Response Modality Variations Affect Determinations of Children's Learning Styles.
ERIC Educational Resources Information Center
Janowitz, Jeffrey M.
The Swassing-Barbe Modality Index (SBMI) uses visual, auditory, and tactile inputs, but only reconstructed output, to measure children's modality strengths. In this experiment, the SBMI's three input modalities were crossed with two output modalities (spoken and drawn) in addition to the reconstructed standard to result in nine treatment…
Savran, Arman; Cao, Houwei; Shah, Miraj; Nenkova, Ani; Verma, Ragini
2013-01-01
We present experiments on fusing facial video, audio and lexical indicators for affect estimation during dyadic conversations. We use temporal statistics of texture descriptors extracted from facial video, a combination of various acoustic features, and lexical features to create regression based affect estimators for each modality. The single modality regressors are then combined using particle filtering, by treating these independent regression outputs as measurements of the affect states in a Bayesian filtering framework, where previous observations provide prediction about the current state by means of learned affect dynamics. Tested on the Audio-visual Emotion Recognition Challenge dataset, our single modality estimators achieve substantially higher scores than the official baseline method for every dimension of affect. Our filtering-based multi-modality fusion achieves correlation performance of 0.344 (baseline: 0.136) and 0.280 (baseline: 0.096) for the fully continuous and word level sub challenges, respectively. PMID:25300451
Savran, Arman; Cao, Houwei; Shah, Miraj; Nenkova, Ani; Verma, Ragini
2012-01-01
We present experiments on fusing facial video, audio and lexical indicators for affect estimation during dyadic conversations. We use temporal statistics of texture descriptors extracted from facial video, a combination of various acoustic features, and lexical features to create regression based affect estimators for each modality. The single modality regressors are then combined using particle filtering, by treating these independent regression outputs as measurements of the affect states in a Bayesian filtering framework, where previous observations provide prediction about the current state by means of learned affect dynamics. Tested on the Audio-visual Emotion Recognition Challenge dataset, our single modality estimators achieve substantially higher scores than the official baseline method for every dimension of affect. Our filtering-based multi-modality fusion achieves correlation performance of 0.344 (baseline: 0.136) and 0.280 (baseline: 0.096) for the fully continuous and word level sub challenges, respectively.
ERIC Educational Resources Information Center
Webster, Raymond E.
1980-01-01
A significant two-way input modality by output modality interaction suggested that short term memory capacity among the groups differed as a function of the modality used to present the items in combination with the output response required. (Author/CL)
ERIC Educational Resources Information Center
Stephan, Denise Nadine; Koch, Iring
2010-01-01
Two experiments examined the role of compatibility of input and output (I-O) modality mappings in task switching. We define I-O modality compatibility in terms of similarity of stimulus modality and modality of response-related sensory consequences. Experiment 1 included switching between 2 compatible tasks (auditory-vocal vs. visual-manual) and…
Stelzel, Christine; Schauenburg, Gesche; Rapp, Michael A.; Heinzel, Stephan; Granacher, Urs
2017-01-01
Age-related decline in executive functions and postural control due to degenerative processes in the central nervous system have been related to increased fall-risk in old age. Many studies have shown cognitive-postural dual-task interference in old adults, but research on the role of specific executive functions in this context has just begun. In this study, we addressed the question whether postural control is impaired depending on the coordination of concurrent response-selection processes related to the compatibility of input and output modality mappings as compared to impairments related to working-memory load in the comparison of cognitive dual and single tasks. Specifically, we measured total center of pressure (CoP) displacements in healthy female participants aged 19–30 and 66–84 years while they performed different versions of a spatial one-back working memory task during semi-tandem stance on an unstable surface (i.e., balance pad) while standing on a force plate. The specific working-memory tasks comprised: (i) modality compatible single tasks (i.e., visual-manual or auditory-vocal tasks), (ii) modality compatible dual tasks (i.e., visual-manual and auditory-vocal tasks), (iii) modality incompatible single tasks (i.e., visual-vocal or auditory-manual tasks), and (iv) modality incompatible dual tasks (i.e., visual-vocal and auditory-manual tasks). In addition, participants performed the same tasks while sitting. As expected from previous research, old adults showed generally impaired performance under high working-memory load (i.e., dual vs. single one-back task). In addition, modality compatibility affected one-back performance in dual-task but not in single-task conditions with strikingly pronounced impairments in old adults. Notably, the modality incompatible dual task also resulted in a selective increase in total CoP displacements compared to the modality compatible dual task in the old but not in the young participants. These results suggest that in addition to effects of working-memory load, processes related to simultaneously overcoming special linkages between input- and output modalities interfere with postural control in old but not in young female adults. Our preliminary data provide further evidence for the involvement of cognitive control processes in postural tasks. PMID:28484411
NASA Astrophysics Data System (ADS)
Brewick, P. T.; Smyth, A. W.
2014-12-01
The accurate and reliable estimation of modal damping from output-only vibration measurements of structural systems is a continuing challenge in the fields of operational modal analysis (OMA) and system identification. In this paper a modified version of the blind source separation (BSS)-based Second-Order Blind Identification (SOBI) method was used to perform modal damping identification on a model bridge structure under varying loading conditions. The bridge model was created with finite elements and consisted of a series of stringer beams supported by a larger girder. The excitation was separated into two categories: ambient noise and traffic loads with noise modeled with random forcing vectors and traffic simulated with moving loads for cars and partially distributed moving masses for trains. The acceleration responses were treated as the mixed output signals for the BSS algorithm. The modified SOBI method used a windowing technique to maximize the amount of information used for blind identification from the responses. The modified SOBI method successfully found the mode shapes for both types of excitation with strong accuracy, but power spectral densities (PSDs) of the recovered modal responses showed signs of distortion for the traffic simulations. The distortion had an adverse affect on the damping ratio estimates for some of the modes but no correlation could be found between the accuracy of the damping estimates and the accuracy of the recovered mode shapes. The responses and their PSDs were compared to real-world collected data and patterns similar to distortion were observed implying that this issue likely affects real-world estimates.
NASA Astrophysics Data System (ADS)
Cara, Javier
2016-05-01
Modal parameters comprise natural frequencies, damping ratios, modal vectors and modal masses. In a theoretic framework, these parameters are the basis for the solution of vibration problems using the theory of modal superposition. In practice, they can be computed from input-output vibration data: the usual procedure is to estimate a mathematical model from the data and then to compute the modal parameters from the estimated model. The most popular models for input-output data are based on the frequency response function, but in recent years the state space model in the time domain has become popular among researchers and practitioners of modal analysis with experimental data. In this work, the equations to compute the modal parameters from the state space model when input and output data are available (like in combined experimental-operational modal analysis) are derived in detail using invariants of the state space model: the equations needed to compute natural frequencies, damping ratios and modal vectors are well known in the operational modal analysis framework, but the equation needed to compute the modal masses has not generated much interest in technical literature. These equations are applied to both a numerical simulation and an experimental study in the last part of the work.
Learning Opportunities in Synchronous Computer-Mediated Communication and Face-to-Face Interaction
ERIC Educational Resources Information Center
Kim, Hye Yeong
2014-01-01
This study investigated how synchronous computer-mediated communication (SCMC) and face-to-face (F2F) oral interaction influence the way in which learners collaborate in language learning and how they solve their communicative problems. The findings suggest that output modality may affect how learners produce language, attend to linguistic forms,…
Dynamic modal estimation using instrumental variables
NASA Technical Reports Server (NTRS)
Salzwedel, H.
1980-01-01
A method to determine the modes of dynamical systems is described. The inputs and outputs of a system are Fourier transformed and averaged to reduce the error level. An instrumental variable method that estimates modal parameters from multiple correlations between responses of single input, multiple output systems is applied to estimate aircraft, spacecraft, and off-shore platform modal parameters.
NASA Astrophysics Data System (ADS)
Sadhu, A.; Narasimhan, S.; Antoni, J.
2017-09-01
Output-only modal identification has seen significant activity in recent years, especially in large-scale structures where controlled input force generation is often difficult to achieve. This has led to the development of new system identification methods which do not require controlled input. They often work satisfactorily if they satisfy some general assumptions - not overly restrictive - regarding the stochasticity of the input. Hundreds of papers covering a wide range of applications appear every year related to the extraction of modal properties from output measurement data in more than two dozen mechanical, aerospace and civil engineering journals. In little more than a decade, concepts of blind source separation (BSS) from the field of acoustic signal processing have been adopted by several researchers and shown that they can be attractive tools to undertake output-only modal identification. Originally intended to separate distinct audio sources from a mixture of recordings, mathematical equivalence to problems in linear structural dynamics have since been firmly established. This has enabled many of the developments in the field of BSS to be modified and applied to output-only modal identification problems. This paper reviews over hundred articles related to the application of BSS and their variants to output-only modal identification. The main contribution of the paper is to present a literature review of the papers which have appeared on the subject. While a brief treatment of the basic ideas are presented where relevant, a comprehensive and critical explanation of their contents is not attempted. Specific issues related to output-only modal identification and the relative advantages and limitations of BSS methods both from theoretical and application standpoints are discussed. Gap areas requiring additional work are also summarized and the paper concludes with possible future trends in this area.
Fast modal decomposition for optical fibers using digital holography.
Lyu, Meng; Lin, Zhiquan; Li, Guowei; Situ, Guohai
2017-07-26
Eigenmode decomposition of the light field at the output end of optical fibers can provide fundamental insights into the nature of electromagnetic-wave propagation through the fibers. Here we present a fast and complete modal decomposition technique for step-index optical fibers. The proposed technique employs digital holography to measure the light field at the output end of the multimode optical fiber, and utilizes the modal orthonormal property of the basis modes to calculate the modal coefficients of each mode. Optical experiments were carried out to demonstrate the proposed decomposition technique, showing that this approach is fast, accurate and cost-effective.
Remote-Controlled Rotorcraft Blade Vibration and Modal Analysis at Low Frequencies
2016-02-01
modal analysis, remote-controlled helicopter , remote-controlled rotorcraft, HUMS for rotorcraft 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...Experimental Setup 1 4. Results 4 4.1 Rotor Blade Acceleration 4 4.2 Modal Analysis: Using an Impact Hammer 7 4.3 Dynamic Response Revisited 8 5... Rotor blade response to shaker outputting 1-V sine wave at 100 Hz ....5 Fig. 6 Rotor blade response to shaker outputting 1-V sine sweep from 20- to 100
Low-energy laser biostimulation therapy of musculoskeletal disorders: clinical study
NASA Astrophysics Data System (ADS)
Filonenko, Natalia; Livshitz, Oleg; Salansky, Norman M.
1992-06-01
215 patients (86 males and 129 females, average age 60.3 years) suffering from musculoskeletal and neuromuscular disorders, both chronic and acute, were treated by low energy lasers. Most patients failed to improve in spite of the fact that different conventional treatment modalities were implemented. Some of them were unable to tolerate drugs because of allergy or gastrointestinal intolerance. The photobiostimulation system FABULIGHTTM (IMM Inc., Canada) with adjustable output parameters for both red and infrared wavelength was used. Different modalities of LELBT were used: local and generalized stimulation of tender points and affected areas. Stiffness, swelling, range of motion and pain were assessed. 65% of symptoms improvement was obtained in average.
Modal control of an oblique wing aircraft
NASA Technical Reports Server (NTRS)
Phillips, James D.
1989-01-01
A linear modal control algorithm is applied to the NASA Oblique Wing Research Aircraft (OWRA). The control law is evaluated using a detailed nonlinear flight simulation. It is shown that the modal control law attenuates the coupling and nonlinear aerodynamics of the oblique wing and remains stable during control saturation caused by large command inputs or large external disturbances. The technique controls each natural mode independently allowing single-input/single-output techniques to be applied to multiple-input/multiple-output systems.
This research outlines a proposed Heavy-Duty Diesel Vehicle Modal Emission Modeling Framework (HDDV-MEMF) for heavy-duty diesel-powered trucks and buses. The heavy-duty vehicle modal modules being developed under this research effort, although different, should be compatible wi...
Interaction, Modality, and Word Engagement as Factors in Lexical Learning in a Chinese Context
ERIC Educational Resources Information Center
Niu, Ruiying; Helms-Park, Rena
2014-01-01
This study investigates the roles of collaborative output, the modality of output, and word engagement in vocabulary learning and retention by Chinese-speaking undergraduate EFL learners. The two treatment groups reconstructed a passage that they had read in one of two ways: (1) dyadic oral interaction while producing a written report (Written…
Identification of modal parameters including unmeasured forces and transient effects
NASA Astrophysics Data System (ADS)
Cauberghe, B.; Guillaume, P.; Verboven, P.; Parloo, E.
2003-08-01
In this paper, a frequency-domain method to estimate modal parameters from short data records with known input (measured) forces and unknown input forces is presented. The method can be used for an experimental modal analysis, an operational modal analysis (output-only data) and the combination of both. A traditional experimental and operational modal analysis in the frequency domain starts respectively, from frequency response functions and spectral density functions. To estimate these functions accurately sufficient data have to be available. The technique developed in this paper estimates the modal parameters directly from the Fourier spectra of the outputs and the known input. Instead of using Hanning windows on these short data records the transient effects are estimated simultaneously with the modal parameters. The method is illustrated, tested and validated by Monte Carlo simulations and experiments. The presented method to process short data sequences leads to unbiased estimates with a small variance in comparison to the more traditional approaches.
The Inception of OMA in the Development of Modal Testing Technology for Wind Turbines
NASA Technical Reports Server (NTRS)
James, George H., III; Carne. Thomas G.
2008-01-01
Wind turbines are immense, flexible structures with aerodynamic forces acting on the rotating blades at harmonics of the turbine rotational frequency, which are comparable to the modal frequencies of the structure. Predicting and experimentally measuring the modal frequencies of wind turbines has been important to their successful design and operation. Performing modal tests on wind turbine structures over 100 meters tall is a substantial challenge, which has inspired innovative developments in modal test technology. For wind turbines, a further complication is that the modal frequencies are dependent on the turbine rotation speed. The history and development of a new technique for acquiring the modal parameters using output-only response data, called the Natural Excitation Technique (NExT), will be reviewed, showing historical tests and techniques. The initial attempts at output-only modal testing began in the late 1980's with the development of NExT in the 1990's. NExT was a predecessor to OMA, developed to overcome these challenges of testing immense structures excited with environmental inputs. We will trace the difficulties and successes of wind turbine modal testing from 1982 to the present. Keywords: OMA, Modal Analysis, NExT, Wind Turbines, Wind Excitation
NASA Astrophysics Data System (ADS)
Zyczkowski, M.; Szustakowski, M.; Markowski, P.
2015-09-01
This paper presents a new solution of using the composite fence with a novel fiber optic modalmetric sensor integrated within its structure. The modalmetric sensor is based on changes in a transverse modal field which is generated at the output of a multimode fiber. By a spatial limitation of the transverse modal field observation to its fragment thereof, changes' transformation in the modal distribution into changes of the output signal amplitude is made. Due to a constant analysis of the structure output signal, detection of an external disorder is possible. Integration of optical fibers with the fence structure allows for an accurate reproduction of the fence movement onto the optical fiber by significantly improving sensitivity of the modalmetric fiber sensor structure.
Modal strain energies in COSMIC NASTRAN
NASA Technical Reports Server (NTRS)
Snyder, B. D.; Venkayya, V. B.
1989-01-01
A computer program was developed to take a NASTRAN output file from a normal modes analysis and calculate the modal strain energies of selected elements. The FORTRAN program can determine the modal strain energies for CROD, CBAR, CELAS, CTRMEM, CQDMEM2, and CSHEAR elements. Modal strain energies are useful in estimating damping in structures.
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-03-01
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. The proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.
Jewell, Shannon L; Luecken, Linda J; Gress-Smith, Jenna; Crnic, Keith A; Gonzales, Nancy A
2015-01-01
Low-income Mexican American women experience significant health disparities during the postpartum period. Contextual stressors, such as economic stress, are theorized to affect health via dysregulated cortisol output. However, cultural protective factors including strong family support may buffer the impact of stress. In a sample of 322 low-income Mexican American women (mother age 18-42; 82% Spanish-speaking; modal family income $10,000-$15,000), we examined the interactive influence of economic stress and family support at 6 weeks postpartum on maternal cortisol output (AUCg) during a mildly challenging mother-infant interaction task at 12 weeks postpartum, controlling for 6-week maternal cortisol and depressive symptoms. The interaction significantly predicted cortisol output such that higher economic stress predicted higher cortisol only among women reporting low family support. These results suggest that family support is an important protective resource for postpartum Mexican American women experiencing elevated economic stress.
Information-Processing Modules and Their Relative Modality Specificity
ERIC Educational Resources Information Center
Anderson, John R.; Qin, Yulin; Jung, Kwan-Jin; Carter, Cameron S.
2007-01-01
This research uses fMRI to understand the role of eight cortical regions in a relatively complex information-processing task. Modality of input (visual versus auditory) and modality of output (manual versus vocal) are manipulated. Two perceptual regions (auditory cortex and fusiform gyrus) only reflected perceptual encoding. Two motor regions were…
NASA Technical Reports Server (NTRS)
Richard, M.; Harrison, B. A.
1979-01-01
The program input presented consists of configuration geometry, aerodynamic parameters, and modal data; output includes element geometry, pressure difference distributions, integrated aerodynamic coefficients, stability derivatives, generalized aerodynamic forces, and aerodynamic influence coefficient matrices. Optionally, modal data may be input on magnetic file (tape or disk), and certain geometric and aerodynamic output may be saved for subsequent use.
A new method to extract modal parameters using output-only responses
NASA Astrophysics Data System (ADS)
Kim, Byeong Hwa; Stubbs, Norris; Park, Taehyo
2005-04-01
This work proposes a new output-only modal analysis method to extract mode shapes and natural frequencies of a structure. The proposed method is based on an approach with a single-degree-of-freedom in the time domain. For a set of given mode-isolated signals, the un-damped mode shapes are extracted utilizing the singular value decomposition of the output energy correlation matrix with respect to sensor locations. The natural frequencies are extracted from a noise-free signal that is projected on the estimated modal basis. The proposed method is particularly efficient when a high resolution of mode shape is essential. The accuracy of the method is numerically verified using a set of time histories that are simulated using a finite-element method. The feasibility and practicality of the method are verified using experimental data collected at the newly constructed King Storm Water Bridge in California, United States.
Comprehension of Navigation Directions
NASA Technical Reports Server (NTRS)
Schneider, Vivian I.; Healy, Alice F.
2000-01-01
In an experiment simulating communication between air traffic controllers and pilots, subjects were given navigation instructions varying in length telling them to move in a space represented by grids on a computer screen. The subjects followed the instructions by clicking on the grids in the locations specified. Half of the subjects read the instructions, and half heard them. Half of the subjects in each modality condition repeated back the instructions before following them,and half did not. Performance was worse for the visual than for the auditory modality on the longer messages. Repetition of the instructions generally depressed performance, especially with the longer messages, which required more output than did the shorter messages, and especially with the visual modality, in which phonological recoding from the visual input to the spoken output was necessary. These results are explained in terms of the degrading effects of output interference on memory for instructions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; ...
2016-12-05
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less
NASA Technical Reports Server (NTRS)
Papadopoulos, Michael; Tolson, Robert H.
1993-01-01
The Modal Identification Experiment (MIE) is a proposed experiment to define the dynamic characteristics of Space Station Freedom. Previous studies emphasized free-decay modal identification. The feasibility of using a forced response method (Observer/Kalman Filter Identification (OKID)) is addressed. The interest in using OKID is to determine the input mode shape matrix which can be used for controller design or control-structure interaction analysis, and investigate if forced response methods may aid in separating closely spaced modes. A model of the SC-7 configuration of Space Station Freedom was excited using simulated control system thrusters to obtain acceleration output. It is shown that an 'optimum' number of outputs exists for OKID. To recover global mode shapes, a modified method called Global-Local OKID was developed. This study shows that using data from a long forced response followed by free-decay leads to the 'best' modal identification. Twelve out of the thirteen target modes were identified for such an output.
Is Vertical Jump Height an Indicator of Athletes' Power Output in Different Sport Modalities?
Kons, Rafael L; Ache-Dias, Jonathan; Detanico, Daniele; Barth, Jonathan; Dal Pupo, Juliano
2018-03-01
Kons, RL, Ache-Dias, J, Detanico, D, Barth, J, and Dal Pupo, J. Is vertical jump height an indicator of athletes' power output in different sports modalities? J Strength Cond Res 32(3): 708-715, 2018-This study aimed to identify whether the ratio standard is adequate for the scaling of peak power output (PPO) for body mass (BM) in athletes of different sports and to verify classification agreement for athletes involved in different sports using PPO scaled for BM and jump height (JH). One hundred and twenty-four male athletes divided into 3 different groups-combat sports, team sports, and runners-participated in this study. Participants performed the countermovement jump on a force plate. Peak power output and JH were calculated from the vertical ground reaction force. We found different allometric exponents for each modality, allowing the use of the ratio standard for team sports. For combat sports and runners, the ratio standard was not considered adequate, and therefore, a specific allometric exponent for these 2 groups was found. Significant correlations between adjusted PPO for BM (PPOADJ) and JH were found for all modalities, but it was higher for runners (r = 0.81) than team and combat sports (r = 0.63 and 0.65, respectively). Moderate agreement generated by the PPOADJ and JH was verified in team sports (k = 0.47) and running (k = 0.55) and fair agreement in combat sports (k = 0.29). We conclude that the ratio standard seems to be suitable only for team sports; for runners and combat sports, an allometric model seems adequate. The use of JH as an indicator of power output may be considered reasonable only for runners.
The direct effects of gravity on the control and output matrices of controlled structure models
NASA Technical Reports Server (NTRS)
Rey, Daniel A.; Alexander, Harold L.; Crawley, Edward F.
1992-01-01
The effects of gravity on the dynamic performance of structural control actuators and sensors are dual forms of an additive perturbation that can attenuate or amplify the device response (input or output). The modal modeling of these perturbations is derived for the general case of arbitrarily oriented devices and arbitrarily oriented planes of deformation. A nondimensional sensitivity analysis to identify the circumstances under which the effects of gravity are important is presented. Results show that gravity effects become important when the product of the ratio of the normalized modal slope and the modal displacement is comparable to the ratio of the gravitational acceleration and the product of the beam length and the squared eigenfrequency for a given mode.
Multilayer modal actuator-based piezoelectric transformers.
Huang, Yao-Tien; Wu, Wen-Jong; Wang, Yen-Chieh; Lee, Chih-Kung
2007-02-01
An innovative, multilayer piezoelectric transformer equipped with a full modal filtering input electrode is reported herein. This modal-shaped electrode, based on the orthogonal property of structural vibration modes, is characterized by full modal filtering to ensure that only the desired vibration mode is excited during operation. The newly developed piezoelectric transformer is comprised of three layers: a multilayered input layer, an insulation layer, and a single output layer. The electrode shape of the input layer is derived from its structural vibration modal shape, which takes advantage of the orthogonal property of the vibration modes to achieve a full modal filtering effect. The insulation layer possesses two functions: first, to couple the mechanical vibration energy between the input and output, and second, to provide electrical insulation between the two layers. To meet the two functions, a low temperature, co-fired ceramic (LTCC) was used to provide the high mechanical rigidity and high electrical insulation. It can be shown that this newly developed piezoelectric transformer has the advantage of possessing a more efficient energy transfer and a wider optimal working frequency range when compared to traditional piezoelectric transformers. A multilayer piezoelectric, transformer-based inverter applicable for use in LCD monitors or portable displays is presented as well.
Modal gain characteristics of a 2 μm InGaSb/AlGaAsSb passively mode-locked quantum well laser
NASA Astrophysics Data System (ADS)
Li, Xiang; Wang, Hong; Qiao, Zhongliang; Guo, Xin; Ng, Geok Ing; Zhang, Yu; Niu, Zhichuan; Tong, Cunzhu; Liu, Chongyang
2017-12-01
Passive mode locking with a fundamental repetition rate at ˜18.46 GHz is demonstrated in a two-section InGaSb/AlGaAsSb quantum well laser emitting at 2 μm. Modal gain characteristics of the laser are investigated by performing the Hakki-Paoli method to gain better insight into the impact of the absorber bias voltage (Va) on the light output. The lasing action moves to longer wavelengths markedly with increasing negative Va. The light output contains more longitudinal modes in the mode locking regime if the gain bandwidth is larger at a certain Va. Our findings provide guidelines for output characteristics of the mode-locked laser.
Modal domain fiber optic sensor for closed loop vibration control of a flexible beam
NASA Technical Reports Server (NTRS)
Cox, D.; Thomas, D.; Reichard, K.; Lindner, D.; Claus, R. O.
1990-01-01
The use of a modal domain sensor in a vibration control experiment is described. An optical fiber is bonded along the length of a flexible beam. A control signal derived from the output of the modal domain sensor is used to suppress vibrations induced in the beam. A distributed effect model for the modal domain sensor is developed and combined with models of the beam and actuator dynamics to produce a system suitable for control design.
Meehan, Sue-Ann; Beyers, Nulda; Burger, Ronelle
2017-12-02
In South Africa, the financing and sustainability of HIV services is a priority. Community-based HIV testing services (CB-HTS) play a vital role in diagnosis and linkage to HIV care for those least likely to utilise government health services. With insufficient estimates of the costs associated with CB-HTS provided by NGOs in South Africa, this cost analysis explored the cost to implement and provide services at two NGO-led CB-HTS modalities and calculated the costs associated with realizing key HIV outputs for each CB-HTS modality. The study took place in a peri-urban area where CB-HTS were provided from a stand-alone centre and mobile service. Using a service provider (NGO) perspective, all inputs were allocated by HTS modality with shared costs apportioned according to client volume or personnel time. We calculated the total cost of each HTS modality and the cost categories (personnel, capital and recurring goods/services) across each HTS modality. Costs were divided into seven pre-determined project components, used to examine cost drivers. HIV outputs were analysed for each HTS modality and the mean cost for each HIV output was calculated per HTS modality. The annual cost of the stand-alone and mobile modalities was $96,616 and $77,764 respectively, with personnel costs accounting for 54% of the total costs at the stand-alone. For project components, overheads and service provision made up the majority of the costs. The mean cost per person tested at stand-alone ($51) was higher than at the mobile ($25). Linkage to care cost at the stand-alone ($1039) was lower than the mobile ($2102). This study provides insight into the cost of an NGO led CB-HTS project providing HIV testing and linkage to care through two CB-HIV testing modalities. The study highlights; (1) the importance of including all applicable costs (including overheads) to ensure an accurate cost estimate that is representative of the full service implementation cost, (2) the direct link between test uptake and mean cost per person tested, and (3) the need for effective linkage to care strategies to increase linkage and thereby reduce the mean cost per person linked to HIV care.
Modal noise in multimode optical fibers
NASA Astrophysics Data System (ADS)
Rawson, E. G.; Goodman, J. W.
1983-03-01
A changing speckle pattern exists at the output of a multimode optical fiber if the optical source is sufficiently coherent. When spatial filtration (for example, at a misaligned connector) or polarization filtration (for example, in certain access couplers) occurs in the presence of such speckle, the optical signal power fluctuates; such fluctuations are called 'modal noise'. This paper reviews modal noise theory and experiment, including the prediction and measurement of the modal noise signal-to-noise ratio in the presence of spatial filtration and constrained total guided power. It also presents new results relating to modal noise effects in fiber branching devices such as star couplers, access couplers, and power dividers.
Theta phase precession and phase selectivity: a cognitive device description of neural coding
NASA Astrophysics Data System (ADS)
Zalay, Osbert C.; Bardakjian, Berj L.
2009-06-01
Information in neural systems is carried by way of phase and rate codes. Neuronal signals are processed through transformative biophysical mechanisms at the cellular and network levels. Neural coding transformations can be represented mathematically in a device called the cognitive rhythm generator (CRG). Incoming signals to the CRG are parsed through a bank of neuronal modes that orchestrate proportional, integrative and derivative transformations associated with neural coding. Mode outputs are then mixed through static nonlinearities to encode (spatio) temporal phase relationships. The static nonlinear outputs feed and modulate a ring device (limit cycle) encoding output dynamics. Small coupled CRG networks were created to investigate coding functionality associated with neuronal phase preference and theta precession in the hippocampus. Phase selectivity was found to be dependent on mode shape and polarity, while phase precession was a product of modal mixing (i.e. changes in the relative contribution or amplitude of mode outputs resulted in shifting phase preference). Nonlinear system identification was implemented to help validate the model and explain response characteristics associated with modal mixing; in particular, principal dynamic modes experimentally derived from a hippocampal neuron were inserted into a CRG and the neuron's dynamic response was successfully cloned. From our results, small CRG networks possessing disynaptic feedforward inhibition in combination with feedforward excitation exhibited frequency-dependent inhibitory-to-excitatory and excitatory-to-inhibitory transitions that were similar to transitions seen in a single CRG with quadratic modal mixing. This suggests nonlinear modal mixing to be a coding manifestation of the effect of network connectivity in shaping system dynamic behavior. We hypothesize that circuits containing disynaptic feedforward inhibition in the nervous system may be candidates for interpreting upstream rate codes to guide downstream processes such as phase precession, because of their demonstrated frequency-selective properties.
Ghahari, S. F.; Abazarsa, F.; Avci, O.; Çelebi, Mehmet; Taciroglu, E.
2016-01-01
The Robert A. Millikan Library is a reinforced concrete building with a basement level and nine stories above the ground. Located on the campus of California Institute of Technology (Caltech) in Pasadena California, it is among the most densely instrumented buildings in the U.S. From the early dates of its construction, it has been the subject of many investigations, especially regarding soil–structure interaction effects. It is well accepted that the structure is significantly interacting with the surrounding soil, which implies that the true foundation input motions cannot be directly recorded during earthquakes because of inertial effects. Based on this limitation, input–output modal identification methods are not applicable to this soil–structure system. On the other hand, conventional output-only methods are typically based on the unknown input signals to be stationary whitenoise, which is not the case for earthquake excitations. Through the use of recently developed blind identification (i.e. output-only) methods, it has become possible to extract such information from only the response signals because of earthquake excitations. In the present study, we employ such a blind identification method to extract the modal properties of the Millikan Library. We present some modes that have not been identified from force vibration tests in several studies to date. Then, to quantify the contribution of soil–structure interaction effects, we first create a detailed Finite Element (FE) model using available information about the superstructure; and subsequently update the soil–foundation system's dynamic stiffnesses at each mode such that the modal properties of the entire soil–structure system agree well with those obtained via output-only modal identification.
NASA Astrophysics Data System (ADS)
Pioldi, Fabio; Ferrari, Rosalba; Rizzi, Egidio
2016-02-01
The present paper deals with the seismic modal dynamic identification of frame structures by a refined Frequency Domain Decomposition (rFDD) algorithm, autonomously formulated and implemented within MATLAB. First, the output-only identification technique is outlined analytically and then employed to characterize all modal properties. Synthetic response signals generated prior to the dynamic identification are adopted as input channels, in view of assessing a necessary condition for the procedure's efficiency. Initially, the algorithm is verified on canonical input from random excitation. Then, modal identification has been attempted successfully at given seismic input, taken as base excitation, including both strong motion data and single and multiple input ground motions. Rather than different attempts investigating the role of seismic response signals in the Time Domain, this paper considers the identification analysis in the Frequency Domain. Results turn-out very much consistent with the target values, with quite limited errors in the modal estimates, including for the damping ratios, ranging from values in the order of 1% to 10%. Either seismic excitation and high values of damping, resulting critical also in case of well-spaced modes, shall not fulfill traditional FFD assumptions: this shows the consistency of the developed algorithm. Through original strategies and arrangements, the paper shows that a comprehensive rFDD modal dynamic identification of frames at seismic input is feasible, also at concomitant high damping.
Overview of multi-input frequency domain modal testing methods with an emphasis on sine testing
NASA Technical Reports Server (NTRS)
Rost, Robert W.; Brown, David L.
1988-01-01
An overview of the current state of the art multiple-input, multiple-output modal testing technology is discussed. A very brief review of the current time domain methods is given. A detailed review of frequency and spatial domain methods is presented with an emphasis on sine testing.
NASA Astrophysics Data System (ADS)
Zhou, Si-Da; Ma, Yuan-Chen; Liu, Li; Kang, Jie; Ma, Zhi-Sai; Yu, Lei
2018-01-01
Identification of time-varying modal parameters contributes to the structural health monitoring, fault detection, vibration control, etc. of the operational time-varying structural systems. However, it is a challenging task because there is not more information for the identification of the time-varying systems than that of the time-invariant systems. This paper presents a vector time-dependent autoregressive model and least squares support vector machine based modal parameter estimator for linear time-varying structural systems in case of output-only measurements. To reduce the computational cost, a Wendland's compactly supported radial basis function is used to achieve the sparsity of the Gram matrix. A Gamma-test-based non-parametric approach of selecting the regularization factor is adapted for the proposed estimator to replace the time-consuming n-fold cross validation. A series of numerical examples have illustrated the advantages of the proposed modal parameter estimator on the suppression of the overestimate and the short data. A laboratory experiment has further validated the proposed estimator.
Modal Parameter Identification of a Flexible Arm System
NASA Technical Reports Server (NTRS)
Barrington, Jason; Lew, Jiann-Shiun; Korbieh, Edward; Wade, Montanez; Tantaris, Richard
1998-01-01
In this paper an experiment is designed for the modal parameter identification of a flexible arm system. This experiment uses a function generator to provide input signal and an oscilloscope to save input and output response data. For each vibrational mode, many sets of sine-wave inputs with frequencies close to the natural frequency of the arm system are used to excite the vibration of this mode. Then a least-squares technique is used to analyze the experimental input/output data to obtain the identified parameters for this mode. The identified results are compared with the analytical model obtained by applying finite element analysis.
Connecting Biology to Electronics: Molecular Communication via Redox Modality.
Liu, Yi; Li, Jinyang; Tschirhart, Tanya; Terrell, Jessica L; Kim, Eunkyoung; Tsao, Chen-Yu; Kelly, Deanna L; Bentley, William E; Payne, Gregory F
2017-12-01
Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Jones, R. L.
1984-01-01
An interactive digital computer program for modal analysis and gain estimation for eigensystem synthesis was written. Both mathematical and operation considerations are described; however, the mathematical presentation is limited to those concepts essential to the operational capability of the program. The program is capable of both modal and spectral synthesis of multi-input control systems. It is user friendly, has scratchpad capability and dynamic memory, and can be used to design either state or output feedback systems.
Language Mediation in an L3 Classroom: The Role of Task Modalities and Task Types
ERIC Educational Resources Information Center
Payant, Caroline; Kim, YouJin
2015-01-01
Pedagogical tasks in language learning settings promote learner-learner interaction and provide second language (L2) learners with opportunities to process authentic input and produce output (Philp, Adams, & Iwashita, 2014). During these interactions, learners use their language repertoire to mediate their output (Swain & Lapkin, 2000).…
Validation of a new modal performance measure for flexible controllers design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simo, J.B.; Tahan, S.A.; Kamwa, I.
1996-05-01
A new modal performance measure for power system stabilizer (PSS) optimization is proposed in this paper. The new method is based on modifying the square envelopes of oscillating modes, in order to take into account their damping ratios while minimizing the performance index. This criteria is applied to flexible controllers optimal design, on a multi-input-multi-output (MIMO) reduced-order model of a prototype power system. The multivariable model includes four generators, each having one input and one output. Linear time-response simulation and transient stability analysis with a nonlinear package confirm the superiority of the proposed criteria and illustrate its effectiveness in decentralizedmore » control.« less
An adaptive learning control system for large flexible structures
NASA Technical Reports Server (NTRS)
Thau, F. E.
1985-01-01
The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.
Eigensystem realization algorithm user's guide forVAX/VMS computers: Version 931216
NASA Technical Reports Server (NTRS)
Pappa, Richard S.
1994-01-01
The eigensystem realization algorithm (ERA) is a multiple-input, multiple-output, time domain technique for structural modal identification and minimum-order system realization. Modal identification is the process of calculating structural eigenvalues and eigenvectors (natural vibration frequencies, damping, mode shapes, and modal masses) from experimental data. System realization is the process of constructing state-space dynamic models for modern control design. This user's guide documents VAX/VMS-based FORTRAN software developed by the author since 1984 in conjunction with many applications. It consists of a main ERA program and 66 pre- and post-processors. The software provides complete modal identification capabilities and most system realization capabilities.
Model of an axially strained weakly guiding optical fiber modal pattern
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1992-01-01
Axial strain can be determined by monitoring the modal pattern variation of an optical fiber. The results of a numerical model developed to calculate the modal pattern variation at the end of a weakly guiding optical fiber under axial strain is presented. Whenever an optical fiber is under stress, the optical path length, the index of refraction, and the propagation constants of each fiber mode change. In consequence, the modal phase term for the fields and the fiber output pattern are also modified. For multimode fibers, very complicated patterns result. The predicted patterns are presented, and an expression for the phase variation with strain is derived.
Geva, R; Eshel, R; Leitner, Y; Fattal-Valevski, A; Harel, S
2008-12-01
Recent reports showed that children born with intrauterine growth restriction (IUGR) are at greater risk of experiencing verbal short-term memory span (STM) deficits that may impede their learning capacities at school. It is still unknown whether these deficits are modality dependent. This long-term, prospective design study examined modality-dependent verbal STM functions in children who were diagnosed at birth with IUGR (n = 138) and a control group (n = 64). Their STM skills were evaluated individually at 9 years of age with four conditions of the Visual-Aural Digit Span Test (VADS; Koppitz, 1981): auditory-oral, auditory-written, visuospatial-oral and visuospatial-written. Cognitive competence was evaluated with the short form of the Wechsler Intelligence Scales for Children--revised (WISC-R95; Wechsler, 1998). We found IUGR-related specific auditory-oral STM deficits (p < .036) in conjunction with two double dissociations: an auditory-visuospatial (p < .014) and an input-output processing distinction (p < .014). Cognitive competence had a significant effect on all four conditions; however, the effect of IUGR on the auditory-oral condition was not overridden by the effect of intelligence quotient (IQ). Intrauterine growth restriction affects global competence and inter-modality processing, as well as distinct auditory input processing related to verbal STM functions. The findings support a long-term relationship between prenatal aberrant head growth and auditory verbal STM deficits by the end of the first decade of life. Empirical, clinical and educational implications are presented.
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.
1987-01-01
The major accomplishments of this research are: (1) the refinement and documentation of a multi-input, multi-output modal parameter estimation algorithm which is applicable to general linear, time-invariant dynamic systems; (2) the development and testing of an unsymmetric block-Lanzcos algorithm for reduced-order modeling of linear systems with arbitrary damping; and (3) the development of a control-structure-interaction (CSI) test facility.
Design and optimization of a modal- independent linear ultrasonic motor.
Zhou, Shengli; Yao, Zhiyuan
2014-03-01
To simplify the design of the linear ultrasonic motor (LUSM) and improve its output performance, a method of modal decoupling for LUSMs is proposed in this paper. The specific embodiment of this method is decoupling of the traditional LUSM stator's complex vibration into two simple vibrations, with each vibration implemented by one vibrator. Because the two vibrators are designed independently, their frequencies can be tuned independently and frequency consistency is easy to achieve. Thus, the method can simplify the design of the LUSM. Based on this method, a prototype modal- independent LUSM is designed and fabricated. The motor reaches its maximum thrust force of 47 N, maximum unloaded speed of 0.43 m/s, and maximum power of 7.85 W at applied voltage of 200 Vpp. The motor's structure is then optimized by controlling the difference between the two vibrators' resonance frequencies to reach larger output speed, thrust, and power. The optimized results show that when the frequency difference is 73 Hz, the output force, speed, and power reach their maximum values. At the input voltage of 200 Vpp, the motor reaches its maximum thrust force of 64.2 N, maximum unloaded speed of 0.76 m/s, maximum power of 17.4 W, maximum thrust-weight ratio of 23.7, and maximum efficiency of 39.6%.
Bayesian operational modal analysis with asynchronous data, part I: Most probable value
NASA Astrophysics Data System (ADS)
Zhu, Yi-Chen; Au, Siu-Kui
2018-01-01
In vibration tests, multiple sensors are used to obtain detailed mode shape information about the tested structure. Time synchronisation among data channels is required in conventional modal identification approaches. Modal identification can be more flexibly conducted if this is not required. Motivated by the potential gain in feasibility and economy, this work proposes a Bayesian frequency domain method for modal identification using asynchronous 'output-only' ambient data, i.e. 'operational modal analysis'. It provides a rigorous means for identifying the global mode shape taking into account the quality of the measured data and their asynchronous nature. This paper (Part I) proposes an efficient algorithm for determining the most probable values of modal properties. The method is validated using synthetic and laboratory data. The companion paper (Part II) investigates identification uncertainty and challenges in applications to field vibration data.
NASA Astrophysics Data System (ADS)
Rainieri, Carlo; Fabbrocino, Giovanni
2015-08-01
In the last few decades large research efforts have been devoted to the development of methods for automated detection of damage and degradation phenomena at an early stage. Modal-based damage detection techniques are well-established methods, whose effectiveness for Level 1 (existence) and Level 2 (location) damage detection is demonstrated by several studies. The indirect estimation of tensile loads in cables and tie-rods is another attractive application of vibration measurements. It provides interesting opportunities for cheap and fast quality checks in the construction phase, as well as for safety evaluations and structural maintenance over the structure lifespan. However, the lack of automated modal identification and tracking procedures has been for long a relevant drawback to the extensive application of the above-mentioned techniques in the engineering practice. An increasing number of field applications of modal-based structural health and performance assessment are appearing after the development of several automated output-only modal identification procedures in the last few years. Nevertheless, additional efforts are still needed to enhance the robustness of automated modal identification algorithms, control the computational efforts and improve the reliability of modal parameter estimates (in particular, damping). This paper deals with an original algorithm for automated output-only modal parameter estimation. Particular emphasis is given to the extensive validation of the algorithm based on simulated and real datasets in view of continuous monitoring applications. The results point out that the algorithm is fairly robust and demonstrate its ability to provide accurate and precise estimates of the modal parameters, including damping ratios. As a result, it has been used to develop systems for vibration-based estimation of tensile loads in cables and tie-rods. Promising results have been achieved for non-destructive testing as well as continuous monitoring purposes. They are documented in the last sections of the paper.
Vibration exercise as a warm-up modality for deadlift power output.
Cochrane, Darryl J; Coley, Karl W; Pritchard, Hayden J; Barnes, Matthew J
2015-04-01
Vibration exercise (VbX) has gained popularity as a warm-up modality to enhance performance in golf, baseball, and sprint cycling, but little is known about the efficacy of using VbX as a warm-up before resistance exercise, such as deadlifting. The aim of this study was to compare the effects of a deadlift (DL)-specific warm-up, VbX warm-up, and Control on DL power output (PO). The DL warm-up (DL-WU) included 10, 8, and 5 repetitions performed at 30, 40, and 50% 1-repetition maximum (1RM), respectively, where the number of repetitions was matched by body-weight squats performed with vibration and without vibration (Control). The warm-up conditions were randomized and performed at least 2 days apart. Peak power (PP), mean power, rate of force development (RFD), and electromyography (EMG) were measured during the concentric phase of 2 consecutive DLs (75% 1RM) at 30 seconds and 2:30 minutes after the warm-up conditions. There was no significant (p > 0.05) main effect or interaction effect between the DL-WU, VbX warm-up, and Control for PP, mean power, RFD, and EMG. Vibration exercise warm-up did not exhibit an ergogenic effect to potentiate muscle activity more than the specific DL-WU and Control. Therefore, DL PO is affected to a similar extent, irrespective of the type of stimuli, when the warm-up is not focused on raising muscle temperature.
The Effects of Practice Modality on Pragmatic Development in L2 Chinese
ERIC Educational Resources Information Center
Li, Shuai; Taguchi, Naoko
2014-01-01
This study investigated the effects of input-based and output-based practice on the development of accuracy and speed in recognizing and producing request-making forms in L2 Chinese. Fifty American learners of Chinese with intermediate level proficiency were randomly assigned to an input-based training group, an output-based training group, or a…
New method for calculating the coupling coefficient in graded index optical fibers
NASA Astrophysics Data System (ADS)
Savović, Svetislav; Djordjevich, Alexandar
2018-05-01
A simple method is proposed for determining the mode coupling coefficient D in graded index multimode optical fibers. It only requires observation of the output modal power distribution P(m, z) for one fiber length z as the Gaussian launching modal power distribution changes, with the Gaussian input light distribution centered along the graded index optical fiber axis (θ0 = 0) without radial offset (r0 = 0). A similar method we previously proposed for calculating the coupling coefficient D in a step-index multimode optical fibers where the output angular power distributions P(θ, z) for one fiber length z with the Gaussian input light distribution launched centrally along the step-index optical fiber axis (θ0 = 0) is needed to be known.
ERIC Educational Resources Information Center
Cortis Mack, Cathleen; Dent, Kevin; Ward, Geoff
2018-01-01
Three experiments examined the immediate free recall (IFR) of auditory-verbal and visuospatial materials from single-modality and dual-modality lists. In Experiment 1, we presented participants with between 1 and 16 spoken words, with between 1 and 16 visuospatial dot locations, or with between 1 and 16 words "and" dots with synchronized…
Model of an axially strained weakly guiding optical fiber modal pattern
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1991-01-01
Axial strain may be determined by monitoring the modal pattern variation of an optical fiber. In this paper we present the results of a numerical model that has been developed to calculate the modal pattern variation at the end of a weakly guiding optical fiber under axial strain. Whenever an optical fiber is under stress, the optical path length, the index of refraction and the propagation constants of each fiber mode change. In consequence, the modal phase term of the fields and the fiber output pattern are also modified. For multimode fibers, very complicated patterns result. The predicted patterns are presented, and an expression for the phase variation with strain is derived.
An improved output feedback control of flexible large space structures
NASA Technical Reports Server (NTRS)
Lin, Y. H.; Lin, J. G.
1980-01-01
A special output feedback control design technique for flexible large space structures is proposed. It is shown that the technique will increase both the damping and frequency of selected modes for more effective control. It is also able to effect integrated control of elastic and rigid-body modes and, in particular, closed-loop system stability and robustness to modal truncation and parameter variation. The technique is seen as marking an improvement over previous work concerning large space structures output feedback control.
Vibration suppression for large scale adaptive truss structures using direct output feedback control
NASA Technical Reports Server (NTRS)
Lu, Lyan-Ywan; Utku, Senol; Wada, Ben K.
1993-01-01
In this article, the vibration control of adaptive truss structures, where the control actuation is provided by length adjustable active members, is formulated as a direct output feedback control problem. A control method named Model Truncated Output Feedback (MTOF) is presented. The method allows the control feedback gain to be determined in a decoupled and truncated modal space in which only the critical vibration modes are retained. The on-board computation required by MTOF is minimal; thus, the method is favorable for the applications of vibration control of large scale structures. The truncation of the modal space inevitably introduces spillover effect during the control process. In this article, the effect is quantified in terms of active member locations, and it is shown that the optimal placement of active members, which minimizes the spillover effect (and thus, maximizes the control performance) can be sought. The problem of optimally selecting the locations of active members is also treated.
2011-01-01
refinement of the vehicle body structure through quantitative assessment of stiffness and modal parameter changes resulting from modifications to the beam...differential placed on the axle , adjustment of the torque output to the opposite wheel may be required to obtain the correct solution. Thus...represented by simple inertial components with appropriate model connectivity instead to determine the free modal response of powertrain type
Strain Modal Analysis of Small and Light Pipes Using Distributed Fibre Bragg Grating Sensors
Huang, Jun; Zhou, Zude; Zhang, Lin; Chen, Juntao; Ji, Chunqian; Pham, Duc Truong
2016-01-01
Vibration fatigue failure is a critical problem of hydraulic pipes under severe working conditions. Strain modal testing of small and light pipes is a good option for dynamic characteristic evaluation, structural health monitoring and damage identification. Unique features such as small size, light weight, and high multiplexing capability enable Fibre Bragg Grating (FBG) sensors to measure structural dynamic responses where sensor size and placement are critical. In this paper, experimental strain modal analysis of pipes using distributed FBG sensors ispresented. Strain modal analysis and parameter identification methods are introduced. Experimental strain modal testing and finite element analysis for a cantilever pipe have been carried out. The analysis results indicate that the natural frequencies and strain mode shapes of the tested pipe acquired by FBG sensors are in good agreement with the results obtained by a reference accelerometer and simulation outputs. The strain modal parameters of a hydraulic pipe were obtained by the proposed strain modal testing method. FBG sensors have been shown to be useful in the experimental strain modal analysis of small and light pipes in mechanical, aeronautic and aerospace applications. PMID:27681728
NASA Technical Reports Server (NTRS)
Harrison, B. A.; Richard, M.
1979-01-01
The information necessary for execution of the digital computer program L216 on the CDC 6600 is described. L216 characteristics are based on the doublet lattice method. Arbitrary aerodynamic configurations may be represented with combinations of nonplanar lifting surfaces composed of finite constant pressure panel elements, and axially summetric slender bodies composed of constant pressure line elements. Program input consists of configuration geometry, aerodynamic parameters, and modal data; output includes element geometry, pressure difference distributions, integrated aerodynamic coefficients, stability derivatives, generalized aerodynamic forces, and aerodynamic influence coefficient matrices. Optionally, modal data may be input on magnetic field (tape or disk), and certain geometric and aerodynamic output may be saved for subsequent use.
NASA Astrophysics Data System (ADS)
Brownjohn, James Mark William; Bocian, Mateusz; Hester, David; Quattrone, Antonino; Hudson, William; Moore, Daniel; Goh, Sushma; Lim, Meng Sun
2016-12-01
With the main focus on safety, design of structures for vibration serviceability is often overlooked or mismanaged, resulting in some high profile structures failing publicly to perform adequately under human dynamic loading due to walking, running or jumping. A standard tool to inform better design, prove fitness for purpose before entering service and design retrofits is modal testing, a procedure that typically involves acceleration measurements using an array of wired sensors and force generation using a mechanical shaker. A critical but often overlooked aspect is using input (force) to output (response) relationships to enable estimation of modal mass, which is a key parameter directly controlling vibration levels in service. This paper describes the use of wireless inertial measurement units (IMUs), designed for biomechanics motion capture applications, for the modal testing of a 109 m footbridge. IMUs were first used for an output-only vibration survey to identify mode frequencies, shapes and damping ratios, then for simultaneous measurement of body accelerations of a human subject jumping to excite specific vibrations modes and build up bridge deck accelerations at the jumping location. Using the mode shapes and the vertical acceleration data from a suitable body landmark scaled by body mass, thus providing jumping force data, it was possible to create frequency response functions and estimate modal masses. The modal mass estimates for this bridge were checked against estimates obtained using an instrumented hammer and known mass distributions, showing consistency among the experimental estimates. Finally, the method was used in an applied research application on a short span footbridge where the benefits of logistical and operational simplicity afforded by the highly portable and easy to use IMUs proved extremely useful for an efficient evaluation of vibration serviceability, including estimation of modal masses.
Nonlinear Dynamics and Control of Wings and Panels.
1996-12-04
y, z, t) = fluid velocity potential d31 = piezoelectric constant T&(x, y) = modal expansion functions H,•(t) = aerodynamic influence function h...thickness Subscripts l,(t) = aerodynamic influence function a = aerodynamic i = output current vector m, n = modal indices K = stiffness matrix p...acting on a piston in a tube: As an example, suppose the values of the influence function H,,.(iT) are used to solve for the filter coefficients in Eq
Enhanced spin wave propagation in magnonic rings by bias field modulation
NASA Astrophysics Data System (ADS)
Venkat, G.; Venkateswarlu, D.; Joshi, R. S.; Franchin, M.; Fangohr, H.; Anil Kumar, P. S.; Prabhakar, A.
2018-05-01
We simulate the spin wave (SW) dynamics in ring structures and obtain the ω - k dispersion relations corresponding to the output waveguide. Different bias field configurations affect the transfer of SW power from one arm of the structure to the other arm. To this end, we show that circular or radial bias fields are more suitable for energy transfer across the ring than the conventional horizontal bias field Hx. The SW dispersion shows that modes excited, when the bias field is along the ring radius, are almost 10 dB higher in power when compared to the modal power in the case of Hx. This is also corroborated by the SW energy density in the receiving stub.
Optical fiber sensors and signal processing for intelligent structure monitoring
NASA Technical Reports Server (NTRS)
Thomas, Daniel; Cox, Dave; Lindner, D. K.; Claus, R. O.
1989-01-01
Few mode optical fibers have been shown to produce predictable interference patterns when placed under strain. The use is described of a modal domain sensor in a vibration control experiment. An optical fiber is bonded along the length of a flexible beam. Output from the modal domain sensor is used to suppress vibrations induced in the beam. A distributed effect model for the modal domain sensor is developed. This model is combined with the beam and actuator dynamics to produce a system suitable for control design. Computer simulations predict open and closed loop dynamic responses. An experimental apparatus is described and experimental results are presented.
A Dynamic Calibration Method for Experimental and Analytical Hub Load Comparison
NASA Technical Reports Server (NTRS)
Kreshock, Andrew R.; Thornburgh, Robert P.; Wilbur, Matthew L.
2017-01-01
This paper presents the results from an ongoing effort to produce improved correlation between analytical hub force and moment prediction and those measured during wind-tunnel testing on the Aeroelastic Rotor Experimental System (ARES), a conventional rotor testbed commonly used at the Langley Transonic Dynamics Tunnel (TDT). A frequency-dependent transformation between loads at the rotor hub and outputs of the testbed balance is produced from frequency response functions measured during vibration testing of the system. The resulting transformation is used as a dynamic calibration of the balance to transform hub loads predicted by comprehensive analysis into predicted balance outputs. In addition to detailing the transformation process, this paper also presents a set of wind-tunnel test cases, with comparisons between the measured balance outputs and transformed predictions from the comprehensive analysis code CAMRAD II. The modal response of the testbed is discussed and compared to a detailed finite-element model. Results reveal that the modal response of the testbed exhibits a number of characteristics that make accurate dynamic balance predictions challenging, even with the use of the balance transformation.
NEMS Freight Transportation Module Improvement Study
2015-01-01
The U.S. Energy Information Administration (EIA) contracted with IHS Global, Inc. (IHS) to analyze the relationship between the value of industrial output, physical output, and freight movement in the United States for use in updating analytic assumptions and modeling structure within the National Energy Modeling System (NEMS) freight transportation module, including forecasting methodologies and processes to identify possible alternative approaches that would improve multi-modal freight flow and fuel consumption estimation.
Christensen, Julia F; Gaigg, Sebastian B; Gomila, Antoni; Oke, Peter; Calvo-Merino, Beatriz
2014-01-01
It is well established that emotional responses to stimuli presented to one perceptive modality (e.g., visual) are modulated by the concurrent presentation of affective information to another modality (e.g., auditory)-an effect known as the cross-modal bias. However, the affective mechanisms mediating this effect are still not fully understood. It remains unclear what role different dimensions of stimulus valence and arousal play in mediating the effect, and to what extent cross-modal influences impact not only our perception and conscious affective experiences, but also our psychophysiological emotional response. We addressed these issues by measuring participants' subjective emotion ratings and their Galvanic Skin Responses (GSR) in a cross-modal affect perception paradigm employing videos of ballet dance movements and instrumental classical music as the stimuli. We chose these stimuli to explore the cross-modal bias in a context of stimuli (ballet dance movements) that most participants would have relatively little prior experience with. Results showed (i) that the cross-modal bias was more pronounced for sad than for happy movements, whereas it was equivalent when contrasting high vs. low arousal movements; and (ii) that movement valence did not modulate participants' GSR, while movement arousal did, such that GSR was potentiated in the case of low arousal movements with sad music and when high arousal movements were paired with happy music. Results are discussed in the context of the affective dimension of neuroentrainment and with regards to implications for the art community.
Hollow core waveguide as mid-infrared laser modal beam filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patimisco, P.; Giglio, M.; Spagnolo, V.
2015-09-21
A novel method for mid-IR laser beam mode cleaning employing hollow core waveguide as a modal filter element is reported. The influence of the input laser beam quality on fiber optical losses and output beam profile using a hollow core waveguide with 200 μm-bore size was investigated. Our results demonstrate that even when using a laser with a poor spatial profile, there will exist a minimum fiber length that allows transmission of only the Gaussian-like fundamental waveguide mode from the fiber, filtering out all the higher order modes. This essentially single mode output is preserved also when the waveguide is bentmore » to a radius of curvature of 7.5 cm, which demonstrates that laser mode filtering can be realized even if a curved light path is required.« less
Adaptive precompensators for flexible-link manipulator control
NASA Technical Reports Server (NTRS)
Tzes, Anthony P.; Yurkovich, Stephen
1989-01-01
The application of input precompensators to flexible manipulators is considered. Frequency domain compensators color the input around the flexible mode locations, resulting in a bandstop or notch filter in cascade with the system. Time domain compensators apply a sequence of impulses at prespecified times related to the modal frequencies. The resulting control corresponds to a feedforward term that convolves in real-time the desired reference input with a sequence of impulses and produces a vibration-free output. An adaptive precompensator can be implemented by combining a frequency domain identification scheme which is used to estimate online the modal frequencies and subsequently update the bandstop interval or the spacing between the impulses. The combined adaptive input preshaping scheme provides the most rapid slew that results in a vibration-free output. Experimental results are presented to verify the results.
Multi-modality image fusion based on enhanced fuzzy radial basis function neural networks.
Chao, Zhen; Kim, Dohyeon; Kim, Hee-Joung
2018-04-01
In clinical applications, single modality images do not provide sufficient diagnostic information. Therefore, it is necessary to combine the advantages or complementarities of different modalities of images. Recently, neural network technique was applied to medical image fusion by many researchers, but there are still many deficiencies. In this study, we propose a novel fusion method to combine multi-modality medical images based on the enhanced fuzzy radial basis function neural network (Fuzzy-RBFNN), which includes five layers: input, fuzzy partition, front combination, inference, and output. Moreover, we propose a hybrid of the gravitational search algorithm (GSA) and error back propagation algorithm (EBPA) to train the network to update the parameters of the network. Two different patterns of images are used as inputs of the neural network, and the output is the fused image. A comparison with the conventional fusion methods and another neural network method through subjective observation and objective evaluation indexes reveals that the proposed method effectively synthesized the information of input images and achieved better results. Meanwhile, we also trained the network by using the EBPA and GSA, individually. The results reveal that the EBPGSA not only outperformed both EBPA and GSA, but also trained the neural network more accurately by analyzing the same evaluation indexes. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Bessel-Gauss resonator with spherical output mirror: geometrical- and wave-optics analysis.
Gutiérrez-Vega, Julio C; Rodríguez-Masegosa, Rodolfo; Chávez-Cerda, Sabino
2003-11-01
A detailed study of the axicon-based Bessel-Gauss resonator with concave output coupler is presented. We employ a technique to convert the Huygens-Fresnel integral self-consistency equation into a matrix equation and then find the eigenvalues and the eigenfields of the resonator at one time. A paraxial ray analysis is performed to find the self-consistency condition to have stable periodic ray trajectories after one or two round trips. The fast-Fourier-transform-based Fox and Li algorithm is applied to describe the three-dimensional intracavity field distribution. Special attention was directed to the dependence of the output transverse profiles, the losses, and the modal-frequency changes on the curvature of the output coupler and the cavity length. The propagation of the output beam is discussed.
