system installation. Predicted performance data are tabulated. Details are discussed regarding operation, maintenance, and repair, and manufacturers data are provided. (LEW)« less
Impact of thermal energy storage properties on solar dynamic space power conversion system mass
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.
1987-01-01
A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overalll system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1880 kg/cu m.
Impact of thermal energy storage properties on solar dynamic space power conversion system mass
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.
1987-01-01
A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overall system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1800 kg/cu m).
Technical Assessment of Maglev System Concepts
1998-10-01
pressurizes the loop but retains sufficient heat capacity for the day’s cooling needs. Magneplane uses a cryorefrigerator to keep its supercritical helium in...comparative baselines. the technical and economic viability of maglev in * Apply this process to alternative U.S. maglev the U.S. and to recommend...output/joules- heat the same data as in Figure 119 with the aforemen- input). In effect, applying this factor implies that tioned efficiencies applied
Method and apparatus for fuel gas moisturization and heating
Ranasinghe, Jatila; Smith, Raub Warfield
2002-01-01
Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.
All-regime combined-cycle plant: Engineering solutions
NASA Astrophysics Data System (ADS)
Berezinets, P. A.; Tumanovskii, G. G.; Tereshina, G. E.; Krylova, I. N.; Markina, V. N.; Migun, E. N.
2016-12-01
The development of distributed power generation systems as a supplement to the centralized unified power grid increases the operational stability and efficiency of the entire power generation industry and improves the power supply to consumers. An all-regime cogeneration combined-cycle plant with a power of 20-25 mW (PGU-20/25T) and an electrical efficiency above 50% has been developed at the All-Russia Thermal Engineering Institute (ATEI) as a distributed power generation object. The PGU-20/25T two-circuit cogeneration plant provides a wide electrical and thermal power adjustment range and the absence of the mutual effect of electrical and thermal power output regimes at controlled frequency and power in a unified or isolated grid. The PGU-20/25T combined-cycle plant incorporates a gas-turbine unit (GTU) with a power of 16 MW, a heat recovery boiler (HRB) with two burners (before the boiler and the last heating stage), and a cogeneration steam turbine with a power of 6/9 MW. The PGU-20/25T plant has a maximum electrical power of 22 MW and an efficiency of 50.8% in the heat recovery regime and a maximum thermal power output of 16.3 MW (14 Gcal/h) in the cogeneration regime. The use of burners can increase the electrical power to 25 MW in the steam condensation regime at an efficiency of 49% and the maximum thermal power output to 29.5 MW (25.4 Gcal/h). When the steam turbine is shut down, the thermal power output can grow to 32.6 MW (28 Gcal/h). The innovative equipment, which was specially developed for PGU-20/25T, improves the reliability of this plant and simplifies its operation. Among this equipment are microflame burners in the heat recovery boiler, a vacuum system based on liquid-ring pumps, and a vacuum deaerator. To enable the application of PGU-20/25T in water-stressed regions, an air condenser preventing the heat-transfer tubes from the risk of covering with ice during operation in frost air has been developed. The vacuum system eliminates the need for an extraneous source of steam for the startup of the PGU-20/25T plant. The vacuum deaerator provides prestartup deaeration and the filling of the entire condensate feed pipeline with deaerated water and also enables the maintenance of the water temperature before the boiler at a level of no lower than 60°C and the oxygen content at a level of no higher than 10 μg/L during operation under load. The microflame burners in the heat recovery boiler enable the independent adjustment of the electrical power and the thermal power output from the PGU-20/25T plant. All the innovative equipment has been tested on experimental prototypes.
A Review of Models of the Human Temperature Regulation System.
1992-02-18
experiments to challenge the model and building new models, the researcher will benefit cptimally from its use. It appears that this process has been...during Cooling OUTPUTS: WWe W, Decreased by ?. W H~eating .. ___ > - W Constnt during Coolng IT OUTPUTS: U Increased by 7 We Haoling and Coaling Y. L.AT,)0...12, pp. 709-903, 1976. 43. Slonim, N.B., Environmental Physiology, Mosby, St.Louis, MO, 1974. 44. Sulman, S.G., Health , Weather, and Climate, Karger
Validation of a Waste Heat Recovery Model for a 1kW PEM Fuel Cell using Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Saufi Sulaiman, M.; Mohamed, W. A. N. W.; Singh, B.; Fitrie Ghazali, M.
2017-08-01
Fuel cell is a device that generates electricity through electrochemical reaction between hydrogen and oxygen. A major by-product of the exothermic reaction is waste heat. The recovery of this waste heat has been subject to research on order to improve the overall energy utilization. However, nearly all of the studies concentrate on high temperature fuel cells using advanced thermodynamic cycles due to the high quality of waste heat. The method, characteristics and challenges in harvesting waste heat from a low temperature fuel cell using a direct energy conversion device is explored in this publication. A heat recovery system for an open cathode 1kW Proton Exchange Membrane fuel cell (PEM FC) was developed using a single unit of thermoelectric generator (TEG) attached to a heat pipe. Power output of the fuel cell was varied to obtain the performance of TEG at different stack temperatures. Natural and forced convections modes of cooling were applied to the TEG cold side. This is to simulate the conditions of a mini fuel cell vehicle at rest and in motion. The experimental results were analysed and a mathematical model based on the thermal circuit analogy was developed and compared. Forced convection mode resulted in higher temperature difference, output voltage and maximum power which are 3.3°C, 33.5 mV, and 113.96mW respectively. The heat recovery system for 1 kW Proton Exchange Membrane fuel cell (PEM FC) using single TEG was successfully established and improved the electrical production of fuel cell. Moreover, the experimental results obtained was in a good agreement with theoretical results.
High power plasma heating experiments on the Proto-MPEX facility
NASA Astrophysics Data System (ADS)
Bigelow, T. S.; Beers, C. J.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Diem, S. J.; Goulding, R. H.; Green, D. L.; Kafle, N.; Rapp, J.; Showers, M. A.
2017-10-01
Work is underway to maximize the power delivered to the plasma that is available from heating sources installed on the Prototype Materials Plasma Exposure eXperiment (Proto-MPEX) at ORNL. Proto-MPEX is a linear device that has a >100 kW, 13.56 MHz helicon plasma generator available and is intended for material sample exposure to plasmas. Additional plasma heating systems include a 10 kW 18 GHz electron cyclotron heating (ECH) system, a 25 kW 8 MHz ion cyclotron heating ICH system, and a 200 kW 28 GHz electron Bernstein wave (EBW) and ECH system. Most of the heating systems have relatively good power transmission efficiency, however, the 28 GHz EBW system has a lower efficiency owing to stringent requirements on the microwave launch characteristics for EBW coupling combined with the lower output mode purity of the early-model gyrotron in use and its compact mode converter system. A goal for the Proto-MPEX is to have a combined heating power of 200 kW injected into the plasma. Infrared emission diagnostics of the target plate combined with Thomson Scattering, Langmuir probe, and energy analyzer measurements near the target are utilized to characterize the plasmas and coupling efficiency of the heating systems. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.
Thermal management of the remote phosphor layer in LED systems
NASA Astrophysics Data System (ADS)
Perera, Indika U.; Narendran, Nadarajah
2013-09-01
Generally in a white light-emitting diode (LED), a phosphor slurry is placed around the semiconductor chip or the phosphor is conformally coated over the chip to covert the narrowband, short-wavelength radiation to a broadband white light. Over the past few years, the remote-phosphor method has provided significant improvement in overall system efficiency by reducing the photons absorbed by the LED chip and reducing the phosphor quenching effects. However, increased light output and smaller light engine requirements are causing high radiant energy density on the remotephosphor plates, thus heating the phosphor layer. The phosphor layer temperature rise increases when the phosphor material conversion efficiency decreases. Phosphor layer heating can negatively affect performance in terms of luminous efficacy, color shift, and life. In such cases, the performance of remote-phosphor LED lighting systems can be improved by suitable thermal management to reduce the temperature of the phosphor layer. To verify this hypothesis and to understand the factors that influence the reduction in temperature, a phosphor layer was embedded in a perforated metal heatsink to remove the heat; the parameters that influence the effectiveness of heat extraction were then studied. These parameters included the heatsink-to-phosphor layer interface area and the thermal conductivity of the heatsink. The temperature of the remote-phosphor surface was measured using IR thermography. The results showed that when the heat conduction area of the heatsink increased, the phosphor layer temperature decreased, but at the same time the overall light output of the remote phosphor light engine used in this study decreased due to light absorption by the metal areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.
We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less
Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.; ...
2017-02-17
We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less
Thermal performance analysis of a thermocline thermal energy storage system with FLiNaK molten salt
NASA Astrophysics Data System (ADS)
Liu, C.; Cheng, M. S.; Zhao, B. C.; Dai, Z. M.
2017-01-01
A thermocline thermal storage unit with a heat transfer fluid (HTF) of high-temperature molten salt is considered as one of the most promising methods of thermal storage due to its lower cost and smaller size. The main objective of this work is to analyze the transient behavior of the available molten salt FLiNaK used as the HTF in heat transfer and heat storage in a thermocline thermal energy storage (TES) system. Thermal characteristics including temperature profiles influenced by different inlet velocities of HTF and different void fractions of porous heat storage medium are analyzed. The numerical investigation on the heat storage and heat transfer characteristics of FLiINaK has been carried out. A comparison between two different molten salts, FLiNaK and Hitec, has been explored in this paper with regards to their charging and discharging operations. The results indicate the system with FLiNaK has a greater energy storage capability, a shorter charging time and a higher output power. The numerical investigation reveals heat storage and heat transfer characteristics of the thermocline TES system with FLiNaK, and provide important references for molten salt selection of the TES system in the future.
The near-term hybrid vehicle program, phase 1
NASA Technical Reports Server (NTRS)
1979-01-01
Performance specifications were determined for a hybrid vehicle designed to achieve the greatest reduction in fuel consumption. Based on the results of systems level studies, a baseline vehicle was constructed with the following basic paramaters: a heat engine power peak of 53 kW (VW gasoline engine); a traction motor power peak of 30 kW (Siemens 1GV1, separately excited); a heat engine fraction of 0.64; a vehicle curb weight of 2080 kg; a lead acid battery (35 kg weight); and a battery weight fraction of 0.17. The heat engine and the traction motor are coupled together with their combined output driving a 3 speed automatic transmission with lockup torque converter. The heat engine is equipped withe a clutch which allows it to be decoupled from the system.
Independent Power Generation in a Modern Electrical Substation Based on Thermoelectric Technology
NASA Astrophysics Data System (ADS)
Li, Z. M.; Zhao, Y. Q.; Liu, W.; Wei, B.; Qiu, M.; Lai, X. K.
2017-05-01
Because of many types of electrical equipment with high power in substations, the potentiality of energy conservation is quite large. From this viewpoint, thermoelectric materials may be chosen to produce electrical energy using the waste heat produced in substations. Hence, a thermoelectric generation system which can recycle the waste heat from electric transformers was proposed to improve the energy efficiency and reduce the burden of the oil cooling system. An experimental prototype was fabricated to perform the experiment and to verify the feasibility. The experimental results showed that the output power could achieve 16 W from waste heat of 900 W, and that the power conversion efficiency was approximately 1.8%. Therefore, power generation is feasible by using the waste heat from the transformers based on thermoelectric technology.
A method to model latent heat for transient analysis using NASTRAN
NASA Technical Reports Server (NTRS)
Harder, R. L.
1982-01-01
A sample heat transfer analysis is demonstrated which includes the heat of fusion. The method can be used to analyze a system with nonconstant specific heat. The enthalpy is introduced as an independent degree of freedom at each node. The user input consists of a curve of temperature as a function of enthalpy, which may include a constant temperature phase change. The basic NASTRAN heat transfer capability is used to model the effects of latent heat with existing direct matrix output and nonlinear load data cards. Although some user care is required, the numerical stability of the integration is quite good when the given recommendations are followed. The theoretical equations used and the NASTRAN techniques are shown.
Linking Excessive Heat with Daily Heat-Related Mortality over the Coterminous United States
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Crosson, William L.; Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.
2014-01-01
In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. This research seeks to provide historical and future measures of climate-driven extreme heat events to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The focus of research is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM outputs, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons for 2040 and 2090 are compared to the recent past period of 1981- 2000. We characterize regional-scale temperature and humidity conditions using GCM outputs for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM outputs are analyzed to develop a 'heat stress climatology' based on statistics of extreme heat indicators. Differences between the two future and the past period are used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes are combined with the historical meteorological data, which is hourly and at a spatial scale (12 km) much finer than that of GCMs, to create future climate realizations. From these realizations, we compute the daily heat stress measures and related spatially-specific climatological fields, such as the mean annual number of days above certain thresholds of maximum and minimum air temperatures, heat indices, and a new heat stress variable developed as part of this research that gives an integrated measure of heat stress (and relief) over the course of a day. Comparisons are made between projected (2040 and 2090) and past (1990) heat stress statistics. Outputs are aggregated to the county level, which is a popular scale of analysis for public health interests. County-level statistics are made available to public health researchers by the Centers for Disease Control and Prevention (CDC) via the Wide-ranging Online Data for Epidemiologic Research (WONDER) system. This addition of heat stress measures to CDC WONDER allows decision and policy makers to assess the impact of alternative approaches to optimize the public health response to EHEs. Through CDC WONDER, users are able to spatially and temporally query public health and heat-related data sets and create county-level maps and statistical charts of such data across the coterminous U.S.
High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Sawicki, Jerzy T.
2003-01-01
For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.
High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion
NASA Astrophysics Data System (ADS)
Juhasz, Albert J.; Sawicki, Jerzy T.
2004-02-01
For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a ``partial energy conversion'' system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.
Hybrid solar converters for maximum exergy and inexpensive dispatchable electricity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branz, Howard M.; Regan, William; Gerst, Kacy J.
Photovoltaic (PV) solar energy systems are being deployed at an accelerating rate to supply low-carbon electricity worldwide. However, PV is unlikely to economically supply much more than 10% of the world's electricity unless there is a dramatic reduction in the cost of electricity storage. There is an important scientific and technological opportunity to address the storage challenge by developing inexpensive hybrid solar converters that collect solar heat at temperatures between about 200 and 600 °C and also incorporate PV. Since heat can be stored and converted to electricity at relatively low cost, collection of high exergy content (high temperature) solarmore » heat can provide energy that is dispatchable on demand to meet loads that are not well matched to solar insolation. However, PV cells can collect and convert much of the solar spectrum to electricity more efficiently and inexpensively than solar thermal systems. Advances in spectrum-splitting optics, high-temperature PV cells, thermal management and system design are needed for transformational hybrid converters. We propose that maximizing the exergy output from the solar converters while minimizing the cost of exergy can help propel solar energy toward a higher contribution to carbon-free electricity in the long term than the prevailing paradigm of maximizing the energy output while minimizing the cost of energy« less
Nanogap near-field thermophotovoltaics.
Fiorino, Anthony; Zhu, Linxiao; Thompson, Dakotah; Mittapally, Rohith; Reddy, Pramod; Meyhofer, Edgar
2018-06-18
Conversion of heat to electricity via solid-state devices is of great interest and has led to intense research of thermoelectric materials 1,2 . Alternative approaches for solid-state heat-to-electricity conversion include thermophotovoltaic (TPV) systems where photons from a hot emitter traverse a vacuum gap and are absorbed by a photovoltaic (PV) cell to generate electrical power. In principle, such systems may also achieve higher efficiencies and offer more versatility in use. However, the typical temperature of the hot emitter remains too low (<1,000 K) to achieve a sufficient photon flux to the PV cell, limiting practical applications. Theoretical proposals 3-12 suggest that near-field (NF) effects 13-18 that arise in nanoscale gaps may be leveraged to increase the photon flux to the PV cell and significantly enhance the power output. Here, we describe functional NFTPV devices consisting of a microfabricated system and a custom-built nanopositioner and demonstrate an ~40-fold enhancement in the power output at nominally 60 nm gaps relative to the far field. We systematically characterize this enhancement over a range of gap sizes and emitter temperatures, and for PV cells with two different bandgap energies. We anticipate that this technology, once optimized, will be viable for waste heat recovery applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
New inverter-driven ASHPs are gaining ground in colder climates. These systems operate at sub-zero temperatures without the use of electric resistance backup. There are still uncertainties, however, about cold-climate capacity and efficiency in cold weather and questions such as measuring: power consumption, supply, return, and outdoor air temperatures, and air flow through the indoor fan coil. CARB observed a wide range of operating efficiencies and outputs from site to site. Maximum capacities were found to be generally in line with manufacturer's claims as outdoor temperatures fell to -10 degrees F. The reasons for the wide range in heating performance likelymore » include: low indoor air flow rates, poor placement of outdoor units, relatively high return air temperatures, thermostat set back, integration with existing heating systems, and occupants limiting indoor fan speed. Even with lower efficiencies than published in other studies, most of the heat pumps here still provide heat at lower cost than oil, propane, or certainly electric resistance systems.« less
Scalable microreactors and methods for using same
Lawal, Adeniyi; Qian, Dongying
2010-03-02
The present invention provides a scalable microreactor comprising a multilayered reaction block having alternating reaction plates and heat exchanger plates that have a plurality of microchannels; a multilaminated reactor input manifold, a collecting reactor output manifold, a heat exchange input manifold and a heat exchange output manifold. The present invention also provides methods of using the microreactor for multiphase chemical reactions.
Automated Cryocooler Monitor and Control System
NASA Technical Reports Server (NTRS)
Britcliffe, Michael J.; Hanscon, Theodore R.; Fowler, Larry E.
2011-01-01
A system was designed to automate cryogenically cooled low-noise amplifier systems used in the NASA Deep Space Network. It automates the entire operation of the system including cool-down, warm-up, and performance monitoring. The system is based on a single-board computer with custom software and hardware to monitor and control the cryogenic operation of the system. The system provides local display and control, and can be operated remotely via a Web interface. The system controller is based on a commercial single-board computer with onboard data acquisition capability. The commercial hardware includes a microprocessor, an LCD (liquid crystal display), seven LED (light emitting diode) displays, a seven-key keypad, an Ethernet interface, 40 digital I/O (input/output) ports, 11 A/D (analog to digital) inputs, four D/A (digital to analog) outputs, and an external relay board to control the high-current devices. The temperature sensors used are commercial silicon diode devices that provide a non-linear voltage output proportional to temperature. The devices are excited with a 10-microamp bias current. The system is capable of monitoring and displaying three temperatures. The vacuum sensors are commercial thermistor devices. The output of the sensors is a non-linear voltage proportional to vacuum pressure in the 1-Torr to 1-millitorr range. Two sensors are used. One measures the vacuum pressure in the cryocooler and the other the pressure at the input to the vacuum pump. The helium pressure sensor is a commercial device that provides a linear voltage output from 1 to 5 volts, corresponding to a gas pressure from 0 to 3.5 MPa (approx. = 500 psig). Control of the vacuum process is accomplished with a commercial electrically operated solenoid valve. A commercial motor starter is used to control the input power of the compressor. The warm-up heaters are commercial power resistors sized to provide the appropriate power for the thermal mass of the particular system, and typically provide 50 watts of heat. There are four basic operating modes. "Cool " mode commands the system to cool to normal operating temperature. "Heat " mode is used to warm the device to a set temperature near room temperature. "Pump " mode is a maintenance function that allows the vacuum system to be operated alone to remove accumulated contaminants from the vacuum area. In "Off " mode, no power is applied to the system.
Olson, Eric J.
2013-06-11
An apparatus, program product, and method that run an algorithm on a hardware based processor, generate a hardware error as a result of running the algorithm, generate an algorithm output for the algorithm, compare the algorithm output to another output for the algorithm, and detect the hardware error from the comparison. The algorithm is designed to cause the hardware based processor to heat to a degree that increases the likelihood of hardware errors to manifest, and the hardware error is observable in the algorithm output. As such, electronic components may be sufficiently heated and/or sufficiently stressed to create better conditions for generating hardware errors, and the output of the algorithm may be compared at the end of the run to detect a hardware error that occurred anywhere during the run that may otherwise not be detected by traditional methodologies (e.g., due to cooling, insufficient heat and/or stress, etc.).
NASA Astrophysics Data System (ADS)
Quattrochi, D. A.; Crosson, W. L.; Al-Hamdan, M. Z.; Estes, M. G., Jr.
2013-12-01
In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. This research seeks to provide historical and future measures of climate-driven extreme heat events to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The focus of research is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM outputs, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons for 2040 and 2090 are compared to the recent past period of 1981-2000. We characterize regional-scale temperature and humidity conditions using GCM outputs for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM outputs are analyzed to develop a ';heat stress climatology' based on statistics of extreme heat indicators. Differences between the two future and the past period are used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes are combined with the historical meteorological data, which is hourly and at a spatial scale (12 km) much finer than that of GCMs, to create future climate realizations. From these realizations, we compute the daily heat stress measures and related spatially-specific climatological fields, such as the mean annual number of days above certain thresholds of maximum and minimum air temperatures, heat indices, and a new heat stress variable developed as part of this research that gives an integrated measure of heat stress (and relief) over the course of a day. Comparisons are made between projected (2040 and 2090) and past (1990) heat stress statistics. Outputs are aggregated to the county level, which is a popular scale of analysis for public health interests. County-level statistics are made available to public health researchers by the Centers for Disease Control and Prevention (CDC) via the Wide-ranging Online Data for Epidemiologic Research (WONDER) system. This addition of heat stress measures to CDC WONDER allows decision and policy makers to assess the impact of alternative approaches to optimize the public health response to EHEs. Through CDC WONDER, users are able to spatially and temporally query public health and heat-related data sets and create county-level maps and statistical charts of such data across the coterminous U.S.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Crosson, William L.; Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.
2013-01-01
In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. This research seeks to provide historical and future measures of climate-driven extreme heat events to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The focus of research is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM outputs, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons for 2040 and 2090 are compared to the recent past period of 1981- 2000. We characterize regional-scale temperature and humidity conditions using GCM outputs for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM outputs are analyzed to develop a 'heat stress climatology' based on statistics of extreme heat indicators. Differences between the two future and the past period are used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes are combined with the historical meteorological data, which is hourly and at a spatial scale (12 km), to create future climate realizations. From these realizations, we compute the daily heat stress measures and related spatially-specific climatological fields, such as the mean annual number of days above certain thresholds of maximum and minimum air temperatures, heat indices and a new heat stress variable developed as part of this research that gives an integrated measure of heat stress (and relief) over the course of a day. Comparisons are made between projected (2040 and 2090) and past (1990) heat stress statistics. Outputs are aggregated to the county level, which is a popular scale of analysis for public health interests. County-level statistics are made available to public health researchers by the Centers for Disease Control and Prevention (CDC) via the Wideranging Online Data for Epidemiologic Research (WONDER) system. This addition of heat stress measures to CDC WONDER allows decision and policy makers to assess the impact of alternative approaches to optimize the public health response to EHEs. Through CDC WONDER, users are able to spatially and temporally query public health and heat-related data sets and create county-level maps and statistical charts of such data across the coterminous U.S
Thermal Considerations of Space Solar Power Concepts with 3.5 GW RF Output
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2000-01-01
This paper presents the thermal challenge of the Space Solar Power (SSP) design concepts with a 3.5 GW radio-frequency (RF) output. High efficiency klystrons are thermally more favored than solid state (butterstick) to convert direct current (DC) electricity to radio-frequency (RF) energy at the transmitters in these concepts. Using klystrons, the heat dissipation is 0.72 GW. Using solid state, the heat dissipation is 2.33 GW. The heat dissipation of the klystrons is 85% at 500C, 10% at 300C, and 5% at 125C. All the heat dissipation of the solid state is at 100C. Using klystrons, the radiator area is 74,500 square m Using solid state, the radiator area is 2,362,200 square m Space constructable heat pipe radiators are assumed in the thermal analysis. Also, to make the SSP concepts feasible, the mass of the heat transport system must be minimized. The heat transport distance from the transmitters to the radiators must be minimized. It can be accomplished by dividing the radiator into a cluster of small radiators, so that the heat transport distances between the klystrons and radiators can be minimized. The area of each small radiator is on the order of 1 square m. Two concepts for accommodating a cluster of small radiators are presented. If the distance between the transmitters and radiators is 1.5 m or less, constant conductance heat pipes (CCHPs) are acceptable for heat transport. If the distance exceeds 1.5 m, loop heat pipes (LHPs) are needed.
Infrared radiometer for measuring thermophysical properties of wind tunnel models
NASA Technical Reports Server (NTRS)
Corwin, R. R.; Moorman, S. L.; Becker, E. C.
1978-01-01
An infrared radiometer is described which was developed to measure temperature rises of wind tunnel models undergoing transient heating over a temperature range of -17.8 C to 260 C. This radiometer interfaces directly with a system which measures the effective thermophysical property square root of rho ck. It has an output temperature fluctuation of 0.26 C at low temperatures and 0.07 C at high temperatures, and the output frequency response of the radiometer is from dc to 400 hertz.
Heat demand mapping and district heating grid expansion analysis: Case study of Velika Gorica
NASA Astrophysics Data System (ADS)
Dorotić, Hrvoje; Novosel, Tomislav; Duić, Neven; Pukšec, Tomislav
2017-10-01
Highly efficient cogeneration and district heating systems have a significant potential for primary energy savings and the reduction of greenhouse gas emissions through the utilization of a waste heat and renewable energy sources. These potentials are still highly underutilized in most European countries. They also play a key role in the planning of future energy systems due to their positive impact on the increase of integration of intermittent renewable energy sources, for example wind and solar in a combination with power to heat technologies. In order to ensure optimal levels of district heating penetration into an energy system, a comprehensive analysis is necessary to determine the actual demands and the potential energy supply. Economical analysis of the grid expansion by using the GIS based mapping methods hasn't been demonstrated so far. This paper presents a heat demand mapping methodology and the use of its output for the district heating network expansion analysis. The result are showing that more than 59% of the heat demand could be covered by the district heating in the city of Velika Gorica, which is two times more than the present share. The most important reason of the district heating's unfulfilled potential is already existing natural gas infrastructure.
NASA Astrophysics Data System (ADS)
Li, Y. H.; Wu, Z. H.; Xie, H. Q.; Xing, J. J.; Mao, J. H.; Wang, Y. Y.; Li, Z.
2018-01-01
Thermoelectric generation technology has attracted increasing attention because of its promising applications. In this work, the heat transfer characteristics and the performance of a thermoelectric generator (TEG) with different cold-side heat dissipation intensity has been studied. By fixing the hot-side temperature of TEG, the effects of various external conditions including the flow rate and the inlet temperature of the cooling water flowing through the cold-sided heat sink have been investigated detailedly. It was showed that the output power and the efficiency of TEG increased with temperature different enlarged, whereas the efficiency of TEG reduced with flow rate increased. It is proposed that more heat taken by the cooling water is attributed to the efficiency decrease when the flow rate of the cooling water is increased. This study would provide fundamental understanding for the design of more refined thermoelectric generation systems.
NASA Technical Reports Server (NTRS)
Mougin, L. J.
1983-01-01
The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.
NASA Astrophysics Data System (ADS)
Kaczmarczyk, Tomasz Z.; Ihnatowicz, Eugeniusz; Żywica, Grzegorz; Kiciński, Jan
2015-11-01
The paper presents the results of experimental investigations of the ORC system with two scroll expanders which have been used as a source of electricity. Theworking fluidwas HFE7100 - a newly engineered fluid with a unique heat transfer and favourable environmental properties. In the ORC system three heat exchangers were used (evaporator, regenerator, condenser) and before expanders the droplet separator was installed. As a source of heat an innovative biomass boiler was used. Studies have been carried out for the expanders worked in series and in parallel. The paper presents the thermal and fluidflow properties of the ORC installation for the selected flow rates and different temperatures of the working medium. The characteristics of output electrical power, operating speed and vibrations for scroll expanders were also presented.
Summary Report On Design And Development Of High Temperature Gas-Cooled Power Pile
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCullough, C. R.
1947-09-15
This report presents a description of a design for an experimental nuclear power plant utilizing a high temperature gas-cooled power pile as the energy source. The plant consists of the pile, a heat exchanger or boiler, a conventional steam turbine generator and their associated auxiliaries. Helium gas under pressure transfers heat from the pile to the boiler which generates steam for driving the generator. The plant is rated at a normal output of 12,000 kilowatts of heat and an electrical output of 2400 kilowatts. Provision is made for operation up to 20,000 kilowatts of heat (4000 kilowatts of electrical output)more » in the event operation of the plants proves this possible.« less
New Submount Requirement of Conductively Cooled Laser Diodes for Lidar Applications
NASA Technical Reports Server (NTRS)
Mo, S. Y.; Cutler, A. D.; Choi, S. H.; Lee, M. H.; Singh, U. N.
2000-01-01
New submount technology is essential for the development of conductively cooled high power diode laser. The simulation and experimental results indicate that thermal conductivity of submount for high power laser-diode must be at least 600 W/m/k or higher for stable operation. We have simulated several theoretical thermal model based on new submount designs and characterized high power diode lasers to determine temperature effects on the performances of laser diodes. The characterization system measures the beam power, output beam profile, temperature distribution, and spectroscopic property of high power diode laser. The characterization system is composed of four main parts: an infrared imaging camera, a CCD camera, a monochromator, and a power meter. Thermal characteristics of two commercial-grade CW 20-W diode laser bars with open heat-sink type were determined with respect to the line shift of emission spectra and beam power stability. The center wavelength of laser emission has a tendency to shift toward longer wavelength as the driving current and heat sink temperature are increased. The increase of heat sink temperature decreases the output power of the laser bar too. Such results lay the guidelines for the design of new submount for high power laser-diodes.
Cycle Analysis of a New Air Engine Design
NASA Astrophysics Data System (ADS)
Attar, Wiam Fadi
This thesis investigates a new externally heated engine design being developed by Soony Systems Inc. to serve as the prime mover in a residential-scale combined heat and power system. This is accomplished by developing a thermodynamic model for the engine and sweeping through the design parameter space in order to identify designs that maximize power output, efficiency, and brake mean effective pressure (BMEP). It was discovered that the original engine design was flawed so a new design was proposed and analyzed. The thermodynamic model was developed in four stages. The first model was quasi-static while the other three were time-dependent and used increasingly realistic models of the heat exchangers. For the range of design parameters investigated here, the peak power output is 6.8 kW, the peak efficiency is approximately 60%, and the peak BMEP is 389 kPa. These performance levels are compared to those of other closed-cycle engines. The results suggest that the Soony engine has the potential to be more efficient than Stirlings because it more closely approximates the Carnot cycle, but this comes at the cost of significantly lower BMEP (389 kPa vs. 2,760 kPa for the SOLO Stirling engine).
NASA Astrophysics Data System (ADS)
Berg, Matthew; Hartley, Brian; Richters, Oliver
2015-01-01
By synthesizing stock-flow consistent models, input-output models, and aspects of ecological macroeconomics, a method is developed to simultaneously model monetary flows through the financial system, flows of produced goods and services through the real economy, and flows of physical materials through the natural environment. This paper highlights the linkages between the physical environment and the economic system by emphasizing the role of the energy industry. A conceptual model is developed in general form with an arbitrary number of sectors, while emphasizing connections with the agent-based, econophysics, and complexity economics literature. First, we use the model to challenge claims that 0% interest rates are a necessary condition for a stationary economy and conduct a stability analysis within the parameter space of interest rates and consumption parameters of an economy in stock-flow equilibrium. Second, we analyze the role of energy price shocks in contributing to recessions, incorporating several propagation and amplification mechanisms. Third, implied heat emissions from energy conversion and the effect of anthropogenic heat flux on climate change are considered in light of a minimal single-layer atmosphere climate model, although the model is only implicitly, not explicitly, linked to the economic model.
Improving turbine performance by cooling inlet air using a waste heat powered ejector refrigerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, G.J.
1996-12-31
Stationary turbines are used to produce electricity in many areas of the world. Their performance is adversely affected by high ambient temperatures. Several means of reducing the turbine inlet temperature (offpeak water chiller and ice storage and absorption refrigeration systems) are being proposed as a means of increasing turbine output. In the present investigation the feasibility of increasing turbine output power by using its exhaust gases to power an ejector refrigeration system is demonstrated. The advantages of the ejector refrigeration are: it operates on a non-CFC fluid, its small number of moving parts and its small size. The analysis focusesmore » on United Technologies FT4 turbine with a base load output of 21.6 MW. It is demonstrated that the proposed system can decrease the turbine inlet temperature from 296.2 K to 277.6 K which increases the turbine output by 12.8% during periods of high ambient temperature and improves yearly averaged power output by 5.5% in a temperature climate. It is shown that the energy in the turbine exhaust has the potential of producing additional cooling beyond that required to reduce the inlet temperature.« less
Thin Thermoelectric Generator System for Body Energy Harvesting
NASA Astrophysics Data System (ADS)
Settaluri, Krishna T.; Lo, Hsinyi; Ram, Rajeev J.
2012-06-01
Wearable thermoelectric generators (TEGs) harvest thermal energy generated by the body to generate useful electricity. The performance of these systems is limited by (1) the small working temperature differential between the body and ambient, (2) the desire to use natural air convection cooling on the cold side of the generator, and (3) the requirement for thin, lightweight systems that are comfortable for long-term use. Our work has focused on the design of the heat transfer system as part of the overall thermoelectric (TE) system. In particular, the small heat transfer coefficient for natural air convection results in a module thermal impedance that is smaller than that of the heat sink. In this heat-sink-limited regime, the thermal resistance of the generator should be optimized to match that of the heat sink to achieve the best performance. In addition, we have designed flat (1 mm thickness) copper heat spreaders to realize performance surpassing splayed pin heat sinks. Two-dimensional (2-D) heat spreading exploits the large surface area available in a wristband and allows patterned copper to efficiently cool the TE. A direct current (DC)/DC converter is integrated on the wristband. The system generates up to 28.5 μW/cm2 before the converter and 8.6 μW/cm2 after the converter, with 30% efficiency. It generates output of 4.15 V with overall thickness under 5 mm.
Internal heat gain from different light sources in the building lighting systems
NASA Astrophysics Data System (ADS)
Suszanowicz, Dariusz
2017-10-01
EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.
Dish stirling solar receiver combustor test program
NASA Technical Reports Server (NTRS)
Bankston, C. P.; Back, L. H.
1981-01-01
The operational and energy transfer characteristics of the Dish Stirling Solar Receiver (DSSR) combustor/heat exchanger system was evaluated. The DSSR is designed to operate with fossil fuel augmentation utilizing a swirl combustor and cross flow heat exchanger consisting of a single row of 4 closely spaced tubes that are curved into a conical shape. The performance of the combustor/heat exchanger system without a Stirling engine was studied over a range of operating conditions and output levels using water as the working fluid. Results show that the combustor may be started under cold conditions, controlled safety, and operated at a constant air/fuel ratio (10 percent excess air) over the required range of firing rates. Furthermore, nondimensional heat transfer coefficients based on total heat transfer are plotted versus Reynolds number and compared with literature data taken for single rows of closely spaced tubes perpendicular to cross flow. The data show enhanced heat transfer for the present geometry and test conditions. Analysis of the results shows that the present system meets specified thermal requirements, thus verifying the feasibility of the DSSR combustor design for final prototype fabrication.
Conceptual design of free-piston Stirling conversion system for solar power units
NASA Astrophysics Data System (ADS)
Loktionov, Iu. V.
A conversion system has been conceptually designed for solar power units of the dish-Stirling type. The main design objectives were to demonstrate the possibility of attaining such performance characteristics as low manufacturing and life cycle costs, high reliability, long life, high efficiency, power output stability, self-balance, automatic (or self-) start-up, and easy maintenance. The system design includes a heat transfer and utilization subsystem with a solar receiver, a free-piston engine, an electric power generation subsystem, and a control subsystem. The working fluid is helium. The structural material is stainless steel for hot elements, aluminum alloys and plastics for others. The electric generation subunit can be fabricated in three options: with an induction linear alternator, with a permanent magnet linear alternator, and with a serial rotated induction generator and a hydraulic drive subsystem. The heat transfer system is based on heat pipes or the reflux boiler principle. Several models of heat transfer units using a liquid metal (Na or Na-K) have been created and demonstrated.
NASA Astrophysics Data System (ADS)
Terayama, Takeshi; Nagata, Susumu; Tanaka, Yohei; Momma, Akihiko; Kato, Tohru; Kunii, Masaru; Yamamoto, Atsushi
2013-07-01
Solid oxide fuel cells (SOFCs) are being researched around the world. In Japan, a compact SOFC system with rated alternative current (AC) power of 700 W has become available on the market, since the base load electricity demand for a standard home is said to be less than 700 W AC. To improve the generating efficiency of SOFC systems in the 700-W class, we focused on thermoelectric generation (TEG) technology, since there are a lot of temperature gradients in the system. Analysis based on simulations indicated the possibility of introducing thermoelectric generation at the air preheater, steam generator, and exhaust outlet. Among these options, incorporating a TEG heat exchanger comprising multiple CoSb3/SiGe-based TEG modules into the air preheater had potential to produce additional output of 37.5 W and an improvement in generating efficiency from 46% to 48.5%. Furthermore, by introducing thermoelectric generation at the other two locations, an increase in maximum output of more than 50 W and generating efficiency of 50% can be anticipated.
EVALUATING AND DESIGNING ULTRA-LOW-COST SOLAR WATER HEATING SYSTEMS
This project will have three key outputs:
Demonstration and Validation of a Waste-to-Energy Conversion System for Fixed DoD Installations
2013-09-01
hydrocarbon HVAC heating, ventilation , and air conditioning HX heat exchanger I/O input/output ISO International Organization for Standardization...DEMONSTRATION In 2011, renewable energy accounted for just 9% of total energy consumption in the United States, and just 5% (or 0.45% overall) of that (477...operations and facilities.3 Facility energy costs accounted for ~21% ($4.1 billion). DoD has made great progress in reducing its energy consumption for
Thermomechanical piston pump development
NASA Technical Reports Server (NTRS)
Sabelman, E. E.
1971-01-01
A thermally powered reciprocating pump has been devised to replace or augment an electric pump for the transport of temperature-control fluid on the Thermoelectric Outer Planet Spacecraft (TOPS). The thermally powered pump operates cyclically by extracting heat energy from the fluid by means of a vapor-pressure expansion system and by using the heat to perform the mechanical work of pumping. A feasibility test unit has been constructed to provide an output of 7 cu in during a 10- to 100-second cycle. It operates with a fluid input temperature of 200 to 300 F and a heat sink temperature of 0 to 30 F.
Numerical prediction of micro-channel LD heat sink operated with antifreeze based on CFD method
NASA Astrophysics Data System (ADS)
Liu, Gang; Liu, Yang; Wang, Chao; Wang, Wentao; Wang, Gang; Tang, Xiaojun
2014-12-01
To theoretically study the feasibility of antifreeze coolants applied as cooling fluids for high power LD heat sink, detailed Computational Fluid Dynamics (CFD) analysis of liquid cooled micro-channels heat sinks is presented. The performance operated with antifreeze coolant (ethylene glycol aqueous solution) compared with pure water are numerical calculated for the heat sinks with the same micro-channels structures. The maximum thermal resistance, total pressure loss (flow resistance), thermal resistance vs. flow-rate, and pressure loss vs. flow-rate etc. characteristics are numerical calculated. The results indicate that the type and temperature of coolants plays an important role on the performance of heat sinks. The whole thermal resistance and pressure loss of heat sinks increase significantly with antifreeze coolants compared with pure water mainly due to its relatively lower thermal conductivity and higher fluid viscosity. The thermal resistance and pressure loss are functions of the flow rate and operation temperature. Increasing of the coolant flow rate can reduce the thermal resistance of heat sinks; meanwhile increase the pressure loss significantly. The thermal resistance tends to a limit with increasing flow rate, while the pressure loss tends to increase exponentially with increasing flow rate. Low operation temperature chiefly increases the pressure loss rather than thermal resistance due to the remarkable increasing of fluid viscosity. The actual working point of the cooling circulation system can be determined on the basis of the pressure drop vs. flow rate curve for the micro-channel heat sink and that for the circulation system. In the same system, if the type or/and temperature of the coolant is changed, the working point is accordingly influenced, that is, working flow rate and pressure is changed simultaneously, due to which the heat sink performance is influenced. According to the numerical simulation results, if ethylene glycol aqueous solution is applied instead of pure water as the coolant under the same or a higher working temperature, the available output of optical power will decrease due to the worse heat sink performance; if applied under a lower working temperature(0 °C, -20 °C), although the heat sink performance become worse, however the temperature difference of heat transfer rises more significantly, the available output of optical power will increase on the contrary.
NASA Astrophysics Data System (ADS)
Zhao, Yingru; Chen, Jincan
A theoretical modeling approach is presented, which describes the behavior of a typical fuel cell-heat engine hybrid system in steady-state operating condition based on an existing solid oxide fuel cell model, to provide useful fundamental design characteristics as well as potential critical problems. The different sources of irreversible losses, such as the electrochemical reaction, electric resistances, finite-rate heat transfer between the fuel cell and the heat engine, and heat-leak from the fuel cell to the environment are specified and investigated. Energy and entropy analyses are used to indicate the multi-irreversible losses and to assess the work potentials of the hybrid system. Expressions for the power output and efficiency of the hybrid system are derived and the performance characteristics of the system are presented and discussed in detail. The effects of the design parameters and operating conditions on the system performance are studied numerically. It is found that there exist certain optimum criteria for some important parameters. The results obtained here may provide a theoretical basis for both the optimal design and operation of real fuel cell-heat engine hybrid systems. This new approach can be easily extended to other fuel cell hybrid systems to develop irreversible models suitable for the investigation and optimization of similar energy conversion settings and electrochemistry systems.
Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery
NASA Astrophysics Data System (ADS)
Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun
2015-06-01
Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.
Rail Brake System Using a Linear Induction Motor for Dynamic Braking
NASA Astrophysics Data System (ADS)
Sakamoto, Yasuaki; Kashiwagi, Takayuki; Tanaka, Minoru; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo
One type of braking system for railway vehicles is the eddy current brake. Because this type of brake has the problem of rail heating, it has not been used for practical applications in Japan. Therefore, we proposed the use of a linear induction motor (LIM) for dynamic braking in eddy current brake systems. The LIM reduces rail heating and uses an inverter for self excitation. In this paper, we estimated the performance of an LIM from experimental results of a fundamental test machine and confirmed that the LIM generates an approximately constant braking force under constant current excitation. At relatively low frequencies, this braking force remains unaffected by frequency changes. The reduction ratio of rail heating is also approximately proportional to the frequency. We also confirmed that dynamic braking resulting in no electrical output can be used for drive control of the LIM. These characteristics are convenient for the realization of the LIM rail brake system.