Multiple Objects Fusion Tracker Using a Matching Network for Adaptively Represented Instance Pairs
Oh, Sang-Il; Kang, Hang-Bong
2017-01-01
Multiple-object tracking is affected by various sources of distortion, such as occlusion, illumination variations and motion changes. Overcoming these distortions by tracking on RGB frames, such as shifting, has limitations because of material distortions caused by RGB frames. To overcome these distortions, we propose a multiple-object fusion tracker (MOFT), which uses a combination of 3D point clouds and corresponding RGB frames. The MOFT uses a matching function initialized on large-scale external sequences to determine which candidates in the current frame match with the target object in the previous frame. After conducting tracking on a few frames, the initialized matching function is fine-tuned according to the appearance models of target objects. The fine-tuning process of the matching function is constructed as a structured form with diverse matching function branches. In general multiple object tracking situations, scale variations for a scene occur depending on the distance between the target objects and the sensors. If the target objects in various scales are equally represented with the same strategy, information losses will occur for any representation of the target objects. In this paper, the output map of the convolutional layer obtained from a pre-trained convolutional neural network is used to adaptively represent instances without information loss. In addition, MOFT fuses the tracking results obtained from each modality at the decision level to compensate the tracking failures of each modality using basic belief assignment, rather than fusing modalities by selectively using the features of each modality. Experimental results indicate that the proposed tracker provides state-of-the-art performance considering multiple objects tracking (MOT) and KITTIbenchmarks. PMID:28420194
Active damping of spacecraft structural appendage vibrations
NASA Technical Reports Server (NTRS)
Fedor, Joseph V. (Inventor)
1990-01-01
An active vibration damper system, for bending in two orthogonal directions and torsion, in each of three mutually perpendicular axes is located at the extremities of the flexible appendages of a space platform. The system components for each axis includes: an accelerometer, filtering and signal processing apparatus, and a DC motor-inertia wheel torquer. The motor torquer, when driven by a voltage proportional to the relative vibration tip velocity, produces a reaction torque for opposing and therefore damping a specific modal velocity of vibration. The relative tip velocity is obtained by integrating the difference between the signal output from the accelerometer located at the end of the appendage with the output of a usually carried accelerometer located on a relatively rigid body portion of the space platform. A selector switch, with sequential stepping logic or highest modal vibration energy logic, steps to another modal tip velocity channel and receives a signal voltage to damp another vibration mode. In this manner, several vibration modes can be damped with a single sensor/actuator pair. When a three axis damper is located on each of the major appendages of the platform, then all of the system vibration modes can be effectively damped.
Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal.
Mishra, Sanjay K; Bhatt, Rahul; Mohan, Devendra; Gupta, Arun Kumar; Sharma, Anurag
2009-11-20
The process of Zernike mode detection with a Shack-Hartmann wavefront sensor is computationally extensive. A holographic modal wavefront sensor has therefore evolved to process the data optically by use of the concept of equal and opposite phase bias. Recently, a multiplexed computer-generated hologram (CGH) technique was developed in which the output is in the form of bright dots that specify the presence and strength of a specific Zernike mode. We propose a wavefront sensor using the concept of phase biasing in the latter technique such that the output is a pair of bright dots for each mode to be sensed. A normalized difference signal between the intensities of the two dots is proportional to the amplitude of the sensed Zernike mode. In our method the number of holograms to be multiplexed is decreased, thereby reducing the modal cross talk significantly. We validated the proposed method through simulation studies for several cases. The simulation results demonstrate simultaneous wavefront detection of lower-order Zernike modes with a resolution better than lambda/50 for the wide measurement range of +/-3.5lambda with much reduced cross talk at high speed.
The effect of time synchronization of wireless sensors on the modal analysis of structures
NASA Astrophysics Data System (ADS)
Krishnamurthy, V.; Fowler, K.; Sazonov, E.
2008-10-01
Driven by the need to reduce the installation cost and maintenance cost of structural health monitoring (SHM) systems, wireless sensor networks (WSNs) are becoming increasingly popular. Perfect time synchronization amongst the wireless sensors is a key factor enabling the use of low-cost, low-power WSNs for structural health monitoring applications based on output-only modal analysis of structures. In this paper we present a theoretical framework for analysis of the impact created by time delays in the measured system response on the reconstruction of mode shapes using the popular frequency domain decomposition (FDD) technique. This methodology directly estimates the change in mode shape values based on sensor synchronicity. We confirm the proposed theoretical model by experimental validation in modal identification experiments performed on an aluminum beam. The experimental validation was performed using a wireless intelligent sensor and actuator network (WISAN) which allows for close time synchronization between sensors (0.6-10 µs in the tested configuration) and guarantees lossless data delivery under normal conditions. The experimental results closely match theoretical predictions and show that even very small delays in output response impact the mode shapes.
NASA Technical Reports Server (NTRS)
Purves, L.; Strang, R. F.; Dube, M. P.; Alea, P.; Ferragut, N.; Hershfeld, D.
1983-01-01
The software and procedures of a system of programs used to generate a report of the statistical correlation between NASTRAN modal analysis results and physical tests results from modal surveys are described. Topics discussed include: a mathematical description of statistical correlation, a user's guide for generating a statistical correlation report, a programmer's guide describing the organization and functions of individual programs leading to a statistical correlation report, and a set of examples including complete listings of programs, and input and output data.
Completely automated modal analysis procedure based on the combination of different OMA methods
NASA Astrophysics Data System (ADS)
Ripamonti, Francesco; Bussini, Alberto; Resta, Ferruccio
2018-03-01
In this work a completely automated output-only Modal Analysis procedure is presented and all its benefits are listed. Based on the merging of different Operational Modal Analysis methods and a statistical approach, the identification process has been improved becoming more robust and giving as results only the real natural frequencies, damping ratios and mode shapes of the system. The effect of the temperature can be taken into account as well, leading to the creation of a better tool for automated Structural Health Monitoring. The algorithm has been developed and tested on a numerical model of a scaled three-story steel building present in the laboratories of Politecnico di Milano.
Freight Transportation Energy Use : Appendix. Transportation Network Model Output.
DOT National Transportation Integrated Search
1978-07-01
The overall design of the TSC Freight Energy Model is presented. A hierarchical modeling strategy is used, in which detailed modal simulators estimate the performance characteristics of transportation network elements, and the estimates are input to ...
Input preshaping with frequency domain information for flexible-link manipulator control
NASA Technical Reports Server (NTRS)
Tzes, Anthony; Englehart, Matthew J.; Yurkovich, Stephen
1989-01-01
The application of an input preshaping scheme to flexible manipulators is considered. The resulting control corresponds to a feedforward term that convolves in real-time the desired reference input with a sequence of impulses and produces a vibration free output. The robustness of the algorithm with respect to injected disturbances and modal frequency variations is not satisfactory and can be improved by convolving the input with a longer sequence of impulses. The incorporation of the preshaping scheme to a closed-loop plant, using acceleration feedback, offers satisfactory disturbance rejection due to feedback and cancellation of the flexible mode effects due to the preshaping. A frequency domain identification scheme is used to estimate the modal frequencies on-line and subsequently update the spacing between the impulses. The combined adaptive input preshaping scheme provides the fastest possible slew that results in a vibration free output.
Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R.; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg
2016-01-01
Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words “GREEN” or “RED” were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying “GREEN” or “RED” had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system. PMID:26958463
Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg
2016-01-01
Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words "GREEN" or "RED" were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying "GREEN" or "RED" had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system.
NASA Astrophysics Data System (ADS)
de Medeiros, Ricardo; Sartorato, Murilo; Vandepitte, Dirk; Tita, Volnei
2016-11-01
The basic concept of the vibration based damage identification methods is that the dynamic behaviour of a structure can change if damage occurs. Damage in a structure can alter the structural integrity, and therefore, the physical properties like stiffness, mass and/or damping may change. The dynamic behaviour of a structure is a function of these physical properties and will, therefore, directly be affected by the damage. The dynamic behaviour can be described in terms of time, frequency and modal domain parameters. The changes in these parameters (or properties derived from these parameters) are used as indicators of damage. Hence, this work has two main objectives. The first one is to provide an overview of the structural vibration based damage identification methods. For this purpose, a fundamental description of the structural vibration based damage identification problem is given, followed by a short literature overview of the damage features, which are commonly addressed. The second objective is to create a damage identification method for detection of the damage in composite structures. To aid in this process, two basic principles are discussed, namely the effect of the potential damage case on the dynamic behaviour, and the consequences involved with the information reduction in the signal processing. Modal properties from the structural dynamic output response are obtained. In addition, experimental and computational results are presented for the application of modal analysis techniques applied to composite specimens with and without damage. The excitation of the structures is performed using an impact hammer and, for measuring the output data, accelerometers as well as piezoelectric sensors. Finite element models are developed by shell elements, and numerical results are compared to experimental data, showing good correlation for the response of the specimens in some specific frequency range. Finally, FRFs are analysed using suitable metrics, including a new one, which are compared in terms of their capability for damage identification. The experimental and numerical results show that the vibration-based damage methods combined to the metrics can be used in Structural Health Monitoring (SHM) systems to identify the damage in the structure.
A controls engineering approach for analyzing airplane input-output characteristics
NASA Technical Reports Server (NTRS)
Arbuckle, P. Douglas
1991-01-01
An engineering approach for analyzing airplane control and output characteristics is presented. State-space matrix equations describing the linear perturbation dynamics are transformed from physical coordinates into scaled coordinates. The scaling is accomplished by applying various transformations to the system to employ prior engineering knowledge of the airplane physics. Two different analysis techniques are then explained. Modal analysis techniques calculate the influence of each system input on each fundamental mode of motion and the distribution of each mode among the system outputs. The optimal steady state response technique computes the blending of steady state control inputs that optimize the steady state response of selected system outputs. Analysis of an example airplane model is presented to demonstrate the described engineering approach.
Effects of different warm-up modalities on power output during the high pull.
Barnes, Matthew John; Petterson, Ashley; Cochrane, Darryl J
2017-05-01
This study compared the effects of six warm-up modalities on peak power output (PPO) during the high-pull exercise. Nine resistance-trained males completed six trials using different warm-ups: high-pull specific (HPS), cycle, whole body vibration (WBV), cycle+HPS, WBV+HPS and a control. Intramuscular temperature (T m ) was increased by 2°C using WBV or cycling. PPO, T m and electromyography (EMG) were recorded during each trial. Two high-pulls were performed prior to and 3 min after participants completed the warm-up. The greatest increase in PPO occurred with HPS (232.8 ± 89.7 W, P < 0.001); however, this was not different to combined warm-ups (cycle+HPS 158.6 ± 121.1 W; WBV+HPS 177.3 ± 93.3 W, P = 1.00). These modalities increased PPO to a greater extent than those that did not involve HPS (all P < 0.05). HPS took the shortest time to complete, compared to the other conditions (P < 0.05). EMG did not differ from pre to post warm-up or between modalities in any of the muscles investigated. No change in T m occurred in warm-ups that did not include cycling or WBV. These results suggest that a movement-specific warm-up improves performance more than temperature-related warm-ups. Therefore, mechanisms other than increased muscle temperature and activation may be important for improving short-term PPO.
Modal Testing of Seven Shuttle Cargo Elements for Space Station
NASA Technical Reports Server (NTRS)
Kappus, Kathy O.; Driskill, Timothy C.; Parks, Russel A.; Patterson, Alan (Technical Monitor)
2001-01-01
From December 1996 to May 2001, the Modal and Control Dynamics Team at NASA's Marshall Space Flight Center (MSFC) conducted modal tests on seven large elements of the International Space Station. Each of these elements has been or will be launched as a Space Shuttle payload for transport to the International Space Station (ISS). Like other Shuttle payloads, modal testing of these elements was required for verification of the finite element models used in coupled loads analyses for launch and landing. The seven modal tests included three modules - Node, Laboratory, and Airlock, and four truss segments - P6, P3/P4, S1/P1, and P5. Each element was installed and tested in the Shuttle Payload Modal Test Bed at MSFC. This unique facility can accommodate any Shuttle cargo element for modal test qualification. Flexure assemblies were utilized at each Shuttle-to-payload interface to simulate a constrained boundary in the load carrying degrees of freedom. For each element, multiple-input, multiple-output burst random modal testing was the primary approach with controlled input sine sweeps for linearity assessments. The accelerometer channel counts ranged from 252 channels to 1251 channels. An overview of these tests, as well as some lessons learned, will be provided in this paper.
Improvements in BTS estimation of ton-miles
DOT National Transportation Integrated Search
2004-08-01
Ton-miles (one ton of freight shipped one mile) is the primary physical measure of freight transportation output. This paper describes improved measurements of ton-miles for air, truck, rail, water, and pipeline modes. Each modal measure contains a d...
Lasers with intra-cavity phase elements
NASA Astrophysics Data System (ADS)
Gulses, A. Alkan; Kurtz, Russell; Islas, Gabriel; Anisimov, Igor
2018-02-01
Conventional laser resonators yield multimodal output, especially at high powers and short cavity lengths. Since highorder modes exhibit large divergence, it is desirable to suppress them to improve laser quality. Traditionally, such modal discriminations can be achieved by simple apertures that provide absorptive loss for large diameter modes, while allowing the lower orders, such as the fundamental Gaussian, to pass through. However, modal discrimination may not be sufficient for short-cavity lasers, resulting in multimodal operation as well as power loss and overheating in the absorptive part of the aperture. In research to improve laser mode control with minimal energy loss, systematic experiments have been executed using phase-only elements. These were composed of an intra-cavity step function and a diffractive out-coupler made of a computer-generated hologram. The platform was a 15-cm long solid-state laser that employs a neodymium-doped yttrium orthovanadate crystal rod, producing 1064 nm multimodal laser output. The intra-cavity phase elements (PEs) were shown to be highly effective in obtaining beams with reduced M-squared values and increased output powers, yielding improved values of radiance. The utilization of more sophisticated diffractive elements is promising for more difficult laser systems.
Context-Aware Fusion of RGB and Thermal Imagery for Traffic Monitoring
Alldieck, Thiemo; Bahnsen, Chris H.; Moeslund, Thomas B.
2016-01-01
In order to enable a robust 24-h monitoring of traffic under changing environmental conditions, it is beneficial to observe the traffic scene using several sensors, preferably from different modalities. To fully benefit from multi-modal sensor output, however, one must fuse the data. This paper introduces a new approach for fusing color RGB and thermal video streams by using not only the information from the videos themselves, but also the available contextual information of a scene. The contextual information is used to judge the quality of a particular modality and guides the fusion of two parallel segmentation pipelines of the RGB and thermal video streams. The potential of the proposed context-aware fusion is demonstrated by extensive tests of quantitative and qualitative characteristics on existing and novel video datasets and benchmarked against competing approaches to multi-modal fusion. PMID:27869730
Modal analysis and dynamic stresses for acoustically excited shuttle insulation tiles
NASA Technical Reports Server (NTRS)
Ojalvo, I. U.; Ogilvie, P. L.
1975-01-01
Improvements and extensions to the RESIST computer program developed for determining the normalized modal stress response of shuttle insulation tiles are described. The new version of RESIST can accommodate primary structure panels with closed-cell stringers, in addition to the capability for treating open-cell stringers. In addition, the present version of RESIST numerically solves vibration problems several times faster than its predecessor. A new digital computer program, titled ARREST (Acoustic Response of Reusable Shuttle Tiles) is also described. Starting with modal information contained on output tapes from RESIST computer runs, ARREST determines RMS stresses, deflections and accelerations of shuttle panels with reusable surface insulation tiles. Both programs are applicable to stringer stiffened structural panels with or without reusable surface insulation titles.
Temperature performance analysis of intersubband Raman laser in quantum cascade structures
NASA Astrophysics Data System (ADS)
Yousefvand, Hossein Reza
2017-06-01
In this paper we investigate the effects of temperature on the output characteristics of the intersubband Raman laser (RL) that integrated monolithically with a quantum cascade (QC) laser as an intracavity optical pump. The laser bandstructure is calculated by a self-consistent solution of Schrodinger-Poisson equations, and the employed physical model of carrier transport is based on a five-level carrier scattering rates; a two-level rate equations for the pump laser and a three-level scattering rates to include the stimulated Raman process in the RL. The temperature dependency of the relevant physical effects such as thermal broadening of the intersubband transitions (ISTs), thermally activated phonon emission lifetimes, and thermal backfilling of the final lasing state of the Raman process from the injector are included in the model. Using the presented model, the steady-state, small-signal modulation response and transient device characteristics are investigated for a range of sink temperatures (80-220 K). It is found that the main characteristics of the device such as output power, threshold current, Raman modal gain, turn-on delay time and 3-dB optical bandwidth are remarkably affected by the temperature.
Jung, Soyoung; Roh, Soojin; Yang, Hyun; Biocca, Frank
2017-09-01
This study investigates how different interface modality features of online dating sites, such as location awareness cues and modality of profiles, affect the sense of social presence of a prospective date. We also examined how various user behaviors aimed at reducing uncertainty about online interactions affect social presence perceptions and are affected by the user interface features. Male users felt a greater sense of social presence when exposed to both location and accessibility cues (geographical proximity) and a richer medium (video profiles). Viewing a richer medium significantly increased the sense of social presence among female participants whereas location-based information sharing features did not directly affect their social presence perception. Augmented social presence, as a mediator, contributed to users' greater intention to meet potential dating partners in a face-to-face setting and to buy paid memberships on online dating sites.
Schlosser, Ralf W; Koul, Rajinder K
2015-01-01
The purpose of this scoping review was to (a) map the research evidence on the effectiveness of augmentative and alternative communication (AAC) interventions using speech output technologies (e.g., speech-generating devices, mobile technologies with AAC-specific applications, talking word processors) for individuals with autism spectrum disorders, (b) identify gaps in the existing literature, and (c) posit directions for future research. Outcomes related to speech, language, and communication were considered. A total of 48 studies (47 single case experimental designs and 1 randomized control trial) involving 187 individuals were included. Results were reviewed in terms of three study groupings: (a) studies that evaluated the effectiveness of treatment packages involving speech output, (b) studies comparing one treatment package with speech output to other AAC modalities, and (c) studies comparing the presence with the absence of speech output. The state of the evidence base is discussed and several directions for future research are posited.
System identification of timber masonry walls using shaking table test
NASA Astrophysics Data System (ADS)
Roy, Timir B.; Guerreiro, Luis; Bagchi, Ashutosh
2017-04-01
Dynamic study is important in order to design, repair and rehabilitation of structures. It has played an important role in the behavior characterization of structures; such as: bridges, dams, high rise buildings etc. There had been substantial development in this area over the last few decades, especially in the field of dynamic identification techniques of structural systems. Frequency Domain Decomposition (FDD) and Time Domain Decomposition are most commonly used methods to identify modal parameters; such as: natural frequency, modal damping and mode shape. The focus of the present research is to study the dynamic characteristics of typical timber masonry walls commonly used in Portugal. For that purpose, a multi-storey structural prototype of such wall has been tested on a seismic shake table at the National Laboratory for Civil Engineering, Portugal (LNEC). Signal processing has been performed of the output response, which is collected from the shaking table experiment of the prototype using accelerometers. In the present work signal processing of the output response, based on the input response has been done in two ways: FDD and Stochastic Subspace Identification (SSI). In order to estimate the values of the modal parameters, algorithms for FDD are formulated and parametric functions for the SSI are computed. Finally, estimated values from both the methods are compared to measure the accuracy of both the techniques.
Design Spectrum Analysis in NASTRAN
NASA Technical Reports Server (NTRS)
Butler, T. G.
1984-01-01
The utility of Design Spectrum Analysis is to give a mode by mode characterization of the behavior of a design under a given loading. The theory of design spectrum is discussed after operations are explained. User instructions are taken up here in three parts: Transient Preface, Maximum Envelope Spectrum, and RMS Average Spectrum followed by a Summary Table. A single DMAP ALTER packet will provide for all parts of the design spectrum operations. The starting point for getting a modal break-down of the response to acceleration loading is the Modal Transient rigid format. After eigenvalue extraction, modal vectors need to be isolated in the full set of physical coordinates (P-sized as opposed to the D-sized vectors in RF 12). After integration for transient response the results are scanned over the solution time interval for the peak values and for the times that they occur. A module called SCAN was written to do this job, that organizes these maxima into a diagonal output matrix. The maximum amplifier in each mode is applied to the eigenvector of each mode which then reveals the maximum displacements, stresses, forces and boundary reactions that the structure will experience for a load history, mode by mode. The standard NASTRAN output processors have been modified for this task. It is required that modes be normalized to mass.
Cross-modal links among vision, audition, and touch in complex environments.
Ferris, Thomas K; Sarter, Nadine B
2008-02-01
This study sought to determine whether performance effects of cross-modal spatial links that were observed in earlier laboratory studies scale to more complex environments and need to be considered in multimodal interface design. It also revisits the unresolved issue of cross-modal cuing asymmetries. Previous laboratory studies employing simple cues, tasks, and/or targets have demonstrated that the efficiency of processing visual, auditory, and tactile stimuli is affected by the modality, lateralization, and timing of surrounding cues. Very few studies have investigated these cross-modal constraints in the context of more complex environments to determine whether they scale and how complexity affects the nature of cross-modal cuing asymmetries. Amicroworld simulation of battlefield operations with a complex task set and meaningful visual, auditory, and tactile stimuli was used to investigate cuing effects for all cross-modal pairings. Significant asymmetric performance effects of cross-modal spatial links were observed. Auditory cues shortened response latencies for collocated visual targets but visual cues did not do the same for collocated auditory targets. Responses to contralateral (rather than ipsilateral) targets were faster for tactually cued auditory targets and each visual-tactile cue-target combination, suggesting an inhibition-of-return effect. The spatial relationships between multimodal cues and targets significantly affect target response times in complex environments. The performance effects of cross-modal links and the observed cross-modal cuing asymmetries need to be examined in more detail and considered in future interface design. The findings from this study have implications for the design of multimodal and adaptive interfaces and for supporting attention management in complex, data-rich domains.
Can Tablet Computers Enhance Faculty Teaching?
Narayan, Aditee P; Whicker, Shari A; Benjamin, Robert W; Hawley, Jeffrey; McGann, Kathleen A
2015-06-01
Learner benefits of tablet computer use have been demonstrated, yet there is little evidence regarding faculty tablet use for teaching. Our study sought to determine if supplying faculty with tablet computers and peer mentoring provided benefits to learners and faculty beyond that of non-tablet-based teaching modalities. We provided faculty with tablet computers and three 2-hour peer-mentoring workshops on tablet-based teaching. Faculty used tablets to teach, in addition to their current, non-tablet-based methods. Presurveys, postsurveys, and monthly faculty surveys assessed feasibility, utilization, and comparisons to current modalities. Learner surveys assessed perceived effectiveness and comparisons to current modalities. All feedback received from open-ended questions was reviewed by the authors and organized into categories. Of 15 eligible faculty, 14 participated. Each participant attended at least 2 of the 3 workshops, with 10 to 12 participants at each workshop. All participants found the workshops useful, and reported that the new tablet-based teaching modality added value beyond that of current teaching methods. Respondents developed the following tablet-based outputs: presentations, photo galleries, evaluation tools, and online modules. Of the outputs, 60% were used in the ambulatory clinics, 33% in intensive care unit bedside teaching rounds, and 7% in inpatient medical unit bedside teaching rounds. Learners reported that common benefits of tablet computers were: improved access/convenience (41%), improved interactive learning (38%), and improved bedside teaching and patient care (13%). A common barrier faculty identified was inconsistent wireless access (14%), while no barriers were identified by the majority of learners. Providing faculty with tablet computers and having peer-mentoring workshops to discuss their use was feasible and added value.
Maximizing power output from continuous-wave single-frequency fiber amplifiers.
Ward, Benjamin G
2015-02-15
This Letter reports on a method of maximizing the power output from highly saturated cladding-pumped continuous-wave single-frequency fiber amplifiers simultaneously, taking into account the stimulated Brillouin scattering and transverse modal instability thresholds. This results in a design figure of merit depending on the fundamental mode overlap with the doping profile, the peak Brillouin gain coefficient, and the peak mode coupling gain coefficient. This figure of merit is then numerically analyzed for three candidate fiber designs including standard, segmented acoustically tailored, and micro-segmented acoustically tailored photonic-crystal fibers. It is found that each of the latter two fibers should enable a 50% higher output power than standard photonic crystal fiber.
Fiber facet gratings for high power fiber lasers
NASA Astrophysics Data System (ADS)
Vanek, Martin; Vanis, Jan; Baravets, Yauhen; Todorov, Filip; Ctyroky, Jiri; Honzatko, Pavel
2017-12-01
We numerically investigated the properties of diffraction gratings designated for fabrication on the facet of an optical fiber. The gratings are intended to be used in high-power fiber lasers as mirrors either with a low or high reflectivity. The modal reflectance of low reflectivity polarizing grating has a value close to 3% for TE mode while it is significantly suppressed for TM mode. Such a grating can be fabricated on laser output fiber facet. The polarizing grating with high modal reflectance is designed as a leaky-mode resonant diffraction grating. The grating can be etched in a thin layer of high index dielectric which is sputtered on fiber facet. We used refractive index of Ta2O5 for such a layer. We found that modal reflectance can be close to 0.95 for TE polarization and polarization extinction ratio achieves 18 dB. Rigorous coupled wave analysis was used for fast optimization of grating parameters while aperiodic rigorous coupled wave analysis, Fourier modal method and finite difference time domain method were compared and used to compute modal reflectance of designed gratings.
NASA Astrophysics Data System (ADS)
Li, Zhijun; Feng, Maria Q.; Luo, Longxi; Feng, Dongming; Xu, Xiuli
2018-01-01
Uncertainty of modal parameters estimation appear in structural health monitoring (SHM) practice of civil engineering to quite some significant extent due to environmental influences and modeling errors. Reasonable methodologies are needed for processing the uncertainty. Bayesian inference can provide a promising and feasible identification solution for the purpose of SHM. However, there are relatively few researches on the application of Bayesian spectral method in the modal identification using SHM data sets. To extract modal parameters from large data sets collected by SHM system, the Bayesian spectral density algorithm was applied to address the uncertainty of mode extraction from output-only response of a long-span suspension bridge. The posterior most possible values of modal parameters and their uncertainties were estimated through Bayesian inference. A long-term variation and statistical analysis was performed using the sensor data sets collected from the SHM system of the suspension bridge over a one-year period. The t location-scale distribution was shown to be a better candidate function for frequencies of lower modes. On the other hand, the burr distribution provided the best fitting to the higher modes which are sensitive to the temperature. In addition, wind-induced variation of modal parameters was also investigated. It was observed that both the damping ratios and modal forces increased during the period of typhoon excitations. Meanwhile, the modal damping ratios exhibit significant correlation with the spectral intensities of the corresponding modal forces.
Spatially distributed fiber sensor with dual processed outputs
NASA Astrophysics Data System (ADS)
Xu, X.; Spillman, William B., Jr.; Claus, Richard O.; Meissner, K. E.; Chen, K.
2005-05-01
Given the rapid aging of the world"s population, improvements in technology for automation of patient care and documentation are badly needed. We have previously demonstrated a 'smart bed' that can non-intrusively monitor a patient in bed and determine a patient's respiration, heart rate and movement without intrusive or restrictive medical measurements. This is an application of spatially distributed integrating fiber optic sensors. The basic concept is that any patient movement that also moves an optical fiber within a specified area will produce a change in the optical signal. Two modal modulation approaches were considered, a statistical mode (STM) sensor and a high order mode excitation (HOME) sensor. The present design includes an STM sensor combined with a HOME sensor, using both modal modulation approaches. A special lens system allows only the high order modes of the optical fiber to be excited and coupled into the sensor. For handling output from the dual STM-HOME sensor, computer processing methods are discussed that offer comprehensive perturbation analysis for more reliable patient monitoring.
Singularity and steering logic for control moment gyros on flexible space structures
NASA Astrophysics Data System (ADS)
Hu, Quan; Guo, Chuandong; Zhang, Jun
2017-08-01
Control moment gyros (CMGs) are a widely used device for generating control torques for spacecraft attitude control without expending propellant. Because of its effectiveness and cleanness, it has been considered to be mounted on a space structure for active vibration suppression. The resultant system is the so-called gyroelastic body. Since CMGs could exert both torque and modal force to the structure, it can also be used to simultaneously achieve attitude maneuver and vibration reduction of a flexible spacecraft. In this paper, we consider the singularity problem in such application of CMGs. The dynamics of an unconstrained gyroelastic body is established, from which the output equations of the CMGs are extracted. Then, torque singular state and modal force singular state are defined and visualized to demonstrate the singularity. Numerical examples of several typical CMGs configurations on a gyroelastic body are given. Finally, a steering law allowing output error is designed and applied to the vibration suppression of a plate with distributed CMGs.
NASA Astrophysics Data System (ADS)
Unnikrishnan, Madhusudanan; Rajan, Akash; Basanthvihar Raghunathan, Binulal; Kochupillai, Jayaraj
2017-08-01
Experimental modal analysis is the primary tool for obtaining the fundamental dynamic characteristics like natural frequency, mode shape and modal damping ratio that determine the behaviour of any structure under dynamic loading conditions. This paper discusses about a carefully designed experimental method for calculating the dynamic characteristics of a pre-stretched horizontal flexible tube made of polyurethane material. The factors that affect the modal parameter estimation like the application time of shaker excitation, pause time between successive excitation cycles, averaging and windowing of measured signal, as well as the precautions to be taken during the experiment are explained in detail. The modal parameter estimation is done using MEscopeVESTM software. A finite element based pre-stressed modal analysis of the flexible tube is also done using ANSYS ver.14.0 software. The experimental and analytical results agreed well. The proposed experimental methodology may be extended for carrying out the modal analysis of many flexible structures like inflatables, tires and membranes.
Liu, Mengyang; Chen, Zhe; Zabihian, Behrooz; Sinz, Christoph; Zhang, Edward; Beard, Paul C.; Ginner, Laurin; Hoover, Erich; Minneman, Micheal P.; Leitgeb, Rainer A.; Kittler, Harald; Drexler, Wolfgang
2016-01-01
Cutaneous blood flow accounts for approximately 5% of cardiac output in human and plays a key role in a number of a physiological and pathological processes. We show for the first time a multi-modal photoacoustic tomography (PAT), optical coherence tomography (OCT) and OCT angiography system with an articulated probe to extract human cutaneous vasculature in vivo in various skin regions. OCT angiography supplements the microvasculature which PAT alone is unable to provide. Co-registered volumes for vessel network is further embedded in the morphologic image provided by OCT. This multi-modal system is therefore demonstrated as a valuable tool for comprehensive non-invasive human skin vasculature and morphology imaging in vivo. PMID:27699106
The relationship between buccofacial and limb apraxia.
Raade, A S; Rothi, L J; Heilman, K M
1991-07-01
There are at least two possible models depicting the relationship between buccofacial and limb apraxia. First, apraxia can be viewed as a unitary motor disorder which transcends the output modalities of both buccofacial and limb output. A high degree of similarity between the two types of apraxia would support this model. Alternatively, the relationship between buccofacial and limb apraxia may not include a unitary mechanism. The presence of quantitative and qualitative differences between buccofacial and limb performance would support this nonunitary model. The results of the present study support the nonunitary model.
Miller, Janis M; Guo, Ying; Rodseth, Sarah Becker
2011-01-01
Background Data that incorporate the full complexity of healthy beverage intake and voiding frequency do not exist; therefore, clinicians reviewing bladder habits or voiding diaries for continence care must rely on expert opinion recommendations. Objective To use data-driven cluster analyses to reduce complex voiding diary variables into discrete patterns or data cluster profiles, descriptively name the clusters, and perform validity testing. Method Participants were 352 community women who filled out a 3-day voiding diary. Six variables (void frequency during daytime hours, void frequency during nighttime hours, modal output, total output, total intake, and body mass index) were entered into cluster analyses. The clusters were analyzed for differences by continence status, age, race (Black women, n = 196 White women, n = 156), and for those who were incontinent, by leakage episode severity. Results Three clusters emerged, labeled descriptively as Conventional, Benchmark, and Superplus. The Conventional cluster (68% of the sample) demonstrated mean daily intake of 45 ±13 ounces; mean daily output of 37 ± 15 ounces, mean daily voids 5 ± 2 times, mean modal daytime output 10±0.5 ounces, and mean nighttime voids 1±1 times. The Superplus cluster (7% of the sample) showed double or triple these values across the 5 variables, and the Benchmark cluster (25%) showed values consistent with current popular recommendations on intake and output (e.g., meeting or exceeding the 8 × 8 fluid intake rule of thumb). The clusters differed significantly (p < .05) by age, race, amount of irritating beverages consumed, and incontinence status. Discussion Identification of three discrete clusters provides for a potential parsimonious but data-driven means of classifying individuals for additional epidemiological or clinical study. The clinical utility rests with potential for intervening to move an individual from a high risk to low risk cluster with regards to incontinence. PMID:21317828
Local and Global Cross-Modal Influences between Vision and Hearing, Tasting, Smelling, or Touching
ERIC Educational Resources Information Center
Forster, Jens
2011-01-01
It is suggested that the distinction between global versus local processing styles exists across sensory modalities. Activation of one-way of processing in one modality should affect processing styles in a different modality. In 12 studies, auditory, haptic, gustatory or olfactory global versus local processing was induced, and participants were…
Dichotic and dichoptic digit perception in normal adults.
Lawfield, Angela; McFarland, Dennis J; Cacace, Anthony T
2011-06-01
Verbally based dichotic-listening experiments and reproduction-mediated response-selection strategies have been used for over four decades to study perceptual/cognitive aspects of auditory information processing and make inferences about hemispheric asymmetries and language lateralization in the brain. Test procedures using dichotic digits have also been used to assess for disorders of auditory processing. However, with this application, limitations exist and paradigms need to be developed to improve specificity of the diagnosis. Use of matched tasks in multiple sensory modalities is a logical approach to address this issue. Herein, we use dichotic listening and dichoptic viewing of visually presented digits for making this comparison. To evaluate methodological issues involved in using matched tasks of dichotic listening and dichoptic viewing in normal adults. A multivariate assessment of the effects of modality (auditory vs. visual), digit-span length (1-3 pairs), response selection (recognition vs. reproduction), and ear/visual hemifield of presentation (left vs. right) on dichotic and dichoptic digit perception. Thirty adults (12 males, 18 females) ranging in age from 18 to 30 yr with normal hearing sensitivity and normal or corrected-to-normal visual acuity. A computerized, custom-designed program was used for all data collection and analysis. A four-way repeated measures analysis of variance (ANOVA) evaluated the effects of modality, digit-span length, response selection, and ear/visual field of presentation. The ANOVA revealed that performances on dichotic listening and dichoptic viewing tasks were dependent on complex interactions between modality, digit-span length, response selection, and ear/visual hemifield of presentation. Correlation analysis suggested a common effect on overall accuracy of performance but isolated only an auditory factor for a laterality index. The variables used in this experiment affected performances in the auditory modality to a greater extent than in the visual modality. The right-ear advantage observed in the dichotic-digits task was most evident when reproduction mediated response selection was used in conjunction with three-digit pairs. This effect implies that factors such as "speech related output mechanisms" and digit-span length (working memory) contribute to laterality effects in dichotic listening performance with traditional paradigms. Thus, the use of multiple-digit pairs to avoid ceiling effects and the application of verbal reproduction as a means of response selection may accentuate the role of nonperceptual factors in performance. Ideally, tests of perceptual abilities should be relatively free of such effects. American Academy of Audiology.
Dosimetric comparison of different treatment modalities for stereotactic radiotherapy.
Hsu, Shih-Ming; Lai, Yuan-Chun; Jeng, Chien-Chung; Tseng, Chia-Ying
2017-09-16
The modalities for performing stereotactic radiotherapy (SRT) on the brain include the cone-based linear accelerator (linac), the flattening filter-free (FFF) volumetric modulated arc therapy (VMAT) linac, and tomotherapy. In this study, the cone-based linac, FFF-VMAT linac, and tomotherapy modalities were evaluated by measuring the differences in doses delivered during brain SRT and experimentally assessing the accuracy of the output radiation doses through clinical measurements. We employed a homemade acrylic dosimetry phantom representing the head, within which a thermoluminescent dosimeter (TLD) and radiochromic EBT3 film were installed. Using the conformity/gradient index (CGI) and Paddick methods, the quality of the doses delivered by the various SRT modalities was evaluated. The quality indicators included the uniformity, conformity, and gradient indices. TLDs and EBT3 films were used to experimentally assess the accuracy of the SRT dose output. The dose homogeneity indices of all the treatment modalities were lower than 1.25. The cone-based linac had the best conformity for all tumors, regardless of the tumor location and size, followed by the FFF-VMAT linac; tomography was the worst-performing treatment modality in this regard. The cone-based linac had the best gradient, regardless of the tumor location and size, whereas the FFF-VMAT linac had a better gradient than tomotherapy for a large tumor diameter (28 mm). The TLD and EBT3 measurements of the dose at the center of tumors indicated that the average difference between the measurements and the calculated dose was generally less than 4%. When the 3% 3-mm gamma passing rate metric was used, the average passing rates of all three treatment modalities exceeded 98%. Regarding the dose, the cone-based linac had the best conformity and steepest dose gradient for tumors of different sizes and distances from the brainstem. The results of this study suggest that SRT should be performed using the cone-based linac on tumors that require treatment plans with a steep dose gradient, even as the tumor is slightly irregular, we should also consider using a high dose gradient of the cone base to treat and protect the normal tissue. If normal tissues require special protection exist at positions that are superior or inferior to the tumor, we can consider using tomotherapy or Cone base with couch at 0° for treatment.
Simulation and Optimization of an Astrophotonic Reformatter
NASA Astrophysics Data System (ADS)
Anagnos, Th; Harris, R. J.; Corrigan, M. K.; Reeves, A. P.; Townson, M. J.; MacLachlan, D. G.; Thomson, R. R.; Morris, T. J.; Schwab, C.; Quirrenbach, A.
2018-05-01
Image slicing is a powerful technique in astronomy. It allows the instrument designer to reduce the slit width of the spectrograph, increasing spectral resolving power whilst retaining throughput. Conventionally this is done using bulk optics, such as mirrors and prisms, however more recently astrophotonic components known as PLs and photonic reformatters have also been used. These devices reformat the MM input light from a telescope into SM outputs, which can then be re-arranged to suit the spectrograph. The PD is one such device, designed to reduce the dependence of spectrograph size on telescope aperture and eliminate modal noise. We simulate the PD, by optimising the throughput and geometrical design using Soapy and BeamProp. The simulated device shows a transmission between 8 and 20 %, depending upon the type of AO correction applied, matching the experimental results well. We also investigate our idealised model of the PD and show that the barycentre of the slit varies only slightly with time, meaning that the modal noise contribution is very low when compared to conventional fibre systems. We further optimise our model device for both higher throughput and reduced modal noise. This device improves throughput by 6.4 % and reduces the movement of the slit output by 50%, further improving stability. This shows the importance of properly simulating such devices, including atmospheric effects. Our work complements recent work in the field and is essential for optimising future photonic reformatters.
Accurate determination of imaging modality using an ensemble of text- and image-based classifiers.
Kahn, Charles E; Kalpathy-Cramer, Jayashree; Lam, Cesar A; Eldredge, Christina E
2012-02-01
Imaging modality can aid retrieval of medical images for clinical practice, research, and education. We evaluated whether an ensemble classifier could outperform its constituent individual classifiers in determining the modality of figures from radiology journals. Seventeen automated classifiers analyzed 77,495 images from two radiology journals. Each classifier assigned one of eight imaging modalities--computed tomography, graphic, magnetic resonance imaging, nuclear medicine, positron emission tomography, photograph, ultrasound, or radiograph-to each image based on visual and/or textual information. Three physicians determined the modality of 5,000 randomly selected images as a reference standard. A "Simple Vote" ensemble classifier assigned each image to the modality that received the greatest number of individual classifiers' votes. A "Weighted Vote" classifier weighted each individual classifier's vote based on performance over a training set. For each image, this classifier's output was the imaging modality that received the greatest weighted vote score. We measured precision, recall, and F score (the harmonic mean of precision and recall) for each classifier. Individual classifiers' F scores ranged from 0.184 to 0.892. The simple vote and weighted vote classifiers correctly assigned 4,565 images (F score, 0.913; 95% confidence interval, 0.905-0.921) and 4,672 images (F score, 0.934; 95% confidence interval, 0.927-0.941), respectively. The weighted vote classifier performed significantly better than all individual classifiers. An ensemble classifier correctly determined the imaging modality of 93% of figures in our sample. The imaging modality of figures published in radiology journals can be determined with high accuracy, which will improve systems for image retrieval.
Halim, Dunant; Cheng, Li; Su, Zhongqing
2011-04-01
The work proposed an optimization approach for structural sensor placement to improve the performance of vibro-acoustic virtual sensor for active noise control applications. The vibro-acoustic virtual sensor was designed to estimate the interior sound pressure of an acoustic-structural coupled enclosure using structural sensors. A spectral-spatial performance metric was proposed, which was used to quantify the averaged structural sensor output energy of a vibro-acoustic system excited by a spatially varying point source. It was shown that (i) the overall virtual sensing error energy was contributed additively by the modal virtual sensing error and the measurement noise energy; (ii) each of the modal virtual sensing error system was contributed by both the modal observability levels for the structural sensing and the target acoustic virtual sensing; and further (iii) the strength of each modal observability level was influenced by the modal coupling and resonance frequencies of the associated uncoupled structural/cavity modes. An optimal design of structural sensor placement was proposed to achieve sufficiently high modal observability levels for certain important panel- and cavity-controlled modes. Numerical analysis on a panel-cavity system demonstrated the importance of structural sensor placement on virtual sensing and active noise control performance, particularly for cavity-controlled modes.
Perceptual processing affects conceptual processing.
Van Dantzig, Saskia; Pecher, Diane; Zeelenberg, René; Barsalou, Lawrence W
2008-04-05
According to the Perceptual Symbols Theory of cognition (Barsalou, 1999), modality-specific simulations underlie the representation of concepts. A strong prediction of this view is that perceptual processing affects conceptual processing. In this study, participants performed a perceptual detection task and a conceptual property-verification task in alternation. Responses on the property-verification task were slower for those trials that were preceded by a perceptual trial in a different modality than for those that were preceded by a perceptual trial in the same modality. This finding of a modality-switch effect across perceptual processing and conceptual processing supports the hypothesis that perceptual and conceptual representations are partially based on the same systems. 2008 Cognitive Science Society, Inc.
Multi-modal automatic montaging of adaptive optics retinal images
Chen, Min; Cooper, Robert F.; Han, Grace K.; Gee, James; Brainard, David H.; Morgan, Jessica I. W.
2016-01-01
We present a fully automated adaptive optics (AO) retinal image montaging algorithm using classic scale invariant feature transform with random sample consensus for outlier removal. Our approach is capable of using information from multiple AO modalities (confocal, split detection, and dark field) and can accurately detect discontinuities in the montage. The algorithm output is compared to manual montaging by evaluating the similarity of the overlapping regions after montaging, and calculating the detection rate of discontinuities in the montage. Our results show that the proposed algorithm has high alignment accuracy and a discontinuity detection rate that is comparable (and often superior) to manual montaging. In addition, we analyze and show the benefits of using multiple modalities in the montaging process. We provide the algorithm presented in this paper as open-source and freely available to download. PMID:28018714
Can Tablet Computers Enhance Faculty Teaching?
Narayan, Aditee P.; Whicker, Shari A.; Benjamin, Robert W.; Hawley, Jeffrey; McGann, Kathleen A.
2015-01-01
Background Learner benefits of tablet computer use have been demonstrated, yet there is little evidence regarding faculty tablet use for teaching. Objective Our study sought to determine if supplying faculty with tablet computers and peer mentoring provided benefits to learners and faculty beyond that of non–tablet-based teaching modalities. Methods We provided faculty with tablet computers and three 2-hour peer-mentoring workshops on tablet-based teaching. Faculty used tablets to teach, in addition to their current, non–tablet-based methods. Presurveys, postsurveys, and monthly faculty surveys assessed feasibility, utilization, and comparisons to current modalities. Learner surveys assessed perceived effectiveness and comparisons to current modalities. All feedback received from open-ended questions was reviewed by the authors and organized into categories. Results Of 15 eligible faculty, 14 participated. Each participant attended at least 2 of the 3 workshops, with 10 to 12 participants at each workshop. All participants found the workshops useful, and reported that the new tablet-based teaching modality added value beyond that of current teaching methods. Respondents developed the following tablet-based outputs: presentations, photo galleries, evaluation tools, and online modules. Of the outputs, 60% were used in the ambulatory clinics, 33% in intensive care unit bedside teaching rounds, and 7% in inpatient medical unit bedside teaching rounds. Learners reported that common benefits of tablet computers were: improved access/convenience (41%), improved interactive learning (38%), and improved bedside teaching and patient care (13%). A common barrier faculty identified was inconsistent wireless access (14%), while no barriers were identified by the majority of learners. Conclusions Providing faculty with tablet computers and having peer-mentoring workshops to discuss their use was feasible and added value. PMID:26221443
On Assisting a Visual-Facial Affect Recognition System with Keyboard-Stroke Pattern Information
NASA Astrophysics Data System (ADS)
Stathopoulou, I.-O.; Alepis, E.; Tsihrintzis, G. A.; Virvou, M.
Towards realizing a multimodal affect recognition system, we are considering the advantages of assisting a visual-facial expression recognition system with keyboard-stroke pattern information. Our work is based on the assumption that the visual-facial and keyboard modalities are complementary to each other and that their combination can significantly improve the accuracy in affective user models. Specifically, we present and discuss the development and evaluation process of two corresponding affect recognition subsystems, with emphasis on the recognition of 6 basic emotional states, namely happiness, sadness, surprise, anger and disgust as well as the emotion-less state which we refer to as neutral. We find that emotion recognition by the visual-facial modality can be aided greatly by keyboard-stroke pattern information and the combination of the two modalities can lead to better results towards building a multimodal affect recognition system.
Perception of the material properties of wood based on vision, audition, and touch.
Fujisaki, Waka; Tokita, Midori; Kariya, Kenji
2015-04-01
Most research on the multimodal perception of material properties has investigated the perception of material properties of two modalities such as vision-touch, vision-audition, audition-touch, and vision-action. Here, we investigated whether the same affective classifications of materials can be found in three different modalities of vision, audition, and touch, using wood as the target object. Fifty participants took part in an experiment involving the three modalities of vision, audition, and touch, in isolation. Twenty-two different wood types including genuine, processed, and fake were perceptually evaluated using a questionnaire consisting of twenty-three items (12 perceptual and 11 affective). The results demonstrated that evaluations of the affective properties of wood were similar in all three modalities. The elements of "expensiveness, sturdiness, rareness, interestingness, and sophisticatedness" and "pleasantness, relaxed feelings, and liked-disliked" were separately grouped for all three senses. Our results suggest that the affective material properties of wood are at least partly represented in a supramodal fashion. Our results also suggest an association between perceptual and affective properties, which will be a useful tool not only in science, but also in applied fields. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Identification of Historical Veziragasi Aqueduct Using the Operational Modal Analysis
Ercan, E.; Nuhoglu, A.
2014-01-01
This paper describes the results of a model updating study conducted on a historical aqueduct, called Veziragasi, in Turkey. The output-only modal identification results obtained from ambient vibration measurements of the structure were used to update a finite element model of the structure. For the purposes of developing a solid model of the structure, the dimensions of the structure, defects, and material degradations in the structure were determined in detail by making a measurement survey. For evaluation of the material properties of the structure, nondestructive and destructive testing methods were applied. The modal analysis of the structure was calculated by FEM. Then, a nondestructive dynamic test as well as operational modal analysis was carried out and dynamic properties were extracted. The natural frequencies and corresponding mode shapes were determined from both theoretical and experimental modal analyses and compared with each other. A good harmony was attained between mode shapes, but there were some differences between natural frequencies. The sources of the differences were introduced and the FEM model was updated by changing material parameters and boundary conditions. Finally, the real analytical model of the aqueduct was put forward and the results were discussed. PMID:24511287
NASA Astrophysics Data System (ADS)
Ripamonti, Francesco; Resta, Ferruccio; Borroni, Massimo; Cazzulani, Gabriele
2014-04-01
A new method for the real-time identification of mechanical system modal parameters is used in order to design different adaptive control logics aiming to reduce the vibrations in a carbon fiber plate smart structure. It is instrumented with three piezoelectric actuators, three accelerometers and three strain gauges. The real-time identification is based on a recursive subspace tracking algorithm whose outputs are elaborated by an ARMA model. A statistical approach is finally applied to choose the modal parameter correct values. These are given in input to model-based control logics such as a gain scheduling and an adaptive LQR control.
Visual Speech-Training Aid for the Deaf
NASA Technical Reports Server (NTRS)
Miller, Robert J.
1987-01-01
Teaching deaf to speak aided by electronic system provides striking colored, pictorial representation of sound; energy at different frequencies as function of time. Other modalities, such as nasality, intra-oral pressure, and lip-muscle contraction, pictorialized simultaneously. Use of standard components, including personal microcomputer, helps reduce cost below prior voice-training systems. Speech-training system, microphone output separated by filters into narrow frequency bands, changed into digital signals, formatted by computer, and displayed on television screen. Output from other sensors displayed simultaneously or screen split to allow sound produced by student to be compared with that of teacher.
Encoding Modality Can Affect Memory Accuracy via Retrieval Orientation
ERIC Educational Resources Information Center
Pierce, Benton H.; Gallo, David A.
2011-01-01
Research indicates that false memory is lower following visual than auditory study, potentially because visual information is more distinctive. In the present study we tested the extent to which retrieval orientation can cause a modality effect on memory accuracy. Participants studied unrelated words in different modalities, followed by criterial…
NASA Technical Reports Server (NTRS)
Hablani, H. B.
1985-01-01
Real disturbances and real sensors have finite bandwidths. The first objective of this paper is to incorporate this finiteness in the 'open-loop modal cost analysis' as applied to a flexible spacecraft. Analysis based on residue calculus shows that among other factors, significance of a mode depends on the power spectral density of disturbances and the response spectral density of sensors at the modal frequency. The second objective of this article is to compare performances of an optimal and a suboptimal output feedback controller, the latter based on 'minimum error excitation' of Kosut. Both the performances are found to be nearly the same, leading us to favor the latter technique because it entails only linear computations. Our final objective is to detect an instability due to truncated modes by representing them as a multiplicative and an additive perturbation in a nominal transfer function. In an example problem it is found that this procedure leads to a narrow range of permissible controller gains, and that it labels a wrong mode as a cause of instability. A free beam is used to illustrate the analysis in this work.
Stochastic subspace identification for operational modal analysis of an arch bridge
NASA Astrophysics Data System (ADS)
Loh, Chin-Hsiung; Chen, Ming-Che; Chao, Shu-Hsien
2012-04-01
In this paer the application of output-only system identification technique, known as Stochastic Subspace Identification (SSI) algorithms, for civil infrastructures is carried out. The ability of covariance driven stochastic subspace identification (SSI-COV) was proved through the analysis of the ambient data of an arch bridge under operational condition. A newly developed signal processing technique, Singular Spectrum analysis (SSA), capable to smooth noisy signals, is adopted for pre-processing the recorded data before the SSI. The conjunction of SSA and SSICOV provides a useful criterion for the system order determination. With the aim of estimating accurate modal parameters of the structure in off-line analysis, a stabilization diagram is constructed by plotting the identified poles of the system with increasing the size of data Hankel matrix. Identification task of a real structure, Guandu Bridge, is carried out to identify the system natural frequencies and mode shapes. The uncertainty of the identified model parameters from output-only measurement of the bridge under operation condition, such as temperature and traffic loading conditions, is discussed.
AOCS Performance and Stability Validation for a 160-m Solar Sail with Control-Structure Interactions
NASA Technical Reports Server (NTRS)
Wie, Bong; Murphy, David
2005-01-01
Future solar sail missions, such as NASA's Solar Polar Imager Vision, will require sails with dimensions on the order of 50-500 m. We are examining a square sail design with moving mass (trim control mass, TCM) and quadrant rotation primary actuators plus pulsed plasma thrusters (PPTs) at the mast tips for backup attitude control. Quadrant rotation is achieved via roll stabilizer bars (RSB) at the mast tips. At these sizes, given the gossamer nature of the sail supporting structures, flexible modes may be low enough to interact with the control system, especially as these actuators are located on the flexible structure itself and not on the rigid core. This paper develops a practical analysis of the flexible interactions using state-space systems and modal data from finite element models of the system. Torsion and bending of the masts during maneuvers could significantly affect the function of the actuators while activation of the membrane modes could adversely affect the thrust vector direction and magnitude. Analysis of the RSB and TCM dynamics for developing high-fidelity simulations is included. For control analysis of the flexible system, standard finite-element models of the flexible sail body are loaded and the modal data is used to create a modal coordinate state-space system. Key parameters include which modes to include, which nodes are of interest for force inputs and displacement outputs, connecting nodes through which external forces and torques are applied from the flex body to the core, any nominal momentum in the system, and any steady rates. The system is linearized about the nominal attitude and rate. The state-space plant can then be analyzed with a state-space controller, and Bode, Nyquist, step and impulse responses generated. The approach is general for any rigid core with a flexible appendage. This paper develops a compensator for a simple two-mass flex system and extrapolates the results to the solar sail. A finite element model of the 20 m solar sail by ATK Space Systems, recently validated in ground tests, is used to demonstrate the sail analysis approach.
ERIC Educational Resources Information Center
Izmirli, Serkan; Kurt, Adile Askim
2016-01-01
The purpose of the study was to examine the effects of instruction given with different multimedia modalities (written text + animation or narration + animation) on the academic achievement, cognitive load, and positive affect in different paces (learner-paced or system-paced); 97 freshmen university students divided into four groups taught in…
USDA-ARS?s Scientific Manuscript database
Neonatal pigs can serve as dual-use models for nutrition research in animal agriculture and biomedical fields. To determine how feeding modality by either intermittent bolus or continuous schedule affects protein anabolism and catabolism, neonatal pigs (n = 6/group, 9-d-old) were overnight fasted (F...
Simultaneous photoacoustic and optically mediated ultrasound microscopy: an in vivo study
Orlova, Anna; Shirmanova, Marina; Postnikova, Anna; Turchin, Ilya
2015-01-01
We propose the use of thermoelastic (TE) excitation of an ultrasonic (US) detector by backscattered laser radiation as a means of upgrading a single-modality photoacoustic (PA) microscope to dual-modality PA/US imaging at minimal cost. The upgraded scanning head of our dual-modality microscope consists of a fiber bundle with 14 output arms and a 32MHz polyvinylidene difluoride (PVDF) detector with a 34 MHz bandwidth (−6 dB level), 12.7 mm focal length, and a 0.25 numerical aperture. A single optical pulse delivered through the fiber bundle to the biotissue being investigated, in combination with a metalized surface on the PVDF detector allows us to obtain both PA and US A-scans. To demonstrate the in vivo capabilities of the proposed method we present the results of bimodal imaging of the brain of a newborn rat, a mouse tail and a mouse tumor. PMID:25780752
Communication restriction in adults who stutter: Part II.
Lee, Amanda; Robb, Michael; van Dulm, Ondene; Ormond, Tika
This article presents a follow-up study to Lee, van Dulm, Robb, and Ormond (2015). The aim was to explore communication restriction in adults with stuttering (AWS) using typical language measures and systemic functional linguistics (SFL) analyses. The article compared the pre- and post-treatment performance of AWS in language productivity and complexity, transitivity, modality, appraisal, and theme. Ten-minute conversational samples were obtained from 20 AWS before and after participation in intensive stuttering treatment. Transcripts were analysed for quantity and complexity of verbal output, and frequency of transitivity, modality, appraisal and theme resources. Between pre- and post-treatment, the following differences were observed: (1) a significant increase in frequency of modal operators, and trends approaching significance for (2) increased language complexity (3) increased language expressing appraisal. These changes suggest increased flexibility of language use in AWS following treatment, particularly towards interpersonal engagement. The value of SFL to this area of research is discussed.
Integrating Iris and Signature Traits for Personal Authentication Using User-Specific Weighting
Viriri, Serestina; Tapamo, Jules R.
2012-01-01
Biometric systems based on uni-modal traits are characterized by noisy sensor data, restricted degrees of freedom, non-universality and are susceptible to spoof attacks. Multi-modal biometric systems seek to alleviate some of these drawbacks by providing multiple evidences of the same identity. In this paper, a user-score-based weighting technique for integrating the iris and signature traits is presented. This user-specific weighting technique has proved to be an efficient and effective fusion scheme which increases the authentication accuracy rate of multi-modal biometric systems. The weights are used to indicate the importance of matching scores output by each biometrics trait. The experimental results show that our biometric system based on the integration of iris and signature traits achieve a false rejection rate (FRR) of 0.08% and a false acceptance rate (FAR) of 0.01%. PMID:22666032
A multimodal image sensor system for identifying water stress in grapevines
NASA Astrophysics Data System (ADS)
Zhao, Yong; Zhang, Qin; Li, Minzan; Shao, Yongni; Zhou, Jianfeng; Sun, Hong
2012-11-01
Water stress is one of the most common limitations of fruit growth. Water is the most limiting resource for crop growth. In grapevines, as well as in other fruit crops, fruit quality benefits from a certain level of water deficit which facilitates to balance vegetative and reproductive growth and the flow of carbohydrates to reproductive structures. A multi-modal sensor system was designed to measure the reflectance signature of grape plant surfaces and identify different water stress levels in this paper. The multi-modal sensor system was equipped with one 3CCD camera (three channels in R, G, and IR). The multi-modal sensor can capture and analyze grape canopy from its reflectance features, and identify the different water stress levels. This research aims at solving the aforementioned problems. The core technology of this multi-modal sensor system could further be used as a decision support system that combines multi-modal sensory data to improve plant stress detection and identify the causes of stress. The images were taken by multi-modal sensor which could output images in spectral bands of near-infrared, green and red channel. Based on the analysis of the acquired images, color features based on color space and reflectance features based on image process method were calculated. The results showed that these parameters had the potential as water stress indicators. More experiments and analysis are needed to validate the conclusion.
Message Modality and Source Credibility Can Interact to Affect Argument Processing.
ERIC Educational Resources Information Center
Booth-Butterfield, Steve; Gutowski, Christine
1993-01-01
Extends previous modality and source cue studies by manipulating argument quality. Randomly assigned college students by class to an argument quality by source attribute by modality factorial experiment. Finds the print mode produces only argument main effects, and audio and video modes produce argument by cue interactions. Finds data inconsistent…
Quantifying and managing uncertainty in operational modal analysis
NASA Astrophysics Data System (ADS)
Au, Siu-Kui; Brownjohn, James M. W.; Mottershead, John E.
2018-03-01
Operational modal analysis aims at identifying the modal properties (natural frequency, damping, etc.) of a structure using only the (output) vibration response measured under ambient conditions. Highly economical and feasible, it is becoming a common practice in full-scale vibration testing. In the absence of (input) loading information, however, the modal properties have significantly higher uncertainty than their counterparts identified from free or forced vibration (known input) tests. Mastering the relationship between identification uncertainty and test configuration is of great interest to both scientists and engineers, e.g., for achievable precision limits and test planning/budgeting. Addressing this challenge beyond the current state-of-the-art that are mostly concerned with identification algorithms, this work obtains closed form analytical expressions for the identification uncertainty (variance) of modal parameters that fundamentally explains the effect of test configuration. Collectively referred as 'uncertainty laws', these expressions are asymptotically correct for well-separated modes, small damping and long data; and are applicable under non-asymptotic situations. They provide a scientific basis for planning and standardization of ambient vibration tests, where factors such as channel noise, sensor number and location can be quantitatively accounted for. The work is reported comprehensively with verification through synthetic and experimental data (laboratory and field), scientific implications and practical guidelines for planning ambient vibration tests.
NASA Astrophysics Data System (ADS)
Pioldi, Fabio; Rizzi, Egidio
2017-07-01
Output-only structural identification is developed by a refined Frequency Domain Decomposition ( rFDD) approach, towards assessing current modal properties of heavy-damped buildings (in terms of identification challenge), under strong ground motions. Structural responses from earthquake excitations are taken as input signals for the identification algorithm. A new dedicated computational procedure, based on coupled Chebyshev Type II bandpass filters, is outlined for the effective estimation of natural frequencies, mode shapes and modal damping ratios. The identification technique is also coupled with a Gabor Wavelet Transform, resulting in an effective and self-contained time-frequency analysis framework. Simulated response signals generated by shear-type frames (with variable structural features) are used as a necessary validation condition. In this context use is made of a complete set of seismic records taken from the FEMA P695 database, i.e. all 44 "Far-Field" (22 NS, 22 WE) earthquake signals. The modal estimates are statistically compared to their target values, proving the accuracy of the developed algorithm in providing prompt and accurate estimates of all current strong ground motion modal parameters. At this stage, such analysis tool may be employed for convenient application in the realm of Earthquake Engineering, towards potential Structural Health Monitoring and damage detection purposes.
Model validity and frequency band selection in operational modal analysis
NASA Astrophysics Data System (ADS)
Au, Siu-Kui
2016-12-01
Experimental modal analysis aims at identifying the modal properties (e.g., natural frequencies, damping ratios, mode shapes) of a structure using vibration measurements. Two basic questions are encountered when operating in the frequency domain: Is there a mode near a particular frequency? If so, how much spectral data near the frequency can be included for modal identification without incurring significant modeling error? For data with high signal-to-noise (s/n) ratios these questions can be addressed using empirical tools such as singular value spectrum. Otherwise they are generally open and can be challenging, e.g., for modes with low s/n ratios or close modes. In this work these questions are addressed using a Bayesian approach. The focus is on operational modal analysis, i.e., with 'output-only' ambient data, where identification uncertainty and modeling error can be significant and their control is most demanding. The approach leads to 'evidence ratios' quantifying the relative plausibility of competing sets of modeling assumptions. The latter involves modeling the 'what-if-not' situation, which is non-trivial but is resolved by systematic consideration of alternative models and using maximum entropy principle. Synthetic and field data are considered to investigate the behavior of evidence ratios and how they should be interpreted in practical applications.
NASA Technical Reports Server (NTRS)
Cox, D. E.; Lindner, D. K.
1991-01-01
An account is given of the use of a modal-domain (MD) fiber-optic sensor as an active control system component for vibration suppression, whose output is proportional to the integral of the axial strain along the optical fiber. When an MD sensor is attached to, or embedded in, a flexible structure, it senses the strain in the structure along its gage length. On the basis of the present integration of the sensor model into a flexible-structure model, it becomes possible to design a control system with a dynamic compensator which adds damping to the low-order modes of the flexible structure. This modeling procedure has been experimentally validated.
STABCAR: A program for finding characteristic root systems having transcendental stability matrices
NASA Technical Reports Server (NTRS)
Adams, W. M., Jr.; Tiffany, S. H.; Newsom, J. R.; Peele, E. L.
1984-01-01
STABCAR can be used to determine the characteristic roots of flexible, actively controlled aircraft, including the effects of unsteady aerodynamics. A modal formulation and a transfer-matrix representation of the control system are employed. Operable in either a batch or an interactive mode, STABCAR can provide graphical or tabular output of the variation of the roots with velocity, density, altitude, dynamic pressure or feedback gains. Herein the mathematical model, program structure, input requirements, output capabilities, and a series of sample cases are detailed. STABCAR was written for use on CDC CYBER 175 equipment; modification would be required for operation on other machines.
Carey, Joseph N; Sheckter, Clifford C; Watt, Andrew J; Lee, Gordon K
2013-08-01
Despite advances in nutritional supplementation, sepsis management, percutaneous drainage and surgical technique, enterocutaneous fistulae remain a considerable source of morbidity and mortality. Use of adjunctive modalities including negative pressure wound therapy and fibrin glue have been shown to improve the rapidity of fistula closure; however, the overall rate of closure remains poor. The challenge of managing chronic, high-output proximal enterocutaneous fistulae can be successfully achieved with appropriate medical management and intra-abdominal placement of pedicled rectus abdominis muscle flaps. We report two cases of recalcitrant high output enterocutaneous fistulae that were treated successfully with pedicled intra-abdominal rectus muscle flaps. Indications for pedicled intra-abdominal rectus muscle flaps include persistent patency despite a reasonable trial of non-operative intervention, failure of traditional operative interventions (serosal patch, Graham patch), and persistent electrolyte and nutritional abnormalities in the setting of a high-output fistula. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Daee, Pedram; Mirian, Maryam S; Ahmadabadi, Majid Nili
2014-01-01
In a multisensory task, human adults integrate information from different sensory modalities--behaviorally in an optimal Bayesian fashion--while children mostly rely on a single sensor modality for decision making. The reason behind this change of behavior over age and the process behind learning the required statistics for optimal integration are still unclear and have not been justified by the conventional Bayesian modeling. We propose an interactive multisensory learning framework without making any prior assumptions about the sensory models. In this framework, learning in every modality and in their joint space is done in parallel using a single-step reinforcement learning method. A simple statistical test on confidence intervals on the mean of reward distributions is used to select the most informative source of information among the individual modalities and the joint space. Analyses of the method and the simulation results on a multimodal localization task show that the learning system autonomously starts with sensory selection and gradually switches to sensory integration. This is because, relying more on modalities--i.e. selection--at early learning steps (childhood) is more rewarding than favoring decisions learned in the joint space since, smaller state-space in modalities results in faster learning in every individual modality. In contrast, after gaining sufficient experiences (adulthood), the quality of learning in the joint space matures while learning in modalities suffers from insufficient accuracy due to perceptual aliasing. It results in tighter confidence interval for the joint space and consequently causes a smooth shift from selection to integration. It suggests that sensory selection and integration are emergent behavior and both are outputs of a single reward maximization process; i.e. the transition is not a preprogrammed phenomenon.
Short-term memory for event duration: modality specificity and goal dependency.
Takahashi, Kohske; Watanabe, Katsumi
2012-11-01
Time perception is involved in various cognitive functions. This study investigated the characteristics of short-term memory for event duration by examining how the length of the retention period affects inter- and intramodal duration judgment. On each trial, a sample stimulus was followed by a comparison stimulus, after a variable delay period (0.5-5 s). The sample and comparison stimuli were presented in the visual or auditory modality. The participants determined whether the comparison stimulus was longer or shorter than the sample stimulus. The distortion pattern of subjective duration during the delay period depended on the sensory modality of the comparison stimulus but was not affected by that of the sample stimulus. When the comparison stimulus was visually presented, the retained duration of the sample stimulus was shortened as the delay period increased. Contrarily, when the comparison stimulus was presented in the auditory modality, the delay period had little to no effect on the retained duration. Furthermore, whenever the participants did not know the sensory modality of the comparison stimulus beforehand, the effect of the delay period disappeared. These results suggest that the memory process for event duration is specific to sensory modality and that its performance is determined depending on the sensory modality in which the retained duration will be used subsequently.
Universal modal radiation laws for all thermal emitters
Zhu, Linxiao; Fan, Shanhui
2017-01-01
We derive four laws relating the absorptivity and emissivity of thermal emitters. Unlike the original Kirchhoff radiation law derivations, these derivations include diffraction, and so are valid also for small objects, and can also cover nonreciprocal objects. The proofs exploit two recent approaches. First, we express all fields in terms of the mode-converter basis sets of beams; these sets, which can be uniquely established for any linear optical object, give orthogonal input beams that are coupled one-by-one to orthogonal output beams. Second, we consider thought experiments using universal linear optical machines, which allow us to couple appropriate beams and black bodies. Two of these laws can be regarded as rigorous extensions of previously known laws: One gives a modal version of a radiation law for reciprocal objects—the absorptivity of any input beam equals the emissivity into the “backward” (i.e., phase-conjugated) version of that beam; another gives the overall equality of the sums of the emissivities and the absorptivities for any object, including nonreciprocal ones. The other two laws, valid for reciprocal and nonreciprocal objects, are quite different from previous relations. One shows universal equivalence of the absorptivity of each mode-converter input beam and the emissivity into its corresponding scattered output beam. The other gives unexpected equivalences of absorptivity and emissivity for broad classes of beams. Additionally, we prove these orthogonal mode-converter sets of input and output beams are the ones that maximize absorptivities and emissivities, respectively, giving these beams surprising additional physical meaning. PMID:28396436
Effect of residual stress on modal patterns of MEMS vibratory gyroscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Shankar, E-mail: shankardutta77@gmail.com; Panchal, Abha; Kumar, Manoj
Deep boron diffusion often induces residual stress in bulk micromachined MEMS structures, which may affect the MEMS devices operation. In this study, we studied the modal patterns of MEMS vibratory gyroscope under the residual stress (100 – 1000 MPa). Modal patterns and modal frequencies of the gyro are found to be dependent on the residual stress values. Without any residual stress, the modal frequencies drive and sense modeswere found to be 20.06 kHz and 20.36 kHz respectively. In presence of 450 MPa residual stress, the modal frequencies of the drive and sense modes were changed to 42.75 kHz and 43.07 kHz respectively.
Writing superiority in cued recall
Fueller, Carina; Loescher, Jens; Indefrey, Peter
2013-01-01
In list learning paradigms with free recall, written recall has been found to be less susceptible to intrusions of related concepts than spoken recall when the list items had been visually presented. This effect has been ascribed to the use of stored orthographic representations from the study phase during written recall (Kellogg, 2001). In other memory retrieval paradigms, by contrast, either better recall for modality-congruent items or an input-independent writing superiority effect have been found (Grabowski, 2005). In a series of four experiments using a paired associate learning paradigm we tested (a) whether output modality effects on verbal recall can be replicated in a paradigm that does not involve the rejection of semantically related intrusion words, (b) whether a possible superior performance for written recall was due to a slower response onset for writing as compared to speaking in immediate recall, and (c) whether the performance in paired associate word recall was correlated with performance in an additional episodic memory recall task. We observed better written recall in the first half of the recall phase, irrespective of the modality in which the material was presented upon encoding. An explanation for this effect based on longer response latencies for writing and hence more time for memory retrieval could be ruled out by showing that the effect persisted in delayed response versions of the task. Although there was some evidence that stored additional episodic information may contribute to the successful retrieval of associate words, this evidence was only found in the immediate response experiments and hence is most likely independent from the observed output modality effect. In sum, our results from a paired associate learning paradigm suggest that superior performance for written vs. spoken recall cannot be (solely) explained in terms of additional access to stored orthographic representations from the encoding phase. Our findings rather suggest a general writing-superiority effect at the time of memory retrieval. PMID:24151483
Schlader, Zachary J; Raman, Aaron; Morton, R Hugh; Stannard, Stephen R; Mündel, Toby
2011-05-01
This study evaluated exercise modality [i.e. self-paced (SP) or fixed-intensity (FI) exercise] as a modulator of body temperature regulation under uncompensable heat stress. Eight well-trained male cyclists completed (work-matched) FI and SP cycling exercise bouts in a hot (40.6 ± 0.2°C) and dry (relative humidity 23 ± 3%) environment estimated to elicit 70% of [Formula: see text]O(2)max. Exercise intensity (i.e. power output) decreased over time in SP, which resulted in longer exercise duration (FI 20.3 ± 3.4 min, SP 23.2 ± 4.1 min). According to the heat strain index, the modification of exercise intensity in SP improved the compensability of the thermal environment which, relative to FI, was likely a result of the reductions in metabolic heat production (i.e. [Formula: see text]O(2)). Consequently, the rate of rise in core body temperature was higher in FI (0.108 ± 0.020°C/min) than in SP (0.082 ± 0.016°C/min). Interestingly, cardiac output, stroke volume, and heart rate during exercise were independent of exercise modality. However, core body temperature (FI 39.4 ± 0.3°C, SP 39.1 ± 0.4°C), blood lactate (FI 2.9 ± 0.8 mmol/L, SP 2.3 ± 0.7 mmol/L), perceived exertion (FI 18 ± 2, SP 16 ± 2), and physiological strain (FI 9.1 ± 0.9, SP 8.3 ± 1.1) were all higher in FI compared to SP at exhaustion/completion. These findings indicate that, when exercise is SP, behavioral modification of metabolic heat production improves the compensability of the thermal environment and reduces thermoregulatory strain. Therefore, under uncompensable heat stress, exercise modality modulates body temperature regulation.
ERIC Educational Resources Information Center
Gerst, Elyssa H.
2017-01-01
The primary aim of this study was to examine the structure of processing speed (PS) in middle childhood by comparing five theoretically driven models of PS. The models consisted of two conceptual models (a unitary model, a complexity model) and three methodological models (a stimulus material model, an output modality model, and a timing modality…
Mehari, Shlomo; Cohen, Daniel A; Becerra, Daniel L; Nakamura, Shuji; DenBaars, Steven P
2018-01-22
The benefits of utilizing transparent conductive oxide on top of a thin p-GaN layer for continuous-wave (CW) operation of blue laser diodes (LDs) were investigated. A very low operating voltage of 5.35 V at 10 kA/cm 2 was obtained for LDs with 250 nm thick p-GaN compared to 7.3 V for LDs with conventional 650 nm thick p-GaN. An improved thermal performance was also observed for the thin p-GaN samples resulting in a 40% increase in peak light output power and a 32% decrease in surface temperature. Finally, a tradeoff was demonstrated between low operating voltage and increased optical modal loss in the indium tin oxide (ITO) with thinner p-GaN. LDs lasing at 445 nm with 150 nm thick p-GaN had an excess modal loss while LDs with an optimal 250 nm thick p-GaN resulted in optical output power of 1.1 W per facet without facet coatings and a wall-plug efficiency of 15%.
Deep Convolutional Neural Networks for Multi-Modality Isointense Infant Brain Image Segmentation
Zhang, Wenlu; Li, Rongjian; Deng, Houtao; Wang, Li; Lin, Weili; Ji, Shuiwang; Shen, Dinggang
2015-01-01
The segmentation of infant brain tissue images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) plays an important role in studying early brain development in health and disease. In the isointense stage (approximately 6–8 months of age), WM and GM exhibit similar levels of intensity in both T1 and T2 MR images, making the tissue segmentation very challenging. Only a small number of existing methods have been designed for tissue segmentation in this isointense stage; however, they only used a single T1 or T2 images, or the combination of T1 and T2 images. In this paper, we propose to use deep convolutional neural networks (CNNs) for segmenting isointense stage brain tissues using multi-modality MR images. CNNs are a type of deep models in which trainable filters and local neighborhood pooling operations are applied alternatingly on the raw input images, resulting in a hierarchy of increasingly complex features. Specifically, we used multimodality information from T1, T2, and fractional anisotropy (FA) images as inputs and then generated the segmentation maps as outputs. The multiple intermediate layers applied convolution, pooling, normalization, and other operations to capture the highly nonlinear mappings between inputs and outputs. We compared the performance of our approach with that of the commonly used segmentation methods on a set of manually segmented isointense stage brain images. Results showed that our proposed model significantly outperformed prior methods on infant brain tissue segmentation. In addition, our results indicated that integration of multi-modality images led to significant performance improvement. PMID:25562829
Multi-sensory integration in a small brain
NASA Astrophysics Data System (ADS)
Gepner, Ruben; Wolk, Jason; Gershow, Marc
Understanding how fluctuating multi-sensory stimuli are integrated and transformed in neural circuits has proved a difficult task. To address this question, we study the sensori-motor transformations happening in the brain of the Drosophila larva, a tractable model system with about 10,000 neurons. Using genetic tools that allow us to manipulate the activity of individual brain cells through their transparent body, we observe the stochastic decisions made by freely-behaving animals as their visual and olfactory environments fluctuate independently. We then use simple linear-nonlinear models to correlate outputs with relevant features in the inputs, and adaptive filtering processes to track changes in these relevant parameters used by the larva's brain to make decisions. We show how these techniques allow us to probe how statistics of stimuli from different sensory modalities combine to affect behavior, and can potentially guide our understanding of how neural circuits are anatomically and functionally integrated. Supported by NIH Grant 1DP2EB022359 and NSF Grant PHY-1455015.
Modal parameter estimation and monitoring for on-line flight flutter analysis
NASA Astrophysics Data System (ADS)
Verboven, P.; Cauberghe, B.; Guillaume, P.; Vanlanduit, S.; Parloo, E.
2004-05-01
The clearance of the flight envelope of a new airplane by means of flight flutter testing is time consuming and expensive. Most common approach is to track the modal damping ratios during a number of flight conditions, and hence the accuracy of the damping estimates plays a crucial role. However, aircraft manufacturers desire to decrease the flight flutter testing time for practical, safety and economical reasons by evolving from discrete flight test points to a more continuous flight test pattern. Therefore, this paper presents an approach that provides modal parameter estimation and monitoring for an aircraft with a slowly time-varying structural behaviour that will be observed during a faster and more continuous exploration of the flight envelope. The proposed identification approach estimates the modal parameters directly from input/output Fourier data. This avoids the need for an averaging-based pre-processing of the data, which becomes inapplicable in the case that only short data records are measured. Instead of using a Hanning window to reduce effects of leakage, these transient effects are modelled simultaneously with the dynamical behaviour of the airplane. The method is validated for the monitoring of the system poles during flight flutter testing.
NASA Astrophysics Data System (ADS)
Cancelli, Alessandro; Micheli, Laura; Laflamme, Simon; Alipour, Alice; Sritharan, Sri; Ubertini, Filippo
2017-04-01
Stochastic subspace identification (SSID) is a first-order linear system identification technique enabling modal analysis through the time domain. Research in the field of structural health monitoring has demonstrated that SSID can be used to successfully retrieve modal properties, including modal damping ratios, using output-only measurements. In this paper, the utilization of SSID for indirectly retrieving structures' stiffness matrix was investigated, through the study of a simply supported reinforced concrete beam subjected to dynamic loads. Hence, by introducing a physical model of the structure, a second-order identification method is achieved. The reconstruction is based on system condensation methods, which enables calculation of reduced order stiffness, damping, and mass matrices for the structural system. The methods compute the reduced order matrices directly from the modal properties, obtained through the use of SSID. Lastly, the reduced properties of the system are used to reconstruct the stiffness matrix of the beam. The proposed approach is first verified through numerical simulations and then validated using experimental data obtained from a full-scale reinforced concrete beam that experienced progressive damage. Results show that the SSID technique can be used to diagnose, locate, and quantify damage through the reconstruction of the stiffness matrix.
Integration of heterogeneous data for classification in hyperspectral satellite imagery
NASA Astrophysics Data System (ADS)
Benedetto, J.; Czaja, W.; Dobrosotskaya, J.; Doster, T.; Duke, K.; Gillis, D.
2012-06-01
As new remote sensing modalities emerge, it becomes increasingly important to nd more suitable algorithms for fusion and integration of dierent data types for the purposes of target/anomaly detection and classication. Typical techniques that deal with this problem are based on performing detection/classication/segmentation separately in chosen modalities, and then integrating the resulting outcomes into a more complete picture. In this paper we provide a broad analysis of a new approach, based on creating fused representations of the multi- modal data, which then can be subjected to analysis by means of the state-of-the-art classiers or detectors. In this scenario we shall consider the hyperspectral imagery combined with spatial information. Our approach involves machine learning techniques based on analysis of joint data-dependent graphs and their associated diusion kernels. Then, the signicant eigenvectors of the derived fused graph Laplace operator form the new representation, which provides integrated features from the heterogeneous input data. We compare these fused approaches with analysis of integrated outputs of spatial and spectral graph methods.
System/observer/controller identification toolbox
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Horta, Lucas G.; Phan, Minh
1992-01-01
System Identification is the process of constructing a mathematical model from input and output data for a system under testing, and characterizing the system uncertainties and measurement noises. The mathematical model structure can take various forms depending upon the intended use. The SYSTEM/OBSERVER/CONTROLLER IDENTIFICATION TOOLBOX (SOCIT) is a collection of functions, written in MATLAB language and expressed in M-files, that implements a variety of modern system identification techniques. For an open loop system, the central features of the SOCIT are functions for identification of a system model and its corresponding forward and backward observers directly from input and output data. The system and observers are represented by a discrete model. The identified model and observers may be used for controller design of linear systems as well as identification of modal parameters such as dampings, frequencies, and mode shapes. For a closed-loop system, an observer and its corresponding controller gain directly from input and output data.
Switchable multi-wavelength fiber laser based on modal interference
NASA Astrophysics Data System (ADS)
Ma, Lin; Jiang, Sun; Qi, Yan-Hui; Kang, Ze-Xin; Jian, Shui-Sheng
2015-08-01
A comb fiber filter based on modal interference is proposed and demonstrated in this paper. Here two cascaded up-tapers are used to excite the cladding mode, and a core-offset jointing point is used to act as an interference component. Experimental results show that this kind of structure possesses a comb filter property in a range of the C-band. The measured extinction ratio is better than 12 dB with an insertion loss of about 11 dB. A switchable multi-wavelength erbium-doped fiber laser based on this novel comb filter is demonstrated. By adjusting the polarization controller, the output laser can be switched among single-, dual-, and three-wavelengths with a side mode suppression ratio of better than 45 dB.
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-02-01
Experimental or operational modal analysis traditionally requires physically-attached wired or wireless sensors for vibration measurement of structures. This instrumentation can result in mass-loading on lightweight structures, and is costly and time-consuming to install and maintain on large civil structures, especially for long-term applications (e.g., structural health monitoring) that require significant maintenance for cabling (wired sensors) or periodic replacement of the energy supply (wireless sensors). Moreover, these sensors are typically placed at a limited number of discrete locations, providing low spatial sensing resolution that is hardly sufficient for modal-based damage localization, or model correlation and updating for larger-scale structures. Non-contact measurement methods such as scanning laser vibrometers provide high-resolution sensing capacity without the mass-loading effect; however, they make sequential measurements that require considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation, optical flow), video camera based measurements have been successfully used for vibration measurements and subsequent modal analysis, based on techniques such as the digital image correlation (DIC) and the point-tracking. However, they typically require speckle pattern or high-contrast markers to be placed on the surface of structures, which poses challenges when the measurement area is large or inaccessible. This work explores advanced computer vision and video processing algorithms to develop a novel video measurement and vision-based operational (output-only) modal analysis method that alleviate the need of structural surface preparation associated with existing vision-based methods and can be implemented in a relatively efficient and autonomous manner with little user supervision and calibration. First a multi-scale image processing method is applied on the frames of the video of a vibrating structure to extract the local pixel phases that encode local structural vibration, establishing a full-field spatiotemporal motion matrix. Then a high-spatial dimensional, yet low-modal-dimensional, over-complete model is used to represent the extracted full-field motion matrix using modal superposition, which is physically connected and manipulated by a family of unsupervised learning models and techniques, respectively. Thus, the proposed method is able to blindly extract modal frequencies, damping ratios, and full-field (as many points as the pixel number of the video frame) mode shapes from line of sight video measurements of the structure. The method is validated by laboratory experiments on a bench-scale building structure and a cantilever beam. Its ability for output (video measurements)-only identification and visualization of the weakly-excited mode is demonstrated and several issues with its implementation are discussed.
Delivery of high intensity beams with large clad step-index fibers for engine ignition
NASA Astrophysics Data System (ADS)
Joshi, Sachin; Wilvert, Nick; Yalin, Azer P.
2012-09-01
We show, for the first time, that step-index silica fibers with a large clad (400 μm core and 720 μm clad) can be used to transmit nanosecond duration pulses in a way that allows reliable (consistent) spark formation in atmospheric pressure air by the focused output light from the fiber. The high intensity (>100 GW/cm2) of the focused output light is due to the combination of high output power (typical of fibers of this core size) with high output beam quality (better than that typical of fibers of this core size). The high output beam quality, which enables tight focusing, is due to the large clad which suppresses microbending-induced diffusion of modal power to higher order modes owing to the increased rigidity of the core-clad interface. We also show that extending the pulse duration provides a means to increase the delivered pulse energy (>20 mJ delivered for 50 ns pulses) without causing fiber damage. Based on this ability to deliver high energy sparks, we report the first reliable laser ignition of a natural gas engine including startup under typical procedures using silica fiber optics for pulse delivery.
High power infrared super-Gaussian beams: generation, propagation, and application
NASA Astrophysics Data System (ADS)
du Preez, Neil C.; Forbes, Andrew; Botha, Lourens R.
2008-10-01
In this paper we present the design of a CO2 laser resonator that produces as the stable transverse mode a super-Gaussian laser beam. The resonator makes use of an intra-cavity diffractive mirror and a flat output coupler, generating the desired intensity profile at the output coupler with a flat wavefront. We consider the modal build-up in such a resonator and show that such a resonator mode has the ability to extract more energy from the cavity that a standard cavity single mode beam (e.g., Gaussian mode cavity). We demonstrate the design experimentally on a high average power TEA CO2 laser for paint stripping applications.
Fiber-Optic Strain Sensors With Linear Characteristics
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1993-01-01
Fiber-optic modal domain strain sensors having linear characteristics over wide range of strains proposed. Conceived in effort to improve older fiber-optic strain sensors. Linearity obtained by appropriate choice of design parameters. Pattern of light and dark areas at output end of optical fiber produced by interference between electromagnetic modes in which laser beam propagates in fiber. Photodetector monitors intensity at one point in pattern.
Zupan, Barbra; Sussman, Joan E
2009-01-01
Experiment 1 examined modality preferences in children and adults with normal hearing to combined auditory-visual stimuli. Experiment 2 compared modality preferences in children using cochlear implants participating in an auditory emphasized therapy approach to the children with normal hearing from Experiment 1. A second objective in both experiments was to evaluate the role of familiarity in these preferences. Participants were exposed to randomized blocks of photographs and sounds of ten familiar and ten unfamiliar animals in auditory-only, visual-only and auditory-visual trials. Results indicated an overall auditory preference in children, regardless of hearing status, and a visual preference in adults. Familiarity only affected modality preferences in adults who showed a strong visual preference to unfamiliar stimuli only. The similar degree of auditory responses in children with hearing loss to those from children with normal hearing is an original finding and lends support to an auditory emphasis for habilitation. Readers will be able to (1) Describe the pattern of modality preferences reported in young children without hearing loss; (2) Recognize that differences in communication mode may affect modality preferences in young children with hearing loss; and (3) Understand the role of familiarity in modality preferences in children with and without hearing loss.
Index-antiguided planar waveguide lasers with large mode area
NASA Astrophysics Data System (ADS)
Liu, Yuanye
The on-going research and application interests with high power large-mode-area (LMA) waveguide lasers, especially in fiber geometry, at the beginning of this century drive the development of many novel waveguide designs. Index antiguiding, proposed by Siegman in 2003, is among one of them. The goal for index antiguiding is to introduce transversal modal loss with the relative simple waveguide design while maintain single transverse mode operation for good beam quality. The idea which is selectively support of fundamental mode is facilitated by involving certain level of signal regeneration inside the waveguide core. Since the modal loss is closed associated with waveguide design parameters such as core size and refractive index, the amount of gain inside the core provides active control of transverse modes inside index-antiguiding waveguide. For example, fundamental transverse mode inside such waveguide can be excited and propagate lossless when sufficient optical gain is provided. This often requires doped waveguide core and optical pumping at corresponding absorption band. However, the involvement of optical pumping also has its consequences. Phenomena such as thermal-optic effect and gain spatial hole-burning which are commonly found in bulk lasers request attention when scaling up output power with LMA index-antiguided waveguide amplifiers and resonators. In response, three key challenges of index-antiguided planar waveguide lasers, namely, guiding mechanism, power efficiency and transverse mode discrimination, are analyzed theoretically and experimentally in this dissertation. Experiments are based on two index-antiguided planar waveguide chips, whose core thickness are 220 microm and 400 microm respectively. The material of waveguide core is 1% Neodymium-doped Yttrium Aluminium garnet, or Nd:YAG while the cladding is made from Terbium Gallium garnet, or TGG. Due to the face pumping and limited pump power, it is found, with 220 microm-thick-core chip, that the guidance of the fundamental transverse mode along two orthogonal directions in a transverse plane is different. Along the bounded direction, index antiguiding prevails with negligible thermal refractive focusing while along the unbounded direction, the lasing mode is guided by thermal refractive focusing with negligible quadratic gain focusing. It is also founded that the quadratic thermal focusing will dominate the mode guidance in 220 microm chip with the help of additional pump. All these discovery calls for an active thermal control. The modal discriminative loss, though beneficial for transverse mode control, yet reduces the lasing efficiency. To model it, a 3-D lasing output power calculation model is developed based on spatial rate equations. The simulation results show good agreement with experiment data where slope efficiency curve are measured using multiple output couplers. The 10% slope efficiency with respect to incident pump power is the highest slope efficiency recorded in index-antiguided waveguide continuous-wave lasers. The model indicates more efficient pump absorption can facilitate further power scaling. The role of the modal discriminative loss in transverse mode competition is discussed. A theoretical model based on Rigrod analysis and spatial hole-burning is developed. The simulation shows reasonable agreement with experiment results in both chips. The single fundamental mode operation up to 10 times above the lasing threshold for 220 microm chip is achieved, which is limited by the incident pump power. However, as the core size increases, the modal distributed loss due to the index antiguiding is found to be less effective in transverse mode control. Other modal loss is needed to facilitate the suppression of higher-order modes. Based on the model, a strategy is proposed aiming to maximize the single mode output. It is also noted that the transverse mode competition model is also suitable for other lasers system with well-defined modal loss. Based on the models and experiment data, the index-antiguided planar waveguide lasers are proved to be capable of maintaining large-mode-area single transverse mode operation with the potential of power scaling. However, it is also shown that proper waveguide design is essential. The remaining challenges are the material choices for waveguide fabrication, especially for high power applications.
Potyrailo, R A; Ruddy, V P; Hieftje, G M
1999-11-01
A new method is described for the simultaneous determination of absorbance and refractive index of a sample medium. The method is based on measurement of the analyte-modulated modal power distribution (MPD) in a multimode waveguide. In turn, the MPD is quantified by the far-field spatial pattern and intensity of light, i.e., the Fraunhofer diffraction pattern (registered on a CCD camera), that emerges from a multimode optical fiber. Operationally, light that is sent down the fiber interacts with the surrounding analyte-containing medium by means of the evanescent wave at the fiber boundary. The light flux in the propagating beam and the internal reflection angles within the fiber are both affected by optical absorption connected with the analyte and by the refractive index of the analyte-containing medium. In turn, these angles are reflected in the angular divergence of the beam as it leaves the fiber. As a result, the Fraunhofer diffraction pattern of that beam yields two parameters that can, together, be used to deduce refractive index and absorbance. This MPD based detection offers important advantages over traditional evanescent-wave detection strategies which rely on recording only the total transmitted optical power or its lost fraction. First, simultaneous determination of sample refractive index and absorbance is possible at a single probe wavelength. Second, the sensitivity of refractometric and absorption measurements can be controlled simply, either by adjusting the distance between the end face of the fiber and the CCD detector or by monitoring selected modal groups at the fiber output. As a demonstration of these capabilities, several weakly absorbing solutions were examined, with refractive indices in the range from 1.3330 to 1.4553 and with absorption coefficients in the range 0-16 cm-1. The new detection strategy is likely to be important in applications in which sample coloration varies and when it is necessary to compensate for variations in the refractive index of a sample.
Multi-modal vibration amplitudes of taut inclined cables due to direct and/or parametric excitation
NASA Astrophysics Data System (ADS)
Macdonald, J. H. G.
2016-02-01
Cables are often prone to potentially damaging large amplitude vibrations. The dynamic excitation may be from external loading or motion of the cable ends, the latter including direct excitation, normally from components of end motion transverse to the cable, and parametric excitation induced by axial components of end motion causing dynamic tension variations. Geometric nonlinearity can be important, causing stiffening behaviour and nonlinear modal coupling. Previous analyses of the vibrations, often neglecting sag, have generally dealt with direct and parametric excitation separately or have reverted to numerical solutions of the responses. Here a nonlinear cable model is adopted, applicable to taut cables such as on cable-stayed bridges, that allows for cable inclination, small sag (such that the vibration modes are similar to those of a taut string), multiple modes in both planes and end motion and/or external forcing close to any natural frequency. Based on the method of scaling and averaging it is found that, for sinusoidal inputs and positive damping, non-zero steady state responses can only occur in the modes in each plane with natural frequencies close to the excitation frequency and those with natural frequencies close to half this frequency. Analytical solutions, in the form of non-dimensional polynomial equations, are derived for the steady state vibration amplitudes in up to three modes simultaneously: the directly excited mode, the corresponding nonlinearly coupled mode in the orthogonal plane and a parametrically excited mode with half the natural frequency. The stability of the solutions is also identified. The outputs of the equations are consistent with previous results, where available. Example results from the analytical solutions are presented for a typical inclined bridge cable subject to vertical excitation of the lower end, and they are validated by numerical integration of the equations of motion and against some previous experimental results. It is shown that the modal interactions and sag (although very small) affect the responses significantly.
Zhang, G-Y; Yang, M; Liu, B; Huang, Z-C; Li, J; Chen, J-Y; Chen, H; Zhang, P-P; Liu, L-J; Wang, J; Teng, G-J
2016-01-28
Previous studies often report that early auditory deprivation or congenital deafness contributes to cross-modal reorganization in the auditory-deprived cortex, and this cross-modal reorganization limits clinical benefit from cochlear prosthetics. However, there are inconsistencies among study results on cortical reorganization in those subjects with long-term unilateral sensorineural hearing loss (USNHL). It is also unclear whether there exists a similar cross-modal plasticity of the auditory cortex for acquired monaural deafness and early or congenital deafness. To address this issue, we constructed the directional brain functional networks based on entropy connectivity of resting-state functional MRI and researched changes of the networks. Thirty-four long-term USNHL individuals and seventeen normally hearing individuals participated in the test, and all USNHL patients had acquired deafness. We found that certain brain regions of the sensorimotor and visual networks presented enhanced synchronous output entropy connectivity with the left primary auditory cortex in the left long-term USNHL individuals as compared with normally hearing individuals. Especially, the left USNHL showed more significant changes of entropy connectivity than the right USNHL. No significant plastic changes were observed in the right USNHL. Our results indicate that the left primary auditory cortex (non-auditory-deprived cortex) in patients with left USNHL has been reorganized by visual and sensorimotor modalities through cross-modal plasticity. Furthermore, the cross-modal reorganization also alters the directional brain functional networks. The auditory deprivation from the left or right side generates different influences on the human brain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Elshahaby, Fatma E. A.; Ghaly, Michael; Jha, Abhinav K.; Frey, Eric C.
2015-03-01
Model Observers are widely used in medical imaging for the optimization and evaluation of instrumentation, acquisition parameters and image reconstruction and processing methods. The channelized Hotelling observer (CHO) is a commonly used model observer in nuclear medicine and has seen increasing use in other modalities. An anthropmorphic CHO consists of a set of channels that model some aspects of the human visual system and the Hotelling Observer, which is the optimal linear discriminant. The optimality of the CHO is based on the assumption that the channel outputs for data with and without the signal present have a multivariate normal distribution with equal class covariance matrices. The channel outputs result from the dot product of channel templates with input images and are thus the sum of a large number of random variables. The central limit theorem is thus often used to justify the assumption that the channel outputs are normally distributed. In this work, we aim to examine this assumption for realistically simulated nuclear medicine images when various types of signal variability are present.
Using Response Surface Methods to Correlate the Modal Test of an Inflatable Test Article
NASA Technical Reports Server (NTRS)
Gupta, Anju
2013-01-01
This paper presents a practical application of response surface methods (RSM) to correlate a finite element model of a structural modal test. The test article is a quasi-cylindrical inflatable structure which primarily consists of a fabric weave, with an internal bladder and metallic bulkheads on either end. To mitigate model size, the fabric weave was simplified by representing it with shell elements. The task at hand is to represent the material behavior of the weave. The success of the model correlation is measured by comparing the four major modal frequencies of the analysis model to the four major modal frequencies of the test article. Given that only individual strap material properties were provided and material properties of the overall weave were not available, defining the material properties of the finite element model became very complex. First it was necessary to determine which material properties (modulus of elasticity in the hoop and longitudinal directions, shear modulus, Poisson's ratio, etc.) affected the modal frequencies. Then a Latin Hypercube of the parameter space was created to form an efficiently distributed finite case set. Each case was then analyzed with the results input into RSM. In the resulting response surface it was possible to see how each material parameter affected the modal frequencies of the analysis model. If the modal frequencies of the analysis model and its corresponding parameters match the test with acceptable accuracy, it can be said that the model correlation is successful.
The frequency and severity of extinction after stroke affecting different vascular territories.
Chechlacz, Magdalena; Rotshtein, Pia; Demeyere, Nele; Bickerton, Wai-Ling; Humphreys, Glyn W
2014-02-01
We examined the frequency and severity of visual versus tactile extinction based on data from a large group of sub-acute patients (n=454) with strokes affecting different vascular territories. After right hemisphere damage visual and tactile extinction were equally common. However, after left hemisphere damage tactile extinction was more common than visual. The frequency of extinction was significantly higher in patients with right compared to left hemisphere damage in both visual and tactile modalities but this held only for strokes affecting the MCA and PCA territories and not for strokes affecting other vascular territories. Furthermore, the severity of extinction did not differ as a function of either the stimulus modality (visual versus tactile), the affected hemisphere (left versus right) or the stroke territory (MCA, PCA or other vascular territories). We conclude that the frequency but not severity of extinction in both modalities relates to the side of damage (i.e. left versus right hemisphere) and the vascular territories affected by the stroke, and that left hemisphere dominance for motor control may link to the greater incidence of tactile than visual extinction after left hemisphere stroke. We discuss the implications of our findings for understanding hemispheric lateralization within visuospatial attention networks. Copyright © 2014 Elsevier Ltd. All rights reserved.
Graded Alternating-Time Temporal Logic
NASA Astrophysics Data System (ADS)
Faella, Marco; Napoli, Margherita; Parente, Mimmo
Graded modalities enrich the universal and existential quantifiers with the capability to express the concept of at least k or all but k, for a non-negative integer k. Recently, temporal logics such as μ-calculus and Computational Tree Logic, Ctl, augmented with graded modalities have received attention from the scientific community, both from a theoretical side and from an applicative perspective. Both μ-calculus and Ctl naturally apply as specification languages for closed systems: in this paper, we add graded modalities to the Alternating-time Temporal Logic (Atl) introduced by Alur et al., to study how these modalities may affect specification languages for open systems.
NASA Astrophysics Data System (ADS)
Tau Siesakul, Bamrung; Gkoktsi, Kyriaki; Giaralis, Agathoklis
2015-05-01
Motivated by the need to reduce monetary and energy consumption costs of wireless sensor networks in undertaking output-only/operational modal analysis of engineering structures, this paper considers a multi-coset analog-toinformation converter for structural system identification from acceleration response signals of white noise excited linear damped structures sampled at sub-Nyquist rates. The underlying natural frequencies, peak gains in the frequency domain, and critical damping ratios of the vibrating structures are estimated directly from the sub-Nyquist measurements and, therefore, the computationally demanding signal reconstruction step is by-passed. This is accomplished by first employing a power spectrum blind sampling (PSBS) technique for multi-band wide sense stationary stochastic processes in conjunction with deterministic non-uniform multi-coset sampling patterns derived from solving a weighted least square optimization problem. Next, modal properties are derived by the standard frequency domain peak picking algorithm. Special attention is focused on assessing the potential of the adopted PSBS technique, which poses no sparsity requirements to the sensed signals, to derive accurate estimates of modal structural system properties from noisy sub- Nyquist measurements. To this aim, sub-Nyquist sampled acceleration response signals corrupted by various levels of additive white noise pertaining to a benchmark space truss structure with closely spaced natural frequencies are obtained within an efficient Monte Carlo simulation-based framework. Accurate estimates of natural frequencies and reasonable estimates of local peak spectral ordinates and critical damping ratios are derived from measurements sampled at about 70% below the Nyquist rate and for SNR as low as 0db demonstrating that the adopted approach enjoys noise immunity.
Sierra Structural Dynamics User's Notes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reese, Garth M.
2015-10-19
Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a users guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munday, Lynn Brendon; Day, David M.; Bunting, Gregory
Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a users guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.
Sylvester, Teresa; Braun, Mario; Schmidtke, David; Jacobs, Arthur M.
2016-01-01
While research on affective word processing in adults witnesses increasing interest, the present paper looks at another group of participants that have been neglected so far: pupils (age range: 6–12 years). Introducing a variant of the Berlin Affective Wordlist (BAWL) especially adapted for children of that age group, the “kidBAWL,” we examined to what extent pupils process affective lexical semantics similarly to adults. In three experiments using rating and valence decision tasks in both the visual and auditory modality, it was established that children show the two ubiquitous phenomena observed in adults with emotional word material: the asymmetric U-shaped function relating valence to arousal ratings, and the inversely U-shaped function relating response times to valence decision latencies. The results for both modalities show large structural similarities between pupil and adult data (taken from previous studies) indicating that in the present age range, the affective lexicon and the dynamic interplay between language and emotion is already well-developed. Differential effects show that younger children tend to choose less extreme ratings than older children and that rating latencies decrease with age. Overall, our study should help to develop more realistic models of word recognition and reading that include affective processes and offer a methodology for exploring the roots of pleasant literary experiences and ludic reading. PMID:27445930
Trudeau, Natacha; Sutton, Ann; Morford, Jill P
2014-09-01
While research on spoken language has a long tradition of studying and contrasting language production and comprehension, the study of graphic symbol communication has focused more on production than comprehension. As a result, the relationships between the ability to construct and to interpret graphic symbol sequences are not well understood. This study explored the use of graphic symbol sequences in children without disabilities aged 3;0 to 6;11 (years; months) (n=111). Children took part in nine tasks that systematically varied input and output modalities (speech, action, and graphic symbols). Results show that in 3- and 4-year-olds, attributing meaning to a sequence of symbols was particularly difficult even when the children knew the meaning of each symbol in the sequence. Similarly, while even 3- and 4-year-olds could produce a graphic symbol sequence following a model, transposing a spoken sentence into a graphic sequence was more difficult for them. Representing an action with graphic symbols was difficult even for 5-year-olds. Finally, the ability to comprehend graphic-symbol sequences preceded the ability to produce them. These developmental patterns, as well as memory-related variables, should be taken into account in choosing intervention strategies with young children who use AAC.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1987-01-01
The approximation of optimal discrete-time linear quadratic Gaussian (LQG) compensators for distributed parameter control systems with boundary input and unbounded measurement is considered. The approach applies to a wide range of problems that can be formulated in a state space on which both the discrete-time input and output operators are continuous. Approximating compensators are obtained via application of the LQG theory and associated approximation results for infinite dimensional discrete-time control systems with bounded input and output. Numerical results for spline and modal based approximation schemes used to compute optimal compensators for a one dimensional heat equation with either Neumann or Dirichlet boundary control and pointwise measurement of temperature are presented and discussed.
Rapid impact testing for quantitative assessment of large populations of bridges
NASA Astrophysics Data System (ADS)
Zhou, Yun; Prader, John; DeVitis, John; Deal, Adrienne; Zhang, Jian; Moon, Franklin; Aktan, A. Emin
2011-04-01
Although the widely acknowledged shortcomings of visual inspection have fueled significant advances in the areas of non-destructive evaluation and structural health monitoring (SHM) over the last several decades, the actual practice of bridge assessment has remained largely unchanged. The authors believe the lack of adoption, especially of SHM technologies, is related to the 'single structure' scenarios that drive most research. To overcome this, the authors have developed a concept for a rapid single-input, multiple-output (SIMO) impact testing device that will be capable of capturing modal parameters and estimating flexibility/deflection basins of common highway bridges during routine inspections. The device is composed of a trailer-mounted impact source (capable of delivering a 50 kip impact) and retractable sensor arms, and will be controlled by an automated data acquisition, processing and modal parameter estimation software. The research presented in this paper covers (a) the theoretical basis for SISO, SIMO and MIMO impact testing to estimate flexibility, (b) proof of concept numerical studies using a finite element model, and (c) a pilot implementation on an operating highway bridge. Results indicate that the proposed approach can estimate modal flexibility within a few percent of static flexibility; however, the estimated modal flexibility matrix is only reliable for the substructures associated with the various SIMO tests. To overcome this shortcoming, a modal 'stitching' approach for substructure integration to estimate the full Eigen vector matrix is developed, and preliminary results of these methods are also presented.
The consequence of spatial visual processing dysfunction caused by traumatic brain injury (TBI).
Padula, William V; Capo-Aponte, Jose E; Padula, William V; Singman, Eric L; Jenness, Jonathan
2017-01-01
A bi-modal visual processing model is supported by research to affect dysfunction following a traumatic brain injury (TBI). TBI causes dysfunction of visual processing affecting binocularity, spatial orientation, posture and balance. Research demonstrates that prescription of prisms influence the plasticity between spatial visual processing and motor-sensory systems improving visual processing and reducing symptoms following a TBI. The rationale demonstrates that visual processing underlies the functional aspects of binocularity, balance and posture. The bi-modal visual process maintains plasticity for efficiency. Compromise causes Post Trauma Vision Syndrome (PTVS) and Visual Midline Shift Syndrome (VMSS). Rehabilitation through use of lenses, prisms and sectoral occlusion has inter-professional implications in rehabilitation affecting the plasticity of the bi-modal visual process, thereby improving binocularity, spatial orientation, posture and balance Main outcomes: This review provides an opportunity to create a new perspective of the consequences of TBI on visual processing and the symptoms that are often caused by trauma. It also serves to provide a perspective of visual processing dysfunction that has potential for developing new approaches of rehabilitation. Understanding vision as a bi-modal process facilitates a new perspective of visual processing and the potentials for rehabilitation following a concussion, brain injury or other neurological events.
Girón, Elizabeth Coker; McIsaac, Tara; Nilsen, Dawn
2012-03-01
Motor imagery is a type of mental practice that involves imagining the body performing a movement in the absence of motor output. Dance training traditionally incorporates mental practice techniques, but quantitative effects of motor imagery on the performance of dance movements are largely unknown. This pilot study compared the effects of two different imagery modalities, external visual imagery and kinesthetic imagery, on pelvis and hip kinematics during two technical dance movements, plié and sauté. Each of three female dance students (mean age = 19.7 years, mean years of training = 10.7) was assigned to use a type of imagery practice: visual imagery, kinesthetic imagery, or no imagery. Effects of motor imagery on peak external hip rotation varied by both modality and task. Kinesthetic imagery increased peak external hip rotation for pliés, while visual imagery increased peak external hip rotation for sautés. Findings suggest that the success of motor imagery in improving performance may be task-specific. Dancers may benefit from matching imagery modality to technical tasks in order to improve alignment and thereby avoid chronic injury.
NASA Technical Reports Server (NTRS)
Barnett, Alan R.; Widrick, Timothy W.; Ludwiczak, Damian R.
1996-01-01
Solving for dynamic responses of free-free launch vehicle/spacecraft systems acted upon by buffeting winds is commonly performed throughout the aerospace industry. Due to the unpredictable nature of this wind loading event, these problems are typically solved using frequency response random analysis techniques. To generate dynamic responses for spacecraft with statically-indeterminate interfaces, spacecraft contractors prefer to develop models which have response transformation matrices developed for mode acceleration data recovery. This method transforms spacecraft boundary accelerations and displacements into internal responses. Unfortunately, standard MSC/NASTRAN modal frequency response solution sequences cannot be used to combine acceleration- and displacement-dependent responses required for spacecraft mode acceleration data recovery. External user-written computer codes can be used with MSC/NASTRAN output to perform such combinations, but these methods can be labor and computer resource intensive. Taking advantage of the analytical and computer resource efficiencies inherent within MS C/NASTRAN, a DMAP Alter has been developed to combine acceleration- and displacement-dependent modal frequency responses for performing spacecraft mode acceleration data recovery. The Alter has been used successfully to efficiently solve a common aerospace buffeting wind analysis.
Direct calculation of modal parameters from matrix orthogonal polynomials
NASA Astrophysics Data System (ADS)
El-Kafafy, Mahmoud; Guillaume, Patrick
2011-10-01
The object of this paper is to introduce a new technique to derive the global modal parameter (i.e. system poles) directly from estimated matrix orthogonal polynomials. This contribution generalized the results given in Rolain et al. (1994) [5] and Rolain et al. (1995) [6] for scalar orthogonal polynomials to multivariable (matrix) orthogonal polynomials for multiple input multiple output (MIMO) system. Using orthogonal polynomials improves the numerical properties of the estimation process. However, the derivation of the modal parameters from the orthogonal polynomials is in general ill-conditioned if not handled properly. The transformation of the coefficients from orthogonal polynomials basis to power polynomials basis is known to be an ill-conditioned transformation. In this paper a new approach is proposed to compute the system poles directly from the multivariable orthogonal polynomials. High order models can be used without any numerical problems. The proposed method will be compared with existing methods (Van Der Auweraer and Leuridan (1987) [4] Chen and Xu (2003) [7]). For this comparative study, simulated as well as experimental data will be used.
Focus of Attention and Choice of Text Modality in Multimedia Learning
ERIC Educational Resources Information Center
Schnotz, Wolfgang; Mengelkamp, Christoph; Baadte, Christiane; Hauck, Georg
2014-01-01
The term "modality effect" in multimedia learning means that students learn better from pictures combined with spoken rather than written text. The most prominent explanations refer to the split attention between visual text reading and picture observation which could affect transfer of information into working memory, maintenance of…
Accommodating Students' Sensory Learning Modalities in Online Formats
ERIC Educational Resources Information Center
Allison, Barbara N.; Rehm, Marsha L.
2016-01-01
Online classes have become a popular and viable method of educating students in both K-12 settings and higher education, including in family and consumer sciences (FCS) programs. Online learning dramatically affects the way students learn. This article addresses how online learning can accommodate the sensory learning modalities (sight, hearing,…
Tins, Bernhard J
2017-01-01
Traumatic spine injuries can be devastating for patients affected and for health care professionals if preventable neurological deterioration occurs. This review discusses the imaging options for the diagnosis of spinal trauma. It lays out when imaging is appropriate and when it is not. It discusses strength and weakness of available imaging modalities. Advanced techniques for spinal injury imaging will be explored. The review concludes with a review of imaging protocols adjusted to clinical circumstances.
Tang, Jiqiang; Xiang, Biao; Zhang, Yongbin
2014-07-01
For a magnetically suspended control moment gyroscope, stiffness and damping of magnetic bearing will influence modal frequency of a rotor. In this paper the relationship between modal frequency and stiffness and damping has been investigated. The mathematic calculation model of axial passive magnetic bearing (PMB) stiffness is developed. And PID control based on internal model control is introduced into control of radial active magnetic bearing (AMB), considering the radial coupling of axial PMB, a mathematic calculation model of stiffness and damping of radial AMB is established. According to modal analysis, the relationship between modal frequency and modal shapes is achieved. Radial vibration frequency is mainly influenced by stiffness of radial AMB; however, when stiffness increases, radial vibration will disappear and a high frequency bending modal will appear. Stiffness of axial PMB mainly affects the axial vibration mode, which will turn into high-order bending modal. Axial PMB causes bigger influence on torsion modal of the rotor. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Reshaping a multimode laser beam into a constructed Gaussian beam for generating a thin light sheet.
Saghafi, Saiedeh; Haghi-Danaloo, Nikoo; Becker, Klaus; Sabdyusheva, Inna; Foroughipour, Massih; Hahn, Christian; Pende, Marko; Wanis, Martina; Bergmann, Michael; Stift, Judith; Hegedus, Balazs; Dome, Balazs; Dodt, Hans-Ulrich
2018-06-01
Based on the modal analysis method, we developed a model that describes the output beam of a diode-pumped solid state (DPSS) laser emitting a multimode beam. Measuring the output beam profile in the near field and at the constructed far field the individual modes, their respective contributions, and their optical parameters are determined. Using this information, the beam is optically reshaped into a quasi-Gaussian beam by the interference and superposition of the various modes. This process is controlled by a mode modulator unit that includes different meso-aspheric elements and a soft-aperture. The converted beam is guided into a second optical unit comprising achromatic-aspheric elements to produce a thin light sheet for ultramicroscopy. We found that this light sheet is markedly thinner and exhibits less side shoulders compared with a light sheet directly generated from the output of a DPSS multimode laser. © 2018 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Integrated Model Reduction and Control of Aircraft with Flexible Wings
NASA Technical Reports Server (NTRS)
Swei, Sean Shan-Min; Zhu, Guoming G.; Nguyen, Nhan T.
2013-01-01
This paper presents an integrated approach to the modeling and control of aircraft with exible wings. The coupled aircraft rigid body dynamics with a high-order elastic wing model can be represented in a nite dimensional state-space form. Given a set of desired output covariance, a model reduction process is performed by using the weighted Modal Cost Analysis (MCA). A dynamic output feedback controller, which is designed based on the reduced-order model, is developed by utilizing output covariance constraint (OCC) algorithm, and the resulting OCC design weighting matrix is used for the next iteration of the weighted cost analysis. This controller is then validated for full-order evaluation model to ensure that the aircraft's handling qualities are met and the uttering motion of the wings suppressed. An iterative algorithm is developed in CONDUIT environment to realize the integration of model reduction and controller design. The proposed integrated approach is applied to NASA Generic Transport Model (GTM) for demonstration.
Optical design and suspension system of the KAGRA output mode-cleaner
NASA Astrophysics Data System (ADS)
Kasuya, Junko; Winterflood, John; Li, Ju; Somiya, Kentaro
2018-02-01
KAGRA is a Japanese large scale, underground, cryogenic gravitational telescope which is under construction in the Kamioka mine. For using cryogenic test masses, the sensitivity of KAGRA is limited mainly by quantum noise. In order to reduce quantum noise, KAGRA employs an output mode-cleaner (OMC) at the output port that filters out junk light but allows the gravitational wave signal to go through. The requirement of the KAGRA OMC is even more challenging than other telescopes in the world since KAGRA plans to tune the signal readout phase so that the signal-to-noise ratio for our primary target source can be maximized. A proper selection of optical parameters and anti-vibration devices is required for the robust operation of the OMC. In this proceeding, we show our final results of modal-model simulations, in which we downselected the cavity length, the round-trip Gouy phase shift, the finesse, and the seismic isolation ratio for the suspended optics.
Neonatal brain resting-state functional connectivity imaging modalities.
Mohammadi-Nejad, Ali-Reza; Mahmoudzadeh, Mahdi; Hassanpour, Mahlegha S; Wallois, Fabrice; Muzik, Otto; Papadelis, Christos; Hansen, Anne; Soltanian-Zadeh, Hamid; Gelovani, Juri; Nasiriavanaki, Mohammadreza
2018-06-01
Infancy is the most critical period in human brain development. Studies demonstrate that subtle brain abnormalities during this state of life may greatly affect the developmental processes of the newborn infants. One of the rapidly developing methods for early characterization of abnormal brain development is functional connectivity of the brain at rest. While the majority of resting-state studies have been conducted using magnetic resonance imaging (MRI), there is clear evidence that resting-state functional connectivity (rs-FC) can also be evaluated using other imaging modalities. The aim of this review is to compare the advantages and limitations of different modalities used for the mapping of infants' brain functional connectivity at rest. In addition, we introduce photoacoustic tomography, a novel functional neuroimaging modality, as a complementary modality for functional mapping of infants' brain.
Ashish, Gulia; Shashikant, Juvekar; Ajay, Puri; Subhash, Desai
2016-01-01
Melorheostosis is a benign bone dysplasia affecting predominantly the appendicular skeleton and adjoining soft tissues. The diagnosis can be established on plain radiographs alone and advanced imaging modalities can be avoided. We hereby report a rare case of melorheostosis affecting the foot with a review of the role of various imaging modalities in diagnosis of this rare bone dysplasia. We present the case of a 29 years old man who was diagnosed with melorheostosis affecting his left foot. The patient presented to the outpatient department of our tertiary care referral hospital with complains of pain in the left ankle and foot with imaging and evaluation done at a primary center. The radiograph revealed an irregular, longitudinal extraosseous hyperostosis along the body of the calcaneum and the metacarpals which was consistent with the classical radiological description of melorheostosis. The CT, MRI and bone scan findings corroborated our primary diagnosis. The purpose of this case report is to review the features of this rare disorder affecting the foot, on multiple imaging modalities and emphasizing the role of conventional radiology in its diagnosis.
Ashish, Gulia; Shashikant, Juvekar; Ajay, Puri; Subhash, Desai
2016-01-01
Introduction: Melorheostosis is a benign bone dysplasia affecting predominantly the appendicular skeleton and adjoining soft tissues. The diagnosis can be established on plain radiographs alone and advanced imaging modalities can be avoided. We hereby report a rare case of melorheostosis affecting the foot with a review of the role of various imaging modalities in diagnosis of this rare bone dysplasia. Case Report: We present the case of a 29 years old man who was diagnosed with melorheostosis affecting his left foot. The patient presented to the outpatient department of our tertiary care referral hospital with complains of pain in the left ankle and foot with imaging and evaluation done at a primary center. The radiograph revealed an irregular, longitudinal extraosseous hyperostosis along the body of the calcaneum and the metacarpals which was consistent with the classical radiological description of melorheostosis. The CT, MRI and bone scan findings corroborated our primary diagnosis. Conclusion: The purpose of this case report is to review the features of this rare disorder affecting the foot, on multiple imaging modalities and emphasizing the role of conventional radiology in its diagnosis. PMID:27299136
Modelling audiovisual integration of affect from videos and music.
Gao, Chuanji; Wedell, Douglas H; Kim, Jongwan; Weber, Christine E; Shinkareva, Svetlana V
2018-05-01
Two experiments examined how affective values from visual and auditory modalities are integrated. Experiment 1 paired music and videos drawn from three levels of valence while holding arousal constant. Experiment 2 included a parallel combination of three levels of arousal while holding valence constant. In each experiment, participants rated their affective states after unimodal and multimodal presentations. Experiment 1 revealed a congruency effect in which stimulus combinations of the same extreme valence resulted in more extreme state ratings than component stimuli presented in isolation. An interaction between music and video valence reflected the greater influence of negative affect. Video valence was found to have a significantly greater effect on combined ratings than music valence. The pattern of data was explained by a five parameter differential weight averaging model that attributed greater weight to the visual modality and increased weight with decreasing values of valence. Experiment 2 revealed a congruency effect only for high arousal combinations and no interaction effects. This pattern was explained by a three parameter constant weight averaging model with greater weight for the auditory modality and a very low arousal value for the initial state. These results demonstrate key differences in audiovisual integration between valence and arousal.
Affective Interface Adaptations in the Musickiosk Interactive Entertainment Application
NASA Astrophysics Data System (ADS)
Malatesta, L.; Raouzaiou, A.; Pearce, L.; Karpouzis, K.
The current work presents the affective interface adaptations in the Musickiosk application. Adaptive interaction poses several open questions since there is no unique way of mapping affective factors of user behaviour to the output of the system. Musickiosk uses a non-contact interface and implicit interaction through emotional affect rather than explicit interaction where a gesture, sound or other input directly maps to an output behaviour - as in traditional entertainment applications. PAD model is used for characterizing the different affective states and emotions.
An investigation into NVC characteristics of vehicle behaviour using modal analysis
NASA Astrophysics Data System (ADS)
Hanouf, Zahir; Faris, Waleed F.; Ahmad, Kartini
2017-03-01
NVC characterizations of vehicle behavior is one essential part of the development targets in automotive industries. Therefore understanding dynamic behavior of each structural part of the vehicle is a major requirement in improving the NVC characteristics of a vehicle. The main focus of this research is to investigate structural dynamic behavior of a passenger car using modal analysis part by part technique and apply this method to derive the interior noise sources. In the first part of this work computational modal analysis part by part tests were carried out to identify the dynamic parameters of the passenger car. Finite elements models of the different parts of the car are constructed using VPG 3.2 software. Ls-Dyna pre and post processing was used to identify and analyze the dynamic behavior of each car components panels. These tests had successfully produced natural frequencies and their associated mode shapes of such panels like trunk, hood, roof and door panels. In the second part of this research, experimental modal analysis part by part is performed on the selected car panels to extract modal parameters namely frequencies and mode shapes. The study establishes the step-by-step procedures to carry out experimental modal analysis on the car structures, using single input excitation and multi-output responses (SIMO) technique. To ensure the validity of the results obtained by the previous method an inverse method was done by fixing the response and moving the excitation and the results found were absolutely the same. Finally, comparison between results obtained from both analyses showed good similarity in both frequencies and mode shapes. Conclusion drawn from this part of study was that modal analysis part-by-part can be strongly used to establish the dynamic characteristics of the whole car. Furthermore, the developed method is also can be used to show the relationship between structural vibration of the car panels and the passengers’ noise comfort inside the cabin.
Yu, Hongpeng; Quan, Qiquan; Tian, Xinqi; Li, He
2018-01-01
A novel U-shaped piezoelectric ultrasonic motor that mainly focused on miniaturization and high power density was proposed, fabricated, and tested in this work. The longitudinal vibrations of the transducers were excited to form the elliptical movements on the driving feet. Finite element method (FEM) was used for design and analysis. The resonance frequencies of the selected vibration modes were tuned to be very close to each other with modal analysis and the movement trajectories of the driving feet were gained with transient simulation. The vibration modes and the mechanical output abilities were tested to evaluate the proposed motor further by a prototype. The maximum output speed was tested to be 416 mm/s, the maximum thrust force was 21 N, and the maximum output power was 5.453 W under frequency of 29.52 kHz and voltage of 100 Vrms. The maximum output power density of the prototype reached 7.59 W/kg, which was even greater than a previous similar motor under the exciting voltage of 200 Vrms. The proposed motor showed great potential for linear driving of large thrust force and high power density. PMID:29518963
Zizys, Darius; Gaidys, Rimvydas; Dauksevicius, Rolanas; Ostasevicius, Vytautas; Daniulaitis, Vytautas
2015-01-01
The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines. PMID:26703623
Zizys, Darius; Gaidys, Rimvydas; Dauksevicius, Rolanas; Ostasevicius, Vytautas; Daniulaitis, Vytautas
2015-12-23
The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines.