Energy harvesting using TEG and PV cell for low power application
NASA Astrophysics Data System (ADS)
Tawil, Siti Nooraya Mohd; Zainal, Mohd Zulkarnain
2018-02-01
A thermoelectric generator (TEG) module and photovoltaic cell (PV) were utilized to harvest energy from temperature gradients of heat sources from ambient heat and light of sun. The output of TEG and PV were connected to a power management circuit consist of step-up dc-dc converter in order to increase the output voltage to supply a low power application such as wireless communication module and the photovoltaic cell for charging an energy storage element in order to switch on a fan for cooling system of the thermoelectric generator. A switch is used as a selector to choose the input of source either from photovoltaic cell or thermoelectric generator to switch on DC-DC step-up converter. In order to turn on the DC-DC step-up converter, the input must be greater than 3V. The energy harvesting was designed so that it can be used continuously and portable anywhere. Multiple sources used in this energy harvesting system is to ensure the system can work in whatever condition either in good weather or not good condition of weather. This energy harvesting system has the potential to be used in military operation and environment that require sustainability of energy resources.
Low to moderate temperature nanolaminate heater
Eckels, J Del [Livermore, CA; Nunes, Peter J [Danville, CA; Simpson, Randall L [Livermore, CA; Hau-Riege, Stefan [Fremont, CA; Walton, Chris [Oakland, CA; Carter, J Chance [Livermore, CA; Reynolds, John G [San Ramon, CA
2011-01-11
A low to moderate temperature heat source comprising a high temperature energy source modified to output low to moderate temperatures wherein the high temperature energy source modified to output low to moderate temperatures is positioned between two thin pieces to form a close contact sheath. In one embodiment the high temperature energy source modified to output low to moderate temperatures is a nanolaminate multilayer foil of reactive materials that produces a heating level of less than 200.degree. C.
Surrogates for numerical simulations; optimization of eddy-promoter heat exchangers
NASA Technical Reports Server (NTRS)
Patera, Anthony T.; Patera, Anthony
1993-01-01
Although the advent of fast and inexpensive parallel computers has rendered numerous previously intractable calculations feasible, many numerical simulations remain too resource-intensive to be directly inserted in engineering optimization efforts. An attractive alternative to direct insertion considers models for computational systems: the expensive simulation is evoked only to construct and validate a simplified, input-output model; this simplified input-output model then serves as a simulation surrogate in subsequent engineering optimization studies. A simple 'Bayesian-validated' statistical framework for the construction, validation, and purposive application of static computer simulation surrogates is presented. As an example, dissipation-transport optimization of laminar-flow eddy-promoter heat exchangers are considered: parallel spectral element Navier-Stokes calculations serve to construct and validate surrogates for the flowrate and Nusselt number; these surrogates then represent the originating Navier-Stokes equations in the ensuing design process.
NASA Astrophysics Data System (ADS)
Lahaye, S.; Huynh, T. D.; Tsilanizara, A.
2016-03-01
Uncertainty quantification of interest outputs in nuclear fuel cycle is an important issue for nuclear safety, from nuclear facilities to long term deposits. Most of those outputs are functions of the isotopic vector density which is estimated by fuel cycle codes, such as DARWIN/PEPIN2, MENDEL, ORIGEN or FISPACT. CEA code systems DARWIN/PEPIN2 and MENDEL propagate by two different methods the uncertainty from nuclear data inputs to isotopic concentrations and decay heat. This paper shows comparisons between those two codes on a Uranium-235 thermal fission pulse. Effects of nuclear data evaluation's choice (ENDF/B-VII.1, JEFF-3.1.1 and JENDL-2011) is inspected in this paper. All results show good agreement between both codes and methods, ensuring the reliability of both approaches for a given evaluation.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1987-01-01
The approximation of optimal discrete-time linear quadratic Gaussian (LQG) compensators for distributed parameter control systems with boundary input and unbounded measurement is considered. The approach applies to a wide range of problems that can be formulated in a state space on which both the discrete-time input and output operators are continuous. Approximating compensators are obtained via application of the LQG theory and associated approximation results for infinite dimensional discrete-time control systems with bounded input and output. Numerical results for spline and modal based approximation schemes used to compute optimal compensators for a one dimensional heat equation with either Neumann or Dirichlet boundary control and pointwise measurement of temperature are presented and discussed.
Global Distribution of Active Volcanism on Io as Known at the End of the Galileo Mission
NASA Technical Reports Server (NTRS)
Lopes, Rosaly M. C.; Kamp. Lucas W.; Smythe, W. D.; Radebaugh, J.; Turtle, E.; Perry, J.; Bruno, B.
2004-01-01
Hot spots are manifestations of Io s mechanism of internal heating and heat transfer. Therefore, the global distribution of hot spots and their power output has important implications for how Io is losing heat. The end of the Galileo mission is an opportune time to revisit studies of the distribution of hot spots on Io, and to investigate the distribution of their power output.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finch, D.R.; Chandler, J.R.; Church, J.P.
1979-01-01
The SHIELD system is a powerful new computational tool for calculation of isotopic inventory, radiation sources, decay heat, and shielding assessment in part of the nuclear fuel cycle. The integrated approach used in this system permitss the communication and management of large fields of numbers efficiently thus permitting the user to address the technical rather than computer aspects of a problem. Emphasis on graphical outputs permits large fields of resulting numbers to be efficiently displayed.
Characterization of Radial Curved Fin Heat Sink under Natural and Forced Convection
NASA Astrophysics Data System (ADS)
Khadke, Rishikesh; Bhole, Kiran
2018-02-01
Heat exchangers are important structures widely used in power plants, food industries, refrigeration, and air conditioners and now widely used in computing systems. Finned type of heat sink is widely used in computing systems. The main aim of the design of the heat sink is to maintain the optimum temperature level. To achieve this goal so many geometrical configurations are implemented. This paper presents a characterization of radially curved fin heat sink under natural and forced convection. Forced convection is studied for the optimization of temperature for better efficiency. The different alternatives in geometry are considered in characterization are heat intensity, the height of the fin and speed of the fan. By recognizing these alternatives the heat sink is characterized by the heat flux usually generated in high-end PCs. The temperature drop characteristics across height and radial direction are presented for the constant heat input and air flow in the heat sink. The effect of dimensionless elevation height (0 ≤ Z* ≤ 1) and Elenbaas Number (0.4 ≤ El ≤ 2.8) of the heat sink were investigated for study of the Nusselt number. Based on experimental characterization, process plan has been developed for the selection of the similar heat sinks for desired output (heat dissipation and temperature distribution).
NASA Astrophysics Data System (ADS)
Koca, Aliihsan; Acikgoz, Ozgen; Çebi, Alican; Çetin, Gürsel; Dalkilic, Ahmet Selim; Wongwises, Somchai
2018-02-01
Investigations on heated ceiling method can be considered as a new research area in comparison to the common wall heating-cooling and cooled ceiling methods. In this work, heat transfer characteristics of a heated radiant ceiling system was investigated experimentally. There were different configurations for a single room design in order to determine the convective and radiative heat transfer rates. Almost all details on the arrangement of the test chamber, hydraulic circuit and radiant panels, the measurement equipment and experimental method including uncertainty analysis were revealed in detail indicating specific international standards. Total heat transfer amount from the panels were calculated as the sum of radiation to the unheated surfaces, convection to the air, and conduction heat loss from the backside of the panels. Integral expression of the view factors was calculated by means of the numerical evaluations using Matlab code. By means of this experimental chamber, the radiative, convective and total heat-transfer coefficient values along with the heat flux values provided from the ceiling to the unheated surrounding surfaces have been calculated. Moreover, the details of 28 different experimental case study measurements from the experimental chamber including the convective, radiative and total heat flux, and heat output results are given in a Table for other researchers to validate their theoretical models and empirical correlations.
Development of an integrated heat pipe-thermal storage system for a solar receiver
NASA Technical Reports Server (NTRS)
Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.
1987-01-01
The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.
Physiologic Systems and Their Responses to Conditions of Heat and Cold
2012-01-01
serial measures are made. Hypohydration increases heat storage by reducing sweating rate and skin blood-flow responses for a given core temperature. In...Capi’llary (3.5 L) E_xc_h~ (B%TBW) - - t Lymph Fluid Output I ) Urine Sweat ,JSF (1 1.5 L) (25% TBW) Osmotic Exchange ..._ _ ICF (30 L) (67%TBW...diuretics increase urine formation and generally result in the loss of boch solures and warer. Diuretic-induced hypohydrarion generally results in an
Electrochemical cell operation and system
Maru, Hansraj C.
1980-03-11
Thermal control in fuel cell operation is affected through sensible heat of process gas by providing common input manifolding of the cell gas flow passage in communication with the cell electrolyte and an additional gas flow passage which is isolated from the cell electrolyte and in thermal communication with a heat-generating surface of the cell. Flow level in the cell gas flow passage is selected based on desired output electrical energy and flow level in the additional gas flow passage is selected in accordance with desired cell operating temperature.
Heat pumps could inject life into solar energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, P.
1977-07-14
Prospects for the use of solar energy in Great Britain are discussed. The only economically feasible solar system is considered to be a solar assisted heat pump. One of the factors included in an economic assessment of the solar system include the degree to which the house is insulated. Government incentives were suggested to increase solar consumerism. Detailed calculations showed that solar collectors on small British houses were currently uneconomical. The most promising market for solar collectors is outside the domestic market. The lack of standardization of solar collectors also is a hindrance to public acceptance of solar. Heat pumpsmore » with a coefficient of performance of 3:1 and giving a heat output of 3 kW for every 1 kW of electricity are considered economically feasible. Wind powered heat pumps are considered. Estimates of future heat pump use are as high as 30% of the domestic heating market. The US is considered technically more advanced than Britain for many types of solar applications. Technology of solar cells in the United States as opposed to Britain is also discussed.« less
Increasing the percentage of renewable energy in the Southwestern United States
USDA-ARS?s Scientific Manuscript database
Combining the output of wind farms with that of Concentrating Solar Power (CSP) plants (including a heat storage system) resulted in a substantial percentage (40%) of the total utility electrical generation in the Southwestern United States being met by renewable energy. Using wind and solar resourc...
NASA Technical Reports Server (NTRS)
Perotti, Jose M. (Inventor); Mata, Carlos T. (Inventor); Santiago, Josephine B. (Inventor); Vokrot, Peter (Inventor); Zavala, Carlos E. (Inventor); Burns, Bradley M. (Inventor)
2010-01-01
Self-Validating Thermocouple (SVT) Systems capable of detecting sensor probe open circuits, short circuits, and unnoticeable faults such as a probe debonding and probe degradation are useful in the measurement of temperatures. SVT Systems provide such capabilities by incorporating a heating or excitation element into the measuring junction of the thermocouple. By heating the measuring junction and observing the decay time for the detected DC voltage signal, it is possible to indicate whether the thermocouple is bonded or debonded. A change in the thermal transfer function of the thermocouple system causes a change in the rise and decay times of the thermocouple output. Incorporation of the excitation element does not interfere with normal thermocouple operation, thus further allowing traditional validation procedures as well.
Measured Performance of a Low Temperature Air Source Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R. K.
2013-09-01
A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system'smore » Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.« less
Energy Saving and GHG Emission Reduction in a Micro-CCHP System by Use of Solar Energy
NASA Astrophysics Data System (ADS)
Ion, Ion V.; Ciocea, Gheorghe; Popescu, Florin
2012-12-01
In this work, the reduction of greenhouse gas emission, and the energy saving by integrating solar collectors and photovoltaic panels in a Stirling engine based microcombined cooling, heating and power (mCCHP) system are studied. The mCCHP system consists of a natural gas Stirling CHP and an adsorber chiller. When the thermal outputs of the Stirling CHP and solar collectors are not sufficient to cover the heat demand for domestic hot water (DHW), heating/cooling, an auxiliary heating boiler starts to operate. The energy saving by using solar energy varies from 13.35% in December to 59.62% in April, in the case of solar collectors usage and from 7.47% in December to 28.27% in July, in the case of photovoltaic panels usage. By using solar energy the annual GHG emission decreases by 31.98% and the fuel cost reduction varies from 12.73% in December to 49.78% in June.
Wind power systems for individual applications. [electric power supplies for homes
NASA Technical Reports Server (NTRS)
Clews, H. M.
1973-01-01
A small windpower system is described which is suitable for electrifying a house. The self-contained unit consists of a two kilowatt wind driven generator, a set of 19 storage batteries, a small dc to ac inverter, and a gasoline generator for use as an emergency backup system in case of prolonged calm periods. Cost effectiveness of the electricity generated by this windmill system comes out to about 15 cents per kilowatt hour - assuming a 10 year life for the batteries and a 20 year life for the other components. Some other small windpower systems are also described, and it is shown that a windpowered generator in the 15- to 25-kilowatt output range coupled to a direct heated water storage system is able to heat a typical New England home.
Endoreversible quantum heat engines in the linear response regime.
Wang, Honghui; He, Jizhou; Wang, Jianhui
2017-07-01
We analyze general models of quantum heat engines operating a cycle of two adiabatic and two isothermal processes. We use the quantum master equation for a system to describe heat transfer current during a thermodynamic process in contact with a heat reservoir, with no use of phenomenological thermal conduction. We apply the endoreversibility description to such engine models working in the linear response regime and derive expressions of the efficiency and the power. By analyzing the entropy production rate along a single cycle, we identify the thermodynamic flux and force that a linear relation connects. From maximizing the power output, we find that such heat engines satisfy the tight-coupling condition and the efficiency at maximum power agrees with the Curzon-Ahlborn efficiency known as the upper bound in the linear response regime.
Optimal power and efficiency of quantum Stirling heat engines
NASA Astrophysics Data System (ADS)
Yin, Yong; Chen, Lingen; Wu, Feng
2017-01-01
A quantum Stirling heat engine model is established in this paper in which imperfect regeneration and heat leakage are considered. A single particle which contained in a one-dimensional infinite potential well is studied, and the system consists of countless replicas. Each particle is confined in its own potential well, whose occupation probabilities can be expressed by the thermal equilibrium Gibbs distributions. Based on the Schrödinger equation, the expressions of power output and efficiency for the engine are obtained. Effects of imperfect regeneration and heat leakage on the optimal performance are discussed. The optimal performance region and the optimal values of important parameters of the engine cycle are obtained. The results obtained can provide some guidelines for the design of a quantum Stirling heat engine.
NASA Astrophysics Data System (ADS)
Gonzalez-Ayala, Julian; Calvo Hernández, A.; Roco, J. M. M.
2016-07-01
The main unified energetic properties of low dissipation heat engines and refrigerator engines allow for both endoreversible or irreversible configurations. This is accomplished by means of the constraints imposed on the characteristic global operation time or the contact times between the working system with the external heat baths and modulated by the dissipation symmetries. A suited unified figure of merit (which becomes power output for heat engines) is analyzed and the influence of the symmetries on the optimum performance discussed. The obtained results, independent on any heat transfer law, are faced with those obtained from Carnot-like heat models where specific heat transfer laws are needed. Thus, it is shown that only the inverse phenomenological law, often used in linear irreversible thermodynamics, correctly reproduces all optimized values for both the efficiency and coefficient of performance values.
NASA Technical Reports Server (NTRS)
Schifer, Nicholas A.; Briggs, Maxwell H.
2012-01-01
The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a specified electrical power output for a given net heat input. While electrical power output can be precisely quantified, thermal power input to the Stirling cycle cannot be directly measured. In an effort to improve net heat input predictions, the Mock Heater Head was developed with the same relative thermal paths as a convertor using a conducting rod to represent the Stirling cycle and tested to provide a direct comparison to numerical and empirical models used to predict convertor net heat input. The Mock Heater Head also served as the pathfinder for a higher fidelity version of validation test hardware, known as the Thermal Standard. This paper describes how the Mock Heater Head was tested and utilized to validate a process for the Thermal Standard.
A Brain-wide Circuit Model of Heat-Evoked Swimming Behavior in Larval Zebrafish.
Haesemeyer, Martin; Robson, Drew N; Li, Jennifer M; Schier, Alexander F; Engert, Florian
2018-05-16
Thermosensation provides crucial information, but how temperature representation is transformed from sensation to behavior is poorly understood. Here, we report a preparation that allows control of heat delivery to zebrafish larvae while monitoring motor output and imaging whole-brain calcium signals, thereby uncovering algorithmic and computational rules that couple dynamics of heat modulation, neural activity and swimming behavior. This approach identifies a critical step in the transformation of temperature representation between the sensory trigeminal ganglia and the hindbrain: A simple sustained trigeminal stimulus representation is transformed into a representation of absolute temperature as well as temperature changes in the hindbrain that explains the observed motor output. An activity constrained dynamic circuit model captures the most prominent aspects of these sensori-motor transformations and predicts both behavior and neural activity in response to novel heat stimuli. These findings provide the first algorithmic description of heat processing from sensory input to behavioral output. Copyright © 2018 Elsevier Inc. All rights reserved.
Thermal design and test of a high power spacecraft transponder platform
NASA Technical Reports Server (NTRS)
Stipandic, E. A.; Gray, A. M.; Gedeon, L.
1975-01-01
The high power transponder subsystem on board the Communications Technology Satellite (CTS) requires some unique thermal control techniques to maintain the required temperature limits throughout all mission phases. The transponder subsystem includes redundant 20-W output travelling wave tubes and a single 200-W output TWT with highly concentrated thermal dissipations of 70 W and 143 W, respectively. A thermal control system which maintains all components within the required temperature ranges has been designed and verified in thermal balance testing. Included in the design are second surface quartz mirrors on an aluminum honeycomb platform, high thermal conductivity aluminum doubler plates, commandable thermal control heaters and a Variable Conductance Heat Pipe System (VCHPS).
An investigation during the system test phase of the GOES spacecraft
NASA Technical Reports Server (NTRS)
Mallette, L. A.
1983-01-01
Spurious RF oscillations were noted during the system test phase of the Geostationary Operational Environmental Satellite (GOES). A space qualified data collection platform report (DCPR) transmitter was subsequently found to have a cracked load resistor in its output isolator. The failure mechanism was caused by heat from the output power of a 20 watt transmitter being reflected into the DCPR transmitter through a sneak path. The reflection from a high VSWR at the rotary joint was not part of the normal operation but was due to unusual circumstances. The reliability of the load resistor under normal operation (low VSWR) over the life of the satellite was determined to be high.
Sheng, Shiqi; Tu, Z C
2014-01-01
The concepts of weighted reciprocal of temperature and weighted thermal flux are proposed for a heat engine operating between two heat baths and outputting mechanical work. With the aid of these two concepts, the generalized thermodynamic fluxes and forces can be expressed in a consistent way within the framework of irreversible thermodynamics. Then the efficiency at maximum power output for a heat engine, one of key topics in finite-time thermodynamics, is investigated on the basis of a generic model under the tight-coupling condition. The corresponding results have the same forms as those of low-dissipation heat engines [ M. Esposito, R. Kawai, K. Lindenberg and C. Van den Broeck Phys. Rev. Lett. 105 150603 (2010)]. The mappings from two kinds of typical heat engines, such as the low-dissipation heat engine and the Feynman ratchet, into the present generic model are constructed. The universal efficiency at maximum power output up to the quadratic order is found to be valid for a heat engine coupled symmetrically and tightly with two baths. The concepts of weighted reciprocal of temperature and weighted thermal flux are also transplanted to the optimization of refrigerators.
500 Watt Solar AMTEC Power System for Small Spacecraft.
1995-03-01
Thermal Modeling of High Efficiency AMTEC Cells ," Proceedings of the 24th National Heat Transfer Conference. Journal Article 12. SPACE...power flow calculation is the power required by the AMTEC cells which is the cell output power over the cell efficiency . The system model also...Converter ( AMTEC ) cell , called the multi-tube cell , integrated with an individual Thermal Energy Storage (TES) unit. The
High power diode pumped solid state (DPSS) laser systems active media robust modeling and analysis
NASA Astrophysics Data System (ADS)
Kashef, Tamer M.; Mokhtar, Ayman M.; Ghoniemy, Samy A.
2018-02-01
Diode side-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency and reliability. This paper summarizes the results of simulation of the most predominant active media that are used in high power diode pumped solid-state (DPSS) laser systems. Nd:YAG, Nd:glass, and Nd:YLF rods laser systems were simulated using the special finite element analysis software program LASCAD. A performance trade off analysis for Nd:YAG, Nd:glass, and Nd:YLF rods was performed in order to predict the system optimized parameters and to investigate thermally induced thermal fracture that may occur due to heat load and mechanical stress. The simulation results showed that at the optimized values Nd:YAG rod achieved the highest output power of 175W with 43% efficiency and heat load of 1.873W/mm3. A negligible changes in laser output power, heat load, stress, and temperature distributions were observed when the Nd:YAG rod length was increased from 72 to 80mm. Simulation of Nd:glass at different rod diameters at the same pumping conditions showed better results for mechanical stress and thermal load than that of Nd:YAG and Nd:YLF which makes it very suitable for high power laser applications especially for large rod diameters. For large rod diameters Nd:YLF is mechanically weaker and softer crystal compared to Nd:YAG and Nd:glass due to its poor thermomechanical properties which limits its usage to only low to medium power systems.
Combined heat and power generation with a HCPV system at 2000 suns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paredes, Filippo; Montagnino, Fabio M.; Milone, Sergio
2015-09-28
This work shows the development of an innovative solar CHP system for the combined production of heat and power based upon HCPV modules working at the high concentration level of 2000 suns. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror while a secondary optic at the focus of the parabolic mirror is glued in optical contact with the cell. Each module consist of 2 axis tracker (Alt-Alt type) with 20 multijunction cells each one integrated with an active heat sink. The cell is connectedmore » to an active heat transfer system that allows to keep the cell at a high level of electrical efficiency (ηel > 30 %), bringing the heat transfer fluid (water and glycol) up to an output temperature of 90°C. Accordingly with the experimental data collected from the first 1 kWe prototype, the total amount of extracted thermal energy is above the 50% of the harvested solar radiation. That, in addition the electrical efficiency of the system contributes to reach an overall CHP efficiency of more than the 80%.« less
Combined heat and power generation with a HCPV system at 2000 suns
NASA Astrophysics Data System (ADS)
Paredes, Filippo; Montagnino, Fabio M.; Salinari, Piero; Bonsignore, Gaetano; Milone, Sergio; Agnello, Simonpietro; Barbera, Marco; Gelardi, Franco M.; Sciortino, Luisa; Collura, Alfonso; Lo Cicero, Ugo; Cannas, Marco
2015-09-01
This work shows the development of an innovative solar CHP system for the combined production of heat and power based upon HCPV modules working at the high concentration level of 2000 suns. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror while a secondary optic at the focus of the parabolic mirror is glued in optical contact with the cell. Each module consist of 2 axis tracker (Alt-Alt type) with 20 multijunction cells each one integrated with an active heat sink. The cell is connected to an active heat transfer system that allows to keep the cell at a high level of electrical efficiency (ηel > 30 %), bringing the heat transfer fluid (water and glycol) up to an output temperature of 90°C. Accordingly with the experimental data collected from the first 1 kWe prototype, the total amount of extracted thermal energy is above the 50% of the harvested solar radiation. That, in addition the electrical efficiency of the system contributes to reach an overall CHP efficiency of more than the 80%.
Modeling and Simulations on the Intramural Thermoelectric Generator of Lower-Re-fluid
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Zheng, Ding; Chen, Yushan
The thermoelectric conversion with lower Renault number (Re) fluid, such as waste heat from industry boiler, and engine's circled cooling water, which can be designed as intramural generator structure. In this research, a thermoelectric project analysis model and the description of an intensified system are presented, its generator with the aligned or staggered platoon structure has strengthened heat-transfer property, and the heat convection coefficient ratio has increased times than plain tube; For the fluid kinetic energy's loss is influenced by the whirlpool, the pressure difference is several hundred Pa level which changes along with geometric parameters of transform components; what's more, heat transfer area increase distinctly under the same generator volume, which has built the foundation for the enhancement output electric power.
Skylab extravehicular mobility unit thermal simulator
NASA Technical Reports Server (NTRS)
Hixon, C. W.; Phillips, M. A.
1974-01-01
The analytical methods, thermal model, and user's instructions for the Skylab Extravehicular Mobility Unit (SEMU) routine are presented. This digital computer program was developed for detailed thermal performance predictions of the SEMU on the NASA-JSC Univac 1108 computer system. It accounts for conductive, convective, and radiant heat transfer as well as fluid flow and special component characterization. The program provides thermal performance predictions for a 967 node thermal model in one thirty-sixth (1/36) of mission time when operated at a calculating interval of three minutes (mission time). The program has the operational flexibility to: (1) accept card or magnetic tape data input for the thermal model describing the SEMU structure, fluid systems, crewman and component performance, (2) accept card and/or magnetic tape input of internally generated heat and heat influx from the space environment, and (3) output tabular or plotted histories of temperature, flow rates, and other parameters describing system operating modes.
NASA Technical Reports Server (NTRS)
1987-01-01
Heat Pipe Technology, Inc. undertook the development of a PV system that could bring solar electricity to the individual home at reasonable cost. His system employs high efficiency PV modules plus a set of polished reflectors that concentrate the solar energy and enhance the output of the modules. Dinh incorporated a sun tracking system derived from space tracking technology. It automatically follows the sun throughout the day and turns the modules so that they get maximum exposure to the solar radiation, further enhancing the system efficiency.
A radiogenic heating evolution model for cosmochemically Earth-like exoplanets
NASA Astrophysics Data System (ADS)
Frank, Elizabeth A.; Meyer, Bradley S.; Mojzsis, Stephen J.
2014-11-01
Discoveries of rocky worlds around other stars have inspired diverse geophysical models of their plausible structures and tectonic regimes. Severe limitations of observable properties require many inexact assumptions about key geophysical characteristics of these planets. We present the output of an analytical galactic chemical evolution (GCE) model that quantitatively constrains one of those key properties: radiogenic heating. Earth's radiogenic heat generation has evolved since its formation, and the same will apply to exoplanets. We have fit simulations of the chemical evolution of the interstellar medium in the solar annulus to the chemistry of our Solar System at the time of its formation and then applied the carbonaceous chondrite/Earth's mantle ratio to determine the chemical composition of what we term ;cosmochemically Earth-like; exoplanets. Through this approach, predictions of exoplanet radiogenic heat productions as a function of age have been derived. The results show that the later a planet forms in galactic history, the less radiogenic heat it begins with; however, due to radioactive decay, today, old planets have lower heat outputs per unit mass than newly formed worlds. The long half-life of 232Th allows it to continue providing a small amount of heat in even the most ancient planets, while 40K dominates heating in young worlds. Through constraining the age-dependent heat production in exoplanets, we can infer that younger, hotter rocky planets are more likely to be geologically active and therefore able to sustain the crustal recycling (e.g. plate tectonics) that may be a requirement for long-term biosphere habitability. In the search for Earth-like planets, the focus should be made on stars within a billion years or so of the Sun's age.
EMISSIONS FROM OUTDOOR WOOD-BURNING RESIDENTIAL HOT WATER FURNACES
The report gives results of measurements of emissions from a single-pass and a double-pass furnace at average heat outputs of 15,000 and 30,000 Btu/hr (4.4 and 8.8 kW) while burning typical oak cordwood fuel. One furnace was also tested once at each heat output while fitted with ...
USDA-ARS?s Scientific Manuscript database
Microwave (MW) heating using continuous output may provide better and consistent cooking for foods. Currently, household units with a build-in inverter device are available in which the output is continuous vs. the traditional on-off mode. With an inverter, these MW ovens may provide consistent he...
Space Power Free-Piston Stirling Engine Scaling Study
NASA Technical Reports Server (NTRS)
Jones, D.
1989-01-01
The design feasibility study is documented of a single cylinder, free piston Stirling engine/linear alternator (FPSE/LA) power module generating 150 kW-electric (kW sub e), and the determination of the module's maximum feasible power level. The power module configuration was specified to be a single cylinder (single piston, single displacer) FPSE/LA, with tuning capacitors if required. The design requirements were as follows: (1) Maximum electrical power output; (2) Power module thermal efficiency equal to or greater than 20 percent at a specific mass of 5 to 8 kg/kW(sub e); (3) Heater wall temperature/cooler wall temperature = 1050 K/525 K; (4) Sodium heat-pipe heat transport system, pumped loop NaK (sodium-potassium eutectic mixture) rejection system; (5) Maximum power module vibration amplitude = 0.0038 cm; and (6) Design life = 7 years (60,000 hr). The results show that a single cylinder FPSE/LA is capable of meeting program goals and has attractive scaling attributes over the power range from 25 to 150 kW(sub e). Scaling beyond the 150 kW(sub e) power level, the power module efficiency falls and the power module specific mass reaches 10 kg/kW(sub e) at a power output of 500 kW(sub e). A discussion of scaling rules for the engine, alternator, and heat transport systems is presented, along with a detailed description of the conceptual design of a 150 kW(sub e) power module that meets the requirements. Included is a discussion of the design of a dynamic balance system. A parametric study of power module performance conducted over the power output range of 25 to 150 kW(sub e) for temperature ratios of 1.7, 2.0, 2.5, and 3.0 is presented and discussed. The results show that as the temperature ratio decreases, the efficiency falls and specific mass increases. At a temperature ratio of 1.7, the 150 kW(sub e) power module cannot satisfy both efficiency and specific mass goals. As the power level increases from 25 to 150 kW(sub e) at a fixed temperature ratio, power module efficiency is seen to increase slightly, but at the expense of increased specific mass. An empirical equation relating power module thermal efficiency as a function of power module specific mass, power output, and temperature ratio is developed. Alternative configurations to the single cylinder, direct coupled linear alternator approach are also evaluated, but are shown to have technical drawbacks that lessen their attractiveness. The dynamic balance assembly mass (moving mass and structure) represents 20 to 30 percent of the total single cylinder power module mass. Joining two modules in a balanced opposed configuration eliminates the need for the balancer, and a hot end junction can be made without significant addition of structural mass. Recommendations are made for evaluation of advanced heat pipe concepts, tests of radial flow heat exchangers, and evaluation of high temperature alternator materials.
NASA Astrophysics Data System (ADS)
Zhang, Xianjun
The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy market, considered to be an effective solution to promote energy efficiency. In the urban environment, the electricity, water and natural gas distribution networks are becoming increasingly interconnected with the growing penetration of the CHP-based DG. Subsequently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and siting for a larger test bed with the given information of energy infrastructures. In this context, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The proposed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation performances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electricity, gas, and water system models were developed individually and coupled by the developed CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical output and recovered thermal output, which are affected by multiple factors and thus analyzed in different case studies. The results indicate that the designed typical gas system is capable of supplying sufficient natural gas for the DG normal operation, while the present water system cannot support the complete recovery of the exhaust heat from the DG units.
Mass modeling for electrically powered space-based Yb:YAG lasers
NASA Astrophysics Data System (ADS)
Fitzgerald, Kevin F.; Leshner, Richard B.; Winsor, Harry V.
2000-05-01
An estimate for the mass of a nominal high-energy laser system envisioned for space applications is presented. The approach features a diode pumped solid state Yb:YAG laser. The laser specifications are10 MW average output power, and periods of up to 100 seconds continuous, full-power operation without refueling. The system is powered by lithium ion batteries, which are recharged by a solar array. The power requirements for this system dominate over any fixed structural features, so the critical issues in scaling a DPSSL to high power are made transparent. When based on currently available space qualified batteries, the design mass is about 500 metric tons. Therefore, innovations are required before high power electrical lasers will be serious contenders for use in space systems. The necessary innovations must improve the rate at which lithium ion batteries can output power. Masses for systems based on batteries that should be available in the near future are presented. This analysis also finds that heating of the solid state lasing material, cooling of the diode pump lasers and duty cycle are critical issues. Features dominating the thermal control requirements are the heat capacity of garnet, the operational temperature range of the system, and the required cooling time between periods of full operation. The duty cycle is a critical factor in determining both the mass of the diode array needed, and the mass of the power supply system.
Thermal Modeling of a Hybrid Thermoelectric Solar Collector with a Compound Parabolic Concentrator
NASA Astrophysics Data System (ADS)
Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.
2013-07-01
In this study radiant light from the sun is used by a hybrid thermoelectric (TE) solar collector and a compound parabolic concentrator (CPC) to generate electricity and thermal energy. The hybrid TE solar collector system described in this report is composed of transparent glass, an air gap, an absorber plate, TE modules, a heat sink to cool the water, and a storage tank. Incident solar radiation falls on the CPC, which directs and reflects the radiation to heat up the absorber plate, creating a temperature difference across the TE modules. The water, which absorbs heat from the hot TE modules, flows through the heat sink to release its heat. The results show that the electrical power output and the conversion efficiency depend on the temperature difference between the hot and cold sides of the TE modules. A maximum power output of 1.03 W and a conversion efficiency of 0.6% were obtained when the temperature difference was 12°C. The thermal efficiency increased as the water flow rate increased. The maximum thermal efficiency achieved was 43.3%, corresponding to a water flow rate of 0.24 kg/s. These experimental results verify that using a TE solar collector with a CPC to produce both electrical power and thermal energy seems to be feasible. The thermal model and calculation method can be applied for performance prediction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeMar, P.
Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. IES produce electricity and byproduct thermal energy onsite, with the potential of converting 80 percent or more of the fuel into useable energy. IES have the potential to offer the nation the benefits of unprecedented energy efficiency gains, consumer choice and energy security. It may also dramatically reduce industrial and commercial building sector carbon and air pollutant emissions and increase source energy efficiency.more » Applications of distributed energy and Combined heat and power (CHP) in ''Commercial and Institutional Buildings'' have, however, been historically limited due to insufficient use of byproduct thermal energy, particularly during summer months when heating is at a minimum. In recent years, custom engineered systems have evolved incorporating potentially high-value services from Thermally Activated Technologies (TAT) like cooling and humidity control. Such TAT equipment can be integrated into a CHP system to utilize the byproduct heat output effectively to provide absorption cooling or desiccant humidity control for the building during these summer months. IES can therefore expand the potential thermal energy services and thereby extend the conventional CHP market into building sector applications that could not be economically served by CHP alone. Now more than ever, these combined cooling, heating and humidity control systems (IES) can potentially decrease carbon and air pollutant emissions, while improving source energy efficiency in the buildings sector. Even with these improvements over conventional CHP systems, IES face significant technological and economic hurdles. Of crucial importance to the success of IES is the ability to treat the heating, ventilation, air conditioning, water heating, lighting, and power systems loads as parts of an integrated system, serving the majority of these loads either directly or indirectly from the CHP output. The CHP Technology Roadmaps (Buildings and Industry) have focused research and development on a comprehensive integration approach: component integration, equipment integration, packaged and modular system development, system integration with the grid, and system integration with building and process loads. This marked change in technology research and development has led to the creation of a new acronym to better reflect the nature of development in this important area of energy efficiency: Integrated Energy Systems (IES). Throughout this report, the terms ''CHP'' and ''IES'' will sometimes be used interchangeably, with CHP generally reserved for the electricity and heat generating technology subsystem portion of an IES. The focus of this study is to examine the potential for IES in buildings when the system perspective is taken, and the IES is employed as a dynamic system, not just as conventional CHP. This effort is designed to determine market potential by analyzing IES performance on an hour-by-hour basis, examining the full range of building types, their loads and timing, and assessing how these loads can be technically and economically met by IES.« less
Potential ability of zeolite to generate high-temperature vapor using waste heat
NASA Astrophysics Data System (ADS)
Fukai, Jun; Wijayanta, Agung Tri
2018-02-01
In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20-80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen-Mayer, H; Tosh, R
2015-06-15
Purpose: To reconcile air kerma and calorimetry measurements in a prototype calorimeter for obtaining absorbed dose in diagnostic CT beams. While corrections for thermal artifacts are routine and generally small in calorimetry of radiotherapy beams, large differences in relative stopping powers of calorimeter materials at the lower energies typical of CT beams greatly magnify their effects. Work-to-date on the problem attempts to reconcile laboratory measurements with modeling output from Monte Carlo and finite-element analysis of heat transfer. Methods: Small thermistor beads were embedded in a polystyrene (PS) core element of 1 cm diameter, which was inserted into a cylindrical HDPEmore » phantom of 30 cm diameter and subjected to radiation in a diagnostic CT x-ray imaging system. Resistance changes in the thermistors due to radiation heating were monitored via lock-in amplifier. Multiple 3-second exposures were recorded at 8 different dose-rates from the CT system, and least-squares fits to experimental data were compared to an expected thermal response obtained by finite-element analysis incorporating source terms based on semi-empirical modeling and Monte Carlo simulation. Results: Experimental waveforms exhibited large thermal artifacts with fast time constants, associated with excess heat in wires and glass, and smaller steps attributable to radiation heating of the core material. Preliminary finite-element analysis follows the transient component of the signal qualitatively, but predicts a slower decay of temperature spikes. This was supplemented by non-linear least-squares fits incorporating semi-empirical formulae for heat transfer, which were used to obtain dose-to-PS in reasonable agreement with the output of Monte Carlo calculations that converts air kerma to absorbed dose. Conclusion: Discrepancies between the finite-element analysis and our experimental data testify to the very significant heat transfer correction required for absorbed dose calorimetry of diagnostic CT beams. The results obtained here are being used to refine both simulations and design of calorimeter core components.« less
Improved OSC Amtec generator design to meet goals of JPL's candidate Europa Orbiter mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, A.; Noravian, H.; Or, C.
1998-07-01
The preceding paper (Paper IECEC.98.244) described OSC's initial designs of AMTEC (Alkali Metal Thermal-to-Electrical Conversion) power systems, consisting of one or two generators, each with 2, 3, or 4 General Purpose Heat Source (GPHS) modules and with 16 refractory AMTEC cells containing 5 Beta Alumina Solid Electrolyte (BASE) tubes; and presented the effect of heat input and voltage output on the generator's BOM evaporator and clad temperatures and on its EOM system efficiency and power output. Comparison of the computed results with JPL's goals for the Europa Orbiter mission showed that all of the initial 16-cell design options yielded eithermore » excessive evaporator and clad temperatures or insufficient EOM power to satisfy the JPL-specified mission goals. The present paper describes modified OSC generator designs with different numbers of AMTEC cells, cell diameters, cell lengths, cell materials, BASE tube lengths, and number of tubes per cell. These efforts succeeded in identifying generator designs with only half the number of AMTEC cells which -- for the same assumptions -- can produce EOM power outputs substantially in excess of JPL's goals for NASA's Europa Orbiter mission while operating well below the prescribed BOM limits on evaporator and clad temperature; and revealed that lowering the emissivity of the generator's housing to raise the cells' condenser temperatures can achieve substantial additional performance improvement. Finally, the paper culminates in programmatic recommendations.« less
Experimental investigation of an ammonia-based combined power and cooling cycle
NASA Astrophysics Data System (ADS)
Tamm, Gunnar Olavi
A novel ammonia-water thermodynamic cycle, capable of producing both power and refrigeration, was proposed by D. Yogi Goswami. The binary mixture exhibits variable boiling temperatures during the boiling process, which leads to a good thermal match between the heating fluid and working fluid for efficient heat source utilization. The cycle can be driven by low temperature sources such as solar, geothermal, and waste heat from a conventional power cycle, reducing the reliance on high temperature sources such as fossil fuels. A theoretical simulation of the cycle at heat source temperatures obtainable from low and mid temperature solar collectors showed that the ideal cycle could produce power and refrigeration at a maximum exergy efficiency, defined as the ratio of the net work and refrigeration output to the change in availability of the heat source, of over 60%. The exergy efficiency is a useful measure of the cycle's performance as it compares the effectiveness of different cycles in harnessing the same source. An experimental system was constructed to demonstrate the feasibility of the cycle and to compare the experimental results with the theoretical simulations. In this first phase of experimentation, the turbine expansion was simulated with a throttling valve and a heat exchanger. Results showed that the vapor generation and absorption condensation processes work experimentally. The potential for combined turbine work and refrigeration output was evidenced in operating the system. Analysis of losses led to modifications in the system design, which were implemented to yield improvements in heat exchange, vapor generation, pump performance and overall stability. The research that has been conducted verifies the potential of the power and cooling cycle as an alternative to using conventional fossil fuel technologies. The research that continues is to further demonstrate the concept and direct it towards industry. On the large scale, the cycle can be used for industrial power production or as a central power plant for a community, with refrigeration produced as required by the application. On the small scale, an affordable residential or commercial unit could allow independent electricity generation for the home or business while also cooling it.
Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
Wang, Yang; Tu, Z C
2012-01-01
The efficiency at maximum power output of linear irreversible Carnot-like heat engines is investigated based on the assumption that the rate of irreversible entropy production of the working substance in each "isothermal" process is a quadratic form of the heat exchange rate between the working substance and the reservoir. It is found that the maximum power output corresponds to minimizing the irreversible entropy production in two isothermal processes of the Carnot-like cycle, and that the efficiency at maximum power output has the form η(mP)=η(C)/(2-γη(C)), where η(C) is the Carnot efficiency, while γ depends on the heat transfer coefficients between the working substance and two reservoirs. The value of η(mP) is bounded between η(-)≡η(C)/2 and η(+)≡η(C)/(2-η(C)). These results are consistent with those obtained by Chen and Yan [J. Chem. Phys. 90, 3740 (1989)] based on the endoreversible assumption, those obtained by Esposito et al. [Phys. Rev. Lett. 105, 150603 (2010)] based on the low-dissipation assumption, and those obtained by Schmiedl and Seifert [Europhys. Lett. 81, 20003 (2008)] for stochastic heat engines which in fact also satisfy the low-dissipation assumption. Additionally, we find that the endoreversible assumption happens to hold for Carnot-like heat engines operating at the maximum power output based on our fundamental assumption, and that the Carnot-like heat engines that we focused on do not strictly satisfy the low-dissipation assumption, which implies that the low-dissipation assumption or our fundamental assumption is a sufficient but non-necessary condition for the validity of η(mP)=η(C)/(2-γη(C)) as well as the existence of two bounds, η(-)≡η(C)/2 and η(+)≡η(C)/(2-η(C)). © 2012 American Physical Society
Efficiency at maximum power output of linear irreversible Carnot-like heat engines
NASA Astrophysics Data System (ADS)
Wang, Yang; Tu, Z. C.