Yu, Hongpeng; Quan, Qiquan; Tian, Xinqi; Li, He
2018-03-07
A novel U-shaped piezoelectric ultrasonic motor that mainly focused on miniaturization and high power density was proposed, fabricated, and tested in this work. The longitudinal vibrations of the transducers were excited to form the elliptical movements on the driving feet. Finite element method (FEM) was used for design and analysis. The resonance frequencies of the selected vibration modes were tuned to be very close to each other with modal analysis and the movement trajectories of the driving feet were gained with transient simulation. The vibration modes and the mechanical output abilities were tested to evaluate the proposed motor further by a prototype. The maximum output speed was tested to be 416 mm/s, the maximum thrust force was 21 N, and the maximum output power was 5.453 W under frequency of 29.52 kHz and voltage of 100 V rms . The maximum output power density of the prototype reached 7.59 W/kg, which was even greater than a previous similar motor under the exciting voltage of 200 V rms . The proposed motor showed great potential for linear driving of large thrust force and high power density.
CARS module for multimodal microscopy
NASA Astrophysics Data System (ADS)
Zadoyan, Ruben; Baldacchini, Tommaso; Carter, John; Kuo, Chun-Hung; Ocepek, David
2011-03-01
We describe a stand alone CARS module allowing upgrade of a two-photon microscope with CARS modality. The Stokes beam is generated in a commercially available photonic crystal fiber (PCF) using fraction of the power of femtosecond excitation laser. The output of the fiber is optimized for broadband CARS at Stokes shifts in 2900cm-1 region. The spectral resolution in CARS signal is 50 cm-1. It is achieved by introducing a bandpass filter in the pump beam. The timing between the pump and Stokes pulses is preset inside the module and can be varied. We demonstrate utility of the device on examples of second harmonic, two-photon fluorescence and CARS images of several biological and non-biological samples. We also present results of studies where we used CARS modality to monitor in real time the process of fabrication of microstructures by two-photon polymerization.
NASA Astrophysics Data System (ADS)
Sigler, Chris; Gibson, Ricky; Boyle, Colin; Kirch, Jeremy D.; Lindberg, Donald; Earles, Thomas; Botez, Dan; Mawst, Luke J.; Bedford, Robert
2018-01-01
The modal characteristics of nonresonant five-element phase-locked arrays of 4.7-μm emitting quantum cascade lasers (QCLs) have been studied using spectrally resolved near- and far-field measurements and correlated with results of device simulation. Devices are fabricated by a two-step metal-organic chemical vapor deposition process and operate predominantly in an in-phase array mode near threshold, although become multimode at higher drive levels. The wide spectral bandwidth of the QCL's core region is found to be a factor in promoting multispatial-mode operation at high drive levels above threshold. An optimized resonant-array design is identified to allow sole in-phase array-mode operation to high drive levels above threshold, and indicates that for phase-locked laser arrays full spatial coherence to high output powers does not require full temporal coherence.
NASA Technical Reports Server (NTRS)
Lindner, D. K.; Zvonar, G. A.; Baumann, W. T.; Delos, P. L.
1993-01-01
Recently, a modal domain optical fiber sensor has been demonstrated as a sensor in a control system for vibration suppression of a flexible cantilevered beam. This sensor responds to strain through a mechanical attachment to the structure. Because this sensor is of the interferometric type, the output of the sensor has a sinusoidal nonlinearity. For small levels of strain, the sensor can be operated in its linear region. For large levels of strain, the detection electronics can be configured to count fringes. In both of these configurations, the sensor nonlinearity imposes some restrictions on the performance of the control system. In this paper we investigate the effects of these sensor nonlinearities on the control system, and identify the region of linear operation in terms of the optical fiber sensor parameters.
ERIC Educational Resources Information Center
Stampoltzis, Aglaia; Antonopoulou, Ekaterini; Zenakou, Elena; Kouvava, Sofia
2010-01-01
Introduction: Dyslexia has been shown to affect the learning ability of individuals who experience difficulties in processing written information and developing effective study skills. Method: In the present study we assessed the relationship between dyslexia, the learning sensory modalities and educational characteristics in 20 dyslexic and 40…
Towards an intelligent framework for multimodal affective data analysis.
Poria, Soujanya; Cambria, Erik; Hussain, Amir; Huang, Guang-Bin
2015-03-01
An increasingly large amount of multimodal content is posted on social media websites such as YouTube and Facebook everyday. In order to cope with the growth of such so much multimodal data, there is an urgent need to develop an intelligent multi-modal analysis framework that can effectively extract information from multiple modalities. In this paper, we propose a novel multimodal information extraction agent, which infers and aggregates the semantic and affective information associated with user-generated multimodal data in contexts such as e-learning, e-health, automatic video content tagging and human-computer interaction. In particular, the developed intelligent agent adopts an ensemble feature extraction approach by exploiting the joint use of tri-modal (text, audio and video) features to enhance the multimodal information extraction process. In preliminary experiments using the eNTERFACE dataset, our proposed multi-modal system is shown to achieve an accuracy of 87.95%, outperforming the best state-of-the-art system by more than 10%, or in relative terms, a 56% reduction in error rate. Copyright © 2014 Elsevier Ltd. All rights reserved.
Response format, magnitude of laterality effects, and sex differences in laterality.
Voyer, Daniel; Doyle, Randi A
2012-01-01
The present study examined the evidence for the claim that response format might affect the magnitude of laterality effects by means of a meta-analysis. The analysis included the 396 effect sizes drawn from 266 studies retrieved by Voyer (1996) and relevant to the main effect of laterality and sex differences in laterality for verbal and non-verbal tasks in the auditory, tactile, and visual sensory modality. The response format used in specific studies was the only moderator variable of interest in the present analysis, resulting in four broad response categories (oral, written, computer, and pointing). A meta-analysis analogue to ANOVA showed no significant influence of response format on either the main effect of laterality or sex differences in laterality when all sensory modalities were combined. However, when modalities were considered separately, response format affected the main effect of laterality in the visual modality, with a clear advantage for written responses. Further pointed analyses revealed some specific differences among response formats. Results are discussed in terms of their implications for the measurement of laterality.
Harjunen, Ville J; Ahmed, Imtiaj; Jacucci, Giulio; Ravaja, Niklas; Spapé, Michiel M
2017-01-01
Earlier studies have revealed cross-modal visuo-tactile interactions in endogenous spatial attention. The current research used event-related potentials (ERPs) and virtual reality (VR) to identify how the visual cues of the perceiver's body affect visuo-tactile interaction in endogenous spatial attention and at what point in time the effect takes place. A bimodal oddball task with lateralized tactile and visual stimuli was presented in two VR conditions, one with and one without visible hands, and one VR-free control with hands in view. Participants were required to silently count one type of stimulus and ignore all other stimuli presented in irrelevant modality or location. The presence of hands was found to modulate early and late components of somatosensory and visual evoked potentials. For sensory-perceptual stages, the presence of virtual or real hands was found to amplify attention-related negativity on the somatosensory N140 and cross-modal interaction in somatosensory and visual P200. For postperceptual stages, an amplified N200 component was obtained in somatosensory and visual evoked potentials, indicating increased response inhibition in response to non-target stimuli. The effect of somatosensory, but not visual, N200 enhanced when the virtual hands were present. The findings suggest that bodily presence affects sustained cross-modal spatial attention between vision and touch and that this effect is specifically present in ERPs related to early- and late-sensory processing, as well as response inhibition, but do not affect later attention and memory-related P3 activity. Finally, the experiments provide commeasurable scenarios for the estimation of the signal and noise ratio to quantify effects related to the use of a head mounted display (HMD). However, despite valid a-priori reasons for fearing signal interference due to a HMD, we observed no significant drop in the robustness of our ERP measurements.
Harjunen, Ville J.; Ahmed, Imtiaj; Jacucci, Giulio; Ravaja, Niklas; Spapé, Michiel M.
2017-01-01
Earlier studies have revealed cross-modal visuo-tactile interactions in endogenous spatial attention. The current research used event-related potentials (ERPs) and virtual reality (VR) to identify how the visual cues of the perceiver’s body affect visuo-tactile interaction in endogenous spatial attention and at what point in time the effect takes place. A bimodal oddball task with lateralized tactile and visual stimuli was presented in two VR conditions, one with and one without visible hands, and one VR-free control with hands in view. Participants were required to silently count one type of stimulus and ignore all other stimuli presented in irrelevant modality or location. The presence of hands was found to modulate early and late components of somatosensory and visual evoked potentials. For sensory-perceptual stages, the presence of virtual or real hands was found to amplify attention-related negativity on the somatosensory N140 and cross-modal interaction in somatosensory and visual P200. For postperceptual stages, an amplified N200 component was obtained in somatosensory and visual evoked potentials, indicating increased response inhibition in response to non-target stimuli. The effect of somatosensory, but not visual, N200 enhanced when the virtual hands were present. The findings suggest that bodily presence affects sustained cross-modal spatial attention between vision and touch and that this effect is specifically present in ERPs related to early- and late-sensory processing, as well as response inhibition, but do not affect later attention and memory-related P3 activity. Finally, the experiments provide commeasurable scenarios for the estimation of the signal and noise ratio to quantify effects related to the use of a head mounted display (HMD). However, despite valid a-priori reasons for fearing signal interference due to a HMD, we observed no significant drop in the robustness of our ERP measurements. PMID:28275346
Multistability, cross-modal binding and the additivity of conjoined grouping principles
Kubovy, Michael; Yu, Minhong
2012-01-01
We present a sceptical view of multimodal multistability—drawing most of our examples from the relation between audition and vision. We begin by summarizing some of the principal ways in which audio-visual binding takes place. We review the evidence that unambiguous stimulation in one modality may affect the perception of a multistable stimulus in another modality. Cross-modal influences of one multistable stimulus on the multistability of another are different: they have occurred only in speech perception. We then argue that the strongest relation between perceptual organization in vision and perceptual organization in audition is likely to be by way of analogous Gestalt laws. We conclude with some general observations about multimodality. PMID:22371617
Emotion Perception from Face, Voice, and Touch: Comparisons and Convergence
Schirmer, Annett; Adolphs, Ralph
2017-01-01
Historically, research on emotion perception has focused on facial expressions, and findings from this modality have come to dominate our thinking about other modalities. Here, we examine emotion perception through a wider lens by comparing facial with vocal and tactile processing. We review stimulus characteristics and ensuing behavioral and brain responses, and show that audition and touch do not simply duplicate visual mechanisms. Each modality provides a distinct input channel and engages partly non-overlapping neuroanatomical systems with different processing specializations (e.g., specific emotions versus affect). Moreover, processing of signals across the different modalities converges, first into multi- and later into amodal representations that enable holistic emotion judgments. PMID:28173998
Herman, Patricia M; Coulter, Ian D
2016-09-01
The purpose of this project was to examine the policy implications of politically defining complementary and alternative medicine (CAM) professions by their treatment modalities rather than by their full professional scope. This study used a 2-stage exploratory grounded approach. In stage 1, we identified how CAM is represented (if considered as professions vs modalities) across a purposely sampled diverse set of policy topic domains using exemplars to describe and summarize each. In stage 2 we convened 2 stakeholder panels (12 CAM practitioners and 9 health policymaker representatives), and using the results of stage 1 as a starting point and framing mechanism, we engaged panelists in a discussion of how they each see the dichotomy and its impacts. Our discussion focused on 4 licensed CAM professions: acupuncture and Oriental medicine, chiropractic, naturopathic medicine, and massage. Workforce policies affected where and how members of CAM professions could practice. Licensure affected whether a CAM profession was recognized in a state and which modalities were allowed. Complementary and alternative medicine research examined the effectiveness of procedures and modalities and only rarely the effectiveness of care from a particular profession. Treatment guidelines are based on research and also focus on procedures and modalities. Health plan reimbursement policies address which professions are covered and for which procedures/modalities and conditions. The policy landscape related to CAM professions and modalities is broad, complex, and interrelated. Although health plan reimbursement tends to receive the majority of attention when CAM health care policy is discussed, it is clear, given the results of our study, that coverage policies cannot be addressed in isolation and that a wide range of stakeholders and social institutions will need to be involved. Copyright © 2016. Published by Elsevier Inc.
Multi-modal gesture recognition using integrated model of motion, audio and video
NASA Astrophysics Data System (ADS)
Goutsu, Yusuke; Kobayashi, Takaki; Obara, Junya; Kusajima, Ikuo; Takeichi, Kazunari; Takano, Wataru; Nakamura, Yoshihiko
2015-07-01
Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it is difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed by using dataset captured by Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are learned by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vectors and learning methods. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition. The proposed system provides the application technology to understand human actions of daily life more precisely.
Weakly-coupled 4-mode step-index FMF and demonstration of IM/DD MDM transmission.
Hu, Tao; Li, Juhao; Ge, Dawei; Wu, Zhongying; Tian, Yu; Shen, Lei; Liu, Yaping; Chen, Su; Li, Zhengbin; He, Yongqi; Chen, Zhangyuan
2018-04-02
Weakly coupled-mode division multiplexing (MDM) over few-mode fibers (FMF) for short-reach transmission has attracted great interest, which can avoid multiple-input-multiple-output digital signal processing (MIMO-DSP) by greatly suppressing modal crosstalk. In this paper, step-index FMF supporting 4 linearity polarization (LP) modes for MIMO-free transmission is designed and fabricated for the first time, to our knowledge. Modal crosstalk of the fiber is suppressed by increasing the mode effective refractive index differences. The same fabrication method as standard single-mode fiber is adopted so that it is practical and cost-effective. The mode multiplexer/demultiplexer (MUX/DEMUX) consists of cascaded mode-selective couplers (MSCs), which are designed and fabricated by tapering the proposed FMF with single-mode fiber (SMF). The mode MUX and DEMUX achieve very low modal crosstalk not only for the multiplexing/demultiplexing but also for the coupling to/from the FMF. Based on the fabricated FMF and mode MUX/DEMUX, we successfully demonstrate the first simultaneous 4-modes (LP 01 , LP 11 , LP 21 & LP 31 ) 10-km FMF transmission with 10-Gb/s intensity modulation and MIMO-free direct detection (IM/DD). The modal crosstalk of the whole transmission link is successfully suppressed to less than -16.5 dB. The experimental results indicate that FMF with simple step-index structure supporting 4 weakly-coupled modes is feasible.
NASA Astrophysics Data System (ADS)
Sellami, Takwa; Jelassi, Sana; Darcherif, Abdel Moumen; Berriri, Hanen; Mimouni, Med Faouzi
2018-04-01
With the advancement of wind turbines towards complex structures, the requirement of trusty structural models has become more apparent. Hence, the vibration characteristics of the wind turbine components, like the blades and the tower, have to be extracted under vibration constraints. Although extracting the modal properties of blades is a simple task, calculating precise modal data for the whole wind turbine coupled to its tower/foundation is still a perplexing task. In this framework, this paper focuses on the investigation of the structural modeling approach of modern commercial micro-turbines. Thus, the structural model a complex designed wind turbine, which is Rutland 504, is established based on both experimental and numerical methods. A three-dimensional (3-D) numerical model of the structure was set up based on the finite volume method (FVM) using the academic finite element analysis software ANSYS. To validate the created model, experimental vibration tests were carried out using the vibration test system of TREVISE platform at ECAM-EPMI. The tests were based on the experimental modal analysis (EMA) technique, which is one of the most efficient techniques for identifying structures parameters. Indeed, the poles and residues of the frequency response functions (FRF), between input and output spectra, were calculated to extract the mode shapes and the natural frequencies of the structure. Based on the obtained modal parameters, the numerical designed model was up-dated.
Pecher, Diane; Zeelenberg, René; Barsalou, Lawrence W
2004-02-01
According to the perceptual symbols theory (Barsalou, 1999), sensorimotor simulations underlie the representation of concepts. Simulations are componential in the sense that they vary with the context in which the concept is presented. In the present study, we investigated whether representations are affected by recent experiences with a concept. Concept names (e.g., APPLE) were presented twice in a property verification task with a different property on each occasion. The two properties were either from the same perceptual modality (e.g., green, shiny) or from different modalities (e.g., tart, shiny). All stimuli were words. There was a lag of several intervening trials between the first and second presentation. Verification times and error rates for the second presentation of the concept were higher if the properties were from different modalities than if they were from the same modality.
Jung, Mary E; Bourne, Jessica E; Little, Jonathan P
2014-01-01
Affect experienced during an exercise session is purported to predict future exercise behaviour. Compared to continuous moderate-intensity exercise (CMI), the affective response to continuous vigorous-intensity exercise (CVI) has consistently been shown to be more aversive. The affective response, and overall tolerability to high-intensity interval training (HIT), is less studied. To date, there has yet to be a comparison between HIT, CVI, and CMI. The purpose of this study was to compare the tolerability and affective responses during HIT to CVI and CMI. This study utilized a repeated measures, randomized, counter-balanced design. Forty-four participants visited the laboratory on four occasions. Baseline fitness testing was conducted to establish peak power output in Watts (W peak). Three subsequent visits involved a single bout of a) HIT, corresponding to 1-minute at ∼ 100% W peak and 1-minute at ∼ 20% W peak for 20 minutes, b) CMI, corresponding to ∼ 40% W peak for 40 minutes, and c) CVI, corresponding to ∼ 80% W peak for 20 minutes. The order of the sessions was randomized. Affective responses were measured before, during and after each session. Task self-efficacy, intentions, enjoyment and preference were measured after sessions. Participants reported greater enjoyment of HIT as compared to CMI and CVI, with over 50% of participants reporting a preference to engage in HIT as opposed to either CMI or CVI. HIT was considered more pleasurable than CVI after exercise, but less pleasurable than CMI at these times. Despite this participants reported being just as confident to engage in HIT as they were CMI, but less confident to engage in CVI. This study highlights the utility of HIT in inactive individuals, and suggests that it may be a viable alternative to traditionally prescribed continuous modalities of exercise for promoting self-efficacy and enjoyment of exercise.
Jung, Mary E.; Bourne, Jessica E.; Little, Jonathan P.
2014-01-01
Affect experienced during an exercise session is purported to predict future exercise behaviour. Compared to continuous moderate-intensity exercise (CMI), the affective response to continuous vigorous-intensity exercise (CVI) has consistently been shown to be more aversive. The affective response, and overall tolerability to high-intensity interval training (HIT), is less studied. To date, there has yet to be a comparison between HIT, CVI, and CMI. The purpose of this study was to compare the tolerability and affective responses during HIT to CVI and CMI. This study utilized a repeated measures, randomized, counter-balanced design. Forty-four participants visited the laboratory on four occasions. Baseline fitness testing was conducted to establish peak power output in Watts (Wpeak). Three subsequent visits involved a single bout of a) HIT, corresponding to 1-minute at ∼100% Wpeak and 1-minute at ∼20% Wpeak for 20 minutes, b) CMI, corresponding to ∼40% Wpeak for 40 minutes, and c) CVI, corresponding to ∼80% Wpeak for 20 minutes. The order of the sessions was randomized. Affective responses were measured before, during and after each session. Task self-efficacy, intentions, enjoyment and preference were measured after sessions. Participants reported greater enjoyment of HIT as compared to CMI and CVI, with over 50% of participants reporting a preference to engage in HIT as opposed to either CMI or CVI. HIT was considered more pleasurable than CVI after exercise, but less pleasurable than CMI at these times. Despite this participants reported being just as confident to engage in HIT as they were CMI, but less confident to engage in CVI. This study highlights the utility of HIT in inactive individuals, and suggests that it may be a viable alternative to traditionally prescribed continuous modalities of exercise for promoting self-efficacy and enjoyment of exercise. PMID:25486273
Input Shaping to Reduce Solar Array Structural Vibrations
NASA Technical Reports Server (NTRS)
Doherty, Michael J.; Tolson, Robert J.
1998-01-01
Structural vibrations induced by actuators can be minimized using input shaping. Input shaping is a feedforward method in which actuator commands are convolved with shaping functions to yield a shaped set of commands. These commands are designed to perform the maneuver while minimizing the residual structural vibration. In this report, input shaping is extended to stepper motor actuators. As a demonstration, an input-shaping technique based on pole-zero cancellation was used to modify the Solar Array Drive Assembly (SADA) actuator commands for the Lewis satellite. A series of impulses were calculated as the ideal SADA output for vibration control. These impulses were then discretized for use by the SADA stepper motor actuator and simulated actuator outputs were used to calculate the structural response. The effectiveness of input shaping is limited by the accuracy of the knowledge of the modal frequencies. Assuming perfect knowledge resulted in significant vibration reduction. Errors of 10% in the modal frequencies caused notably higher levels of vibration. Controller robustness was improved by incorporating additional zeros in the shaping function. The additional zeros did not require increased performance from the actuator. Despite the identification errors, the resulting feedforward controller reduced residual vibrations to the level of the exactly modeled input shaper and well below the baseline cases. These results could be easily applied to many other vibration-sensitive applications involving stepper motor actuators.
To What Extent Do Gestalt Grouping Principles Influence Tactile Perception?
ERIC Educational Resources Information Center
Gallace, Alberto; Spence, Charles
2011-01-01
Since their formulation by the Gestalt movement more than a century ago, the principles of perceptual grouping have primarily been investigated in the visual modality and, to a lesser extent, in the auditory modality. The present review addresses the question of whether the same grouping principles also affect the perception of tactile stimuli.…
Sensor-Free or Sensor-Full: A Comparison of Data Modalities in Multi-Channel Affect Detection
ERIC Educational Resources Information Center
Paquette, Luc; Rowe, Jonathan; Baker, Ryan; Mott, Bradford; Lester, James; DeFalco, Jeanine; Brawner, Keith; Sottilare, Robert; Georgoulas, Vasiliki
2016-01-01
Computational models that automatically detect learners' affective states are powerful tools for investigating the interplay of affect and learning. Over the past decade, affect detectors--which recognize learners' affective states at run-time using behavior logs and sensor data--have advanced substantially across a range of K-12 and postsecondary…
Yalin, Azer P; Joshi, Sachin
2014-06-03
An apparatus and method for transmission of laser pulses with high output beam quality using large core step-index silica optical fibers having thick cladding, are described. The thick cladding suppresses diffusion of modal power to higher order modes at the core-cladding interface, thereby enabling higher beam quality, M.sup.2, than are observed for large core, thin cladding optical fibers. For a given NA and core size, the thicker the cladding, the better the output beam quality. Mode coupling coefficients, D, has been found to scale approximately as the inverse square of the cladding dimension and the inverse square root of the wavelength. Output from a 2 m long silica optical fiber having a 100 .mu.m core and a 660 .mu.m cladding was found to be close to single mode, with an M.sup.2=1.6. Another thick cladding fiber (400 .mu.m core and 720 .mu.m clad) was used to transmit 1064 nm pulses of nanosecond duration with high beam quality to form gas sparks at the focused output (focused intensity of >100 GW/cm.sup.2), wherein the energy in the core was <6 mJ, and the duration of the laser pulses was about 6 ns. Extending the pulse duration provided the ability to increase the delivered pulse energy (>20 mJ delivered for 50 ns pulses) without damaging the silica fiber.
Ray Tracing and Modal Methods for Modeling Radio Propagation in Tunnels With Rough Walls
Zhou, Chenming
2017-01-01
At the ultrahigh frequencies common to portable radios, tunnels such as mine entries are often modeled by hollow dielectric waveguides. The roughness condition of the tunnel walls has an influence on radio propagation, and therefore should be taken into account when an accurate power prediction is needed. This paper investigates how wall roughness affects radio propagation in tunnels, and presents a unified ray tracing and modal method for modeling radio propagation in tunnels with rough walls. First, general analytical formulas for modeling the influence of the wall roughness are derived, based on the modal method and the ray tracing method, respectively. Second, the equivalence of the ray tracing and modal methods in the presence of wall roughnesses is mathematically proved, by showing that the ray tracing-based analytical formula can converge to the modal-based formula through the Poisson summation formula. The derivation and findings are verified by simulation results based on ray tracing and modal methods. PMID:28935995
A Comparison of Video-Based and Interaction-Based Affect Detectors in Physics Playground
ERIC Educational Resources Information Center
Kai, Shiming; Paquette, Luc; Baker, Ryan S.; Bosch, Nigel; D'Mello, Sidney; Ocumpaugh, Jaclyn; Shute, Valerie; Ventura, Matthew
2015-01-01
Increased attention to the relationships between affect and learning has led to the development of machine-learned models that are able to identify students' affective states in computerized learning environments. Data for these affect detectors have been collected from multiple modalities including physical sensors, dialogue logs, and logs of…
Walker, Thomas; Ghosh, Boyd; Kipps, Christopher
2017-01-01
In Huntington's disease (HD), it remains unclear how symptom severity and rate of symptomatic change relates to age and CAG repeat number (CAGn). It is often difficult for clinicians to assess whether an affected individual's symptoms are progressing at a similar rate to their affected peers, limiting their ability to intervene at the most appropriate time. To develop a clinical dashboard that compares an individual's total motor score (TMS), total functional capacity (TFC) and symbol digit modality test (SDMT) scores against a global cohort, controlling for age and CAGn. The dashboard could then be used by clinicians to identify individuals progressing at a disproportionate rate to his or her peers. Annualised longitudinal clinical assessment scores from the Enroll-HD dataset were used to generate decline trajectories of the global cohort, allowing cross-sectional (TMS n = 734; TFC n = 734; SDMT n = 694) and longitudinal (TMS n = 270; TFC n = 270; SDMT n = 247) comparison with individual clinical symptom rating scores, to assess decline relative to affected peers. An electronic dashboard with a dynamic output display was created that rapidly compares clinical symptom rating scores of a specific individual against affected peers from a global cohort of comparable CAGn. This study shows the potential for use of multi-centre trial data in allowing comparison of the individual to a larger group to facilitate improved decision-making for individual patients. Visualisation of these metrics via a clinical dashboard demonstrates how it may aid identification of those with disproportionate decline, offering potential for intervention at specific critical points in the disease course.
On nonstationarity-related errors in modal combination rules of the response spectrum method
NASA Astrophysics Data System (ADS)
Pathak, Shashank; Gupta, Vinay K.
2017-10-01
Characterization of seismic hazard via (elastic) design spectra and the estimation of linear peak response of a given structure from this characterization continue to form the basis of earthquake-resistant design philosophy in various codes of practice all over the world. Since the direct use of design spectrum ordinates is a preferred option for the practicing engineers, modal combination rules play central role in the peak response estimation. Most of the available modal combination rules are however based on the assumption that nonstationarity affects the structural response alike at the modal and overall response levels. This study considers those situations where this assumption may cause significant errors in the peak response estimation, and preliminary models are proposed for the estimation of the extents to which nonstationarity affects the modal and total system responses, when the ground acceleration process is assumed to be a stationary process. It is shown through numerical examples in the context of complete-quadratic-combination (CQC) method that the nonstationarity-related errors in the estimation of peak base shear may be significant, when strong-motion duration of the excitation is too small compared to the period of the system and/or the response is distributed comparably in several modes. It is also shown that these errors are reduced marginally with the use of the proposed nonstationarity factor models.
Laramée, Marie-Eve; Smolders, Katrien; Hu, Tjing-Tjing; Bronchti, Gilles; Boire, Denis; Arckens, Lutgarde
2016-01-01
In blind individuals, visually deprived occipital areas are activated by non-visual stimuli. The extent of this cross-modal activation depends on the age at onset of blindness. Cross-modal inputs have access to several anatomical pathways to reactivate deprived visual areas. Ectopic cross-modal subcortical connections have been shown in anophthalmic animals but not in animals deprived of sight at a later age. Direct and indirect cross-modal cortical connections toward visual areas could also be involved, yet the number of neurons implicated is similar between blind mice and sighted controls. Changes at the axon terminal, dendritic spine or synaptic level are therefore expected upon loss of visual inputs. Here, the proteome of V1, V2M and V2L from P0-enucleated, anophthalmic and sighted mice, sharing a common genetic background (C57BL/6J x ZRDCT/An), was investigated by 2-D DIGE and Western analyses to identify molecular adaptations to enucleation and/or anophthalmia. Few proteins were differentially expressed in enucleated or anophthalmic mice in comparison to sighted mice. The loss of sight affected three pathways: metabolism, synaptic transmission and morphogenesis. Most changes were detected in V1, followed by V2M. Overall, cross-modal adaptations could be promoted in both models of early blindness but not through the exact same molecular strategy. A lower metabolic activity observed in visual areas of blind mice suggests that even if cross-modal inputs reactivate visual areas, they could remain suboptimally processed.
Smolders, Katrien; Hu, Tjing-Tjing; Bronchti, Gilles; Boire, Denis; Arckens, Lutgarde
2016-01-01
In blind individuals, visually deprived occipital areas are activated by non-visual stimuli. The extent of this cross-modal activation depends on the age at onset of blindness. Cross-modal inputs have access to several anatomical pathways to reactivate deprived visual areas. Ectopic cross-modal subcortical connections have been shown in anophthalmic animals but not in animals deprived of sight at a later age. Direct and indirect cross-modal cortical connections toward visual areas could also be involved, yet the number of neurons implicated is similar between blind mice and sighted controls. Changes at the axon terminal, dendritic spine or synaptic level are therefore expected upon loss of visual inputs. Here, the proteome of V1, V2M and V2L from P0-enucleated, anophthalmic and sighted mice, sharing a common genetic background (C57BL/6J x ZRDCT/An), was investigated by 2-D DIGE and Western analyses to identify molecular adaptations to enucleation and/or anophthalmia. Few proteins were differentially expressed in enucleated or anophthalmic mice in comparison to sighted mice. The loss of sight affected three pathways: metabolism, synaptic transmission and morphogenesis. Most changes were detected in V1, followed by V2M. Overall, cross-modal adaptations could be promoted in both models of early blindness but not through the exact same molecular strategy. A lower metabolic activity observed in visual areas of blind mice suggests that even if cross-modal inputs reactivate visual areas, they could remain suboptimally processed. PMID:27410964
Behold the voice of wrath: cross-modal modulation of visual attention by anger prosody.
Brosch, Tobias; Grandjean, Didier; Sander, David; Scherer, Klaus R
2008-03-01
Emotionally relevant stimuli are prioritized in human information processing. It has repeatedly been shown that selective spatial attention is modulated by the emotional content of a stimulus. Until now, studies investigating this phenomenon have only examined within-modality effects, most frequently using pictures of emotional stimuli to modulate visual attention. In this study, we used simultaneously presented utterances with emotional and neutral prosody as cues for a visually presented target in a cross-modal dot probe task. Response times towards targets were faster when they appeared at the location of the source of the emotional prosody. Our results show for the first time a cross-modal attentional modulation of visual attention by auditory affective prosody.
NASA Technical Reports Server (NTRS)
Lin, Jiguan Gene
1987-01-01
The quick suppression of the structural vibrations excited by bang-bang (BB) type time-optional slew maneuvers via modal-dashpot design of velocity output feedback control was investigated. Simulation studies were conducted, and modal dashpots were designed for the SCOLE flexible body dynamics. A two-stage approach was proposed for rapid slewing and precision pointing/retargeting of large, flexible space systems: (1) slew the whole system like a rigid body in a minimum time under specified limits on the control moments and forces, and (2) damp out the excited structural vibrations afterwards. This approach was found promising. High-power modal/dashpots can suppress very large vibrations, and can add a desirable amount of active damping to modeled modes. Unmodeled modes can also receive some concomitant active damping, as a benefit of spillover. Results also show that not all BB type rapid pointing maneuvers will excite large structural vibrations. When properly selected small forces (e.g., vernier thrusters) are used to complete the specified slew maneuver in the shortest time, even BB-type maneuvers will excite only small vibrations (e.g., 0.3 ft peak deflection for a 130 ft beam).
Model verification of large structural systems. [space shuttle model response
NASA Technical Reports Server (NTRS)
Lee, L. T.; Hasselman, T. K.
1978-01-01
A computer program for the application of parameter identification on the structural dynamic models of space shuttle and other large models with hundreds of degrees of freedom is described. Finite element, dynamic, analytic, and modal models are used to represent the structural system. The interface with math models is such that output from any structural analysis program applied to any structural configuration can be used directly. Processed data from either sine-sweep tests or resonant dwell tests are directly usable. The program uses measured modal data to condition the prior analystic model so as to improve the frequency match between model and test. A Bayesian estimator generates an improved analytical model and a linear estimator is used in an iterative fashion on highly nonlinear equations. Mass and stiffness scaling parameters are generated for an improved finite element model, and the optimum set of parameters is obtained in one step.
Application of the Probabilistic Dynamic Synthesis Method to the Analysis of a Realistic Structure
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1998-01-01
The Probabilistic Dynamic Synthesis method is a new technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. A previous work verified the feasibility of the PDS method on a simple seven degree-of-freedom spring-mass system. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.
A modal separation measurement technique for broadband noise propagating inside circular ducts
NASA Technical Reports Server (NTRS)
Kerschen, E. J.; Johnston, J. P.
1981-01-01
A measurement technique which separates broadband noise propagating inside circular ducts into the acoustic duct modes is developed. The technique is also applicable to discrete frequency noise. The acoustic modes are produced by weighted combinations of the instantaneous outputs of microphones spaced around the duct circumference. The technique is compared with the cross spectral density approach presently available and found to have certain advantages, and disadvantages. Considerable simplification of both the new technique and the cross spectral density approach occurs when no correlation exists between different circumferential mode orders. The properties leading to uncorrelated modes and experimental tests which verify this condition are discussed. The modal measurement technique is applied to the case of broadband noise generated by flow through a coaxial obstruction (nozzle or orifice) in a pipe. Different circumferential mode orders are shown to be uncorrelated for this type of noise source.
Multibody model reduction by component mode synthesis and component cost analysis
NASA Technical Reports Server (NTRS)
Spanos, J. T.; Mingori, D. L.
1990-01-01
The classical assumed-modes method is widely used in modeling the dynamics of flexible multibody systems. According to the method, the elastic deformation of each component in the system is expanded in a series of spatial and temporal functions known as modes and modal coordinates, respectively. This paper focuses on the selection of component modes used in the assumed-modes expansion. A two-stage component modal reduction method is proposed combining Component Mode Synthesis (CMS) with Component Cost Analysis (CCA). First, each component model is truncated such that the contribution of the high frequency subsystem to the static response is preserved. Second, a new CMS procedure is employed to assemble the system model and CCA is used to further truncate component modes in accordance with their contribution to a quadratic cost function of the system output. The proposed method is demonstrated with a simple example of a flexible two-body system.
Neural circuits underlying visually evoked escapes in larval zebrafish
Dunn, Timothy W.; Gebhardt, Christoph; Naumann, Eva A.; Riegler, Clemens; Ahrens, Misha B.; Engert, Florian; Del Bene, Filippo
2015-01-01
SUMMARY Escape behaviors deliver organisms away from imminent catastrophe. Here, we characterize behavioral responses of freely swimming larval zebrafish to looming visual stimuli simulating predators. We report that the visual system alone can recruit lateralized, rapid escape motor programs, similar to those elicited by mechanosensory modalities. Two-photon calcium imaging of retino-recipient midbrain regions isolated the optic tectum as an important center processing looming stimuli, with ensemble activity encoding the critical image size determining escape latency. Furthermore, we describe activity in retinal ganglion cell terminals and superficial inhibitory interneurons in the tectum during looming and propose a model for how temporal dynamics in tectal periventricular neurons might arise from computations between these two fundamental constituents. Finally, laser ablations of hindbrain circuitry confirmed that visual and mechanosensory modalities share the same premotor output network. Together, we establish a circuit for the processing of aversive stimuli in the context of an innate visual behavior. PMID:26804997
Application of the Probabilistic Dynamic Synthesis Method to Realistic Structures
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1998-01-01
The Probabilistic Dynamic Synthesis method is a technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. In previous work, the feasibility of the PDS method applied to a simple seven degree-of-freedom spring-mass system was verified. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.
A modal analysis of flexible aircraft dynamics with handling qualities implications
NASA Technical Reports Server (NTRS)
Schmidt, D. K.
1983-01-01
A multivariable modal analysis technique is presented for evaluating flexible aircraft dynamics, focusing on meaningful vehicle responses to pilot inputs and atmospheric turbulence. Although modal analysis is the tool, vehicle time response is emphasized, and the analysis is performed on the linear, time-domain vehicle model. In evaluating previously obtained experimental pitch tracking data for a family of vehicle dynamic models, it is shown that flexible aeroelastic effects can significantly affect pitch attitude handling qualities. Consideration of the eigenvalues alone, of both rigid-body and aeroelastic modes, does not explain the simulation results. Modal analysis revealed, however, that although the lowest aeroelastic mode frequency was still three times greater than the short-period frequency, the rigid-body attitude response was dominated by this aeroelastic mode. This dominance was defined in terms of the relative magnitudes of the modal residues in selected vehicle responses.
Taylor, Daniel; Smith, Mark F.
2017-01-01
Purpose: To examine the effects of deceptively aggressive bike pacing on performance, pacing, and associated physiological and perceptual responses during simulated sprint-distance triathlon. Methods: Ten non-elite, competitive male triathletes completed three simulated sprint-distance triathlons (0.75 km swim, 500 kJ bike, 5 km run), the first of which established personal best “baseline” performance (BL). During the remaining two trials athletes maintained a cycling power output 5% greater than BL, before completing the run as quickly as possible. However, participants were informed of this aggressive cycling strategy before and during only one of the two trials (HON). Prior to the alternate trial (DEC), participants were misinformed that cycling power output would equal that of BL, with on-screen feedback manipulated to reinforce this deception. Results: Compared to BL, a significantly faster run performance was observed following DEC cycling (p < 0.05) but not following HON cycling (1348 ± 140 vs. 1333 ± 129 s and 1350 ± 135 s, for BL, DEC, and HON, respectively). As such, magnitude-based inferences suggest HON running was more likely to be slower, than faster, compared to BL, and that DEC running was probably faster than both BL and HON. Despite a trend for overall triathlon performance to be quicker during DEC (4339 ± 395 s) compared to HON (4356 ± 384 s), the only significant and almost certainly meaningful differences were between each of these trials and BL (4465 ± 420 s; p < 0.05). Generally, physiological and perceptual strain increased with higher cycling intensities, with little, if any, substantial difference in physiological and perceptual response during each triathlon run. Conclusions: The present study is the first to show that mid-event pace deception can have a practically meaningful effect on multi-modal endurance performance, though the relative importance of different psychophysiological and emotional responses remains unclear. Whilst our findings support the view that some form of anticipatory “template” may be used by athletes to interpret levels of psychophysiological and emotional strain, and regulate exercise intensity accordingly, they would also suggest that individual constructs such as RPE and affect may be more loosely tied with pacing than previously suggested. PMID:28174540
ERIC Educational Resources Information Center
Boyers, Jayson
2017-01-01
The study's purpose was to examine attitudes and perceptions of full-time faculty within colleges and universities that segregate or integrate the online modality. In examining the faculty attitudes, this research provided an understanding about how structure of an online strategy within an institution may affect the perceptions or support of…
Meijs, Celeste; Hurks, Petra P M; Wassenberg, Renske; Feron, Frans J M; Jolles, Jelle
2016-01-01
This study examines inter-individual differences in how presentation modality affects verbal learning performance. Children aged 5 to 16 performed a verbal learning test within one of three presentation modalities: pictorial, auditory, or textual. The results indicated that a beneficial effect of pictures exists over auditory and textual presentation modalities and that this effect increases with age. However, this effect is only found if the information to be learned is presented once (or at most twice) and only in children above the age of 7. The results may be explained in terms of single or dual coding of information in which the phonological loop is involved. Development of the (sub)vocal rehearsal system in the phonological loop is believed to be a gradual process that begins developing around the age of 7. The developmental trajectories are similar for boys and girls. Additionally, auditory information and textual information both seemed to be processed in a similar manner, namely without labeling or recoding, leading to single coding. In contrast, pictures are assumed to be processed by the dual coding of both the visual information and a (verbal) labeling of the pictures.
The importance of sensory integration processes for action cascading
Gohil, Krutika; Stock, Ann-Kathrin; Beste, Christian
2015-01-01
Dual tasking or action cascading is essential in everyday life and often investigated using tasks presenting stimuli in different sensory modalities. Findings obtained with multimodal tasks are often broadly generalized, but until today, it has remained unclear whether multimodal integration affects performance in action cascading or the underlying neurophysiology. To bridge this gap, we asked healthy young adults to complete a stop-change paradigm which presented different stimuli in either one or two modalities while recording behavioral and neurophysiological data. Bimodal stimulus presentation prolonged response times and affected bottom-up and top-down guided attentional processes as reflected by the P1 and N1, respectively. However, the most important effect was the modulation of response selection processes reflected by the P3 suggesting that a potentially different way of forming task goals operates during action cascading in bimodal vs. unimodal tasks. When two modalities are involved, separate task goals need to be formed while a conjoint task goal may be generated when all stimuli are presented in the same modality. On a systems level, these processes seem to be related to the modulation of activity in fronto-polar regions (BA10) as well as Broca's area (BA44). PMID:25820681
Liu, Yi; Tsao, Chen-Yu; Kim, Eunkyoung; Tschirhart, Tanya; Terrell, Jessica L; Bentley, William E; Payne, Gregory F
2017-01-01
A hydrogel-based dual film coating is electrofabricated for transducing bio-relevant chemical information into electronical output. The outer film has a synthetic biology construct that recognizes an external molecular signal and transduces this input into the expression of an enzyme that converts redox-inactive substrate into a redox-active intermediate, which is detected through an amplification mechanism of the inner redox-capacitor film. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Harnessing vision for computation.
Changizi, Mark
2008-01-01
Might it be possible to harness the visual system to carry out artificial computations, somewhat akin to how DNA has been harnessed to carry out computation? I provide the beginnings of a research programme attempting to do this. In particular, new techniques are described for building 'visual circuits' (or 'visual software') using wire, NOT, OR, and AND gates in a visual 6modality such that our visual system acts as 'visual hardware' computing the circuit, and generating a resultant perception which is the output.
Cognitive neuropsychological analysis and neuroanatomic correlates in a case of acute anomia.
Raymer, A M; Foundas, A L; Maher, L M; Greenwald, M L; Morris, M; Rothi, L J; Heilman, K M
1997-06-01
We describe an analysis of lexical processing performed in a patient with the acute onset of an isolated anomia. Based on a model of lexical processing, we evaluated hypotheses as to the source of the naming deficit. We observed impairments in oral and written picture naming and oral naming to definition with relatively intact semantic processing across input modalities, suggesting that output from the semantic system was impaired. In contrast to previous reports, we propose that this pattern represents an impairment that arises late in semantic processing prior to accessing mode-specific verbal and graphemic output lexicons. These deficits were associated with a lesion in the posterior portion of the middle temporal gyrus or area 37, an area of supramodal association cortex that is uniquely suited as a substrate for the multimodal deficit in naming.
Modeling laser brightness from cross Porro prism resonators
NASA Astrophysics Data System (ADS)
Forbes, Andrew; Burger, Liesl; Litvin, Igor Anatolievich
2006-08-01
Laser brightness is a parameter often used to compare high power laser beam delivery from various sources, and incorporates both the power contained in the particular mode, as well as the propagation of that mode through the beam quality factor, M2. In this study a cross Porro prism resonator is considered; crossed Porro prism resonators have been known for some time, but until recently have not been modeled as a complete physical optics system that allows the modal output to be determined as a function of the rotation angle of the prisms. In this paper we consider the diffraction losses as a function of the prism rotation angle relative to one another, and combine this with the propagation of the specific modes to determine the laser output brightness as a function of the prism orientation.
NASA Astrophysics Data System (ADS)
Prieto-Cortés, P.; Álvarez-Tamayo, R. I.; Durán-Sánchez, M.; Castillo-Guzmán, A.; Salceda-Delgado, G.; Ibarra-Escamilla, B.; Kuzin, E. A.; Barcelata-Pinzón, A.; Selvas-Aguilar, R.
2018-02-01
We report an in-fiber structure based on the use of a multimode fiber segment and a double cladding fiber segment, and its application as spectral filter in an erbium-doped fiber laser for selection and tuning of the laser line wavelength. The output transmission of the proposed device exhibit spectrum modulation of the input signal with free spectral range of 21 nm and maximum visibility enhanced to more than 20 dB. The output spectrum of the in-fiber filter is wavelength displaced by bending application which allows a wavelength tuning of the generated laser line in a range of 12 nm. The use of the proposed in-fiber structure is demonstrated as a reliable, simple, and low-cost wavelength filter for tunable fiber lasers design and optical instrumentation applications.
Li, Jian-Lang; Ueda, Ken-ichi; Zhong, Lan-xiang; Musha, Mitsuru; Shirakawa, Akira; Sato, Takashi
2008-07-07
Cylindrical vector beams were produced from laser diode end-pumped Nd:YAG ceramic microchip laser by use of two types of subwavelength multilayer gratings as the axisymmetric-polarization output couplers respectively. The grating mirrors are composed of high- and low-refractive- index (Nb(2)O(5)/SiO(2)) layers alternately while each layer is shaped into triangle and concentric corrugations. For radially polarized laser output, the beam power reached 610mW with a polarization extinction ratio (PER) of 61:1 and a slope efficiency of 68.2%; for azimuthally polarized laser output, the beam power reached 626mW with a PER of 58:1 and a slope efficiency of 47.6%. In both cases, the laser beams had near-diffraction limited quality. Small differences of beam power, PER and slope efficiency between radially and azimuthally polarized laser outputs were not critical, and could be minimized by further optimized adjustment to laser cavity and the reflectances of respective grating mirrors. The results manifested, by use of the photonic crystal gratings mirrors and end-pumped microchip laser configuration, CVBs can be generated efficiently with high modal symmetry and polarization purity.
Nadler, Scott F; Weingand, Kurt; Kruse, Roger J
2004-07-01
Cryotherapy and thermotherapy are useful adjuncts for the treatment of musculoskeletal injuries. Clinicians treating these conditions should be aware of current research findings regarding these modalities, because their choice of modality may affect the ultimate outcome of the patient being treated. Through a better understanding of these modalities, clinicians can optimize their present treatment strategies. Although cold and hot treatment modalities both decrease pain and muscle spasm, they have opposite effects on tissue metabolism, blood flow, inflammation, edema, and connective tissue extensibility. Cryotherapy decreases these effects while thermotherapy increases them. Continuous low-level cryotherapy and thermotherapy are newer concepts in therapeutic modalities. Both modalities provide significant pain relief with a low side-effect profile. Contrast therapy, which alternates between hot and cold treatment modalities, provides no additional therapeutic benefits compared with cryotherapy or thermotherapy alone. Complications of cryotherapy include nerve damage, frostbite, Raynaud's phenomenon, cold-induced urticaria, and slowed wound healing. With thermotherapy, skin burns may occur, especially in patients with diabetes mellitus, multiple sclerosis, poor circulation, and spinal cord injuries. In individuals with rheumatoid arthritis, deep-heating modalities should be used with caution because increased inflammation may occur. Whirlpool and other types of hydrotherapy have caused infections of the skin, urogenital, and pulmonary systems. Additionally, ultrasound should not be used in patients with joint prostheses.
On the Multi-Modal Object Tracking and Image Fusion Using Unsupervised Deep Learning Methodologies
NASA Astrophysics Data System (ADS)
LaHaye, N.; Ott, J.; Garay, M. J.; El-Askary, H. M.; Linstead, E.
2017-12-01
The number of different modalities of remote-sensors has been on the rise, resulting in large datasets with different complexity levels. Such complex datasets can provide valuable information separately, yet there is a bigger value in having a comprehensive view of them combined. As such, hidden information can be deduced through applying data mining techniques on the fused data. The curse of dimensionality of such fused data, due to the potentially vast dimension space, hinders our ability to have deep understanding of them. This is because each dataset requires a user to have instrument-specific and dataset-specific knowledge for optimum and meaningful usage. Once a user decides to use multiple datasets together, deeper understanding of translating and combining these datasets in a correct and effective manner is needed. Although there exists data centric techniques, generic automated methodologies that can potentially solve this problem completely don't exist. Here we are developing a system that aims to gain a detailed understanding of different data modalities. Such system will provide an analysis environment that gives the user useful feedback and can aid in research tasks. In our current work, we show the initial outputs our system implementation that leverages unsupervised deep learning techniques so not to burden the user with the task of labeling input data, while still allowing for a detailed machine understanding of the data. Our goal is to be able to track objects, like cloud systems or aerosols, across different image-like data-modalities. The proposed system is flexible, scalable and robust to understand complex likenesses within multi-modal data in a similar spatio-temporal range, and also to be able to co-register and fuse these images when needed.
Jacquin-Courtois, S; Rode, G; Pavani, F; O'Shea, J; Giard, M H; Boisson, D; Rossetti, Y
2010-03-01
Unilateral neglect is a disabling syndrome frequently observed following right hemisphere brain damage. Symptoms range from visuo-motor impairments through to deficient visuo-spatial imagery, but impairment can also affect the auditory modality. A short period of adaptation to a rightward prismatic shift of the visual field is known to improve a wide range of hemispatial neglect symptoms, including visuo-manual tasks, mental imagery, postural imbalance, visuo-verbal measures and number bisection. The aim of the present study was to assess whether the beneficial effects of prism adaptation may generalize to auditory manifestations of neglect. Auditory extinction, whose clinical manifestations are independent of the sensory modalities engaged in visuo-manual adaptation, was examined in neglect patients before and after prism adaptation. Two separate groups of neglect patients (all of whom exhibited left auditory extinction) underwent prism adaptation: one group (n = 6) received a classical prism treatment ('Prism' group), the other group (n = 6) was submitted to the same procedure, but wore neutral glasses creating no optical shift (placebo 'Control' group). Auditory extinction was assessed by means of a dichotic listening task performed three times: prior to prism exposure (pre-test), upon prism removal (0 h post-test) and 2 h later (2 h post-test). The total number of correct responses, the lateralization index (detection asymmetry between the two ears) and the number of left-right fusion errors were analysed. Our results demonstrate that prism adaptation can improve left auditory extinction, thus revealing transfer of benefit to a sensory modality that is orthogonal to the visual, proprioceptive and motor modalities directly implicated in the visuo-motor adaptive process. The observed benefit was specific to the detection asymmetry between the two ears and did not affect the total number of responses. This indicates a specific effect of prism adaptation on lateralized processes rather than on general arousal. Our results suggest that the effects of prism adaptation can extend to unexposed sensory systems. The bottom-up approach of visuo-motor adaptation appears to interact with higher order brain functions related to multisensory integration and can have beneficial effects on sensory processing in different modalities. These findings should stimulate the development of therapeutic approaches aimed at bypassing the affected sensory processing modality by adapting other sensory modalities.
Knowledge Engineering Aspects of Affective Bi-Modal Educational Applications
NASA Astrophysics Data System (ADS)
Alepis, Efthymios; Virvou, Maria; Kabassi, Katerina
This paper analyses the knowledge and software engineering aspects of educational applications that provide affective bi-modal human-computer interaction. For this purpose, a system that provides affective interaction based on evidence from two different modes has been developed. More specifically, the system's inferences about students' emotions are based on user input evidence from the keyboard and the microphone. Evidence from these two modes is combined by a user modelling component that incorporates user stereotypes as well as a multi criteria decision making theory. The mechanism that integrates the inferences from the two modes has been based on the results of two empirical studies that were conducted in the context of knowledge engineering of the system. The evaluation of the developed system showed significant improvements in the recognition of the emotional states of users.
To what extent do Gestalt grouping principles influence tactile perception?
Gallace, Alberto; Spence, Charles
2011-07-01
Since their formulation by the Gestalt movement more than a century ago, the principles of perceptual grouping have primarily been investigated in the visual modality and, to a lesser extent, in the auditory modality. The present review addresses the question of whether the same grouping principles also affect the perception of tactile stimuli. Although, to date, only a few studies have explicitly investigated the existence of Gestalt grouping principles in the tactile modality, we argue that many more studies have indirectly provided evidence relevant to this topic. Reviewing this body of research, we argue that similar principles to those reported previously in visual and auditory studies also govern the perceptual grouping of tactile stimuli. In particular, we highlight evidence showing that the principles of proximity, similarity, common fate, good continuation, and closure affect tactile perception in both unimodal and crossmodal settings. We also highlight that the grouping of tactile stimuli is often affected by visual and auditory information that happen to be presented simultaneously. Finally, we discuss the theoretical and applied benefits that might pertain to the further study of Gestalt principles operating in both unisensory and multisensory tactile perception.
Demographic and Academic Factors Affecting Research Productivity at the University of KwaZulu-Natal
ERIC Educational Resources Information Center
North, D.; Zewotir, T.; Murray, M.
2011-01-01
Research output affects both the strength and funding of universities. Accordingly university academic staff members are under pressure to be active and productive in research. Though all academics have research interest, all are not producing research output which is accredited by the Department of Education (DOE). We analyzed the demographic and…
Loanwords and Vocabulary Size Test Scores: A Case of Different Estimates for Different L1 Learners
ERIC Educational Resources Information Center
Laufer, Batia; McLean, Stuart
2016-01-01
The article investigated how the inclusion of loanwords in vocabulary size tests affected the test scores of two L1 groups of EFL learners: Hebrew and Japanese. New BNC- and COCA-based vocabulary size tests were constructed in three modalities: word form recall, word form recognition, and word meaning recall. Depending on the test modality, the…
Gaze-independent ERP-BCIs: augmenting performance through location-congruent bimodal stimuli
Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Werkhoven, Peter
2014-01-01
Gaze-independent event-related potential (ERP) based brain-computer interfaces (BCIs) yield relatively low BCI performance and traditionally employ unimodal stimuli. Bimodal ERP-BCIs may increase BCI performance due to multisensory integration or summation in the brain. An additional advantage of bimodal BCIs may be that the user can choose which modality or modalities to attend to. We studied bimodal, visual-tactile, gaze-independent BCIs and investigated whether or not ERP components’ tAUCs and subsequent classification accuracies are increased for (1) bimodal vs. unimodal stimuli; (2) location-congruent vs. location-incongruent bimodal stimuli; and (3) attending to both modalities vs. to either one modality. We observed an enhanced bimodal (compared to unimodal) P300 tAUC, which appeared to be positively affected by location-congruency (p = 0.056) and resulted in higher classification accuracies. Attending either to one or to both modalities of the bimodal location-congruent stimuli resulted in differences between ERP components, but not in classification performance. We conclude that location-congruent bimodal stimuli improve ERP-BCIs, and offer the user the possibility to switch the attended modality without losing performance. PMID:25249947
NASA Astrophysics Data System (ADS)
Açıkkalp, Emin; Caner, Necmettin
2015-09-01
In this study, a nano-scale irreversible Brayton cycle operating with quantum gasses including Bose and Fermi gasses is researched. Developments in the nano-technology cause searching the nano-scale machines including thermal systems to be unavoidable. Thermodynamic analysis of a nano-scale irreversible Brayton cycle operating with Bose and Fermi gasses was performed (especially using exergetic sustainability index). In addition, thermodynamic analysis involving classical evaluation parameters such as work output, exergy output, entropy generation, energy and exergy efficiencies were conducted. Results are submitted numerically and finally some useful recommendations were conducted. Some important results are: entropy generation and exergetic sustainability index are affected mostly for Bose gas and power output and exergy output are affected mostly for the Fermi gas by x. At the high temperature conditions, work output and entropy generation have high values comparing with other degeneracy conditions.
NASA Astrophysics Data System (ADS)
Claussen, Jonathan C.; Algar, W. Russ; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.
2013-11-01
Integrating photonic inputs/outputs into unimolecular logic devices can provide significantly increased functional complexity and the ability to expand the repertoire of available operations. Here, we build upon a system previously utilized for biosensing to assemble and prototype several increasingly sophisticated biophotonic logic devices that function based upon multistep Förster resonance energy transfer (FRET) relays. The core system combines a central semiconductor quantum dot (QD) nanoplatform with a long-lifetime Tb complex FRET donor and a near-IR organic fluorophore acceptor; the latter acts as two unique inputs for the QD-based device. The Tb complex allows for a form of temporal memory by providing unique access to a time-delayed modality as an alternate output which significantly increases the inherent computing options. Altering the device by controlling the configuration parameters with biologically based self-assembly provides input control while monitoring changes in emission output of all participants, in both a spectral and temporal-dependent manner, gives rise to two input, single output Boolean Logic operations including OR, AND, INHIBIT, XOR, NOR, NAND, along with the possibility of gate transitions. Incorporation of an enzymatic cleavage step provides for a set-reset function that can be implemented repeatedly with the same building blocks and is demonstrated with single input, single output YES and NOT gates. Potential applications for these devices are discussed in the context of their constituent parts and the richness of available signal.
Claussen, Jonathan C; Algar, W Russ; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G; Medintz, Igor L
2013-12-21
Integrating photonic inputs/outputs into unimolecular logic devices can provide significantly increased functional complexity and the ability to expand the repertoire of available operations. Here, we build upon a system previously utilized for biosensing to assemble and prototype several increasingly sophisticated biophotonic logic devices that function based upon multistep Förster resonance energy transfer (FRET) relays. The core system combines a central semiconductor quantum dot (QD) nanoplatform with a long-lifetime Tb complex FRET donor and a near-IR organic fluorophore acceptor; the latter acts as two unique inputs for the QD-based device. The Tb complex allows for a form of temporal memory by providing unique access to a time-delayed modality as an alternate output which significantly increases the inherent computing options. Altering the device by controlling the configuration parameters with biologically based self-assembly provides input control while monitoring changes in emission output of all participants, in both a spectral and temporal-dependent manner, gives rise to two input, single output Boolean Logic operations including OR, AND, INHIBIT, XOR, NOR, NAND, along with the possibility of gate transitions. Incorporation of an enzymatic cleavage step provides for a set-reset function that can be implemented repeatedly with the same building blocks and is demonstrated with single input, single output YES and NOT gates. Potential applications for these devices are discussed in the context of their constituent parts and the richness of available signal.
NASA Astrophysics Data System (ADS)
Tajaldini, Mehdi; Mat Jafri, M. Z.
2014-05-01
We present a highly miniaturized multimode interference (MMI) coupler based on nonlinear modal propagation analysis (NMPA) method as a novel design method and potential application for optical NAND, NOR and XNOR logic gates for Boolean logic signal processing devices. Crystalline polydiacetylene is used to allow the appearances of nonlinear effects in low input intensities and ultra- short length to control the MMI coupler as an active device to access light switching due to its high nonlinear susceptibility. We consider a 10x33 μm2 MMI structure with three inputs and one output. Notably, the access facets are single-mode waveguides with sub-micron width. The center input contributes to control the induced light propagation in MMI by intensity variation whereas others could be launched by particular intensity when they are ON and 0 in OFF. Output intensity is analyzed in various sets of inputs to show the capability of Boolean logic gates, the contrast between ON and OFF is calculated on mentioned gates to present the efficiency. Good operation in low intensity and highly miniaturized MMI coupler is observed. Furthermore, nonlinear effects could be realized through the modal interferences. The issue of high insertion loss is addressed with a 3×3 upgraded coupler. Furthermore, the main significant aspect of this paper is simulating an MMI coupler that is launched by three nonlinear inputs, simultaneously, whereas last presents have never studied more than one input in nonlinear regimes.
On the selection of user-defined parameters in data-driven stochastic subspace identification
NASA Astrophysics Data System (ADS)
Priori, C.; De Angelis, M.; Betti, R.
2018-02-01
The paper focuses on the time domain output-only technique called Data-Driven Stochastic Subspace Identification (DD-SSI); in order to identify modal models (frequencies, damping ratios and mode shapes), the role of its user-defined parameters is studied, and rules to determine their minimum values are proposed. Such investigation is carried out using, first, the time histories of structural responses to stationary excitations, with a large number of samples, satisfying the hypothesis on the input imposed by DD-SSI. Then, the case of non-stationary seismic excitations with a reduced number of samples is considered. In this paper, partitions of the data matrix different from the one proposed in the SSI literature are investigated, together with the influence of different choices of the weighting matrices. The study is carried out considering two different applications: (1) data obtained from vibration tests on a scaled structure and (2) in-situ tests on a reinforced concrete building. Referring to the former, the identification of a steel frame structure tested on a shaking table is performed using its responses in terms of absolute accelerations to a stationary (white noise) base excitation and to non-stationary seismic excitations of low intensity. Black-box and modal models are identified in both cases and the results are compared with those from an input-output subspace technique. With regards to the latter, the identification of a complex hospital building is conducted using data obtained from ambient vibration tests.