2012-01-01
The efficiency at maximum power output of linear irreversible Carnot-like heat engines is investigated based on the assumption that the rate of irreversible entropy production of the working substance in each “isothermal” process is a quadratic form of the heat exchange rate between the working substance and the reservoir. It is found that the maximum power output corresponds to minimizing the irreversible entropy production in two isothermal processes of the Carnot-like cycle, and that the efficiency at maximum power output has the form ηmP=ηC/(2-γηC), where ηC is the Carnot efficiency, while γ depends on the heat transfer coefficients between the working substance and two reservoirs. The value of ηmP is bounded between η-≡ηC/2 and η+≡ηC/(2-ηC). These results are consistent with those obtained by Chen and Yan [J. Chem. Phys.JCPSA60021-960610.1063/1.455832 90, 3740 (1989)] based on the endoreversible assumption, those obtained by Esposito [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.150603 105, 150603 (2010)] based on the low-dissipation assumption, and those obtained by Schmiedl and Seifert [Europhys. Lett.EULEEJ0295-507510.1209/0295-5075/81/20003 81, 20003 (2008)] for stochastic heat engines which in fact also satisfy the low-dissipation assumption. Additionally, we find that the endoreversible assumption happens to hold for Carnot-like heat engines operating at the maximum power output based on our fundamental assumption, and that the Carnot-like heat engines that we focused on do not strictly satisfy the low-dissipation assumption, which implies that the low-dissipation assumption or our fundamental assumption is a sufficient but non-necessary condition for the validity of ηmP=ηC/(2-γηC) as well as the existence of two bounds, η-≡ηC/2 and η+≡ηC/(2-ηC).
Gas-Generator Augmented Expander Cycle Rocket Engine
NASA Technical Reports Server (NTRS)
Greene, William D. (Inventor)
2011-01-01
An augmented expander cycle rocket engine includes first and second turbopumps for respectively pumping fuel and oxidizer. A gas-generator receives a first portion of fuel output from the first turbopump and a first portion of oxidizer output from the second turbopump to ignite and discharge heated gas. A heat exchanger close-coupled to the gas-generator receives in a first conduit the discharged heated gas, and transfers heat to an adjacent second conduit carrying fuel exiting the cooling passages of a primary combustion chamber. Heat is transferred to the fuel passing through the cooling passages. The heated fuel enters the second conduit of the heat exchanger to absorb more heat from the first conduit, and then flows to drive a turbine of one or both of the turbopumps. The arrangement prevents the turbopumps exposure to combusted gas that could freeze in the turbomachinery and cause catastrophic failure upon attempted engine restart.
RFQ (radio-frequency quadrupole) accelerator tuning system
Bolie, V.W.
1988-04-12
A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in responsive to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. 3 figs., 2 tabs.
STS-1 environmental control and life support system. Consumables and thermal analysis
NASA Technical Reports Server (NTRS)
Steines, G.
1980-01-01
The Environmental Control and Life Support Systems (ECLSS)/thermal systems analysis for the Space Transportation System 1 Flight (STS-1) was performed using the shuttle environmental consumables usage requirements evaluation (SECURE) computer program. This program employs a nodal technique utilizing the Fortran Environmental Analysis Routines (FEAR). The output parameters evaluated were consumable quantities, fluid temperatures, heat transfer and rejection, and cabin atmospheric pressure. Analysis of these indicated that adequate margins exist for the nonpropulsive consumables and related thermal environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Michael G.; Srivastava, Viraj; Wagner, Anne W.
The Pacific Northwest National Laboratory (PNNL) has launched a project funded by the Bonneville Power Association (BPA) to identify strategies for increasing industrial energy efficiency and reducing energy costs of Northwest Food Processors Association (NWFPA) plants through deployment of novel combinations and designs of variable-output combined heat and power (CHP) distributed generation (DG), combined cooling, heating and electric power (CCHP) DG and energy storage systems. Detailed evaluations and recommendations of CHP and CCHP DG systems will be performed for several Northwest (NW) food processing sites. The objective is to reduce the overall energy use intensity of NW food processors bymore » 25% by 2020 and by 50% by 2030, as well as reducing emissions and understanding potential congestion reduction impacts on the transmission system in the Pacific Northwest.« less
Design considerations for space radiators based on the liquid sheet (LSR) concept
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Chubb, Donald L.
1991-01-01
This study is directed at performing a comparative examination of LSR characteristics as they affect the basic design of low earth orbit solar dynamic conversion systems. The power systems considered were based on the closed Brayton (CBC) and the free piston Stirling (FPS) cycles, each with a power output of 2 kWe and using previously tested silicone oil (Dow-Corning Me2) as the radiator working fluid. Conclusions indicate that, due to its ability for direct cold end cooling, an LSR based heat rejection subsystem is far more compatible with a Stirling space power system than with a CBC, which requires LSR coupling by means of an intermediate gas/liquid heat exchanger and adjustment of cycle operating conditions.
Assessing the Costs and Benefits of Resilience Investments: Tennessee Valley Authority Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Melissa R.; Wilbanks, Thomas J.; Preston, Benjamin L.
This report describes a general approach for assessing climate change vulnerabilities of an electricity system and evaluating the costs and benefits of certain investments that would increase system resilience. It uses Tennessee Valley Authority (TVA) as a case study, concentrating on the Cumberland River basin area on the northern side of the TVA region. The study focuses in particular on evaluating risks associated with extreme heat wave and drought conditions that could be expected to affect the region by mid-century. Extreme climate event scenarios were developed using a combination of dynamically downscaled output from the Community Earth System Model andmore » historical heat wave and drought conditions in 1993 and 2007, respectively.« less
NASA Technical Reports Server (NTRS)
Lewicki, G. W.; Guisinger, J. E. (Inventor)
1973-01-01
A system is developed for maintaining the intensity of a laser beam at a constant level in a thermomagnetic recording and magneto-optic playback system in which an isotropic film is heated along a continuous path by the laser beam for recording. As each successive area of the path is heated locally to the vicinity of its Curie point in the presence of a controlled magnetic field, a magneto-optic density is produced proportional to the amplitude of the controlled magnetic field. To play back the recorded signal, the intensity of the laser beam is reduced and a Faraday or Kerr effect analyzer is used, with a photodetector, as a transducer for producing an output signal.
NASA Astrophysics Data System (ADS)
Balaji, P. A.
1999-07-01
A cricket's ear is a directional acoustic sensor. It has a remarkable level of sensitivity to the direction of sound propagation in a narrow frequency bandwidth of 4-5 KHz. Because of its complexity, the directional sensitivity has long intrigued researchers. The cricket's ear is a four-acoustic-inputs/two-vibration-outputs system. In this dissertation, this system is examined in depth, both experimentally and theoretically, with a primary goal to understand the mechanics involved in directional hearing. Experimental identification of the system is done by using random signal processing techniques. Theoretical identification of the system is accomplished by analyzing sound transmission through complex trachea of the ear. Finally, a description of how the cricket achieves directional hearing sensitivity is proposed. The fundamental principle involved in directional heating of the cricket has been utilized to design a device to obtain a directional signal from non- directional inputs.
Capillary pumped loop body heat exchanger
NASA Technical Reports Server (NTRS)
Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)
1998-01-01
A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.
Erickson, Kenneth L.
2001-01-01
A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.
Establishment and analysis of High-Resolution Assimilation Dataset of water-energy cycle over China
NASA Astrophysics Data System (ADS)
Wen, Xiaohang; Liao, Xiaohan; Dong, Wenjie; Yuan, Wenping
2015-04-01
For better prediction and understanding of water-energy exchange process and land-atmospheric interaction, the in-situ observed meteorological data which were acquired from China Meteorological Administration (CMA) were assimilated in the Weather Research and Forecasting (WRF) model and the monthly Green Vegetation Coverage (GVF) data, which was calculated by the Normalized Difference Vegetation Index (NDVI) of Earth Observing System Moderate-Resolution Imaging Spectroradiometer (EOS-MODIS), Digital Elevation Model (DEM) data of the Shuttle Radar Topography Mission (SRTM) system were also integrated in the WRF model over China. Further, the High-Resolution Assimilation Dataset of water-energy cycle over China (HRADC) was produced by WRF model. This dataset include 25 km horizontal resolution near surface meteorological data such as air temperature, humidity, ground temperature, and pressure at 19 levels, soil temperature and soil moisture at 4 levels, green vegetation coverage, latent heat flux, sensible heat flux, and ground heat flux for 3 hours. In this study, we 1) briefly introduce the cycling 3D-Var assimilation method; 2) Compare results of meteorological elements such as 2 m temperature, precipitation and ground temperature generated by the HRADC with the gridded observation data from CMA, and Global Land Data Assimilation System (GLDAS) output data from National Aeronautics and Space Administration (NASA). It is found that the results of 2 m temperature were improved compared with the control simulation and has effectively reproduced the observed patterns, and the simulated results of ground temperature, 0-10 cm soil temperature and specific humidity were as much closer to GLDAS outputs. Root mean square errors are reduced in assimilation run than control run, and the assimilation run of ground temperature, 0-10 cm soil temperature, radiation and surface fluxes were agreed well with the GLDAS outputs over China. The HRADC could be used in further research on the long period climatic effects and characteristics of water-energy cycle over China.
Code of Federal Regulations, 2013 CFR
2013-07-01
... energy output of the combustion turbine in MW. (2) For combined-cycle and combined heat and power... the heat recovery steam generator, and 100 percent of the total useful thermal energy output that is... Where: Ps = useful thermal energy of the steam, measured relative to ISO conditions, not used to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... energy output of the combustion turbine in MW. (2) For combined-cycle and combined heat and power... the heat recovery steam generator, and 100 percent of the total useful thermal energy output that is... Where: Ps = useful thermal energy of the steam, measured relative to ISO conditions, not used to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... energy output of the combustion turbine in MW. (2) For combined-cycle and combined heat and power... the heat recovery steam generator, and 100 percent of the total useful thermal energy output that is... Where: Ps = useful thermal energy of the steam, measured relative to ISO conditions, not used to...
Code of Federal Regulations, 2014 CFR
2014-07-01
... energy output of the combustion turbine in MW. (2) For combined-cycle and combined heat and power... the heat recovery steam generator, and 100 percent of the total useful thermal energy output that is... Where: Ps = useful thermal energy of the steam, measured relative to ISO conditions, not used to...
Modeling of a resonant heat engine
NASA Astrophysics Data System (ADS)
Preetham, B. S.; Anderson, M.; Richards, C.
2012-12-01
A resonant heat engine in which the piston assembly is replaced by a sealed elastic cavity is modeled and analyzed. A nondimensional lumped-parameter model is derived and used to investigate the factors that control the performance of the engine. The thermal efficiency predicted by the model agrees with that predicted from the relation for the Otto cycle based on compression ratio. The predictions show that for a fixed mechanical load, increasing the heat input results in increased efficiency. The output power and power density are shown to depend on the loading for a given heat input. The loading condition for maximum output power is different from that required for maximum power density.
Universal Trade-Off between Power, Efficiency, and Constancy in Steady-State Heat Engines
NASA Astrophysics Data System (ADS)
Pietzonka, Patrick; Seifert, Udo
2018-05-01
Heat engines should ideally have large power output, operate close to Carnot efficiency and show constancy, i.e., exhibit only small fluctuations in this output. For steady-state heat engines, driven by a constant temperature difference between the two heat baths, we prove that out of these three requirements only two are compatible. Constancy enters quantitatively the conventional trade-off between power and efficiency. Thus, we rationalize and unify recent suggestions for overcoming this simple trade-off. Our universal bound is illustrated for a paradigmatic model of a quantum dot solar cell and for a Brownian gyrator delivering mechanical work against an external force.
The solution of private problems for optimization heat exchangers parameters
NASA Astrophysics Data System (ADS)
Melekhin, A.
2017-11-01
The relevance of the topic due to the decision of problems of the economy of resources in heating systems of buildings. To solve this problem we have developed an integrated method of research which allows solving tasks on optimization of parameters of heat exchangers. This method decides multicriteria optimization problem with the program nonlinear optimization on the basis of software with the introduction of an array of temperatures obtained using thermography. The author have developed a mathematical model of process of heat exchange in heat exchange surfaces of apparatuses with the solution of multicriteria optimization problem and check its adequacy to the experimental stand in the visualization of thermal fields, an optimal range of managed parameters influencing the process of heat exchange with minimal metal consumption and the maximum heat output fin heat exchanger, the regularities of heat exchange process with getting generalizing dependencies distribution of temperature on the heat-release surface of the heat exchanger vehicles, defined convergence of the results of research in the calculation on the basis of theoretical dependencies and solving mathematical model.
NASA Astrophysics Data System (ADS)
Schuller, G.; Vázquez, F. Vidal; Waiblinger, W.; Auvinen, S.; Ribeirinha, P.
2017-04-01
In this work a methanol steam reforming (MSR) reactor has been operated thermally coupled to a high temperature polymer electrolyte fuel cell stack (HT-PEMFC) utilizing its waste heat. The operating temperature of the coupled system was 180 °C which is significantly lower than the conventional operating temperature of the MSR process which is around 250 °C. A newly designed heat exchanger reformer has been developed by VTT (Technical Research Center of Finland LTD) and was equipped with commercially available CuO/ZnO/Al2O3 (BASF RP-60) catalyst. The liquid cooled, 165 cm2, 12-cell stack used for the measurements was supplied by Serenergy A/S. The off-heat from the electrochemical fuel cell reaction was transferred to the reforming reactor using triethylene glycol (TEG) as heat transfer fluid. The system was operated up to 0.4 A cm-2 generating an electrical power output of 427 Wel. A total stack waste heat utilization of 86.4% was achieved. It has been shown that it is possible to transfer sufficient heat from the fuel cell stack to the liquid circuit in order to provide the needed amount for vaporizing and reforming of the methanol-water-mixture. Furthermore a set of recommendations is given for future system design considerations.
Thermal Analysis of of Near-Isothermal Compressed Gas Energy Storage System
Odukomaiya, Adewale; Abu-Heiba, Ahmad; Gluesenkamp, Kyle R.; ...
2016-01-01
In this paper, alternative system configurations for a novel Ground-Level Integrated Diverse Energy Storage (GLIDES) system, which can store energy via input of electricity and heat and deliver dispatchable electricity, is presented. The proposed system is low-cost and hybridizes compressed air and pumped hydro storage approaches that will allow for the off-peak storage of intermittent renewable energy for use during peak times. This study reveals that implementing direct-contact low grade heat exchange via sprayed falling droplets to cool the gas during charging (compression) and warm the gas during discharging (expansion) can be achieved through a secondary recirculating loop of liquid.more » This study shows that if the recirculating liquid loop is pre-conditioned with waste-heat prior to spraying during gas expansion and considering all the round trip conversion losses from standard 120 V 60 HZ electricity input and output with utilization of low grade heat at 90 C the alternative system design leads to a 16% boost in round trip efficiency of the electricity storage to elec = 82% with an energy density of ED = 3.59 MJ/m3.« less
High-efficiency V-band GaAs IMPATT diodes
NASA Technical Reports Server (NTRS)
Ma, Y. E.; Benko, E.; Trinh, T.; Erickson, L. P.; Mattord, T. J.
1984-01-01
Double-drift GaAs IMPATT diodes were designed for V-band frequency operations and fabricated using molecular-beam epitaxy. The diodes were fabricated in two configurations: (1) circular mesa diodes with silver-plated (integrated) heat sinks: (2) pill-type diodes bonded to diamond heat sinks. Both configurations utilized a miniature quartz-ring package. Output power greater than 1 W CW was achieved at V-band frequencies from diodes on diamond heat sinks. The best conversion efficiency was 13.3 percent at 55.5 GHz with 1 W output power.
GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..
Exposure to stressful environments - Strategy of adaptive responses
NASA Technical Reports Server (NTRS)
Farhi, Leon E.
1991-01-01
Stresses such as hypoxia, water lack, and heat exposure can produce strains in more than a single organ system, in turn stimulating the body to adapt in multiple ways. Nevertheless, a general strategy of the various adaptive responses emerges when the challenges are divided into three groups: (1) conditions that affect the supply of essential molecules, (2) stresses that prevent the body from regulating properly the output of waste products such as CO2 and heat, and (3) environments that disrupt body transport systems. Problems may arise when there is a conflict between two stresses requiring conflicting adaptive changes. An alternative to adaptation, creation of microenvironment, is often favored by the animal.
Advanced thermionic energy conversion
NASA Technical Reports Server (NTRS)
1979-01-01
Developments towards space and terrestrial applications of thermionic energy conversion are presented. Significant accomplishments for the three month period include: (1) devised a blade-type distributed lead design with many advantages compared to the stud-type distributed lead; (2) completed design of Marchuk tube test apparatus; (3) concluded, based on current understanding, that residual hydrogen should not contribute to a negative space charge barrier at the collector; (4) modified THX design program to include series-coupled designs as well as inductively-coupled designs; (5) initiated work on the heat transfer technology, THX test module, output power transfer system, heat transfer system, and conceptual plant design tasks; and (6) reached 2200 hours of operation in JPL-5 cylindrical converter envelope test.
Analysis of a Temperature-Controlled Exhaust Thermoelectric Generator During a Driving Cycle
NASA Astrophysics Data System (ADS)
Brito, F. P.; Alves, A.; Pires, J. M.; Martins, L. B.; Martins, J.; Oliveira, J.; Teixeira, J.; Goncalves, L. M.; Hall, M. J.
2016-03-01
Thermoelectric generators can be used in automotive exhaust energy recovery. As car engines operate under wide variable loads, it is a challenge to design a system for operating efficiently under these variable conditions. This means being able to avoid excessive thermal dilution under low engine loads and being able to operate under high load, high temperature events without the need to deflect the exhaust gases with bypass systems. The authors have previously proposed a thermoelectric generator (TEG) concept with temperature control based on the operating principle of the variable conductance heat pipe/thermosiphon. This strategy allows the TEG modules’ hot face to work under constant, optimized temperature. The variable engine load will only affect the number of modules exposed to the heat source, not the heat transfer temperature. This prevents module overheating under high engine loads and avoids thermal dilution under low engine loads. The present work assesses the merit of the aforementioned approach by analysing the generator output during driving cycles simulated with an energy model of a light vehicle. For the baseline evaporator and condenser configuration, the driving cycle averaged electrical power outputs were approximately 320 W and 550 W for the type-approval Worldwide harmonized light vehicles test procedure Class 3 driving cycle and for a real-world highway driving cycle, respectively.
Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.
Wang, Rui; Wang, Jianhui; He, Jizhou; Ma, Yongli
2012-08-01
We generalize the quantum heat engine (QHE) model which was first proposed by Bender et al. [J. Phys. A 33, 4427 (2000)] to the case in which an ideal Fermi gas with an arbitrary number N of particles in a box trap is used as the working substance. Besides two quantum adiabatic processes, the engine model contains two isoenergetic processes, during which the particles are coupled to energy baths at a high constant energy E(h) and a low constant energy E(c), respectively. Directly employing the finite-time thermodynamics, we find that the power output is enhanced by increasing particle number N (or decreasing minimum trap size L(A)) for given L(A) (or N), without reduction in the efficiency. By use of global optimization, the efficiency at possible maximum power output (EPMP) is found to be universal and independent of any parameter contained in the engine model. For an engine model with any particle-number N, the efficiency at maximum power output (EMP) can be determined under the condition that it should be closest to the EPMP. Moreover, we extend the heat engine to a more general multilevel engine model with an arbitrary 1D power-law potential. Comparison between our engine model and the Carnot cycle shows that, under the same conditions, the efficiency η = 1 - E(c)/E(h) of the engine cycle is bounded from above the Carnot value η(c) =1 - T(c)/T(h).
Power inverter with optical isolation
Duncan, Paul G.; Schroeder, John Alan
2005-12-06
An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.
Use of a thermocouple-datalogger system to evaluate overstory mortality
Lucy Brudnak; Thomas A. Waldrop; Ross J. Phillips
2010-01-01
In the past, it was difficult to accurately measure dynamic fire behavior during prescribed burns. Peak temperature, flaming duration, and total heat output may be directly related to first-order fire effects such as fuel consumption and vegetative mortality; however, little is known about which of these variables is most closely associated with, and therefore the best...
Towards 50% wind electricity in Denmark: Dilemmas and challenges
NASA Astrophysics Data System (ADS)
Bach, Paul-Frederik
2016-05-01
Electricity and heat supply systems are essential contributors to a fossil-free future in Denmark. The combined production of heat and power (CHP) and the production of wind energy are already well developed in Denmark. Combined heat and power covers about 40% of the demand for space heating in Denmark, and the production of wind energy is supposed to exceed 50% of the demand for electricity by 2020. The changing electricity and heat production has some consequences already now: i) Decreasing wholesale prices in Denmark and in other countries. ii) Thermal power plants are closing down. Denmark is no longer self-sufficient with electricity under all conditions. iii) The electricity production pattern does not match the demand pattern. The result is that the neighbouring countries must absorb the variations from wind and solar power. Essential challenges: i) The future of combined heat and power in Denmark is uncertain. ii) Denmark will need new backup capacity for filling the gaps in wind power and solar cell output. iii) Flexible electricity consumers are supposed to contribute to balancing the future power systems. There is still a long way to go before the Smart Grid visions are implemented in large scale. iv) The transformation of the power system will create new risks of power failures.
A parametric investigation on a solar dish-Stirling system
NASA Astrophysics Data System (ADS)
Gholamalizadeh, Ehsan; Chung, Jae Dong
2018-06-01
The aim of this study is to analyze the performance of a solar dish-Stirling system. A mathematical model for the overall thermal efficiency of the solar-powered high-temperature-differential dish-Stirling engine is described. This model takes into account pressure losses due to fluid friction which is internal to the engine, mechanical friction between the moving parts, actual heat transfer includes the effects of both internal and external irreversibilities of the cycle and finite regeneration processes time. Validation was done through comparison with the actual power output of the "EuroDish" system. Moreover, the effects of dish diameter and working fluid on the performance of the system were studied. An increase of about 7.2% was observed for the power output using hydrogen as the working fluid rather than helium. Also, the focal distance for any diameter of dish was calculated.
Seasonal performance for Heat pump with vertical ground heat exchanger in Riga
NASA Astrophysics Data System (ADS)
Jaundālders, S.; Stanka, P.; Rusovs, D.
2017-10-01
Experimental measurements of Seasonal Coefficient of Performance (SCOP) for heating of 160 m2 household in Riga were conducted for operation of brine-water heat pump with vertical ground heat exchangers (GHE). Data regarding heat and electrical power consumption were recorded during three-year period from 2013 to 2016. Vapor compression heat pump has heat energy output of 8 kW. GHE consists of three boreholes. Each borehole is 60 m deep. Data regarding brine temperature for borehole input and output were presented and discussed. As far as house had floor heating, there were presented data about COP for B0/W35 and its dependence from room and outdoor temperature during heating season. Empirical equation was created. Average heat energy consumption during one year for heating was 72 kWh/m2 measured by heat meter. Detected primary energy consumption (electrical energy from grid) was 21 kWh/m2 which resulted in SCOP=3.8. These data were compared with SCOP for air-to-water heat pump in Latvia and available configuration software for heat pumps operation. Good agreement between calculated performance and reported experimental data were founded.
Simulation of medical Q-switch flash-pumped Er:YAG laser
NASA Astrophysics Data System (ADS)
-Yan-lin, Wang; Huang-Chuyun; Yao-Yucheng; Xiaolin, Zou
2011-01-01
Er: YAG laser, the wavelength is 2940nm, can be absorbed strongly by water. The absorption coefficient is as high as 13000 cm-1. As the water strong absorption, Erbium laser can bring shallow penetration depth and smaller surrounding tissue injury in most soft tissue and hard tissue. At the same time, the interaction between 2940nm radiation and biological tissue saturated with water is equivalent to instantaneous heating within limited volume, thus resulting in the phenomenon of micro-explosion to removal organization. Different parameters can be set up to cut enamel, dentin, caries and soft tissue. For the development and optimization of laser system, it is a practical choice to use laser modeling to predict the influence of various parameters for laser performance. Aim at the status of low Erbium laser output power, flash-pumped Er: YAG laser performance was simulated to obtain optical output in theory. the rate equation model was obtained and used to predict the change of population densities in various manifolds and use the technology of Q-switch the simulate laser output for different design parameters and results showed that Er: YAG laser output energy can achieve the maximum average output power of 9.8W under the given parameters. The model can be used to find the potential laser systems that meet application requirements.
Circulatory failure during severe hyperthermia in dog.
Miki, K; Morimoto, T; Nose, H; Itoh, T; Yamada, S
1983-01-01
The effect of acute hyperthermia on circulatory function was studied in 6 mongrel dogs. At a core temperature of about 40 degrees C, central venous pressure and stroke volume were maintained at almost normal level. Cardiac output significantly increased (26 ml/(kg . min)) while systemic vascular resistance significantly decreased (1.2 mmHg . sec/ml). In addition, significant decrease in vascular compliance by 40% was observed. When body temperature was raised further (severe hyperthermia), an abrupt fall of arterial pressure was observed at the rectal temperature of about 41-42 degrees C. Concomitant decreases in central venous pressure (3 mmHg), stroke volume (2.1 ml/beat) and cardiac output (29 ml/(kg . min)) were observed while heart rate increased (48 beats/min). These results suggest that the decrease in cardiac output during severe hyperthermia is due to the fall of central venous pressure, and the fall was attributed to the increase in unstressed vascular volume of systemic circulation due to the heat-induced cutaneous vasodilation. The observed decrease in systemic vascular compliance is considered to have a significant role in the maintenance of central venous pressure under hyperthermia.
Lamp system for uniform semiconductor wafer heating
Zapata, Luis E.; Hackel, Lloyd
2001-01-01
A lamp system with a very soft high-intensity output is provided over a large area by water cooling a long-arc lamp inside a diffuse reflector of polytetrafluorethylene (PTFE) and titanium dioxide (TiO.sub.2) white pigment. The water is kept clean and pure by a one micron particulate filter and an activated charcoal/ultraviolet irradiation system that circulates and de-ionizes and biologically sterilizes the coolant water at all times, even when the long-arc lamp is off.
Transmitter experiment package for the communications technology satellite
NASA Technical Reports Server (NTRS)
Farber, B.; Goldin, D. S.; Marcus, B.; Mock, P.
1977-01-01
The operating requirements, system design characteristics, high voltage packaging considerations, nonstandard components development, and test results for the transmitter experiment package (TEP) are described. The TEP is used for broadcasting power transmission from the Communications Technology Satellite. The TEP consists of a 12 GHz, 200-watt output stage tube (OST), a high voltage processing system that converts the unregulated spacecraft solar array power to the regulated voltages required for OST operation, and a variable conductance heat pipe system that is used to cool the OST body.
Thermal energy storage for low grade heat in the organic Rankine cycle
NASA Astrophysics Data System (ADS)
Soda, Michael John
Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The addition of graphite to augment heat transfer rates was also tested. Melting and solidification temperatures largely matched predictions. The magnesium salts were found to be less stable under thermal cycling than the waxes. Graphite was only soluble in the waxes. Mixtures of magnesium salts and waxes yielded a layered composite with the less dense waxes creating a sealing layer over the salt layer that significantly increased the stability of the magnesium salts. Research into optimum heat exchangers and storage vessels for these applications indicates that horizontally oriented aluminum pipes with vertically oriented aluminum fins would be the best method of storing and retrieving energy. Fin spacing can be predicted by an equation based on target temperatures and PCM characteristics.
Waste Heat Recovery from a High Temperature Diesel Engine
NASA Astrophysics Data System (ADS)
Adler, Jonas E.
Government-mandated improvements in fuel economy and emissions from internal combustion engines (ICEs) are driving innovation in engine efficiency. Though incremental efficiency gains have been achieved, most combustion engines are still only 30-40% efficient at best, with most of the remaining fuel energy being rejected to the environment as waste heat through engine coolant and exhaust gases. Attempts have been made to harness this waste heat and use it to drive a Rankine cycle and produce additional work to improve efficiency. Research on waste heat recovery (WHR) demonstrates that it is possible to improve overall efficiency by converting wasted heat into usable work, but relative gains in overall efficiency are typically minimal ( 5-8%) and often do not justify the cost and space requirements of a WHR system. The primary limitation of the current state-of-the-art in WHR is the low temperature of the engine coolant ( 90 °C), which minimizes the WHR from a heat source that represents between 20% and 30% of the fuel energy. The current research proposes increasing the engine coolant temperature to improve the utilization of coolant waste heat as one possible path to achieving greater WHR system effectiveness. An experiment was performed to evaluate the effects of running a diesel engine at elevated coolant temperatures and to estimate the efficiency benefits. An energy balance was performed on a modified 3-cylinder diesel engine at six different coolant temperatures (90 °C, 100 °C, 125 °C, 150 °C, 175 °C, and 200 °C) to determine the change in quantity and quality of waste heat as the coolant temperature increased. The waste heat was measured using the flow rates and temperature differences of the coolant, engine oil, and exhaust flow streams into and out of the engine. Custom cooling and engine oil systems were fabricated to provide adequate adjustment to achieve target coolant and oil temperatures and large enough temperature differences across the engine to reduce uncertainty. Changes to exhaust emissions were recorded using a 5-gas analyzer. The engine condition was also monitored throughout the tests by engine compression testing, oil analysis, and a complete teardown and inspection after testing was completed. The integrity of the head gasket seal proved to be a significant problem and leakage of engine coolant into the combustion chamber was detected when testing ended. The post-test teardown revealed problems with oil breakdown at locations where temperatures were highest, with accompanying component wear. The results from the experiment were then used as inputs for a WHR system model using ethanol as the working fluid, which provided estimates of system output and improvement in efficiency. Thermodynamic models were created for eight different WHR systems with coolant temperatures of 90 °C, 150 °C, 175 °C, and 200 °C and condenser temperatures of 60 °C and 90 °C at a single operating point of 3100 rpm and 24 N-m of torque. The models estimated that WHR output for both condenser temperatures would increase by over 100% when the coolant temperature was increased from 90 °C to 200 °C. This increased WHR output translated to relative efficiency gains as high as 31.0% for the 60 °C condenser temperature and 24.2% for the 90 °C condenser temperature over the baseline engine efficiency at 90 °C. Individual heat exchanger models were created to estimate the footprint for a WHR system for each of the eight systems. When the coolant temperature increased from 90 °C to 200 °C, the total heat exchanger volume increased from 16.6 x 103 cm3 to 17.1 x 10 3 cm3 with a 60 °C condenser temperature, but decreased from 15.1 x 103 cm3 to 14.2 x 10 3 cm3 with a 90 °C condenser temperature. For all cases, increasing the coolant temperature resulted in an improvement in the efficiency gain for each cubic meter of heat exchanger volume required. Additionally, the engine oil coolers represented a significant portion of the required heat exchanger volume due to abnormally low engine oil temperatures during the experiment ( 80 °C). Future studies should focus on allowing the engine oil to reach higher operating temperatures which would decrease the heat rejected to the engine oil and reduce the heat duty for the oil coolers resulting in reduced oil cooler volume.
Heat flux microsensor measurements and calibrations
NASA Technical Reports Server (NTRS)
Terrell, James P.; Hager, Jon M.; Onishi, Shinzo; Diller, Thomas E.
1992-01-01
A new thin-film heat flux gage has been fabricated specifically for severe high temperature operation using platinum and platinum-10 percent rhodium for the thermocouple elements. Radiation calibrations of this gage were performed at the AEDC facility over the available heat flux range (approx. 1.0 - 1,000 W/cu cm). The gage output was linear with heat flux with a slight increase in sensitivity with increasing surface temperature. Survivability of gages was demonstrated in quench tests from 500 C into liquid nitrogen. Successful operation of gages to surface temperatures of 750 C has been achieved. No additional cooling of the gages is required because the gages are always at the same temperature as the substrate material. A video of oxyacetylene flame tests with real-time heat flux and temperature output is available.
Quantum thermodynamics of general quantum processes.
Binder, Felix; Vinjanampathy, Sai; Modi, Kavan; Goold, John
2015-03-01
Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics.
Multimegawatt potassium Rankine power for nuclear electric power
NASA Technical Reports Server (NTRS)
Rovang, Richard D.; Mills, Joseph C.; Baumeister, Ernie B.
1991-01-01
A cermet fueled potassium rankine power system concept has been developed for various power ranges and operating lifetimes. This concept utilizes a single primary lithium loop to transport thermal energy from the reactor to the boiler. Multiple, independent potassium loops are employed to achieve the required reliability of 99 percent. The potassium loops are two phase systems which expand heated potassium vapor through multistage turboalternators to produce a 10-kV dc electrical output. Condensation occurs by-way-of a shear-flow condenser, producing a 100 percent liquid potassium stream which is pumped back to the boiler. Waste heat is rejected by an advanced carbon-carbon radiator at approximately 1000 K. Overall system efficiencies of 19.3 percent to 20.5 percent were calculated depending on mission life and power level.
NASA Astrophysics Data System (ADS)
Chaczykowski, Maciej
2016-06-01
Basic organic Rankine cycle (ORC), and two variants of regenerative ORC have been considered for the recovery of exhaust heat from natural gas compressor station. The modelling framework for ORC systems has been presented and the optimisation of the systems was carried out with turbine power output as the variable to be maximized. The determination of ORC system design parameters was accomplished by means of the genetic algorithm. The study was aimed at estimating the thermodynamic potential of different ORC configurations with several working fluids employed. The first part of this paper describes the ORC equipment models which are employed to build a NLP formulation to tackle design problems representative for waste energy recovery on gas turbines driving natural gas pipeline compressors.
Beam-Forming Concentrating Solar Thermal Array Power Systems
NASA Technical Reports Server (NTRS)
Hoppe, Daniel J. (Inventor); Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor)
2016-01-01
The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.
Munoz-Menendez, Cristina; Conde-Leboran, Ivan; Baldomir, Daniel; Chubykalo-Fesenko, Oksana; Serantes, David
2015-11-07
An efficient and safe hyperthermia cancer treatment requires the accurate control of the heating performance of magnetic nanoparticles, which is directly related to their size. However, in any particle system the existence of some size polydispersity is experimentally unavoidable, which results in a different local heating output and consequently a different hyperthermia performance depending on the size of each particle. With the aim to shed some light on this significant issue, we have used a Monte Carlo technique to study the role of size polydispersity in heat dissipation at both the local (single particle) and global (macroscopic average) levels. We have systematically varied size polydispersity, temperature and interparticle dipolar interaction conditions, and evaluated local heating as a function of these parameters. Our results provide a simple guide on how to choose, for a given polydispersity degree, the more adequate average particle size so that the local variation in the released heat is kept within some limits that correspond to safety boundaries for the average-system hyperthermia performance. All together we believe that our results may help in the design of more effective magnetic hyperthermia applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodnaruk, W.H. Jr.
1983-04-01
The aim of this study was to develop and demonstrate low energy climate control and production techniques for greenhouse grown citrus and ornamental crops. Emphasis was placed on design, fuel efficiency and plant response to warm water soil heating systems using solar energy and LP gas. An energy requirement of 28Btus output per hour per square foot of bed space will provide soil temperature of 70/sup 0/F minimum when air temperatures are maintained at 60/sup 0/F. Soil heating to 70/sup 0/ increased rooting and growth of 8 foliage plant varieties by 25 to 45% compared to plants grown under 60/supmore » 0/F air temperature conditions. Providing soil heating, however, increased fuel consumption in the central Florida test facilities by 30% in the winters of 1980-81 and 1981-82. Solar tie-in to soil heating systems has the potential of reducing fuel usage. Solar heated water provided 4 hours of soil heating following a good collection day. Decreased in-bed pipe spacing and increased storage capacity should increase the solar percentage to 6 hours.« less
Preliminary analysis of aircraft fuel systems for use with broadened specification jet fuels
NASA Technical Reports Server (NTRS)
Pasion, A. J.; Thomas, I.
1977-01-01
An analytical study was conducted on the use of broadened specification hydrocarbon fuels in present day aircraft. A short range Boeing 727 mission and three long range Boeing 747 missions were used as basis of calculation for one-day-per-year extreme values of fuel loading, airport ambient and altitude ambient temperatures with various seasonal and climatic conditions. Four hypothetical fuels were selected; two high-vapor-pressure fuels with 35 kPa and 70 kPa RVP and two high-freezing-point fuels with -29 C and -18 C freezing points. In-flight fuel temperatures were predicted by Boeing's aircraft fuel tank thermal analyzer computer program. Boil-off rates were calculated for the high vapor pressure fuels and heating/insulation requirements for the high freezing point fuels were established. Possible minor and major heating system modifications were investigated with respect to heat output, performance and economic penalties for the high freezing point fuels.
Artificial neural networks for the performance prediction of heat pump hot water heaters
NASA Astrophysics Data System (ADS)
Mathioulakis, E.; Panaras, G.; Belessiotis, V.
2018-02-01
The rapid progression in the use of heat pumps, due to the decrease in the equipment cost, together with the favourable economics of the consumed electrical energy, has been combined with the wide dissemination of air-to-water heat pumps (AWHPs) in the residential sector. The entrance of the respective systems in the commercial sector has made important the modelling of the processes. In this work, the suitability of artificial neural networks (ANN) in the modelling of AWHPs is investigated. The ambient air temperature in the evaporator inlet and the water temperature in the condenser inlet have been selected as the input variables; energy performance indices and quantities characterising the operation of the system have been selected as output variables. The results verify that the, easy-to-implement, trained ANN can represent an effective tool for the prediction of the AWHP performance in various operation conditions and the parametrical investigation of their behaviour.
Bolie, V.W.
1990-07-03
A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.
Bolie, Victor W.
1990-01-01
A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.
NASA Astrophysics Data System (ADS)
Kim, Myoung-Soo; Kim, Min-Ki; Kim, Kyongtae; Kim, Yong-Jun
2017-09-01
We developed a prototype of a wearable hybrid generator (WHG) that is used for harvesting the heat energy of the human body. This WHG is constructed by integrating a thermoelectric generator (TEG) in a circular mesh polyester knit fabric, circular-shaped pyroelectric generator (PEG), and quick sweat-pickup/dry-fabric. The fabric packaging enables the TEG part of the WHG to generate energy steadily while maintaining a temperature difference in extreme temperature environments. Moreover, when the body sweats, the evaporation heat of the sweat leads to thermal fluctuations in the WHG. This phenomenon further leads to an increase in the output power of the WHG. These characteristics of the WHG make it possible to produce electrical energy steadily without reduction in the conversion efficiency, as both TEG and PEG use the same energy source of the human skin and the ambient temperature. Under a temperature difference of ˜6.5 °C and temperature change rate of ˜0.62 °C s-1, the output power and output power density of the WHG, respectively, are ˜4.5 nW and ˜1.5 μW m-2. Our hybrid approach will provide a framework to enhance the output power of the wearable generators that harvest heat energy from human body in various environments.
Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieckmann, John; Smutzer, Chad; Sinha, Jayanti
The objective of this program was to develop a novel, scalable scroll expander for conversion of waste heat to power; this was accomplished and demonstrated in both a bench-scale system as well as a full-scale system. The expander is a key component in Organic Rankine Cycle (ORC) waste heat recovery systems which are used to convert medium-grade waste heat to electric power in a wide range of industries. These types of waste heat recovery systems allow for the capture of energy that would otherwise just be exhausted to the atmosphere. A scroll expander has the benefit over other technologies ofmore » having high efficiency over a broad range of operating conditions. The speed range of the TIAX expander (1,200 to 3,600 RPM) enables the shaft power output to directly drive an electric generator and produce 60 Hz electric power without incurring the equipment costs or losses of electronic power conversion. This greatly simplifies integration with the plant electric infrastructure. The TIAX scroll expander will reduce the size, cost, and complexity of a small-scale waste heat recovery system, while increasing the system efficiency compared to the prevailing ORC technologies at similar scale. During this project, TIAX demonstrated the scroll expander in a bench-scale test setup to have isentropic efficiency of 70-75% and operated it successfully for ~200 hours with minimal wear. This same expander was then installed in a complete ORC system driven by a medium grade waste heat source to generate 5-7 kW of electrical power. Due to funding constraints, TIAX was unable to complete this phase of testing, although the initial results were promising and demonstrated the potential of the technology.« less
Cryogen spray cooling: Effects of droplet size and spray density on heat removal.
Pikkula, B M; Torres, J H; Tunnell, J W; Anvari, B
2001-01-01
Cryogen spray cooling (CSC) is an effective method to reduce or eliminate non-specific injury to the epidermis during laser treatment of various dermatological disorders. In previous CSC investigations, fuel injectors have been used to deliver the cryogen onto the skin surface. The objective of this study was to examine cryogen atomization and heat removal characteristics of various cryogen delivery devices. Various cryogen delivery device types including fuel injectors, atomizers, and a device currently used in clinical settings were investigated. Cryogen mass was measured at the delivery device output orifice. Cryogen droplet size profiling for various cryogen delivery devices was estimated by optically imaging the droplets in flight. Heat removal for various cryogen delivery devices was estimated over a range of spraying distances by temperature measurements in an skin phantom used in conjunction with an inverse heat conduction model. A substantial range of mass outputs were measured for the cryogen delivery devices while heat removal varied by less than a factor of two. Droplet profiling demonstrated differences in droplet size and spray density. Results of this study show that variation in heat removal by different cryogen delivery devices is modest despite the relatively large difference in cryogen mass output and droplet size. A non-linear relationship between heat removal by various devices and droplet size and spray density was observed. Copyright 2001 Wiley-Liss, Inc.
Design considerations for space radiators based on the liquid sheet (LSR) concept
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Chubb, Donald L.
1991-01-01
Concept development work on space heat rejection subsystems tailored to the requirements of various space power conversion systems is proceeding over a broad front of technologies at NASA LeRC. Included are orbital and planetary surface based radiator concepts utilizing pumped loops, a variety of heat pipe radiator concepts, and the innovative liquid sheet radiator (LSR). The basic feasibility of the LSR concept was investigated in prior work which generated preliminary information indicating the suitability of the LSR concept for space power systems requiring cycle reject heat to be radiated to the space sink at low-to-mid temperatures (300 to 400 K), with silicon oils used for the radiator working fluid. This study is directed at performing a comparative examination of LSR characteristics as they affect the basic design of low earth orbit solar dynamic power conversion systems. The power systems considered were based on the closed Brayton (CBC) and the Free Piston Stirling (FPS) cycles, each with a power output of 2 kWe and using previously tested silicone oil (Dow-Corning Me2) as the radiator working fluid. Conclusions indicate that, due to its ability for direct cold end cooling, an LSR based heat rejection subsystem is far more compatible with a Stirling space power system than with a CBC, which requires LSR coupling by means of an intermediate gas/liquid heat exchanger and adjustment of cycle operating conditions.