Enhanced operator interface for hand-held landmine detector
NASA Astrophysics Data System (ADS)
Herman, Herman; McMahill, Jeffrey D.; Kantor, George
2001-10-01
As landmines get harder to detect, the complexity of landmine detectors has also been increasing. To increase the probability of detection and decrease the false alarm rate of low metallic landmines, many detectors employ multiple sensing modalities, which include radar and metal detector. Unfortunately, the operator interface for these new detectors stays pretty much the same as for the older detectors. Although the amount of information that the new detectors acquire has increased significantly, the interface has been limited to a simple audio interface. We are currently developing a hybrid audiovisual interface for enhancing the overall performance of the detector. The hybrid audiovisual interface combines the simplicity of the audio output with the rich spatial content of the video display. It is designed to optimally present the output of the detector and also to give the proper feedback to the operator. Instead of presenting all the data to the operator simultaneously, the interface allows the operator to access the information as needed. This capability is critical to avoid information overload, which can significantly reduce the performance of the operator. The audio is used as the primary notification signal, while the video is used for further feedback, discrimination, localization and sensor fusion. The idea is to let the operator gets the feedback that he needs and enable him to look at the data in the most efficient way. We are also looking at a hybrid man-machine detection system which utilizes precise sweeping by the machine and powerful human cognitive ability. In such a hybrid system, the operator is free to concentrate on discriminant task, such as manually fusing the output of the different sensing modalities, instead of worrying about the proper sweep technique. In developing this concept, we have been using the virtual mien lane to validate some of these concepts. We obtained some very encouraging results form our preliminary test. It clearly shows that with the proper feedback, the performance of the operator can be improved significantly in a very short time.
Abe, Yuichi; Goh, Ah-Cheng; Miyoshi, Kei
2016-01-01
[Purpose] The aim of this study was to investigate the availability, usage, and factors affecting usage of electrophysical agents by physical therapists in Nagano Prefecture, Japan. [Subjects and Methods] Questionnaires were sent to all 1,571 physical therapists working in 245 institutions within Nagano Prefecture. A total of 1,110 questionnaires were returned, out of which 1,099 (70%) questionnaires containing valid responses were analyzed. Frequencies and percentages were calculated for 22 modalities with regards to availability, usage, rate of usage, and confidence level in usage. Factors affecting usage and the relationship between rate of usage and confidence level (Spearman’s rho) were also determined. [Results] The top three responses for the various outcome measures were as follows: (1) hot packs (88%), low frequency stimulators (76%), and ultrasound (68%) for availability; (2) hot packs (72%), ultrasound (61%), and cold packs (59%) for usage; (3) hot packs (75%), cold spray (49%), and ultrasound (44%) for confidence in usage; and (4) equipment availability (80%), past experience (79%), and research evidence (78%) for factors affecting usage. There was a significant positive relationship between confidence and usage for all modalities, except for ultraviolet radiation, iontophoresis, and magnetic field. [Conclusion] Usage was strongly correlated with confidence, with the top three used modalities also being the ones with the highest confidence in usage. PMID:27942126
Collins, Jennifer; Pecher, Diane; Zeelenberg, René; Coulson, Seana
2011-01-01
The perceptual modalities associated with property words, such as flicker or click, have previously been demonstrated to affect subsequent property verification judgments (Pecher et al., 2003). Known as the conceptual modality switch effect, this finding supports the claim that brain systems for perception and action help subserve the representation of concepts. The present study addressed the cognitive and neural substrate of this effect by recording event-related potentials (ERPs) as participants performed a property verification task with visual or auditory properties in key trials. We found that for visual property verifications, modality switching was associated with an increased amplitude N400. For auditory verifications, switching led to a larger late positive complex. Observed ERP effects of modality switching suggest property words access perceptual brain systems. Moreover, the timing and pattern of the effects suggest perceptual systems impact the decision-making stage in the verification of auditory properties, and the semantic stage in the verification of visual properties. PMID:21713128
Collins, Jennifer; Pecher, Diane; Zeelenberg, René; Coulson, Seana
2011-01-01
The perceptual modalities associated with property words, such as flicker or click, have previously been demonstrated to affect subsequent property verification judgments (Pecher et al., 2003). Known as the conceptual modality switch effect, this finding supports the claim that brain systems for perception and action help subserve the representation of concepts. The present study addressed the cognitive and neural substrate of this effect by recording event-related potentials (ERPs) as participants performed a property verification task with visual or auditory properties in key trials. We found that for visual property verifications, modality switching was associated with an increased amplitude N400. For auditory verifications, switching led to a larger late positive complex. Observed ERP effects of modality switching suggest property words access perceptual brain systems. Moreover, the timing and pattern of the effects suggest perceptual systems impact the decision-making stage in the verification of auditory properties, and the semantic stage in the verification of visual properties.
Frisoli, Antonio; Solazzi, Massimiliano; Reiner, Miriam; Bergamasco, Massimo
2011-06-30
The aim of this study was to understand the integration of cutaneous and kinesthetic sensory modalities in haptic perception of shape orientation. A specific robotic apparatus was employed to simulate the exploration of virtual surfaces by active touch with two fingers, with kinesthetic only, cutaneous only and combined sensory feedback. The cutaneous feedback was capable of displaying the local surface orientation at the contact point, through a small plate indenting the fingerpad at contact. A psychophysics test was conducted with SDT methodology on 6 subjects to assess the discrimination threshold of angle perception between two parallel surfaces, with three sensory modalities and two shape sizes. Results show that the cutaneous sensor modality is not affected by size of shape, but kinesthetic performance is decreasing with smaller size. Cutaneous and kinesthetic sensory cues are integrated according to a Bayesian model, so that the combined sensory stimulation always performs better than single modalities alone. Copyright © 2010 Elsevier Inc. All rights reserved.
Device design and signal processing for multiple-input multiple-output multimode fiber links
NASA Astrophysics Data System (ADS)
Appaiah, Kumar; Vishwanath, Sriram; Bank, Seth R.
2012-01-01
Multimode fibers (MMFs) are limited in data rate capabilities owing to modal dispersion. However, their large core diameter simplifies alignment and packaging, and makes them attractive for short and medium length links. Recent research has shown that the use of signal processing and techniques such as multiple-input multiple-output (MIMO) can greatly improve the data rate capabilities of multimode fibers. In this paper, we review recent experimental work using MIMO and signal processing for multimode fibers, and the improvements in data rates achievable with these techniques. We then present models to design as well as simulate the performance benefits obtainable with arrays of lasers and detectors in conjunction with MIMO, using channel capacity as the metric to optimize. We also discuss some aspects related to complexity of the algorithms needed for signal processing and discuss techniques for low complexity implementation.
Aeroelastic Modeling of X-56A Stiff-Wing Configuration Flight Test Data
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Boucher, Matthew J.
2017-01-01
Aeroelastic stability and control derivatives for the X-56A Multi-Utility Technology Testbed (MUTT), in the stiff-wing configuration, were estimated from flight test data using the output-error method. Practical aspects of the analysis are discussed. The orthogonal phase-optimized multisine inputs provided excellent data information for aeroelastic modeling. Consistent parameter estimates were determined using output error in both the frequency and time domains. The frequency domain analysis converged faster and was less sensitive to starting values for the model parameters, which was useful for determining the aeroelastic model structure and obtaining starting values for the time domain analysis. Including a modal description of the structure from a finite element model reduced the complexity of the estimation problem and improved the modeling results. Effects of reducing the model order on the short period stability and control derivatives were investigated.
Representation of grammatical categories of words in the brain.
Hillis, A E; Caramazza, A
1995-01-01
We report the performance of a patient who, as a consequence of left frontal and temporoparietal strokes, makes far more errors on nouns than on verbs in spoken output tasks, but makes far more errors on verbs than on nouns in written input tasks. This double dissociation within a single patient with respect to grammatical category provides evidence for the hypothesis that phonological and orthographic representations of nouns and verbs are processed by independent neural mechanisms. Furthermore, the opposite dissociation in the verbal output modality, an advantage for nouns over verbs in spoken tasks, by a different patient using the same stimuli has also been reported (Caramazza & Hillis, 1991). This double dissociation across patients on the same task indicates that results cannot be ascribed to "greater difficulty" with one type of stimulus, and provides further evidence for the view that grammatical category information is an important organizational principle of lexical knowledge in the brain.
Zhang, Xintong; Bi, Anyao; Gao, Quansheng; Zhang, Shuai; Huang, Kunzhu; Liu, Zhiguo; Gao, Tang; Zeng, Wenbin
2016-01-20
The olfactory system of organisms serves as a genetically and anatomically model for studying how sensory input can be translated into behavior output. Some neurologic diseases are considered to be related to olfactory disturbance, especially Alzheimer's disease, Parkinson's disease, multiple sclerosis, and so forth. However, it is still unclear how the olfactory system affects disease generation processes and olfaction delivery processes. Molecular imaging, a modern multidisciplinary technology, can provide valid tools for the early detection and characterization of diseases, evaluation of treatment, and study of biological processes in living subjects, since molecular imaging applies specific molecular probes as a novel approach to produce special data to study biological processes in cellular and subcellular levels. Recently, molecular imaging plays a key role in studying the activation of olfactory system, thus it could help to prevent or delay some diseases. Herein, we present a comprehensive review on the research progress of the imaging probes for visualizing olfactory system, which is classified on different imaging modalities, including PET, MRI, and optical imaging. Additionally, the probes' design, sensing mechanism, and biological application are discussed. Finally, we provide an outlook for future studies in this field.
Measurement of intestinal edema using an impedance analyzer circuit.
Radhakrishnan, Ravi S; Shah, Kunal; Xue, Hasen; Moore-Olufemi, Stacey D; Moore, Frederick A; Weisbrodt, Norman W; Allen, Steven J; Gill, Brijesh; Cox, Charles S
2007-03-01
Acute intestinal edema adversely affects intestinal transit, permeability, and contractility. Current resuscitation modalities, while effective, are associated with development of acute intestinal edema. Knowledge of levels of tissue edema would allow clinicians to monitor intestinal tissue water and may help prevent the detrimental effects of edema. However, there is no simple method to measure intestinal tissue water without biopsy. We sought to develop a tissue impedance analyzer to measure tissue edema, without the need for invasive biopsy. Oscillating voltage input was applied to the analyzer circuit and an oscilloscope measured the voltage output across any load. Rats were randomized to three groups: sham, mild edema (80 mL/kg of NS resuscitation), and severe edema (80 mL/kg of NS resuscitation with intestinal venous hypertension). Intestinal edema was measured by wet-to-dry tissue weight ratio. Bowel impedance was measured and converted to capacitance using a standard curve. Acute intestinal edema causes a significant increase in bowel capacitance. This capacitance can be used to predict tissue water concentration. Using an impedance analyzer circuit, it is possible to measure intestinal edema reliably and quickly. This may prove to be a useful tool in the resuscitation of critically ill patients.
MO-E-217A-01: Contrast-Enhanced Spectral Mammography - Physical Aspects and QA.
Yaffe, M; Hill, M
2012-06-01
To describe the current state of dual energy contrast-enhanced digital mammography, to discuss those aspects of its operation that require evaluation or monitoring and to propose elements of a program for quality assurance of such systems. The principles of dual-energy contrast imaging will be discussed and tools and techniques for assessment of performance will be described. Many of the elements affecting image quality and dose performance in digital mammography (eg noise, system linearity, consistency of x-ray output and detector performance, artifacts) remain important. In addition, the ability to register images can influence the resultant image quality. The maintenance of breast compression thickness during the imaging procedure and calibration of the system to allow quantification of iodine in the breast represent new challenges to quality assurance. CESM provides a means of acquiring new information regarding tumor angiogenesis and may reveal some cancers that will not be detectable on digital mammography. It may also better demonstrate the extent of disease. The medical physicist must understand the dependence of image quality on physical factors. Implementation of a relevant QA program will be required if the promise of this new modality is to be delivered. © 2012 American Association of Physicists in Medicine.
ERIC Educational Resources Information Center
Acosta, Diane; North, Teresa Lynn; Avella, John
2016-01-01
This study considered whether delivery modality, student GPA, or time since high school affected whether 290 students who had completed a developmental math series as a community college were able to successfully complete college-level math. The data used in the study was comprised of a 4-year period historical student data from Odessa College…
ERIC Educational Resources Information Center
Williams, Joshua T.; Darcy, Isabelle; Newman, Sharlene D.
2017-01-01
Understanding how language modality (i.e., signed vs. spoken) affects second language outcomes in hearing adults is important both theoretically and pedagogically, as it can determine the specificity of second language (L2) theory and inform how best to teach a language that uses a new modality. The present study investigated which…
On the dependence of response inhibition processes on sensory modality.
Bodmer, Benjamin; Beste, Christian
2017-04-01
The ability to inhibit responses is a central sensorimotor function but only recently the importance of sensory processes for motor inhibition mechanisms went more into the research focus. In this regard it is elusive, whether there are differences between sensory modalities to trigger response inhibition processes. Due to functional neuroanatomical considerations strong differences may exist, for example, between the visual and the tactile modality. In the current study we examine what neurophysiological mechanisms as well as functional neuroanatomical networks are modulated during response inhibition. Therefore, a Go/NoGo-paradigm employing a novel combination of visual, tactile, and visuotactile stimuli was used. The data show that the tactile modality is more powerful than the visual modality to trigger response inhibition processes. However, the tactile modality loses its efficacy to trigger response inhibition processes when being combined with the visual modality. This may be due to competitive mechanisms leading to a suppression of certain sensory stimuli and the response selection level. Variations in sensory modalities specifically affected conflict monitoring processes during response inhibition by modulating activity in a frontal parietal network including the right inferior frontal gyrus, anterior cingulate cortex and the temporoparietal junction. Attentional selection processes are not modulated. The results suggest that the functional neuroanatomical networks involved in response inhibition critically depends on the nature of the sensory input. Hum Brain Mapp 38:1941-1951, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Olszewska, Justyna M; Reuter-Lorenz, Patricia A; Munier, Emily; Bendler, Sara A
2015-09-01
False working memories readily emerge using a visual item-recognition variant of the converging associates task. Two experiments, manipulating study and test modality, extended prior working memory results by demonstrating a reliable false recognition effect (more false alarms to associatively related lures than to unrelated lures) within seconds of encoding in either the visual or auditory modality. However, false memories were nearly twice as frequent when study lists were seen than when they were heard, regardless of test modality, although study-test modality mismatch was generally disadvantageous (consistent with encoding specificity). A final experiment that varied study-test modality using a hybrid short- and long-term memory test (Flegal, Atkins & Reuter-Lorenz, 2010) replicated the auditory advantage in the short term but revealed a reversal in the long term: The false memory effect was greater in the auditory study-test condition than in the visual study-test condition. Thus, the same encoding conditions gave rise to an opposite modality advantage depending on whether recognition was tested under short-term or long-term memory conditions. Although demonstrating continuity in associative processing across delay, the results indicate that delay condition affects the availability of modality-dependent features of the memory trace and, thus, distinctiveness, leading to dissociable patterns of short- and long-term memory performance. (c) 2015 APA, all rights reserved).
Perceptual Processing Affects Conceptual Processing
ERIC Educational Resources Information Center
van Dantzig, Saskia; Pecher, Diane; Zeelenberg, Rene; Barsalou, Lawrence W.
2008-01-01
According to the Perceptual Symbols Theory of cognition (Barsalou, 1999), modality-specific simulations underlie the representation of concepts. A strong prediction of this view is that perceptual processing affects conceptual processing. In this study, participants performed a perceptual detection task and a conceptual property-verification task…
Input-output analysis and the hospital budgeting process.
Cleverly, W O
1975-01-01
Two hospitals budget systems, a conventional budget and an input-output budget, are compared to determine how they affect management decisions in pricing, output, planning, and cost control. Analysis of data from a 210-bed not-for-profit hospital indicates that adoption of the input-output budget could cause substantial changes in posted hospital rates in individual departments but probably would have no impact on hospital output determination. The input-output approach promises to be a more accurate system for cost control and planning because, unlike the conventional approach, it generates objective signals for investigating variances of expenses from budgeted levels. PMID:1205865
Effect of perceptual load on semantic access by speech in children
Jerger, Susan; Damian, Markus F.; Mills, Candice; Bartlett, James; Tye-Murray, Nancy; Abdi, Hervè
2013-01-01
Purpose To examine whether semantic access by speech requires attention in children. Method Children (N=200) named pictures and ignored distractors on a cross-modal (distractors: auditory-no face) or multi-modal (distractors: auditory-static face and audiovisual-dynamic face) picture word task. The cross-modal had a low load, and the multi-modal had a high load [i.e., respectively naming pictures displayed 1) on a blank screen vs 2) below the talker’s face on his T-shirt]. Semantic content of distractors was manipulated to be related vs unrelated to picture (e.g., picture dog with distractors bear vs cheese). Lavie's (2005) perceptual load model proposes that semantic access is independent of capacity limited attentional resources if irrelevant semantic-content manipulation influences naming times on both tasks despite variations in loads but dependent on attentional resources exhausted by higher load task if irrelevant content influences naming only on cross-modal (low load). Results Irrelevant semantic content affected performance for both tasks in 6- to 9-year-olds, but only on cross-modal in 4–5-year-olds. The addition of visual speech did not influence results on the multi-modal task. Conclusion Younger and older children differ in dependence on attentional resources for semantic access by speech. PMID:22896045
Morgenstern, Hai; Rafaely, Boaz
2018-02-01
Spatial analysis of room acoustics is an ongoing research topic. Microphone arrays have been employed for spatial analyses with an important objective being the estimation of the direction-of-arrival (DOA) of direct sound and early room reflections using room impulse responses (RIRs). An optimal method for DOA estimation is the multiple signal classification algorithm. When RIRs are considered, this method typically fails due to the correlation of room reflections, which leads to rank deficiency of the cross-spectrum matrix. Preprocessing methods for rank restoration, which may involve averaging over frequency, for example, have been proposed exclusively for spherical arrays. However, these methods fail in the case of reflections with equal time delays, which may arise in practice and could be of interest. In this paper, a method is proposed for systems that combine a spherical microphone array and a spherical loudspeaker array, referred to as multiple-input multiple-output systems. This method, referred to as modal smoothing, exploits the additional spatial diversity for rank restoration and succeeds where previous methods fail, as demonstrated in a simulation study. Finally, combining modal smoothing with a preprocessing method is proposed in order to increase the number of DOAs that can be estimated using low-order spherical loudspeaker arrays.
Theory of optimal information transmission in E. coli chemotaxis pathway
NASA Astrophysics Data System (ADS)
Micali, Gabriele; Endres, Robert G.
Bacteria live in complex microenvironments where they need to make critical decisions fast and reliably. These decisions are inherently affected by noise at all levels of the signaling pathway, and cells are often modeled as an input-output device that transmits extracellular stimuli (input) to internal proteins (channel), which determine the final behavior (output). Increasing the amount of transmitted information between input and output allows cells to better infer extracellular stimuli and respond accordingly. However, in contrast to electronic devices, the separation into input, channel, and output is not always clear in biological systems. Output might feed back into the input, and the channel, made by proteins, normally interacts with the input. Furthermore, a biological channel is affected by mutations and can change under evolutionary pressure. Here, we present a novel approach to maximize information transmission: given cell-external and internal noise, we analytically identify both input distributions and input-output relations that optimally transmit information. Using E. coli chemotaxis as an example, we conclude that its pathway is compatible with an optimal information transmission device despite the ultrasensitive rotary motors.
Izadifar, Zahra; Belev, George; Babyn, Paul; Chapman, Dean
2015-10-19
The observation of ultrasound generated cavitation bubbles deep in tissue is very difficult. The development of an imaging method capable of investigating cavitation bubbles in tissue would improve the efficiency and application of ultrasound in the clinic. Among the previous imaging modalities capable of detecting cavitation bubbles in vivo, the acoustic detection technique has the positive aspect of in vivo application. However the size of the initial cavitation bubble and the amplitude of the ultrasound that produced the cavitation bubbles, affect the timing and amplitude of the cavitation bubbles' emissions. The spatial distribution of cavitation bubbles, driven by 0.8835 MHz therapeutic ultrasound system at output power of 14 Watt, was studied in water using a synchrotron X-ray imaging technique, Analyzer Based Imaging (ABI). The cavitation bubble distribution was investigated by repeated application of the ultrasound and imaging the water tank. The spatial frequency of the cavitation bubble pattern was evaluated by Fourier analysis. Acoustic cavitation was imaged at four different locations through the acoustic beam in water at a fixed power level. The pattern of cavitation bubbles in water was detected by synchrotron X-ray ABI. The spatial distribution of cavitation bubbles driven by the therapeutic ultrasound system was observed using ABI X-ray imaging technique. It was observed that the cavitation bubbles appeared in a periodic pattern. The calculated distance between intervals revealed that the distance of frequent cavitation lines (intervals) is one-half of the acoustic wave length consistent with standing waves. This set of experiments demonstrates the utility of synchrotron ABI for visualizing cavitation bubbles formed in water by clinical ultrasound systems working at high frequency and output powers as low as a therapeutic system.
Interferometric fiber-optic temperature sensor with spiral polarization couplers
NASA Astrophysics Data System (ADS)
Cortés, R.; Khomenko, A. V.; Starodumov, A. N.; Arzate, N.; Zenteno, L. A.
1998-09-01
A fiber optic temperature sensor, for which the changes in modal birefringence of a short section of a long birefringent fiber are monitored remotely, is described. It employs a white light interferometer, which is formed by two concatenated spiral polarization mode couplers. A new method for white light interferometer output signal processing is described which provides a high accuracy absolute temperature measurement even in discontinuous operation of the sensor. Experimental results are presented for temperature measurements over a 100°C range with resolution of 3×10 -3 °C.
NASA Technical Reports Server (NTRS)
Timothy, J. G.; Bybee, R. L.
1977-01-01
Up to now, microchannel array plates (MCPs) have been constructed with microchannels having a straight geometry and hence have been prone to ion-feedback instabilities at high operating potentials and high ambient pressures. This paper describes the performances of MCPs with curved (J and C configuration) microchannels to inhibit ion feedback. Plates with curved microchannels have demonstrated performances comparable to those of conventional channel electron multipliers with saturated output pulse-height distributions and modal gain values in excess of 10 to the 6th electrons/pulse.
1991-11-08
saturation limit. The control action is sent via a digital-to-analog converter to a power amplifier to activate the NITINOL fibers embedded inside the...feedback approaches in the design of a modal- eiipl.’ i,, n e .ti )tal filters with feedfor.ard and feedback based active control system. There are...photocells; and a series of narrow bandpass filters with silicon photodetectors. The sensor outputs are fed through an anolog to digital converter into the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bialasiewicz, J.T.
1995-07-01
This work uses the theory developed in NREL/TP--442-7110 to analyze simulated data from an ADAMS (Automated Dynamic Analysis of Mechanical Systems) model of the MICON 65/13 wind turbine. The Observer/Kalman Filter identification approach is expanded to use input-output time histories from ADAMS simulations or structural test data. A step by step outline is offered on how the tools developed in this research, can be used for validation of the ADAMS model.
Intracavity vortex beam generation
NASA Astrophysics Data System (ADS)
Naidoo, Darryl; Aït-Ameur, Kamel; Forbes, Andrew
2011-10-01
In this paper we explore vortex beams and in particular the generation of single LG0l modes and superpositions thereof. Vortex beams carry orbital angular momentum (OAM) and this intrinsic property makes them prevalent in transferring this OAM to matter and to be used in quantum information processing. We explore an extra-cavity and intra-cavity approach in LG0l mode generation respectively. The outputs of a Porro-prism resonator are represented by "petals" and we show that through a full modal decomposition, the "petal" fields are a superposition of two LG0l modes.
Control of large flexible structures - An experiment on the NASA Mini-Mast facility
NASA Technical Reports Server (NTRS)
Hsieh, Chen; Kim, Jae H.; Liu, Ketao; Zhu, Guoming; Skelton, Robert E.
1991-01-01
The output variance constraint controller design procedure is integrated with model reduction by modal cost analysis. A procedure is given for tuning MIMO controller designs to find the maximal rms performance of the actual system. Controller designs based on a finite-element model of the system are compared with controller designs based on an identified model (obtained using the Q-Markov Cover algorithm). The identified model and the finite-element model led to similar closed-loop performance, when tested in the Mini-Mast facility at NASA Langley.
Gurung, R; Prata, D P
2015-01-01
The powerful genome-wide association studies (GWAS) revealed common mutations that increase susceptibility for schizophrenia (SZ) and bipolar disorder (BD), but the vast majority were not known to be functional or associated with these illnesses. To help fill this gap, their impact on human brain structure and function has been examined. We systematically discuss this output to facilitate its timely integration in the psychosis research field; and encourage reflection for future research. Irrespective of imaging modality, studies addressing the effect of SZ/BD GWAS risk genes (ANK3, CACNA1C, MHC, TCF4, NRGN, DGKH, PBRM1, NCAN and ZNF804A) were included. Most GWAS risk variations were reported to affect neuroimaging phenotypes implicated in SZ/BD: white-matter integrity (ANK3 and ZNF804A), volume (CACNA1C and ZNF804A) and density (ZNF804A); grey-matter (CACNA1C, NRGN, TCF4 and ZNF804A) and ventricular (TCF4) volume; cortical folding (NCAN) and thickness (ZNF804A); regional activation during executive tasks (ANK3, CACNA1C, DGKH, NRGN and ZNF804A) and functional connectivity during executive tasks (CACNA1C and ZNF804A), facial affect recognition (CACNA1C and ZNF804A) and theory-of-mind (ZNF804A); but inconsistencies and non-replications also exist. Further efforts such as standardizing reporting and exploring complementary designs, are warranted to test the reproducibility of these early findings.
Wang, A; Wang, G Z; Murphy, K A; Claus, R O
1995-05-01
A concept for optical temperature sensing based on the differential spectral reflectivity/transmittance from a multilayer dielectric edge filter is described and demonstrated. Two wavelengths, λ(1) and λ(2), from the spectrum of a broadband light source are selected so that they are located on the sloped and flat regions of the reflection or transmission spectrum of the filter, respectively. As temperature variations shift the reflection or transmission spectrum of the filter, they change the output power of the light at λ(1), but the output power of the light at λ(2) is insensitive to the shift and therefore to the temperature variation. The temperature information can be extracted from the ratio of the light powers at λ(1) to the light at λ(2). This ratio is immune to changes in the output power of the light source, fiber losses induced by microbending, and hence modal-power distribution fluctuations. The best resolution of 0.2 °C has been obtained over a range of 30-120 °C. Based on such a basic temperature-sensing concept, a wavelength-division-multiplexed, temperature-sensing system is constructed by cascading three sensing-edge filters that have different cutoff wavelengths along a multimode fiber. The signals from the three sensors are resolved by detecting the correspondent outputs at different wavelengths.
How does a modal shift from short car trips to cycling affect road safety?
Schepers, J P; Heinen, E
2013-01-01
Governments aim to promote a shift from car to bicycle, but concerns about road safety seem to represent an important argument against this encouragement. This study examines the road safety impact of a modal shift from short car trips to cycling in Dutch municipalities. The road safety effect is estimated using Accident Prediction Models (APMs) that account for the non-linearity of risk. APMs are developed utilizing Negative Binomial regression. This study is the first to develop APMs using crash and mobility data from municipalities, and utilizing these models to estimate the effects of changing modal splits of current car and bicycle use to modal splits that actually exist in these municipalities. The results suggest that, under conditions such as in Dutch municipalities, transferring short trips made by cars to bicycles does not change the number of fatalities, but increases the number of serious road injuries. The neutral effect on fatalities, despite the high fatality risk for cyclists, can be explained by there being fewer cars on the road to pose a risk to others, the shorter length of bicycle trips compared to the car trips they replace, and the "safety in numbers" phenomenon. The rise in the number of serious road injuries is due wholly to the high number of cycling crashes with no other vehicle involved. The effect of a modal shift is dependent on the age of the population in which the shift is concentrated, and can be influenced by measures affecting cyclists' injury risk. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Hidalgo, Abelardo Castro; Carrasco, Decler Martinez; Alegria, Jorge Alegria; Elevancini, Cecilia Maldonado
2000-01-01
States that since the 1990s, professional technical education has produced profound transformations in the relationship between education and work in Chile. Examines in a study how modalities of bringing students to the world of work have affected students' socio-psychological characteristics in comparison to training received from traditional…
van der Lei, Harry; Tenenbaum, Gershon
2012-12-01
Individual affect-related performance zones (IAPZs) method utilizing Kamata et al. (J Sport Exerc Psychol 24:189-208, 2002) probabilistic model of determining the individual zone of optimal functioning was utilized as idiosyncratic affective patterns during golf performance. To do so, three male golfers of a varsity golf team were observed during three rounds of golf competition. The investigation implemented a multi-modal assessment approach in which the probabilistic relationship between affective states and both, performance process and performance outcome, measures were determined. More specifically, introspective (i.e., verbal reports) and objective (heart rate and respiration rate) measures of arousal were incorporated to examine the relationships between arousal states and both, process components (i.e., routine consistency, timing), and outcome scores related to golf performance. Results revealed distinguishable and idiosyncratic IAPZs associated with physiological and introspective measures for each golfer. The associations between the IAPZs and decision-making or swing/stroke execution were strong and unique for each golfer. Results are elaborated using cognitive and affect-related concepts, and applications for practitioners are provided.
The association between hospital outcomes and diagnostic imaging: early findings.
Lee, David W; Foster, David A
2009-11-01
Resource use variation across the United States prompts the important question of whether "more is better" when it comes to health care services. The aim of this study was to examine correlations between the use of 4 common imaging modalities (CT, MR, ultrasound, and radiography) and in-hospital mortality and costs. Using clinical and utilization data for 1.1 million inpatient admissions at 102 US hospitals during 2007, two hospital-specific, risk-adjusted imaging utilization measures for each modality were constructed that controlled for patients' demographic and clinical characteristics and for hospital characteristics were constructed for each modality. First, logistic regression was used to estimate the odds that each type of imaging service would be provided during an admission. Second, the mean number of services per admission was estimated using output from a two-part ordinary least squares model. Hospital-specific, risk-adjusted inpatient mortality and total hospital costs were also computed, and correlations between the imaging utilization measures and the mortality and cost outcome measures were then assessed using Pearson's correlation coefficients (P < .05). The correlation analyses were weighted by hospital admission volume. Hospitals in which patients were more likely to receive imaging services during admissions had lower mortality, even after controlling for potential confounders. Correlation coefficients were -0.2 for all modalities (P = .02-.05). Weaker correlations existed between mean services per admission and mortality, while costs trended insignificantly higher with greater utilization. This study lays the foundation for further exploration of the relationship between resource use and the clinical and economic outcomes associated with imaging utilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slipchenko, S. O., E-mail: serghpl@mail.ioffe.ru; Podoskin, A. A.; Vinokurov, D. A.
Radiative characteristics of semiconductor stripe-contact lasers operating under quenching conditions of Fabry-Perot-mode lasing are studied. It is found that reversible turning off of Fabry-Perot-mode lasing is caused by switching to closed-mode lasing. Radiative characteristics of the closed mode are controlled by the mode structure with the close-to-zero loss for radiation output, which covers the entire crystal. The main threshold conditions of closed-mode lasing are a decrease in interband absorption in the passive region and an increase in the modal gain of the closed-mode lasing line. It is shown that a decrease in interband absorption in the passive region can bemore » provided by both spontaneous emission from the injection region and lasing-mode photons. An increase in the modal gain of the closed-mode lasing line is provided by shifting the energy minima of the conduction band and maxima of the valence band of the injection region with respect to the energy bands of the passive region.« less
Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang
2017-12-12
Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy.
Pelat, Adrien; Felix, Simon; Pagneux, Vincent
2011-03-01
In modeling the wave propagation within a street canyon, particular attention must be paid to the description of both the multiple reflections of the wave on the building facades and the radiation in the free space above the street. The street canyon being considered as an open waveguide with a discontinuously varying cross-section, a coupled modal-finite element formulation is proposed to solve the three-dimensional wave equation within. The originally open configuration-the street canyon open in the sky above-is artificially turned into a close waveguiding structure by using perfectly matched layers that truncate the infinite sky without introducing numerical reflection. Then the eigenmodes of the resulting waveguide are determined by a finite element method computation in the cross-section. The eigensolutions can finally be used in a multimodal formulation of the wave propagation along the canyon, given its geometry and the end conditions at its extremities: initial field condition at the entrance and radiation condition at the output. © 2011 Acoustical Society of America
Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang
2017-01-01
Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy. PMID:29231868
Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices
Wang, Danqing; Yang, Ankun; Wang, Weijia; ...
2017-07-10
Single band-edge states can trap light and function as high-quality optical feedback for microscale lasers and nanolasers. However, access to more than a single band-edge mode for nanolasing has not been possible because of limited cavity designs. Here, we describe how plasmonic superlattices-finite-arrays of nanoparticles (patches) grouped into microscale arrays-can support multiple band-edge modes capable of multi-modal nanolasing at programmed emission wavelengths and with large mode spacings. Different lasing modes show distinct input-output light behaviour and decay dynamics that can be tailored by nanoparticle size. By modelling the superlattice nanolasers with a four-level gain system and a time-domain approach, wemore » reveal that the accumulation of population inversion at plasmonic hot spots can be spatially modulated by the diffractive coupling order of the patches. Furthermore, we show that symmetry-broken superlattices can sustain switchable nanolasing between a single mode and multiple modes.« less
Functional Fixedness in Creative Thinking Tasks Depends on Stimulus Modality.
Chrysikou, Evangelia G; Motyka, Katharine; Nigro, Cristina; Yang, Song-I; Thompson-Schill, Sharon L
2016-11-01
Pictorial examples during creative thinking tasks can lead participants to fixate on these examples and reproduce their elements even when yielding suboptimal creative products. Semantic memory research may illuminate the cognitive processes underlying this effect. Here, we examined whether pictures and words differentially influence access to semantic knowledge for object concepts depending on whether the task is close- or open-ended. Participants viewed either names or pictures of everyday objects, or a combination of the two, and generated common, secondary, or ad hoc uses for them. Stimulus modality effects were assessed quantitatively through reaction times and qualitatively through a novel coding system, which classifies creative output on a continuum from top-down-driven to bottom-up-driven responses. Both analyses revealed differences across tasks. Importantly, for ad hoc uses, participants exposed to pictures generated more top-down-driven responses than those exposed to object names. These findings have implications for accounts of functional fixedness in creative thinking, as well as theories of semantic memory for object concepts.
Functional Fixedness in Creative Thinking Tasks Depends on Stimulus Modality
Chrysikou, Evangelia G.; Motyka, Katharine; Nigro, Cristina; Yang, Song-I; Thompson-Schill, Sharon L.
2015-01-01
Pictorial examples during creative thinking tasks can lead participants to fixate on these examples and reproduce their elements even when yielding suboptimal creative products. Semantic memory research may illuminate the cognitive processes underlying this effect. Here, we examined whether pictures and words differentially influence access to semantic knowledge for object concepts depending on whether the task is close- or open-ended. Participants viewed either names or pictures of everyday objects, or a combination of the two, and generated common, secondary, or ad hoc uses for them. Stimulus modality effects were assessed quantitatively through reaction times and qualitatively through a novel coding system, which classifies creative output on a continuum from top-down-driven to bottom-up-driven responses. Both analyses revealed differences across tasks. Importantly, for ad hoc uses, participants exposed to pictures generated more top-down-driven responses than those exposed to object names. These findings have implications for accounts of functional fixedness in creative thinking, as well as theories of semantic memory for object concepts. PMID:28344724
Takagi, Sachiko; Hiramatsu, Saori; Tabei, Ken-ichi; Tanaka, Akihiro
2015-01-01
Previous studies have shown that the perception of facial and vocal affective expressions interacts with each other. Facial expressions usually dominate vocal expressions when we perceive the emotions of face–voice stimuli. In most of these studies, participants were instructed to pay attention to the face or voice. Few studies compared the perceived emotions with and without specific instructions regarding the modality to which attention should be directed. Also, these studies used combinations of the face and voice which expresses two opposing emotions, which limits the generalizability of the findings. The purpose of this study is to examine whether the emotion perception is modulated by instructions to pay attention to the face or voice using the six basic emotions. Also we examine the modality dominance between the face and voice for each emotion category. Before the experiment, we recorded faces and voices which expresses the six basic emotions and orthogonally combined these faces and voices. Consequently, the emotional valence of visual and auditory information was either congruent or incongruent. In the experiment, there were unisensory and multisensory sessions. The multisensory session was divided into three blocks according to whether an instruction was given to pay attention to a given modality (face attention, voice attention, and no instruction). Participants judged whether the speaker expressed happiness, sadness, anger, fear, disgust, or surprise. Our results revealed that instructions to pay attention to one modality and congruency of the emotions between modalities modulated the modality dominance, and the modality dominance is differed for each emotion category. In particular, the modality dominance for anger changed according to each instruction. Analyses also revealed that the modality dominance suggested by the congruency effect can be explained in terms of the facilitation effect and the interference effect. PMID:25698945
Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining
2018-06-01
The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Distinct cognitive control mechanisms as revealed by modality-specific conflict adaptation effects.
Yang, Guochun; Nan, Weizhi; Zheng, Ya; Wu, Haiyan; Li, Qi; Liu, Xun
2017-04-01
Cognitive control is essential to resolve conflict in stimulus-response compatibility (SRC) tasks. The SRC effect in the current trial is reduced after an incongruent trial as compared with a congruent trial, a phenomenon being termed conflict adaptation (CA). The CA effect is found to be domain-specific , such that it occurs when adjacent trials contain the same type of conflict, but disappears when the conflicts are of different types. Similar patterns have been observed when tasks involve different modalities, but the modality-specific effect may have been confounded by task switching. In the current study, we investigated whether or not cognitive control could transfer across auditory and visual conflicts when task-switching was controlled. Participants were asked to respond to a visual or auditory (Experiments 1A/B) stimulus, with conflict coming from either the same or a different modality. CA effects showed modality-specific patterns. To account for potential confounding effects caused by differences in task-irrelevant properties, we specifically examined the influence of task-irrelevant properties on CA effects within the visual modality (Experiments 2A/B). Significant CA effects were observed across different conflicts from distinct task-irrelevant properties, ruling out that the lack of cross-modal CA effects in Experiments 1A/B resulted from differences in task-irrelevant information. Task-irrelevant properties were further matched in Experiments 3A/B to examine the pure effect of modality. Results replicated Experiments 1A/B showing robust modality-specific CA effects. Taken together, we provide supporting evidences that modality affects cognitive control in conflict resolution, which should be taken into account in theories of cognitive control. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
D'Imperio, Daniela; Scandola, Michele; Gobbetto, Valeria; Bulgarelli, Cristina; Salgarello, Matteo; Avesani, Renato; Moro, Valentina
2017-10-01
Cross-modal interactions improve the processing of external stimuli, particularly when an isolated sensory modality is impaired. When information from different modalities is integrated, object recognition is facilitated probably as a result of bottom-up and top-down processes. The aim of this study was to investigate the potential effects of cross-modal stimulation in a case of simultanagnosia. We report a detailed analysis of clinical symptoms and an 18 F-fluorodeoxyglucose (FDG) brain positron emission tomography/computed tomography (PET/CT) study of a patient affected by Balint's syndrome, a rare and invasive visual-spatial disorder following bilateral parieto-occipital lesions. An experiment was conducted to investigate the effects of visual and nonvisual cues on performance in tasks involving the recognition of overlapping pictures. Four modalities of sensory cues were used: visual, tactile, olfactory, and auditory. Data from neuropsychological tests showed the presence of ocular apraxia, optic ataxia, and simultanagnosia. The results of the experiment indicate a positive effect of the cues on the recognition of overlapping pictures, not only in the identification of the congruent valid-cued stimulus (target) but also in the identification of the other, noncued stimuli. All the sensory modalities analyzed (except the auditory stimulus) were efficacious in terms of increasing visual recognition. Cross-modal integration improved the patient's ability to recognize overlapping figures. However, while in the visual unimodal modality both bottom-up (priming, familiarity effect, disengagement of attention) and top-down processes (mental representation and short-term memory, the endogenous orientation of attention) are involved, in the cross-modal integration it is semantic representations that mainly activate visual recognition processes. These results are potentially useful for the design of rehabilitation training for attentional and visual-perceptual deficits.
Analysis of flexible aircraft longitudinal dynamics and handling qualities. Volume 2: Data
NASA Technical Reports Server (NTRS)
Waszak, M. R.; Schmidt, D. K.
1985-01-01
Two analysis methods are applied to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop modal analysis technique. This method considers the effect of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Both analyses indicated that dynamic aeroelastic effects caused a degradation in vehicle tracking performance, based on the evaluation of some simulation results. Volume 2 consists of the presentation of the state variable models of the flexible aircraft configurations used in the analysis applications mode shape plots for the structural modes, numerical results from the modal analysis frequency response plots from the pilot in the loop analysis and a listing of the modal analysis computer program.
Interactions Between Modality of Working Memory Load and Perceptual Load in Distractor Processing.
Koshino, Hideya; Olid, Pilar
2015-01-01
The present study investigated interactions between working memory load and perceptual load. The load theory (Lavie, Hirst, de Fockert, & Viding, 2004 ) claims that perceptual load decreases distractor interference, whereas working memory load increases interference. However, recent studies showed that effects of working memory might depend on the relationship between modalities of working memory and task stimuli. Here, we examined whether the relationship between working memory load and perceptual load would remain the same across modalities. The results of Experiment 1 showed that verbal working memory load did not affect a compatibility effect for low perceptual load, whereas it increased the compatibility effect for high perceptual load. In Experiment 2, the compatibility effect remained the same regardless of visual working memory load. These results suggest that the effects of working memory load and perceptual load depend on the relationship between the modalities of working memory and stimuli.
School-aged children can benefit from audiovisual semantic congruency during memory encoding.
Heikkilä, Jenni; Tiippana, Kaisa
2016-05-01
Although we live in a multisensory world, children's memory has been usually studied concentrating on only one sensory modality at a time. In this study, we investigated how audiovisual encoding affects recognition memory. Children (n = 114) from three age groups (8, 10 and 12 years) memorized auditory or visual stimuli presented with a semantically congruent, incongruent or non-semantic stimulus in the other modality during encoding. Subsequent recognition memory performance was better for auditory or visual stimuli initially presented together with a semantically congruent stimulus in the other modality than for stimuli accompanied by a non-semantic stimulus in the other modality. This congruency effect was observed for pictures presented with sounds, for sounds presented with pictures, for spoken words presented with pictures and for written words presented with spoken words. The present results show that semantically congruent multisensory experiences during encoding can improve memory performance in school-aged children.
Grid-connected wind and photovoltaic system
NASA Astrophysics Data System (ADS)
Devabakthuni, Sindhuja
The objective of this thesis is to design a grid connected wind and photovoltaic system. A new model of converter control was designed which maintains the voltage of the bus to grid as constant when combined system of solar and wind is connected to AC bus. The model is designed to track maximum power at each point irrespective of changes in irradiance, temperature and wind speed which affects the power supplied to grid. Solar power from the sun is not constant as it is affected by changes in irradiances and temperature. Even the wind power is affected by wind speed. A MPPT controller was designed for both systems. A boost converter is designed which uses the pulses from MPPT controller to boost the output. Wind system consists of wind turbine block from the MATLAB with a pitch angle controller to maintain optimum pitch angle. The output from wind turbine is connected to a permanent magnet synchronous generator. The unregulated DC output from the photovoltaic system is directly given to boost converter. The AC output from the wind system is given to an uncontrolled rectifier to get a unregulated DC output. The unregulated DC output goes to the boost converter. A voltage source inverter was designed which converts the rectified DC output from the boost converter to AC power. The inverter is designed to maintain constant AC bus voltage irrespective of the disturbances in the power supply. Photovoltaic and wind systems are individually designed for 5KW each in MATLAB-Simulink environment. In this thesis, the models were subjected to changes in irradiance, temperature and wind speed and the results were interpreted. The model was successful in tracking maximum at every instant and the AC bus voltage was maintained constant throughout the simulation.
Koh, Kyung; Kwon, Hyun Joon; Yoon, Bum Chul; Cho, Yongseok; Shin, Joon-Ho; Hahn, Jin-Oh; Miller, Ross H; Kim, Yoon Hyuk; Shim, Jae Kun
2015-09-01
The hand, one of the most versatile but mechanically redundant parts of the human body, must overcome imperfect motor commands and inherent noise in both the sensory and motor systems in order to produce desired motor actions. For example, it is nearly impossible to produce a perfectly consistent note during a single violin stroke or to produce the exact same note over multiple strokes, which we denote online and offline control, respectively. To overcome these challenges, the central nervous system synergistically integrates multiple sensory modalities and coordinates multiple motor effectors. Among these sensory modalities, tactile sensation plays an important role in manual motor tasks by providing hand-object contact information. The purpose of this study was to investigate the role of tactile feedback in individual finger actions and multi-finger interactions during constant force production tasks. We developed analytical techniques for the linear decomposition of the overall variance in the motor system in both online and offline control. We removed tactile feedback from the fingers and demonstrated that tactile sensors played a critical role in the online control of synergistic interactions between fingers. In contrast, the same sensors did not contribute to offline control. We also demonstrated that when tactile feedback was removed from the fingers, the combined motor output of individual fingers did not change while individual finger behaviors did. This finding supports the idea of hierarchical control where individual fingers at the lower level work together to stabilize the performance of combined motor output at the higher level.
Connell, Louise; Lynott, Dermot
2014-04-01
How does the meaning of a word affect how quickly we can recognize it? Accounts of visual word recognition allow semantic information to facilitate performance but have neglected the role of modality-specific perceptual attention in activating meaning. We predicted that modality-specific semantic information would differentially facilitate lexical decision and reading aloud, depending on how perceptual attention is implicitly directed by each task. Large-scale regression analyses showed the perceptual modalities involved in representing a word's referent concept influence how easily that word is recognized. Both lexical decision and reading-aloud tasks direct attention toward vision, and are faster and more accurate for strongly visual words. Reading aloud additionally directs attention toward audition and is faster and more accurate for strongly auditory words. Furthermore, the overall semantic effects are as large for reading aloud as lexical decision and are separable from age-of-acquisition effects. These findings suggest that implicitly directing perceptual attention toward a particular modality facilitates representing modality-specific perceptual information in the meaning of a word, which in turn contributes to the lexical decision or reading-aloud response.
Neonatal Restriction of Tactile Inputs Leads to Long-Lasting Impairments of Cross-Modal Processing
Röder, Brigitte; Hanganu-Opatz, Ileana L.
2015-01-01
Optimal behavior relies on the combination of inputs from multiple senses through complex interactions within neocortical networks. The ontogeny of this multisensory interplay is still unknown. Here, we identify critical factors that control the development of visual-tactile processing by combining in vivo electrophysiology with anatomical/functional assessment of cortico-cortical communication and behavioral investigation of pigmented rats. We demonstrate that the transient reduction of unimodal (tactile) inputs during a short period of neonatal development prior to the first cross-modal experience affects feed-forward subcortico-cortical interactions by attenuating the cross-modal enhancement of evoked responses in the adult primary somatosensory cortex. Moreover, the neonatal manipulation alters cortico-cortical interactions by decreasing the cross-modal synchrony and directionality in line with the sparsification of direct projections between primary somatosensory and visual cortices. At the behavioral level, these functional and structural deficits resulted in lower cross-modal matching abilities. Thus, neonatal unimodal experience during defined developmental stages is necessary for setting up the neuronal networks of multisensory processing. PMID:26600123
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, D; Shao, W; Low, D
Purpose: To evaluate and test the hypothesis that plan quality may be systematically affected by treatment delivery techniques and target-tocritical structure geometric relationship in radiotherapy for brain tumor. Methods: Thirty-four consecutive brain tumor patients treated between 2011–2014 were analyzed. Among this cohort, 10 were planned with 3DCRT, 11 with RadipArc, and 13 with helical IMRT on TomoTherapy. The selected dosimetric endpoints (i.e., PTV V100, maximum brainstem/chiasm/ optic nerve doses) were considered as a vector in a highdimensional space. A Pareto analysis was performed to identify the subset of Pareto-efficient plans.The geometric relationships, specifically the overlapping volume and centroid-of-mass distance betweenmore » each critical structure to the PTV were extracted as potential geometric features. The classification-tree analyses were repeated using these geometric features with and without the treatment modality as an additional categorical predictor. In both scenarios, the dominant features to prognosticate the Pareto membership were identified and the tree structures to provide optimal inference were recorded. The classification performance was further analyzed to determine the role of treatment modality in affecting plan quality. Results: Seven Pareto-efficient plans were identified based on dosimetric endpoints (3 from 3DCRT, 3 from RapicArc, 1 from Tomo), which implies that the evaluated treatment modality may have a minor influence on plan quality. Classification trees with/without the treatment modality as a predictor both achieved accuracy of 88.2%: with 100% sensitivity and 87.1% specificity for the former, and 66.7% sensitivity and 96.0% specificity for the latter. The coincidence of accuracy from both analyses further indicates no-to-weak dependence of plan quality on treatment modality. Both analyses have identified the brainstem to PTV distance as the primary predictive feature for Pareto-efficiency. Conclusion: Pareto evaluation and classification-tree analyses have indicated that plan quality depends strongly on geometry for brain tumor, specifically PTV-tobrain-stem-distance but minimally on treatment modality.« less
Vitikainen, Kirsi; Street, Andrew; Linna, Miika
2009-02-01
Hospital efficiency has been the subject of numerous health economics studies, but there is little evidence on how the chosen output and casemix measures affect the efficiency results. The aim of this study is to examine the robustness of efficiency results due to these factors. Comparison is made between activities and episode output measures, and two different output grouping systems (Classic and FullDRG). Non-parametric data envelopment analysis is used as an analysis technique. The data consist of all public acute care hospitals in Finland in 2005 (n=40). Efficiency estimates were not found to be highly sensitive to the choice between episode and activity descriptions of output, but more so to the choice of DRG grouping system. Estimates are most sensitive to scale assumptions, with evidence of decreasing returns to scale in larger hospitals. Episode measures are generally to be preferred to activity measures because these better capture the patient pathway, while FullDRGs are preferred to Classic DRGs particularly because of the better description of outpatient output in the former grouping system. Attention should be paid to reducing the extent of scale inefficiency in Finland.
2012-02-01
used to finance 11. Changes in the output gap affect unemployment gradually over several quarters. Initially, part of a rise in output shows up as...discussion of the long-run effects of other debt- financed policies for boosting output and employment, see statement of Douglas W. Elmendorf, Director...DECEMBER 2011 CBO 6. See Eric M. Leeper, "Monetary Science, Fiscal Alchemy " (paper presented at the Federal Reserve Bank of Kansas City symposium
System identification through nonstationary data using Time-Frequency Blind Source Separation
NASA Astrophysics Data System (ADS)
Guo, Yanlin; Kareem, Ahsan
2016-06-01
Classical output-only system identification (SI) methods are based on the assumption of stationarity of the system response. However, measured response of buildings and bridges is usually non-stationary due to strong winds (e.g. typhoon, and thunder storm etc.), earthquakes and time-varying vehicle motions. Accordingly, the response data may have time-varying frequency contents and/or overlapping of modal frequencies due to non-stationary colored excitation. This renders traditional methods problematic for modal separation and identification. To address these challenges, a new SI technique based on Time-Frequency Blind Source Separation (TFBSS) is proposed. By selectively utilizing "effective" information in local regions of the time-frequency plane, where only one mode contributes to energy, the proposed technique can successfully identify mode shapes and recover modal responses from the non-stationary response where the traditional SI methods often encounter difficulties. This technique can also handle response with closely spaced modes which is a well-known challenge for the identification of large-scale structures. Based on the separated modal responses, frequency and damping can be easily identified using SI methods based on a single degree of freedom (SDOF) system. In addition to the exclusive advantage of handling non-stationary data and closely spaced modes, the proposed technique also benefits from the absence of the end effects and low sensitivity to noise in modal separation. The efficacy of the proposed technique is demonstrated using several simulation based studies, and compared to the popular Second-Order Blind Identification (SOBI) scheme. It is also noted that even some non-stationary response data can be analyzed by the stationary method SOBI. This paper also delineates non-stationary cases where SOBI and the proposed scheme perform comparably and highlights cases where the proposed approach is more advantageous. Finally, the performance of the proposed method is evaluated using a full-scale non-stationary response of a tall building during an earthquake and found it to perform satisfactorily.
System identification of a tied arch bridge using reference-based wireless sensor networks
NASA Astrophysics Data System (ADS)
Hietbrink, Colby; Whelan, Matthew J.
2012-04-01
Vibration-based methods of structural health monitoring are generally founded on the principle that localized damage to a structure would exhibit changes within the global dynamic response. Upon this basis, accelerometers provide a unique health monitoring strategy in that a distributed network of sensors provides the technical feasibility to isolate the onset of damage without requiring that any sensor be located exactly on or in close proximity to the damage. While in theory this may be sufficient, practical experience has shown significant improvement in the application of damage diagnostic routines when mode shapes characterized by strongly localized behavior of specific elements are captured by the instrumentation array. In traditional applications, this presents a challenge since the cost and complexity of cable-based systems often effectively limits the number of instrumented locations thereby constraining the modal parameter extraction to only global modal responses. The advent of the low-cost RF chip transceiver with wireless networking capabilities has afforded a means by which a substantial number of output locations can be measured through referencebased testing using large-scale wireless sensor networks. In the current study, this approach was applied to the Prairie du Chien Bridge over the Mississippi River to extract operational mode shapes with high spatial reconstruction, including strongly localized modes. The tied arch bridge was instrumented at over 230 locations with single-axis accelerometers conditioned and acquired over a high-rate lossless wireless sensor network with simultaneous sampling capabilities. Acquisition of the dynamic response of the web plates of the arch rib was specifically targeted within the instrumentation array for diagnostic purposes. Reference-based operational modal analysis of the full structure through data-driven stochastic subspace identification is presented alongside finite element analysis results for confirmation of modal parameter plausibility. Particular emphasis is placed on the identification and reconstruction of modal response with large contribution from the arch rib web plates.
Paladini, Rebecca E.; Diana, Lorenzo; Zito, Giuseppe A.; Nyffeler, Thomas; Wyss, Patric; Mosimann, Urs P.; Müri, René M.; Nef, Tobias
2018-01-01
Cross-modal spatial cueing can affect performance in a visual search task. For example, search performance improves if a visual target and an auditory cue originate from the same spatial location, and it deteriorates if they originate from different locations. Moreover, it has recently been postulated that multisensory settings, i.e., experimental settings, in which critical stimuli are concurrently presented in different sensory modalities (e.g., visual and auditory), may trigger asymmetries in visuospatial attention. Thereby, a facilitation has been observed for visual stimuli presented in the right compared to the left visual space. However, it remains unclear whether auditory cueing of attention differentially affects search performance in the left and the right hemifields in audio-visual search tasks. The present study investigated whether spatial asymmetries would occur in a search task with cross-modal spatial cueing. Participants completed a visual search task that contained no auditory cues (i.e., unimodal visual condition), spatially congruent, spatially incongruent, and spatially non-informative auditory cues. To further assess participants’ accuracy in localising the auditory cues, a unimodal auditory spatial localisation task was also administered. The results demonstrated no left/right asymmetries in the unimodal visual search condition. Both an additional incongruent, as well as a spatially non-informative, auditory cue resulted in lateral asymmetries. Thereby, search times were increased for targets presented in the left compared to the right hemifield. No such spatial asymmetry was observed in the congruent condition. However, participants’ performance in the congruent condition was modulated by their tone localisation accuracy. The findings of the present study demonstrate that spatial asymmetries in multisensory processing depend on the validity of the cross-modal cues, and occur under specific attentional conditions, i.e., when visual attention has to be reoriented towards the left hemifield. PMID:29293637
Jennings, David E; Krupa, James J; Rohr, Jason R
2016-07-01
Foraging modalities (e.g. passive, sit-and-wait, active) and traits are plastic in some species, but the extent to which this plasticity affects interspecific competition remains unclear. Using a long-term laboratory mesocosm experiment, we quantified competition strength and the plasticity of foraging traits in a guild of generalist predators of arthropods with a range of foraging modalities. Each mesocosm contained eight passively foraging pink sundews, and we employed an experimental design where treatments were the presence or absence of a sit-and-wait foraging spider and actively foraging toad crossed with five levels of prey abundance. We hypothesized that actively foraging toads would outcompete the other species at low prey abundance, but that spiders and sundews would exhibit plasticity in foraging traits to compensate for strong competition when prey were limited. Results generally supported our hypotheses. Toads had a greater effect on sundews at low prey abundances, and toad presence caused spiders to locate webs higher above the ground. Additionally, the closer large spider webs were to the ground, the greater the trichome densities produced by sundews. Also, spider webs were larger with than without toads and as sundew numbers increased, and these effects were more prominent as resources became limited. Finally, spiders negatively affected toad growth only at low prey abundance. These findings highlight the long-term importance of foraging modality and plasticity of foraging traits in determining the strength of competition within and across taxonomic kingdoms. Future research should assess whether plasticity in foraging traits helps to maintain coexistence within this guild and whether foraging modality can be used as a trait to reliably predict the strength of competitive interactions. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Decision making around dialysis options.
Mooney, Andrew
2009-01-01
We have previously shown that information given to patients approaching end stage renal failure to make an informed decision about dialysis modality is frequently incomplete and difficult to comprehend [1]. We have now studied whether there are differences in decisions made about dialysis modality according to the method employed to deliver this information. In an online study, 784 participants viewed treatment information about hemodialysis (HD) and continuous cycling peritoneal dialysis (CCPD) and completed a questionnaire. A control group saw only basic information, but otherwise treatment information was varied by format (written or videotaped) and who presented the information (male or female; 'patient' or 'doctor'). The information was carefully controlled to ensure comparable content and comprehensibility. In addition to collection of demographic data, measures included: treatment choice, reasons for treatment choice, decisional conflict, need for affect, need for cognition, decision regret, quality of information, previous knowledge of end-stage renal failure and social comparison. There were a number of differences in choices made among subjects who viewed written or video information presented as if by doctors or patients. There was a statistically significant effect that subjects chose the dialysis modality recommended by the patient (whether CCPD or HD). There was no significant effect of the gender of the person presenting information on the modality chosen. However, among participants, females were more satisfied with the information presented, and more likely to choose CCPD (compared to male participants). Subjects' style of information processing (need for cognition/need for affect) had no significant effect on choice of dialysis modality. There was a higher drop-out rate among subjects viewing videotaped information. The use of testimonials might bias patients decision making regarding dialysis options and until these effects are understood, they should be used with caution.
Cross-modal and modality-specific expectancy effects between pain and disgust
Sharvit, Gil; Vuilleumier, Patrik; Delplanque, Sylvain; Corradi-Dell’ Acqua, Corrado
2015-01-01
Pain sensitivity increases when a noxious stimulus is preceded by cues predicting higher intensity. However, it is unclear whether the modulation of nociception by expectancy is sensory-specific (“modality based”) or reflects the aversive-affective consequence of the upcoming event (“unpleasantness”), potentially common with other negative events. Here we compared expectancy effects for pain and disgust by using different, but equally unpleasant, nociceptive (thermal) and olfactory stimulations. Indeed both pain and disgust are aversive, associated with threat to the organism, and processed in partly overlapping brain networks. Participants saw cues predicting the unpleasantness (high/low) and the modality (pain/disgust) of upcoming thermal or olfactory stimulations, and rated the associated unpleasantness after stimuli delivery. Results showed that identical thermal stimuli were perceived as more unpleasant when preceded by cues threatening about high (as opposed to low) pain. A similar expectancy effect was found for olfactory disgust. Critically, cross-modal expectancy effects were observed on inconsistent trials when thermal stimuli were preceded by high-disgust cues or olfactory stimuli preceded by high-pain cues. However, these effects were stronger in consistent than inconsistent conditions. Taken together, our results suggest that expectation of an unpleasant event elicits representations of both its modality-specific properties and its aversive consequences. PMID:26631975
Immature Spinal Locomotor Output in Children with Cerebral Palsy.
Cappellini, Germana; Ivanenko, Yury P; Martino, Giovanni; MacLellan, Michael J; Sacco, Annalisa; Morelli, Daniela; Lacquaniti, Francesco
2016-01-01
Detailed descriptions of gait impairments have been reported in cerebral palsy (CP), but it is still unclear how maturation of the spinal motoneuron output is affected. Spatiotemporal alpha-motoneuron activation during walking can be assessed by mapping the electromyographic activity profiles from several, simultaneously recorded muscles onto the anatomical rostrocaudal location of the motoneuron pools in the spinal cord, and by means of factor analysis of the muscle activity profiles. Here, we analyzed gait kinematics and EMG activity of 11 pairs of bilateral muscles with lumbosacral innervation in 35 children with CP (19 diplegic, 16 hemiplegic, 2-12 years) and 33 typically developing (TD) children (1-12 years). TD children showed a progressive reduction of EMG burst durations and a gradual reorganization of the spatiotemporal motoneuron output with increasing age. By contrast, children with CP showed very limited age-related changes of EMG durations and motoneuron output, as well as of limb intersegmental coordination and foot trajectory control (on both sides for diplegic children and the affected side for hemiplegic children). Factorization of the EMG signals revealed a comparable structure of the motor output in children with CP and TD children, but significantly wider temporal activation patterns in children with CP, resembling the patterns of much younger TD infants. A similar picture emerged when considering the spatiotemporal maps of alpha-motoneuron activation. Overall, the results are consistent with the idea that early injuries to developing motor regions of the brain substantially affect the maturation of the spinal locomotor output and consequently the future locomotor behavior.
Immature Spinal Locomotor Output in Children with Cerebral Palsy
Cappellini, Germana; Ivanenko, Yury P.; Martino, Giovanni; MacLellan, Michael J.; Sacco, Annalisa; Morelli, Daniela; Lacquaniti, Francesco
2016-01-01
Detailed descriptions of gait impairments have been reported in cerebral palsy (CP), but it is still unclear how maturation of the spinal motoneuron output is affected. Spatiotemporal alpha-motoneuron activation during walking can be assessed by mapping the electromyographic activity profiles from several, simultaneously recorded muscles onto the anatomical rostrocaudal location of the motoneuron pools in the spinal cord, and by means of factor analysis of the muscle activity profiles. Here, we analyzed gait kinematics and EMG activity of 11 pairs of bilateral muscles with lumbosacral innervation in 35 children with CP (19 diplegic, 16 hemiplegic, 2–12 years) and 33 typically developing (TD) children (1–12 years). TD children showed a progressive reduction of EMG burst durations and a gradual reorganization of the spatiotemporal motoneuron output with increasing age. By contrast, children with CP showed very limited age-related changes of EMG durations and motoneuron output, as well as of limb intersegmental coordination and foot trajectory control (on both sides for diplegic children and the affected side for hemiplegic children). Factorization of the EMG signals revealed a comparable structure of the motor output in children with CP and TD children, but significantly wider temporal activation patterns in children with CP, resembling the patterns of much younger TD infants. A similar picture emerged when considering the spatiotemporal maps of alpha-motoneuron activation. Overall, the results are consistent with the idea that early injuries to developing motor regions of the brain substantially affect the maturation of the spinal locomotor output and consequently the future locomotor behavior. PMID:27826251
Correlation of analytical and experimental hot structure vibration results
NASA Technical Reports Server (NTRS)
Kehoe, Michael W.; Deaton, Vivian C.
1993-01-01
High surface temperatures and temperature gradients can affect the vibratory characteristics and stability of aircraft structures. Aircraft designers are relying more on finite-element model analysis methods to ensure sufficient vehicle structural dynamic stability throughout the desired flight envelope. Analysis codes that predict these thermal effects must be correlated and verified with experimental data. Experimental modal data for aluminum, titanium, and fiberglass plates heated at uniform, nonuniform, and transient heating conditions are presented. The data show the effect of heat on each plate's modal characteristics, a comparison of predicted and measured plate vibration frequencies, the measured modal damping, and the effect of modeling material property changes and thermal stresses on the accuracy of the analytical results at nonuniform and transient heating conditions.
System level mechanical testing of the Clementine spacecraft
NASA Technical Reports Server (NTRS)
Haughton, James; Hauser, Joseph; Raynor, William; Lynn, Peter
1994-01-01
This paper discusses the system level structural testing that was performed to qualify the Clementine Spacecraft for flight. These tests included spin balance, combined acoustic and axial random vibration, lateral random vibration, quasi-static loads, pyrotechnic shock, modal survey and on-orbit jitter simulation. Some innovative aspects of this effort were: the simultaneously combined acoustic and random vibration test; the mass loaded interface modal survey test; and the techniques used to assess how operating on board mechanisms and thrusters affect sensor vision.
Non-invasive different modalities of treatment for temporomandibular disorders: review of literature
2018-01-01
Temporomandibular disorders (TMDs) are diseases that affect the temporomandibular joint and supporting structures. The goal of treatment for TMDs is elimination or reduction of pain and return to normal temporomandibular joint function. Initial treatment for TMDs is non-invasive and conservative, not surgical. Oral and maxillofacial surgeons should fully understand and actively care about non-invasive treatments for TMDs. The purpose of this study is to review the validity and outcomes of non-invasive and surgical treatment modalities for TMDs. PMID:29732308
USDA-ARS?s Scientific Manuscript database
Legumes containing condensed tannins (CT) have been shown to reduce enteric CH4 in ruminants; however, research is lacking on how increased CT levels affect forage nutritive value and CH4 output. A 4-unit, dual-flow continuous culture fermentor system was used to assess CH4 output of CT legumes in a...
Code of Federal Regulations, 2013 CFR
2013-07-01
... output from bag leak detector. COM or Design and install in accordance with PS-1; collect data in... Detection Guidance c; record voltage output from bag leak detector. COM Design and Install in accordance... Guidance” c; record output voltage from bag leak detector. COM Design and install in accordance with PS-1...
Code of Federal Regulations, 2012 CFR
2012-07-01
... output from bag leak detector. COM or Design and install in accordance with PS-1; collect data in... Detection Guidance c; record voltage output from bag leak detector. COM Design and Install in accordance... Guidance” c; record output voltage from bag leak detector. COM Design and install in accordance with PS-1...
Multicore fibre photonic lanterns for precision radial velocity Science
NASA Astrophysics Data System (ADS)
Gris-Sánchez, Itandehui; Haynes, Dionne M.; Ehrlich, Katjana; Haynes, Roger; Birks, Tim A.
2018-04-01
Incomplete fibre scrambling and fibre modal noise can degrade high-precision spectroscopic applications (typically high spectral resolution and high signal to noise). For example, it can be the dominating error source for exoplanet finding spectrographs, limiting the maximum measurement precision possible with such facilities. This limitation is exacerbated in the next generation of infra-red based systems, as the number of modes supported by the fibre scales inversely with the wavelength squared and more modes typically equates to better scrambling. Substantial effort has been made by major research groups in this area to improve the fibre link performance by employing non-circular fibres, double scramblers, fibre shakers, and fibre stretchers. We present an original design of a multicore fibre (MCF) terminated with multimode photonic lantern ports. It is designed to act as a relay fibre with the coupling efficiency of a multimode fibre (MMF), modal stability similar to a single-mode fibre and low loss in a wide range of wavelengths (380 nm to 860 nm). It provides phase and amplitude scrambling to achieve a stable near field and far-field output illumination pattern despite input coupling variations, and low modal noise for increased stability for high signal-to-noise applications such as precision radial velocity (PRV) science. Preliminary results are presented for a 511-core MCF and compared with current state of the art octagonal fibre.
Impairment of manual but not saccadic response inhibition following acute alcohol intoxication.
Campbell, Anne Eileen; Chambers, Christopher D; Allen, Christopher P G; Hedge, Craig; Sumner, Petroc
2017-12-01
Alcohol impairs response inhibition; however, it remains contested whether such impairments affect a general inhibition system, or whether affected inhibition systems are embedded in, and specific to, each response modality. Further, alcohol-induced impairments have not been disambiguated between proactive and reactive inhibition mechanisms, and nor have the contributions of action-updating impairments to behavioural 'inhibition' deficits been investigated. Forty Participants (25 female) completed both a manual and a saccadic stop-signal reaction time (SSRT) task before and after a 0.8g/kg dose of alcohol and, on a separate day, before and after a placebo. Blocks in which participants were required to ignore the signal to stop or make an additional 'dual' response were included to obtain measures of proactive inhibition as well as updating of attention and action. Alcohol increased manual but not saccadic SSRT. Proactive inhibition was weakly reduced by alcohol, but increases in the reaction times used to baseline this contrast prevent clear conclusions regarding response caution. Finally, alcohol also increased secondary dual response times of the dual task uniformly as a function of the delay between tasks, indicating an effect of alcohol on action-updating or execution. The modality-specific effects of alcohol favour the theory that response inhibition systems are embedded within response modalities, rather than there existing a general inhibition system. Concerning alcohol, saccadic control appears relatively more immune to disruption than manual control, even though alcohol affects saccadic latency and velocity. Within the manual domain, alcohol affects multiple types of action updating, not just inhibition. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Identification of nonlinear normal modes of engineering structures under broadband forcing
NASA Astrophysics Data System (ADS)
Noël, Jean-Philippe; Renson, L.; Grappasonni, C.; Kerschen, G.
2016-06-01
The objective of the present paper is to develop a two-step methodology integrating system identification and numerical continuation for the experimental extraction of nonlinear normal modes (NNMs) under broadband forcing. The first step processes acquired input and output data to derive an experimental state-space model of the structure. The second step converts this state-space model into a model in modal space from which NNMs are computed using shooting and pseudo-arclength continuation. The method is demonstrated using noisy synthetic data simulated on a cantilever beam with a hardening-softening nonlinearity at its free end.
Pragmatic-mode mediation of sentence comprehension among aphasic bilinguals and hispanophones.
Schnitzer, M L
1989-01-01
A test of sentence comprehension administered in four input-output modality combinations to a group of aphasic bilinguals and monolingual hispanophones provides evidence that aphasics tend to use pragmatic-mode (in the sense of Givón, 1979, On understanding-grammar, New York, Academic Press) strategies in approaching this task. When five factors were identified and dichotomized with respect to the pragmatic-mode-syntactic-mode dimension, the patients performed significantly better on items classified as pragmatic than on those classified as syntactic, in both languages. The results support a vertical/hierarchical view of aphasic language dissolution.
Multimodal indices to Japanese and French prosodically expressed social affects.
Rilliard, Albert; Shochi, Takaaki; Martin, Jean-Claude; Erickson, Donna; Aubergé, Véronique
2009-01-01
Whereas several studies have explored the expression of emotions, little is known on how the visual and audio channels are combined during production of what we call the more controlled social affects, for example, "attitudinal" expressions. This article presents a perception study of the audovisual expression of 12 Japanese and 6 French attitudes in order to understand the contribution of audio and visual modalities for affective communication. The relative importance of each modality in the perceptual decoding of the expressions of four speakers is analyzed as a first step towards a deeper comprehension of their influence on the expression of social affects. Then, the audovisual productions of two speakers (one for each language) are acoustically (F0, duration and intensity) and visually (in terms of Action Units) analyzed, in order to match the relation between objective parameters and listeners' perception of these social affects. The most pertinent objective features, either acoustic or visual, are then discussed, in a bilingual perspective: for example, the relative influence of fundamental frequency for attitudinal expression in both languages is discussed, and the importance of a certain aspect of the voice quality dimension in Japanese is underlined.
Castagna, Filomena; Montemagni, Cristiana; Maria Milani, Anna; Rocca, Giuseppe; Rocca, Paola; Casacchia, Massimo; Bogetto, Filippo
2013-02-28
This study aimed to evaluate the ability to decode emotion in the auditory and audiovisual modality in a group of patients with schizophrenia, and to explore the role of cognition and psychopathology in affecting these emotion recognition abilities. Ninety-four outpatients in a stable phase and 51 healthy subjects were recruited. Patients were assessed through a psychiatric evaluation and a wide neuropsychological battery. All subjects completed the comprehensive affect testing system (CATS), a group of computerized tests designed to evaluate emotion perception abilities. With respect to the controls, patients were not impaired in the CATS tasks involving discrimination of nonemotional prosody, naming of emotional stimuli expressed by voice and judging the emotional content of a sentence, whereas they showed a specific impairment in decoding emotion in a conflicting auditory condition and in the multichannel modality. Prosody impairment was affected by executive functions, attention and negative symptoms, while deficit in multisensory emotion recognition was affected by executive functions and negative symptoms. These emotion recognition deficits, rather than being associated purely with emotion perception disturbances in schizophrenia, are affected by core symptoms of the illness. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Multimodality stereotactic brain tissue identification: the NASA smart probe project
NASA Technical Reports Server (NTRS)
Andrews, R.; Mah, R.; Aghevli, A.; Freitas, K.; Galvagni, A.; Guerrero, M.; Papsin, R.; Reed, C.; Stassinopoulos, D.
1999-01-01
Real-time tissue identification can benefit procedures such as stereotactic brain biopsy, functional neurosurgery and brain tumor excision. Optical scattering spectroscopy has been shown to be effective at discriminating cancer from noncancerous conditions in the colon, bladder and breast. The NASA Smart Probe extends the concept of 'optical biopsy' by using neural network techniques to combine the output from 3 microsensors contained within a cannula 2. 7 mm in diameter (i.e. the diameter of a stereotactic brain biopsy needle). Experimental data from 5 rats show the clear differentiation between tissues such as brain, nerve, fat, artery and muscle that can be achieved with optical scattering spectroscopy alone. These data and previous findings with other modalities such as (1) analysis of the image from a fiberoptic neuroendoscope and (2) the output from a microstrain gauge suggest the Smart Probe multiple microsensor technique shows promise for real-time tissue identification in neurosurgical procedures. Copyright 2000 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Pioldi, Fabio; Rizzi, Egidio
2016-08-01
This paper proposes a new output-only element-level system identification and input estimation technique, towards the simultaneous identification of modal parameters, input excitation time history and structural features at the element-level by adopting earthquake-induced structural response signals. The method, named Full Dynamic Compound Inverse Method (FDCIM), releases strong assumptions of earlier element-level techniques, by working with a two-stage iterative algorithm. Jointly, a Statistical Average technique, a modification process and a parameter projection strategy are adopted at each stage to achieve stronger convergence for the identified estimates. The proposed method works in a deterministic way and is completely developed in State-Space form. Further, it does not require continuous- to discrete-time transformations and does not depend on initialization conditions. Synthetic earthquake-induced response signals from different shear-type buildings are generated to validate the implemented procedure, also with noise-corrupted cases. The achieved results provide a necessary condition to demonstrate the effectiveness of the proposed identification method.
Knepper, Richard; Börner, Katy
2016-01-01
This paper presents the results of a study that compares resource usage with publication output using data about the consumption of CPU cycles from the Extreme Science and Engineering Discovery Environment (XSEDE) and resulting scientific publications for 2,691 institutions/teams. Specifically, the datasets comprise a total of 5,374,032,696 central processing unit (CPU) hours run in XSEDE during July 1, 2011 to August 18, 2015 and 2,882 publications that cite the XSEDE resource. Three types of studies were conducted: a geospatial analysis of XSEDE providers and consumers, co-authorship network analysis of XSEDE publications, and bi-modal network analysis of how XSEDE resources are used by different research fields. Resulting visualizations show that a diverse set of consumers make use of XSEDE resources, that users of XSEDE publish together frequently, and that the users of XSEDE with the highest resource usage tend to be "traditional" high-performance computing (HPC) community members from astronomy, atmospheric science, physics, chemistry, and biology.
AuBuchon, Angela M.; Pisoni, David B.; Kronenberger, William G.
2015-01-01
OBJECTIVES Determine if early-implanted, long-term cochlear implant (CI) users display delays in verbal short-term and working memory capacity when processes related to audibility and speech production are eliminated. DESIGN Twenty-three long-term CI users and 23 normal-hearing controls each completed forward and backward digit span tasks under testing conditions which differed in presentation modality (auditory or visual) and response output (spoken recall or manual pointing). RESULTS Normal-hearing controls reproduced more lists of digits than the CI users, even when the test items were presented visually and the responses were made manually via touchscreen response. CONCLUSIONS Short-term and working memory delays observed in CI users are not due to greater demands from peripheral sensory processes such as audibility or from overt speech-motor planning and response output organization. Instead, CI users are less efficient at encoding and maintaining phonological representations in verbal short-term memory utilizing phonological and linguistic strategies during memory tasks. PMID:26496666
Nonlinear aeroservoelastic analysis of a controlled multiple-actuated-wing model with free-play
NASA Astrophysics Data System (ADS)
Huang, Rui; Hu, Haiyan; Zhao, Yonghui
2013-10-01
In this paper, the effects of structural nonlinearity due to free-play in both leading-edge and trailing-edge outboard control surfaces on the linear flutter control system are analyzed for an aeroelastic model of three-dimensional multiple-actuated-wing. The free-play nonlinearities in the control surfaces are modeled theoretically by using the fictitious mass approach. The nonlinear aeroelastic equations of the presented model can be divided into nine sub-linear modal-based aeroelastic equations according to the different combinations of deflections of the leading-edge and trailing-edge outboard control surfaces. The nonlinear aeroelastic responses can be computed based on these sub-linear aeroelastic systems. To demonstrate the effects of nonlinearity on the linear flutter control system, a single-input and single-output controller and a multi-input and multi-output controller are designed based on the unconstrained optimization techniques. The numerical results indicate that the free-play nonlinearity can lead to either limit cycle oscillations or divergent motions when the linear control system is implemented.
AuBuchon, Angela M; Pisoni, David B; Kronenberger, William G
2015-01-01
To determine whether early-implanted, long-term cochlear implant (CI) users display delays in verbal short-term and working memory capacity when processes related to audibility and speech production are eliminated. Twenty-three long-term CI users and 23 normal-hearing controls each completed forward and backward digit span tasks under testing conditions that differed in presentation modality (auditory or visual) and response output (spoken recall or manual pointing). Normal-hearing controls reproduced more lists of digits than the CI users, even when the test items were presented visually and the responses were made manually via touchscreen response. Short-term and working memory delays observed in CI users are not due to greater demands from peripheral sensory processes such as audibility or from overt speech-motor planning and response output organization. Instead, CI users are less efficient at encoding and maintaining phonological representations in verbal short-term memory using phonological and linguistic strategies during memory tasks.
Estimation of hysteretic damping of structures by stochastic subspace identification
NASA Astrophysics Data System (ADS)
Bajrić, Anela; Høgsberg, Jan
2018-05-01
Output-only system identification techniques can estimate modal parameters of structures represented by linear time-invariant systems. However, the extension of the techniques to structures exhibiting non-linear behavior has not received much attention. This paper presents an output-only system identification method suitable for random response of dynamic systems with hysteretic damping. The method applies the concept of Stochastic Subspace Identification (SSI) to estimate the model parameters of a dynamic system with hysteretic damping. The restoring force is represented by the Bouc-Wen model, for which an equivalent linear relaxation model is derived. Hysteretic properties can be encountered in engineering structures exposed to severe cyclic environmental loads, as well as in vibration mitigation devices, such as Magneto-Rheological (MR) dampers. The identification technique incorporates the equivalent linear damper model in the estimation procedure. Synthetic data, representing the random vibrations of systems with hysteresis, validate the estimated system parameters by the presented identification method at low and high-levels of excitation amplitudes.
Optimal Frequency-Domain System Realization with Weighting
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Maghami, Peiman G.
1999-01-01
Several approaches are presented to identify an experimental system model directly from frequency response data. The formulation uses a matrix-fraction description as the model structure. Frequency weighting such as exponential weighting is introduced to solve a weighted least-squares problem to obtain the coefficient matrices for the matrix-fraction description. A multi-variable state-space model can then be formed using the coefficient matrices of the matrix-fraction description. Three different approaches are introduced to fine-tune the model using nonlinear programming methods to minimize the desired cost function. The first method uses an eigenvalue assignment technique to reassign a subset of system poles to improve the identified model. The second method deals with the model in the real Schur or modal form, reassigns a subset of system poles, and adjusts the columns (rows) of the input (output) influence matrix using a nonlinear optimizer. The third method also optimizes a subset of poles, but the input and output influence matrices are refined at every optimization step through least-squares procedures.
The neural basis of visual dominance in the context of audio-visual object processing.
Schmid, Carmen; Büchel, Christian; Rose, Michael
2011-03-01
Visual dominance refers to the observation that in bimodal environments vision often has an advantage over other senses in human. Therefore, a better memory performance for visual compared to, e.g., auditory material is assumed. However, the reason for this preferential processing and the relation to the memory formation is largely unknown. In this fMRI experiment, we manipulated cross-modal competition and attention, two factors that both modulate bimodal stimulus processing and can affect memory formation. Pictures and sounds of objects were presented simultaneously in two levels of recognisability, thus manipulating the amount of cross-modal competition. Attention was manipulated via task instruction and directed either to the visual or the auditory modality. The factorial design allowed a direct comparison of the effects between both modalities. The resulting memory performance showed that visual dominance was limited to a distinct task setting. Visual was superior to auditory object memory only when allocating attention towards the competing modality. During encoding, cross-modal competition and attention towards the opponent domain reduced fMRI signals in both neural systems, but cross-modal competition was more pronounced in the auditory system and only in auditory cortex this competition was further modulated by attention. Furthermore, neural activity reduction in auditory cortex during encoding was closely related to the behavioural auditory memory impairment. These results indicate that visual dominance emerges from a less pronounced vulnerability of the visual system against competition from the auditory domain. Copyright © 2010 Elsevier Inc. All rights reserved.
A modal H∞-norm-based performance requirement for damage-tolerant active controller design
NASA Astrophysics Data System (ADS)
Genari, Helói F. G.; Mechbal, Nazih; Coffignal, Gérard; Nóbrega, Eurípedes G. O.
2017-04-01
Damage-tolerant active control (DTAC) is a recent research area that encompasses control design methodologies resulting from the application of fault-tolerant control methods to vibration control of structures subject to damage. The possibility of damage occurrence is not usually considered in the active vibration control design requirements. Damage changes the structure dynamics, which may produce unexpected modal behavior of the closed-loop system, usually not anticipated by the controller design approaches. A modal H∞ norm and a respective robust controller design framework were recently introduced, and this method is here extended to face a new DTAC strategy implementation. Considering that damage affects each vibration mode differently, this paper adopts the modal H∞ norm to include damage as a design requirement. The basic idea is to create an appropriate energy distribution over the frequency range of interest and respective vibration modes, guaranteeing robustness, damage tolerance, and adequate overall performance, taking into account that it is common to have previous knowledge of the structure regions where damage may occur during its operational life. For this purpose, a structural health monitoring technique is applied to evaluate modal modifications caused by damage. This information is used to create modal weighing matrices, conducting to the modal H∞ controller design. Finite element models are adopted for a case study structure, including different damage severities, in order to validate the proposed control strategy. Results show the effectiveness of the proposed methodology with respect to damage tolerance.
van der Plasse, Geoffrey; La Fors, Sabrina S B M; Meerkerk, Dorie T J; Joosten, Ruud N J M A; Uylings, Harry B M; Feenstra, Matthijs G P
2007-12-01
Across species, serotonin (5-HT) depletion in the prefrontal cortex (PFC) has been shown to cause impaired performance on tests of cognitive flexibility and the processing of affective information (e.g. information with an 'emotional' content). While recent work has explored the specific role of the orbital PFC herein, the role of the medial PFC remains unclear. The aim of our current experiments was to study the role of medial PFC 5-HT in both the processing of affective information and reversal learning across stimulus modalities. To this end, we selectively destroyed 5-HT terminals in the medial PFC of male Wistar rats by means of local infusion of the toxin 5,7-dihydroxytryptamine. Both control and lesioned animals were tested in two reversal learning paradigms with either spatial or odour cues and an affective switch from non-preferred to preferred food rewards. Our results indicate that a pellet switch during reversal learning impaired performance in control animals but not in lesioned animals, independent of the stimulus modality. These results indicate that lesioned animals are not guided in their behaviour by the affective value of the reward like intact animals and thus that medial prefrontal 5-HT is needed for affective processing in goal-directed behaviour.
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam
2004-01-01
The goal of this investigation is to further develop nonlinear modal numerical simulation methods for prediction of geometrically nonlinear response due to combined thermal-acoustic loadings. As with any such method, the accuracy of the solution is dictated by the selection of the modal basis, through which the nonlinear modal stiffness is determined. In this study, a suite of available bases are considered including (i) bending modes only; (ii) coupled bending and companion modes; (iii) uncoupled bending and companion modes; and (iv) bending and membrane modes. Comparison of these solutions with numerical simulation in physical degrees-of-freedom indicates that inclusion of any membrane mode variants (ii - iv) in the basis affects the bending displacement and stress response predictions. The most significant effect is on the membrane displacement, where it is shown that only the type (iv) basis accurately predicts its behavior. Results are presented for beam and plate structures in the thermally pre-buckled regime.
NASA Technical Reports Server (NTRS)
Chomos, G. J.; Curren, A. N.
1976-01-01
The flight model output stage tube for the Communications Technology Satellite is described. The output stage tube is a 12-GHz, 200-W, coupled cavity traveling wave tube. The tube has a multistage depressed collector for efficiency enhancement. Collector cooling is accomplished by direct radiation to space. Expected rf performance and factors affecting on orbit performance and life are discussed.
Blakney, Anna K; Yilmaz, Gokhan; McKay, Paul F; Becer, C Remzi; Shattock, Robin J
2018-05-03
Nucleic acid delivery systems are commonly translated between different modalities, such as DNA and RNA of varying length and structure, despite physical differences in these molecules that yield disparate delivery efficiency with the same system. Here, we synthesized a library of poly(2-ethyl-2-oxazoline)/poly(ethylene imine) copolymers with varying molar mass and charge densities in order to probe how pDNA, mRNA, and RepRNA polyplex characteristics affect transfection efficiency. The library was utilized in a full factorial design of experiment (DoE) screening, with outputs of luciferase expression, particle size, surface charge, and particle concentration. The optimal copolymer molar mass and charge density was found as 83 kDa/100%, 72 kDa/100%, and 45 kDa/80% for pDNA, RepRNA, and mRNA, respectively. While 10 of the synthesized copolymers enhanced the transfection efficiency of pDNA and mRNA, only 2 copolymers enhanced RepRNA transfection efficiency, indicating a narrow and more stringent design space for RepRNA. These findings suggest that there is not a "one size fits all" polymer for different nucleic acid species.
Factors that influence the radiofrequency power output of GSM mobile phones.
Erdreich, Linda S; Van Kerkhove, Maria D; Scrafford, Carolyn G; Barraj, Leila; McNeely, Mark; Shum, Mona; Sheppard, Asher R; Kelsh, Michael
2007-08-01
Epidemiological studies of mobile phone use and risk of brain cancer have relied on self-reported use, years as a subscriber, and billing records as exposure surrogates without addressing the level of radiofrequency (RF) power output. The objective of this study was to measure environmental, behavioral and engineering factors affecting the RF power output of GSM mobile phones during operation. We estimated the RF-field exposure of volunteer subjects who made mobile phone calls using software-modified phones (SMPs) that recorded output power settings. Subjects recruited from three geographic areas in the U.S. were instructed to log information (place, time, etc.) for each call made and received during a 5-day period. The largest factor affecting energy output was study area, followed by user movement and location (inside or outside), use of a hands-free device, and urbanicity, although the two latter factors accounted for trivial parts of overall variance. Although some highly statistically significant differences were identified, the effects on average energy output rate were usually less than 50% and were generally comparable to the standard deviation. These results provide information applicable to improving the precision of exposure metrics for epidemiological studies of GSM mobile phones and may have broader application for other mobile phone systems and geographic locations.
Sun, Shanxia; Delgado, Michael S; Sesmero, Juan P
2016-07-15
Input- and output-based economic policies designed to reduce water pollution from fertilizer runoff by adjusting management practices are theoretically justified and well-understood. Yet, in practice, adjustment in fertilizer application or land allocation may be sluggish. We provide practical guidance for policymakers regarding the relative magnitude and speed of adjustment of input- and output-based policies. Through a dynamic dual model of corn production that takes fertilizer as one of several production inputs, we measure the short- and long-term effects of policies that affect the relative prices of inputs and outputs through the short- and long-term price elasticities of fertilizer application, and also the total time required for different policies to affect fertilizer application through the adjustment rates of capital and land. These estimates allow us to compare input- and output-based policies based on their relative cost-effectiveness. Using data from Indiana and Illinois, we find that input-based policies are more cost-effective than their output-based counterparts in achieving a target reduction in fertilizer application. We show that input- and output-based policies yield adjustment in fertilizer application at the same speed, and that most of the adjustment takes place in the short-term. Copyright © 2016 Elsevier Ltd. All rights reserved.
Presentation planning using an integrated knowledge base
NASA Technical Reports Server (NTRS)
Arens, Yigal; Miller, Lawrence; Sondheimer, Norman
1988-01-01
A description is given of user interface research aimed at bringing together multiple input and output modes in a way that handles mixed mode input (commands, menus, forms, natural language), interacts with a diverse collection of underlying software utilities in a uniform way, and presents the results through a combination of output modes including natural language text, maps, charts and graphs. The system, Integrated Interfaces, derives much of its ability to interact uniformly with the user and the underlying services and to build its presentations, from the information present in a central knowledge base. This knowledge base integrates models of the application domain (Navy ships in the Pacific region, in the current demonstration version); the structure of visual displays and their graphical features; the underlying services (data bases and expert systems); and interface functions. The emphasis is on a presentation planner that uses the knowledge base to produce multi-modal output. There has been a flurry of recent work in user interface management systems. (Several recent examples are listed in the references). Existing work is characterized by an attempt to relieve the software designer of the burden of handcrafting an interface for each application. The work has generally focused on intelligently handling input. This paper deals with the other end of the pipeline - presentations.
A neuropsychoanalytical approach to the hard problem of consciousness.
Solms, Mark
2014-06-01
A neuropsychoanalytical approach to the hard problem of consciousness revolves around the distinction between the subject of consciousness and objects of consciousness. In contrast to the mainstream of cognitive science, neuropsychoanalysis prioritizes the subject. The subject of consciousness is the indispensable page upon which consciousness of objects is inscribed. This has implications for our conception of the mental. The subjective being of consciousness is not registered in the classical exteroceptive modalities; it is not merely a cognitive representation, not only a memory trace. Rather, the exteroceptive modalities are registered in the subjective being. Cognitive representations are mental solids embedded within subjectivity, the tangible and visible (etc) properties of which are projected onto reality. It is important to recognize that mental solids (e.g., the body-as-object) are no more real than the subjective being they are inscribed in (the body-as-subject). Moreover, pure subjectivity is not without content or quality. This aspect of consciousness is conventionally described quantitatively as the level of consciousness, or wakefulness. But it feels like something to be awake. The primary modality of this aspect of consciousness is affect. Affect supplies the subjectivity that underpins all consciousness. Some implications of this approach are discussed here, in broad brush strokes.
Older users, multimodal reminders and assisted living technology.
Warnock, David; McGee-Lennon, Marilyn; Brewster, Stephen
2012-09-01
The primary users of assisted living technology are older people who are likely to have one or more sensory impairments. Multimodal technology allows users to interact via non-impaired senses and provides alternative ways to interact if primary interaction methods fail. An empirical user study was carried out with older participants which evaluated the performance, disruptiveness and subjective workload of visual, audio, tactile and olfactory notifications then compared the results with earlier findings in younger participants. It was found that disruption and subjective workload were not affected by modality, although some modalities were more effective at delivering information accurately. It is concluded that although further studies need to be carried out in a real-world settings, the findings support the argument for multiple modalities in assisted living technology.
NASA Astrophysics Data System (ADS)
Wang, Ming; Birken, Ralf; Shahini Shamsabadi, Salar
2015-03-01
There are more than 4 million miles of roads and 600,000 bridges in the United States alone. On-going investments are required to maintain the physical and operational quality of these assets to ensure public's safety and prosperity of the economy. Planning efficient maintenance and repair (M&R) operations must be armed with a meticulous pavement inspection method that is non-disruptive, is affordable and requires minimum manual effort. The Versatile Onboard Traffic Embedded Roaming Sensors (VOTERS) project developed a technology able to cost- effectively monitor the condition of roadway systems to plan for the right repairs, in the right place, at the right time. VOTERS technology consists of an affordable, lightweight package of multi-modal sensor systems including acoustic, optical, electromagnetic, and GPS sensors. Vehicles outfitted with this technology would be capable of collecting information on a variety of pavement-related characteristics at both surface and subsurface levels as they are driven. By correlating the sensors' outputs with the positioning data collected in tight time synchronization, a GIS-based control center attaches a spatial component to all the sensors' measurements and delivers multiple ratings of the pavement every meter. These spatially indexed ratings are then leveraged by VOTERS decision making modules to plan the optimum M&R operations and predict the future budget needs. In 2014, VOTERS inspection results were validated by comparing them to the outputs of recent professionally done condition surveys of a local engineering firm for 300 miles of Massachusetts roads. Success of the VOTERS project portrays rapid, intelligent, and comprehensive evaluation of tomorrow's transportation infrastructure to increase public's safety, vitalize the economy, and deter catastrophic failures.
Equivalent circuit modeling of a piezo-patch energy harvester on a thin plate with AC-DC conversion
NASA Astrophysics Data System (ADS)
Bayik, B.; Aghakhani, A.; Basdogan, I.; Erturk, A.
2016-05-01
As an alternative to beam-like structures, piezoelectric patch-based energy harvesters attached to thin plates can be readily integrated to plate-like structures in automotive, marine, and aerospace applications, in order to directly exploit structural vibration modes of the host system without mass loading and volumetric occupancy of cantilever attachments. In this paper, a multi-mode equivalent circuit model of a piezo-patch energy harvester integrated to a thin plate is developed and coupled with a standard AC-DC conversion circuit. Equivalent circuit parameters are obtained in two different ways: (1) from the modal analysis solution of a distributed-parameter analytical model and (2) from the finite-element numerical model of the harvester by accounting for two-way coupling. After the analytical modeling effort, multi-mode equivalent circuit representation of the harvester is obtained via electronic circuit simulation software SPICE. Using the SPICE software, electromechanical response of the piezoelectric energy harvester connected to linear and nonlinear circuit elements are computed. Simulation results are validated for the standard AC-AC and AC-DC configurations. For the AC input-AC output problem, voltage frequency response functions are calculated for various resistive loads, and they show excellent agreement with modal analysis-based analytical closed-form solution and with the finite-element model. For the standard ideal AC input-DC output case, a full-wave rectifier and a smoothing capacitor are added to the harvester circuit for conversion of the AC voltage to a stable DC voltage, which is also validated against an existing solution by treating the single-mode plate dynamics as a single-degree-of-freedom system.
Hyperpolarized 129Xe MRI: A Viable Functional Lung Imaging Modality?
Patz, Samuel; Hersman, F. William; Muradian, Iga; Hrovat, Mirko I.; Ruset, Iulian C.; Ketel, Stephen; Jacobson, Francine; Topulos, George P.; Hatabu, Hiroto; Butler, James P.
2008-01-01
The majority of researchers investigating hyperpolarized gas MRI as a candidate functional lung imaging modality have used 3He as their imaging agent of choice rather than 129Xe. This preference has been predominantly due to, 3He providing stronger signals due to higher levels of polarization and higher gyromagnetic ratio, as well as its being easily available to more researchers due to availability of polarizers (USA) or ease of gas transport (Europe). Most researchers agree, however, that hyperpolarized 129Xe will ultimately emerge as the imaging agent of choice due to its unlimited supply in nature and its falling cost. Our recent polarizer technology delivers vast improvements in hyperpolarized 129Xe output. Using this polarizer, we have demonstrated the unique property of xenon to measure alveolar surface area noninvasively. In this article, we describe our human protocols and their safety, and our results for the measurement of the partial pressure of pulmonary oxygen (pO2) by observation of 129Xe signal decay. We note that the measurement of pO2 by observation of 129Xe signal decay is more complex than that for 3He because of an additional signal loss mechanism due to interphase diffusion of 129Xe from alveolar gas spaces to septal tissue. This results in measurements of an equivalent pO2 that accounts for both traditional T1 decay from pO2 and that from interphase diffusion. We also provide an update on new technological advancements that form the foundation for an improved compact design polarizer as well as improvements that provide another order-of-magnitude scale-up in xenon polarizer output. PMID:17890035
Van Biesen, Wim; Williams, John D.; Covic, Adrian C.; Fan, Stanley; Claes, Kathleen; Lichodziejewska-Niemierko, Monika; Verger, Christian; Steiger, Jurg; Schoder, Volker; Wabel, Peter; Gauly, Adelheid; Himmele, Rainer
2011-01-01
Background Euvolemia is an important adequacy parameter in peritoneal dialysis (PD) patients. However, accurate tools to evaluate volume status in clinical practice and data on volume status in PD patients as compared to healthy population, and the associated factors, have not been available so far. Methods We used a bio-impedance spectroscopy device, the Body Composition Monitor (BCM) to assess volume status in a cross-sectional cohort of prevalent PD patients in different European countries. The results were compared to an age and gender matched healthy population. Results Only 40% out of 639 patients from 28 centres in 6 countries were normovolemic. Severe fluid overload was present in 25.2%. There was a wide scatter in the relation between blood pressure and volume status. In a multivariate analysis in the subgroup of patients from countries with unrestricted availability of all PD modalities and fluid types, older age, male gender, lower serum albumin, lower BMI, diabetes, higher systolic blood pressure, and use of at least one exchange per day with the highest hypertonic glucose were associated with higher relative tissue hydration. Neither urinary output nor ultrafiltration, PD fluid type or PD modality were retained in the model (total R2 of the model = 0.57). Conclusions The EuroBCM study demonstrates some interesting issues regarding volume status in PD. As in HD patients, hypervolemia is a frequent condition in PD patients and blood pressure can be a misleading clinical tool to evaluate volume status. To monitor fluid balance, not only fluid output but also dietary input should be considered. Close monitoring of volume status, a correct dialysis prescription adapted to the needs of the patient and dietary measures seem to be warranted to avoid hypervolemia. PMID:21390320
Shared and distinct factors driving attention and temporal processing across modalities
Berry, Anne S.; Li, Xu; Lin, Ziyong; Lustig, Cindy
2013-01-01
In addition to the classic finding that “sounds are judged longer than lights,” the timing of auditory stimuli is often more precise and accurate than is the timing of visual stimuli. In cognitive models of temporal processing, these modality differences are explained by positing that auditory stimuli more automatically capture and hold attention, more efficiently closing an attentional switch that allows the accumulation of pulses marking the passage of time (Block & Zakay, 1997; Meck, 1991; Penney, 2003). However, attention is a multifaceted construct, and there has been little attempt to determine which aspects of attention may be related to modality effects. We used visual and auditory versions of the Continuous Temporal Expectancy Task (CTET; O'Connell et al., 2009) a timing task previously linked to behavioral and electrophysiological measures of mind-wandering and attention lapses, and tested participants with or without the presence of a video distractor. Performance in the auditory condition was generally superior to that in the visual condition, replicating standard results in the timing literature. The auditory modality was also less affected by declines in sustained attention indexed by declines in performance over time. In contrast, distraction had an equivalent impact on performance in the two modalities. Analysis of individual differences in performance revealed further differences between the two modalities: Poor performance in the auditory condition was primarily related to boredom whereas poor performance in the visual condition was primarily related to distractibility. These results suggest that: 1) challenges to different aspects of attention reveal both modality-specific and nonspecific effects on temporal processing, and 2) different factors drive individual differences when testing across modalities. PMID:23978664
Kim, Hyung Jong; Park, Jung Tak; Han, Seung Hyeok; Yoo, Tae-Hyun; Park, Hyeong-Cheon; Kang, Shin-Wook; Kim, Kyoung Hoon; Ryu, Dong-Ryeol; Kim, Hyunwook
2017-01-01
Background/Aims Since comorbidities are major determinants of modality choice, and also interact with dialysis modality on mortality outcomes, we examined the pattern of modality choice according to comorbidities and then evaluated how such choices affected mortality in incident dialysis patients. Methods We analyzed 32,280 incident dialysis patients in Korea. Patterns in initial dialysis choice were assessed by multivariate logistic regression analyses. Multivariate Poisson regression analyses were performed to evaluate the effects of interactions between comorbidities and dialysis modality on mortality and to quantify these interactions using the synergy factor. Results Prior histories of myocardial infarction (p = 0.031), diabetes (p = 0.001), and congestive heart failure (p = 0.003) were independent factors favoring the initiation with peritoneal dialysis (PD), but were associated with increased mortality with PD. In contrast, a history of cerebrovascular disease and 1-year increase in age favored initiation with hemodialysis (HD) and were related to a survival benefit with HD (p < 0.001, both). While favoring initiation with HD, having Medical Aid (p = 0.001) and male gender (p = 0.047) were related to increased mortality with HD. Furthermore, although the severity of comorbidities did not inf luence dialysis modality choice, mortality in incident PD patients was significantly higher compared to that in HD patients as the severity of comorbidities increased (p for trend < 0.001). Conclusions Some comorbidities exerted independent effects on initial choice of dialysis modality, but this choice did not always lead to the best results. Further analyses of the pattern of choosing dialysis modality according to baseline comorbid conditions and related consequent mortality outcomes are needed. PMID:28651309
A degree of controllability definition - Fundamental concepts and application to modal systems
NASA Technical Reports Server (NTRS)
Viswanathan, C. N.; Longman, R. W.; Likins, P. W.
1984-01-01
Starting from basic physical considerations, this paper develops a concept of the degree of controllability of a control system, and then develops numerical methods to generate approximate values of the degree of controllability for any linear time-invariant system. In many problems, such as the control of future, very large, flexible spacecraft and certain chemical process control problems, the question of how to choose the number and locations of the control system actuators is an important one. The results obtained here offer the control system designer a tool which allows him to rank the effectiveness of alternative actuator distributions, and hence to choose the actuator locations on a rational basis. The degree of controllability is shown to take a particularly simple form when the dynamic equations of a satellite are in second-order modal form. The degree of controllability concept has still other fundamental uses - it allows one to study the system structural relations between the various inputs and outputs of a linear system, which has applications to decoupling and model reduction.
An intelligent multi-media human-computer dialogue system
NASA Technical Reports Server (NTRS)
Neal, J. G.; Bettinger, K. E.; Byoun, J. S.; Dobes, Z.; Thielman, C. Y.
1988-01-01
Sophisticated computer systems are being developed to assist in the human decision-making process for very complex tasks performed under stressful conditions. The human-computer interface is a critical factor in these systems. The human-computer interface should be simple and natural to use, require a minimal learning period, assist the user in accomplishing his task(s) with a minimum of distraction, present output in a form that best conveys information to the user, and reduce cognitive load for the user. In pursuit of this ideal, the Intelligent Multi-Media Interfaces project is devoted to the development of interface technology that integrates speech, natural language text, graphics, and pointing gestures for human-computer dialogues. The objective of the project is to develop interface technology that uses the media/modalities intelligently in a flexible, context-sensitive, and highly integrated manner modelled after the manner in which humans converse in simultaneous coordinated multiple modalities. As part of the project, a knowledge-based interface system, called CUBRICON (CUBRC Intelligent CONversationalist) is being developed as a research prototype. The application domain being used to drive the research is that of military tactical air control.
Delivery of ultrashort spatially focused pulses through a multimode fiber
NASA Astrophysics Data System (ADS)
Morales-Delgado, Edgar E.; Papadopoulos, Ioannis N.; Farahi, Salma; Psaltis, Demetri; Moser, Christophe
2015-08-01
Multimode optical fibers potentially allow the transmission of larger amounts of information than their single mode counterparts because of their high number of supported modes. However, propagation of a light pulse through a multimode fiber suffers from spatial distortions due to the superposition of the various exited modes and from time broadening due to modal dispersion. We present a method based on digital phase conjugation to selectively excite in a multimode fiber specific optical fiber modes that follow similar optical paths as they travel through the fiber. The excited modes interfere constructively at the fiber output generating an ultrashort spatially focused pulse. The excitation of a limited number of modes following similar optical paths limits modal dispersion, allowing the transmission of the ultrashort pulse. We have experimentally demonstrated the delivery of a focused spot of pulse width equal to 500 fs through a 30 cm, 200 micrometer core step index multimode fiber. The results of this study show that two-photon imaging capability can be added to ultra-thin lensless endoscopy using commercial multimode fibers.
NASA Astrophysics Data System (ADS)
Morales Delgado, Edgar E.; Papadopoulos, Ioannis N.; Farahi, Salma; Psaltis, Demetri; Moser, Christophe
2015-03-01
Multimode optical fibers potentially allow the transmission of larger amounts of information than their single mode counterparts because of their high number of supported modes. However, propagation of a light pulse through a multimode fiber suffers from spatial distortions due to the superposition of the various exited modes and from time broadening due to modal dispersion. We present a method based on digital phase conjugation to selectively excite in a multimode fiber specific optical fiber modes that follow similar optical paths as they travel through the fiber. The excited modes interfere constructively at the fiber output generating an ultrashort spatially focused pulse. The excitation of a limited number of modes following similar optical paths limits modal dispersion, allowing the transmission of the ultrashort pulse. We have experimentally demonstrated the delivery of a focused spot of pulse width equal to 500 fs through a 30 cm, 200 micrometer core step-index multimode fiber. The results of this study show that two-photon imaging capability can be added to ultra-thin lensless endoscopy using commercial multimode fibers.
Dynamic modeling and characteristics analysis of a modal-independent linear ultrasonic motor.
Li, Xiang; Yao, Zhiyuan; Zhou, Shengli; Lv, Qibao; Liu, Zhen
2016-12-01
In this paper, an integrated model is developed to analyze the fundamental characteristics of a modal-independent linear ultrasonic motor with double piezoelectric vibrators. The energy method is used to model the dynamics of the two piezoelectric vibrators. The interface forces are coupled into the dynamic equations of the two vibrators and the moving platform, forming a whole machine model of the motor. The behavior of the force transmission of the motor is analyzed via the resulting model to understand the drive mechanism. In particular, the relative contact length is proposed to describe the intermittent contact characteristic between the stator and the mover, and its role in evaluating motor performance is discussed. The relations between the output speed and various inputs to the motor and the start-stop transients of the motor are analyzed by numerical simulations, which are validated by experiments. Furthermore, the dead-zone behavior is predicted and clarified analytically using the proposed model, which is also observed in experiments. These results are useful for designing servo control scheme for the motor. Copyright © 2016 Elsevier B.V. All rights reserved.
Huang, Nai-Si; Liu, Meng-Ying; Chen, Jia-Jian; Yang, Ben-Long; Xue, Jing-Yan; Quan, Chen-Lian; Mo, Miao; Liu, Guang-Yu; Shen, Zhen-Zhou; Shao, Zhi-Min; Wu, Jiong
2016-11-01
The aim of the study was to review the surgical trends in breast cancer treatment in China over the past 15 years and to explore the possible factors related to the choice of surgical modality.The medical records of 18,502 patients with unilateral early stage breast cancer who underwent surgery from January 1999 to December 2013 at our institute were retrospectively reviewed. The utilization of different surgical modalities and the associated clinicopathological factors were analyzed. Furthermore, the prognostic role of surgical modality was also evaluated.The median patient age was 50.0 years. According to the pTNM staging system, 12.5% of the patients were classified as stage 0; 30.2% as stage I; 40.0% as stage II; and 17.3% as stage III. In total, 9.3% of the patients could not be staged. Overall, 67.1% of the breast cancer cases were estrogen receptor (ER) positive. The pattern of breast cancer surgery has changed tremendously over the past 15 years (P < 0.001). The pattern of mastectomy has shifted from radical mastectomy to modified radical mastectomy and simple mastectomy + sentinel lymph node biopsy. A total of 81.7% of the patients underwent mastectomy without immediate reconstruction, 15.2% underwent breast-conserving surgery (BCS), and 3.7% received immediate breast reconstruction after mastectomy. Age, TNM staging, and pathological characteristics greatly affected the choice of surgical modality. The 5-year recurrence-free survival (RFS) rates for the mastectomy, BCS, and reconstruction groups were 87.6%, 93.2%, and 91.7%, respectively (P < 0.001); the RFS rate was likely affected by distant recurrence instead of loco-regional recurrence. We also identified improved RFS over time, stratified by surgical modality and tumor stage. Multivariate Cox-regression analysis revealed that time of treatment, tumor stage, tumor grade, LVI status, and ER status were independent prognostic factors for RFS in our cohort, whereas surgical modality was not.Mastectomy remains the most prevalent surgical modality used to manage early stage breast cancer in China, although the utilization of BCS has increased in the past decade. However, surgical management was not a prognostic factor for RFS. The selection of appropriate patients depended on the assessment of multiple clinicopathological factors, which is essential for making surgical decisions.
Influence of body condition on reproductive output in the guinea pig.
Michel, Catherine Louise; Bonnet, Xavier
2012-01-01
Reproduction is expensive. Substantial body reserves (i.e. high body condition) are usually required for females to undertake offspring production. In many vertebrates, maternal body condition positively influences reproductive output, and emaciated individuals skip reproduction. However, the impact of extremely high body condition, more specifically obesity, on animal reproductive performance remains poorly understood and research has generated contradictory results. For instance, obesity negatively affects fertility in women, but does not influence reproductive capacity or reproductive output in laboratory rodents. We examined the influence of high body condition on reproductive status and reproductive output in the guinea pig. In captivity, when fed ad libitum, guinea pigs store large amounts of fat tissues and exhibit a tendency for obesity. Our results show that obesity negatively affected reproduction in this species: both the proportion of fertile females and litter size were lower in the fattest females. Therefore, guinea pigs may represent suitable organisms to better understand the negative effect of obesity on reproduction. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.
Thompson, Hannah E; Jefferies, Elizabeth
2013-08-01
Research suggests that semantic memory deficits can occur in at least three ways. Patients can (1) show amodal degradation of concepts within the semantic store itself, such as in semantic dementia (SD), (2) have difficulty in controlling activation within the semantic system and accessing appropriate knowledge in line with current goals or context, as in semantic aphasia (SA) and (3) experience a semantic deficit in only one modality following degraded input from sensory cortex. Patients with SA show deficits of semantic control and access across word and picture tasks, consistent with the view that their problems arise from impaired modality-general control processes. However, there are a few reports in the literature of patients with semantic access problems restricted to auditory-verbal materials, who show decreasing ability to retrieve concepts from words when they are presented repeatedly with closely related distractors. These patients challenge the notion that semantic control processes are modality-general and suggest instead a separation of 'access' to auditory-verbal and non-verbal semantic systems. We had the rare opportunity to study such a case in detail. Our aims were to examine the effect of manipulations of control demands in auditory-verbal semantic, non-verbal semantic and non-semantic tasks, allowing us to assess whether such cases always show semantic control/access impairments that follow a modality-specific pattern, or whether there are alternative explanations. Our findings revealed: (1) deficits on executive tasks, unrelated to semantic demands, which were more evident in the auditory modality than the visual modality; (2) deficits in executively-demanding semantic tasks which were accentuated in the auditory-verbal domain compared with the visual modality, but still present on non-verbal tasks, and (3) a coupling between comprehension and executive control requirements, in that mild impairment on single word comprehension was greatly increased on more demanding, associative judgements across modalities. This pattern of results suggests that mild executive-semantic impairment, paired with disrupted connectivity from auditory input, may give rise to semantic 'access' deficits affecting only the auditory modality. Copyright © 2013 Elsevier Ltd. All rights reserved.
High-Output Heart Failure Caused by Thyrotoxicosis and Beriberi.
McCulloch, Brenda
2015-12-01
High-output heart failure is not seen as commonly as low-output heart failure and some of the typical guideline recommendations may not benefit patients with high-output failure. High-output failure is caused by several diseases, including thyrotoxicosis and beriberi, highlighted in this article. Thyrotoxicosis, caused by excessive thyroid hormone production, has profound hemodynamic effects. Wet beriberi, affecting predominately the cardiovascular system, is caused by severe thiamine deficiency, most commonly seen in patients with chronic alcoholism or poor nutrition from other causes. Prompt recognition of these infrequently seen syndromes is essential. This article outlines the medical treatment and nursing care needed to return these patients to a normal state. Copyright © 2015 Elsevier Inc. All rights reserved.
Output control using feedforward and cascade controllers
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
An open-loop solution to the output control problem in SISO (single-input, single-output) systems by means of feedforward and cascade controllers is investigated. A simple characterization of feedforward controllers, which achieve steady-state disturbance rejection, is given in a transfer-function setting. Cascade controllers which cause steady-state command tracking are characterized. Disturbance decoupling and command matching controllers are identified. Conditions for existence of feedforward and cascade controllers are given. For unstable systems, it is shown that a stabilizing feedback controller can be used without affecting the feedforward and cascade controllers used for output control; hence, the three controllers can be designed independently. Output control by a combination of feedforward and feedback is discussed.
Postdoctoral researchers in the UK: a snapshot at factors affecting their research output.
Felisberti, Fatima M; Sear, Rebecca
2014-01-01
Postdoctoral training is a typical step in the course of an academic career, but very little is known about postdoctoral researchers (PDRs) working in the UK. This study used an online survey to explore, for the first time, relevant environmental factors which may be linked to the research output of PDRs in terms of the number of peer-reviewed articles per year of PDR employment. The findings showed reliable links between the research output and research institutions, time spent as PDR, and parental education, whereas no clear links were observed between PDRs' output and research area, nationality, gender, number of siblings, or work environment. PDRs based in universities tended to publish, on average, more than the ones based in research centres. PDRs with children tended to stay longer in postdoctoral employment than PDRs without children. Moreover, research output tended to be higher in PDRs with fathers educated at secondary or higher level. The work environment did not affect output directly, but about 1/5 of PDRs were not satisfied with their job or institutional support and about 2/3 of them perceived their job prospects as "difficult". The results from this exploratory study raise important questions, which need to be addressed in large-scale studies in order to understand (and monitor) how PDRs' family and work environment interact with their research output-an essential step given the crucial role of PDRs in research and development in the country.
Ma, Cheng; Wang, Anbo
2010-09-01
We report the modal analysis of optical fiber single-mode-multimode-single-mode intrinsic Fabry-Perot interferometer sensors. The multimode nature of the Fabry-Perot cavity gives rise to an additional phase term in the spectrogram due to intermodal dispersion-induced wavefront distortion, which could significantly affect the cavity length demodulation accuracy. By using an exact model to analyze the modal behavior, this phase term is explained by employing a rotating vector approach. Comparison of the theoretical analysis with experimental results is presented.
Active damping of modal vibrations by force apportioning
NASA Technical Reports Server (NTRS)
Hallauer, W. L., Jr.
1980-01-01
Force apportioning, a method of active structural damping based on that used in modal vibration testing of isolating modes by multiple shaker excitation, was analyzed and numerically simulated. A distribution of as few forces as possible on the structure is chosen so as to maximally affect selected vibration modes while minimally exciting all other modes. The accuracy of numerical simulations of active damping, active damping of higher-frequency modes, and studies of imperfection sensitivity are discussed. The computer programs developed are described and possible refinements of the research are examined.
[Sulfide ooze mud and sodium chloride baths in treating osteoarthrosis patients].
Novikova, N V
1989-01-01
Humoral immunity initially affected in patients with osteoarthrosis returns to normal under the influence of a multiple-modality treatment involving application of sulphide moor in combination with sodium chloride baths.
Glinert, Lewis H; Schommer, Jon C
2005-06-01
Considerable attention has been afforded to analyzing the content of and assessing consumers' reaction to print direct-to-consumer drug ads, but not so for televised ads. To determine whether advertisements with different risk severity and risk presentation would significantly affect viewers' (1) recall of information contained in the advertisement, (2) evaluation of the advertisement, and (3) perceptions of the advertised product's risks. Data were collected from a sample of 135 first-year pharmacy students at a Midwestern college of pharmacy. After viewing 1 of the 6 advertisements designed for this study, participants were asked to complete a self-administered survey. Chi-square and analysis of variance were used to analyze the data. A 2x3 between subjects design was used to test the effects of 2 levels of risk severity (high- vs low-risk severity) and 3 levels of risk presentation (original ad containing integrated risk message, deintegrated risk message/dual modality using male voice-over, deintegrated risk message/dual modality using female voice-over). Results of analysis of variance procedures revealed that deintegrating risk information by placing it at the end of the advertisement and the use of captions in addition to oral messages (dual modality) (1) improved the recall of general and specific side effect information, (2) led to a perception that the advertisement had greater informational content, (3) resulted in lower Advertisement Distraction, and (4) lessened cognitive and affective aspects of information overload for the advertisement containing the high-risk severity medication. However, this pattern of findings was not found for the low-risk severity medication. Alternative methods for presenting risk information in direct-to-consumer ads affected some aspects of information recall and advertisement evaluation, but were not shown to affect risk perceptions regarding the advertised products.
A systems view of mother-infant face-to-face communication.
Beebe, Beatrice; Messinger, Daniel; Bahrick, Lorraine E; Margolis, Amy; Buck, Karen A; Chen, Henian
2016-04-01
Principles of a dynamic, dyadic systems view of mother-infant face-to-face communication, which considers self- and interactive processes in relation to one another, were tested. The process of interaction across time in a large low-risk community sample at infant age 4 months was examined. Split-screen videotape was coded on a 1-s time base for communication modalities of attention, affect, orientation, touch, and composite facial-visual engagement. Time-series approaches generated self- and interactive contingency estimates in each modality. Evidence supporting the following principles was obtained: (a) Significant moment-to-moment predictability within each partner (self-contingency) and between the partners (interactive contingency) characterizes mother-infant communication. (b) Interactive contingency is organized by a bidirectional, but asymmetrical, process: Maternal contingent coordination with infant is higher than infant contingent coordination with mother. (c) Self-contingency organizes communication to a far greater extent than interactive contingency. (d) Self- and interactive contingency processes are not separate; each affects the other in communication modalities of facial affect, facial-visual engagement, and orientation. Each person's self-organization exists in a dynamic, homoeostatic (negative feedback) balance with the degree to which the person coordinates with the partner. For example, those individuals who are less facially stable are likely to coordinate more strongly with the partner's facial affect and vice versa. Our findings support the concept that the dyad is a fundamental unit of analysis in the investigation of early interaction. Moreover, an individual's self-contingency is influenced by the way the individual coordinates with the partner. Our results imply that it is not appropriate to conceptualize interactive processes without simultaneously accounting for dynamically interrelated self-organizing processes. (c) 2016 APA, all rights reserved).
A Systems View of Mother-Infant Face-to-Face Communication
Beebe, Beatrice; Messinger, Daniel; Bahrick, Lorraine E.; Margolis, Amy; Buck, Karen A.; Chen, Henian
2016-01-01
Principles of a dynamic, dyadic systems view of mother-infant face-to-face communication, which considers self- and interactive processes in relation to one another, were tested. We examined the process of interaction across time in a large, low-risk community sample, at infant age 4 months. Split-screen videotape was coded on a 1-s time base for communication modalities of attention, affect, orientation, touch and composite facial-visual engagement. Time-series approaches generated self- and interactive contingency estimates in each modality. Evidence supporting the following principles was obtained: (1) Significant moment-to-moment predictability within each partner (self-contingency) and between the partners (interactive contingency) characterizes mother-infant communication. (2) Interactive contingency is organized by a bi-directional, but asymmetrical, process: maternal contingent coordination with infant is higher than infant contingent coordination with mother. (3) Self-contingency organizes communication to a far greater extent than interactive contingency. (4) Self-and interactive contingency processes are not separate; each affects the other, in communication modalities of facial affect, facial-visual engagement, and orientation. Each person’s self-organization exists in a dynamic, homoeostatic (negative feedback) balance with the degree to which the person coordinates with the partner. For example, those individuals who are less facially stable are likely to coordinate more strongly with the partner’s facial affect; and vice-versa. Our findings support the concept that the dyad is a fundamental unit of analysis in the investigation of early interaction. Moreover, an individual’s self-contingency is influenced by the way the individual coordinates with the partner. Our results imply that it is not appropriate to conceptualize interactive processes without simultaneously accounting for dynamically inter-related self-organizing processes. PMID:26882118
Miyahara, Morio; Sakamoto, Akihiro; Kouzuma, Atsushi; Watanabe, Kazuya
2016-12-01
Laboratory microbial fuel cells were supplied with artificial wastewater and used to examine how supplementation with poly iron sulfate, an inorganic polymer flocculant widely used in wastewater-treatment plants, affects electricity generation and anode microbiomes. It is shown that poly iron sulfate substantially increases electric outputs from microbial fuel cells. Microbiological analyses show that iron and sulfate separately affect anode microbiomes, and the increase in power output is associated with the increases in bacteria affiliated with the families Geobacteraceae and/or Desulfuromonadaceae. We suggest that poly iron sulfate is an effective additive for increasing the electric output from microbial fuel cells. Other utilities of poly iron sulfate in microbial fuel cells are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Current and Under Development Treatment Modalities of Psoriasis: A Review.