Alternate energy source usage methods for in situ heat treatment processes
Stone, Jr., Francis Marion; Goodwin, Charles R; Richard, Jr., James E
2014-10-14
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing power to one or more subsurface heaters is described herein. The method may include monitoring one or more operating parameters of the heaters, the intermittent power source, and a transformer coupled to the intermittent power source that transforms power from the intermittent power source to power with appropriate operating parameters for the heaters; and controlling the power output of the transformer so that a constant voltage is provided to the heaters regardless of the load of the heaters and the power output provided by the intermittent power source.
Thoratec transcutaneous energy transformer system: a review and update.
Rintoul, Thomas C; Dolgin, Alexander
2004-01-01
A transcutaneous energy transformer system (TETS) can provide power to an implanted ventricular assist device (VAD) across an unbroken layer of skin. A TETS includes a subcutaneous secondary coil, which traditionally connects to remote power conditioning circuitry located to avoid eddy current losses and heating that occur in metal near operating TETS coils. Litz wire, used to construct the coil and connect it to that circuitry, efficiently conducts the high frequency alternating current but is bulky and stiff. A novel concept (US Patent No. 6,327,504 B1) packages the secondary coil's output power conditioning circuitry within the unused aperture of the coil while minimizing eddy current losses. The concept allows use of a more flexible cable for its direct current power output. The result is improved reliability, functionality, and efficiency along with decreased implant volume and a thinner, more flexible lead system to interconnect to the VAD. This in turn enhances system versatility by expanding sites available for module implantation. A TETS using this concept has demonstrated efficiency exceeding 80% and peak power outputs of 45 W with good tissue compatibility in the bovine model after a 30 day implant.
Lock, Maurice A.; Ford, Tim E.
1983-01-01
A relatively inexpensive flow microcalorimeter is described which is capable of detecting heat outputs as low as 3 μW (precision, ±2%). Its use is illustrated on river epilithon (0.8 to 6.8 μW cm−2), river sand (9.8 μW cm−3), and marine sand (15.3 μW cm−3); however, it could be used to detect the heat output from any biotic material over which a flow of water can be passed, provided that such an action would not be disruptive to chemical and biological equilibria. PMID:16346368
Advantage of incorporating geothermal energy into power-station cycles
NASA Astrophysics Data System (ADS)
White, A. A. L.
1980-06-01
The generation of electricity from low-temperature geothermal sources has been hampered by the low conversion efficiencies of Rankine cycle operating below 150 C. It is shown how the electrical output derived from a geothermal borehole may be substantially improved on that expected from these cycles by incorporating the geothermal heat into a conventional steam-cycle power station to provide feedwater heating. This technique can yield thermal conversion efficiencies of 11% which, for a well-head temperature of 100 C, is 50% greater than the output expected from a Rankine cycle. Coupled with the smaller capital costs involved, feedwater heating is thus a more attractive technique of converting heat into electricity. Although power stations above suitable geothermal resources would ideally have the geothermal heat incorporated from the design stage, experiments at Marchwood Power Station have shown that small existing sets can be modified to accept geothermal feedwater heating.
Development of Data Acquisition Card Driver for ICRH System on EAST
NASA Astrophysics Data System (ADS)
Liu, Daming; Luo, Jiarong; Zhao, Yanping; Qin, Chengming
2008-04-01
Presented in this paper is the development of the driver for the data acquisition card with a peripheral component interconnection (PCI) local bus on the ion cyclotron range of frequency heating (ICRH) system. The driver is mainly aimed at the embedded VxWorks system (real-time operating system) which is widely used in various fields of real-time systems. An efficient way is employed to develop this driver, which will advance the real-time control of the ICRH system on the experimental advanced superconductor tokamak (EAST). The driver is designed using the TORNADO integrated development environment (IDE), and implemented in C plus language. The details include the hardware configuration, analogue/digital (A/D) and digital/analogue (D/A) conversion, input and output (I/O) operation of the driver to support over five cards. The data acquisition card can be manipulated in a low-level program and meet the requirements of A/D conversion and D/A outputs.
Design and implementation of a 38 kW dish-Stirling concentrated solar power system
NASA Astrophysics Data System (ADS)
Yan, J.; Peng, Y. D.; Cheng, Z. R.; Liu, F. M.; Tang, X. H.
2017-11-01
Dish-Stirling concentrated solar power system (DS-CSP) is an important pathway for converting solar energy into electricity at high efficiency. In this study, a rated power 38 kW DS-CSP system was developed (installed in Xiangtan Electric Manufacturing Group). The heat engine adopted the alpha-type four cylinders double-acting Stirling engine (Stirling Biopower Flexgen S260). The absorber flux distribution simulation was conducted using ray tracing method and then the 204 m2 parabolic dish concentrator system (diameter is 17.70 m and focal length is 9.49 m) with single concentrator plus single pillar supporting has been designed and built. A water-cooled disc target and an absorber imitation device were adopted to test the tracking performance of the dish concentrator system, homogeneity of the focal spot and flux distribution of the absorber. Finally, the S260 Stirling engine was installed on the focal position of the dish concentrator and then the net output power date of the 38 kW DS-CSP system was tested. The absorber overheating problem on the DS-CSP system performance was discussed when the DS-CSP system was installed in different locations. The testing result shows that this system achieved the net output power of 38 kW and solar-to-electricity efficiency (SEE) of 25.3% with the direct normal irradiation (DNI) at 750 W/m2. The net output power can further increase to 40.5 kW with the SEE of 26.6% when the DNI reaches up to the maximum of 761 W/m2. The net output power of the 38 kW DS-CSP system has a linear function relationship with the DNI. The fitting function is Net power output=0.1003×DNI-36.129, where DNI is at the range of 460∼761 W/m2. This function could be used to predict the amount of the 38 kW DS-CSP system annual generation power.
Effect of Cooling Units on the Performance of an Automotive Exhaust-Based Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Su, C. Q.; Zhu, D. C.; Deng, Y. D.; Wang, Y. P.; Liu, X.
2017-05-01
Currently, automotive exhaust-based thermoelectric generators (AETEGs) are a hot topic in energy recovery. In order to investigate the influence of coolant flow rate, coolant flow direction and cooling unit arrangement in the AETEG, a thermoelectric generator (TEG) model and a related test bench are constructed. Water cooling is adopted in this study. Due to the non-uniformity of the surface temperature of the heat source, the coolant flow direction would affect the output performance of the TEG. Changing the volumetric flow rate of coolant can increase the output power of multi-modules connected in series or/and parallel as it can improve the temperature uniformity of the cooling unit. Since the temperature uniformity of the cooling unit has a strong influence on the output power, two cooling units are connected in series or parallel to research the effect of cooling unit arrangements on the maximum output power of the TEG. Experimental and theoretical analyses reveal that the net output power is generally higher with cooling units connected in parallel than cooling units connected in series in the cooling system with two cooling units.
A Compact Self-Driven Liquid Lithium Loop for Industrial Neutron Generation
NASA Astrophysics Data System (ADS)
Stemmley, Steven; Szott, Matt; Kalathiparambil, Kishor; Ahn, Chisung; Jurczyk, Brian; Ruzic, David
2017-10-01
A compact, closed liquid lithium loop has been developed at the University of Illinois to test and utilize the Li-7(d,n) reaction. The liquid metal loop is housed in a stainless steel trench module with embedded heating and cooling. The system was designed to handle large heat and particle fluxes for use in neutron generators as well as fusion devices, solely operating via thermo-electric MHD. The objectives of this project are two-fold, 1) produce a high energy, MeV-level, neutron source and 2) provide a self-healing, low Z, low recycling plasma facing component. The flowing volume will keep a fresh, clean, lithium surface allowing Li-7(d,n) reactions to occur as well as deuterium adsorption in the fluid, increasing the overall neutron output. Expected yields of this system are 107 n/s for 13.5 MeV neutrons and 108 n/s for 2.45 MeV neutrons. Previous work has shown that using a tapered trench design prevents dry out and allows for an increase in velocity of the fluid at the particle strike point. For heat fluxes on the order of 10's MW/m2, COMSOL models have shown that high enough velocities ( 70 cm/s) are attainable to prevent significant lithium evaporation. Future work will be aimed at addressing wettability issues of lithium in the trenches, experimentally determine the velocities required to prevent dry out, and determine the neutron output of the system. The preliminary results and discussion will be presented. DOE SBIR project DE-SC0013861.
Energy Optimization for a Weak Hybrid Power System of an Automobile Exhaust Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Fang, Wei; Quan, Shuhai; Xie, Changjun; Tang, Xinfeng; Ran, Bin; Jiao, Yatian
2017-11-01
An integrated starter generator (ISG)-type hybrid electric vehicle (HEV) scheme is proposed based on the automobile exhaust thermoelectric generator (AETEG). An eddy current dynamometer is used to simulate the vehicle's dynamic cycle. A weak ISG hybrid bench test system is constructed to test the 48 V output from the power supply system, which is based on engine exhaust-based heat power generation. The thermoelectric power generation-based system must ultimately be tested when integrated into the ISG weak hybrid mixed power system. The test process is divided into two steps: comprehensive simulation and vehicle-based testing. The system's dynamic process is simulated for both conventional and thermoelectric powers, and the dynamic running process comprises four stages: starting, acceleration, cruising and braking. The quantity of fuel available and battery pack energy, which are used as target vehicle energy functions for comparison with conventional systems, are simplified into a single energy target function, and the battery pack's output current is used as the control variable in the thermoelectric hybrid energy optimization model. The system's optimal battery pack output current function is resolved when its dynamic operating process is considered as part of the hybrid thermoelectric power generation system. In the experiments, the system bench is tested using conventional power and hybrid thermoelectric power for the four dynamic operation stages. The optimal battery pack curve is calculated by functional analysis. In the vehicle, a power control unit is used to control the battery pack's output current and minimize energy consumption. Data analysis shows that the fuel economy of the hybrid power system under European Driving Cycle conditions is improved by 14.7% when compared with conventional systems.
Beowawe Bottoming Binary Unit - Final Technical Report for EE0002856
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Dale Edward
2013-02-12
This binary plant is the first high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a butane based cycle are not necessary. The unit is modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. This project proves the technical feasibility of using low temperature brine The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. Themore » project generates additional renewable energy for Nevada, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.« less
User's manual for CNVUFAC, the general dynamics heat-transfer radiation view factor program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, R. L.
CNVUFAC, the General Dynamics heat-transfer radiation veiw factor program, has been adapted for use on the LLL CDC 7600 computer system. The input and output have been modified, and a node incrementing logic was included to make the code compatible with the TRUMP thermal analyzer and related codes. The program performs the multiple integration necessary to evaluate the geometric black-body radiaton node to node view factors. Card image output that contains node number and view factor information is generated for input into the related program GRAY. Program GRAY is then used to include the effects of gray-body emissivities and multiplemore » reflections, generating the effective gray-body view factors usable in TRUMP. CNVUFAC uses an elemental area summation scheme to evaluate the multiple integrals. The program permits shadowing and self-shadowing. The basic configuration shapes that can be considered are cylinders, cones, spheres, ellipsoids, flat plates, disks, toroids, and polynomials of revolution. Portions of these shapes can also be considered.« less
Superconductor Particles As The Working Media Of A Heat Engine
NASA Astrophysics Data System (ADS)
Keefe, Peter D.
2011-12-01
A heat engine is presented in which the working media comprises a multiplicity of mutually isolated particles of Type I superconductor which are selectively processed through H-T phase space so as to convert a heat influx from a high temperature heat reservoir into a useful work output, wherein no heat is rejected to a low temperature heat reservoir.
Enhanced Passive Cooling for Waterless-Power Production Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Salvador B.
2016-06-14
Recent advances in the literature and at SNL indicate the strong potential for passive, specialized surfaces to significantly enhance power production output. Our exploratory computational and experimental research indicates that fractal and swirl surfaces can help enable waterless-power production by increasing the amount of heat transfer and turbulence, when compared with conventional surfaces. Small modular reactors, advanced reactors, and non-nuclear plants (e.g., solar and coal) are ideally suited for sCO2 coolant loops. The sCO2 loop converts the thermal heat into electricity, while the specialized surfaces passively and securely reject the waste process heat in an environmentally benign manner. The resultant,more » integrated energy systems are highly suitable for small grids, rural areas, and arid regions.« less
Compact 2100 nm laser diode module for next-generation DIRCM
NASA Astrophysics Data System (ADS)
Dvinelis, Edgaras; Greibus, Mindaugas; TrinkÅ«nas, Augustinas; NaujokaitÄ--, Greta; Vizbaras, Augustinas; Vizbaras, Dominykas; Vizbaras, Kristijonas
2017-10-01
Compact high-power 2100 nm laser diode module for next-generation directional infrared countermeasure (DIRCM) systems is presented. Next-generation DIRCM systems require compact, light-weight and robust laser modules which could provide intense IR light emission capable of disrupting the tracking sensor of heat-seeking missile. Currently used solid-state and fiber laser solutions for mid-IR band are bulky and heavy making them difficult to implement in smaller form-factor DIRCM systems. Recent development of GaSb laser diode technology greatly improved optical output powers and efficiencies of laser diodes working in 1900 - 2450 nm band [1] while also maintaining very attractive size, weight, power consumption and cost characteristics. 2100 nm laser diode module presented in this work performance is based on high-efficiency broad emitting area GaSb laser diode technology. Each laser diode emitter is able to provide 1 W of CW output optical power with working point efficiency up to 20% at temperature of 20 °C. For output beam collimation custom designed fast-axis collimator and slow-axis collimator lenses were used. These lenses were actively aligned and attached using UV epoxy curing. Total 2 emitters stacked vertically were used in 2100 nm laser diode module. Final optical output power of the module goes up to 2 W at temperature of 20 °C. Total dimensions of the laser diode module are 35 x 25 x 16 mm (L x W x H) with a weight of 28 grams. Finally output beam is bore-sighted to mechanical axes of the module housing allowing for easy integration into next-generation DIRCM systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, R.R.; McLellan, T.M.; Withey, W.R.
This report represents the results of TTCP-UTP6 efforts on modeling aspects when chemical protective ensembles are worn which need to be considered in warm environments. Since 1983, a significant data base has been collected using human experimental studies and wide clothing systems from which predictive modeling equations have been developed with individuals working in temperate and hot environments, but few comparisons of the -- results from various model outputs have ever been carried out. This initial comparison study was part of a key technical area (KIA) project for The Technical Cooperation Program (TTCP) UTP-6 working party. A modeling workshop wasmore » conducted in Toronto, Canada on 9-10 June 1994 to discuss the data reduction and results acquired in an initial clothing analysis study of TTCP using various chemical protective garments. To our knowledge, no comprehensive study to date has ever focused on comparing experimental results using an international standardized heat stress procedure matched to physiological outputs from various model predictions in individuals dressed in chemical protective clothing systems. This is the major focus of this TTCP key technical study. This technical report covers one aspect of the working party`s results.« less
Device and method for measuring the coefficient of performance of a heat pump
Brantley, V.R.; Miller, D.R.
1982-05-18
A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistane heaters. Temperature-sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive-heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct tempertures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional-frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electrons is required to operate the instrument.
Device and method for measuring the coefficient of performance of a heat pump
Brantley, Vanston R.; Miller, Donald R.
1984-01-01
A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistance heaters. Temperature sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct temperatures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electronics is required to operate the instrument.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, W.P.
This patent describes a solar energy system. It comprises: a water pond which is heated by solar energy; a cover above the pond which transmits solar energy; an air space between the pond and the cover through which warm air and vaporized water move; a chimney which induces the rapid flow of warm humid air into its lower end and delivers such air at its upper end; a fresh water heat sink which receives condensed vapor from the chimney-induced flow; a heat energy driven engine, the power output of which is a function of the temperature difference between higher andmore » lower temperature levels; a first heat exchanger in the engine connected to the top of the chimney, and arranged to convert the vapor condensation energy into the higher temperature level of th engine; a second heat exchanger in the engine arranged to provide the lower temperature of the engine by connection to the heat sink; and power transfer means driven by the temperature differential energy of the engine.« less
Mathematical Models of Seafloor Hydrothermal Systems Driven by Serpentinization of Peridotite
NASA Astrophysics Data System (ADS)
Lowell, R. P.; Rona, P. A.; Germanovich, L. N.
2001-12-01
Most seafloor hydrothermal systems are driven by heat transfer from subsurface magma bodies. At slow spreading ridges of the Atlantic and Indian oceans, however, magma supply is low; and tectonic activity brings mantle rocks to shallow depths in the crust. Then, the heat of formation released upon serpentinization of peridotite provides the energy source for hydrothermal circulation. This latter class of system has been relatively unstudied, but recent discoveries of peridotite-hosted hydrothermal systems along the Mid-Atlantic Ridge suggest that such systems may play an important role in geochemical cycling and biogeochemical processes. The likelihood that peridotite-hosted hydrothermal systems was more prevalent during the Archean further suggests that such systems may have played a role in the origin of life. We present the first mathematical models of seafloor hydrothermal systems driven by heat released upon serpentinization of peridotite. We assume seawater circulates through a major crack network in the host-peridotite and that cooling of the host-rock leads to the formation of microcracks through which the fluid infiltrates. Reaction of the fluid in microcracks with the host rock results in serpentinization and the heat released upon serpentinization is transported to the seafloor by the fluid circulating in the main crack network. The temperature and heat output of the resulting hydrothermal system is a function of the main network permeability and the rate at which the serpentinization reaction proceeds via diffusion and propagation of the microcracks. Although the temperature of such a system can be quite variable, vent temperatures between 10° C and 100° C are likely for typical crustal parameters.
Use of heat pipes in electronic hardware
NASA Technical Reports Server (NTRS)
Graves, J. R.
1977-01-01
A modular, multiple output power converter was developed in order to reduce costs of space hardware in future missions. The converter is of reduced size and weight, and utilizes advanced heat removal techniques, in the form of heat pipes which remove internally generated heat more effectively than conventional methods.
Code of Federal Regulations, 2013 CFR
2013-01-01
... conditions fluctuate. (See also “heat capacity” and “wall heat capacity”) Thermal mass wall insulation... thermal energy of the vent gases into mechanical energy. Boiler capacity: the rated heat output of the... furnished by the utility. Coefficient of performance (COP)—Cooling: the ratio of the rate of heat removal to...
Code of Federal Regulations, 2014 CFR
2014-01-01
... conditions fluctuate. (See also “heat capacity” and “wall heat capacity”) Thermal mass wall insulation... thermal energy of the vent gases into mechanical energy. Boiler capacity: the rated heat output of the... furnished by the utility. Coefficient of performance (COP)—Cooling: the ratio of the rate of heat removal to...
Study of component technologies for fuel cell on-site integrated energy system. Volume 2: Appendices
NASA Technical Reports Server (NTRS)
Lee, W. D.; Mathias, S.
1980-01-01
This data base catalogue was compiled in order to facilitate the analysis of various on site integrated energy system with fuel cell power plants. The catalogue is divided into two sections. The first characterizes individual components in terms of their performance profiles as a function of design parameters. The second characterizes total heating and cooling systems in terms of energy output as a function of input and control variables. The integrated fuel cell systems diagrams and the computer analysis of systems are included as well as the cash flows series for baseline systems.
NASA Astrophysics Data System (ADS)
Chau, S. W.; Hsu, K. L.; Lin, D. L.; Tzeng, C. C.
2007-04-01
The cathode erosion rate, arc root velocity and output power of a well-type cathode (WTC), non-transferred plasma torch operating in air are studied experimentally in this paper. An external solenoid to generate a magnetically driven arc and a circular swirler to produce a vortex flow structure are equipped in the studied torch system, which is designed to reduce the erosion rate at the cathode. A least square technique is applied to correlate the system parameters, i.e. current, axial magnetic field and mass flow rate, with the cathode erosion rate, arc root velocity and system power output. In the studied WTC torch system, the cathode erosion has a major thermal erosion component and a minor component due to the ion-bombardment effect. The cathode erosion increases with the increase of current due to the enhancement in both Joule heating and ion bombardment. The axial magnetic field can significantly reduce the cathode erosion by reducing the thermal loading of cathode materials at the arc root and improving the heat transfer to gas near the cathode. But, the rise in the mass flow rate leads to the deterioration of erosion, since the ion-bombardment effect prevails over the convective cooling at the cathode. The most dominant system parameter to influence the arc root velocity is the axial magnetic field, which is mainly contributed to the magnetic force driving the arc. The growth in current has a negative impact on increasing the arc root velocity, because the friction force acting at the spot due to a severe molten condition becomes the dominant component counteracting the magnetic force. The mass flow rate also suppresses the arc root velocity, as a result of which the arc root moves in the direction against that of the swirled working gas. All system parameters such as current, magnetic field and gas flow rate increase with the increase in the torch output power. The experimental evidences suggest that the axial magnetic field is the most important parameter to operate the straight-polarity WTC plasma torch at high output power with a limited cathode erosion rate. This emphasizes the importance of an external magnetic field on a WTC torch system for reducing the erosion at the cathode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toscano, W.M.
1981-05-19
In a helium liquefaction plant, a compressor includes first, second and third stages and a precooling section includes first, second and third turboexpanders in series between high and low pressure lines of a heat exchanger. A portion of the medium pressure gas at the output of the second turboexpander is directed back through the heat exchanger and mixed with the output of the first compressor stage. The third turboexpander is positioned between the medium and low pressure lines.
NASA Astrophysics Data System (ADS)
Kligys, M.; Laukaitis, A.; Sinica, M.; Sezemanas, G.; Dranseika, N.
2008-03-01
The study deals with experimental investigations into the fire hazard of a composite of density 150-350 kg/m3 made of aerated concrete and crushed expanded polystyrene waste. The results of fire tests showed that a single-flame source of low heat output (0.07 kW) did not influence the origination and spread of flame on the surface of test specimens, regardless their density. Upon exposing the specimens to a single burning item of moderate heat output (30.0 kW), during the first 600 s of exposure, neither flaming particles nor droplets originated, nor a lateral flame spread on the long specimen wing was observed. In the case of high heat output (112 kW), the specimens of densities 150 and 250 kg/m3 started to burn, but those of density 150 kg/m3, in addition, lost their integrity.
A compact Nd:YAG DPSSL using diamond-cooled technology
NASA Astrophysics Data System (ADS)
Chou, Hsian P.; Wang, Yu-Lin; Hasson, Victor H.; Trainor, Daniel W.
2005-03-01
In our diamond-cooled approach, thin disks of laser gain material, e.g., Nd:YAG, are alternated between thin disks of single crystal synthetic diamond whose heat conductivity is over 2000 W/m-°K. The gain medium is face-pumped (along the optical axis) by the output of laser diode arrays. This optical configuration produces heat transfer from Nd:YAG to the diamond, in the direction of the optical axis, and then heat is rapidly conducted radially outward through the diamond to the cooling fluid circulating at the circumference of the diamond/YAG assembly. This geometry effectively removes the heat from the gain material in a manner that permits the attainment of high power output with excellent beam quality.
Non-isolated 30 kW class arcjet PCU
NASA Astrophysics Data System (ADS)
Wong, See-Pok; Britt, Edward J.
1994-03-01
A 30 kW class arcjet Power Conditioning Unit, PCU, was built and tested during this Phase 2 SBIR contract. The PCU is an improved version of two previously developed PCU's. All of these units are 3-phase, 20 kHz buck regulators with current mode feed back to modulate the duty cycle to control the arcjet current at any selected operating point. The steady state control can assure arcjet stability despite the negative dynamic resistance of the arc discharge. The system also has a circuit to produce a high voltage start pulse to breakdown the gas and initiate the arc. The start pulse is formed by temporarily switching a short current path across the output terminals with a special solid state switching array. The switches then open rapidly, and the energy stored in the output inductors of the buck regulator produces a pulse of approximately 2500 V for approximately 500 nsec. The system was tested and modified until the transition to steady operation occurred after start up with a very small surge current overshoot. The system also can withstand a direct short circuit across the output without damage. The automatic feed back control simply reduces the duty cycle to hold the current at the set point. When the short is removed the full power output is immediately restored. This latest version arcjet PCU is conduction cooled to remove waste heat by conduction to the base plate. This unit is closer to flight a type of design than the previous functional bread boards. Waste heat is small because the PCU has a very high efficiency, 296 percent. The PCU was extensively tested with resistor loads to simulate operation with an arcjet. The unit was tested with ammonia arcjets at the Jet Propulsion Laboratory. Approximately 400 hours of testing were completed, with several starts. Many hours were also demonstrated with resistive loads.
Non-isolated 30 kW class arcjet PCU
NASA Technical Reports Server (NTRS)
Wong, See-Pok; Britt, Edward J.
1994-01-01
A 30 kW class arcjet Power Conditioning Unit, PCU, was built and tested during this Phase 2 SBIR contract. The PCU is an improved version of two previously developed PCU's. All of these units are 3-phase, 20 kHz buck regulators with current mode feed back to modulate the duty cycle to control the arcjet current at any selected operating point. The steady state control can assure arcjet stability despite the negative dynamic resistance of the arc discharge. The system also has a circuit to produce a high voltage start pulse to breakdown the gas and initiate the arc. The start pulse is formed by temporarily switching a short current path across the output terminals with a special solid state switching array. The switches then open rapidly, and the energy stored in the output inductors of the buck regulator produces a pulse of approximately 2500 V for approximately 500 nsec. The system was tested and modified until the transition to steady operation occurred after start up with a very small surge current overshoot. The system also can withstand a direct short circuit across the output without damage. The automatic feed back control simply reduces the duty cycle to hold the current at the set point. When the short is removed the full power output is immediately restored. This latest version arcjet PCU is conduction cooled to remove waste heat by conduction to the base plate. This unit is closer to flight a type of design than the previous functional bread boards. Waste heat is small because the PCU has a very high efficiency, 296 percent. The PCU was extensively tested with resistor loads to simulate operation with an arcjet. The unit was tested with ammonia arcjets at the Jet Propulsion Laboratory. Approximately 400 hours of testing were completed, with several starts. Many hours were also demonstrated with resistive loads. Some testing with hydrogen arcjets was also carried out at NASA LeRC. This system concept is now the design base for the ATTD program.
NASA Astrophysics Data System (ADS)
Wang, Zhen; Xiao, Longsheng; Wang, Wei; Wu, Chao; Tang, Xiahui
2018-01-01
Owing to their good diffusion cooling and low sensitivity to misalignment, slab-shape negative-branch unstable-waveguide resonators are widely used for high-power lasers in industry. As the output beam of the resonator is astigmatic, an external beam shaping system is required. However, the transverse dimension of the cavity mirrors in the resonator is large. For a long-time operation, the heating of cavity mirrors can be non-uniform. This results in micro-deformation and a change in the radius of curvature of the cavity mirrors, and leads to an output beam of an offset optical axis of the resonator. It was found that a change in the radius of curvature of 0.1% (1 mm) caused by thermal deformation generates a transverse displacement of 1.65 mm at the spatial filter of the external beam shaping system, and an output power loss of more than 80%. This can potentially burn out the spatial filter. In order to analyze the effect of the offset optical axis of the beam on the external optical path, we analyzed the transverse displacement and rotational misalignments of the spatial filter. For instance, if the transverse displacement was 0.3 mm, the loss in the output power was 9.6% and a sidelobe appeared in the unstable direction. If the angle of rotation was 5°, the loss in the output power was 2%, and the poles were in the direction of the waveguide. Based on these results, by adjusting the bending mirror, the deviation angle of the output beam of the resonator cavity was corrected, in order to obtain maximum output power and optimal beam quality. Finally, the propagation characteristics of the corrected output beam were analyzed.
Lertsatitthanakorn, C
2007-05-01
The use of biomass cook stoves is widespread in the domestic sector of developing countries, but the stoves are not efficient. To advance the versatility of the cook stove, we investigated the feasibility of adding a commercial thermoelectric (TE) module made of bismuth-telluride based materials to the stove's side wall, thereby creating a thermoelectric generator system that utilizes a proportion of the stove's waste heat. The system, a biomass cook stove thermoelectric generator (BITE), consists of a commercial TE module (Taihuaxing model TEP1-1264-3.4), a metal sheet wall which acts as one side of the stove's structure and serves as the hot side of the TE module, and a rectangular fin heat sink at the cold side of the TE module. An experimental set-up was built to evaluate the conversion efficiency at various temperature ranges. The experimental set-up revealed that the electrical power output and the conversion efficiency depended on the temperature difference between the cold and hot sides of the TE module. At a temperature difference of approximately 150 degrees C, the unit achieved a power output of 2.4W. The conversion efficiency of 3.2% was enough to drive a low power incandescent light bulb or a small portable radio. A theoretical model approximated the power output at low temperature ranges. An economic analysis indicated that the payback period tends to be very short when compared with the cost of the same power supplied by batteries. Therefore, the generator design formulated here could be used in the domestic sector. The system is not intended to compete with primary power sources but serves adequately as an emergency or backup source of power.
Micro-Thermoelectric Generation Modules Fabricated with Low-Cost Mechanical Machining Processes
NASA Astrophysics Data System (ADS)
Liu, Dawei; Jin, A. J.; Peng, Wenbo; Li, Qiming; Gao, Hu; Zhu, Lianjun; Li, Fu; Zhu, Zhixiang
2017-05-01
Micro/small-scale thermoelectric generation modules are able to produce continuous, noise-free and reliable electricity power using low temperature differences that widely exist in nature or industry. These advantages bring them great application prospects in the fields of remote monitoring, microelectronics/micro-electromechanical systems (MEMS), medical apparatus and smart management system, which often require a power source free of maintenance and vibration. In this work, a prototypical thermoelectric module (12 mm × 12 mm × 0.8 mm) with 15 pairs of micro-scale thermoelectric legs (0.2 mm in width and 0.6 mm in height for each leg) is fabricated using a low-cost mechanical machining process. In this process, cutting and polishing are the main methods for the preparation of thermoelectric pairs from commercial polycrystalline materials and for the fabrication of electrode patterns. The as-fabricated module is tested for its power generation properties with the hot side heated by an electrical heater and the cold side by cold air. With the heater temperature of 375 K, the thermoelectric potential is about 9.1 mV, the short circuit current is about 14.5 mA, and the maximum output power is about 32.8 μW. The finite element method is applied to analyze the heat transfer of the module during our test. The temperature difference and heat flux are simulated, according to which the output powers at different temperatures are calculated, and the result is relatively consistent compared to the test results.
The reliability of wind power systems in the UK
NASA Astrophysics Data System (ADS)
Newton, K.
A methodology has been developed to evaluate the performance of geographically distributed wind power systems. Results are presented for three widely separated sites based on measured meteorological data obtained over a 17-yr period. The effects of including energy storage were investigated and 150-hr storage found to be a good compromise between store capacity and system performance. When used to provide space heating, the system could have reduced the 17-yr peak demand from conventional sources (smoothed by the storage and geographical separation of sites) by an amount comparable to the mean output of the wind-system, whether or not turbines at the three sites were interconnected by the National Grid. In contrast, the fuel saving capability of the system was found to be comparatively insensitive either to storage period or geographical separation of sites; the system would have been capable of providing up to 90 percent of the total requirement. Results are also given for individual sites to indicate the possible performance of district heating schemes or domestic systems.
NASA Astrophysics Data System (ADS)
Fang, W.; Quan, S. H.; Xie, C. J.; Ran, B.; Li, X. L.; Wang, L.; Jiao, Y. T.; Xu, T. W.
2017-05-01
The majority of the thermal energy released in an automotive internal combustion cycle is exhausted as waste heat through the tail pipe. This paper describes an automobile exhaust thermoelectric generator (AETEG), designed to recycle automobile waste heat. A model of the output characteristics of each thermoelectric device was established by testing their open circuit voltage and internal resistance, and combining the output characteristics. To better describe the relationship, the physical model was transformed into a topological model. The connection matrix was used to describe the relationship between any two thermoelectric devices in the topological structure. Different topological structures produced different power outputs; their output power was maximised by using an iterative algorithm to optimize the series-parallel electrical topology structure. The experimental results have shown that the output power of the optimal topology structure increases by 18.18% and 29.35% versus that of a pure in-series or parallel topology, respectively, and by 10.08% versus a manually defined structure (based on user experience). The thermoelectric conversion device increased energy efficiency by 40% when compared with a traditional car.
980-nm, 15-W cw laser diodes on F-mount-type heat sinks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bezotosnyi, V V; Krokhin, O N; Oleshchenko, V A
2015-12-31
We have studied the key optical emission parameters of laser diodes (emission wavelength, 980 nm; stripe contact width, 95 μm) mounted directly on F- and C-mount-type copper heat sinks, without intermediate elements (submounts). When effectively cooled by a thermoelectric microcooler, the lasers on the F-mount operated stably at output powers up to 20 W. The lasers were tested for reliable operation at an output power of 15 W for 100 h, and no decrease in output power was detected to within measurement accuracy. The experimentally determined maximum total efficiency is 71.7% and the efficiency at a nominal output power ofmore » 15 W is 61%. We compare parameters of the laser diodes mounted on C- and F-mounts and discuss the advantages of the F-mounts. (lasers)« less
The performance of solar thermal electric power systems employing small heat engines
NASA Technical Reports Server (NTRS)
Pons, R. L.
1980-01-01
The paper presents a comparative analysis of small (10 to 100 KWe) heat engines for use with a solar thermal electric system employing the point-focusing, distributed receiver (PF-DR) concept. Stirling, Brayton, and Rankine cycle engines are evaluated for a nominal overall system power level of 1 MWe, although the concept is applicable to power levels up to at least 10 MWe. Multiple concentrators are electrically connected to achieve the desired plant output. Best performance is achieved with the Stirling engine, resulting in a system Levelized Busbar Energy Cost of just under 50 mills/kWH and a Capital Cost of $900/kW, based on the use of mass-produced components. Brayton and Rankine engines show somewhat less performance but are viable alternatives with particular benefits for special applications. All three engines show excellent performance for the small community application.
Life of LED-Based White Light Sources
NASA Astrophysics Data System (ADS)
Narendran, Nadarajah; Gu, Yimin
2005-09-01
Even though light-emitting diodes (LEDs) may have a very long life, poorly designed LED lighting systems can experience a short life. Because heat at the p-n-junction is one of the main factors that affect the life of the LED, by knowing the relationship between life and heat, LED system manufacturers can design and build long-lasting systems. In this study, several white LEDs from the same manufacturer were subjected to life tests at different ambient temperatures. The exponential decay of light output as a function of time provided a convenient method to rapidly estimate life by data extrapolation. The life of these LEDs decreases in an exponential manner with increasing temperature. In a second experiment,several high-power white LEDs from different manufacturers were life-tested under similar conditions. Results show that the different products have significantly different life values.
Status of the Development of Low Cost Radiator for Surface Fission Power - II
NASA Technical Reports Server (NTRS)
Tarau, Calin; Maxwell, Taylor; Anderson, William G.; Wagner, Corey; Wrosch, Matthew; Briggs, Maxwell H.
2016-01-01
NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar and Martian surface power applications. The systems are envisioned in the 10 to 100kWe range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kWe non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. The paper reports on the development of the heat pipe radiator to reject the waste heat from the Stirling convertors. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water Variable Conductance Heat Pipes (VCHPs). By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POCO"TM" foam saddles, aluminum honeycomb, and a second facesheet. As mentioned in previous papers by the authors, the final design of the waste heat radiator is described as being modular with independent GFRC panels for each heat pipe. The present paper reports on test results for a single radiator module as well as a radiator cluster consisting of eight integral modules. These tests were carried out in both ambient and vacuum conditions. While the vacuum testing of the single radiator module was performed in the ACT's vacuum chamber, the vacuum testing of the eight heat pipe radiator cluster took place in NASA GRC's vacuum chamber to accommodate the larger size of the cluster. The results for both articles show good agreement with the predictions and are presented in the paper.
Stirling System Modeling for Space Nuclear Power Systems
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Johnson, Paul K.
2008-01-01
A dynamic model of a high-power Stirling convertor has been developed for space nuclear power systems modeling. The model is based on the Component Test Power Convertor (CTPC), a 12.5-kWe free-piston Stirling convertor. The model includes the fluid heat source, the Stirling convertor, output power, and heat rejection. The Stirling convertor model includes the Stirling cycle thermodynamics, heat flow, mechanical mass-spring damper systems, and the linear alternator. The model was validated against test data. Both nonlinear and linear versions of the model were developed. The linear version algebraically couples two separate linear dynamic models; one model of the Stirling cycle and one model of the thermal system, through the pressure factors. Future possible uses of the Stirling system dynamic model are discussed. A pair of commercially available 1-kWe Stirling convertors is being purchased by NASA Glenn Research Center. The specifications of those convertors may eventually be incorporated into the dynamic model and analysis compared to the convertor test data. Subsequent potential testing could include integrating the convertors into a pumped liquid metal hot-end interface. This test would provide more data for comparison to the dynamic model analysis.
NASA Astrophysics Data System (ADS)
Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.
2013-04-01
A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.
Ruminant Nutrition Symposium: ruminant production and metabolic responses to heat stress.
Baumgard, L H; Rhoads, R P
2012-06-01
Heat stress compromises efficient animal production by marginalizing nutrition, management, and genetic selection efforts to maximize performance endpoints. Modifying farm infrastructure has yielded modest success in mitigating heat stress-related losses, yet poor production during the summer remains arguably the costliest issue facing livestock producers. Reduced output (e.g., milk yield and muscle growth) during heat stress was traditionally thought to result from decreased nutrient intake (i.e., a classic biological response shared by all animals during environmental-induced hyperthermia). Our recent observations have begun to challenge this belief and indicate heat-stressed animals employ novel homeorhetic strategies to direct metabolic and fuel selection priorities independently of nutrient intake or energy balance. Alterations in systemic physiology support a shift in carbohydrate metabolism, evident by increased basal and stimulated circulating insulin concentrations. Perhaps most intriguing given the energetic shortfall of the heat-stressed animal is the apparent lack of basal adipose tissue mobilization coupled with a reduced responsiveness to lipolytic stimuli. Thus, the heat stress response markedly alters postabsorptive carbohydrate, lipid, and protein metabolism independently of reduced feed intake through coordinated changes in fuel supply and utilization by multiple tissues. Interestingly, the systemic, cellular, and molecular changes appear conserved amongst different species and physiological states. Ultimately, these changes result in the reprioritization of fuel selection during heat stress, which appears to be primarily responsible for reduced ruminant animal productivity during the warm summer months.
Analysis of thermodynamics of two-fuel power unit integrated with a carbon dioxide separation plant
NASA Astrophysics Data System (ADS)
Kotowicz, Janusz; Bartela, Łukasz; Mikosz, Dorota
2014-12-01
The article presents the results of thermodynamic analysis of the supercritical coal-fired power plant with gross electrical output of 900 MW and a pulverized coal boiler. This unit is integrated with the absorption-based CO2 separation installation. The heat required for carrying out the desorption process, is supplied by the system with the gas turbine. Analyses were performed for two variants of the system. In the first case, in addition to the gas turbine there is an evaporator powered by exhaust gases from the gas turbine expander. The second expanded variant assumes the application of gas turbine combined cycle with heat recovery steam generator and backpressure steam turbine. The way of determining the efficiency of electricity generation and other defined indicators to assess the energy performance of the test block was showed. The size of the gas turbine system was chosen because of the need for heat for the desorption unit, taking the value of the heat demand 4 MJ/kg CO2. The analysis results obtained for the both variants of the installation with integrated CO2 separation plant were compared with the results of the analysis of the block where the separation is not conducted.
Pandey, S N; Vishal, Vikram
2017-12-06
3-D modeling of coupled thermo-hydro-mechanical (THM) processes in enhanced geothermal systems using the control volume finite element code was done. In a first, a comparative analysis on the effects of coupled processes, operational parameters and reservoir parameters on heat extraction was conducted. We found that significant temperature drop and fluid overpressure occurred inside the reservoirs/fracture that affected the transport behavior of the fracture. The spatio-temporal variations of fracture aperture greatly impacted the thermal drawdown and consequently the net energy output. The results showed that maximum aperture evolution occurred near the injection zone instead of the production zone. Opening of the fracture reduced the injection pressure required to circulate a fixed mass of water. The thermal breakthrough and heat extraction strongly depend on the injection mass flow rate, well distances, reservoir permeability and geothermal gradients. High permeability caused higher water loss, leading to reduced heat extraction. From the results of TH vs THM process simulations, we conclude that appropriate coupling is vital and can impact the estimates of net heat extraction. This study can help in identifying the critical operational parameters, and process optimization for enhanced energy extraction from a geothermal system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binney, E.J.
LION4 is a computer program for calculating one-, two-, or three-dimensional transient and steady-state temperature distributions in reactor and reactor plant components. It is used primarily for thermal-structural analyses. It utilizes finite difference techniques with first-order forward difference integration and is capable of handling a wide variety of bounding conditions. Heat transfer situations accommodated include forced and free convection in both reduced and fully-automated temperature dependent forms, coolant flow effects, a limited thermal radiation capability, a stationary or stagnant fluid gap, a dual dependency (temperature difference and temperature level) heat transfer, an alternative heat transfer mode comparison and selection facilitymore » combined with heat flux direction sensor, and any form of time-dependent boundary temperatures. The program, which handles time and space dependent internal heat generation, can also provide temperature dependent material properties with limited non-isotropic properties. User-oriented capabilities available include temperature means with various weightings and a complete heat flow rate surveillance system.CDC6600,7600;UNIVAC1108;IBM360,370; FORTRAN IV and ASCENT (CDC6600,7600), FORTRAN IV (UNIVAC1108A,B and IBM360,370); SCOPE (CDC6600,7600), EXEC8 (UNIVAC1108A,B), OS/360,370 (IBM360,370); The CDC6600 version plotter routine LAPL4 is used to produce the input required by the associated CalComp plotter for graphical output. The IBM360 version requires 350K for execution and one additional input/output unit besides the standard units.« less
NASA Astrophysics Data System (ADS)
Buzan, J. R.; Huber, M.
2015-12-01
The summer of 2015 has experienced major heat waves on 4 continents, and heat stress left ~4000 people dead in India and Pakistan. Heat stress is caused by a combination of meteorological factors: temperature, humidity, and radiation. The International Organization for Standardization (ISO) uses Wet Bulb Globe Temperature (WBGT)—an empirical metric this is calibrated with temperature, humidity, and radiation—for determining labor capacity during heat stress. Unfortunately, most literature studying global heat stress focuses on extreme temperature events, and a limited number of studies use the combination of temperature and humidity. Recent global assessments use WBGT, yet omit the radiation component without recalibrating the metric.Here we explicitly calculate future WBGT within a land surface model, including radiative fluxes as produced by a modeled globe thermometer. We use the Community Land Model version 4.5 (CLM4.5), which is a component model of the Community Earth System Model (CESM), and is maintained by the National Center for Atmospheric Research (NCAR). To drive our CLM4.5 simulations, we use greenhouse gasses Representative Concentration Pathway 8.5 (business as usual), and atmospheric output from the CMIP5 Archive. Humans work in a variety of environments, and we place the modeled globe thermometer in a variety of environments. We modify CLM4.5 code to calculate solar and thermal radiation fluxes below and above canopy vegetation, and in bare ground. To calculate wet bulb temperature, we implemented the HumanIndexMod into CLM4.5. The temperature, wet bulb temperature, and radiation fields are calculated at every model time step and are outputted 4x Daily. We use these fields to calculate WBGT and labor capacity for two time slices: 2026-2045 and 2081-2100.
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Schifer, Nicholas A.
2012-01-01
The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including testing validation hardware, known as the Thermal Standard, to provide a direct comparison to numerical and empirical models used to predict convertor net heat input. This validation hardware provided a comparison for scrutinizing and improving empirical correlations and numerical models of ASC-E2 net heat input. This hardware simulated the characteristics of an ASC-E2 convertor in both an operating and non-operating mode. This paper describes the Thermal Standard testing and the conclusions of the validation effort applied to the empirical correlation methods used by the Radioisotope Power System (RPS) team at NASA Glenn.
Escobar, R F; Astorga-Zaragoza, C M; Téllez-Anguiano, A C; Juárez-Romero, D; Hernández, J A; Guerrero-Ramírez, G V
2011-07-01
This paper deals with fault detection and isolation (FDI) in sensors applied to a concentric-pipe counter-flow heat exchanger. The proposed FDI is based on the analytical redundancy implementing nonlinear high-gain observers which are used to generate residuals when a sensor fault is presented (as software sensors). By evaluating the generated residual, it is possible to switch between the sensor and the observer when a failure is detected. Experiments in a heat exchanger pilot validate the effectiveness of the approach. The FDI technique is easy to implement allowing the industries to have an excellent alternative tool to keep their heat transfer process under supervision. The main contribution of this work is based on a dynamic model with heat transfer coefficients which depend on temperature and flow used to estimate the output temperatures of a heat exchanger. This model provides a satisfactory approximation of the states of the heat exchanger in order to allow its implementation in a FDI system used to perform supervision tasks. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Calorimetric system and method
Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.; Moorman, Jack O.
1998-09-15
Apparatus for measuring heat capacity of a sample where a series of measurements are taken in succession comprises a sample holder in which a sample to be measured is disposed, a temperature sensor and sample heater for providing a heat pulse thermally connected to the sample, and an adiabatic heat shield in which the sample holder is positioned and including an electrical heater. An electrical power supply device provides an electrical power output to the sample heater to generate a heat pulse. The electrical power from a power source to the heat shield heater is adjusted by a control device, if necessary, from one measurement to the next in response to a sample temperature-versus-time change determined before and after a previous heat pulse to provide a subsequent sample temperature-versus-time change that is substantially linear before and after the subsequent heat pulse. A temperature sensor is used and operable over a range of temperatures ranging from approximately 3K to 350K depending upon the refrigerant used. The sample optionally can be subjected to dc magnetic fields such as from 0 to 12 Tesla (0 to 120 kOe).
5-kWe Free-piston Stirling Engine Convertor
NASA Technical Reports Server (NTRS)
Chapman, Peter A.; Vitale, Nicholas A.; Walter, Thomas J.
2008-01-01
The high reliability, long life, and efficient operation of Free-Piston Stirling Engines (FPSEs) make them an attractive power system to meet future space power requirements with less mass, better efficiency, and less total heat exchanger area than other power convertor options. FPSEs are also flexible in configuration as they can be coupled with many potential heat sources and various heat input systems, heat rejection systems, and power management and distribution systems. Development of a 5-kWe Stirling Convertor Assembly (SCA) is underway to demonstrate the viability of an FPSE for space power. The design is a scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463. The ultimate efficiency target is 25% overall convertor efficiency (electrical power out over heat in). For the single cylinder prototype now in development, cost and time constraints required use of economical and readily available materials (steel versus beryllium) and components (a commercially available linear alternator) and thus lower efficiency. The working gas is helium at 150 bar mean pressure. The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype convertor is done via pumped liquid loops passing through shell and tube heat exchangers. The preliminary and detail designs of the convertor, controller, and support systems (heating loop, cooling loop, and helium supply system) are complete and all hardware is on order. Assembly and test of the prototype at Foster- Miller is planned for early 2008, when work will focus on characterizing convertor dynamics and steady-state operation to determine maximum power output and system efficiency. The device will then be delivered to Auburn University where assessments will include start-up and shutdown characterization and transient response to temperature and load variations. Future activities may include testing at NASA GRC.
AMTEC Generator: Phase 1 Propane System
2002-10-15
Final Report 15 October 2002 17 Figure 18. Model Predictions with a 28W Gross AMTEC Converter, 27 g/hr, 8.3% Overall Efficiency 5 10 15...hot) (C ) fuel flow rate (mg/s) efficiency electrical output cell hot temp Design point: cell power = 28.3 W η thermal = 8.3% fuel flow rate = 7.4...Metal Thermal to Electric Conversion ( AMTEC ) technology converts the heat from
Program documentation: Surface heating rate of thin skin models (THNSKN)
NASA Technical Reports Server (NTRS)
Mcbryde, J. D.
1975-01-01
Program THNSKN computes the mean heating rate at a maximum of 100 locations on the surface of thin skin transient heating rate models. Output is printed in tabular form and consists of time history tabulation of temperatures, average temperatures, heat loss without conduction correction, mean heating rate, least squares heating rate, and the percent standard error of the least squares heating rates. The input tape used is produced by the program EHTS03.
Investigations on the performance of chevron type plate heat exchangers
NASA Astrophysics Data System (ADS)
Dutta, Oruganti Yaga; Nageswara Rao, B.
2018-01-01
This paper presents empirical relations for the chevron type plate heat exchangers (PHEs) and demonstrated their validity through comparison of test data of PHEs. In order to examine the performance of PHEs, the pressure drop(Δ P), the overall heat transfer coefficient ( U m ) and the effectiveness ( ɛ) are estimated by considering the properties of plate material and working fluid, number of plates ( N t ) and chevron angle( β). It is a known fact that, large surface area of the plate provides more rate of heat transfer ( \\dot{Q} ) thereby more effectiveness ( ɛ). However, there is a possibility to achieve the required performance by increasing the number of plates without altering the plate dimensions, which avoids the new design of the system. Application of the Taguchi's design of experiments is examined with less number of experiments and demonstrated by setting the levels for the parameters and compared the test data with the estimated output responses.
A multi-node model for transient heat transfer analysis of stratospheric airships
NASA Astrophysics Data System (ADS)
Alam, Mohammad Irfan; Pant, Rajkumar S.
2017-06-01
This paper describes a seven-node thermal model for transient heat transfer analysis of a solar powered stratospheric airship in floating condition. The solar array is modeled as a three node system, viz., outer layer, solar cell and substrate. The envelope is also modeled in three nodes, and the contained gas is considered as the seventh node. The heat transfer equations involving radiative, infra-red and conductive heat are solved simultaneously using a fourth order Runge-Kutta Method. The model can be used to study the effect of solar radiation, ambient wind, altitude and location of deployment of the airship on the temperature of the solar array. The model has been validated against some experimental data and numerical results quoted in literature. The effect of change in the value of some operational parameters on temperature of the solar array, and hence on its power output is also discussed.
Low-Cost Radiator for Fission Power Thermal Control
NASA Technical Reports Server (NTRS)
Maxwell, Taylor; Tarau, Calin; Anderson, William; Hartenstine, John; Stern, Theodore; Walmsley, Nicholas; Briggs, Maxwell
2014-01-01
NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar surface power applications. The systems are envisioned in the 10 to 100kW(sub e) range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kW(sub e) non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water. By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POC(TradeMark) foam saddles, aluminum honeycomb, and a second facesheet. A two-heat pipe radiator prototype, based on the single facesheet direct-bond concept, was fabricated and tested to verify the ability of the direct-bond joint to withstand coefficient of thermal expansion (CTE) induced stresses during thermal cycling. The thermal gradients along the bonds were measured before and after thermal cycle tests to determine if the performance degraded. Overall, the results indicated that the initial uniformity of the adhesive was poor along one of the heat pipes. However, both direct bond joints showed no measureable amount of degradation after being thermally cycled at both moderate and aggressive conditions.
NASA Astrophysics Data System (ADS)
Blatteis, C. M.
Heat exposure, infectious fever and water deprivation are stressors that, individually, produce disturbances in more than one regulated system, calling for diverse compensatory responses. A potential conflict is created when these stimuli are combined and impose concurrent stressful loads on the body because the homeostatic defenses mobilized against one are also partly needed against the other stressors. To learn how the competing demands of combined stressors for shared regulatory systems are met, rabbits were exposed to 32°C and 37°C (heat), administered lipopolysaccharide (Salmonella enteritidis LPS, 2 µg/kg, i.v.) in temperatures of 22°C or 27°C, or water-deprived for 1 or 2 days in 22°C or 27°C, in separate experiments. The corresponding controls were exposed to 22°C or 27°C, administered pyrogen-free saline i.v. in 22°C or 27°C, or normally hydrated in 22°C or 27°C. In subsequent experiments, two or all three of these treatments were applied concurrently. Core and ear skin temperatures and respiratory rates were monitored continuously. The results indicated that the concomitant needs of moderate heat exposure, fever and 1 day of water deprivation were generally met by the regulatory systems involved, but different patterns of thermoeffector activities were evoked and the eventual body temperature changes produced were different under each condition. However, when the test conditions were severe, their combined needs were not met adequately and the eventual compensatory response depended not only on the particular stimulus intensity, but also on the immediate importance for survival of the functions being defended. Thus, dehydration was the most dangerous factor to the physiological integrity of the animals. In sum, conflicting physiological stimuli appear to result in responses that are different from the responses to a single perturbation, the eventual output representing the resultant of the inputs rather than a singular output dictated by one dominant drive to the exclusion of the others.
Blatteis, C M
2000-05-01
Heat exposure, infectious fever and water deprivation are stressors that, individually, produce disturbances in more than one regulated system, calling for diverse compensatory responses. A potential conflict is created when these stimuli are combined and impose concurrent stressful loads on the body because the homeostatic defenses mobilized against one are also partly needed against the other stressors. To learn how the competing demands of combined stressors for shared regulatory systems are met, rabbits were exposed to 32 degrees C and 37 degrees C (heat), administered lipopolysaccharide (Salmonella enteritidis LPS, 2 lg/kg, i.v.) in temperatures of 22 degrees C or 27 degrees C, or water-deprived for 1 or 2 days in 22 degrees C or 27 degrees C, in separate experiments. The corresponding controls were exposed to 22 degrees C or 27 degrees C, administered pyrogen-free saline i.v. in 22 degrees C or 27 degrees C, or normally hydrated in 22 degrees C or 27 degrees C. In subsequent experiments, two or all three of these treatments were applied concurrently. Core and ear skin temperatures and respiratory rates were monitored continuously. The results indicated that the concomitant needs of moderate heat exposure, fever and 1 day of water deprivation were generally met by the regulatory systems involved, but different patterns of thermoeffector activities were evoked and the eventual body temperature changes produced were different under each condition. However, when the test conditions were severe, their combined needs were not met adequately and the eventual compensatory response depended not only on the particular stimulus intensity, but also on the immediate importance for survival of the functions being defended. Thus, dehydration was the most dangerous factor to the physiological integrity of the animals. In sum, conflicting physiological stimuli appear to result in responses that are different from the responses to a single perturbation, the eventual output representing the resultant of the inputs rather than a singular output dictated by one dominant drive to the exclusion of the others.
Power Generation Evaluated on a Bismuth Telluride Unicouple Module
NASA Astrophysics Data System (ADS)
Hu, Xiaokai; Nagase, Kazuo; Jood, Priyanka; Ohta, Michihiro; Yamamoto, Atsushi
2015-06-01
The power generated by a thermoelectric unicouple module made of Bi2Te3 alloy was evaluated by use of a newly developed instrument. An electrical load was connected to the module, and the terminal voltage and output power of the module were obtained by altering electric current. Water flow was used to cool the cold side of the module and for heat flow measurement, by monitoring inlet and outlet temperatures. When the electric current was increased, heat flow was enhanced as a result of the Peltier effect and Joule heating. Voltage, power, heat flow, and efficiency as functions of current were determined for hot-side temperatures from 50 to 220°C. Maximum power output and peak conversion efficiency could thus be easily derived for each temperature.
Kipp, K.L.
1987-01-01
The Heat- and Soil-Transport Program (HST3D) simulates groundwater flow and associated heat and solute transport in three dimensions. The three governing equations are coupled through the interstitial pore velocity, the dependence of the fluid density on pressure, temperature, the solute-mass fraction , and the dependence of the fluid viscosity on temperature and solute-mass fraction. The solute transport equation is for only a single, solute species with possible linear equilibrium sorption and linear decay. Finite difference techniques are used to discretize the governing equations using a point-distributed grid. The flow-, heat- and solute-transport equations are solved , in turn, after a particle Gauss-reduction scheme is used to modify them. The modified equations are more tightly coupled and have better stability for the numerical solutions. The basic source-sink term represents wells. A complex well flow model may be used to simulate specified flow rate and pressure conditions at the land surface or within the aquifer, with or without pressure and flow rate constraints. Boundary condition types offered include specified value, specified flux, leakage, heat conduction, and approximate free surface, and two types of aquifer influence functions. All boundary conditions can be functions of time. Two techniques are available for solution of the finite difference matrix equations. One technique is a direct-elimination solver, using equations reordered by alternating diagonal planes. The other technique is an iterative solver, using two-line successive over-relaxation. A restart option is available for storing intermediate results and restarting the simulation at an intermediate time with modified boundary conditions. This feature also can be used as protection against computer system failure. Data input and output may be in metric (SI) units or inch-pound units. Output may include tables of dependent variables and parameters, zoned-contour maps, and plots of the dependent variables versus time. (Lantz-PTT)
NASA Astrophysics Data System (ADS)
König, H.; Lell, A.; Stojetz, B.; Ali, M.; Eichler, C.; Peter, M.; Löffler, A.; Strauss, U.; Baumann, M.; Balck, A.; Malchus, J.; Krause, V.
2018-02-01
Industrial material processing like cutting or welding of metals is rather energy efficient using direct diode or diode pumped solid state lasers. However, many applications cannot be addressed by established infrared laser technology due to fundamental material properties of the workpiece: For example materials like copper or gold have too low absorption in the near infrared wavelength range to be processed efficiently by use of existing high power laser systems. The huge interest to enable high power kW systems with more suitable wavelengths in the blue spectral range triggered the German funded research project 'BLAULAS': Therein the feasibility and capability of CW operating high power laser bars based on the GaN material system was investigated by Osram and Laserline. High performance bars were enabled by defeating fundamental challenges like material quality as well as the chip processes, both of which differ significantly from well-known IR laser bars. The research samples were assembled on actively cooled heat sinks with hard solder technology. For the first time an output power of 98W per bar at 60A drive current was achieved. Conversion efficiency as high as 46% at 50W output power was demonstrated.
Description and modelling of the solar-hydrogen-biogas-fuel cell system in GlashusEtt
NASA Astrophysics Data System (ADS)
Hedström, L.; Wallmark, C.; Alvfors, P.; Rissanen, M.; Stridh, B.; Ekman, J.
The need to reduce pollutant emissions and utilise the world's available energy resources more efficiently has led to increased attention towards e.g. fuel cells, but also to other alternative energy solutions. In order to further understand and evaluate the prerequisites for sustainable and energy-saving systems, ABB and Fortum have equipped an environmental information centre, located in Hammarby Sjöstad, Stockholm, Sweden, with an alternative energy system. The system is being used to demonstrate and evaluate how a system based on fuel cells and solar cells can function as a complement to existing electricity and heat production. The stationary energy system is situated on the top level of a three-floor glass building and is open to the public. The alternative energy system consists of a fuel cell system, a photovoltaic (PV) cell array, an electrolyser, hydrogen storage tanks, a biogas burner, dc/ac inverters, heat exchangers and an accumulator tank. The fuel cell system includes a reformer and a polymer electrolyte fuel cell (PEFC) with a maximum rated electrical output of 4 kW el and a maximum thermal output of 6.5 kW th. The fuel cell stack can be operated with reformed biogas, or directly using hydrogen produced by the electrolyser. The cell stack in the electrolyser consists of proton exchange membrane (PEM) cells. To evaluate different automatic control strategies for the system, a simplified dynamic model has been developed in MATLAB Simulink. The model based on measurement data taken from the actual system. The evaluation is based on demand curves, investment costs, electricity prices and irradiation. Evaluation criteria included in the model are electrical and total efficiencies as well as economic parameters.
Automotive Stirling Engine Development Program Mod I Stirling engine development
NASA Technical Reports Server (NTRS)
Simetkosky, M. A.
1983-01-01
The development of the Mod I 4-cylinder automotive Stirling engine is discussed and illustrated with drawings, block diagrams, photographs, and graphs and tables of preliminary test data. The engine and its drive, cold-engine, hot-engine, external-heat, air/fuel, power-control, electronic-control, and auxiliary systems are characterized. Performance results from a total of 1900 h of tests on 4 prototype engines include average maximum efficiency (at 2000 rpm) 34.5 percent and maximum output power 54.4 kW. The modifications introduced in an upgraded version of the Mod I are explained; this engine has maximum efficiency 40.4 percent and maximum power output 69.2 kW.
Integrated multispectral high-power laser platform for the defeat of heat-seeking missiles
NASA Astrophysics Data System (ADS)
Tadjikov, Boris; Tsekoun, Alexei; Lyakh, Arkadiy; Maulini, Richard; Barron, Rodolfo; Patel, C. Kumar N.
2011-06-01
Quantum cascade lasers are finding rapid acceptance in many defense and security applications. Our new multispectral laser platform providing watt-level outputs near 2.0 μm, 4.0 μm and 4.6 μm in continuous wave regime at room temperature. Individual lasers are spectrally beam combined into a single output beam with excellent quality. Our rugged, compact (11 × 10 × 6.5 inches), and highly reliable, air-cooled multispectral laser platform is already finding acceptance at system level. Our uncooled devices produce > 2W at 4.6 μm and >1.5W at 4.0 μm at room temperature, and maintain watt-level output at 67°C with real wallplug efficiencies >10%. Finally, all of our QCLs undergo 100-hour pre-delivery burn-in and pass shock, vibration, and temperature testing according to MIL-STD-810G.
Performance of an Advanced Stirling Convertor Based on Heat Flux Sensor Measurements
NASA Technical Reports Server (NTRS)
Wilson, Dcott D.
2012-01-01
The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower, Inc., and NASA Glenn Research Center. The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot-end and cold-end temperatures, and specified electrical power output for a given heat input. It is difficult to measure heat input to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat input to an ASC. The effort succeeded in designing and fabricating unique sensors, which were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700 C in air for 10,000 hr. Sensor measurements were used to calculate thermal efficiency for ASC-E (Engineering Unit) #1 and #4. The post-disassembly condition of the sensors is also discussed.
Performance of an Advanced Stirling Convertor Based on Heat Flux Sensor Measurements
NASA Technical Reports Server (NTRS)
Wilson, Scott D.
2012-01-01
The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower, Inc., and NASA Glenn Research Center. The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot-end and cold-end temperatures, and specified electrical power output for a given heat input. It is difficult to measure heat input to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat input to an ASC. The effort succeeded in designing and fabricating unique sensors, which were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700 C in air for 10,000 hr. Sensor measurements were used to calculate thermal efficiency for ASC-E (Engineering Unit) #1 and #4. The post-disassembly condition of the sensors is also discussed.
Ye, Zhuolin; Hu, Yingying; He, Jizhou; Wang, Jianhui
2017-07-24
We study the performance of a cyclic heat engine which uses a small system with a finite number of ultracold atoms as its working substance and works between two heat reservoirs at constant temperatures T h and T c (
NASA Technical Reports Server (NTRS)
Tournier, Jean-Michel; El-Genk, Mohamed S.
1995-01-01
This report describes the user's manual for 'HPTAM,' a two-dimensional Heat Pipe Transient Analysis Model. HPTAM is described in detail in the UNM-ISNPS-3-1995 report which accompanies the present manual. The model offers a menu that lists a number of working fluids and wall and wick materials from which the user can choose. HPTAM is capable of simulating the startup of heat pipes from either a fully-thawed or frozen condition of the working fluid in the wick structure. The manual includes instructions for installing and running HPTAM on either a UNIX, MS-DOS or VMS operating system. Samples for input and output files are also provided to help the user with the code.
A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.
Ling, Hong; Luo, Ercang; Dai, Wei
2006-12-22
Thermoacoustic prime movers can generate pressure oscillation without any moving parts on self-excited thermoacoustic effect. The details of the numerical simulation methodology for thermoacoustic engines are presented in the paper. First, a four-port network method is used to build the transcendental equation of complex frequency as a criterion to judge if temperature distribution of the whole thermoacoustic system is correct for the case with given heating power. Then, the numerical simulation of a thermoacoustic-Stirling heat engine is carried out. It is proved that the numerical simulation code can run robustly and output what one is interested in. Finally, the calculated results are compared with the experiments of the thermoacoustic-Stirling heat engine (TASHE). It shows that the numerical simulation can agrees with the experimental results with acceptable accuracy.
NASA Technical Reports Server (NTRS)
Hasseeb, Hashmatullah; Iannetti, Anthony
2017-01-01
A major component of a Martian In-Situ Resource Utilization (ISRU) system is the CO2 acquisition subsystem. This subsystem must be able to extract and separate CO2 at ambient Martian pressures and then output the gas at high pressures for the chemical reactors to generate fuel and oxygen. The Temperature Swing Adsorption (TSA) Pump is a competitive design that can perform this task using heating and cooling cycles in an enclosed volume. The design of this system is explored and analyzed for an output pressure range of 50 kPa to 500 kPa and an adsorption temperature range of -50 C to 40 C while meeting notional requirements for two mission scenarios. Mass and energy consumption results are presented for 2-stage, 3-stage, and 4-stage systems using the following adsorbents: Grace 544 13X, BASF 13X, Grace 522 5A and VSA 10 LiX.
Ge, Hao; Qian, Hong
2013-06-01
Nonequilibrium thermodynamics of a system situated in a sustained environment with influx and efflux is usually treated as a subsystem in a larger, closed "universe." A question remains with regard to what the minimally required description for the surrounding of such an open driven system is so that its nonequilibrium thermodynamics can be established solely based on the internal stochastic kinetics. We provide a solution to this problem using insights from studies of molecular motors in a chemical nonequilibrium steady state (NESS) with sustained external drive through a regenerating system or in a quasisteady state (QSS) with an excess amount of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and inorganic phosphate (Pi). We introduce the key notion of minimal work that is needed, W(min), for the external regenerating system to sustain a NESS (e.g., maintaining constant concentrations of ATP, ADP and Pi for a molecular motor). Using a Markov (master-equation) description of a motor protein, we illustrate that the NESS and QSS have identical kinetics as well as the second law in terms of the same positive entropy production rate. The heat dissipation of a NESS without mechanical output is exactly the W(min). This provides a justification for introducing an ideal external regenerating system and yields a free-energy balance equation between the net free-energy input F(in) and total dissipation F(dis) in an NESS: F(in) consists of chemical input minus mechanical output; F(dis) consists of dissipative heat, i.e. the amount of useful energy becoming heat, which also equals the NESS entropy production. Furthermore, we show that for nonstationary systems, the F(dis) and F(in) correspond to the entropy production rate and housekeeping heat in stochastic thermodynamics and identify a relative entropy H as a generalized free energy. We reach a new formulation of Markovian nonequilibrium thermodynamics based on only the internal kinetic equation without further reference to the intrinsic degree of freedom within each Markov state. It includes an extended free-energy balance and a second law which are valid for driven stochastic dynamics with an ideal external regenerating system. Our result suggests new ingredients for a generalized thermodynamics of self-organization in driven systems.
Multi-turn transmit coil to increase b1 efficiency in current source amplification.
Gudino, N; Griswold, M A
2013-04-01
A multi-turn transmit surface coil design was presented to improve B1 efficiency when used with current source amplification. Three different coil designs driven by an on-coil current-mode class-D amplifier with current envelope feedback were tested on the benchtop and through imaging in a 1.5 T scanner. Case temperature of the power field-effect transistor at the amplifier output stage was measured to evaluate heat dissipation for the different current levels and coil configurations. In addition, a lower power rated device was tested to exploit the potential gain in B1 obtained with the multi-turn coil. As shown both on the benchtop and in a 1.5 T scanner, B1 was increased by almost 3-fold without increasing heat dissipation on the power device at the amplifier's output using a multi-turn surface coil. Similar gain was obtained when connecting a lower power rated field-effect transistor to the multi-turn coil. In addition to reduce heat dissipation per B1 in the device, higher B1 per current efficiency allows the use of field-effect transistors with lower current ratings and lower port capacitances, which could improve the overall performance of the on-coil current source transmit system. Copyright © 2013 Wiley Periodicals, Inc.
Multi-turn transmit coil to increase B1 efficiency in current source amplification
Gudino, N.; Griswold, M.A.
2013-01-01
Purpose A multi-turn transmit surface coil design was presented to improve B1 efficiency when used with current source amplification. Methods Three different coil designs driven by an on-coil current-mode class-D (CMCD) amplifier with current envelope feedback were tested on the benchtop and through imaging in a 1.5 T scanner. Case temperature of the power field-effect transistor (FET) at the amplifier output stage was measured to evaluate heat dissipation for the different current levels and coil configurations. In addition, a lower power rated device was tested to exploit the potential gain in B1 obtained with the multi-turn coil. Results As shown both on the benchtop and in a 1.5 T scanner, B1 was increased by almost three-fold without increasing heat dissipation on the power device at the amplifier's output using a multi-turn surface coil. Similar gain was obtained when connecting a lower power rated FET to the multi-turn coil. Conclusion In addition to reduce heat dissipation per B1 in the device, higher B1 per current efficiency allows the use of FETs with lower current ratings and lower port capacitances which could improve the overall performance of the on-coil current source transmit system. PMID:23401060
Thermoelectric power generator for variable thermal power source
Bell, Lon E; Crane, Douglas Todd
2015-04-14
Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.
Comparison of dynamic isotope power systems for distributed planet surface applications
NASA Technical Reports Server (NTRS)
Bents, David J.; Mckissock, Barbara I.; Hanlon, James C.; Schmitz, Paul C.; Rodriguez, Carlos D.; Withrow, Colleen A.
1991-01-01
Dynamic isotope power system (DIPS) alternatives were investigated and characterized for the surface mission elements associated with a lunar base and subsequent manned Mars expedition. System designs based on two convertor types were studied. These systems were characterized parametrically and compared over the steady-state electrical output power range 0.2 to 20 kWe. Three methods of thermally integrating the heat source and the Stirling heater head were considered, depending on unit size. Figures of merit were derived from the characterizations and compared over the parametric range. Design impacts of mission environmental factors are discussed and quantitatively assessed.
Performance of discrete heat engines and heat pumps in finite time
Feldmann; Kosloff
2000-05-01
The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The power output of the engine is optimized with respect to time allocation between the contact time with the hot and cold baths as well as the adiabats. The engine's performance is also optimized with respect to the external fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat pump is also optimized. By varying the time allocation between the adiabats and the contact time with the reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when the temperature approaches absolute zero.
NASA Astrophysics Data System (ADS)
Punov, Plamen; Milkov, Nikolay; Danel, Quentin; Perilhon, Christelle; Podevin, Pierre; Evtimov, Teodossi
2017-02-01
An optimization study of the Rankine cycle as a function of diesel engine operating mode is presented. The Rankine cycle here, is studied as a waste heat recovery system which uses the engine exhaust gases as heat source. The engine exhaust gases parameters (temperature, mass flow and composition) were defined by means of numerical simulation in advanced simulation software AVL Boost. Previously, the engine simulation model was validated and the Vibe function parameters were defined as a function of engine load. The Rankine cycle output power and efficiency was numerically estimated by means of a simulation code in Python(x,y). This code includes discretized heat exchanger model and simplified model of the pump and the expander based on their isentropic efficiency. The Rankine cycle simulation revealed the optimum value of working fluid mass flow and evaporation pressure according to the heat source. Thus, the optimal Rankine cycle performance was obtained over the engine operating map.
Parametric design criteria of an updated thermoradiative cell operating at optimal states
NASA Astrophysics Data System (ADS)
Zhang, Xin; Peng, Wanli; Lin, Jian; Chen, Xiaohang; Chen, Jincan
2017-11-01
An updated mode of the thermoradiative cell (TRC) with sub-band gap and non-radiative losses is proposed, which can efficiently harvest moderate-temperature heat energy and convert a part of heat into electricity. It is found that when the TRC is operated between the heat source at 800 K and the environment at 300 K , its maximum power output density and efficiency can attain 1490 W m-2 and 27.2 % , respectively. Moreover, the effects of some key parameters including the band gap and voltage output on the performance of the TRC are discussed. The optimally working regions of the power density, efficiency, band gap, and voltage output are determined. The maximum efficiency and power output density of the TRC operated at different temperatures are calculated and compared with those of thermophotovoltaic cells (TPVCs) and thermionic energy converters (TECs), and consequently, it is revealed that the maximum efficiency of the TRC operated at the moderate-temperature range is much higher than that of the TEC or the TPVC and the maximum power output density of the TRC is larger than that of the TEC but smaller than that of the TPVC. Particularly, the TRC is manufactured more easily than the near-field TPVC possessing a nanoscale vacuum gap. The results obtained will be helpful for engineers to choose the semiconductor materials, design and manufacture TRCs, and control operative conditions.
NASA Technical Reports Server (NTRS)
Briggs, Maxwell; Schifer, Nicholas
2011-01-01
Test hardware used to validate net heat prediction models. Problem: Net Heat Input cannot be measured directly during operation. Net heat input is a key parameter needed in prediction of efficiency for convertor performance. Efficiency = Electrical Power Output (Measured) divided by Net Heat Input (Calculated). Efficiency is used to compare convertor designs and trade technology advantages for mission planning.
Deicing System Protects General Aviation Aircraft
NASA Technical Reports Server (NTRS)
2007-01-01
Kelly Aerospace Thermal Systems LLC worked with researchers at Glenn Research Center on deicing technology with assistance from the Small Business Innovation Research (SBIR) program. Kelly Aerospace acquired Northcoast Technologies Ltd., a firm that had conducted work on a graphite foil heating element under a NASA SBIR contract and developed a lightweight, easy-to-install, reliable wing and tail deicing system. Kelly Aerospace engineers combined their experiences with those of the Northcoast engineers, leading to the certification and integration of a thermoelectric deicing system called Thermawing, a DC-powered air conditioner for single-engine aircraft called Thermacool, and high-output alternators to run them both. Thermawing, a reliable anti-icing and deicing system, allows pilots to safely fly through ice encounters and provides pilots of single-engine aircraft the heated wing technology usually reserved for larger, jet-powered craft. Thermacool, an innovative electric air conditioning system, uses a new compressor whose rotary pump design runs off an energy-efficient, brushless DC motor and allows pilots to use the air conditioner before the engine even starts
Economic optimization of the energy transport component of a large distributed solar power plant
NASA Technical Reports Server (NTRS)
Turner, R. H.
1976-01-01
A solar thermal power plant with a field of collectors, each locally heating some transport fluid, requires a pipe network system for eventual delivery of energy power generation equipment. For a given collector distribution and pipe network geometry, a technique is herein developed which manipulates basic cost information and physical data in order to design an energy transport system consistent with minimized cost constrained by a calculated technical performance. For a given transport fluid and collector conditions, the method determines the network pipe diameter and pipe thickness distribution and also insulation thickness distribution associated with minimum system cost; these relative distributions are unique. Transport losses, including pump work and heat leak, are calculated operating expenses and impact the total system cost. The minimum cost system is readily selected. The technique is demonstrated on six candidate transport fluids to emphasize which parameters dominate the system cost and to provide basic decision data. Three different power plant output sizes are evaluated in each case to determine severity of diseconomy of scale.
A Demo opto-electronic power source based on single-walled carbon nanotube sheets.
Hu, Chunhua; Liu, Changhong; Chen, Luzhuo; Meng, Chuizhou; Fan, Shoushan
2010-08-24
It is known that single-walled carbon nanotubes (SWNTs) strongly absorb light, especially in the near-infrared (NIR) region, and convert it into heat. In fact, SWNTs also have considerable ability to convert heat into electricity. In this work, we show that SWNT sheets made from as-grown SWNT arrays display a large positive thermoelectric coefficient (p-type). We designed a simple SWNT device to convert illuminating NIR light directly into a notable voltage output, which was verified by experimental tests. Furthermore, by a simple functionalization step, the p- to n-type transition was conveniently achieved for the SWNT sheets. By integrating p- and n-type elements in series, we constructed a novel NIR opto-electronic power source, which outputs a large voltage that sums over the output of every single element. Additionally, the output of the demo device has shown a good linear relationship with NIR light power density, favorable for IR sensors.
Experimental Studies of Carbon Nanotube Materials for Space Radiators
NASA Technical Reports Server (NTRS)
SanSoucie, MIchael P.; Rogers, Jan R.; Craven, Paul D.; Hyers, Robert W.
2012-01-01
Game ]changing propulsion systems are often enabled by novel designs using advanced materials. Radiator performance dictates power output for nuclear electric propulsion (NEP) systems. Carbon nanotubes (CNT) and carbon fiber materials have the potential to offer significant improvements in thermal conductivity and mass properties. A test apparatus was developed to test advanced radiator designs. This test apparatus uses a resistance heater inside a graphite tube. Metallic tubes can be slipped over the graphite tube to simulate a heat pipe. Several sub ]scale test articles were fabricated using CNT cloth and pitch ]based carbon fibers, which were bonded to a metallic tube using an active braze material. The test articles were heated up to 600 C and an infrared (IR) camera captured the results. The test apparatus and experimental results are presented here.
Preparation and Characterization of BaTiO3-PbZrTiO3 Coating for Pyroelectric Energy Harvesting
NASA Astrophysics Data System (ADS)
Raghavendra, R. M.; Praneeth, K. P. S. S.; Dutta, Soma
2017-01-01
Harvesting energy from waste heat is a promising field of research as there are significant energy recovery opportunities from various waste thermal energy sources. The present study reports pyroelectric energy harvesting using thick film prepared from a (x)BaTiO3-(1 - x)PbZr0.52Ti0.48O3 (BT-PZT) solid solution. The developed BT-PZT system is engineered to tune the ferro to paraelectric phase transition temperature of it in-between the phase transition temperature of BaTiO3 (393 K) and PbZrTiO3 (573 K) with higher pyroelectric figure-of-merit (FOM). The temperature-dependent dielectric behavior of the material has revealed the ferro- to paraelectric phase transition at 427 K with a maximum dielectric constant of 755. The room-temperature (298 K) pyroelectric coefficient (Pi) of the material was obtained as 738.63 μC/m2K which has yielded a significantly high FOM of 1745.8 J m-3 K-2. The enhancement in pyroelectric property is attributed to the morphotopic phase transition between tetragonal and rhombohedral PZT phases in the BT-PZT system. The developed BT-PZT system is capable of generating a power output of 1.3 mW/m2 near the Curie temperature with a constant rate (0.11 K/s) of heating. A signal conditioning circuit has been developed to rectify the time-varying current and voltage signals obtained from the harvester during heating cycles. The output voltage generated by the pyroelectric harvester has been stored in a capacitor for powering wearable electronics.
Straub, Anthony P; Elimelech, Menachem
2017-11-07
Low-grade heat energy from sources below 100 °C is available in massive quantities around the world, but cannot be converted to electricity effectively using existing technologies due to variability in the heat output and the small temperature difference between the source and environment. The recently developed thermo-osmotic energy conversion (TOEC) process has the potential to harvest energy from low-grade heat sources by using a temperature difference to create a pressurized liquid flux across a membrane, which can be converted to mechanical work via a turbine. In this study, we perform the first analysis of energy efficiency and the expected performance of the TOEC technology, focusing on systems utilizing hydrophobic porous vapor-gap membranes and water as a working fluid. We begin by developing a framework to analyze realistic mass and heat transport in the process, probing the impact of various membrane parameters and system operating conditions. Our analysis reveals that an optimized system can achieve heat-to-electricity energy conversion efficiencies up to 4.1% (34% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and an operating pressure of 5 MPa (50 bar). Lower energy efficiencies, however, will occur in systems operating with high power densities (>5 W/m 2 ) and with finite-sized heat exchangers. We identify that the most important membrane properties for achieving high performance are an asymmetric pore structure, high pressure resistance, a high porosity, and a thickness of 30 to 100 μm. We also quantify the benefits in performance from utilizing deaerated water streams, strong hydrodynamic mixing in the membrane module, and high heat exchanger efficiencies. Overall, our study demonstrates the promise of full-scale TOEC systems to extract energy from low-grade heat and identifies key factors for performance optimization moving forward.
Low-temperature Stirling Engine for Geothermal Electricity Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillman, Greg; Weaver, Samuel P.
Up to 2700 terawatt-hours per year of geothermal electricity generation capacity has been shown to be available within North America, typically with wells drilled into geologically active regions of the earth's crust where this energy is concentrated (Huttrer, 2001). Of this potential, about half is considered to have temperatures high enough for conventional (steam-based) power production, while the other half requires unconventional power conversion approaches, such as organic Rankine cycle systems or Stirling engines. If captured and converted effectively, geothermal power generation could replace up to 100GW of fossil fuel electric power generation, leading to a significant reduction of USmore » power sector emissions. In addition, with the rapid growth of hydro-fracking in oil and gas production, there are smaller-scale distributed power generation opportunities in heated liquids that are co-produced with the main products. Since 2006, Cool Energy, Inc. (CEI) has designed, fabricated and tested four generations of low-temperature (100°C to 300°C) Stirling engine power conversion equipment. The electric power output of these engines has been demonstrated at over 2kWe and over 16% thermal conversion efficiency for an input temperature of 215°C and a rejection temperature of 15°C. Initial pilot units have been shipped to development partners for further testing and validation, and significantly larger engines (20+ kWe) have been shown to be feasible and conceptually designed. Originally intended for waste heat recovery (WHR) applications, these engines are easily adaptable to geothermal heat sources, as the heat supply temperatures are similar. Both the current and the 20+ kWe designs use novel approaches of self-lubricating, low-wear-rate bearing surfaces, non-metallic regenerators, and high-effectiveness heat exchangers. By extending CEI's current 3 kWe SolarHeart® Engine into the tens of kWe range, many additional applications are possible, as one 20 kWe design produces nearly seven times the power output of the 3 kWe unit but at only 2.5 times the estimated fabrication cost. Phase I of the proposed SBIR program will therefore study the feasibility of generating electricity with one or more 20 kWe or larger Stirling engines, powered by geothermal heat produced by current and possibly some forward-looking borehole extraction methods, and from producing oil and gas wells. The feasibility study will include full analysis of the thermodynamic and heat transfer processes within the engine (necessary to produce optimum theoretical designs and performance maps), the cost of pumping the geothermal heat recovery fluid, and how the system tradeoffs impact the overall system economics. The goal is a geothermal system design that could be demonstrated during a Phase II follow-on program at a field test site.« less
NASA Astrophysics Data System (ADS)
Feidt, Michel; Costea, Monica
2018-04-01
Many works have been devoted to finite time thermodynamics since the Curzon and Ahlborn [1] contribution, which is generally considered as its origin. Nevertheless, previous works in this domain have been revealed [2], [3], and recently, results of the attempt to correlate Finite Time Thermodynamics with Linear Irreversible Thermodynamics according to Onsager's theory were reported [4]. The aim of the present paper is to extend and improve the approach relative to thermodynamic optimization of generic objective functions of a Carnot engine with linear response regime presented in [4]. The case study of the Carnot engine is revisited within the steady state hypothesis, when non-adiabaticity of the system is considered, and heat loss is accounted for by an overall heat leak between the engine heat reservoirs. The optimization is focused on the main objective functions connected to engineering conditions, namely maximum efficiency or power output, except the one relative to entropy that is more fundamental. Results given in reference [4] relative to the maximum power output and minimum entropy production as objective function are reconsidered and clarified, and the change from finite time to finite physical dimension was shown to be done by the heat flow rate at the source. Our modeling has led to new results of the Carnot engine optimization and proved that the primary interest for an engineer is mainly connected to what we called Finite Physical Dimensions Optimal Thermodynamics.
Effect of cycling on the lithium/electrolyte interface in organic electrolytes
NASA Technical Reports Server (NTRS)
Surampudi, S.; Shen, D. H.; Huang, C.-K.; Narayanan, S. R.; Attia, A.; Halpert, G.; Peled, E.
1993-01-01
Nondestructive methods such as ac impedance spectroscopy and microcalorimetry are used to study the effect of cell cycling on the lithium/electrolyte interface. The reactivity of both uncycled and cycled lithium towards various electrolytes is examined by measuring the heat evolved from the cells under open-circuit conditions at 25 C by microcalorimetry. Cycled cells at the end of charge/discharge exhibited considerably higher heat output compared with the uncycled cells. After 30 d of storage, the heat output of the cycled cells is similar to that of the uncycled cells. The cell internal resistance increases with cycling, and this is attributed to the degradation of the electrolyte with cycling.
Luminescent Solar Concentrators in the Algal Industry
NASA Astrophysics Data System (ADS)
Hellier, Katie; Corrado, Carley; Carter, Sue; Detweiler, Angela; Bebout, Leslie
2013-03-01
Today's industry for renewable energy sources and highly efficient energy management systems is rapidly increasing. Development of increased efficiency Luminescent Solar Concentrators (LSCs) has brought about new applications for commercial interests, including greenhouses for agricultural crops. This project is taking first steps to explore the potential of LSCs to enhance production and reduce costs for algae and cyanobacteria used in biofuels and nutraceuticals. This pilot phase uses LSC filtered light for algal growth trials in greenhouses and laboratory experiments, creating specific wavelength combinations to determine effects of discrete solar light regimes on algal growth and the reduction of heating and water loss in the system. Enhancing the optimal spectra for specific algae will not only increase production, but has the potential to lessen contamination of large scale production due to competition from other algae and bacteria. Providing LSC filtered light will reduce evaporation and heating in regions with limited water supply, while the increased energy output from photovoltaic cells will reduce costs of heating and mixing cultures, thus creating a more efficient and cost effective production system.