Albaghdadi, Abdullah
2017-01-01
Psoriasis is a chronic and complex autoimmune inflammatory skin disease that affects over 125 million people worldwide. It can exhibit at any age, in spite of the fact that children are less normally influenced than adults. It is characterized by distinct erythematous plaques shielded with conspicuous silvery scales that shows up in different areas of the skin. Knowledge of pathophysiology, especially the pathogenesis of psoriasis, has significantly progressed in the recent decade. Advancement in molecular knowledge leads to better understanding of the disease, thus influencing the development of efficient treatment modalities. However, even with the availability of various options of treatment most of the efficient treatment modalities are costly. Expenses of health care bring about major financial weight to the patients as well as to health care systems. Thus, it was important to review the available current treatment options and those which are under development, in terms of efficacy, safety and cost to assist in selecting the most appropriate treatment for psoriasis patients. Literatures were searched by using key words psoriasis, topical treatment, systemic treatment, biologics and phototherapies, on Embase, Medline, Jstor, Cochrane and Merck Index databases. Life-style choices such as smoking, alcohol consumption, obesity and stress are recognised as risk factors and triggers associated with psoriasis. Psoriasis poses psycho-social and economic burden on affected patients that sometimes leads to depression, reduced social interaction and suicidal tendencies in patients. Depending on the type, severity and extent of the disease, comorbidities, patient preference, efficacy and safety profile, numerous treatment modalities and therapeutic agents are available such as topical, systemic, biologic and phototherapeutic treatments. However, it was found that among all the current available treatments for psoriasis, biologic agents and phototherapeutic modalities are the most commonly employed treatment modalities for moderate to severe psoriasis. Evaluation of present-day available treatment alternatives will surely help physician to select a suitable module for each patient while keeping in mind the financial status of the patient. Future research should aim to develop therapies which are efficient, safe and cost-effective. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Fengler, Ineke; Delfau, Pia-Céline; Röder, Brigitte
2018-04-01
It is yet unclear whether congenitally deaf cochlear implant (CD CI) users' visual and multisensory emotion perception is influenced by their history in sign language acquisition. We hypothesized that early-signing CD CI users, relative to late-signing CD CI users and hearing, non-signing controls, show better facial expression recognition and rely more on the facial cues of audio-visual emotional stimuli. Two groups of young adult CD CI users-early signers (ES CI users; n = 11) and late signers (LS CI users; n = 10)-and a group of hearing, non-signing, age-matched controls (n = 12) performed an emotion recognition task with auditory, visual, and cross-modal emotionally congruent and incongruent speech stimuli. On different trials, participants categorized either the facial or the vocal expressions. The ES CI users more accurately recognized affective prosody than the LS CI users in the presence of congruent facial information. Furthermore, the ES CI users, but not the LS CI users, gained more than the controls from congruent visual stimuli when recognizing affective prosody. Both CI groups performed overall worse than the controls in recognizing affective prosody. These results suggest that early sign language experience affects multisensory emotion perception in CD CI users.
Al-Jamali, Jamil; Glaum, Ricarda; Kassem, Ahmed; Voss, Pit Jacob; Schmelzeisen, Rainer; Schön, Ralf
2012-12-01
Gorham disease is a very rare condition associated with spontaneous destruction and resorption of 1 or more bones anywhere in the body. Many authors have suggested and/or implicated trauma as the initiating factor in the majority of the reported cases. It can affect almost all bones, and a combination of bones has been reported. In the maxillofacial skeleton, the first facial case was reported by Romer in 1928. Until now, only a few cases of Gorham disease affecting the maxillofacial bones, including this case report, have been reported. We present a brief review of the pathogenesis and treatment modalities of the disease and report a very rare clinical picture of the disease affecting a young and otherwise healthy patient with massive osteolysis of the mandibular bone and extensive involvement of the mouth floor and skin of the chin, which to our knowledge, is the only case report with skin manifestation affecting the maxillofacial region. Such skin manifestations play an important role for the diagnosis and add a clue for management of such condition. Copyright © 2012 Elsevier Inc. All rights reserved.
Learning of Multimodal Representations With Random Walks on the Click Graph.
Wu, Fei; Lu, Xinyan; Song, Jun; Yan, Shuicheng; Zhang, Zhongfei Mark; Rui, Yong; Zhuang, Yueting
2016-02-01
In multimedia information retrieval, most classic approaches tend to represent different modalities of media in the same feature space. With the click data collected from the users' searching behavior, existing approaches take either one-to-one paired data (text-image pairs) or ranking examples (text-query-image and/or image-query-text ranking lists) as training examples, which do not make full use of the click data, particularly the implicit connections among the data objects. In this paper, we treat the click data as a large click graph, in which vertices are images/text queries and edges indicate the clicks between an image and a query. We consider learning a multimodal representation from the perspective of encoding the explicit/implicit relevance relationship between the vertices in the click graph. By minimizing both the truncated random walk loss as well as the distance between the learned representation of vertices and their corresponding deep neural network output, the proposed model which is named multimodal random walk neural network (MRW-NN) can be applied to not only learn robust representation of the existing multimodal data in the click graph, but also deal with the unseen queries and images to support cross-modal retrieval. We evaluate the latent representation learned by MRW-NN on a public large-scale click log data set Clickture and further show that MRW-NN achieves much better cross-modal retrieval performance on the unseen queries/images than the other state-of-the-art methods.
Scaling of mode shapes from operational modal analysis using harmonic forces
NASA Astrophysics Data System (ADS)
Brandt, A.; Berardengo, M.; Manzoni, S.; Cigada, A.
2017-10-01
This paper presents a new method for scaling mode shapes obtained by means of operational modal analysis. The method is capable of scaling mode shapes on any structure, also structures with closely coupled modes, and the method can be used in the presence of ambient vibration from traffic or wind loads, etc. Harmonic excitation can be relatively easily accomplished by using general-purpose actuators, also for force levels necessary for driving large structures such as bridges and highrise buildings. The signal processing necessary for mode shape scaling by the proposed method is simple and the method can easily be implemented in most measurement systems capable of generating a sine wave output. The tests necessary to scale the modes are short compared to typical operational modal analysis test time. The proposed method is thus easy to apply and inexpensive relative to some other methods for scaling mode shapes that are available in literature. Although it is not necessary per se, we propose to excite the structure at, or close to, the eigenfrequencies of the modes to be scaled, since this provides better signal-to-noise ratio in the response sensors, thus permitting the use of smaller actuators. An extensive experimental activity on a real structure was carried out and the results reported demonstrate the feasibility and accuracy of the proposed method. Since the method utilizes harmonic excitation for the mode shape scaling, we propose to call the method OMAH.
3D widefield light microscope image reconstruction without dyes
NASA Astrophysics Data System (ADS)
Larkin, S.; Larson, J.; Holmes, C.; Vaicik, M.; Turturro, M.; Jurkevich, A.; Sinha, S.; Ezashi, T.; Papavasiliou, G.; Brey, E.; Holmes, T.
2015-03-01
3D image reconstruction using light microscope modalities without exogenous contrast agents is proposed and investigated as an approach to produce 3D images of biological samples for live imaging applications. Multimodality and multispectral imaging, used in concert with this 3D optical sectioning approach is also proposed as a way to further produce contrast that could be specific to components in the sample. The methods avoid usage of contrast agents. Contrast agents, such as fluorescent or absorbing dyes, can be toxic to cells or alter cell behavior. Current modes of producing 3D image sets from a light microscope, such as 3D deconvolution algorithms and confocal microscopy generally require contrast agents. Zernike phase contrast (ZPC), transmitted light brightfield (TLB), darkfield microscopy and others can produce contrast without dyes. Some of these modalities have not previously benefitted from 3D image reconstruction algorithms, however. The 3D image reconstruction algorithm is based on an underlying physical model of scattering potential, expressed as the sample's 3D absorption and phase quantities. The algorithm is based upon optimizing an objective function - the I-divergence - while solving for the 3D absorption and phase quantities. Unlike typical deconvolution algorithms, each microscope modality, such as ZPC or TLB, produces two output image sets instead of one. Contrast in the displayed image and 3D renderings is further enabled by treating the multispectral/multimodal data as a feature set in a mathematical formulation that uses the principal component method of statistics.
Two-step narrow ridge cascade diode lasers emitting near $$2~\\mu$$ m
Feng, Tao; Hosoda, Takashi; Shterengas, Leon; ...
2017-01-02
Nearly diffraction limited GaSb-based type-I quantum well cascade diode lasers emitting in the spectral region 1.95-2 μm were designed and fabricated. Two-step 5.5-μm-wide shallow and 14-μm-wide deep etched ridge waveguide design yielded devices generating stable single lobe beams with 250 mW of continuous wave output power at 20 °C. Quantum well radiative recombination current contributes about 13% to laser threshold as estimated from true spontaneous emission and modal gain analysis. Here, recombination at etched sidewalls of the 14-μmwide deep ridges controls about 30% of the threshold.
Responses of bistable piezoelectric-composite energy harvester by means of recurrences
NASA Astrophysics Data System (ADS)
Syta, Arkadiusz; Bowen, Christopher R.; Kim, H. Alicia; Rysak, Andrzej; Litak, Grzegorz
2016-08-01
In this paper we examine the modal response of a bistable electro-mechanical energy harvesting device based on characterization of the experimental time-series. A piezoelectric element attached to a vibrating bistable carbon-fibre reinforced polymer laminate plate was used for the conversion of mechanical vibrations to electrical energy under harmonic excitations at a variety of frequencies and amplitudes. The inherent bistability of the mechanical resonator and snap-through phenomenon between stable states were exploited for energy harvesting. To identify the dynamics of the response of the studied harvesting structure and the associated output power generation we used the Fourier spectrum and Recurrence Quantification Analysis (RQA).
Phase inverter provides variable reference push-pull output
NASA Technical Reports Server (NTRS)
1966-01-01
Dual-transistor difference amplifier provides a push-pull output referenced to a dc potential which can be varied without affecting the signal levels. The amplifier is coupled with a feedback circuit which can vary the operating points of the transistors by equal amounts to provide the variable reference potentials.
Education, Human Capital Enhancement and Economic Development--Comparison between Korea and Taiwan.
ERIC Educational Resources Information Center
Lee, Maw-Lin; And Others
1994-01-01
Examines major determinants of economic development in South Korea and Taiwan. Investigates the role of human capital, measured by educational attainment, in driving output growth and enlarging the labor income share. Physical capital accumulation and export expansion affected output growth in both nations. Although technical progress…
Spray outputs from a variable-rate sprayer manipulated with PWM solenoid valves
USDA-ARS?s Scientific Manuscript database
Pressure fluctuations during variable-rate spray applications can affect nozzle flow rate fluctuations, resulting in spray outputs that do not coincide with the prescribed canopy structure volume. Variations in total flow rate discharged from 40 nozzles, each coupled with a pulse-width-modulated (PW...
COULD ETHINYL ESTRADIOL AFFECT THE POPULATION BIOLOGY OF CUNNER, TAUTOGOLABRUS ADSPERSUS
Endocrine disrupting chemicals in the environment may disturb the population dynamics of wildlife by affecting reproductive output and embryonic development of organisms. This study used a population model to evaluate whether ethinyl estradiol (EE2 could affect cunner Tautogolabr...
La Fors, Sabrina S. B. M.; Meerkerk, Dorie T. J.; Joosten, Ruud N. J. M. A.; Uylings, Harry B. M.; Feenstra, Matthijs G. P.
2007-01-01
Rationale Across species, serotonin (5-HT) depletion in the prefrontal cortex (PFC) has been shown to cause impaired performance on tests of cognitive flexibility and the processing of affective information (e.g. information with an ‘emotional’ content). While recent work has explored the specific role of the orbital PFC herein, the role of the medial PFC remains unclear. Objectives The aim of our current experiments was to study the role of medial PFC 5-HT in both the processing of affective information and reversal learning across stimulus modalities. Materials and methods To this end, we selectively destroyed 5-HT terminals in the medial PFC of male Wistar rats by means of local infusion of the toxin 5,7-dihydroxytryptamine. Both control and lesioned animals were tested in two reversal learning paradigms with either spatial or odour cues and an affective switch from non-preferred to preferred food rewards. Results Our results indicate that a pellet switch during reversal learning impaired performance in control animals but not in lesioned animals, independent of the stimulus modality. Conclusion These results indicate that lesioned animals are not guided in their behaviour by the affective value of the reward like intact animals and thus that medial prefrontal 5-HT is needed for affective processing in goal-directed behaviour. PMID:17874235
Thermoelastic vibration test techniques
NASA Technical Reports Server (NTRS)
Kehoe, Michael W.; Snyder, H. Todd
1991-01-01
The structural integrity of proposed high speed aircraft can be seriously affected by the extremely high surface temperatures and large temperature gradients throughout the vehicle's structure. Variations in the structure's elastic characteristics as a result of thermal effects can be observed by changes in vibration frequency, damping, and mode shape. Analysis codes that predict these changes must be correlated and verified with experimental data. The experimental modal test techniques and procedures used to conduct uniform, nonuniform, and transient thermoelastic vibration tests are presented. Experimental setup and elevated temperature instrumentation considerations are also discussed. Modal data for a 12 by 50 inch aluminum plate heated to a temperature of 475 F are presented. These data show the effect of heat on the plate's modal characteristics. The results indicated that frequency decreased, damping increased, and mode shape remained unchanged as the temperature of the plate was increased.
Effects of body position on exercise capacity and pulmonary vascular pressure-flow relationships.
Forton, Kevin; Motoji, Yoshiki; Deboeck, Gael; Faoro, Vitalie; Naeije, Robert
2016-11-01
There has been revival of interest in exercise testing of the pulmonary circulation for the diagnosis of pulmonary vascular disease, but there still is uncertainty about body position and the most relevant measurements. Doppler echocardiography pulmonary hemodynamic measurements were performed at progressively increased workloads in 26 healthy adult volunteers in supine, semirecumbent, and upright positions that were randomly assigned at 24-h intervals. Mean pulmonary artery pressure (mPAP) was estimated from the maximum tricuspid regurgitation jet velocity. Cardiac output was calculated from the left ventricular outflow velocity-time integral. Pulmonary vascular distensibility α-index, the percent change of vessel diameter per millimeter mercury of mPAP, was calculated from multipoint mPAP-cardiac output plots. Body position did not affect maximum oxygen uptake (Vo 2max ), maximum respiratory exchange ratio, ventilatory equivalent for carbon dioxide, or slope of mPAP-cardiac output relationships, which was on average of 1.5 ± 0.4 mmHg·l -1 ·min -1 Maximum mPAP, cardiac output, and total pulmonary vascular resistance were, respectively, 34 ± 4 mmHg, 18 ± 3 l/min, and 1.9 ± 0.3 Wood units. However, the semirecumbent position was associated with a 10% decrease in maximum workload. Furthermore, cardiac output-workload or cardiac output-Vo 2 relationships were nonlinear and variable. These results suggest that body position does not affect maximum exercise testing of the pulmonary circulation when results are expressed as mPAP-cardiac output or maximum total pulmonary vascular resistance. Maximum workload is decreased in semirecumbent compared with upright exercise. Workload or Vo 2 cannot reliably be used as surrogates for cardiac output. Copyright © 2016 the American Physiological Society.
Output order reflects the cognitive accessibility of goals.
Grimes, Carrie E; Nes, Lise Solberg; Waldman, Andrea; Segerstrom, Suzanne C
2012-01-01
Goal accessibility--the ease or speed with which a goal is activated--increases the likelihood that it will be acted on. The present studies validate output order as a measure of goal accessibility that can be applied to goal lists in both laboratory and naturalistic settings. In three studies, output order (the order in which goals are listed in a free-response format) was related to self-reported goal value but was not redundant with it. Furthermore, output order was affected by motivational priming whereas value was not, and order associated with typical student goals (e.g., achievement) compared with atypical goals (e.g., power). Output order is well suited to bring the study of accessibility to naturalistic studies of goals and goal pursuit.
Torres-Valencia, Cristian A; Álvarez, Mauricio A; Orozco-Gutiérrez, Alvaro A
2014-01-01
Human emotion recognition (HER) allows the assessment of an affective state of a subject. Until recently, such emotional states were described in terms of discrete emotions, like happiness or contempt. In order to cover a high range of emotions, researchers in the field have introduced different dimensional spaces for emotion description that allow the characterization of affective states in terms of several variables or dimensions that measure distinct aspects of the emotion. One of the most common of such dimensional spaces is the bidimensional Arousal/Valence space. To the best of our knowledge, all HER systems so far have modelled independently, the dimensions in these dimensional spaces. In this paper, we study the effect of modelling the output dimensions simultaneously and show experimentally the advantages in modeling them in this way. We consider a multimodal approach by including features from the Electroencephalogram and a few physiological signals. For modelling the multiple outputs, we employ a multiple output regressor based on support vector machines. We also include an stage of feature selection that is developed within an embedded approach known as Recursive Feature Elimination (RFE), proposed initially for SVM. The results show that several features can be eliminated using the multiple output support vector regressor with RFE without affecting the performance of the regressor. From the analysis of the features selected in smaller subsets via RFE, it can be observed that the signals that are more informative into the arousal and valence space discrimination are the EEG, Electrooculogram/Electromiogram (EOG/EMG) and the Galvanic Skin Response (GSR).
Seemüller, Anna; Fiehler, Katja; Rösler, Frank
2011-01-01
The present study investigated whether visual and kinesthetic stimuli are stored as multisensory or modality-specific representations in unimodal and crossmodal working memory tasks. To this end, angle-shaped movement trajectories were presented to 16 subjects in delayed matching-to-sample tasks either visually or kinesthetically during encoding and recognition. During the retention interval, a secondary visual or kinesthetic interference task was inserted either immediately or with a delay after encoding. The modality of the interference task interacted significantly with the encoding modality. After visual encoding, memory was more impaired by a visual than by a kinesthetic secondary task, while after kinesthetic encoding the pattern was reversed. The time when the secondary task had to be performed interacted with the encoding modality as well. For visual encoding, memory was more impaired, when the secondary task had to be performed at the beginning of the retention interval. In contrast, memory after kinesthetic encoding was more affected, when the secondary task was introduced later in the retention interval. The findings suggest that working memory traces are maintained in a modality-specific format characterized by distinct consolidation processes that take longer after kinesthetic than after visual encoding. Copyright © 2010 Elsevier B.V. All rights reserved.
High-Temperature Modal Survey of a Hot-Structure Control Surface
NASA Technical Reports Server (NTRS)
Spivey, Natalie D.
2011-01-01
Ground vibration tests are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicles, thermoelastic vibration testing techniques are neither well established nor routinely performed. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. When high-temperature materials, which increase in stiffness when heated, are incorporated into a hot-structure that contains metallic components that decrease in stiffness when heated, the interaction between those materials can affect the hypersonic flutter analysis. A high-temperature modal survey will expand the research database for hypersonics and improve the understanding of this dual-material interaction. This report discusses the vibration testing of the carbon-silicon carbide Ruddervator Subcomponent Test Article, which is a truncated version of a full-scale hot-structure control surface. Two series of room-temperature modal test configurations were performed in order to define the modal characteristics of the test article during the elevated-temperature modal survey: one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary). Testing was performed in the NASA Dryden Flight Research Center Flight Loads Laboratory Large Nitrogen Test Chamber.
Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F.; Joules, Richard; Catani, Marco; Williams, Steve C. R.; Allen, Paul; McGuire, Philip; Mechelli, Andrea
2014-01-01
In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no “magic bullet” for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the integration of more diverse types of data would have produced greater classification enhancement. We suggest that future studies ideally examine a greater variety of data types (e.g., genetic, cognitive, and neuroimaging) in order to identify the data types and combinations optimally suited to the classification of early stage psychosis. PMID:25076868
Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F; Joules, Richard; Catani, Marco; Williams, Steve C R; Allen, Paul; McGuire, Philip; Mechelli, Andrea
2014-01-01
In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no "magic bullet" for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the integration of more diverse types of data would have produced greater classification enhancement. We suggest that future studies ideally examine a greater variety of data types (e.g., genetic, cognitive, and neuroimaging) in order to identify the data types and combinations optimally suited to the classification of early stage psychosis.
High-Temperature Modal Survey of a Hot-Structure Control Surface
NASA Technical Reports Server (NTRS)
Spivey, Natalie Dawn
2010-01-01
Ground vibration tests or modal surveys are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicle applications, thermoelastic vibration testing techniques are not well established and are not routinely performed for supporting hypersonic flutter analysis. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. High-temperature materials have the unique property of increasing in stiffness when heated. When these materials are incorporated into a hot-structure, which includes metallic components that decrease in stiffness with increasing temperature, the interaction between the two materials systems needs to be understood because that interaction could ultimately affect the hypersonic flutter analysis. Performing a high-temperature modal survey will expand the research database for hypersonics and will help build upon the understanding of the dual material interaction. This paper will discuss the vibration testing of the Carbon-Silicon Carbide Ruddervator Subcomponent Test Article which is a truncated version of the full-scale X-37 hot-structure control surface. In order to define the modal characteristics of the test article during the elevated-temperature modal survey, two series of room-temperature modal test configurations had to be performed. The room-temperature test series included one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary condition) in NASA Dryden's Flight Loads Lab large nitrogen test chamber.
Bontrager, Megan; Angert, Amy L
2016-01-01
Plant mating systems and geographic range limits are conceptually linked by shared underlying drivers, including landscape-level heterogeneity in climate and in species' abundance. Studies of how geography and climate interact to affect plant traits that influence mating system and population dynamics can lend insight to ecological and evolutionary processes shaping ranges. Here, we examined how spatiotemporal variation in climate affects reproductive output of a mixed-mating annual, Clarkia pulchella. We also tested the effects of population isolation and climate on mating-system-related floral traits across the range. We measured reproductive output and floral traits on herbarium specimens collected across the range of C. pulchella. We extracted climate data associated with specimens and derived a population isolation metric from a species distribution model. We then examined how predictors of reproductive output and floral traits vary among populations of increasing distance from the range center. Finally, we tested whether reproductive output and floral traits vary with increasing distance from the center of the range. Reproductive output decreased as summer precipitation decreased, and low precipitation may contribute to limiting the southern and western range edges of C. pulchella. High spring and summer temperatures are correlated with low herkogamy, but these climatic factors show contrasting spatial patterns in different quadrants of the range. Limiting factors differ among different parts of the range. Due to the partial decoupling of geography and environment, examining relationships between climate, reproductive output, and mating-system-related floral traits reveals spatial patterns that might be missed when focusing solely on geographic position. © 2016 Botanical Society of America.
A Comparison of 2 Practical Cooling Methods on Cycling Capacity in the Heat
Cuttell, Saul A.; Kiri, Victor; Tyler, Christopher
2016-01-01
Context: Cooling the torso and neck can improve exercise performance and capacity in a hot environment; however, the proposed mechanisms for the improvements often differ. Objective: To directly compare the effects of cooling the neck and torso region using commercially available devices on exercise capacity in a hot environment (temperature = 35°C ± 0.1°C, relative humidity = 50.1% ± 0.7%). Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Eight recreationally active, nonheat-acclimated men (age = 24 ± 4 years, height = 1.82 ± 0.10 m, mass = 80.3 ± 9.7 kg, maximal power output = 240 ± 25 W). Intervention(s): Three cycling capacity tests at 60% maximal power output to volitional exhaustion: 1 with no cooling (NC), 1 with vest cooling (VC), and 1 with a neck cooling collar (CC). Main Outcome Measure(s): Time to volitional exhaustion, rectal temperature, mean skin temperature, torso and neck skin temperature, body mass, heart rate, rating of perceived exertion, thermal sensation, and feeling scale were measured. Results: Participants cycled longer with VC (32.2 ± 9.5 minutes) than NC (27. 6 ± 7.6 minutes; P = .03; d = 0.54) or CC (30.0 ± 8.8 minutes; P = .02; d = 0.24). We observed no difference between NC and CC (P = .12; d = 0.31). Neck and torso temperature and perceived thermal sensation were reduced with the use of cooling modalities (P < .001), but no other variables were affected. Conclusions: Cycling capacity in the heat improved when participants used a commercially available cooling vest, but we observed no benefit from wearing a commercially available CC. The vest and the collar did not alter the heart rate, rectal temperature, skin temperature, or sweat-loss responses to the cycling bout. PMID:27571045
Evaluation of green house gas emissions models.
DOT National Transportation Integrated Search
2014-11-01
The objective of the project is to evaluate the GHG emissions models used by transportation agencies and industry leaders. Factors in the vehicle : operating environment that may affect modal emissions, such as, external conditions, : vehicle fleet c...
Multimodal Education: A Model with Promise.
ERIC Educational Resources Information Center
Gerler, Edwin R., Jr.; Locke, Don C.
1980-01-01
Describes a program that uses Lazarus's factors that contribute to human growth and development as the basis for its program. The modalities covered are given the headings behavior, affect, sensation and imagery, cognition, interpersonal, and diet/physiology. (IRT)
Lexical morphology and its role in the writing process: evidence from a case of acquired dysgraphia.
Badecker, W; Hillis, A; Caramazza, A
1990-06-01
A case of acquired dysgraphia is presented in which the deficit is attributed to an impairment at the level of the Graphemic Output Buffer. It is argued that this patient's performance can be used to identify the representational character of the processing units that are stored in the Orthographic Output Lexicon. In particular, it is argued that the distribution of spelling errors and the types of lexical items which affect error rates indicate that the lexical representations passed from the lexical output system to the Graphemic Output Buffer correspond to the productive morphemes of the language.
The effect of unimodal affective priming on dichotic emotion recognition.
Voyer, Daniel; Myles, Daniel
2017-11-15
The present report concerns two experiments extending to unimodal priming the cross-modal priming effects observed with auditory emotions by Harding and Voyer [(2016). Laterality effects in cross-modal affective priming. Laterality: Asymmetries of Body, Brain and Cognition, 21, 585-605]. Experiment 1 used binaural targets to establish the presence of the priming effect and Experiment 2 used dichotically presented targets to examine auditory asymmetries. In Experiment 1, 82 university students completed a task in which binaural targets consisting of one of 4 English words inflected in one of 4 emotional tones were preceded by binaural primes consisting of one of 4 Mandarin words pronounced in the same (congruent) or different (incongruent) emotional tones. Trials where the prime emotion was congruent with the target emotion showed faster responses and higher accuracy in identifying the target emotion. In Experiment 2, 60 undergraduate students participated and the target was presented dichotically instead of binaurally. Primes congruent with the left ear produced a large left ear advantage, whereas right congruent primes produced a right ear advantage. These results indicate that unimodal priming produces stronger effects than those observed under cross-modal priming. The findings suggest that priming should likely be considered a strong top-down influence on laterality effects.
Lieberman, Amy M.; Borovsky, Arielle; Hatrak, Marla; Mayberry, Rachel I.
2014-01-01
Sign language comprehension requires visual attention to the linguistic signal and visual attention to referents in the surrounding world, whereas these processes are divided between the auditory and visual modalities for spoken language comprehension. Additionally, the age-onset of first language acquisition and the quality and quantity of linguistic input and for deaf individuals is highly heterogeneous, which is rarely the case for hearing learners of spoken languages. Little is known about how these modality and developmental factors affect real-time lexical processing. In this study, we ask how these factors impact real-time recognition of American Sign Language (ASL) signs using a novel adaptation of the visual world paradigm in deaf adults who learned sign from birth (Experiment 1), and in deaf individuals who were late-learners of ASL (Experiment 2). Results revealed that although both groups of signers demonstrated rapid, incremental processing of ASL signs, only native-signers demonstrated early and robust activation of sub-lexical features of signs during real-time recognition. Our findings suggest that the organization of the mental lexicon into units of both form and meaning is a product of infant language learning and not the sensory and motor modality through which the linguistic signal is sent and received. PMID:25528091
Down syndrome screening in assisted conception twins: an iatrogenic medical challenge.
Ben-Ami, Ido; Maymon, Ron; Svirsky, Ran; Cuckle, Howard; Jauniaux, Eric
2013-11-01
The objective of this study was to provide a critical analysis of the impact of assisted conception on prenatal screening for Down syndrome (DS) in twin pregnancies and the value of various screening modalities for early detection of anomalies. The literature was searched using PubMed and the Cochrane Library focusing on prenatal screening and antenatal care of assisted-conception twin pregnancies. Serum screening alone is of limited value in detecting aneuploid twins, because the unaffected cotwin can "mask" the abnormal serum results of an affected one. In addition, this test can designate the pregnancy as at high risk but not identify the affected fetus. Nuchal translucency (NT) screening is the best available modality and a highly effective screening method for twin pregnancies. Among twins, NT alone has a 69% DS detection rate, first-trimester combined NT and serum biochemistry has a 72% DS detection rate, and an integrated screen will have an 80% DS detection rate at a 5% FPR. The data in the literature concerning the effect of assisted conception on maternal serum screening markers in twin pregnancies are scarce. Down syndrome screening in assisted-conception twins presents clinical and technical challenges. Therefore, assisted-conception twins need close monitoring from conception to delivery, by a practitioner familiar with the available screening modalities and their relative accuracy.
Assessment of diabetic neuropathy with emission tomography and magnetic resonance spectroscopy.
Rao, Harshvardhan; Gaur, Neeraj; Tipre, Dnyanesh
2017-04-01
Diabetic neuropathies (DNs) are nerve-damaging disorders associated with diabetes. They are commonly attributed to peripheral nerves and primarily affect the limbs of the patient. They cause altered sensitivity to external stimuli along with loss in balance and reflexes of the affected patient. DNs are associated with a variety of clinical manifestations including autonomic failure and are caused by poor management of blood sugar levels. Imaging modalities provide vital information about early physiological changes in DNs. This review summarizes contributions by various teams of scientists in developing imaging methods to assess physiological changes in DNs and ongoing clinical trials where imaging modalities are applied to evaluate therapeutic intervention in DNs. Development of PET, single photon emission computed tomography, and magnetic resonance spectroscopy methods over the past 20 years are reviewed in the diagnostic assessment of DNs. Abnormal radiotracer pharmacokinetics and neurometabolite spectra in affected organs confirm physiological abnormalities in DN. With the use of the Siemens Biograph mMR and GE Signa - 60 cm (PET/MRI scanner), simultaneous acquisition of physiological and anatomical information could enhance understanding of DNs and accelerate drug development.
Clients' interpretation of risks provided in genetic counseling.
Wertz, D C; Sorenson, J R; Heeren, T C
1986-01-01
Clients in 544 genetic counseling sessions who were given numeric risks of having a child with a birth defect between 0% and 50% were asked to interpret these numeric risks on a five-point scale, ranging from very low to very high. Whereas clients' modal interpretation varied directly with numeric risks between 0% and 15%, the modal category of client risk interpretation remained "moderate" at risks between 15% and 50%. Uncertainty about normalcy of the next child increased as numeric risk increased, and few clients were willing to indicate that the child would probably or definitely be affected regardless of the numeric risk. Characteristics associated with clients' "pessimistic" interpretations of risk, identified by stepwise linear regression, included increased numeric risk, discussion in depth during the counseling session of whether they would have a child, have a living affected child, discussion of the effects of an affected child on relationships with client's other children, and seriousness of the disorder in question (causes intellectual impairment). Client interpretations are discussed in terms of recent developments in cognitive theory, including heuristics that influence judgments about risks, and implications for genetic counseling. PMID:3752089
Educational Resource Multipliers for Use in Local Public Finance: An Input-Output Approach.
ERIC Educational Resources Information Center
Boardman, A. E.; Schinnar, A. P.
1982-01-01
Develops an input-output model, with related multipliers, showing how changes in earmarked and discretionary educational funds (whether local, state, or federal) affect all of a state's districts and educational programs. Illustrates the model with Pennsylvania data and relates it to the usual educational finance approach, which uses demand…
40 CFR 60.58a - Compliance and performance testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... period when the affected facility is combusting only a fossil fuel or other non-MSW fuel and no MSW is... to the atmosphere and record the output of the system. (7) Following the date of the initial..., and operate a CEMS for measuring nitrogen oxides discharged to the atmosphere and record the output of...
40 CFR 60.58a - Compliance and performance testing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... period when the affected facility is combusting only a fossil fuel or other non-MSW fuel and no MSW is... to the atmosphere and record the output of the system. (7) Following the date of the initial..., and operate a CEMS for measuring nitrogen oxides discharged to the atmosphere and record the output of...
40 CFR 60.58a - Compliance and performance testing.
Code of Federal Regulations, 2013 CFR
2013-07-01
... period when the affected facility is combusting only a fossil fuel or other non-MSW fuel and no MSW is... to the atmosphere and record the output of the system. (7) Following the date of the initial..., and operate a CEMS for measuring nitrogen oxides discharged to the atmosphere and record the output of...
40 CFR 60.58a - Compliance and performance testing.
Code of Federal Regulations, 2012 CFR
2012-07-01
... period when the affected facility is combusting only a fossil fuel or other non-MSW fuel and no MSW is... to the atmosphere and record the output of the system. (7) Following the date of the initial..., and operate a CEMS for measuring nitrogen oxides discharged to the atmosphere and record the output of...
40 CFR 60.58a - Compliance and performance testing.
Code of Federal Regulations, 2014 CFR
2014-07-01
... period when the affected facility is combusting only a fossil fuel or other non-MSW fuel and no MSW is... to the atmosphere and record the output of the system. (7) Following the date of the initial..., and operate a CEMS for measuring nitrogen oxides discharged to the atmosphere and record the output of...
An Analysis of Female Research Productivity in Nigerian Universities
ERIC Educational Resources Information Center
Ogbogu, Christiana O.
2009-01-01
This study examines the research output of female staff and the factors that affect their research productivity in the Nigerian university system. The study was carried out with a view to promoting strategies that will enhance productivity and increase the research output of female staff in Nigerian universities. The study adopted a survey…
Dynamic Facial Expressions Prime the Processing of Emotional Prosody.
Garrido-Vásquez, Patricia; Pell, Marc D; Paulmann, Silke; Kotz, Sonja A
2018-01-01
Evidence suggests that emotion is represented supramodally in the human brain. Emotional facial expressions, which often precede vocally expressed emotion in real life, can modulate event-related potentials (N100 and P200) during emotional prosody processing. To investigate these cross-modal emotional interactions, two lines of research have been put forward: cross-modal integration and cross-modal priming. In cross-modal integration studies, visual and auditory channels are temporally aligned, while in priming studies they are presented consecutively. Here we used cross-modal emotional priming to study the interaction of dynamic visual and auditory emotional information. Specifically, we presented dynamic facial expressions (angry, happy, neutral) as primes and emotionally-intoned pseudo-speech sentences (angry, happy) as targets. We were interested in how prime-target congruency would affect early auditory event-related potentials, i.e., N100 and P200, in order to shed more light on how dynamic facial information is used in cross-modal emotional prediction. Results showed enhanced N100 amplitudes for incongruently primed compared to congruently and neutrally primed emotional prosody, while the latter two conditions did not significantly differ. However, N100 peak latency was significantly delayed in the neutral condition compared to the other two conditions. Source reconstruction revealed that the right parahippocampal gyrus was activated in incongruent compared to congruent trials in the N100 time window. No significant ERP effects were observed in the P200 range. Our results indicate that dynamic facial expressions influence vocal emotion processing at an early point in time, and that an emotional mismatch between a facial expression and its ensuing vocal emotional signal induces additional processing costs in the brain, potentially because the cross-modal emotional prediction mechanism is violated in case of emotional prime-target incongruency.
ERIC Educational Resources Information Center
Zekveld, Adriana A.; Festen, Joost M.; Kramer, Kramera
2013-01-01
Purpose: In this study, the authors assessed the influence of masking level (29% or 71% sentence perception) and test modality on the processing load during language perception as reflected by the pupil response. In addition, the authors administered a delayed cued stimulus recall test to examine whether processing load affected the encoding of…
Verification techniques for x-ray and mammography applications
NASA Astrophysics Data System (ADS)
Kotsopoulos, Stavros A.; Lymberopoulos, Dimitris C.
1993-07-01
The integration of Medical Information Environment demands the study and development of high speed data communication systems with special designed 'endsystems' (MWS, etc.) for flexible and reliable data transmission/reception, handling and manipulation. An important parameter which affects the overall system's performance is the 'quality factor' of the communicated medical data produced by a wide range of modern modalities. The present paper describes a set of tests, done in a medical communication network based on a teleworking platform, in order to optimize the sensitivity parameters of the modalities by remote fine re-adjustments guided by experts.
Multiple piezo-patch energy harvesters on a thin plate with respective AC-DC conversion
NASA Astrophysics Data System (ADS)
Aghakhani, Amirreza; Basdogan, Ipek
2018-03-01
Piezoelectric patch energy harvesters can be directly integrated to plate-like structures which are widely used in automotive, marine and aerospace applications, to convert vibrational energy to electrical energy. This paper presents two different AC-DC conversion techniques for multiple patch harvesters, namely single rectifier and respective rectifiers. The first case considers all the piezo-patches are connected in parallel to a single rectifier, whereas in the second case, each harvester is respectively rectified and then connected in parallel to a smoothing capacitor and a resistive load. The latter configuration of AC-DC conversion helps to avoid the electrical charge cancellation which is a problem with the multiple harvesters attached to different locations of the host plate surface. Equivalent circuit model of the multiple piezo-patch harvesters is developed in the SPICE software to simulate the electrical response. The system parameters are obtained from the modal analysis solution of the plate. Simulations of the voltage frequency response functions (FRFs) for the standard AC input - AC output case are conducted and validated by experimental data. Finally, for the AC input - DC output case, numerical simulation and experimental results of the power outputs of multiple piezo-patch harvesters with multiple AC-DC converters are obtained for a wide range of resistive loads and compared with the same array of harvesters connected to a single AC-DC converter.
Finite element based N-Port model for preliminary design of multibody systems
NASA Astrophysics Data System (ADS)
Sanfedino, Francesco; Alazard, Daniel; Pommier-Budinger, Valérie; Falcoz, Alexandre; Boquet, Fabrice
2018-02-01
This article presents and validates a general framework to build a linear dynamic Finite Element-based model of large flexible structures for integrated Control/Structure design. An extension of the Two-Input Two-Output Port (TITOP) approach is here developed. The authors had already proposed such framework for simple beam-like structures: each beam was considered as a TITOP sub-system that could be interconnected to another beam thanks to the ports. The present work studies bodies with multiple attaching points by allowing complex interconnections among several sub-structures in tree-like assembly. The TITOP approach is extended to generate NINOP (N-Input N-Output Port) models. A Matlab toolbox is developed integrating beam and bending plate elements. In particular a NINOP formulation of bending plates is proposed to solve analytic two-dimensional problems. The computation of NINOP models using the outputs of a MSC/Nastran modal analysis is also investigated in order to directly use the results provided by a commercial finite element software. The main advantage of this tool is to provide a model of a multibody system under the form of a block diagram with a minimal number of states. This model is easy to operate for preliminary design and control. An illustrative example highlights the potential of the proposed approach: the synthesis of the dynamical model of a spacecraft with two deployable and flexible solar arrays.
Management of premature infants with extensive bowel resection with high volume enteral infusates.
Alkalay, A L; Fleisher, D R; Pomerance, J J; Rosenthal, P
1995-05-01
To avoid long-term parenteral nutrition (PN), three premature infants with extensive bowel resections were fed high volume enteral infusates (HVEI). Following surgery an elemental hypo-osmolar gastric infusate was initiated. The infants were weaned of PN and were subsequently maintained on HVEI feeding. Rather than using the volume of the ileostomy outputs or the presence of reducing substances as guides for adjustment of enteral intake, we tolerated large ileostomy output and focused instead on the patients' hydration, serum electrolytes and acid base status. During HVEI feeding, the patients had sustained weight gain, while the mean +/- SD enteral intakes were 373 +/- 67, 689 +/- 132, and 415 +/- 108 ml/kg per day; osmolarity of enteral infusates were 250 +/- 25, 225 +/- 40 and 228 +/- 27 mosmol/l; caloric intakes were 163 +/- 29, 258 +/- 54, and 153 +/- 44 Kcal/kg per day; and ileostomy outputs were 113 +/- 47, 228 +/- 59, and 175 +/- 69 ml/kg per day, respectively. Gut adaptation lasted 122, 141, and 205 days, respectively. Re-anastomoses of the intestines were performed at the ages of 8, 78, and 36 months. At 18, 108, and 58 months, infants' weights were in the 50th, 20th, and 5th percentiles, respectively. No infant developed cirrhosis. High volume enteral infusate feeding in infants with extensive bowel resection may help achieve gut adaptation and may serve as an alternative nutrition modality to prolonged PN.
Cross-modal metaphorical mapping of spoken emotion words onto vertical space.
Montoro, Pedro R; Contreras, María José; Elosúa, María Rosa; Marmolejo-Ramos, Fernando
2015-01-01
From the field of embodied cognition, previous studies have reported evidence of metaphorical mapping of emotion concepts onto a vertical spatial axis. Most of the work on this topic has used visual words as the typical experimental stimuli. However, to our knowledge, no previous study has examined the association between affect and vertical space using a cross-modal procedure. The current research is a first step toward the study of the metaphorical mapping of emotions onto vertical space by means of an auditory to visual cross-modal paradigm. In the present study, we examined whether auditory words with an emotional valence can interact with the vertical visual space according to a 'positive-up/negative-down' embodied metaphor. The general method consisted in the presentation of a spoken word denoting a positive/negative emotion prior to the spatial localization of a visual target in an upper or lower position. In Experiment 1, the spoken words were passively heard by the participants and no reliable interaction between emotion concepts and bodily simulated space was found. In contrast, Experiment 2 required more active listening of the auditory stimuli. A metaphorical mapping of affect and space was evident but limited to the participants engaged in an emotion-focused task. Our results suggest that the association of affective valence and vertical space is not activated automatically during speech processing since an explicit semantic and/or emotional evaluation of the emotionally valenced stimuli was necessary to obtain an embodied effect. The results are discussed within the framework of the embodiment hypothesis.
Cross-modal metaphorical mapping of spoken emotion words onto vertical space
Montoro, Pedro R.; Contreras, María José; Elosúa, María Rosa; Marmolejo-Ramos, Fernando
2015-01-01
From the field of embodied cognition, previous studies have reported evidence of metaphorical mapping of emotion concepts onto a vertical spatial axis. Most of the work on this topic has used visual words as the typical experimental stimuli. However, to our knowledge, no previous study has examined the association between affect and vertical space using a cross-modal procedure. The current research is a first step toward the study of the metaphorical mapping of emotions onto vertical space by means of an auditory to visual cross-modal paradigm. In the present study, we examined whether auditory words with an emotional valence can interact with the vertical visual space according to a ‘positive-up/negative-down’ embodied metaphor. The general method consisted in the presentation of a spoken word denoting a positive/negative emotion prior to the spatial localization of a visual target in an upper or lower position. In Experiment 1, the spoken words were passively heard by the participants and no reliable interaction between emotion concepts and bodily simulated space was found. In contrast, Experiment 2 required more active listening of the auditory stimuli. A metaphorical mapping of affect and space was evident but limited to the participants engaged in an emotion-focused task. Our results suggest that the association of affective valence and vertical space is not activated automatically during speech processing since an explicit semantic and/or emotional evaluation of the emotionally valenced stimuli was necessary to obtain an embodied effect. The results are discussed within the framework of the embodiment hypothesis. PMID:26322007
Regional thermal and electric energy output of salt-gradient solar ponds in the U.S.
NASA Technical Reports Server (NTRS)
Singer, M. J.; Lin, E. I. H.
1982-01-01
Salt-gradient solar pond thermal and electrical energy output was calculated for each of twelve regions within the United States as part of an effort to assess solar pond applicability and extent of requisite physical resources on a regional basis. The energy output level is one of the key factors affecting the economic feasibility of solar ponds. Calculated thermal energy output ranges from 6.9 Wt/sq m in Fairbanks, Alaska, to 73.1 Wt/sq m in Daggett, California, at an energy extraction temperature of 45 C. The output ranges from 0.0 Wt/sq m in Fairbanks to 63.2 Wt/sq m in Daggett at 60 C. Electrical energy output ranges from 0.0 We/sq m in Fairbanks to 3.11 We/sq m in Daggett. Although these estimates constitute a reasonable basis for regional comparison, site-specific analysis must be performed for an actual application design.
NASA Astrophysics Data System (ADS)
Langer, P.; Sepahvand, K.; Guist, C.; Bär, J.; Peplow, A.; Marburg, S.
2018-03-01
The simulation model which examines the dynamic behavior of real structures needs to address the impact of uncertainty in both geometry and material parameters. This article investigates three-dimensional finite element models for structural dynamics problems with respect to both model and parameter uncertainties. The parameter uncertainties are determined via laboratory measurements on several beam-like samples. The parameters are then considered as random variables to the finite element model for exploring the uncertainty effects on the quality of the model outputs, i.e. natural frequencies. The accuracy of the output predictions from the model is compared with the experimental results. To this end, the non-contact experimental modal analysis is conducted to identify the natural frequency of the samples. The results show a good agreement compared with experimental data. Furthermore, it is demonstrated that geometrical uncertainties have more influence on the natural frequencies compared to material parameters and material uncertainties are about two times higher than geometrical uncertainties. This gives valuable insights for improving the finite element model due to various parameter ranges required in a modeling process involving uncertainty.
Two-port connecting-layer-based sandwiched grating by a polarization-independent design.
Li, Hongtao; Wang, Bo
2017-05-02
In this paper, a two-port connecting-layer-based sandwiched beam splitter grating with polarization-independent property is reported and designed. Such the grating can separate the transmission polarized light into two diffraction orders with equal energies, which can realize the nearly 50/50 output with good uniformity. For the given wavelength of 800 nm and period of 780 nm, a simplified modal method can design a optimal duty cycle and the estimation value of the grating depth can be calculated based on it. In order to obtain the precise grating parameters, a rigorous coupled-wave analysis can be employed to optimize grating parameters by seeking for the precise grating depth and the thickness of connecting layer. Based on the optimized design, a high-efficiency two-port output grating with the wideband performances can be gained. Even more important, diffraction efficiencies are calculated by using two analytical methods, which are proved to be coincided well with each other. Therefore, the grating is significant for practical optical photonic element in engineering.
Börner, Katy
2016-01-01
This paper presents the results of a study that compares resource usage with publication output using data about the consumption of CPU cycles from the Extreme Science and Engineering Discovery Environment (XSEDE) and resulting scientific publications for 2,691 institutions/teams. Specifically, the datasets comprise a total of 5,374,032,696 central processing unit (CPU) hours run in XSEDE during July 1, 2011 to August 18, 2015 and 2,882 publications that cite the XSEDE resource. Three types of studies were conducted: a geospatial analysis of XSEDE providers and consumers, co-authorship network analysis of XSEDE publications, and bi-modal network analysis of how XSEDE resources are used by different research fields. Resulting visualizations show that a diverse set of consumers make use of XSEDE resources, that users of XSEDE publish together frequently, and that the users of XSEDE with the highest resource usage tend to be “traditional” high-performance computing (HPC) community members from astronomy, atmospheric science, physics, chemistry, and biology. PMID:27310174
Bergmann, J; Krewer, C; Müller, F; Koenig, A; Riener, R
2011-01-01
Virtual Reality (VR) provides a promising medium to enrich robot assisted rehabilitation. VR applications present the opportunity to engage patients in therapy and control participation. The aim of this study was to investigate two strategies to control active participation of a stroke patient focusing on the involvement of the paretic leg in task solution. A subacute stroke patient with a severe hemiparesis performed two experiments on the driven gait orthosis Lokomat. Patient activity was quantified by weighted interaction torques measured in both legs (experiment A) and the paretic leg only (experiment B). The patient was able to successfully implement both the bilateral and unilateral control modality. Both control modes increased the motor output of the paretic leg, however the paretic leg control mode resulted in a much more differentiated regulation of the activity in the leg. Both control modes are appropriate approaches to enhance active participation and increase motor output in the paretic leg. Further research should evaluate the therapeutic benefit of patients with hemiparesis using the unilateral control mode depending on the severity of their impairment. © 2011 IEEE
Corral-Baqués, M I; Rivera, M M; Rigau, T; Rodríguez-Gil, J E; Rigau, J
2009-09-01
Biological tissues respond to low-level laser irradiation and so do dog spermatozoa. Among the main parameters to be considered when a biological tissue is irradiated is the output power. We have studied the effects on sperm motility of 655 nm continuous wave diode laser irradiation at different output powers with 3.34 J (5.97 J/cm(2)). The second fraction of fresh dog sperm was divided into five groups: control, and four to be irradiated with an average output power of 6.8 mW, 15.4 mW, 33.1 mW and 49.7 mW, respectively. At 0 min and 45 min after irradiation, pictures were taken and a computer aided sperm analysis (CASA) performed to analyse different motility parameters. The results showed that different output powers affected dog semen motility parameters differently. The highest output power showed the most intense effects. Significant changes in the structure of the motile sperm subpopulation were linked to the different output powers used.
Fotowat, Haleh; Harvey-Girard, Erik; Cheer, Joseph F; Krahe, Rüdiger; Maler, Leonard
2016-01-01
Serotonergic neurons of the raphe nuclei of vertebrates project to most regions of the brain and are known to significantly affect sensory processing. The subsecond dynamics of sensory modulation of serotonin levels and its relation to behavior, however, remain unknown. We used fast-scan cyclic voltammetry to measure serotonin release in the electrosensory system of weakly electric fish, Apteronotus leptorhynchus . These fish use an electric organ to generate a quasi-sinusoidal electric field for communicating with conspecifics. In response to conspecific signals, they frequently produce signal modulations called chirps. We measured changes in serotonin concentration in the hindbrain electrosensory lobe (ELL) with a resolution of 0.1 s concurrently with chirping behavior evoked by mimics of conspecific electric signals. We show that serotonin release can occur phase locked to stimulus onset as well as spontaneously in the ELL region responsible for processing these signals. Intense auditory stimuli, on the other hand, do not modulate serotonin levels in this region, suggesting modality specificity. We found no significant correlation between serotonin release and chirp production on a trial-by-trial basis. However, on average, in the trials where the fish chirped, there was a reduction in serotonin release in response to stimuli mimicking similar-sized same-sex conspecifics. We hypothesize that the serotonergic system is part of an intricate sensory-motor loop: serotonin release in a sensory area is triggered by sensory input, giving rise to motor output, which can in turn affect serotonin release at the timescale of the ongoing sensory experience and in a context-dependent manner.
Krahe, Rüdiger; Maler, Leonard
2016-01-01
Abstract Serotonergic neurons of the raphe nuclei of vertebrates project to most regions of the brain and are known to significantly affect sensory processing. The subsecond dynamics of sensory modulation of serotonin levels and its relation to behavior, however, remain unknown. We used fast-scan cyclic voltammetry to measure serotonin release in the electrosensory system of weakly electric fish, Apteronotus leptorhynchus. These fish use an electric organ to generate a quasi-sinusoidal electric field for communicating with conspecifics. In response to conspecific signals, they frequently produce signal modulations called chirps. We measured changes in serotonin concentration in the hindbrain electrosensory lobe (ELL) with a resolution of 0.1 s concurrently with chirping behavior evoked by mimics of conspecific electric signals. We show that serotonin release can occur phase locked to stimulus onset as well as spontaneously in the ELL region responsible for processing these signals. Intense auditory stimuli, on the other hand, do not modulate serotonin levels in this region, suggesting modality specificity. We found no significant correlation between serotonin release and chirp production on a trial-by-trial basis. However, on average, in the trials where the fish chirped, there was a reduction in serotonin release in response to stimuli mimicking similar-sized same-sex conspecifics. We hypothesize that the serotonergic system is part of an intricate sensory–motor loop: serotonin release in a sensory area is triggered by sensory input, giving rise to motor output, which can in turn affect serotonin release at the timescale of the ongoing sensory experience and in a context-dependent manner. PMID:27844054
New diagnostic modalities in the diagnosis of heart failure.
Mitchell, Judith E.; Palta, Sanjeev
2004-01-01
Heart failure (HF) is the one cardiovascular disease that is increasing in prevalence in the United States. As the population continues to age, the incidence will certainly be amplified. However, some studies have shown that HF is correctly diagnosed initially in only 50% of affected patients. Despite the use of history, physical examination, echocardiogram, and chest x-ray, the percentage of correct initial diagnosis of HF is low. Recognizing the symptoms of HF decompensations is often problematic because other diagnoses can mimic them. There are two new diagnostic modalities that offer promise in improving HF diagnostic accuracy and identifying early HF decompensations. These diagnostic modalities include tests utilizing impedance cardiography and the B-type natriuretic peptide assay. They have the potential of increasing the accuracy of HF diagnosis and guide pharmacological treatment in the inpatient and outpatient settings. They may also assist in the recognition (or prediction) of acute HF decompensations. Images Figure 2 PMID:15586645
Evaluation of Fear Using Nonintrusive Measurement of Multimodal Sensors
Choi, Jong-Suk; Bang, Jae Won; Heo, Hwan; Park, Kang Ryoung
2015-01-01
Most previous research into emotion recognition used either a single modality or multiple modalities of physiological signal. However, the former method allows for limited enhancement of accuracy, and the latter has the disadvantages that its performance can be affected by head or body movements. Further, the latter causes inconvenience to the user due to the sensors attached to the body. Among various emotions, the accurate evaluation of fear is crucial in many applications, such as criminal psychology, intelligent surveillance systems and the objective evaluation of horror movies. Therefore, we propose a new method for evaluating fear based on nonintrusive measurements obtained using multiple sensors. Experimental results based on the t-test, the effect size and the sum of all of the correlation values with other modalities showed that facial temperature and subjective evaluation are more reliable than electroencephalogram (EEG) and eye blinking rate for the evaluation of fear. PMID:26205268
Postdoctoral Researchers in the UK: A Snapshot at Factors Affecting Their Research Output
Felisberti, Fatima M.; Sear, Rebecca
2014-01-01
Postdoctoral training is a typical step in the course of an academic career, but very little is known about postdoctoral researchers (PDRs) working in the UK. This study used an online survey to explore, for the first time, relevant environmental factors which may be linked to the research output of PDRs in terms of the number of peer-reviewed articles per year of PDR employment. The findings showed reliable links between the research output and research institutions, time spent as PDR, and parental education, whereas no clear links were observed between PDRs' output and research area, nationality, gender, number of siblings, or work environment. PDRs based in universities tended to publish, on average, more than the ones based in research centres. PDRs with children tended to stay longer in postdoctoral employment than PDRs without children. Moreover, research output tended to be higher in PDRs with fathers educated at secondary or higher level. The work environment did not affect output directly, but about 1/5 of PDRs were not satisfied with their job or institutional support and about 2/3 of them perceived their job prospects as “difficult”. The results from this exploratory study raise important questions, which need to be addressed in large-scale studies in order to understand (and monitor) how PDRs' family and work environment interact with their research output—an essential step given the crucial role of PDRs in research and development in the country. PMID:24705885
Stavisky, Sergey D; Kao, Jonathan C; Ryu, Stephen I; Shenoy, Krishna V
2017-07-05
Neural circuits must transform new inputs into outputs without prematurely affecting downstream circuits while still maintaining other ongoing communication with these targets. We investigated how this isolation is achieved in the motor cortex when macaques received visual feedback signaling a movement perturbation. To overcome limitations in estimating the mapping from cortex to arm movements, we also conducted brain-machine interface (BMI) experiments where we could definitively identify neural firing patterns as output-null or output-potent. This revealed that perturbation-evoked responses were initially restricted to output-null patterns that cancelled out at the neural population code readout and only later entered output-potent neural dimensions. This mechanism was facilitated by the circuit's large null space and its ability to strongly modulate output-potent dimensions when generating corrective movements. These results show that the nervous system can temporarily isolate portions of a circuit's activity from its downstream targets by restricting this activity to the circuit's output-null neural dimensions. Copyright © 2017 Elsevier Inc. All rights reserved.
Unified commutation-pruning technique for efficient computation of composite DFTs
NASA Astrophysics Data System (ADS)
Castro-Palazuelos, David E.; Medina-Melendrez, Modesto Gpe.; Torres-Roman, Deni L.; Shkvarko, Yuriy V.
2015-12-01
An efficient computation of a composite length discrete Fourier transform (DFT), as well as a fast Fourier transform (FFT) of both time and space data sequences in uncertain (non-sparse or sparse) computational scenarios, requires specific processing algorithms. Traditional algorithms typically employ some pruning methods without any commutations, which prevents them from attaining the potential computational efficiency. In this paper, we propose an alternative unified approach with automatic commutations between three computational modalities aimed at efficient computations of the pruned DFTs adapted for variable composite lengths of the non-sparse input-output data. The first modality is an implementation of the direct computation of a composite length DFT, the second one employs the second-order recursive filtering method, and the third one performs the new pruned decomposed transform. The pruned decomposed transform algorithm performs the decimation in time or space (DIT) data acquisition domain and, then, decimation in frequency (DIF). The unified combination of these three algorithms is addressed as the DFTCOMM technique. Based on the treatment of the combinational-type hypotheses testing optimization problem of preferable allocations between all feasible commuting-pruning modalities, we have found the global optimal solution to the pruning problem that always requires a fewer or, at most, the same number of arithmetic operations than other feasible modalities. The DFTCOMM method outperforms the existing competing pruning techniques in the sense of attainable savings in the number of required arithmetic operations. It requires fewer or at most the same number of arithmetic operations for its execution than any other of the competing pruning methods reported in the literature. Finally, we provide the comparison of the DFTCOMM with the recently developed sparse fast Fourier transform (SFFT) algorithmic family. We feature that, in the sensing scenarios with sparse/non-sparse data Fourier spectrum, the DFTCOMM technique manifests robustness against such model uncertainties in the sense of insensitivity for sparsity/non-sparsity restrictions and the variability of the operating parameters.
Quittmann, Oliver J; Abel, Thomas; Zeller, Sebastian; Foitschik, Tina; Strüder, Heiko K
2018-05-03
The aim of this study was to expand exercise testing in handcycling by (1) examining different approaches to determine lactate kinetics in handcycling under various exercise modalities and (2) identifying relationships between parameters of lactate kinetics and selected performance measures. Twelve able-bodied nationally competitive triathletes performed a familiarisation, a sprint test, an incremental step test, and a continuous load trial at a power output corresponding to a lactate concentration (La) of 4 mmol l -1 (PO 4 ) in a racing handcycle that was mounted on an ergometer. During the tests, La and heart rate (HR) were determined. As performance measures, maximal power output during the 15-s All-Out sprint test (PO max,AO15 ) and maximal power output during the incremental test (PO max,ST ) were determined. As physiological parameters, coefficients of lactate kinetics, maximal lactate accumulation rate ([Formula: see text]La max ), maximal La following the sprint test and incremental test (La max,AO15 , La max,ST ) and the increase in La within the last 20 min of the continuous trial (La Crit,CT ) were determined. Mean values of PO max,AO15 (545.6 ± 69.9 W), PO max,ST (131.3 ± 14.9 W), PO 4 (86.73 ± 12.32 W), [Formula: see text]La max (0.45 ± 0.11 mmol l -1 s -1 ), La max,AO15 (6.64 ± 1.32 mmol l -1 ), La max,ST (9.64 ± 2.24 mmol l -1 ) and La Crit,CT (0.74 ± 0.74 mmol l -1 ) were in accordance to literature. [Formula: see text]La max was positively correlated with La max,AO15 and PO max,AO15 and negatively correlated with PO max,ST . PO max,ST was negatively correlated with La max,AO15 . PO 4 was negatively correlated with La max,ST . [Formula: see text]La max was identified as a promising parameter for exercise testing in handcycling that can be supplemented by other parameters describing lactate kinetics following a sprint test.
Kwon, So Ran; Kurti, Steven R; Oyoyo, Udochukwu; Li, Yiming
2015-09-01
The purpose of this study was to evaluate the effect of four whitening modalities on surface enamel as assessed with microhardness tester, profilometer, and scanning electron microscopy (SEM). Whitening was performed according to manufacturer's directions for over-the-counter (OTC), dentist dispensed for home use (HW) and in-office (OW) whitening. Do-it-yourself (DIY) whitening consisted of a strawberry and baking soda mix. Additionally, negative and positive controls were used. A total of 120 enamel specimens were used for microhardness testing at baseline and post-whitening. Following microhardness testing specimens were prepared for SEM observations. A total of 120 enamel specimens were used for surface roughness testing at baseline and post-whitening (n = 20 per group). Rank-based Analysis of Covariance was performed to compare microhardness and surface roughness changes. Tests of hypotheses were two-sided with α = 0.05. There was a significant difference in Knoop hardness changes (ΔKHN) among the groups (Kruskal-Wallis test, p < 0.0001). Significant hardness reduction was observed in the positive control and DIY group (p < 0.0001). Mean surface roughness changes (ΔRa) were significantly different among the groups (Kruskal-Wallis test, p < 0.0001). Surface roughness increased in the OTC group (p = 0.03) and in the positive control (p < 0.0001). The four whitening modalities-DIY, OTC, HW and OW induced minimal surface morphology changes when observed with SEM. It can be concluded that none of the four whitening modalities adversely affected enamel surface morphology. However, caution should be advised when using a DIY regimen as it may affect enamel microhardness and an OTC product as it has the potential to increase surface roughness.