A 1050 K Stirling space engine design
NASA Technical Reports Server (NTRS)
Penswick, L. Barry
1988-01-01
As part of the NASA CSTI High Capacity Power Program on Conversion Systems for Nuclear Applications, Sunpower, Inc. completed for NASA Lewis a reference design of a single-cylinder free-piston Stirling engine that is optimized for the lifetimes and temperatures appropriate for space applications. The NASA effort is part of the overall SP-100 program which is a combined DOD/DOE/NASA project to develop nuclear power for space. Stirling engines have been identified as a growth option for SP-100 offering increased power output and lower system mass and radiator area. Superalloy materials are used in the 1050 K hot end of the engine; the engine temperature ratio is 2.0. The engine design features simplified heat exchangers with heat input by sodium heat pipes, hydrodynamic gas bearings, a permanent magnet linear alternator, and a dynamic balance system. The design shows an efficiency (including the alternator) of 29 percent and a specific mass of 5.7 kg/kW. This design also represents a significant step toward the 1300 K refractory Stirling engine which is another growth option of SP-100.
Design and Fabrication of a 5-kWe Free-Piston Stirling Power Conversion System
NASA Technical Reports Server (NTRS)
Chapman, Peter A.; Walter, Thomas J.; Brandhorst, Henry W., Jr.
2008-01-01
Progress in the design and fabrication of a 5-kWe free-piston Stirling power conversion system is described. A scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463, this single cylinder prototype incorporates cost effective and readily available materials (steel versus beryllium) and components (a commercial linear alternator). The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype is supplied via pumped liquid loops passing through shell and tube heat exchangers. The control system incorporates several novel ideas such as a pulse start capability and a piston stroke set point control strategy that provides the ability to throttle the engine to match the required output power. It also ensures stable response to various disturbances such as electrical load variations while providing useful data regarding the position of both power piston and displacer. All design and analysis activities are complete and fabrication is underway. Prototype test is planned for summer 2008 at Foster-Miller to characterize the dynamics and steady-state operation of the prototype and determine maximum power output and system efficiency. Further tests will then be performed at Auburn University to determine start-up and shutdown characteristics and assess transient response to temperature and load variations.
Closed Brayton Cycle Power Conversion Unit for Fission Surface Power Phase I Final Report
NASA Technical Reports Server (NTRS)
Fuller, Robert L.
2010-01-01
A Closed Brayton cycle power conversion system has been developed to support the NASA fission surface power program. The goal is to provide electricity from a small nuclear reactor heat source for surface power production for lunar and Mars environments. The selected media for a heat source is NaK 78 with water as a cooling source. The closed Brayton cycle power was selected to be 12 kWe output from the generator terminals. A heat source NaK temperature of 850 K plus or minus 25 K was selected. The cold source water was selected at 375 K plus or minus 25 K. A vacuum radiation environment of 200 K is specified for environmental operation. The major components of the system are the power converter, the power controller, and the top level data acquisition and control unit. The power converter with associated sensors resides in the vacuum radiation environment. The power controller and data acquisition system reside in an ambient laboratory environment. Signals and power are supplied across the pressure boundary electrically with hermetic connectors installed on the vacuum vessel. System level analyses were performed on working fluids, cycle design parameters, heater and cooling temperatures, and heat exchanger options that best meet the needs of the power converter specification. The goal is to provide a cost effective system that has high thermal-to-electric efficiency in a compact, lightweight package.
Kut, Carmen; Zhang, Yonggang; Hedayati, Mohammad; Zhou, Haoming; Cornejo, Christine; Bordelon, David; Mihalic, Jana; Wabler, Michele; Burghardt, Elizabeth; Gruettner, Cordula; Geyh, Alison; Brayton, Cory; Deweese, Theodore L; Ivkov, Robert
2013-01-01
Aim To assess the potential for injury to normal tissues in mice due to heating systemically delivered magnetic nanoparticles in an alternating magnetic field (AMF). Materials & methods Twenty three male nude mice received intravenous injections of dextran–superparamagnetic iron oxide nanoparticles on days 1–3. On day 6, they were exposed to AMF. On day 7, blood, liver and spleen were harvested and analyzed. Results Iron deposits were detected in the liver and spleen. Mice that had received a high-particle dose and a high AMF experienced increased mortality, elevated liver enzymes and significant liver and spleen necrosis. Mice treated with low-dose superparamagnetic iron oxide nanoparticles and a low AMF survived, but had elevated enzyme levels and local necrosis in the spleen. Conclusion Magnetic nanoparticles producing only modest heat output can cause damage, and even death, when sequestered in sufficient concentrations. Dextran–superparamagnetic iron oxide nanoparticles are deposited in the liver and spleen, making these the sites of potential toxicity. PMID:22830502
NASA Astrophysics Data System (ADS)
Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.
2017-02-01
An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.
NASA Astrophysics Data System (ADS)
Wen, Xiaohang; Dong, Wenjie; Yuan, Wenping; Zheng, Zhiyuan
For better prediction and understanding of land-atmospheric interaction, in-situ observed meteorological data acquired from the China Meteorological Administration (CMA) were assimilated in the Weather Research and Forecasting (WRF) model and the monthly Green Vegetation Coverage (GVF) data, which was calculated using the Normalized Difference Vegetation Index (NDVI) of the Earth Observing System Moderate-Resolution Imaging Spectroradiometer (EOS-MODIS) and Digital Elevation Model (DEM) data of the Shuttle Radar Topography Mission (SRTM) system. Furthermore, the WRF model produced a High-Resolution Assimilation Dataset of the water-energy cycle in China (HRADC). This dataset has a horizontal resolution of 25 km for near surface meteorological data, such as air temperature, humidity, wind vectors and pressure (19 levels); soil temperature and moisture (four levels); surface temperature; downward/upward short/long radiation; 3-h latent heat flux; sensible heat flux; and ground heat flux. In this study, we 1) briefly introduce the cycling 3D-Var assimilation method and 2) compare results of meteorological elements, such as 2 m temperature and precipitation generated by the HRADC with the gridded observation data from CMA, and surface temperature and specific humidity with Global Land Data Assimilation System (GLDAS) output data from the National Aeronautics and Space Administration (NASA). We find that the simulated results of monthly 2 m temperature from HRADC is improved compared with the control simulation and has effectively reproduced the observed patterns. The simulated special distribution of ground surface temperature and specific humidity from HRADC are much closer to GLDAS outputs. The spatial distribution of root mean square errors (RMSE) and bias of 2 m temperature between observations and HRADC is reduced compared with the bias between observations and the control run. The monthly spatial distribution of surface temperature and specific humidity from HRADC is consistent with the GLDAS outputs over China. This study could improve the land surface parameters by utilizing remote sensing data and could further improve atmospheric elements with a data assimilation system. This work provides an effective attempt at combining multi-source data with different spatial and temporal scales into numerical simulations, and the simulated results could be used in further research on the long-term climatic effects and characteristics of the water-energy cycle over China.
Multi-megawatt millimeter-wave source for plasma heating and control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirshfield, J.L.; Wang, C.; Ganguly, A.K.
1995-12-31
Results of a feasibility study are summarized for multi-megawatt mm-wavelength gyroharmonic converters for plasma heating applications. Output power in these devices is extracted at a high harmonic of the modulation frequency of a spatiotemporally gyrating electron beam prepared using cyclotron autoresonance acceleration. An example is described in which an output of 2.2 MW at 148.5 GHz is predicted at the 13th harmonic of an 8 MW 11.424 GHz CARA, after including waveguide ohmic wall losses. Achievement of this performance requires a high quality 200 kV, 16 A luminar pencil beam injected into CARA, and effective suppression of competing output modes;more » means to realize these requirements are discussed.« less
Radioisotope Power System Pool Concept
NASA Technical Reports Server (NTRS)
Rusick, Jeffrey J.; Bolotin, Gary S.
2015-01-01
Advanced Radioisotope Power Systems (RPS) for NASA deep space science missions have historically used static thermoelectric-based designs because they are highly reliable, and their radioisotope heat sources can be passively cooled throughout the mission life cycle. Recently, a significant effort to develop a dynamic RPS, the Advanced Stirling Radioisotope Generator (ASRG), was conducted by NASA and the Department of Energy, because Stirling based designs offer energy conversion efficiencies four times higher than heritage thermoelectric designs; and the efficiency would proportionately reduce the amount of radioisotope fuel needed for the same power output. However, the long term reliability of a Stirling based design is a concern compared to thermoelectric designs, because for certain Stirling system architectures the radioisotope heat sources must be actively cooled via the dynamic operation of Stirling converters throughout the mission life cycle. To address this reliability concern, a new dynamic Stirling cycle RPS architecture is proposed called the RPS Pool Concept.
Feedwater temperature control methods and systems
Moen, Stephan Craig; Noonan, Jack Patrick; Saha, Pradip
2014-04-22
A system for controlling the power level of a natural circulation boiling water nuclear reactor (NCBWR) is disclosed. The system, in accordance with an example embodiment of the present invention, may include a controller configured to control a power output level of the NCBWR by controlling a heating subsystem to adjust a temperature of feedwater flowing into an annulus of the NCBWR. The heating subsystem may include a steam diversion line configured to receive steam generated by a core of the NCBWR and a steam bypass valve configured to receive commands from the controller to control a flow of the steam in the steam diversion line, wherein the steam received by the steam diversion line has not passed through a turbine. Additional embodiments of the invention may include a feedwater bypass valve for controlling an amount of flow of the feedwater through a heater bypass line to the annulus.
Thermal convection in three-dimensional fractured porous media
NASA Astrophysics Data System (ADS)
Mezon, C.; Mourzenko, V. V.; Thovert, J.-F.; Antoine, R.; Fontaine, F.; Finizola, A.; Adler, P. M.
2018-01-01
Thermal convection is numerically computed in three-dimensional (3D) fluid saturated isotropically fractured porous media. Fractures are randomly inserted as two-dimensional (2D) convex polygons. Flow is governed by Darcy's 2D and 3D laws in the fractures and in the porous medium, respectively; exchanges take place between these two structures. Results for unfractured porous media are in agreement with known theoretical predictions. The influence of parameters such as the fracture aperture (or fracture transmissivity) and the fracture density on the heat released by the whole system is studied for Rayleigh numbers up to 150 in cubic boxes with closed-top conditions. Then, fractured media are compared to homogeneous porous media with the same macroscopic properties. Three major results could be derived from this study. The behavior of the system, in terms of heat release, is determined as a function of fracture density and fracture transmissivity. First, the increase in the output flux with fracture density is linear over the range of fracture density tested. Second, the increase in output flux as a function of fracture transmissivity shows the importance of percolation. Third, results show that the effective approach is not always valid, and that the mismatch between the full calculations and the effective medium approach depends on the fracture density in a crucial way.
Three-Dimensional Finite-Element Simulation for a Thermoelectric Generator Module
NASA Astrophysics Data System (ADS)
Hu, Xiaokai; Takazawa, Hiroyuki; Nagase, Kazuo; Ohta, Michihiro; Yamamoto, Atsushi
2015-10-01
A three-dimensional closed-circuit numerical model of a thermoelectric generator (TEG) module has been constructed with COMSOL® Multiphysics to verify a module test system. The Seebeck, Peltier, and Thomson effects and Joule heating are included in the thermoelectric conversion model. The TEG model is employed to simulate the operation of a 16-leg TEG module based on bismuth telluride with temperature-dependent material properties. The module is mounted on a test platform, and simulated by combining the heat conduction process and thermoelectric conversion process. Simulation results are obtained for the terminal voltage, output power, heat flow, and efficiency as functions of the electric current; the results are compared with measurement data. The Joule and Thomson heats in all the thermoelectric legs, as functions of the electric current, are calculated by finite-element volume integration over the entire legs. The Peltier heat being pumped at the hot side and released at the cold side of the module are also presented in relation to the electric current. The energy balance relations between heat and electricity are verified to support the simulation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... capacity” and “wall heat capacity”) Thermal mass wall insulation position: (1) Exterior insulation position... thermal energy of the vent gases into mechanical energy. Boiler capacity: the rated heat output of the... furnished by the utility. Coefficient of performance (COP)—Cooling: the ratio of the rate of heat removal to...
Code of Federal Regulations, 2012 CFR
2012-01-01
... capacity” and “wall heat capacity”) Thermal mass wall insulation position: (1) Exterior insulation position... thermal energy of the vent gases into mechanical energy. Boiler capacity: the rated heat output of the... furnished by the utility. Coefficient of performance (COP)—Cooling: the ratio of the rate of heat removal to...
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Gibson, Marc A.; Sanzi, James
2017-01-01
The Kilopower project aims to develop and demonstrate scalable fission-based power technology for systems capable of delivering 110 kW of electric power with a specific power ranging from 2.5 - 6.5 Wkg. This technology could enable high power science missions or could be used to provide surface power for manned missions to the Moon or Mars. NASA has partnered with the Department of Energys National Nuclear Security Administration, Los Alamos National Labs, and Y-12 National Security Complex to develop and test a prototypic reactor and power system using existing facilities and infrastructure. This technology demonstration, referred to as the Kilowatt Reactor Using Stirling TechnologY (KRUSTY), will undergo nuclear ground testing in the summer of 2017 at the Nevada Test Site. The 1 kWe variation of the Kilopower system was chosen for the KRUSTY demonstration. The concept for the 1 kWe flight system consist of a 4 kWt highly enriched Uranium-Molybdenum reactor operating at 800 degrees Celsius coupled to sodium heat pipes. The heat pipes deliver heat to the hot ends of eight 125 W Stirling convertors producing a net electrical output of 1 kW. Waste heat is rejected using titanium-water heat pipes coupled to carbon composite radiator panels. The KRUSTY test, based on this design, uses a prototypic highly enriched uranium-molybdenum core coupled to prototypic sodium heat pipes. The heat pipes transfer heat to two Advanced Stirling Convertors (ASC-E2s) and six thermal simulators, which simulate the thermal draw of full scale power conversion units. Thermal simulators and Stirling engines are gas cooled. The most recent project milestone was the completion of non-nuclear system level testing using an electrically heated depleted uranium (non-fissioning) reactor core simulator. System level testing at the Glenn Research Center (GRC) has validated performance predictions and has demonstrated system level operation and control in a test configuration that replicates the one to be used at the Device Assembly Facility (DAF) at the Nevada National Security Site. Fabrication, assembly, and testing of the depleted uranium core has allowed for higher fidelity system level testing at GRC, and has validated the fabrication methods to be used on the highly enriched uranium core that will supply heat for the DAF KRUSTY demonstration.
Projected techno-economic improvements for advanced solar thermal power plants
NASA Technical Reports Server (NTRS)
Fujita, T.; Manvi, R.; Roschke, E. J.
1979-01-01
The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.
Technologies for Upgrading Light Water Reactor Outlet Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar
Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessmentmore » of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.« less
NASA Astrophysics Data System (ADS)
Bercovici, David; Ricard, Yanick
2003-03-01
The two-phase theory for compaction and damage proposed by Bercovici et al. (2001a, J. Geophys. Res.,106, 8887-8906) employs a nonequilibrium relation between interfacial surface energy, pressure and viscous deformation, thereby providing a model for damage (void generation and microcracking) and a continuum description of weakening, failure and shear localization. Here we examine further variations of the model which consider (1) how interfacial surface energy, when averaged over the mixture, appears to be partitioned between phases; (2) how variability in deformational-work partitioning greatly facilitates localization; and (3) how damage and localization are manifested in heat output and bulk energy exchange. Microphysical considerations of molecular bonding and activation energy suggest that the apparent partitioning of surface energy between phases goes as the viscosity of the phases. When such partitioning is used in the two-phase theory, it captures the melt-compaction theory of McKenzie (1984, J. Petrol.,25, 713-765) exactly, as well as the void-damage theory proposed in a companion paper (Ricard & Bercovici, submitted). Calculations of 1-D shear localization with this variation of the theory still show at least three possible regimes of damage and localization: at low stress is weak localization with diffuse slowly evolving shear bands; at higher stress strong localization with narrow rapidly growing bands exists; and at yet higher shear stress it is possible for the system to undergo broadly distributed damage and no localization. However, the intensity of localization is strongly controlled by the variability of the deformational-work partitioning with dilation rate, represented by the parameter γ. For γ>> 1, extreme localization is allowed, with sharp profiles in porosity (weak zones), nearly discontinuous separation velocities and effectively singular dilation rates. Finally, the bulk heat output is examined for the 1-D system to discern how much deformational work is effectively stored as surface energy. In the high-stress, distributed-damage cases, heat output is reduced as more interfacial surface energy is created. Yet, in either the weak or strong localizing cases, the system always releases surface energy, regardless of the presence of damage or not, and thus slightly more heat is in fact released than energy is input through external work. Moreover, increased levels of damage (represented by the maximum work-partitioning f*) make the localizing system release surface energy faster as damage enhances phase separation and focusing of the porosity field, thus yielding more rapid loss of net interfacial surface area. However, when cases with different levels of damage are compared at similar stages of development (say, the peak porosity of the localization) it is apparent that increased damage causes smaller relative heat release and retards loss of net interfacial surface energy. The energetics and energy partitioning of this damage and shear-localization model are applied to estimating the energy costs of forming plate boundaries and generating plates from mantle convection.
DACS II - A distributed thermal/mechanical loads data acquisition and control system
NASA Technical Reports Server (NTRS)
Zamanzadeh, Behzad; Trover, William F.; Anderson, Karl F.
1987-01-01
A distributed data acquisition and control system has been developed for the NASA Flight Loads Research Facility. The DACS II system is composed of seven computer systems and four array processors configured as a main computer system, three satellite computer systems, and 13 analog input/output systems interconnected through three independent data networks. Up to three independent heating and loading tests can be run concurrently on different test articles or the entire system can be used on a single large test such as a full scale hypersonic aircraft. Thermal tests can include up to 512 independent adaptive closed loop control channels. The control system can apply up to 20 MW of heating to a test specimen while simultaneously applying independent mechanical loads. Each thermal control loop is capable of heating a structure at rates of up to 150 F per second over a temperature range of -300 to +2500 F. Up to 64 independent mechanical load profiles can be commanded along with thermal control. Up to 1280 analog inputs monitor temperature, load, displacement and strain on the test specimens with real time data displayed on up to 15 terminals as color plots and tabular data displays. System setup and operation is accomplished with interactive menu-driver displays with extensive facilities to assist the users in all phases of system operation.
NASA Astrophysics Data System (ADS)
Possemiers, Mathias; Huysmans, Marijke; Batelaan, Okke
2015-08-01
Adequate aquifer characterization and simulation using heat transport models are indispensible for determining the optimal design for aquifer thermal energy storage (ATES) systems and wells. Recent model studies indicate that meter-scale heterogeneities in the hydraulic conductivity field introduce a considerable uncertainty in the distribution of thermal energy around an ATES system and can lead to a reduction in the thermal recoverability. In a study site in Bierbeek, Belgium, the influence of centimeter-scale clay drapes on the efficiency of a doublet ATES system and the distribution of the thermal energy around the ATES wells are quantified. Multiple-point geostatistical simulation of edge properties is used to incorporate the clay drapes in the models. The results show that clay drapes have an influence both on the distribution of thermal energy in the subsurface and on the efficiency of the ATES system. The distribution of the thermal energy is determined by the strike of the clay drapes, with the major axis of anisotropy parallel to the clay drape strike. The clay drapes have a negative impact (3.3-3.6 %) on the energy output in the models without a hydraulic gradient. In the models with a hydraulic gradient, however, the presence of clay drapes has a positive influence (1.6-10.2 %) on the energy output of the ATES system. It is concluded that it is important to incorporate small-scale heterogeneities in heat transport models to get a better estimate on ATES efficiency and distribution of thermal energy.
NASA Astrophysics Data System (ADS)
Possemiers, Mathias; Huysmans, Marijke; Batelaan, Okke
2015-04-01
Adequate aquifer characterization and simulation using heat transport models are indispensible for determining the optimal design for Aquifer Thermal Energy Storage (ATES) systems and wells. Recent model studies indicate that meter scale heterogeneities in the hydraulic conductivity field introduce a considerable uncertainty in the distribution of thermal energy around an ATES system and can lead to a reduction in the thermal recoverability. In this paper, the influence of centimeter scale clay drapes on the efficiency of a doublet ATES system and the distribution of the thermal energy around the ATES wells are quantified. Multiple-point geostatistical simulation of edge properties is used to incorporate the clay drapes in the models. The results show that clay drapes have an influence both on the distribution of thermal energy in the subsurface and on the efficiency of the ATES system. The distribution of the thermal energy is determined by the strike of the clay drapes, with the major axis of anisotropy parallel to the clay drape strike. The clay drapes have a negative impact (3.3 - 3.6%) on the energy output in the models without a hydraulic gradient. In the models with a hydraulic gradient, however, the presence of clay drapes has a positive influence (1.6 - 10.2%) on the energy output of the ATES system. It is concluded that it is important to incorporate small scale heterogeneities in heat transport models to get a better estimate on ATES efficiency and distribution of thermal energy.
Optimum design on refrigeration system of high-repetition-frequency laser
NASA Astrophysics Data System (ADS)
Li, Gang; Li, Li; Jin, Yezhou; Sun, Xinhua; Mao, Shaojuan; Wang, Yuanbo
2014-12-01
A refrigeration system with fluid cycle, semiconductor cooler and air cooler is designed to solve the problems of thermal lensing effect and unstable output of high-repetition-frequency solid-state lasers. Utilizing a circulating water pump, water recycling system carries the water into laser cavity to absorb the heat then get to water cooling head. The water cooling head compacts cold spot of semiconductor cooling chips, so the heat is carried to hot spot which contacts the radiating fins, then is expelled through cooling fan. Finally, the cooled water return to tank. The above processes circulate to achieve the purposes of highly effective refrigeration in miniative solid-state lasers.The refrigeration and temperature control components are designed strictly to ensure refrigeration effect and practicability. we also set up a experiment to test the performances of this refrigeration system, the results show that the relationship between water temperature and cooling power of semiconductor cooling chip is linear at 20°C-30°C (operating temperature range of Nd:YAG), the higher of the water temperature, the higher of cooling power. According to the results, cooling power of single semiconductor cooling chip is above 60W, and the total cooling power of three semiconductor cooling chips achieves 200W that will satisfy the refrigeration require of the miniative solid-state lasers.The performance parameters of laser pulse are also tested, include pulse waveform, spectrogram and laser spot. All of that indicate that this refrigeration system can ensure the output of high-repetition-frequency pulse whit high power and stability.
Taberner, Andrew J; Johnston, Callum M; Pham, Toan; June-Chiew Han; Ruddy, Bryan P; Loiselle, Denis S; Nielsen, Poul M F
2015-08-01
We have developed a new `work-loop calorimeter' that is capable of measuring, simultaneously, the work-done and heat production of isolated cardiac muscle samples at body temperature. Through the innovative use of thermoelectric modules as temperature sensors, the development of a low-noise fluid-flow system, and implementation of precise temperature control, the heat resolution of this device is 10 nW, an improvement by a factor of ten over previous designs. These advances have allowed us to conduct the first flow-through measurements of work output and heat dissipation from cardiac tissue at body temperature. The mechanical efficiency is found to vary with peak stress, and reaches a peak value of approximately 15 %, a figure similar to that observed in cardiac muscle at lower temperatures.
Luo, E C; Ling, H; Dai, W; Yu, G Y
2006-12-22
In this paper, an experimental study of the effect of the resonator shape on the performance of a traveling-wave thermoacoustic engine is presented. Two different resonators were tested in the thermoacoustic-Stirling heat. One resonator is an iso-diameter one, and the other is a tapered one. To have a reasonable comparison reference, we keep the same traveling-wave loop, the same resonant frequency and the same operating pressure. The experiment showed that the resonator shape has significant influence on the global performance of the thermoacoustic-Stirling heat engine. The tapered resonator gives much better performance than the iso-diameter resonator. The tapered resonator system achieved a maximum pressure ratio of about 1.3, a maximum net acoustical power output of about 450 W and a highest thermoacoustic efficiency of about 25%.
NASA Astrophysics Data System (ADS)
Shi, Wangying; Han, Minfang
2017-09-01
A hybrid power generation system integrating catalytic gasification, solid oxide fuel cell (SOFC), oxygen transfer membrane (OTM) and gas turbine (GT) is established and system energy analysis is performed. In this work, the catalytic gasifier uses steam, recycled anode off-gas and pure oxygen from OTM system to gasify coal, and heated by hot cathode off-gas at the same time. A zero-dimension SOFC model is applied and verified by fitting experimental data. Thermodynamic analysis is performed to investigate the integrated system performance, and system sensitivities on anode off-gas back flow ratio, SOFC fuel utilization, temperature and pressure are discussed. Main conclusions are as follows: (1) System overall electricity efficiency reaches 60.7%(HHV) while the gasifier operates at 700 °C and SOFC at 850 °C with system pressure at 3.04 bar; (2) oxygen enriched combustion simplify the carbon-dioxide capture process, which derives CO2 of 99.2% purity, but results in a penalty of 6.7% on system electricity efficiency; (3) with SOFC fuel utilization or temperature increasing, the power output of SOFC increases while GT power output decreases, and increasing system pressure can improve both the performance of SOFC and GT.
Nuclear thermal propulsion engine system design analysis code development
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.
1992-01-01
A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.
Comparison of Stirling engines for use with a 25-kW disk-electric conversion system
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.
1987-01-01
Heat engines were evaluated for terrestrial solar heat receivers. The Stirling Engine was identified as one of the most promising engines for terrestrial applications. The potential to meet the Department of Energy (DOE) goals for performance and cost can be met by the free-piston Stirling engine. NASA Lewis is providing technical management for an Advanced Stirling Conversion System (ASCS) through a cooperative interagency agreement with DOE. Parallel contracts were awarded for conceptual designs of an ASCS. Each design will feature a free-piston Stirling engine, a liquid-metal heat pipe receiver, and a means to provide about 25 kW of electric power to a utility grid while meeting long-term performance and goals. The Mechanical Technology, Ins. (MTI) design incorporates a linear alternator to directly convert the solar energy to electricity while the Stirling Technology Company (STC) generates electrical power indirectly by using a hydraulic output to a ground-bases hydraulic pump/motor coupled to a rotating alternator. Both designs use technology which can reasonably be expected to be available in the 1980's. The ASCS designs using a free-piston Stirling engine, a heat transport system, a receiver, and the methods of providing electricity to the utility grid will be discussed.
Performance of a thermionic converter module utilizing emitter and collector heat pipes
NASA Technical Reports Server (NTRS)
Kroeger, E. W.; Morris, J. F.; Miskolczy, G.; Lieb, D. P.; Goodale, D. B.
1978-01-01
A thermionic converter module simulating a configuration for an out-of-core thermionic nuclear reactor was designed, fabricated, and tested. The module consists of three cylindrical thermionic converters. The tungsten emitter of the converter is heated by a tungsten, lithium heat pipe. The emitter heat pipes are immersed in a furnace, insulated by MULTI-FOIL thermal insulation, and heated by tungsten radiation filaments. The performance of each thermionic converter was characterized before assembly into the module. Dynamic voltage, current curves were taken using a 60 Hz sweep and computerized data acquisition over a range of emitter, collector, and cesium-reservoir temperatures. An output power of 215 W was observed at an emitter temperature of 1750 K and a collector temperature of 855 K for a two diode module. With a three diode module, an output power of 270 W was observed at an average emitter temperature of 1800 K and a Collector temperature of 875 K.
Criteria for the evaluation of laser solar energy converter systems
NASA Technical Reports Server (NTRS)
Harries, W. L.
1985-01-01
Assuming that a parabolic insolation-collection mirror-based solar pumped laser has a collector and heat emitter whose weights are proportional to their areas, and that the weight of the laser is negligible by comparison, the output power/unit weight can be expressed in terms of the efficiencies and working temperatures of the system. This ratio appears to be several times higher for an IBr laser than for one operating on C3F7I, because the solar utilization efficiency is greater for the former despite its lower working temperature.
NASA Astrophysics Data System (ADS)
Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.
2016-02-01
A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.
Solar dynamic heat receiver technology
NASA Technical Reports Server (NTRS)
Sedgwick, Leigh M.
1991-01-01
A full-size, solar dynamic heat receiver was designed to meet the requirements specified for electrical power modules on the U.S. Space Station, Freedom. The heat receiver supplies thermal energy to power a heat engine in a closed Brayton cycle using a mixture of helium-xenon gas as the working fluid. The electrical power output of the engine, 25 kW, requires a 100 kW thermal input throughout a 90 minute orbit, including when the spacecraft is eclipsed for up to 36 minutes from the sun. The heat receiver employs an integral thermal energy storage system utilizing the latent heat available through the phase change of a high-temperature salt mixture. A near eutectic mixture of lithium fluoride and calcium difluoride is used as the phase change material. The salt is contained within a felt metal matrix which enhances heat transfer and controls the salt void distribution during solidification. Fabrication of the receiver is complete and it was delivered to NASA for verification testing in a simulated low-Earth-orbit environment. This document reviews the receiver design and describes its fabrication history. The major elements required to operate the receiver during testing are also described.
Calorimetric system and method
Gschneidner, K.A. Jr.; Pecharsky, V.K.; Moorman, J.O.
1998-09-15
Apparatus is described for measuring heat capacity of a sample where a series of measurements are taken in succession comprises a sample holder in which a sample to be measured is disposed, a temperature sensor and sample heater for providing a heat pulse thermally connected to the sample, and an adiabatic heat shield in which the sample holder is positioned and including an electrical heater. An electrical power supply device provides an electrical power output to the sample heater to generate a heat pulse. The electrical power from a power source to the heat shield heater is adjusted by a control device, if necessary, from one measurement to the next in response to a sample temperature-versus-time change determined before and after a previous heat pulse to provide a subsequent sample temperature-versus-time change that is substantially linear before and after the subsequent heat pulse. A temperature sensor is used and operable over a range of temperatures ranging from approximately 3K to 350K depending upon the refrigerant used. The sample optionally can be subjected to dc magnetic fields such as from 0 to 12 Tesla (0 to 120 kOe). 18 figs.
40 CFR 60.4420 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... combustion turbine which recovers heat from the exhaust gases to heat water or another medium, generate steam... turbines used to pump water in the case of fire or flood, etc. Emergency stationary combustion turbines do... mechanical output from the turbine/generator set. For combined heat and power units, the gross useful work...
40 CFR 60.4420 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... combustion turbine which recovers heat from the exhaust gases to heat water or another medium, generate steam... turbines used to pump water in the case of fire or flood, etc. Emergency stationary combustion turbines do... mechanical output from the turbine/generator set. For combined heat and power units, the gross useful work...
A numerical model on thermodynamic analysis of free piston Stirling engines
NASA Astrophysics Data System (ADS)
Mou, Jian; Hong, Guotong
2017-02-01
In this paper, a new numerical thermodynamic model which bases on the energy conservation law has been used to analyze the free piston Stirling engine. In the model all data was taken from a real free piston Stirling engine which has been built in our laboratory. The energy conservation equations have been applied to expansion space and compression space of the engine. The equation includes internal energy, input power, output power, enthalpy and the heat losses. The heat losses include regenerative heat conduction loss, shuttle heat loss, seal leakage loss and the cavity wall heat conduction loss. The numerical results show that the temperature of expansion space and the temperature of compression space vary with the time. The higher regeneration effectiveness, the higher efficiency and bigger output work. It is also found that under different initial pressures, the heat source temperature, phase angle and engine work frequency pose different effects on the engine’s efficiency and power. As a result, the model is expected to be a useful tool for simulation, design and optimization of Stirling engines.
NASA Astrophysics Data System (ADS)
Woodland, Brandon Jay
An organic Rankine cycle (ORC) is a thermodynamic cycle that is well-suited for waste heat recovery. It is generally employed for waste heat with temperatures in the range of 80 °C -- 300 °C. When the application is strictly to convert waste heat into work, thermal efficiency is not recommended as a key performance metric. In such an application, maximization of the net power output should be the objective rather than maximization of the thermal efficiency. Two alternative cycle configurations that can increase the net power produced from a heat source with a given temperature and flow rate are proposed and analyzed. These cycle configurations are 1) an ORC with two-phase flash expansion and 2) an ORC with a zeotropic working fluid mixture (ZRC). A design-stage ORC model is presented for consistent comparison of multiple ORC configurations. The finite capacity of the heat source and heat sink fluids is a key consideration in this model. Of all working fluids studied for the baseline ORC, R134a and R245fa yield the highest net power output from a given heat source. Results of the design-stage model indicate that the ORC with two-phase flash expansion offers the most improvement over the baseline ORC. However, the level of improvement that could be achieved in practice is highly uncertain due to the requirement of highly efficient two-phase expansion. The ZRC shows improvement over the baseline as long as the condenser fan power requirement is not negligible. At the highest estimated condenser fan power, the ZRC shows the most improvement, while the ORC with flash expansion is no longer beneficial. The ZRC was selected for detailed study because it does not require two-phase expansion. An experimental test rig was used to evaluate baseline ORC performance with R134a and with R245fa. The ZRC was tested on the same rig with a mixture of 62.5% R134a and 37.5% R245fa. The tested expander is a minimally-modified, of-the-shelf automotive scroll compressor. The high performance to cost ratio of this machine lends significant credence to the economic viability of small-scale, low-temperature ORCs. The experimental campaign covered two heat source temperatures, the full range of pump and expander speeds, a full range of heat source and heat sink fluid flow rates, and various charge levels for the three working fluids. This resulted in 366 steady-state measurements. The steady state measurements are used to develop a detailed ORC model. The model is based on multi-fluid performance maps for the pump and expander and a robust moving-boundary heat exchanger model. It is validated against the measured data and predicts the net power output of the tested ORC with a mean absolute percent error of 7.16%. Comparisons made with the detailed model confirm the predictions of the design-stage model. Using a conservative estimate of the condenser fan power, 19.1% improvement of the ZRC over the baseline ORC is indicated for a source temperature of 80 °C. For a 100 °C source temperature, 13.8% improvement is indicated. A key feature of the detailed ORC model is that it calculates the charge inventory of the working fluid in each heat exchanger and line set. Total system charge can also be specified as a model input. The model can represent the total charge well for R134a at low measured charge levels. As the measured charge level increases, the model becomes less accurate. Reasons for the deviation of the model at higher charge are investigated. It is expected that a charge tuning scheme could be employed to improve the accuracy of model-predicted charge.
Thermomagnetic recording and magnetic-optic playback system
NASA Technical Reports Server (NTRS)
Lewicki, G. W.; Guisinger, J. E. (Inventor)
1971-01-01
A magnetic recording and magneto-optic playback system is disclosed wherein thermomagnetic recording is employed. A transparent isotropic film is heated along a continuous path by a focused laser beam. As each successive area of the path is heated locally to the vicinity of its Curie point in the presence of an applied magnetic field, a magneto-optic density is established proportional to the magnetic field and fixed in place as the area cools once the laser beam moves on to an adjacent area. To play back the recorded data, the intensity of the laser beam is reduced to avoid reaching the vicinity of the Curie point of the film as it is scanned by the laser beam in the same manner as for recording. A Faraday effect analyzer and photo detector are employed as a transducer for producing an output signal.
Historical warnings of future food insecurity with unprecedented seasonal heat.
Battisti, David S; Naylor, Rosamond L
2009-01-09
Higher growing season temperatures can have dramatic impacts on agricultural productivity, farm incomes, and food security. We used observational data and output from 23 global climate models to show a high probability (>90%) that growing season temperatures in the tropics and subtropics by the end of the 21st century will exceed the most extreme seasonal temperatures recorded from 1900 to 2006. In temperate regions, the hottest seasons on record will represent the future norm in many locations. We used historical examples to illustrate the magnitude of damage to food systems caused by extreme seasonal heat and show that these short-run events could become long-term trends without sufficient investments in adaptation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yazawa, Kazuaki; Shakouri, Ali
The energy conversion efficiency of today’s thermoelectric generators is significantly lower than that of conventional mechanical engines. Almost all of the existing research is focused on materials to improve the conversion efficiency. Here we propose a general framework to study the cost-efficiency trade-off for thermoelectric power generation. A key factor is the optimization of thermoelectric modules together with their heat source and heat sinks. Full electrical and thermal co-optimization yield a simple analytical expression for optimum design. Based on this model, power output per unit mass can be maximized. We show that the fractional area coverage of thermoelectric elements inmore » a module could play a significant role in reducing the cost of power generation systems.« less
Feedback regulated induction heater for a flowing fluid
Migliori, Albert; Swift, Gregory W.
1985-01-01
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Feedback regulated induction heater for a flowing fluid
Migliori, A.; Swift, G.W.
1984-06-13
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Burner liner thermal/structural load modeling: TRANCITS program user's manual
NASA Technical Reports Server (NTRS)
Maffeo, R.
1985-01-01
Transfer Analysis Code to Interface Thermal/Structural Problems (TRANCITS) is discussed. The TRANCITS code satisfies all the objectives for transferring thermal data between heat transfer and structural models of combustor liners and it can be used as a generic thermal translator between heat transfer and stress models of any component, regardless of the geometry. The TRANCITS can accurately and efficiently convert the temperature distributions predicted by the heat transfer programs to those required by the stress codes. It can be used for both linear and nonlinear structural codes and can produce nodal temperatures, elemental centroid temperatures, or elemental Gauss point temperatures. The thermal output of both the MARC and SINDA heat transfer codes can be interfaced directly with TRANCITS, and it will automatically produce stress model codes formatted for NASTRAN and MARC. Any thermal program and structural program can be interfaced by using the neutral input and output forms supported by TRANCITS.
Thermal resistance of etched-pillar vertical-cavity surface-emitting laser diodes
NASA Astrophysics Data System (ADS)
Wipiejewski, Torsten; Peters, Matthew G.; Young, D. Bruce; Thibeault, Brian; Fish, Gregory A.; Coldren, Larry A.
1996-03-01
We discuss our measurements on thermal impedance and thermal crosstalk of etched-pillar vertical-cavity lasers and laser arrays. The average thermal conductivity of AlAs-GaAs Bragg reflectors is estimated to be 0.28 W/(cmK) and 0.35W/(cmK) for the transverse and lateral direction, respectively. Lasers with a Au-plated heat spreading layer exhibit a 50% lower thermal impedance compared to standard etched-pillar devices resulting in a significant increase of maximum output power. For an unmounted laser of 64 micrometer diameter we obtain an improvement in output power from 20 mW to 42 mW. The experimental results are compared with a simple analytical model showing the importance of heat sinking for maximizing the output power of vertical-cavity lasers.
NASA Astrophysics Data System (ADS)
Khargotra, Rohit; Dhingra, Sunil; Chauhan, Ranchan; Singh, Tej
2018-05-01
The effective use of solar energy is hindered by the intermittent nature of its availability, limiting its use and effectiveness in domestic and industrial applications especially in water heating. In the present paper, the performance of different turbulator shapes in solar water heating collector system has been studied experimentally and comparison on the output performance has been carried out. Effects of insertion of coil-spring turbulator on heat transfer rate, mass flow rate, heat gain by the fluid etc. is studied by disturbing the flow inside the absorber tubes in a solar flat plate collector. The coil-spring used as a turbulator is placed inside the absorber tube which creates a continuous swirling flow along the tube wall. The results of the heat transfer have been compared well with the available results. The heat transfer rate in the collector has been found to be increased by 18% to 70%. Solar water heater having inserts in the flow tubes perform better than the conventional plain ones. It has been observed that heat losses are reduced consequently increasing the thermal performance to about 70% over the plain water heater under same operating conditions. The coil-spring used as a turbulator is placed inside the riser tube while the twisted tape is inserted into the wire coil to create a continuous swirling flow along the tube wall. The results of the heat transfer have been compared with the available results. Solar water heater having inserts in the flow tubes perform better than the conventional plain ones.
Prediction of Experimental Surface Heat Flux of Thin Film Gauges using ANFIS
NASA Astrophysics Data System (ADS)
Sarma, Shrutidhara; Sahoo, Niranjan; Unal, Aynur
2018-05-01
Precise quantification of surface heat fluxes in highly transient environment is of paramount importance from the design point of view of several engineering equipment like thermal protection or cooling systems. Such environments are simulated in experimental facilities by exposing the surface with transient heat loads typically step/impulsive in nature. The surface heating rates are then determined from highly transient temperature history captured by efficient surface temperature sensors. The classical approach is to use thin film gauges (TFGs) in which temperature variations are acquired within milliseconds, thereby allowing calculation of surface heat flux, based on the theory of one-dimensional heat conduction on a semi-infinite body. With recent developments in the soft computing methods, the present study is an attempt for the application of intelligent system technique, called adaptive neuro fuzzy inference system (ANFIS) to recover surface heat fluxes from a given temperature history recorded by TFGs without having the need to solve lengthy analytical equations. Experiments have been carried out by applying known quantity of `impulse heat load' through laser beam on TFGs. The corresponding voltage signals have been acquired and surface heat fluxes are estimated through classical analytical approach. These signals are then used to `train' the ANFIS model, which later predicts output for `test' values. Results from both methods have been compared and these surface heat fluxes are used to predict the non-linear relationship between thermal and electrical properties of the gauges that are exceedingly pertinent to the design of efficient TFGs. Further, surface plots have been created to give an insight about dimensionality effect of the non-linear dependence of thermal/electrical parameters on each other. Later, it is observed that a properly optimized ANFIS model can predict the impulsive heat profiles with significant accuracy. This paper thus shows the appropriateness of soft computing technique as a practically constructive replacement for tedious analytical formulation and henceforth, effectively quantifies the modeling of TFGs.
NASA Astrophysics Data System (ADS)
Liu, Qiao; Liu, Yinghui; Chen, Zhaowei; Niu, Xinjian; Li, Hongfu; Xu, Jianhua
2018-04-01
The interaction cavity of a 140 GHz, 1 MW continuous wave gyrotron developed in UESTC will be loaded with a very large heat load in the inner surface during operation. In order to reduce the heat, the axial wedge grooves of the outside surface of the cavity are considered and employed as the heat radiation structure. Thermoanalysis and structural analysis were discussed in detail to obtain the effects of heat on the cavity. In thermoanalysis, the external coolant-flow rates ranging from 20 L/min to 50 L/min were considered, and the distribution of wall loading was loaded as the heat flux source. In structural analysis, the cavity's deformation caused by the loads of heat and pressure was calculated. Compared with a non-deformed cavity, the effects of deformation on the performance of a cavity were discussed. For a cold-cavity, the results show that the quality factor would be reduced by 72, 89, 99 and 171 at the flow rates of 50 L/min, 40 L/min, 30 L/min and 20 L/min, respectively. Correspondingly, the cold-cavity frequencies would be decreased by 0.13 GHz, 0.15 GHz, 0.19 GHz and 0.38 GHz, respectively. For a hot-cavity, the results demonstrate that the output port frequencies would be dropped down, but the offset would be gradually decreased with increasing coolant-flow rate. Meanwhile, the output powers would be reduced dramatically with decreasing coolant-flow rate. In addition, when the coolant-flow rate reaches 40 L/min, the output power and the frequency are just reduced by 30 kW and 0.151 GHz, respectively.
NASA Astrophysics Data System (ADS)
Dickenson, Nicholas E.; Erickson, Elizabeth S.; Mooren, Olivia L.; Dunn, Robert C.
2007-05-01
Tip-induced sample heating in near-field scanning optical microscopy (NSOM) is studied for fiber optic probes fabricated using the chemical etching technique. To characterize sample heating from etched NSOM probes, the spectra of a thermochromic polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM probes. The results reveal that sample heating increases rapidly to ˜55-60°C as output powers reach ˜50nW. At higher output powers, the sample heating remains approximately constant up to the maximum power studied of ˜450nW. The sample heating profiles measured for etched NSOM probes are consistent with those previously measured for NSOM probes fabricated using the pulling method. At high powers, both pulled and etched NSOM probes fail as the aluminum coating is damaged. For probes fabricated in our laboratory we find failure occurring at input powers of 3.4±1.7 and 20.7±6.9mW for pulled and etched probes, respectively. The larger half-cone angle for etched probes (˜15° for etched and ˜6° for pulled probes) enables more light delivery and also apparently leads to a different failure mechanism. For pulled NSOM probes, high resolution images of NSOM probes as power is increased reveal the development of stress fractures in the coating at a taper diameter of ˜6μm. These stress fractures, arising from the differential heating expansion of the dielectric and the metal coating, eventually lead to coating removal and probe failure. For etched tips, the absence of clear stress fractures and the pooled morphology of the damaged aluminum coating following failure suggest that thermal damage may cause coating failure, although other mechanisms cannot be ruled out.
Dickenson, Nicholas E; Erickson, Elizabeth S; Mooren, Olivia L; Dunn, Robert C
2007-05-01
Tip-induced sample heating in near-field scanning optical microscopy (NSOM) is studied for fiber optic probes fabricated using the chemical etching technique. To characterize sample heating from etched NSOM probes, the spectra of a thermochromic polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM probes. The results reveal that sample heating increases rapidly to approximately 55-60 degrees C as output powers reach approximately 50 nW. At higher output powers, the sample heating remains approximately constant up to the maximum power studied of approximately 450 nW. The sample heating profiles measured for etched NSOM probes are consistent with those previously measured for NSOM probes fabricated using the pulling method. At high powers, both pulled and etched NSOM probes fail as the aluminum coating is damaged. For probes fabricated in our laboratory we find failure occurring at input powers of 3.4+/-1.7 and 20.7+/-6.9 mW for pulled and etched probes, respectively. The larger half-cone angle for etched probes ( approximately 15 degrees for etched and approximately 6 degrees for pulled probes) enables more light delivery and also apparently leads to a different failure mechanism. For pulled NSOM probes, high resolution images of NSOM probes as power is increased reveal the development of stress fractures in the coating at a taper diameter of approximately 6 microm. These stress fractures, arising from the differential heating expansion of the dielectric and the metal coating, eventually lead to coating removal and probe failure. For etched tips, the absence of clear stress fractures and the pooled morphology of the damaged aluminum coating following failure suggest that thermal damage may cause coating failure, although other mechanisms cannot be ruled out.
Effect of Heat and Heat Acclimatization on Cycling Time Trial Performance and Pacing
RACINAIS, SEBASTIEN; PÉRIARD, JULIEN D.; KARLSEN, ANDERS; NYBO, LARS
2015-01-01
ABSTRACT Purpose This study aimed to determine the effects of heat acclimatization on performance and pacing during outdoor cycling time trials (TT, 43.4 km) in the heat. Methods Nine cyclists performed three TT in hot ambient conditions (TTH, approximately 37°C) on the first (TTH-1), sixth (TTH-2), and 14th (TTH-3) days of training in the heat. Data were compared with the average of two TT in cool condition (approximately 8°C) performed before and after heat acclimatization (TTC). Results TTH-1 (77 ± 6 min) was slower (P = 0.001) than TTH-2 (69 ± 5 min), and both were slower (P < 0.01) than TTC and TTH-3 (66 ± 3 and 66 ± 4 min, respectively), without differences between TTC and TTH-3 (P > 0.05). The cyclists initiated the first 20% of all TT at a similar power output, irrespective of climate and acclimatization status; however, during TTH-1, they subsequently had a marked decrease in power output, which was partly attenuated after 6 d of acclimatization and was further reduced after 14 d. HR was higher during the first 20% of TTH-1 than that in the other TT (P < 0.05), but there were no differences between conditions from 30% onward. Final rectal temperature was similar in all TTH (40.2°C ± 0.4°C, P = 1.000) and higher than that in TTC (38.5°C ± 0.6°C, P < 0.001). Conclusions After 2 wk of acclimatization, trained cyclists are capable of completing a prolonged TT in a similar time in the heat compared with cool conditions, whereas in the unacclimatized state, they experienced a marked decrease in power output during the TTH. PMID:24977692
Effect of heat and heat acclimatization on cycling time trial performance and pacing.
Racinais, Sebastien; Périard, Julien D; Karlsen, Anders; Nybo, Lars
2015-03-01
This study aimed to determine the effects of heat acclimatization on performance and pacing during outdoor cycling time trials (TT, 43.4 km) in the heat. Nine cyclists performed three TT in hot ambient conditions (TTH, approximately 37°C) on the first (TTH-1), sixth (TTH-2), and 14th (TTH-3) days of training in the heat. Data were compared with the average of two TT in cool condition (approximately 8°C) performed before and after heat acclimatization (TTC). TTH-1 (77 ± 6 min) was slower (P = 0.001) than TTH-2 (69 ± 5 min), and both were slower (P < 0.01) than TTC and TTH-3 (66 ± 3 and 66 ± 4 min, respectively), without differences between TTC and TTH-3 (P > 0.05). The cyclists initiated the first 20% of all TT at a similar power output, irrespective of climate and acclimatization status; however, during TTH-1, they subsequently had a marked decrease in power output, which was partly attenuated after 6 d of acclimatization and was further reduced after 14 d. HR was higher during the first 20% of TTH-1 than that in the other TT (P < 0.05), but there were no differences between conditions from 30% onward. Final rectal temperature was similar in all TTH (40.2°C ± 0.4°C, P = 1.000) and higher than that in TTC (38.5°C ± 0.6°C, P < 0.001). After 2 wk of acclimatization, trained cyclists are capable of completing a prolonged TT in a similar time in the heat compared with cool conditions, whereas in the unacclimatized state, they experienced a marked decrease in power output during the TTH.
Untermyer, S.
1962-04-10
A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)
Low-Loss Coupler For Microwave Laser-Diode Modulation
NASA Technical Reports Server (NTRS)
Toda, Minoru
1991-01-01
Elimination of series resistor reduces loss of radio-frequency power. Quarter-wavelength matching section connected to transmission line eliminates need for resistor near laser diode and extends frequency response of system. Concept significantly extends relatively flat frequency response of laser diode or similar component, while simplifying design of its package, increasing amplitude of output signal, and reducing dissipation of heat by eliminating resistance. Phase characteristics approximately linear and any digital information transmitted not significantly altered.
Life Cycle Assessment of Mixed Municipal Solid Waste: Multi-input versus multi-output perspective.
Fiorentino, G; Ripa, M; Protano, G; Hornsby, C; Ulgiati, S
2015-12-01
This paper analyses four strategies for managing the Mixed Municipal Solid Waste (MMSW) in terms of their environmental impacts and potential advantages by means of Life Cycle Assessment (LCA) methodology. To this aim, both a multi-input and a multi-output approach are applied to evaluate the effect of these perspectives on selected impact categories. The analyzed management options include direct landfilling with energy recovery (S-1), Mechanical-Biological Treatment (MBT) followed by Waste-to-Energy (WtE) conversion (S-2), a combination of an innovative MBT/MARSS (Material Advanced Recovery Sustainable Systems) process and landfill disposal (S-3), and finally a combination of the MBT/MARSS process with WtE conversion (S-4). The MARSS technology, developed within an European LIFE PLUS framework and currently implemented at pilot plant scale, is an innovative MBT plant having the main goal to yield a Renewable Refined Biomass Fuel (RRBF) to be used for combined heat and power production (CHP) under the regulations enforced for biomass-based plants instead of Waste-to-Energy systems, for increased environmental performance. The four scenarios are characterized by different resource investment for plant and infrastructure construction and different quantities of matter, heat and electricity recovery and recycling. Results, calculated per unit mass of waste treated and per unit exergy delivered, under both multi-input and multi-output LCA perspectives, point out improved performance for scenarios characterized by increased matter and energy recovery. Although none of the investigated scenarios is capable to provide the best performance in all the analyzed impact categories, the scenario S-4 shows the best LCA results in the human toxicity and freshwater eutrophication categories, i.e. the ones with highest impacts in all waste management processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
800 Hours of Operational Experience from a 2 kW(sub e) Solar Dynamic System
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Mason, Lee S.
1999-01-01
From December 1994 to September 1998, testing with a 2 kW(sub e) Solar Dynamic power system resulted in 33 individual tests, 886 hours of solar heating, and 783 hours of power generation. Power generation ranged from 400 watts to over 2 kW(sub e), and SD system efficiencies have been measured up to 17 per cent, during simulated low-Earth orbit operation. Further, the turbo-alternator-compressors successfully completed 100 start/stops on foil bearings. Operation was conducted in a large thermal/vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Solar Dynamic system featured a closed Brayton conversion unit integrated with a solar heat receiver, which included thermal energy storage for continuous power output through a typical low-Earth orbit. Two power conversion units and three alternator configurations were used during testing. This paper will review the test program, provide operational and performance data, and review a number of technology issues.
A Rocket Engine Design Expert System
NASA Technical Reports Server (NTRS)
Davidian, Kenneth J.
1989-01-01
The overall structure and capabilities of an expert system designed to evaluate rocket engine performance are described. The expert system incorporates a JANNAF standard reference computer code to determine rocket engine performance and a state of the art finite element computer code to calculate the interactions between propellant injection, energy release in the combustion chamber, and regenerative cooling heat transfer. Rule-of-thumb heuristics were incorporated for the H2-O2 coaxial injector design, including a minimum gap size constraint on the total number of injector elements. One dimensional equilibrium chemistry was used in the energy release analysis of the combustion chamber. A 3-D conduction and/or 1-D advection analysis is used to predict heat transfer and coolant channel wall temperature distributions, in addition to coolant temperature and pressure drop. Inputting values to describe the geometry and state properties of the entire system is done directly from the computer keyboard. Graphical display of all output results from the computer code analyses is facilitated by menu selection of up to five dependent variables per plot.
NASA Technical Reports Server (NTRS)
Turner, Mark; Zhou, Wei-Jia; Doty, Laura (Technical Monitor)
2000-01-01
To maximize the use of available resources provided onboard the International Space Station, the development of an efficient lighting 1 system is critical to the overall performance of the CPBF. Not only is it important to efficiently generate photon energy, but thermal loads on the CPBF Temperature and Humidity Control System must be minimized. By utilizing optical coatings designed to produce highly diffuse reflectance in the visible wavelengths while minimizing reflectance in the infrared region, the design of the fluorescent light module for the CPBF is optimized for maximum photon flux, spatial uniformity and energy efficiency. Since the Fluorescent Light Module must be fully enclosed to meet (ISS) requirements for containment of particulates and toxic materials, heat removal from the lights presented some unique design challenges. By using the Express Rack moderate C, temperature-cooling loop, heat is rejected by means of a liquid/air coolant manifold. Heat transfer to the manifold is performed by conduction using copper fins, by forced air convection using miniature fans, and by radiation using optically selective coatings that absorb in the infrared wavelengths. Using this combination of heat transfer mechanisms builds in redundancy to prevent thermal build up and premature bulb failure.
NASA Astrophysics Data System (ADS)
Sun, Huafei; Darmofal, David L.
2014-12-01
In this paper we propose a new high-order solution framework for interface problems on non-interface-conforming meshes. The framework consists of a discontinuous Galerkin (DG) discretization, a simplex cut-cell technique, and an output-based adaptive scheme. We first present a DG discretization with a dual-consistent output evaluation for elliptic interface problems on interface-conforming meshes, and then extend the method to handle multi-physics interface problems, in particular conjugate heat transfer (CHT) problems. The method is then applied to non-interface-conforming meshes using a cut-cell technique, where the interface definition is completely separate from the mesh generation process. No assumption is made on the interface shape (other than Lipschitz continuity). We then equip our strategy with an output-based adaptive scheme for an accurate output prediction. Through numerical examples, we demonstrate high-order convergence for elliptic interface problems and CHT problems with both smooth and non-smooth interface shapes.
Changes in Extreme Events: from GCM Output to Social, Economic and Ecological Impacts
NASA Astrophysics Data System (ADS)
Tebaldi, C.; Meehl, G. A.
2006-12-01
Extreme events can deeply affect social and natural systems. The current generation of global climate model is producing information that can be directly used to characterize future changes in extreme events, and through a further step their impacts, despite their still relatively coarse resolution. It is important to define extreme indicators consistently with what we expect GCM to be able to represent reliably. We use two examples from our work, heat waves and frost days, that well describe different aspects of the analysis of extremes from GCM output. Frost days are "mild extremes" and their definition and computation is straightforward. GCMs can represent them accurately and display a strong consistent signal of change. The impacts of these changes will be extremely relevant for ecosystems and agriculture. Heat waves do not have a standard definition. On the basis of historical episodes we isolate characteristics that were responsible for the worst effects on human health, for example, and analyze these characteristics in model simulations, validating the model's historical simulations. The changes in these characteristics can then be easily translated in expected differential impacts on public health. Work in progress goes in the direction of better characterization of "heat waves" taking into account jointly a set of variables like maximum and minimum temperatures and humidity, better addressing the biological vulnerabilities of the populations at risk.
Thermodynamic analysis of performance improvement by reheat on the CO2 transcritical power cycle
NASA Astrophysics Data System (ADS)
Tuo, Hanfei
2012-06-01
The CO2 transcritical rankine power cycle has been widely investigated recently, because of its better temperature glide matching between sensible heat source and working fluid in vapor generator, and its desirable qualities, such as moderate critical point, little environment impact and low cost. A reheat CO2 transcritical power cycle with two stage expansion is presented to improve baseline cycle performance in this paper. Energy and exergy analysis are carried out to investigate effects of important parameters on cycle performance. The main results show that reheat cycle performance is sensitive to the variation of medium pressures and the optimum medium pressures exist for maximizing work output and thermal efficiency, respectively. Reheat cycle is compared to baseline cycle under the same conditions. More significant improvements by reheat are obtained at lower turbine inlet temperatures and larger high cycle pressure. Work output improvement is much higher than thermal efficiency improvement, because extra waste heat is required to reheat CO2. Based on second law analysis, exergy efficiency of reheat cycle is also higher than that of baseline cycle, because more useful work is converted from waste heat. Reheat with two stage expansion has great potential to improve thermal efficiency and especially net work output of a CO2 transcritical power cycle using a low-grade heat source.
A Novel Approach to Thermal Design of Solar Modules: Selective-Spectral and Radiative Cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xingshu; Dubey, Rajiv; Chattopadhyay, Shashwata
2016-11-21
For commercial solar modules, up to 80% of the incoming sunlight may be dissipated as heat, potentially raising the temperature 20-30 degrees C higher than the ambient. In the long run, extreme self-heating may erode efficiency and shorten lifetime, thereby, dramatically reducing the total energy output by almost ~10% Therefore, it is critically important to develop effective and practical cooling methods to combat PV self-heating. In this paper, we explore two fundamental sources of PV self-heating, namely, sub-bandgap absorption and imperfect thermal radiation. The analysis suggests that we redesign the optical and thermal properties of the solar module to eliminatemore » the parasitic absorption (selective-spectral cooling) and enhance the thermal emission to the cold cosmos (radiative cooling). The proposed technique should cool the module by ~10 degrees C, to be reflected in significant long-term energy gain (~ 3% to 8% over 25 years) for PV systems under different climatic conditions.« less
Our Roads, A Large Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Weiss, I.
2017-12-01
If asphalt can heat up from the solar radiation shining onto it directly, then it will be able to heat water in pipes within the pavement. The heat from the warm water can then be harvested into usable electrical energy, because heat energy can be transformed into electrical energy using the Seebeck Effect. The Seebeck Effect is when a temperature difference causes electrons to move away from the heat, creating an electrical charge. My experiment showed my research-based hypothesis correct. I hypothesized that if asphalt can heat up from the solar radiation shining onto it directly, then it would be able to warm a water system and usable energy could be harvested, because heat energy can be transformed into electrical energy. Asphalt pavement does not reflect the sunlight and hence heats up faster than a light surface that would reflect the sunlight. This means the asphalt absorbs the sunlight and gives off heat, which is wasted energy. By turning heat energy into electricity, cities can provide a source of clean, green energy and reduce their reliance on fossil fuels. The heat given off by asphalt increases the temperature of the air around, contributing to what is known as the urban heat island effect. This heating contributes to the formation of smog and ozone depletion. With the population still growing this would mean increasing city sizes, greater heat island effect and hence an increase in smog and ozone depletion. By harvesting the heat energy in the pavement through my setup, cities can not only create green energy but also reduce the heat radiated from pavement. Converting my system to a neighborhood street would produce higher output. My street measures 800 feet long by 35 feet wide. That gives us 28,000 square feet. At the rate of 5 volts per minute for a 2 square foot area, my street would be able to produce 70,000 volts per minute.
Ally, Moonis R.; Sharma, Vishaldeep; Abdelaziz, Omar
2017-02-21
The choice of driving a heat pump with an electrically$-$or a thermally-driven engine is a vexing question complicated by the carbon footprint and environmental impact of using electricity versus natural gas (or waste heat) as the main driver for the respective engines. The amount of useful work generated by these two distinct engines is the focal point of this paper, which addresses a key question: which engine presents a better choice for a given heat pumping application within the constraints of energy and environmental stewardship? Extensive use of energy, exergy, and availability analysis is necessary to quantify the useful workmore » and to examine the issue holistically for both types of engines. The methodology explains why the output of work from these two distinct engines to satisfy a given load is vastly different, a direct consequence of their inherent Irreversibility. Thermodynamic consistency is guaranteed by satisfaction of the First and Second Laws applied to closed systems and their subsystems. The general conclusion is that thermally-driven engines are not industrious converters of heat to mechanical work.« less
SERI Solar Energy Storage Program: FY 1984
NASA Astrophysics Data System (ADS)
Luft, W.; Bohn, M.; Copeland, R. J.; Kreith, F.; Nix, R. G.
1985-02-01
The activities of the Solar Energy Research Institute's Solar Energy Research Institute's Solar Energy Storage Program during its sixth year are summarized. During FY 1984 a study was conducted to identify the most promising high-temperature containment concepts considering corrosion resistance, material strength at high temperature, reliability of performance, and cost. Of the two generic types of high-temperature thermal storage concepts, the single-tank system was selected using a two-medium approach to the thermocline maintenance. This concept promises low costs, but further research is required. A conceptual design for a sand-to-air direct-contact heat exchanger was developed using dual-lock hoppers to introduce the sand into the fluidized-bed exchanger, and using cyclones to remove sand particles from the output air stream. Preliminary cost estimates indicate heat exchanger subsystem annual levelized costs of about $4/GJ with compressor costs of an additional $0.75/GJ. An economic analysis comparing sensible and latent heat storage for nitrate and carbonate salts with solely sensible heat storage showed 3%-21% cost savings with combined sensible and latent heat storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ally, Moonis R.; Sharma, Vishaldeep; Abdelaziz, Omar
The choice of driving a heat pump with an electrically$-$or a thermally-driven engine is a vexing question complicated by the carbon footprint and environmental impact of using electricity versus natural gas (or waste heat) as the main driver for the respective engines. The amount of useful work generated by these two distinct engines is the focal point of this paper, which addresses a key question: which engine presents a better choice for a given heat pumping application within the constraints of energy and environmental stewardship? Extensive use of energy, exergy, and availability analysis is necessary to quantify the useful workmore » and to examine the issue holistically for both types of engines. The methodology explains why the output of work from these two distinct engines to satisfy a given load is vastly different, a direct consequence of their inherent Irreversibility. Thermodynamic consistency is guaranteed by satisfaction of the First and Second Laws applied to closed systems and their subsystems. The general conclusion is that thermally-driven engines are not industrious converters of heat to mechanical work.« less
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.
1994-01-01
Presented is a feasibility and error analysis for a hypersonic flush airdata system on a hypersonic flight experiment (HYFLITE). HYFLITE heating loads make intrusive airdata measurement impractical. Although this analysis is specifically for the HYFLITE vehicle and trajectory, the problems analyzed are generally applicable to hypersonic vehicles. A layout of the flush-port matrix is shown. Surface pressures are related airdata parameters using a simple aerodynamic model. The model is linearized using small perturbations and inverted using nonlinear least-squares. Effects of various error sources on the overall uncertainty are evaluated using an error simulation. Error sources modeled include boundarylayer/viscous interactions, pneumatic lag, thermal transpiration in the sensor pressure tubing, misalignment in the matrix layout, thermal warping of the vehicle nose, sampling resolution, and transducer error. Using simulated pressure data for input to the estimation algorithm, effects caused by various error sources are analyzed by comparing estimator outputs with the original trajectory. To obtain ensemble averages the simulation is run repeatedly and output statistics are compiled. Output errors resulting from the various error sources are presented as a function of Mach number. Final uncertainties with all modeled error sources included are presented as a function of Mach number.
Active Flow Control with Thermoacoustic Actuators
2014-01-31
AC power has been shown to produce large-amplitude acoustic waves [6]. The input AC current sinusoidally heats this device due to joule heating and...conventional metals, the heat capacity value for carbon-based material (carbon nanotubes/graphene) in consideration here is at least 2 orders of...magnitude smaller. Since the output acoustic power delivered to the surrounding flow field is related inversely to the material heat capacity C (i.e., Poutput
Tropical Cyclone Information System
NASA Technical Reports Server (NTRS)
Li, P. Peggy; Knosp, Brian W.; Vu, Quoc A.; Yi, Chao; Hristova-Veleva, Svetla M.
2009-01-01
The JPL Tropical Cyclone Infor ma tion System (TCIS) is a Web portal (http://tropicalcyclone.jpl.nasa.gov) that provides researchers with an extensive set of observed hurricane parameters together with large-scale and convection resolving model outputs. It provides a comprehensive set of high-resolution satellite (see figure), airborne, and in-situ observations in both image and data formats. Large-scale datasets depict the surrounding environmental parameters such as SST (Sea Surface Temperature) and aerosol loading. Model outputs and analysis tools are provided to evaluate model performance and compare observations from different platforms. The system pertains to the thermodynamic and microphysical structure of the storm, the air-sea interaction processes, and the larger-scale environment as depicted by ocean heat content and the aerosol loading of the environment. Currently, the TCIS is populated with satellite observations of all tropical cyclones observed globally during 2005. There is a plan to extend the database both forward in time till present as well as backward to 1998. The portal is powered by a MySQL database and an Apache/Tomcat Web server on a Linux system. The interactive graphic user interface is provided by Google Map.
Combined heat and power supply using Carnot engines
NASA Astrophysics Data System (ADS)
Horlock, J. H.
The Marshall Report on the thermodynamic and economic feasibility of introducing large scale combined heat and electrical power generation (CHP) into the United Kingdom is summarized. Combinations of reversible power plant (Carnot engines) to meet a given demand of power and heat production are analyzed. The Marshall Report states that fairly large scale CHP plants are an attractive energy saving option for areas of high heat load densities. Analysis shows that for given requirements, the total heat supply and utilization factor are functions of heat output, reservoir supply temperature, temperature of heat rejected to the reservoir, and an intermediate temperature for district heating.
CASE/A - COMPUTER AIDED SYSTEM ENGINEERING AND ANALYSIS, ECLSS/ATCS SERIES
NASA Technical Reports Server (NTRS)
Bacskay, A.
1994-01-01
Design and analysis of Environmental Control and Life Support Systems (ECLSS) and Active Thermal Control Systems (ATCS) for spacecraft missions requires powerful software that is flexible and responsive to the demands of particular projects. CASE/A is an interactive trade study and analysis tool designed to increase productivity during all phases of systems engineering. The graphics-based command-driven package provides a user-friendly environment in which the engineer can analyze the performance and interface characteristics of an ECLS/ATC system. The package is useful during all phases of a spacecraft design program, from initial conceptual design trade studies to the actual flight, including pre-flight prediction and in-flight anomaly analysis. The CASE/A program consists of three fundamental parts: 1) the schematic management system, 2) the database management system, and 3) the simulation control and execution system. The schematic management system allows the user to graphically construct a system model by arranging icons representing system components and connecting the components with physical fluid streams. Version 4.1 contains 51 fully coded and documented default component routines. New components can be added by the user through the "blackbox" component option. The database management system supports the storage and manipulation of component data, output data, and solution control data through interactive edit screens. The simulation control and execution system initiates and controls the iterative solution process, displaying time status and any necessary diagnostic messages. In addition to these primary functions, the program provides three other important functional areas: 1) model output management, 2) system utility commands, and 3) user operations logic capacity. The model output management system provides tabular and graphical output capability. Complete fluid constituent mass fraction and properties data (mass flow, pressure, temperature, specific heat, density, and viscosity) is generated at user-selected output intervals and stored for reference. The Integrated Plot Utility (IPU) provides plotting capability for all data output. System utility commands are provided to enable the user to operate more efficiently in the CASE/A environment. The user is able to customize a simulation through optional operations FORTRAN logic. This user-developed code is compiled and linked with a CASE/A model and enables the user to control and timeline component operating parameters during various phases of the iterative solution process. CASE/A provides for transient tracking of the flow stream constituents and determination of their thermodynamic state throughout an ECLSS/ATCS simulation, performing heat transfer, chemical reaction, mass/energy balance, and system pressure drop analysis based on user-specified operating conditions. The program tracks each constituent through all combination and decomposition states while maintaining a mass and energy balance on the overall system. This allows rapid assessment of ECLSS designs, the impact of alternate technologies, and impacts due to changes in metabolic forcing functions, consumables usage, and system control considerations. CASE/A is written in FORTRAN 77 for the DEC VAX/VMS computer series, and requires 12Mb of disk storage and a minimum paging file quota of 20,000 pages. The program operates on the Tektronix 4014 graphics standard and VT100 text standard. The program requires a Tektronix 4014 or later graphics terminal, third party composite graphics/text terminal, or personal computer loaded with appropriate VT100/TEK 4014 emulator software. The use of composite terminals or personal computers with popular emulation software is recommended for enhanced CASE/A operations and general ease of use. The program is available on an unlabeled 9-track 6250 BPI DEC VAX BACKUP format magnetic tape. CASE/A development began in 1985 under contract to NASA/Marshall Space Flight Center. The latest version (4.1) was released in 1990. Tektronix and TEK 4014 are trademarks of Tektronix, Inc. VT100 is a trademark of Digital Equipment Corporation.
Specifications and implementation of the RT MHD control system for the EC launcher of FTU
NASA Astrophysics Data System (ADS)
Galperti, C.; Alessi, E.; Boncagni, L.; Bruschi, A.; Granucci, G.; Grosso, A.; Iannone, F.; Marchetto, C.; Nowak, S.; Panella, M.; Sozzi, C.; Tilia, B.
2012-09-01
To perform real time plasma control experiments using EC heating waves by using the new fast launcher installed on FTU a dedicated data acquisition and elaboration system has been designed recently. A prototypical version of the acquisition/control system has been recently developed and will be tested on FTU machine in its next experimental campaign. The open-source framework MARTe (Multi-threaded Application Real-Time executor) on Linux/RTAI real-time operating system has been chosen as software platform to realize the control system. Standard open-architecture industrial PCs, based either on VME bus and CompactPCI bus equipped with standard input/output cards are the chosen hardware platform.
Incineration for resource recovery in a closed ecological life support system
NASA Technical Reports Server (NTRS)
Upadhye, R. S.; Wignarajah, K.; Wydeven, T.
1993-01-01
A functional schematic, including mass and energy balance, of a solid waste processing system for a controlled ecological life support system (CELSS) was developed using Aspen Plus, a commercial computer simulation program. The primary processor in this system is an incinerator for oxidizing organic wastes. The major products derived from the incinerator are carbon dioxide and water, which can be recycled to a crop growth chamber (CGC) for food production. The majority of soluble inorganics are extracted or leached from the inedible biomass before they reach the incinerator, so that they can be returned directly to the CGC and reused as nutrients. The heat derived from combustion of organic compounds in the incinerator was used for phase-change water purification. The waste streams treated by the incinerator system conceptualized in this work are inedible biomass from a CGC, human urine (including urinal flush water) and feces, humidity condensate, shower water, and trash. It is estimated that the theoretical minimum surface area required for the radiator to reject the unusable heat output from this system would be 0.72 sq m/person at 298 K.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... HCl 2.2E-02 lb per MMBtu of heat input 2.5E-02 lb per MMBtu of steam output or 0.28 lb per MWh For... basis corrected to 3 percent oxygen, 30-day rolling average) 1.2E-01 lb per MMBtu of steam output or 1.5... per MMBtu of steam output or 4.2E-01 lb per MWh; or (2.7E-05 lb per MMBtu of steam output or 3.7E-04...
Cooling/grounding mount for hybrid circuits
NASA Technical Reports Server (NTRS)
Bagstad, B.; Estrada, R.; Mandel, H.
1981-01-01
Extremely short input and output connections, adequate grounding, and efficient heat removal for hybrid integrated circuits are possible with mounting. Rectangular clamp holds hybrid on printed-circuit board, in contact with heat-conductive ground plate. Clamp is attached to ground plane by bolts.
Quantum Otto heat engine with three-qubit XXZ model as working substance
NASA Astrophysics Data System (ADS)
Huang, X. L.; Sun, Qi; Guo, D. Y.; Yu, Qian
2018-02-01
A quantum Otto heat engine is established with a three-qubit Heisenberg XXZ model with Dzyaloshinskii-Moriya (DM) interaction under a homogeneous magnetic field as the working substance. The quantum Otto engine is composed of two quantum isochoric processes and two quantum adiabatic processes. Here we have restricted Bc /Bh =Jc /Jh = r in the two adiabatic processes, where r is the adiabatic compression ratio. The work output and efficiency are calculated for our cycle. The possible adiabatic compression ratios and the ratios of work output between our working substance and a single spin under the same external conditions in the Otto cycle are analyzed with different DM interaction parameters and anisotropic parameters. The effects of pairwise entanglements on the heat engine efficiency are discussed.
METHOD AND APPARATUS FOR EARTH PENETRATION
Adams, W.M.
1963-12-24
A nuclear reactor apparatus for penetrating into the earth's crust is described. The apparatus comprises a cylindrical nuclear core operating at a temperature that is higher than the melting temperature of rock. A high-density ballast member is coupled to the nuclear core such that the overall density of the core-ballast assembly is greater than the density of molten rock. The nuclear core is thermally insulated so that its heat output is constrained to flow axially, with radial heat flow being minimized. In operation, the apparatus is placed in contact with the earth's crust at the point desired to be penetrated. The heat output of the reactor melts the underlying rock, and the apparatus sinks through the resulting magma. The fuel loading of the reactor core determines the ultimate depth of crust penetration. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, R. L.
1976-06-14
Program GRAY is written to perform the matrix manipulations necessary to convert black-body radiation heat-transfer view factors to gray-body view factors as required by thermal analyzer codes. The black-body view factors contain only geometric relationships. Program GRAY allows the effects of multiple gray-body reflections to be included. The resulting effective gray-body factors can then be used with the corresponding fourth-power temperature differences to obtain the net radiative heat flux. The program is written to accept a matrix input or the card image output generated by the black-body view factor program CNVUFAC. The resulting card image output generated by GRAY ismore » in a form usable by the TRUMP thermal analyzer.« less
A Computational Methodology for Simulating Thermal Loss Testing of the Advanced Stirling Convertor
NASA Technical Reports Server (NTRS)
Reid, Terry V.; Wilson, Scott D.; Schifer, Nicholas A.; Briggs, Maxwell H.
2012-01-01
The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including the use of multidimensional numerical models. Validation test hardware has also been used to provide a direct comparison of numerical results and validate the multi-dimensional numerical models used to predict convertor net heat input and efficiency. These validation tests were designed to simulate the temperature profile of an operating Stirling convertor and resulted in a measured net heat input of 244.4 W. The methodology was applied to the multi-dimensional numerical model which resulted in a net heat input of 240.3 W. The computational methodology resulted in a value of net heat input that was 1.7 percent less than that measured during laboratory testing. The resulting computational methodology and results are discussed.
NASA Astrophysics Data System (ADS)
Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Li, Na; Guo, Kun; Zhou, Yuyang; Xu, Jing; Chen, Wei; Jia, Yufeng; Huang, Bin
2017-02-01
In this paper, we first systematically investigate the current output performance of stainless steel electrodes (SS) modified by carbon coating (CC), polyaniline coating (PANI), neutral red grafting (NR), surface hydrophilization (SDBS), and heat treatment (HEAT). The maximum current density of 13.0 A m-2 is obtained on CC electrode (3.0 A m-2 of the untreated anode). Such high performance should be attributed to its large effective surface area, which is 2.3 times that of the unmodified electrode. Compared with SS electrode, about 3-fold increase in current output is achieved with PANI. Functionalization with hydrophilic group and electron medium result in the current output rising to 1.5-2 fold, through enhancing bioadhesive and electron transport rate, respectively. CC modification is the best choice of single modification for SS electrode in this study. However, this modification is not perfect because of its poor hydrophilicity. So CC electrode is modified by SDBS for further enhancing the current output to 16 A m-2. These results could provide guidance for the choice of suitable single modification on SS electrodes and a new method for the perfection of electrode performance through composite modification.
Kenney, W. Larry; Stanhewicz, Anna E.; Bruning, Rebecca S.; Alexander, Lacy M.
2013-01-01
When prolonged intense exercise is performed at high ambient temperatures, cardiac output must meet dual demands for increased blood flow to contracting muscle and to the skin. The literature has commonly painted this scenario as a fierce competition, wherein one circulation preserves perfusion at the expense of the other, with the regulated maintenance of blood pressure as the ultimate goal. This review redefines this scenario as commensalism, an integrated balance of regulatory control where one circulation benefits with little functional effect on the other. In young, healthy subjects, arterial pressure rarely falls to any great extent during either extreme passive heating or prolonged dynamic exercise in the heat. Nor does body temperature rise disproportionately due to a compromised skin blood flow. Rather, it often takes the superimposition of additional stressors – e.g., dehydration or simulated hemorrhage – upon heat stress to substantially impact blood pressure regulation. PMID:23636697
Kenney, W Larry; Stanhewicz, Anna E; Bruning, Rebecca S; Alexander, Lacy M
2014-03-01
When prolonged intense exercise is performed at high ambient temperatures, cardiac output must meet dual demands for increased blood flow to contracting muscle and to the skin. The literature has commonly painted this scenario as a fierce competition, wherein one circulation preserves perfusion at the expense of the other, with the regulated maintenance of blood pressure as the ultimate goal. This review redefines this scenario as commensalism, an integrated balance of regulatory control where one circulation benefits with little functional effect on the other. In young, healthy subjects, arterial pressure rarely falls to any great extent during either extreme passive heating or prolonged dynamic exercise in the heat, nor does body temperature rise disproportionately due to a compromised skin blood flow. Rather, it often takes the superimposition of additional stressors--e.g., dehydration or simulated hemorrhage--upon heat stress to substantially impact blood pressure regulation.
Fuel-flexible burner apparatus and method for fired heaters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zink, Darton J.; Isaacs, Rex K.; Jamaluddin, A. S.
A burner apparatus for a fired heating system and a method of burner operation. The burner provides stable operation when burning gas fuels having heating values ranging from low to high and accommodates sudden wide changes in the Wobbe value of the fuel delivered to the burner. The burner apparatus includes a plurality of exterior fuel ejectors and has an exterior notch which extends around the burner wall for receiving and combusting a portion of the gas fuel. At least a portion of the hot combustion product gas produced in the exterior notch is delivered through channels formed in themore » burner wall to the combustion area at the forward end of the burner. As the Wobbe value of the gas fuel decreases, one or more outer series of addition ejectors can be automatically activated as needed to maintain the amount of heat output desired.« less
Air-sea interaction over the Indian Ocean due to variations in the Indonesian throughflow
NASA Astrophysics Data System (ADS)
Wajsowicz, R. C.
The effects of the Indonesian throughflow on the upper thermocline circulation and surface heat flux over the Indian Ocean are presented for a 3-D ocean model forced by two different monthly wind-stress climatologies, as they show interesting differences, which could have implications for long-term variability in the Indian and Australasian monsoons. The effects are determined by contrasting a control run with a run in which the throughflow is blocked by an artificial land-bridge across the exit channels into the Indian Ocean. In the model forced by ECMWF wind stresses, there is little impact on the annual mean surface heat flux in the region surrounding the throughflow exit straits, whereas in the model forced by SSM/I-based wind stresses, a modest throughflow of less than 5 ×106 m3s-1 over the upper 300 m induces an extra 10-50 Wm-2 output. In the SSM/I-forced model, there is insignificant penetration of the throughflow into the northern Indian Ocean. However, in the ECMWF-forced model, the throughflow induces a 5-10 Wm-2 reduction in heat input into the ocean, i.e., an effective output, over the Somali Current in the annual mean. These differences are attributed to differences in the strength and direction of the Ekman transport of the ambient flow, and the vertical structure of the transport and temperature anomalies associated with the throughflow. In both models, the throughflow induces a 5-30 Wm-2 increase in net output over a broad swathe of the southern Indian Ocean, and a reduction in heat output of 10-60 Wm-2 in a large L-shaped band around Tasmania. Effective increases in throughflow-induced net output reach up to 40 (60) Wm-2 over the Agulhas Current retroflection in the ECMWF (SSM/I)-forced model. Seasonal variations in the throughflow's effect on the net surface heat flux are attributed to seasonal variations in the ambient circulation of the Indian Ocean, specifically in coastal upwelling along the south Javan, west Australian, and Somalian coasts, and in the depth of convective overturning between 40°S to 50°S, and its sensing of the mean throughflow's thermal anomaly. The seasonal anomalies plus annual mean yield maximum values for the throughflow-induced net surface heat output in boreal summer. Values may exceed 40 Wm-2 in the southern Indian Ocean interior in both models, exceed 60 Wm-2 over the Agulhas retroflection and immediate vicinity of the exit channels in the SSM/I-forced model, and reach 30 Wm-2 over the Somali jet in the ECMWF-forced model.
Solar thermal organic rankine cycle for micro-generation
NASA Astrophysics Data System (ADS)
Alkahli, N. A.; Abdullah, H.; Darus, A. N.; Jalaludin, A. F.
2012-06-01
The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles, the solar thermal cycle that harness solar energy and the power cycle, which is the ORC that generates electricity. As for the solar thermal cycle, heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.
NASA Astrophysics Data System (ADS)
Jokar, Ali; Godarzi, Ali Abbasi; Saber, Mohammad; Shafii, Mohammad Behshad
2016-11-01
In this paper, a novel approach has been presented to simulate and optimize the pulsating heat pipes (PHPs). The used pulsating heat pipe setup was designed and constructed for this study. Due to the lack of a general mathematical model for exact analysis of the PHPs, a method has been applied for simulation and optimization using the natural algorithms. In this way, the simulator consists of a kind of multilayer perceptron neural network, which is trained by experimental results obtained from our PHP setup. The results show that the complex behavior of PHPs can be successfully described by the non-linear structure of this simulator. The input variables of the neural network are input heat flux to evaporator (q″), filling ratio (FR) and inclined angle (IA) and its output is thermal resistance of PHP. Finally, based upon the simulation results and considering the heat pipe's operating constraints, the optimum operating point of the system is obtained by using genetic algorithm (GA). The experimental results show that the optimum FR (38.25 %), input heat flux to evaporator (39.93 W) and IA (55°) that obtained from GA are acceptable.
2012-12-10
combustion (IC) engine , Type 907, and its dat file was modified to match the expected fuel consumption and performance of the ...temperature output by the AS desorber. Depending on this DB set temperature, fuel would be burned to raise the temperature of the engine exhaust stream...in the simulations, it was based upon experimental data provided for this project indicating the performance of a 3 kW diesel
The P3 Power Generation System for Advanced Missile Defense Applications
2008-11-01
circuit. This increased the output power to the load resistor . The inductor couples with the piezo element to form an electrical LC tuned circuit and...of RMS power was generated with an efficiency of 40 % when an inductor of 250 mH was connected in series to a 100 ohm resistor . From power density...per cycle for generating electrical energy in a piezo -crystal membrane. Steady-state heat transfer measurements have been made previously with a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuller, L.C.
The ORCENT-II digital computer program will perform calculations at valves-wide-open design conditions, maximum guaranteed rating conditions, and an approximation of part-load conditions for steam turbine cycles supplied with throttle steam characteristic of contemporary light-water reactors. Turbine performance calculations are based on a method published by the General Electric Company. Output includes all information normally shown on a turbine-cycle heat balance diagram. The program is written in FORTRAN IV for the IBM System 360 digital computers at the Oak Ridge National Laboratory.
NASA Technical Reports Server (NTRS)
Blankenship, Clay; Case, Jonathan L.; Zavodsky, Bradley
2015-01-01
Land surface models are important components of numerical weather prediction (NWP) models, partitioning incoming energy into latent and sensitive heat fluxes that affect boundary layer growth and destabilization. During warm-season months, diurnal heating and convective initiation depend strongly on evapotranspiration and available boundary layer moisture, which are substantially affected by soil moisture content. Therefore, to properly simulate warm-season processes in NWP models, an accurate initialization of the land surface state is important for accurately depicting the exchange of heat and moisture between the surface and boundary layer. In this study, soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) satellite radiometer are assimilated into the Noah Land Surface Model via an Ensemble Kalman Filter embedded within the NASA Land Information System (LIS) software framework. The output from LIS-Noah is subsequently used to initialize runs of the Weather Research and Forecasting (WRF) NWP model. The impact of assimilating SMOS retrievals is assessed by initializing the WRF model with LIS-Noah output obtained with and without SMOS data assimilation. The southeastern United States is used as the domain for a preliminary case study. During the summer months, there is extensive irrigation in the lower Mississippi Valley for rice and other crops. The irrigation is not represented in the meteorological forcing used to drive the LIS-Noah integration, but the irrigated areas show up clearly in the SMOS soil moisture retrievals, resulting in a case with a large difference in initial soil moisture conditions. The impact of SMOS data assimilation on both Noah soil moisture fields and on short-term (0-48 hour) WRF weather forecasts will be presented.
Thermal behavior of heat-pipe-assisted alkali-metal thermoelectric converters
NASA Astrophysics Data System (ADS)
Lee, Ji-Su; Lee, Wook-Hyun; Chi, Ri-Guang; Chung, Won-Sik; Lee, Kye-Bock; Rhi, Seok-Ho; Jeong, Seon-Yong; Park, Jong-Chan
2017-11-01
The alkali-metal thermal-to-electric converter (AMTEC) changes thermal energy directly into electrical energy using alkali metals, such as sodium and potassium, as the working fluid. The AMTEC system primarily consists of beta-alumina solid electrolyte (BASE) tubes, low and high-pressure chambers, an evaporator, and a condenser and work through continuous sodium circulation, similar to conventional heat pipes. When the sodium ions pass through the BASE tubes with ion conductivity, this ion transfer generates electricity. The efficiency of the AMTEC directly depends on the temperature difference between the top and bottom of the system. The optimum design of components of the AMTEC, including the condenser, evaporator, BASE tubes, and artery wick, can improve power output and efficiency. Here, a radiation shield was installed in the low-pressure chamber of the AMTEC and was investigated experimentally and numerically to determine an optimum design for preventing radiation heat loss through the condenser and the wall of AMTEC container. A computational fluid dynamics (CFD) simulation was carried out to decide the optimum size of the low-pressure chamber. The most suitable height and diameter of the chamber were 270 mm and 180 mm, respectively, with eight BASE tubes, which were 150 mm high, 25 mm in diameter, and 105 mm in concentric diameter. Increasing the temperature ratio ( T Cond /T B ) led to high power output. The minimum dimensionless value (0.4611) for temperature ( T Cond /T B ) appeared when the radiation shield was made of 500-mesh nickel. Simulation results for the best position and shape for the radiation shield, revealed that maximum power was generated when a stainless steel shield was installed in between the BASE tubes and condenser.
Hyperthermia and cardiovascular strain during an extreme heat exposure in young versus older adults
Kenny, Glen P.; Poirier, Martin P.; Metsios, George S.; Boulay, Pierre; Dervis, Sheila; Friesen, Brian J.; Malcolm, Janine; Sigal, Ronald J.; Seely, Andrew J. E.; Flouris, Andreas D.
2017-01-01
ABSTRACT We examined whether older individuals experience greater levels of hyperthermia and cardiovascular strain during an extreme heat exposure compared to young adults. During a 3-hour extreme heat exposure (44°C, 30% relative humidity), we compared body heat storage, core temperature (rectal, visceral) and cardiovascular (heart rate, cardiac output, mean arterial pressure, limb blood flow) responses of young adults (n = 30, 19–28 years) against those of older adults (n = 30, 55–73 years). Direct calorimetry measured whole-body evaporative and dry heat exchange. Body heat storage was calculated as the temporal summation of heat production (indirect calorimetry) and whole-body heat loss (direct calorimetry) over the exposure period. While both groups gained a similar amount of heat in the first hour, the older adults showed an attenuated increase in evaporative heat loss (p < 0.033) in the first 30-min. Thereafter, the older adults were unable to compensate for a greater rate of heat gain (11 ± 1 ; p < 0.05) with a corresponding increase in evaporative heat loss. Older adults stored more heat (358 ± 173 kJ) relative to their younger (202 ± 92 kJ; p < 0.001) counterparts at the end of the exposure leading to greater elevations in rectal (p = 0.043) and visceral (p = 0.05) temperatures, albeit not clinically significant (rise < 0.5°C). Older adults experienced a reduction in calf blood flow (p < 0.01) with heat stress, yet no differences in cardiac output, blood pressure or heart rate. We conclude, in healthy habitually active individuals, despite no clinically observable cardiovascular or temperature changes, older adults experience greater heat gain and decreased limb perfusion in response to 3-hour heat exposure. PMID:28349096
Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control
NASA Technical Reports Server (NTRS)
Ku, Jentung; Paiva, Kleber; Mantelli, Marcia
2011-01-01
The LHP operating temperature is governed by the saturation temperature of its reservoir. Controlling the reservoir saturation temperature is commonly accomplished by cold biasing the reservoir and using electrical heaters to provide the required control power. Using this method, the loop operating temperature can be controlled within +/- 0.5K. However, because of the thermal resistance that exists between the heat source and the LHP evaporator, the heat source temperature will vary with its heat output even if LHP operating temperature is kept constant. Since maintaining a constant heat source temperature is of most interest, a question often raised is whether the heat source temperature can be used for LHP set point temperature control. A test program with a miniature LHP has been carried out to investigate the effects on the LHP operation when the control temperature sensor is placed on the heat source instead of the reservoir. In these tests, the LHP reservoir is cold-biased and is heated by a control heater. Tests results show that it is feasible to use the heat source temperature for feedback control of the LHP operation. Using this method, the heat source temperature can be maintained within a tight range for moderate and high powers. At low powers, however, temperature oscillations may occur due to interactions among the reservoir control heater power, the heat source mass, and the heat output from the heat source. In addition, the heat source temperature could temporarily deviate from its set point during fast thermal transients. The implication is that more sophisticated feedback control algorithms need to be implemented for LHP transient operation when the heat source temperature is used for feedback control.
Fujita, Kazuue; Yamanishi, Masamichi; Furuta, Shinichi; Tanaka, Kazunori; Edamura, Tadataka; Kubis, Tillmann; Klimeck, Gerhard
2012-08-27
Device-performances of 3.7 THz indirect-pumping quantum-cascade lasers are demonstrated in an InGaAs/InAlAs material system grown by metal-organic vapor-phase epitaxy. The lasers show a low threshold-current-density of ~420 A/cm2 and a peak output power of ~8 mW at 7 K, no sign of parasitic currents with recourse to well-designed coupled-well injectors in the indirect pump scheme, and a maximum operating temperature of Tmax ~100 K. The observed roll-over of output intensities in current ranges below maximum currents and limitation of Tmax are discussed with a model for electron-gas heating in injectors. Possible ways toward elevation of Tmax are suggested.
TEMPEST. Transient 3-D Thermal-Hydraulic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eyler, L.L.
TEMPEST is a transient, three-dimensional, hydrothermal program that is designed to analyze a range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor (FBR) thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. The equations governing mass, momentum, and energy conservation for incompressible flows and small density variations (Boussinesq approximation) are solved using finite-difference techniques. Analyses may be conducted in either cylindrical or Cartesian coordinate systems. Turbulence ismore » treated using a two-equation model. Two auxiliary plotting programs, SEQUEL and MANPLOT, for use with TEMPEST output are included. SEQUEL may be operated in batch or interactive mode; it generates data required for vector plots, contour plots of scalar quantities, line plots, grid and boundary plots, and time-history plots. MANPLOT reads the SEQUEL-generated data and creates the hardcopy plots. TEMPEST can be a valuable hydrothermal design analysis tool in areas outside the intended FBR thermal-hydraulic design community.« less
Long term thermoelectric module testing system.
D'Angelo, Jonathan; Hogan, Timothy
2009-10-01
Thermoelectric generators can be used for converting waste heat into electric power. Significant interest in developing new materials in recent years has led to the discovery of several promising thermoelectrics, however, there can be considerable challenges in developing the materials into working devices. Testing and feedback is needed at each step to gain valuable information for identification of difficulties, quality of the materials and modules, repeatability in fabrication, and longevity of the devices. This paper describes a long-term module testing system for monitoring the output power of a module over extended testing times. To evaluate the system, we have tested commercially available thermoelectric modules over a one month time period.
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep (Inventor); Fujita, Toshio (Inventor)
1991-01-01
A thermal power transfer system using a phase change liquid gas fluid in a closed loop configuration has a heat exchanger member connected to a gas conduit for inputting thermal energy into the fluid. The pressure in the gas conduit is higher than a liquid conduit that is connected to a heat exchanger member for outputting thermal energy. A solid electrolyte member acts as a barrier between the gas conduit and the liquid conduit adjacent to a solid electrolyte member. The solid electrolyte member has the capacity of transmitting ions of a fluid through the electrolyte member. The ions can be recombined with electrons with the assistance of a porous electrode. An electrical field is applied across the solid electrolyte member to force the ions of the fluid from a lower pressure liquid conduit to the higher pressure gas conduit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-02-01
This appendix is a compilation of work done to predict overall cycle performance from gasifier to generator terminals. A spreadsheet has been generated for each case to show flows within a cycle. The spreadsheet shows gaseous or solid composition of flow, temperature of flow, quantity of flow, and heat heat content of flow. Prediction of steam and gas turbine performance was obtained by the computer program GTPro. Outputs of all runs for each combined cycle reviewed has been added to this appendix. A process schematic displaying all flows predicted through GTPro and the spreadsheet is also added to this appendix.more » The numbered bubbles on the schematic correspond to columns on the top headings of the spreadsheet.« less
NASA Astrophysics Data System (ADS)
Prinsloo, Gerro; Dobson, Robert; Brent, Alan; Mammoli, Andrea
2016-05-01
Concentrating solar power co-generation systems have been identified as potential stand-alone solar energy supply solutions in remote rural energy applications. This study describes the modelling and synthesis of a combined heat and power Stirling CSP system in order to evaluate its potential performance in small off-grid rural village applications in Africa. This Stirling micro-Combined Heat and Power (micro-CHP) system has a 1 kW electric capacity, with 3 kW of thermal generation capacity which is produced as waste heat recovered from the solar power generation process. As part of the development of an intelligent microgrid control and distribution solution, the Trinum micro-CHP system and other co-generation systems are systematically being modelled on the TRNSYS simulation platform. This paper describes the modelling and simulation of the Trinum micro-CHP configuration on TRNSYS as part of the process to develop the control automation solution for the smart rural microgrid in which the Trinum will serve as a solar powerpack. The results present simulated performance outputs for the Trinum micro-CHP system for a number of remote rural locations in Africa computed from real-time TRNSYS solar irradiation and weather data (yearly, monthly, daily) for the relevant locations. The focus of this paper is on the parametric modelling of the Trinum Stirling micro-CHP system, with specific reference to this system as a TRNSYS functional block in the microgrid simulation. The model is used to forecast the solar energy harvesting potential of the Trinum micro-CHP unit at a number of remote rural sites in Africa.
Numerical Modeling of a Shallow Borehole Thermal Energy Storage System
NASA Astrophysics Data System (ADS)
Catolico, N.; Ge, S.; Lu, N.; McCartney, J. S.
2014-12-01
Borehole thermal energy storage (BTES) combined with solar thermal energy harvesting is an economic technological system to garner and store energy as well as an environmentally-sustainable alternative for the heating of buildings. The first community-scale BTES system in North America was installed in 2007 in the Drake Landing Solar Community (DLSC), about 35 miles south of Calgary, Canada. The BTES system involves direct circulation of water heated from solar thermal panels in the summer into a storage tank, after which it is circulate within an array of 144 closed-loop geothermal heat exchangers having a depth of 35 m and a spacing of 2.5 m. In the winter the circulation direction is reversed to supply heat to houses. Data collection over a six year period indicates that this system can supply more than 90% of the winter heating energy needs for 52 houses in the community. One major challenge facing the BTES system technology is the relatively low annual efficiency, i.e., the ratio of energy input and output is in the range of 15% to 40% for the system in Drake Landing. To better understand the working principles of BTES and to improve BTES performance for future applications at larger scales, a three-dimensional transient coupled fluid and heat transfer model is established using TOUGH2. The time-dependent injection temperatures and circulation rate measured over the six years of monitoring are used as model input. The simulations are calibrated using soil temperature data measured at different locations over time. The time-dependent temperature distributions within the borehole region agree well with the measured temperatures for soil with an intrinsic permeability of 10e-19 m2, an apparent thermal conductivity of 2.03 W/m°C, and a volumetric heat capacity of 2.31 MJ/m-3°C. The calibrated model serves as the basis for a sensitivity analysis of soil and operational parameters on BTES system efficiency preformed with TOUGH2. Preliminary results suggest 1) BTES efficiency increases with increased in-pipe circulation rates; 2) BTES efficiency increases with decreasing soil thermal conductivity due to lateral heat loss from the system; and 3) BTES efficiency increases only slightly with decreasing soil permeability.
Zhang, Wei; Chang, Xiang-Qian; Hoffmann, AryA.; Zhang, Shu; Ma, Chun-Sen
2015-01-01
Hot days in summer (involving a few hours at particularly high temperatures) are expected to become more common under climate change. How such events at different life stages affect survival and reproduction remains unclear in most organisms. Here, we investigated how an exposure to 40 °C at different life stages in the global insect pest, Plutella xylostella, affects immediate survival, subsequent survival and reproductive output. First-instar larvae showed the lowest survival under heat stress, whereas 3rd-instar larvae were relatively heat resistant. Heat exposure at the 1st-instar or egg stage did not influence subsequent maturation success, while exposure at the 3rd-instar larval stage did have an effect. We found that heat stress at developmental stages closer to adult stage caused greater detrimental effects on reproduction than heat stress experienced at earlier life stages. The effects of hot events on insect populations can therefore depend critically on the timing of the event relative to an organism’s life-cycle. PMID:26000790
Air and water cooled modulator
Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.
1995-01-01
A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.
NASA Astrophysics Data System (ADS)
Novák, Ludvik
The paper presents the results of the mathematical modelling the effects of hypogravity on the heat output by the spontaneous convection. The theoretical considerations were completed by the experiments "HEAT EXCHANGE 1" performed on the biosatellite "KOSMOS 936". In the second experiment "HEAT EXCHANGE 2" acomplished on the board of the space laboratory "SALYUT 6" was studied the effect of the microgravity on the thermal state of a man during the space flight. Direct measurement in weightlessness prowed the capacity of the developed electric dynamic katathermometer to check directly the effect of the microgravity on the heat output by the spontaneous convection. The role of the heat partition impairment's in man as by the microgravity, so by the inadequate forced convection are clearly expressed in changes of the skin temperature and the subjective feeling of the cosmonaut's thermal comfort. The experimental extension of the elaborated methods for the flexible adjustment of the thermal environment to the actual physiological needs of man and suggestions for the further investigation are outlined.
Thermal resistance model for CSP central receivers
NASA Astrophysics Data System (ADS)
de Meyer, O. A. J.; Dinter, F.; Govender, S.
2016-05-01
The receiver design and heliostat field aiming strategy play a vital role in the heat transfer efficiency of the receiver. In molten salt external receivers, the common operating temperature of the heat transfer fluid or molten salt ranges between 285°C to 565°C. The optimum output temperature of 565°C is achieved by adjusting the mass flow rate of the molten salt through the receiver. The reflected solar radiation onto the receiver contributes to the temperature rise in the molten salt by means of heat transfer. By investigating published work on molten salt external receiver operating temperatures, corresponding receiver tube surface temperatures and heat losses, a model has been developed to obtain a detailed thermographic representation of the receiver. The steady state model uses a receiver flux map as input to determine: i) heat transfer fluid mass flow rate through the receiver to obtain the desired molten salt output temperature of 565°C, ii) receiver surface temperatures iii) receiver tube temperatures iv) receiver efficiency v) pressure drop across the receiver and vi) corresponding tube strain per panel.
Lighting Systems For High Speed Photography Applying Special Metal Halide Discharge Lamps
NASA Astrophysics Data System (ADS)
Gillum, Keith M.; Steuernagel, K. H.
1983-03-01
High speed photography requires, in addition to a good color quality of the light source, a very high level of illumination. Conventional lighting systems utilizing incandescent lamps or other metal halide lamp types has inherent problems of inefficient light output or poor color quality. Heat generated by incandescent lamps and the power these sources require drive up operating and installation costs. A most economical and practical solution was devised by using the metal halide discharge lamp developed by OSRAM, GmbH of Munich, West Germany. This lamp trade marked the HMITM Metallogen was primarily developed for the needs of the television and motion picture film industry. Due to their high efficiency and other consistent operating qualities these lamps also fulfill the needs of high speed photography, e.g. in crash test facilities, when special engineering activities are carried out. The OSRAM HMITM lamp is an AC discharge metal halide lamp with rare earth additives to increase both the efficiency and light output qualities. Since the lamp is an AC source, a special method had to be developed to overcome the strobing effect, which is normal for AC lamps given their modulated light output, when used with high speed cameras, (e.g. with >1000 fps). This method is based on an increased frequency for the lamp supply voltage coupled with a mix of the light output achieved using a multiphase mains power supply. First developed in 1977, this system using the OSRAM HMITM lamps was installed in a crash test facility of a major automotive manufacturer in West Germany. The design resulted in the best lighting and performance ever experienced. Since that time several other motor companies have made use of this breakthrough. Industrial and scientific users are now considering additional applications use of this advanced high speed lighting system.
Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
1990-01-01
Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.
Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications
NASA Astrophysics Data System (ADS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.
Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Schreiber, Jeffrey G.
1990-01-01
Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's
Cost-efficiency trade-off and the design of thermoelectric power generators.
Yazawa, Kazuaki; Shakouri, Ali
2011-09-01
The energy conversion efficiency of today's thermoelectric generators is significantly lower than that of conventional mechanical engines. Almost all of the existing research is focused on materials to improve the conversion efficiency. Here we propose a general framework to study the cost-efficiency trade-off for thermoelectric power generation. A key factor is the optimization of thermoelectric modules together with their heat source and heat sinks. Full electrical and thermal co-optimization yield a simple analytical expression for optimum design. Based on this model, power output per unit mass can be maximized. We show that the fractional area coverage of thermoelectric elements in a module could play a significant role in reducing the cost of power generation systems.
YELLOWSTONE MAGMATIC-HYDROTHERMAL SYSTEM, U. S. A.
Fournier, R.O.; Pitt, A.M.; ,
1985-01-01
At Yellowstone National Park, the deep permeability and fluid circulation are probably controlled and maintained by repeated brittle fracture of rocks in response to local and regional stress. Focal depths of earthquakes beneath the Yellowstone caldera suggest that the transition from brittle fracture to quasi-plastic flow takes place at about 3 to 4 km. The maximum temperature likely to be attained by the hydrothermal system is 350 to 450 degree C, the convective thermal output is about 5. 5 multiplied by 10**9 watts, and the minimum average thermal flux is about 1800 mW/m**2 throughout 2,500 km**2. The average thermal gradient between the heat source and the convecting hydrothermal system must be at least 700 to 1000 degree C/km. Crystallization and partial cooling of about 0. 082 km**3 of basalt or 0. 10 km**3 of rhyolite annually could furnish the heat discharged in the hot-spring system. The Yellowstone magmatic-hydrothermal system as a whole appears to be cooling down, in spite of a relatively large rate of inflation of the Yellowstone caldera.
Waste heat recovery options in a large gas-turbine combined power plant
NASA Astrophysics Data System (ADS)
Upathumchard, Ularee
This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat recovery during the power plant's life span. Furthermore, the recommendation from this research will be submitted to the Electricity Generating Authority of Thailand (EGAT) for implementation. This study will also be used as an example for other power plants in Thailand to consider waste energy utilization to improve plant efficiency and sustain fuel resources in the future.
Advanced thermal management of high-power quantum cascade laser arrays for infrared countermeasures
NASA Astrophysics Data System (ADS)
Barletta, Philip; Diehl, Laurent; North, Mark T.; Yang, Bao; Baldasaro, Nick; Temple, Dorota
2017-10-01
Next-generation infrared countermeasure (IRCM) systems call for compact and lightweight high-power laser sources. Specifically, optical output power of tens of Watts in the mid-wave infrared (MWIR) is desired. Monolithically fabricated arrays of quantum cascade lasers (QCLs) have the potential to meet these requirements. Single MWIR QCL emitters operating in continuous wave at room temperature have demonstrated multi-Watt power levels with wall-plug efficiency of up to 20%. However, tens of Watts of output power from an array of QCLs translates into the necessity of removing hundreds of Watts per cm2, a formidable thermal management challenge. A potential thermal solution for such high-power QCL arrays is active cooling based on high-performance thin-film thermoelectric coolers (TFTECs), in conjunction with pumped porous-media heat exchangers. The use of active cooling via TFTECs makes it possible to not only pump the heat away, but also to lower the QCL junction temperature, thus improving the wall-plug efficiency of the array. TFTECs have shown the ability to pump >250W/cm2 at ΔT=0K, which is 25 times greater than that typically seen in commercially available bulk thermoelectric devices.
Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks
NASA Astrophysics Data System (ADS)
Magnetto, D.; Vidiella, G.
2012-06-01
The main objective of the EC funded HEATRECAR project is to reduce the energy consumption and curb CO2 emissions of vehicles by massively harvesting electrical energy from the exhaust system and re-use this energy to supply electrical components within the vehicle or to feed the power train of hybrid electrical vehicles. HEATRECAR is targeting light duty trucks and focuses on the development and the optimization of a Thermo Electric Generator (TEG) including heat exchanger, thermoelectric modules and DC/DC converter. The main objective of the project is to design, optimize and produce a prototype system to be tested on a 2.3l diesel truck. The base case is a Thermo Electric Generator (TEG) producing 1 KWel at 130 km/h. We present the system design and estimated output power from benchmark Bi2Te3 modules. We discuss key drivers for the optimization of the thermal-to-electric efficiency, such as materials, thermo-mechanical aspects and integration.
NASA Astrophysics Data System (ADS)
Mou, Jian; Hong, Guotong
2017-02-01
In this paper, the dimensionless power is used to optimize the free piston Stirling engines (FPSE). The dimensionless power is defined as a ratio of the heat power loss and the output work. The heat power losses include the losses of expansion space, heater, regenerator, cooler and the compression space and every kind of the heat loss calculated by empirical formula. The output work is calculated by the adiabatic model. The results show that 82.66% of the losses come from the expansion space and 54.59% heat losses of expansion space come from the shuttle loss. At different pressure the optimum bore-stroke ratio, heat source temperature, phase angle and the frequency have different values, the optimum phase angles increase with the increase of pressure, but optimum frequencies drop with the increase of pressure. However, no matter what the heat source temperature, initial pressure and frequency are, the optimum ratios of piston stroke and displacer stroke all about 0.8. The three-dimensional diagram is used to analyse Stirling engine. From the three-dimensional diagram the optimum phase angle, frequency and heat source temperature can be acquired at the same time. This study offers some guides for the design and optimization of FPSEs.
Beta blocker infusion decreases the magnitude of core hypothermia after anesthesia induction.
Inoue, S; Abe, R; Kawaguchi, M; Kobayashi, H; Furuya, H
2010-12-01
Beta-1-receptor blockade reduces heart rate, cardiac output, and arterial pressure while increasing peripheral vascular resistance. It is possible that beta blockers not only inhibit the core-to-peripheral re-distribution of body heat and cutaneous heat loss due to vasodilation after anesthesia induction but also reduce the convective transfer of heat from the core to peripheral tissues by decreasing cardiac output. The authors investigated whether the co-administration of esmolol or landiolol, ultra-short-acting beta blockers, attenuates the magnitude of initial re-distribution hypothermia after anesthesia induction and tracheal intubation. Immediately prior to the induction of anesthesia, patients were randomly assigned to receive 0.2 mg kg-1 of landiolol (landiolol group; N=30), 1 mg kg-1 of esmolol (esmolol group; N=30), or 0.1 mL kg-1 of saline (control group; N=30). Heart rate, blood pressure, cardiac output, and tympanic, forearm, and digit temperatures were recorded. Forearm minus fingertip skin-surface temperature gradients (temperature gradient) were calculated. Tympanic membrane temperatures 15 to 60 min after the induction of anesthesia were significantly higher in the esmolol group than in the control group although the temperature gradient was similar among the three groups. Both esmolol and landiolol inhibited the increase in HR and MAP after the induction of anesthesia and tracheal intubation. The cardiac index in the esmolol group was significantly lower than in the control group. The degree of hemodynamic attenuation after induction by esmolol was larger than that of landiolol. The co-administration of esmolol, but not landiolol, attenuated the magnitude of initial re-distribution hypothermia after anesthesia induction and tracheal intubation. Esmolol likely prevented initial hypothermia because it attenuated the convective transfer of heat from the core to peripheral tissues by decreasing cardiac output.
NASA Astrophysics Data System (ADS)
Sakamoto, Yasuaki; Kashiwagi, Takayuki; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo
The eddy current rail brake is a type of braking system used in railway vehicles. Because of problems such as rail heating and problems associated with ensuring that power is supplied when the feeder malfunctions, this braking system has not been used for practical applications in Japan. Therefore, we proposed the use of linear induction motor (LIM) technology in eddy current rail brake systems. The LIM rail brake driven by dynamic braking can reduce rail heating and generate the energy required for self-excitation. In this paper, we present an excitation system and control method for the LIM rail brake driven by “dynamic braking with zero electrical output”. The proposed system is based on the concept that the LIM rail brake can be energized without using excitation power sources such as a feeder circuit and that high reliability can be realized by providing an independent excitation system. We have studied this system and conducted verification tests using a prototype LIM rail brake on a roller rig. The results show that the system performance is adequate for commercializing the proposed system, in which the LIM rail brake is driven without using any excitation power source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht H. Mayer
Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricitymore » costs to consumers and lowest emissions.« less
Relationships Between Excessive Heat and Daily Mortality over the Coterminous U.S
NASA Technical Reports Server (NTRS)
Crosson, William L.; Al-Hamdan, Mohammad Z.; Estes, Maury G., Jr.; Estes, Sue M.; Quattrochi, Dale A.
2015-01-01
In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. Using National Land Data Assimilation System (NLDAS) meteorological reanalysis data, we have developed several measures of extreme heat to enable assessments of the impacts of heat on public health over the coterminous U.S. These measures include daily maximum and minimum air temperatures, daily maximum heat indices and a new heat stress variable called Net Daily Heat Stress (NDHS) that gives an integrated measure of heat stress (and relief) over the course of a day. All output has been created on the NLDAS 1/8 degree (approximately 12 km) grid and aggregated to the county level, which is the preferred geographic scale of analysis for public health researchers. County-level statistics have been made available through the Centers for Disease Control and Prevention (CDC) via the Wide-ranging Online Data for Epidemiologic Research (WONDER) system. We have examined the relationship between excessive heat events, as defined in eight different ways from the various daily heat metrics, and heat-related and all-cause mortality defined in CDC's National Center for Health Statistics 'Multiple Causes of Death 1999-2010' dataset. To do this, we linked daily, county-level heat mortality counts with EHE occurrence based on each of the eight EHE definitions by region and nationally for the period 1999-2010. The objectives of this analysis are to determine (1) whether heat-related deaths can be clearly tied to excessive heat events, (2) what time lags are critical for predicting heat-related deaths, and (3) which of the heat metrics correlates best with mortality in each US region. Results show large regional differences in the correlations between heat and mortality. Also, the heat metric that provides the best indicator of mortality varied by region. Results from this research will potentially lead to improvements in our ability to anticipate and mitigate any significant impacts of extreme heat events on health.
Radiation beam calorimetric power measurement system
Baker, John; Collins, Leland F.; Kuklo, Thomas C.; Micali, James V.
1992-01-01
A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.
Forecasting Electric Power Generation of Photovoltaic Power System for Energy Network
NASA Astrophysics Data System (ADS)
Kudo, Mitsuru; Takeuchi, Akira; Nozaki, Yousuke; Endo, Hisahito; Sumita, Jiro
Recently, there has been an increase in concern about the global environment. Interest is growing in developing an energy network by which new energy systems such as photovoltaic and fuel cells generate power locally and electric power and heat are controlled with a communications network. We developed the power generation forecast method for photovoltaic power systems in an energy network. The method makes use of weather information and regression analysis. We carried out forecasting power output of the photovoltaic power system installed in Expo 2005, Aichi Japan. As a result of comparing measurements with a prediction values, the average prediction error per day was about 26% of the measured power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobel, R.
TRUMP is a general finite difference computer program for the solution of transient and steady state heat transfer problems. It is a very general program capable of solving heat transfer problems in one, two or three dimensions for plane, cylindrical or spherical geometry. Because of the variety of possible geometries, the effort required to describe the geometry can be large. GIFT was written to minimize this effort for one-dimensional heat flow problems. After describing the inner and outer boundaries of a region made of a single material along with the modes of heat transfer which thermally connect different regions, GIFTmore » will calculate all the geometric data (BLOCK 04) and thermal network data (BLOCK 05) required by TRUMP for one-dimensional problems. The heat transfer between layers (or shells) of a material may be by conduction or radiation; also, an interface resistance between layers can be specified. Convection between layers can be accounted for by use of an effective thermal conductivity in which the convection effect is included or by a thermal conductance coefficient. GIFT was written for the Sigma 7 computer, a small digital computer with a versatile graphic display system. This system makes it possible to input the desired data in a question and answer mode and to see both the input and the output displayed on a screen in front of the user at all times. (auth)« less
Thermoacoustically driven triboelectric nanogenerator: Combining thermoacoustics and nanoscience
NASA Astrophysics Data System (ADS)
Zhu, Shunmin; Yu, Aifang; Yu, Guoyao; Liu, Yudong; Zhai, Junyi; Dai, Wei; Luo, Ercang
2017-10-01
A thermoacoustic heat engine (TAHE) is a type of regenerative heat engine that converts external heat into mechanical power in the form of an acoustic wave with no moving mechanical components. One significant application of the TAHE is the generation of electricity by coupling an acoustic-to-electric conversion unit such as a linear motor or a piezoelectric ceramic assembly. However, present-day conversion technologies have considerable drawbacks, including structural complexity, high cost, and low reliability. The advent of triboelectric nanogenerators (TENGs) offers an alternative means to overcoming these shortcomings. In this paper, we propose a thermoacoustically driven TENG (TA-TENG) that continuously harvests external heat. A test rig involving a standing-wave TAHE and a contact-separation mode TENG was fabricated to demonstrate this concept. Currently, the TA-TENG produces a maximum output voltage of 10 V and a corresponding output power of 0.008 μW with a load of 400 MΩ, demonstrating the viability of this hybrid combination for electricity generation.
NASA Astrophysics Data System (ADS)
Ma, Zheshu; Wu, Jieer
2011-08-01
Indirectly or externally fired gas turbines (IFGT or EFGT) are interesting technologies under development for small and medium scale combined heat and power (CHP) supplies in combination with micro gas turbine technologies. The emphasis is primarily on the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass even "dirty" fuel by employing a high temperature heat exchanger (HTHE) to avoid the combustion gases passing through the turbine. In this paper, finite time thermodynamics is employed in the performance analysis of a class of irreversible closed IFGT cycles coupled to variable temperature heat reservoirs. Based on the derived analytical formulae for the dimensionless power output and efficiency, the efficiency optimization is performed in two aspects. The first is to search the optimum heat conductance distribution corresponding to the efficiency optimization among the hot- and cold-side of the heat reservoirs and the high temperature heat exchangers for a fixed total heat exchanger inventory. The second is to search the optimum thermal capacitance rate matching corresponding to the maximum efficiency between the working fluid and the high-temperature heat reservoir for a fixed ratio of the thermal capacitance rates of the two heat reservoirs. The influences of some design parameters on the optimum heat conductance distribution, the optimum thermal capacitance rate matching and the maximum power output, which include the inlet temperature ratio of the two heat reservoirs, the efficiencies of the compressor and the gas turbine, and the total pressure recovery coefficient, are provided by numerical examples. The power plant configuration under optimized operation condition leads to a smaller size, including the compressor, turbine, two heat reservoirs and the HTHE.
Transectional heat transfer in thermoregulating bigeye tuna (Thunnus obesus) - a 2D heat flux model.
Boye, Jess; Musyl, Michael; Brill, Richard; Malte, Hans
2009-11-01
We developed a 2D heat flux model to elucidate routes and rates of heat transfer within bigeye tuna Thunnus obesus Lowe 1839 in both steady-state and time-dependent settings. In modeling the former situation, we adjusted the efficiencies of heat conservation in the red and the white muscle so as to make the output of the model agree as closely as possible with observed cross-sectional isotherms. In modeling the latter situation, we applied the heat exchanger efficiencies from the steady-state model to predict the distribution of temperature and heat fluxes in bigeye tuna during their extensive daily vertical excursions. The simulations yielded a close match to the data recorded in free-swimming fish and strongly point to the importance of the heat-producing and heat-conserving properties of the white muscle. The best correspondence between model output and observed data was obtained when the countercurrent heat exchangers in the blood flow pathways to the red and white muscle retained 99% and 96% (respectively) of the heat produced in these tissues. Our model confirms that the ability of bigeye tuna to maintain elevated muscle temperatures during their extensive daily vertical movements depends on their ability to rapidly modulate heating and cooling rates. This study shows that the differential cooling and heating rates could be fully accounted for by a mechanism where blood flow to the swimming muscles is either exclusively through the heat exchangers or completely shunted around them, depending on the ambient temperature relative to the body temperature. Our results therefore strongly suggest that such a mechanism is involved in the extensive physiological thermoregulatory abilities of endothermic bigeye tuna.
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.; Jones, M. H.
1971-01-01
A description of the computer program used for heating rate calculation for blunt bodies in hypersonic flow is given. The main program and each subprogram are described by defining the pertinent symbols involved and presenting a detailed flow diagram and complete computer program listing. Input and output parameters are discussed in detail. Listings are given for the computation of heating rates on (1) a blunted 15 deg half-angle cone at 20 deg incidence and Mach 10.6, (2) a blunted 70 deg slab delta wing at 10 deg incidence and Mach 8, and (3) the HL-10 lifting body at 20 deg incidence and Mach 10. In addition, the computer program output for two streamlines on the blunted 15 deg half-angle cone is listed. For Part 1, see N71-36186.
Antarctic Atmospheric Infrasound.
1986-11-01
subject to expansion from solar heating. The solution is lots of RTV goop on the end caps and Tee connection. 6.1.4 Land Lines A land line failure will...on the newer cards - 57 - 6, DEMODULATOR CARD CAGE SI Filter-amplifier output Output banana plugs 5.6K 2 4I 22 NC 11 Slow-speed analogue Front panal
21st Century Heat Stress Projections and their Effects on US Livestock
NASA Astrophysics Data System (ADS)
McCabe, E.; Buzan, J. R.; Krishnan, S.; Huber, M.
2016-12-01
In this study we aim to determine future yield changes in the United States for livestock caused by heat stress, under the high greenhouse gas emissions scenario, representative concentration pathway 8.5 (RCP8.5). We use CMIP5 output and the Community Earth System Model Large Ensemble (CESM LENS), produced by the National Center for Atmospheric Research (NCAR). We apply the HumanIndexMod, a diagnostic heat stress package, to calculate Temperature Humidity Index for Comfort (THIC) and wet bulb temperature (Buzan et al., 2015). THIC is used to assess an animal's behavioral changes as it is subjected to discomfort. Using output from our simulations with the HumanIndexMod, we utilized the agricultural livestock model of St. Pierre et al. (2003). THIC and wet bulb temperatures are all projected by climate models to increase by the end of the century. We found that increases in THIC and heat stress are caused by both temperature and humidity increases. We show the differences for dry matter intake loss and milk loss for the Dairy Cow Model as well as other yield related variables. These variables are estimated to decrease overall production for dairy cattle, finishing hogs, poultry and various livestock. By the end of the 21st century (2071-2100), dairy cow milk production decreases by 14%, and food intake decreases by 11% compared to the beginning of the century (2005-2034). 35% less weight is gained and 19% less food is consumed by hogs the end of the century compared to the beginning of the century. We estimate and discuss resulting yield losses for the livestock industries and the implications of these losses in the United States. These results indicate that the effect of heat stress on livestock production will be highest for dairy cows, finishing hogs, and poultry.References:Buzan, J.R., K. Oleson, and M. Huber. 2015. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geoscien. Model Devel. 8(2): 151-170. St-Pierre, N.R., B. Cobanov, and G. Schnitkey. 2003. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 86: E52-77.
Richter, H; Greiner-Bär, M; Pavlov, S G; Semenov, A D; Wienold, M; Schrottke, L; Giehler, M; Hey, R; Grahn, H T; Hübers, H-W
2010-05-10
We report on the development of a compact, easy-to-use terahertz radiation source, which combines a quantum-cascade laser (QCL) operating at 3.1 THz with a compact, low-input-power Stirling cooler. The QCL, which is based on a two-miniband design, has been developed for high output and low electrical pump power. The amount of generated heat complies with the nominal cooling capacity of the Stirling cooler of 7 W at 65 K with 240 W of electrical input power. Special care has been taken to achieve a good thermal coupling between the QCL and the cold finger of the cooler. The whole system weighs less than 15 kg including the cooler and power supplies. The maximum output power is 8 mW at 3.1 THz. With an appropriate optical beam shaping, the emission profile of the laser is fundamental Gaussian. The applicability of the system is demonstrated by imaging and molecular-spectroscopy experiments. (c) 2010 Optical Society of America.
Insights into the role of heat shock protein 72 to whole-body heat acclimation in humans
Amorim, Fabiano Trigueiro; Fonseca, Ivana T; Machado-Moreira, Christiano A; Magalhães, Flávio de Castro
2015-01-01
Abstract Heat acclimation results in systemic and cellular adaptions that reduce the negative effect of heat and, consequently, the risk of heat illness. Although the classical changes observed with heat acclimation lead to increased tolerance to exercise in the heat by reducing heat storage (reflected in reduced core and skin temperatures) and increasing whole-body capacity for heat dissipation (greater plasma volume, sweat output, and skin blood flow), it appears that heat acclimation also induces changes at the cellular level that might increase tolerance of the whole organism to a higher core temperature for the development of fatigue. Thermotolerance is a process that involves increased resilience to an otherwise lethal heat stress that follows a sublethal exposure to heat. Thermotolerance is believed to be the result of increased content of heat shock proteins (Hsp), specially a member of the 70 kDa family, Hsp72 kDa. In humans, we and others have reported that heat acclimation increases intracellular Hsp72 levels. This increase in intracellular Hsp72 could improve whole-body organism thermotolerance by maintaining intestinal epithelial tight junction barriers, by increasing resistance to gut-associated endotoxin translocation, or by reducing the inflammatory response. In this review, we will initially provide an overview of the physiological adaptations induced by heat acclimation and emphasize the main cellular changes that occur with heat acclimation associated with intracellular accumulation of Hsp72. Finally, we will present an argument for a role of whole-body heat acclimation in augmenting cellular thermotolerance, which may protect vital organs from deleterious effects of heat stress in humans. PMID:27227070
NASA Astrophysics Data System (ADS)
Buzan, J. R.; Huber, M.
2016-12-01
Heat stress is of global concern because it threatens human and animal health and productivity. Here we use the HumanIndexMod to calculate 3 moist thermodynamic quantities and 9 commonly and operationally used heat stress metrics (Buzan et al., 2015). We drive the HumanIndexMod with output from CMIP5 and the Community Earth System Model Large Ensemble (LENS) using the greenhouse gasses forcing, representative concentration pathway 8.5 (RCP8.5). We limit our analysis to models that provide 4x daily output of surface pressure, reference height temperature and moisture, and use lowest model level winds where available, 18 CMIP5 and 40 LENS simulations. We show three novel results: Comparing time slices (2081-2100 and 2026-2045 for CMIP5, and 2071-2080 and 2026-2035 for LENS), we note that each individual heat stress metric extreme, within the multi-model mean, has spatial patterns that are highly correlated (>0.99). Moist thermodynamics and heat stress extremes are intrinsically linked to the thermodynamics of the climate, and scales simply with global mean surface temperature (GMT) changes. For example, large swaths of land surface area from 30°N to 30°S, excluding the Sahel, the Arabian Peninsula, and Himalayan Plateau, show the response of wet bulb temperature to be 0.85°C/°C GMT (standard deviation <0.25) for CMIP5 and 0.85°C/°C GMT (standard deviation <0.2) for LENS in agreement with prior work by Sherwood and Huber (2010). Many heat stress metrics, after being normalized by global mean surface temperature changes, are highly spatially correlated with each other, and may reduce the necessity of numerous metrics to properly quantify total heat stress. The three results establish that different climate models, with various underlying assumptions (CMIP5) and ranges of internal variability (LENS), show similar responses in heat stress with respect to global mean temperature changes. Thus, we find the uncertainty of heat stress extremes, even changes at the fine scale, is largely subsumed within the main uncertainties encompassed in transient climate sensitivity. These results are consistent with the hypothesis that outdoor worker productivity will drop significantly with substantial climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii
The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.
High Pulsed Power, Self Excited Magnetohydrodynamic Power Generation Systems
1985-12-27
MHD GENERATOR OUTPUT, CASE G-2 86 TABLE 25:TEMPERATURE IN A SEMI -INFINITE COPPER SLAB EXPOSED TO GAS AT t=O 89 TABLE 26:TIME FOR GAS-Cu INTERFACE TO...REACH 2000 0 F, & BACK SURFACE TEMPERATURE AT THIS TIME,FOR A SEMI -INFINITE SLAB OF GIVEN THICKNESS,d. 89 TABLE 27: CONVECTIVE HEATING OF THE MHD...magnetic field for the explosive MHD generator. A dc room temperature magnet requires too much pow- er for operation at the 5 Tesla fields required by
Three computer codes to read, plot and tabulate operational test-site recorded solar data
NASA Technical Reports Server (NTRS)
Stewart, S. D.; Sampson, R. S., Jr.; Stonemetz, R. E.; Rouse, S. L.
1980-01-01
Computer programs used to process data that will be used in the evaluation of collector efficiency and solar system performance are described. The program, TAPFIL, reads data from an IBM 360 tape containing information (insolation, flowrates, temperatures, etc.) from 48 operational solar heating and cooling test sites. Two other programs, CHPLOT and WRTCNL, plot and tabulate the data from the direct access, unformatted TAPFIL file. The methodology of the programs, their inputs, and their outputs are described.
The W7-X ECRH Plant: Recent Achievements
NASA Astrophysics Data System (ADS)
Erckmann, V.; Brand, P.; Braune, H.; Dammertz, G.; Gantenbein, G.; Kasparek, W.; Laqua, H. P.; Michel, G.; Schmid, M.; Thumm, M.; Weissgerber, M.
2007-09-01
The 10 MW, 140 GHz, CW ECRH-plant for W7-X is in an advanced state of commissioning and the installation was used to investigate advanced applications for extended heating- and current drive scenarios. The operation of the TED gyrotrons was recently extended to a 2nd frequency of 103.6 GHz at reduced output power and first results are presented. An improved collector sweep system for the W7-X gyrotrons with enhanced power capability and smooth power distribution was developed, results are reported.