Gainotti, Guido
2017-06-01
This paper reviews some controversies concerning the original and revised versions of the 'hub-and-spoke' model of conceptual representations and their implication for abstraction capacity levels. The 'hub-and-spoke' model, which is based on data gathered in patients with semantic dementia (SD), is the most authoritative model of conceptual knowledge. Patterson et al.'s (Nature Reviews Neuroscience, 8(12), 976-987, 2007) classical version of this model maintained that conceptual representations are stored in a unitary 'amodal' format in the right and left anterior temporal lobes (ATLs), because in SD the semantic disorder cuts across modalities and categories. Several authors questioned the unitary nature of these representations. They showed that the semantic impairment is 'multi-modal'only in the advanced stages of SD, when atrophy affects the ATLs bilaterally, but that impariments can be modality-specific in lateralised (early) stages of the disease. In these cases, SD mainly affects lexical-semantic knowledge when atrophy predominates on the left side and pictorial representations when atrophy prevails on the right side. Some aspects of the model (i.e. the importance of spokes, the multimodal format of representations and the graded convergence of modalities within the ATLs), which had already been outlined by Rogers et al. (Psychological Review, 111(1), 205-235, 2004) in a computational model of SD, were strengthened by these results. The relevance of these theoretical problems and of empirical data concerning the neural substrate of concrete and abstract words is discussed critically. The conclusion of the review is that the highest levels of abstraction are due more to the structuring influence of language than to the format of representations.
NASA Astrophysics Data System (ADS)
Liu, Xiao-Di; Xu, Lu; Liang, Xiao-Yan
2017-01-01
We theoretically analyzed output beam quality of broad bandwidth non-collinear optical parametric chirped pulse amplification (NOPCPA) in LiB3O5 (LBO) centered at 800 nm. With a three-dimensional numerical model, the influence of the pump intensity, pump and signal spatial modulations, and the walk-off effect on the OPCPA output beam quality are presented, together with conversion efficiency and the gain spectrum. The pump modulation is a dominant factor that affects the output beam quality. Comparatively, the influence of signal modulation is insignificant. For a low-energy system with small beam sizes, walk-off effect has to be considered. Pump modulation and walk-off effect lead to asymmetric output beam profile with increased modulation. A special pump modulation type is found to optimize output beam quality and efficiency. For a high-energy system with large beam sizes, the walk-off effect can be neglected, certain back conversion is beneficial to reduce the output modulation. A trade-off must be made between the output beam quality and the conversion efficiency, especially when the pump modulation is large since. A relatively high conversion efficiency and a low output modulation are both achievable by controlling the pump modulation and intensity.
Horsch, Karla; Pesce, Lorenzo L.; Giger, Maryellen L.; Metz, Charles E.; Jiang, Yulei
2012-01-01
Purpose: The authors developed scaling methods that monotonically transform the output of one classifier to the “scale” of another. Such transformations affect the distribution of classifier output while leaving the ROC curve unchanged. In particular, they investigated transformations between radiologists and computer classifiers, with the goal of addressing the problem of comparing and interpreting case-specific values of output from two classifiers. Methods: Using both simulated and radiologists’ rating data of breast imaging cases, the authors investigated a likelihood-ratio-scaling transformation, based on “matching” classifier likelihood ratios. For comparison, three other scaling transformations were investigated that were based on matching classifier true positive fraction, false positive fraction, or cumulative distribution function, respectively. The authors explored modifying the computer output to reflect the scale of the radiologist, as well as modifying the radiologist’s ratings to reflect the scale of the computer. They also evaluated how dataset size affects the transformations. Results: When ROC curves of two classifiers differed substantially, the four transformations were found to be quite different. The likelihood-ratio scaling transformation was found to vary widely from radiologist to radiologist. Similar results were found for the other transformations. Our simulations explored the effect of database sizes on the accuracy of the estimation of our scaling transformations. Conclusions: The likelihood-ratio-scaling transformation that the authors have developed and evaluated was shown to be capable of transforming computer and radiologist outputs to a common scale reliably, thereby allowing the comparison of the computer and radiologist outputs on the basis of a clinically relevant statistic. PMID:22559651
Windt, Johann; Ekstrand, Jan; Khan, Karim M; McCall, Alan; Zumbo, Bruno D
2018-05-01
Player unavailability negatively affects team performance in elite football. However, whether player unavailability and its concomitant performance decrement is mediated by any changes in teams' match physical outputs is unknown. We examined whether the number of players injured (i.e. unavailable for match selection) was associated with any changes in teams' physical outputs. Prospective cohort study. Between-team variation was calculated by correlating average team availability with average physical outputs. Within-team variation was quantified using linear mixed modelling, using physical outputs - total distance, sprint count (efforts over 20km/h), and percent of distance covered at high speeds (>14km/h) - as outcome variables, and player unavailability as the independent variable of interest. To control for other factors that may influence match physical outputs, stage (group stage/knockout), venue (home/away), score differential, ball possession (%), team ranking (UEFA Club Coefficient), and average team age were all included as covariates. Teams' average player unavailability was positively associated with the average number of sprints they performed in matches across two seasons. Multilevel models similarly demonstrated that having 4 unavailable players was associated with 20.8 more sprints during matches in 2015/2016, and with an estimated 0.60-0.77% increase in the proportion of total distance run above 14km/h in both seasons. Player unavailability had a possibly positive and likely positive association with total match distances in the two respective seasons. Having more players injured and unavailable for match selection was associated with an increase in teams' match physical outputs. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Development of a Position Decoding ASIC for SPECT using Silicon Photomultiplier
NASA Astrophysics Data System (ADS)
Cho, M.; Kim, H.; Lim, K. T.; Cho, G.
2016-01-01
Single Photon Emission Computed Tomography(SPECT) is a widely used diagnosis modality for detecting metabolic diseases. In general, SPECT system is consisted of a sensor, a pre-amplifier, position decoding circuits(PDC) and a data acquisition(DAQ) system. Due to such complexity, it is quite costly to assemble SPECT system by putting discrete components together. Moreover, using discrete components would make the system rather bulky. In this work, we designed a channel module ASIC for SPECT system. This system was composed of a transimpedance amplifier(TIA), comparators and digital logics. In this particular module, a TIA was selected as a preamplifier because the decay time and the rise time are shorter than that of other preamplifier topologies. In the proposed module, the amplified pulse from the TIA was split into two separate signals and each signal was then fed into two comparators with different reference levels, e.g., a low and high level. Then an XOR gate combined the comparator outputs and the output of XOR gate was sent to the suceeding digital logic. Furthermore, the output of each component in the module is composed of a signal packet. The packet includes the information on the energy, the time and the position of the incident photon. The energy and position information of a detected radiation can be derived from the output of the D-flipflop(DFF) in the module via time-over-threshold(TOT). The timing information was measured using a delayed rising edge from the low-level referenced comparator. There are several advantages in developing the channel module ASIC. First of all, the ASIC has only digital outputs and thus a correction circuit for analog signal distortion can be neglected. In addition, it is possible to cut down the system production cost because the volume of the system can be reduced due to the compactness of ASIC. The benefits of channel module is not only limited to SPECT but also beneficial to many other radiation detecting systems.
Tidal, daily, and lunar-day activity cycles in the marine polychaete Nereis virens.
Last, Kim S; Bailhache, Thierry; Kramer, Cas; Kyriacou, Charalambos P; Rosato, Ezio; Olive, Peter J W
2009-02-01
The burrow emergence activity of the wild caught ragworm Nereis virens Sars associated with food prospecting was investigated under various photoperiodic (LD) and simulated tidal cycles (STC) using a laboratory based actograph. Just over half (57%) of the animals under LD with STC displayed significant tidal (approximately 12.4 h) and/or lunar-day (approximately 24.8 h) activity patterns. Under constant light (LL) plus a STC, 25% of all animals were tidal, while one animal responded with a circadian (24.2 h) activity rhythm suggestive of cross-modal entrainment where the environmental stimulus of one period entrains rhythmic behavior of a different period. All peaks of activity under a STC, apart from that of the individual cross-modal entrainment case, coincided with the period of tank flooding. Under only LD without a STC, 49% of the animals showed nocturnal (approximately 24 h) activity. When animals were maintained under free-running LL conditions, 15% displayed significant rhythmicity with circatidal and circadian/circalunidian periodicities. Although activity cycles in N. virens at the population level are robust, at the individual level they are particularly labile, suggesting complex biological clock-control with multiple clock output pathways.
Iterated transportation simulations for Dallas and Portland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagel, K.; Simon, P.; Rickert, M.
1998-09-02
The goal of the TRansportation ANalysis and SIMulation System (TRANSIMS) is to combine the most important aspects of human decision-making related to transportation, from activities planning (sleep, work, eat, shop,...) via modal and route planning to driving, into a single, consistent methodological and software framework. This is meant to combine the functionalities of activities-based travel demand generation, modal choice and route assignment, and micro-simulation. TRANSIMS attempts to employ advanced methodologies in all these modules. Yet, it is probably the overall framework that is the most important part of this attempt. It is, for example, possible to replace the TRANSIMS microsimulationmore » by another micro-simulation that uses the same input and generates the same output. TRANSIMS uses specific regions as examples in order to ensure that the technology is rooted in the real world. Until about the middle of 1997, an approximately five miles by five miles area in Dallas/Texas was used. Since then, TRANSIMS has moved to using data from Portland/Oregon; a case study for this region is planned to be completed by the end of the year 2000. In this paper the authors give short descriptions of these projects and give references to related publications.« less
Wang, Yue; Song, Renfeng; Feng, Huan; Guo, Ke; Meng, Qingtao; Chi, Haijun; Zhang, Run; Zhang, Zhiqiang
2016-01-01
A new Gadolinium(III)–coumarin complex, DO3A-Gd-CA, was designed and prepared as a dual-modal probe for simultaneous fluorescence and relaxivity responses to fluoride ions (F−) in aqueous media and mice. DO3A-Gd-CA was designed by using Gd(III) center as an MRI signal output unit and fluoride binding site, and the 4-(diethylamino)-coumarin-3-carboxylic acid (CA) as a fluorescence reporter. Upon the addition of fluoride ions to the solution of DO3A-Gd-CA, the liberation of the coordinated CA ligand led to a 5.7-fold fluorescence enhancement and a 75% increase in the longitudinal relaxivity (r1). The fluorescent detection limit for fluoride ions was determined to be 8 μM based on a 3σ/slope. The desirable features of the proposed DO3A-Gd-CA, such as high sensitivity and specificity, reliability at physiological pH and low cytotoxicity enable its application in visualization of fluoride ion in mice. The successful in vivo imaging indicates that DO3A-Gd-CA could be potentially used in biomedical diagnosis fields. PMID:27999298
The Contribution of the Parietal Lobes to Speaking and Writing
Wise, Richard J. S.
2010-01-01
The left parietal lobe has been proposed as a major language area. However, parietal cortical function is more usually considered in terms of the control of actions, contributing both to attention and cross-modal integration of external and reafferent sensory cues. We used positron emission tomography to study normal subjects while they overtly generated narratives, both spoken and written. The purpose was to identify the parietal contribution to the modality-specific sensorimotor control of communication, separate from amodal linguistic and memory processes involved in generating a narrative. The majority of left and right parietal activity was associated with the execution of writing under visual and somatosensory control irrespective of whether the output was a narrative or repetitive reproduction of a single grapheme. In contrast, action-related parietal activity during speech production was confined to primary somatosensory cortex. The only parietal area with a pattern of activity compatible with an amodal central role in communication was the ventral part of the left angular gyrus (AG). The results of this study indicate that the cognitive processing of language within the parietal lobe is confined to the AG and that the major contribution of parietal cortex to communication is in the sensorimotor control of writing. PMID:19531538
Listening to membrane potential: photoacoustic voltage-sensitive dye recording.
Zhang, Haichong K; Yan, Ping; Kang, Jeeun; Abou, Diane S; Le, Hanh N D; Jha, Abhinav K; Thorek, Daniel L J; Kang, Jin U; Rahmim, Arman; Wong, Dean F; Boctor, Emad M; Loew, Leslie M
2017-04-01
Voltage-sensitive dyes (VSDs) are designed to monitor membrane potential by detecting fluorescence changes in response to neuronal or muscle electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. By contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near-infrared light excitation and ultrasound detection. Here, we show that voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. We synthesized a near-infrared photoacoustic VSD (PA-VSD), whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. A theoretical model accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate PA voltage sensing but also emphasize the interplay of both fluorescence and absorbance properties in the design of optimized PA probes. Together, our results demonstrate PA sensing as a potential new modality for recording and external imaging of electrophysiological and neurochemical events in the brain.
Wang, Yue; Song, Renfeng; Feng, Huan; Guo, Ke; Meng, Qingtao; Chi, Haijun; Zhang, Run; Zhang, Zhiqiang
2016-12-16
A new Gadolinium(III)-coumarin complex, DO3A-Gd- CA , was designed and prepared as a dual-modal probe for simultaneous fluorescence and relaxivity responses to fluoride ions (F - ) in aqueous media and mice. DO3A-Gd- CA was designed by using Gd(III) center as an MRI signal output unit and fluoride binding site, and the 4-(diethylamino)-coumarin-3-carboxylic acid ( CA ) as a fluorescence reporter. Upon the addition of fluoride ions to the solution of DO3A-Gd- CA , the liberation of the coordinated CA ligand led to a 5.7-fold fluorescence enhancement and a 75% increase in the longitudinal relaxivity ( r ₁). The fluorescent detection limit for fluoride ions was determined to be 8 μM based on a 3 σ / slope . The desirable features of the proposed DO3A-Gd- CA , such as high sensitivity and specificity, reliability at physiological pH and low cytotoxicity enable its application in visualization of fluoride ion in mice. The successful in vivo imaging indicates that DO3A-Gd- CA could be potentially used in biomedical diagnosis fields.
Towards the control of the modal energy transfer in transverse mode instabilities
NASA Astrophysics Data System (ADS)
Stihler, Christoph; Jauregui, Cesar; Tünnermann, Andreas; Limpert, Jens
2018-02-01
Thermally-induced refractive index gratings (RIG) in high-power fiber laser systems lead to transverse mode instabilities (TMI) above a certain average power threshold. The effect of TMI is currently the main limitation for the further average power scaling of fiber lasers and amplifiers with nearly diffraction-limited beam quality. In this work we experimentally investigate, for the first time, the growth of the RIG strength by introducing a phase-shift between the RIG and the modal interference pattern in a fiber amplifier. The experiments reveal that the RIG is strong enough to couple energy between different transverse modes even at powers significantly below the TMI threshold, provided that the introduced phase-shift is high enough. This indicates that, as the strength of the RIG further increases with increasing average output power, the RIG becomes more and more sensitive to even small noise-induced phase-shifts, which ultimately trigger TMI. Furthermore, it is shown that a beam cleaning also occurs when a positive phase-shift is introduced, even above the TMI threshold. This finding will pave the way for the development of a new class of mitigation strategies for TMI, which key feature is the control of the introduced phase-shift.
NASA Astrophysics Data System (ADS)
Tajaldini, Mehdi; Jafri, Mohd Zubir Mat
2015-04-01
The theory of Nonlinear Modal Propagation Analysis Method (NMPA) have shown significant features of nonlinear multimode interference (MMI) coupler with compact dimension and when launched near the threshold of nonlinearity. Moreover, NMPA have the potential to allow studying the nonlinear MMI based the modal interference to explorer the phenomenon that what happen due to the natural of multimode region. Proposal of all-optical switch based NMPA has approved its capability to achieving the all-optical gates. All-optical gates have attracted increasing attention due to their practical utility in all-optical signal processing networks and systems. Nonlinear multimode interference devices could apply as universal all-optical gates due to significant features that NMPA introduce them. In this Paper, we present a novel Ultra-compact MMI coupler based on NMPA method in low intensity compared to last reports either as a novel design method and potential application for optical NAND, NOR as universal gates on single structure for Boolean logic signal processing devices and optimize their application via studding the contrast ratio between ON and OFF as a function of output width. We have applied NMPA for several applications so that the miniaturization in low nonlinear intensities is their main purpose.
Listening to membrane potential: photoacoustic voltage-sensitive dye recording
NASA Astrophysics Data System (ADS)
Zhang, Haichong K.; Yan, Ping; Kang, Jeeun; Abou, Diane S.; Le, Hanh N. D.; Jha, Abhinav K.; Thorek, Daniel L. J.; Kang, Jin U.; Rahmim, Arman; Wong, Dean F.; Boctor, Emad M.; Loew, Leslie M.
2017-04-01
Voltage-sensitive dyes (VSDs) are designed to monitor membrane potential by detecting fluorescence changes in response to neuronal or muscle electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. By contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near-infrared light excitation and ultrasound detection. Here, we show that voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. We synthesized a near-infrared photoacoustic VSD (PA-VSD), whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. A theoretical model accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate PA voltage sensing but also emphasize the interplay of both fluorescence and absorbance properties in the design of optimized PA probes. Together, our results demonstrate PA sensing as a potential new modality for recording and external imaging of electrophysiological and neurochemical events in the brain.
Sanada, Akira; Tanaka, Nobuo
2012-08-01
This study deals with the feedforward active control of sound transmission through a simply supported rectangular panel using vibration actuators. The control effect largely depends on the excitation method, including the number and locations of actuators. In order to obtain a large control effect at low frequencies over a wide frequency, an active transmission control method based on single structural mode actuation is proposed. Then, with the goal of examining the feasibility of the proposed method, the (1, 3) mode is selected as the target mode and a modal actuation method in combination with six point force actuators is considered. Assuming that a single input single output feedforward control is used, sound transmission in the case minimizing the transmitted sound power is calculated for some actuation methods. Simulation results showed that the (1, 3) modal actuation is globally effective at reducing the sound transmission by more than 10 dB in the low-frequency range for both normal and oblique incidences. Finally, experimental results also showed that a large reduction could be achieved in the low-frequency range, which proves the validity and feasibility of the proposed method.
Altink, Marieke E.; Oosterlaan, Jaap; Beem, Leo; Buschgens, Cathelijne J. M.; Buitelaar, Jan; Sergeant, Joseph A.
2007-01-01
Attention-Deficit/Hyperactivity Disorder (ADHD) shares a genetic basis with motor coordination problems and probably motor timing problems. In line with this, comparable problems in motor timing should be observed in first degree relatives and might, therefore, form a suitable endophenotypic candidate. This hypothesis was investigated in 238 ADHD-families (545 children) and 147 control-families (271 children). A motor timing task was administered, in which children had to produce a 1,000 ms interval. In addition to this task, two basic motor tasks were administered to examine speed and variability of motor output, when no timing component was required. Results indicated that variability in motor timing is a useful endophenotypic candidate: It was clearly associated with ADHD, it was also present in non-affected siblings, and it correlated within families. Accuracy (under- versus over-production) in motor timing appeared less useful: Even though accuracy was associated with ADHD (probands and affected siblings had a tendency to under-produce the 1,000 ms interval compared to controls), non-affected siblings did not differ from controls and sibling correlations were only marginally significant. Slow and variable motor output without timing component also appears present in ADHD, but not in non-affected siblings, suggesting these deficits not to be related to a familial vulnerability for ADHD. Deficits in motor timing could not be explained by deficits already present in basic motor output without a timing component. This suggests abnormalities in motor timing were predominantly related to deficient motor timing processes and not to general deficient motor functioning. The finding that deficits in motor timing run in ADHD-families suggests this to be a fruitful domain for further exploration in relation to the genetic underpinnings of ADHD. PMID:18071893
Modeling and Control of the Redundant Parallel Adjustment Mechanism on a Deployable Antenna Panel
Tian, Lili; Bao, Hong; Wang, Meng; Duan, Xuechao
2016-01-01
With the aim of developing multiple input and multiple output (MIMO) coupling systems with a redundant parallel adjustment mechanism on the deployable antenna panel, a structural control integrated design methodology is proposed in this paper. Firstly, the modal information from the finite element model of the structure of the antenna panel is extracted, and then the mathematical model is established with the Hamilton principle; Secondly, the discrete Linear Quadratic Regulator (LQR) controller is added to the model in order to control the actuators and adjust the shape of the panel. Finally, the engineering practicality of the modeling and control method based on finite element analysis simulation is verified. PMID:27706076
Ahmad, Fareed; Mangano, Robert; Shore, Shirah; Polimenakos, Anastasios
2017-10-01
This is a case report of premature low birth weight infant with hypoplasia of left heart structures and a large malaligned VSD who underwent successful staged approach of biventricular repair. We obtained qualitative and quantitative echocardiographic, MRI, and conventional catheterization data to support stepwise strategy towards LV rehabilitation to sustain adequate cardiac output. A thorough and intense follow-up has shown significant growth of left heart structures and favorable clinical status following staged biventricular repair. Our data indicate usefulness of qualitative and quantitative advanced complimentary multi-imaging modalities in predicting the postnatal growth potential of critically underdeveloped left heart structures.
Neuromorphic vision sensors and preprocessors in system applications
NASA Astrophysics Data System (ADS)
Kramer, Joerg; Indiveri, Giacomo
1998-09-01
A partial review of neuromorphic vision sensors that are suitable for use in autonomous systems is presented. Interfaces are being developed to multiplex the high- dimensional output signals of arrays of such sensors and to communicate them in standard formats to off-chip devices for higher-level processing, actuation, storage and display. Alternatively, on-chip processing stages may be implemented to extract sparse image parameters, thereby obviating the need for multiplexing. Autonomous robots are used to test neuromorphic vision chips in real-world environments and to explore the possibilities of data fusion from different sensing modalities. Examples of autonomous mobile systems that use neuromorphic vision chips for line tracking and optical flow matching are described.
980-nm diode laser and fiber optic resectoscope in endourological surgery
NASA Astrophysics Data System (ADS)
Cecchetti, Walter; Guazzieri, Stefano; Tasca, Andrea; Dal Bianco, M.; Zattoni, Filiberto; Pagano, Francesco
1996-12-01
The 980 nm Ceralas D50 diode laser, produces homogeneous lesions on tissues of different nature. In our endourological tests we used the Ceralas D50 coupled with Comeg 24 ch laser resectoscope, and we treated 22 patients: n.5 bladder cancers, n.3 uretero pelvic junction obstructions, with hydronephrosis, n.3 urethra stenosis, n1 ureter stenosis, n.4 multiple upper tract transitional cell carcinomas, n.6 BPH treatments with VLAP modalities. Using the 1000 micrometers delivery fibers with different shaped tips, we obtained a bloodless sharp cut and easily vaporizations with minimum carbonizations, with power output in the range of 8-12 W, and 18-24W for VLAP.
Toward an affective neuroscience account of financial risk taking.
Wu, Charlene C; Sacchet, Matthew D; Knutson, Brian
2012-01-01
To explain human financial risk taking, economic, and finance theories typically refer to the mathematical properties of financial options, whereas psychological theories have emphasized the influence of emotion and cognition on choice. From a neuroscience perspective, choice emanates from a dynamic multicomponential process. Recent technological advances in neuroimaging have made it possible for researchers to separately visualize perceptual input, intermediate processing, and motor output. An affective neuroscience account of financial risk taking thus might illuminate affective mediators that bridge the gap between statistical input and choice output. To test this hypothesis, we conducted a quantitative meta-analysis (via activation likelihood estimate or ALE) of functional magnetic resonance imaging experiments that focused on neural responses to financial options with varying statistical moments (i.e., mean, variance, skewness). Results suggested that different statistical moments elicit both common and distinct patterns of neural activity. Across studies, high versus low mean had the highest probability of increasing ventral striatal activity, but high versus low variance had the highest probability of increasing anterior insula activity. Further, high versus low skewness had the highest probability of increasing ventral striatal activity. Since ventral striatal activity has been associated with positive aroused affect (e.g., excitement), whereas anterior insular activity has been associated with negative aroused affect (e.g., anxiety) or general arousal, these findings are consistent with the notion that statistical input influences choice output by eliciting anticipatory affect. The findings also imply that neural activity can be used to predict financial risk taking - both when it conforms to and violates traditional models of choice.
Toward an Affective Neuroscience Account of Financial Risk Taking
Wu, Charlene C.; Sacchet, Matthew D.; Knutson, Brian
2012-01-01
To explain human financial risk taking, economic, and finance theories typically refer to the mathematical properties of financial options, whereas psychological theories have emphasized the influence of emotion and cognition on choice. From a neuroscience perspective, choice emanates from a dynamic multicomponential process. Recent technological advances in neuroimaging have made it possible for researchers to separately visualize perceptual input, intermediate processing, and motor output. An affective neuroscience account of financial risk taking thus might illuminate affective mediators that bridge the gap between statistical input and choice output. To test this hypothesis, we conducted a quantitative meta-analysis (via activation likelihood estimate or ALE) of functional magnetic resonance imaging experiments that focused on neural responses to financial options with varying statistical moments (i.e., mean, variance, skewness). Results suggested that different statistical moments elicit both common and distinct patterns of neural activity. Across studies, high versus low mean had the highest probability of increasing ventral striatal activity, but high versus low variance had the highest probability of increasing anterior insula activity. Further, high versus low skewness had the highest probability of increasing ventral striatal activity. Since ventral striatal activity has been associated with positive aroused affect (e.g., excitement), whereas anterior insular activity has been associated with negative aroused affect (e.g., anxiety) or general arousal, these findings are consistent with the notion that statistical input influences choice output by eliciting anticipatory affect. The findings also imply that neural activity can be used to predict financial risk taking – both when it conforms to and violates traditional models of choice. PMID:23129993
Integration of auditory and somatosensory error signals in the neural control of speech movements.
Feng, Yongqiang; Gracco, Vincent L; Max, Ludo
2011-08-01
We investigated auditory and somatosensory feedback contributions to the neural control of speech. In task I, sensorimotor adaptation was studied by perturbing one of these sensory modalities or both modalities simultaneously. The first formant (F1) frequency in the auditory feedback was shifted up by a real-time processor and/or the extent of jaw opening was increased or decreased with a force field applied by a robotic device. All eight subjects lowered F1 to compensate for the up-shifted F1 in the feedback signal regardless of whether or not the jaw was perturbed. Adaptive changes in subjects' acoustic output resulted from adjustments in articulatory movements of the jaw or tongue. Adaptation in jaw opening extent in response to the mechanical perturbation occurred only when no auditory feedback perturbation was applied or when the direction of adaptation to the force was compatible with the direction of adaptation to a simultaneous acoustic perturbation. In tasks II and III, subjects' auditory and somatosensory precision and accuracy were estimated. Correlation analyses showed that the relationships 1) between F1 adaptation extent and auditory acuity for F1 and 2) between jaw position adaptation extent and somatosensory acuity for jaw position were weak and statistically not significant. Taken together, the combined findings from this work suggest that, in speech production, sensorimotor adaptation updates the underlying control mechanisms in such a way that the planning of vowel-related articulatory movements takes into account a complex integration of error signals from previous trials but likely with a dominant role for the auditory modality.
Rivera-Vega, Michelle Y; Flint, Amanda; Winger, Daniel G; Libman, Ingrid; Arslanian, Silva
2015-08-01
Obese youth clinically diagnosed with type 2 diabetes mellitus (T2DM) frequently have evidence of islet cell autoimmunity. We investigated the clinical and biochemical differences, and therapeutic modalities among autoantibody positive (Ab+) vs. autoantibody negative (Ab-) youth at the time of diagnosis and over time in a multi-provider clinical setting. Chart review of 145 obese youth diagnosed with T2DM from January 2003 to July 2012. Of these, 70 patients were Ab+ and 75 Ab-. The two groups were compared with respect to clinical presentation, physical characteristics, laboratory data, and therapeutic modalities at diagnosis and during follow up to assess the changes in these parameters associated with disease progression. At presentation, Ab+ youth with a clinical diagnosis of T2DM were younger, had higher rates of ketosis, higher hemoglobin A1c (HbA1c) and glucose levels, and lower insulin and c-peptide concentrations compared with the Ab- group. The Ab- group had a higher body mass index (BMI) z-score and cardiometabolic risk factors at diagnosis and such difference remained over time. Univariate analysis revealed that treatment modality had no effect on BMI in either group. Generalized estimating equations for longitudinal data analysis revealed that (i) BMI z-score and diastolic blood pressure (DBP) were significantly affected by duration of diabetes; (ii) systolic blood pressure (SBP) and ALT were affected by changes in BMI z-score; and (iii) changes in HbA1c had an effect on lipid profile and cardiometabolic risk factors regardless of antibody status. Irrespective of antibody status and treatment modality, youth who present with obesity and diabetes, show no improvement in obesity status over time, with the deterioration in BMI z-score affecting blood pressure (BP) and ALT, but the lipid profile being mostly impacted by HbA1c and glycemic control. Effective control of BMI and glycemia are needed to lessen the future macrovascular complications irrespective of antibody status. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Valente, Daniel L.; Braasch, Jonas; Myrbeck, Shane A.
2012-01-01
Despite many studies investigating auditory spatial impressions in rooms, few have addressed the impact of simultaneous visual cues on localization and the perception of spaciousness. The current research presents an immersive audiovisual environment in which participants were instructed to make auditory width judgments in dynamic bi-modal settings. The results of these psychophysical tests suggest the importance of congruent audio visual presentation to the ecological interpretation of an auditory scene. Supporting data were accumulated in five rooms of ascending volumes and varying reverberation times. Participants were given an audiovisual matching test in which they were instructed to pan the auditory width of a performing ensemble to a varying set of audio and visual cues in rooms. Results show that both auditory and visual factors affect the collected responses and that the two sensory modalities coincide in distinct interactions. The greatest differences between the panned audio stimuli given a fixed visual width were found in the physical space with the largest volume and the greatest source distance. These results suggest, in this specific instance, a predominance of auditory cues in the spatial analysis of the bi-modal scene. PMID:22280585
Molina-Viedma, Ángel Jesús; López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A; Rodríguez-Ahlquist, Javier; Iglesias-Vallejo, Manuel
2018-02-02
In real aircraft structures the comfort and the occupational performance of crewmembers and passengers are affected by the presence of noise. In this sense, special attention is focused on mechanical and material design for isolation and vibration control. Experimental characterization and, in particular, experimental modal analysis, provides information for adequate cabin noise control. Traditional sensors employed in the aircraft industry for this purpose are invasive and provide a low spatial resolution. This paper presents a methodology for experimental modal characterization of a front fuselage full-scale demonstrator using high-speed 3D digital image correlation, which is non-invasive, ensuring that the structural response is unperturbed by the instrumentation mass. Specifically, full-field measurements on the passenger window area were conducted when the structure was excited using an electrodynamic shaker. The spectral analysis of the measured time-domain displacements made it possible to identify natural frequencies and full-field operational deflection shapes. Changes in the modal parameters due to cabin pressurization and the behavior of different local structural modifications were assessed using this methodology. The proposed full-field methodology allowed the characterization of relevant dynamic response patterns, complementing the capabilities provided by accelerometers.
Physiotherapy for ankylosing spondylitis: evidence and application.
Passalent, Laura A
2011-03-01
Ankylosing spondylitis (AS) is a disease that tends to affect younger individuals, many of whom are in the prime of their lives; therefore, incorporating the most up-to-date evidence into physiotherapy practice is critical. The purpose of this review is to update the most recent evidence related to physiotherapy intervention for AS and highlight the application of the findings to current physiotherapy research and clinical practice. The results of this review add to the evidence supporting physiotherapy as an intervention for AS. The emphasis continues to be on exercise as the most studied physiotherapy modality, with very few studies examining other physiotherapy modalities. Results of the studies reviewed support the use of exercise, spa therapy, manual therapy and electrotherapeutic modalities. In addition, the results of this review help to understand who might benefit from certain interventions, as well as barriers to management. A review of recently published articles has resulted in a number of studies that support the body of literature describing physiotherapy as an effective form of intervention for AS. In order to continue to build on the existing research, further examination into physiotherapy modalities, beyond exercise-based intervention, needs to be explored.
Buchan, Julie N; Munhall, Kevin G
2011-01-01
Conflicting visual speech information can influence the perception of acoustic speech, causing an illusory percept of a sound not present in the actual acoustic speech (the McGurk effect). We examined whether participants can voluntarily selectively attend to either the auditory or visual modality by instructing participants to pay attention to the information in one modality and to ignore competing information from the other modality. We also examined how performance under these instructions was affected by weakening the influence of the visual information by manipulating the temporal offset between the audio and video channels (experiment 1), and the spatial frequency information present in the video (experiment 2). Gaze behaviour was also monitored to examine whether attentional instructions influenced the gathering of visual information. While task instructions did have an influence on the observed integration of auditory and visual speech information, participants were unable to completely ignore conflicting information, particularly information from the visual stream. Manipulating temporal offset had a more pronounced interaction with task instructions than manipulating the amount of visual information. Participants' gaze behaviour suggests that the attended modality influences the gathering of visual information in audiovisual speech perception.
Alterations to multisensory and unisensory integration by stimulus competition
Rowland, Benjamin A.; Stanford, Terrence R.; Stein, Barry E.
2011-01-01
In environments containing sensory events at competing locations, selecting a target for orienting requires prioritization of stimulus values. Although the superior colliculus (SC) is causally linked to the stimulus selection process, the manner in which SC multisensory integration operates in a competitive stimulus environment is unknown. Here we examined how the activity of visual-auditory SC neurons is affected by placement of a competing target in the opposite hemifield, a stimulus configuration that would, in principle, promote interhemispheric competition for access to downstream motor circuitry. Competitive interactions between the targets were evident in how they altered unisensory and multisensory responses of individual neurons. Responses elicited by a cross-modal stimulus (multisensory responses) proved to be substantially more resistant to competitor-induced depression than were unisensory responses (evoked by the component modality-specific stimuli). Similarly, when a cross-modal stimulus served as the competitor, it exerted considerably more depression than did its individual component stimuli, in some cases producing more depression than predicted by their linear sum. These findings suggest that multisensory integration can help resolve competition among multiple targets by enhancing orientation to the location of cross-modal events while simultaneously suppressing orientation to events at alternate locations. PMID:21957224
Alterations to multisensory and unisensory integration by stimulus competition.
Pluta, Scott R; Rowland, Benjamin A; Stanford, Terrence R; Stein, Barry E
2011-12-01
In environments containing sensory events at competing locations, selecting a target for orienting requires prioritization of stimulus values. Although the superior colliculus (SC) is causally linked to the stimulus selection process, the manner in which SC multisensory integration operates in a competitive stimulus environment is unknown. Here we examined how the activity of visual-auditory SC neurons is affected by placement of a competing target in the opposite hemifield, a stimulus configuration that would, in principle, promote interhemispheric competition for access to downstream motor circuitry. Competitive interactions between the targets were evident in how they altered unisensory and multisensory responses of individual neurons. Responses elicited by a cross-modal stimulus (multisensory responses) proved to be substantially more resistant to competitor-induced depression than were unisensory responses (evoked by the component modality-specific stimuli). Similarly, when a cross-modal stimulus served as the competitor, it exerted considerably more depression than did its individual component stimuli, in some cases producing more depression than predicted by their linear sum. These findings suggest that multisensory integration can help resolve competition among multiple targets by enhancing orientation to the location of cross-modal events while simultaneously suppressing orientation to events at alternate locations.
López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.; Rodríguez-Ahlquist, Javier; Iglesias-Vallejo, Manuel
2018-01-01
In real aircraft structures the comfort and the occupational performance of crewmembers and passengers are affected by the presence of noise. In this sense, special attention is focused on mechanical and material design for isolation and vibration control. Experimental characterization and, in particular, experimental modal analysis, provides information for adequate cabin noise control. Traditional sensors employed in the aircraft industry for this purpose are invasive and provide a low spatial resolution. This paper presents a methodology for experimental modal characterization of a front fuselage full-scale demonstrator using high-speed 3D digital image correlation, which is non-invasive, ensuring that the structural response is unperturbed by the instrumentation mass. Specifically, full-field measurements on the passenger window area were conducted when the structure was excited using an electrodynamic shaker. The spectral analysis of the measured time-domain displacements made it possible to identify natural frequencies and full-field operational deflection shapes. Changes in the modal parameters due to cabin pressurization and the behavior of different local structural modifications were assessed using this methodology. The proposed full-field methodology allowed the characterization of relevant dynamic response patterns, complementing the capabilities provided by accelerometers. PMID:29393897
Modal control of a plate using a fuzzy logic controller
NASA Astrophysics Data System (ADS)
Sharma, Manu; Singh, S. P.; Sachdeva, B. L.
2007-08-01
This paper presents fuzzy logic based independent modal space control (IMSC) and fuzzy logic based modified independent modal space control (MIMSC) of vibration. The rule base of the controller consists of nine rules, which have been derived based upon simple human reasoning. Input to the controller consists of the first two modal displacements and velocities of the structure and the output of the controller is the modal force to be applied by the actuator. Fuzzy logic is used in such a way that the actuator is never called to apply effort which is beyond safe limits and also the operator is saved from calculating control gains. The proposed fuzzy controller is experimentally tested for active vibration control of a cantilevered plate. A piezoelectric patch is used as a sensor to sense vibrations of the plate and another piezoelectric patch is used as an actuator to control vibrations of the plate. For analytical formulation, a finite element method based upon Hamilton's principle is used to model the plate. For experimentation, the first two modes of the plate are observed using a Kalman observer. Real-time experiments are performed to control the first mode, the second mode and both modes simultaneously. Experiments are also performed to control the first mode by IMSC, the second mode by IMSC and both modes simultaneously by MIMSC. It is found that for the same decibel reduction in the first mode, the voltage applied by the fuzzy logic based controller is less than that applied by IMSC. While controlling the second mode by IMSC, a considerable amount of spillover is observed in the first mode and region just after the second mode, whereas while controlling the second mode by fuzzy logic, spillover effects are much smaller. While controlling two modes simultaneously, with a single sensor/actuator pair, appreciable resonance control is observed both with fuzzy logic based MIMSC as well as with direct MIMSC, but there is a considerable amount of spillover in the off-resonance region. This may be due to the sub-optimal location and/or an insufficient number of actuators. So, another smart plate with two piezoelectric actuators and one piezoelectric sensor is considered. Piezoelectric patches are fixed in an area where modal strains are high. With this configuration of the smart plate, experiments are conducted to control the first three modes of the plate and it is found that spillover effects are greatly reduced.
Investigation of erectile dysfunction.
Patel, D V; Halls, J; Patel, U
2012-11-01
Erectile dysfunction (ED) represents a common and debilitating condition with a wide range of organic and non-organic causes. Physical aetiologies can be divided into disorders affecting arterial inflow, the venous occlusion mechanism or the penile structure itself. Various imaging modalities can be utilised to investigate the physical causes of ED, but penile Doppler sonography (PDS) is the most informative technique, indicated in those patients with ED who do not respond to oral pharmacological agents (e.g. phosphodiesterase type 5 inhibitors). This review will examine the anatomical and physiological basis of penile erection, the method for performing PDS and features of specific causes of ED, and will also consider the alternative imaging modalities available.
A unified coding strategy for processing faces and voices
Yovel, Galit; Belin, Pascal
2013-01-01
Both faces and voices are rich in socially-relevant information, which humans are remarkably adept at extracting, including a person's identity, age, gender, affective state, personality, etc. Here, we review accumulating evidence from behavioral, neuropsychological, electrophysiological, and neuroimaging studies which suggest that the cognitive and neural processing mechanisms engaged by perceiving faces or voices are highly similar, despite the very different nature of their sensory input. The similarity between the two mechanisms likely facilitates the multi-modal integration of facial and vocal information during everyday social interactions. These findings emphasize a parsimonious principle of cerebral organization, where similar computational problems in different modalities are solved using similar solutions. PMID:23664703
Oral lichen planus: An update on pathogenesis and treatment
Lavanya, N; Jayanthi, P; Rao, Umadevi K; Ranganathan, K
2011-01-01
Oral lichen planus (OLP) is a chronic inflammatory disease that affects the mucus membrane of the oral cavity. It is a T-cell mediated autoimmune disease in which the cytotoxic CD8+ T cells trigger apoptosis of the basal cells of the oral epithelium. Several antigen-specific and nonspecific inflammatory mechanisms have been put forward to explain the accumulation and homing of CD8+ T cells subepithelially and the subsequent keratinocyte apoptosis. A wide spectrum of treatment modalities is available, from topical corticosteroids to laser ablation of the lesion. In this review, we discuss the various concepts in the pathogenesis and current treatment modalities of OLP. PMID:22529568
Nascent body ego: metapsychological and neurophysiological aspects.
Lehtonen, Johannes; Partanen, Juhani; Purhonen, Maija; Valkonen-Korhonen, Minna; Kononen, Mervi; Saarikoski, Seppo; Launiala, Kari
2006-10-01
For Freud, body ego was the organizing basis of the structural theory. He defined it as a psychic projection of the body surface. Isakower's and Lewin's classical findings suggest that the body surface experiences of nursing provide the infant with sensory-affective stimulation that initiates a projection of sensory processes towards the psychic realm. During nursing, somato-sensory, gustatory and olfactory modalities merge with a primitive somatic affect of satiation, whereas auditory modality is involved more indirectly and visual contact more gradually. Repeated regularly, such nascent experiences are likely to play a part in the organization of the primitive protosymbolic mental experience. In support of this hypothesis, the authors review findings from a neurophysiological study of infants before, during and after nursing. Nursing is associated with a significant amplitude change in the newborn electroencephalogram (EEG), which wanes before the age of 3 months, and is transformed at the age of 6 months into rhythmic 3-5 Hz hedonic theta-activity. Sucking requires active physiological work, which is shown in a regular rise in heart rate. The hypothesis of a sensory-affective organization of the nascent body ego, enhanced by nursing and active sucking, seems concordant with neurophysiological phenomena related to nursing.
Self-tuning multivariable pole placement control of a multizone crystal growth furnace
NASA Technical Reports Server (NTRS)
Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.
1992-01-01
This paper presents the design and implementation of a multivariable self-tuning temperature controller for the control of lead bromide crystal growth. The crystal grows inside a multizone transparent furnace. There are eight interacting heating zones shaping the axial temperature distribution inside the furnace. A multi-input, multi-output furnace model is identified on-line by a recursive least squares estimation algorithm. A multivariable pole placement controller based on this model is derived and implemented. Comparison between single-input, single-output and multi-input, multi-output self-tuning controllers demonstrates that the zone-to-zone interactions can be minimized better by a multi-input, multi-output controller design. This directly affects the quality of crystal grown.
NASA Astrophysics Data System (ADS)
Michail, C. M.; Fountos, G. P.; David, S. L.; Valais, I. G.; Toutountzis, A. E.; Kalyvas, N. E.; Kandarakis, I. S.; Panayiotakis, G. S.
2009-10-01
The dominant powder scintillator in most medical imaging modalities for decades has been Gd2O2S:Tb due to the very good intrinsic properties and overall efficiency. Apart from Gd2O2S:Tb, there are alternative powder phosphor scintillators such as Lu2SiO5:Ce and Gd2O2S:Eu that have been suggested for use in various medical imaging modalities. Gd2O2S:Eu emits red light and can be combined mainly with digital mammography detectors such as CCDs. Lu2SiO5:Ce emits blue light and can be combined with blue sensitivity films, photocathodes and some photodiodes. For the purposes of the present study, two scintillating screens, one from Lu2SiO5:Ce and the other from Gd2O2S:Eu powders, were prepared using the method of sedimentation. The screen coating thicknesses were 25.0 and 33.1 mg cm-2 respectively. The screens were investigated by evaluating the following parameters: the output signal, the modulation transfer function, the noise equivalent passband, the informational efficiency, the quantum detection efficiency and the zero-frequency detective quantum efficiency. Furthermore, the spectral compatibility of those materials with various optical detectors was determined. Results were compared to published data for the commercially employed 'Kodak Min-R film-screen system', based on a 31.7 mg cm-2 thick Gd2O2S:Tb phosphor. For Gd2O2S:Eu, MTF data were found comparable to those of Gd2O2S:Tb, while the MTF of Lu2SiO5:Ce was even higher resulting in better spatial resolution and image sharpness properties. On the other hand, Gd2O2S:Eu was found to exhibit higher output signal and zero-frequency detective quantum efficiency than Lu2SiO5:Ce.
NASA Astrophysics Data System (ADS)
Khan, Sahubar Ali Mohd. Nadhar; Ramli, Razamin; Baten, M. D. Azizul
2015-12-01
Agricultural production process typically produces two types of outputs which are economic desirable as well as environmentally undesirable outputs (such as greenhouse gas emission, nitrate leaching, effects to human and organisms and water pollution). In efficiency analysis, this undesirable outputs cannot be ignored and need to be included in order to obtain the actual estimation of firms efficiency. Additionally, climatic factors as well as data uncertainty can significantly affect the efficiency analysis. There are a number of approaches that has been proposed in DEA literature to account for undesirable outputs. Many researchers has pointed that directional distance function (DDF) approach is the best as it allows for simultaneous increase in desirable outputs and reduction of undesirable outputs. Additionally, it has been found that interval data approach is the most suitable to account for data uncertainty as it is much simpler to model and need less information regarding its distribution and membership function. In this paper, an enhanced DEA model based on DDF approach that considers undesirable outputs as well as climatic factors and interval data is proposed. This model will be used to determine the efficiency of rice farmers who produces undesirable outputs and operates under uncertainty. It is hoped that the proposed model will provide a better estimate of rice farmers' efficiency.
People's Reactions to Nuclear War: Implications for Psychologists.
ERIC Educational Resources Information Center
Fiske, Susan T.
1987-01-01
Reviews available data documenting modal adults' beliefs, feelings, and actions regarding nuclear war. Examines discrepancies between peoples's beliefs and their relative lack of affective and behavioral response. Reviews data on possible psychological and social sources of those reactions. Contrasts average citizens, antinuclear activists, and…
Multimodal Career Counseling: An Application of the "BASIC ID."
ERIC Educational Resources Information Center
Smith, Robert L.; Southern, Stephen
1980-01-01
The multimodal career counseling model is a logical extension of Lazarus' multimodal behavior therapy through the assessment of seven modalities that affect the career of the individual. Interventions may be directed at the early decision-making stage or when difficulties are encountered. (Author)
Code of Federal Regulations, 2010 CFR
2010-04-01
... facilities and systems and improvement in the coordination in planning, and implementation of air, water, and... transportation, where the performance or use of one mode will affect another; (c) Definition of strategies for improving the effectiveness of these modal interactions; and (d) Evaluation and implementation of these...
Multi-modal sensor system for plant water stress assessment
USDA-ARS?s Scientific Manuscript database
Plant stress critically affects plant growth and causes significant loss of productivity and quality. When the plant is under water stress, it impedes photosynthesis and transpiration, resulting in changes in leaf color and temperature. Leaf discoloration in photosynthesis can be assessed by measu...
NASA Astrophysics Data System (ADS)
Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng
2018-05-01
Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.
Self-seeded single-frequency solid-state ring laser and system using same
Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.
2007-02-20
A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.
Self-seeded single-frequency laser peening method
Dane, C Brent [Livermore, CA; Hackel, Lloyd [Livermore, CA; Harris, Fritz B [Rocklin, CA
2009-08-11
A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.
Self-seeded single-frequency laser peening method
DAne, C Brent; Hackey, Lloyd A; Harris, Fritz B
2012-06-26
A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.
Bowyer, Georgina; Ewer, Katie J
2017-01-01
Sporadic outbreaks of Ebola virus infection have been documented since the mid-Seventies and viral exposure can lead to lethal haemorrhagic fever with case fatalities as high as 90%. There is now a comprehensive body of data from both ongoing and completed clinical trials assessing various vaccine strategies, which were rapidly advanced through clinical trials in response to the 2013–2016 Ebola virus disease (EVD) public health emergency. Careful consideration of immunogenicity post vaccination is essential but has been somewhat stifled because of the wide array of immunological assays and outputs that have been used in the numerous clinical trials. We discuss here the different aspects of the immune assays currently used in the Phase I clinical trials for Ebola virus vaccines, and draw comparisons across the immune outputs where possible; various trials have examined both cellular and humoral immunity in European and African cohorts. Assessment of the safety data, the immunological outputs and the ease of field deployment for the various vaccine modalities will help both the scientific community and policy-makers prioritize and potentially license vaccine candidates. If this can be achieved, the next outbreak of Ebola virus, or other emerging pathogen, can be more readily contained and will not have such widespread and devastating consequences. This article is part of the themed issue ‘The 2013–2016 West African Ebola epidemic: data, decision-making and disease control’. PMID:28396468
Timescale- and Sensory Modality-Dependency of the Central Tendency of Time Perception.
Murai, Yuki; Yotsumoto, Yuko
2016-01-01
When individuals are asked to reproduce intervals of stimuli that are intermixedly presented at various times, longer intervals are often underestimated and shorter intervals overestimated. This phenomenon may be attributed to the central tendency of time perception, and suggests that our brain optimally encodes a stimulus interval based on current stimulus input and prior knowledge of the distribution of stimulus intervals. Two distinct systems are thought to be recruited in the perception of sub- and supra-second intervals. Sub-second timing is subject to local sensory processing, whereas supra-second timing depends on more centralized mechanisms. To clarify the factors that influence time perception, the present study investigated how both sensory modality and timescale affect the central tendency. In Experiment 1, participants were asked to reproduce sub- or supra-second intervals, defined by visual or auditory stimuli. In the sub-second range, the magnitude of the central tendency was significantly larger for visual intervals compared to auditory intervals, while visual and auditory intervals exhibited a correlated and comparable central tendency in the supra-second range. In Experiment 2, the ability to discriminate sub-second intervals in the reproduction task was controlled across modalities by using an interval discrimination task. Even when the ability to discriminate intervals was controlled, visual intervals exhibited a larger central tendency than auditory intervals in the sub-second range. In addition, the magnitude of the central tendency for visual and auditory sub-second intervals was significantly correlated. These results suggest that a common modality-independent mechanism is responsible for the supra-second central tendency, and that both the modality-dependent and modality-independent components of the timing system contribute to the central tendency in the sub-second range.
Cross-modal enhancement of speech detection in young and older adults: does signal content matter?
Tye-Murray, Nancy; Spehar, Brent; Myerson, Joel; Sommers, Mitchell S; Hale, Sandra
2011-01-01
The purpose of the present study was to examine the effects of age and visual content on cross-modal enhancement of auditory speech detection. Visual content consisted of three clearly distinct types of visual information: an unaltered video clip of a talker's face, a low-contrast version of the same clip, and a mouth-like Lissajous figure. It was hypothesized that both young and older adults would exhibit reduced enhancement as visual content diverged from the original clip of the talker's face, but that the decrease would be greater for older participants. Nineteen young adults and 19 older adults were asked to detect a single spoken syllable (/ba/) in speech-shaped noise, and the level of the signal was adaptively varied to establish the signal-to-noise ratio (SNR) at threshold. There was an auditory-only baseline condition and three audiovisual conditions in which the syllable was accompanied by one of the three visual signals (the unaltered clip of the talker's face, the low-contrast version of that clip, or the Lissajous figure). For each audiovisual condition, the SNR at threshold was compared with the SNR at threshold for the auditory-only condition to measure the amount of cross-modal enhancement. Young adults exhibited significant cross-modal enhancement with all three types of visual stimuli, with the greatest amount of enhancement observed for the unaltered clip of the talker's face. Older adults, in contrast, exhibited significant cross-modal enhancement only with the unaltered face. Results of this study suggest that visual signal content affects cross-modal enhancement of speech detection in both young and older adults. They also support a hypothesized age-related deficit in processing low-contrast visual speech stimuli, even in older adults with normal contrast sensitivity.
Wu, F; Mo, M; Qin, X X; Fang, H; Zhao, G M; Liu, G Y; Chen, Y Y; Cao, Z G; Yan, Y J; Lyu, L L; Xu, W H; Shao, Z M
2017-12-10
Objective: To determine the most cost-effective modality for breast cancer screening in women living in Shanghai. Methods: A Markov model for breast cancer was redeveloped based on true effect which was derived from a project for detection of women at high risk of breast cancer and an organized breast cancer screening program conducted simultaneously in Minhang district, Shanghai, during 2008 to 2012. Parameters of the model were derived from literatures. General principles related to cost-effectiveness analysis were used to compare the costs and effects of 12 different screening modalities in a simulated cohort involving 100 000 women aged 45 years. Incremental cost-effectiveness ratio (ICER) was used to determine the most cost-effective modality. Sensitivity analysis was conducted to evaluate how these factors affected the estimated cost-effectiveness. Results: The modality of biennial CBE followed by ultrasonic and mammography among those with positive CBE was observed as the most cost-effective one. The costs appeared as 182 526 Yuan RMB per life year gained and 144 386 Yuan RMB per quality adjusted life-year (QALY) saved, which were within the threshold of 2-3 times of local per capita Gross Domestic Product. Results from sensitivity analysis showed that, due to higher incidence rate of breast cancer in Shanghai, the cost per QALY would be 64 836 Yuan RMB lower in Shanghai than the average level in China. Conclusion: Our research findings showed that the biennial CBE program followed by ultrasonic and mammography for those with positive CBE results might serve as the optimal breast cancer screening modality for Chinese women living in Shanghai, and thus be widely promoted in this population elsewhere.
Lehmann, Janina A M; Seufert, Tina
2017-01-01
This study investigates the possibilities of fostering learning based on differences in recall and comprehension after learning with texts which were presented in one of three modalities: either in a spoken, written, or sung version. All three texts differ regarding their processing, especially when considering working memory. Overall, we assume the best recall performance after learning with the written text and the best comprehension performance after learning with the sung text, respectively, compared to both other text modalities. We also analyzed whether the melody of the sung material functions as a mnemonic aid for the learners in the sung text condition. If melody and text of the sung version are closely linked, presentation of the melody during the post-test phase could foster text retrieval. 108 students either learned from a sung text performed by a professional singer, a printed text, or the same text read out loud. Half of the participants worked on the post-test while listening to the melody used for the musical learning material and the other half did not listen to a melody. The written learning modality led to significantly better recall than with the spoken ( d = 0.97) or sung text ( d = 0.78). However, comprehension after learning with the sung modality was significantly superior compared to when learning with the written learning modality ( d = 0.40). Reading leads to more focus on details, which is required to answer recall questions, while listening fosters a general understanding of the text, leading to higher levels of comprehension. Listening to the melody during the post-test phase negatively affected comprehension, irrespective of the modality during the learning phase. This can be explained by the seductive detail effect, as listening to the melody during the post-test phase may distract learners from their main task. In closing, theoretical and practical implications are discussed.
Lehmann, Janina A. M.; Seufert, Tina
2018-01-01
This study investigates the possibilities of fostering learning based on differences in recall and comprehension after learning with texts which were presented in one of three modalities: either in a spoken, written, or sung version. All three texts differ regarding their processing, especially when considering working memory. Overall, we assume the best recall performance after learning with the written text and the best comprehension performance after learning with the sung text, respectively, compared to both other text modalities. We also analyzed whether the melody of the sung material functions as a mnemonic aid for the learners in the sung text condition. If melody and text of the sung version are closely linked, presentation of the melody during the post-test phase could foster text retrieval. 108 students either learned from a sung text performed by a professional singer, a printed text, or the same text read out loud. Half of the participants worked on the post-test while listening to the melody used for the musical learning material and the other half did not listen to a melody. The written learning modality led to significantly better recall than with the spoken (d = 0.97) or sung text (d = 0.78). However, comprehension after learning with the sung modality was significantly superior compared to when learning with the written learning modality (d = 0.40). Reading leads to more focus on details, which is required to answer recall questions, while listening fosters a general understanding of the text, leading to higher levels of comprehension. Listening to the melody during the post-test phase negatively affected comprehension, irrespective of the modality during the learning phase. This can be explained by the seductive detail effect, as listening to the melody during the post-test phase may distract learners from their main task. In closing, theoretical and practical implications are discussed. PMID:29375429
Wahn, Basil; König, Peter
2015-01-01
Humans continuously receive and integrate information from several sensory modalities. However, attentional resources limit the amount of information that can be processed. It is not yet clear how attentional resources and multisensory processing are interrelated. Specifically, the following questions arise: (1) Are there distinct spatial attentional resources for each sensory modality? and (2) Does attentional load affect multisensory integration? We investigated these questions using a dual task paradigm: participants performed two spatial tasks (a multiple object tracking task and a localization task), either separately (single task condition) or simultaneously (dual task condition). In the multiple object tracking task, participants visually tracked a small subset of several randomly moving objects. In the localization task, participants received either visual, auditory, or redundant visual and auditory location cues. In the dual task condition, we found a substantial decrease in participants' performance relative to the results of the single task condition. Importantly, participants performed equally well in the dual task condition regardless of the location cues' modality. This result suggests that having spatial information coming from different modalities does not facilitate performance, thereby indicating shared spatial attentional resources for the auditory and visual modality. Furthermore, we found that participants integrated redundant multisensory information similarly even when they experienced additional attentional load in the dual task condition. Overall, findings suggest that (1) visual and auditory spatial attentional resources are shared and that (2) audiovisual integration of spatial information occurs in an pre-attentive processing stage.
Hannah, Beverly; Wang, Yue; Jongman, Allard; Sereno, Joan A; Cao, Jiguo; Nie, Yunlong
2017-01-01
Speech perception involves multiple input modalities. Research has indicated that perceivers establish cross-modal associations between auditory and visuospatial events to aid perception. Such intermodal relations can be particularly beneficial for speech development and learning, where infants and non-native perceivers need additional resources to acquire and process new sounds. This study examines how facial articulatory cues and co-speech hand gestures mimicking pitch contours in space affect non-native Mandarin tone perception. Native English as well as Mandarin perceivers identified tones embedded in noise with either congruent or incongruent Auditory-Facial (AF) and Auditory-FacialGestural (AFG) inputs. Native Mandarin results showed the expected ceiling-level performance in the congruent AF and AFG conditions. In the incongruent conditions, while AF identification was primarily auditory-based, AFG identification was partially based on gestures, demonstrating the use of gestures as valid cues in tone identification. The English perceivers' performance was poor in the congruent AF condition, but improved significantly in AFG. While the incongruent AF identification showed some reliance on facial information, incongruent AFG identification relied more on gestural than auditory-facial information. These results indicate positive effects of facial and especially gestural input on non-native tone perception, suggesting that cross-modal (visuospatial) resources can be recruited to aid auditory perception when phonetic demands are high. The current findings may inform patterns of tone acquisition and development, suggesting how multi-modal speech enhancement principles may be applied to facilitate speech learning.
Hannah, Beverly; Wang, Yue; Jongman, Allard; Sereno, Joan A.; Cao, Jiguo; Nie, Yunlong
2017-01-01
Speech perception involves multiple input modalities. Research has indicated that perceivers establish cross-modal associations between auditory and visuospatial events to aid perception. Such intermodal relations can be particularly beneficial for speech development and learning, where infants and non-native perceivers need additional resources to acquire and process new sounds. This study examines how facial articulatory cues and co-speech hand gestures mimicking pitch contours in space affect non-native Mandarin tone perception. Native English as well as Mandarin perceivers identified tones embedded in noise with either congruent or incongruent Auditory-Facial (AF) and Auditory-FacialGestural (AFG) inputs. Native Mandarin results showed the expected ceiling-level performance in the congruent AF and AFG conditions. In the incongruent conditions, while AF identification was primarily auditory-based, AFG identification was partially based on gestures, demonstrating the use of gestures as valid cues in tone identification. The English perceivers’ performance was poor in the congruent AF condition, but improved significantly in AFG. While the incongruent AF identification showed some reliance on facial information, incongruent AFG identification relied more on gestural than auditory-facial information. These results indicate positive effects of facial and especially gestural input on non-native tone perception, suggesting that cross-modal (visuospatial) resources can be recruited to aid auditory perception when phonetic demands are high. The current findings may inform patterns of tone acquisition and development, suggesting how multi-modal speech enhancement principles may be applied to facilitate speech learning. PMID:29255435
Environmentally adaptive processing for shallow ocean applications: A sequential Bayesian approach.
Candy, J V
2015-09-01
The shallow ocean is a changing environment primarily due to temperature variations in its upper layers directly affecting sound propagation throughout. The need to develop processors capable of tracking these changes implies a stochastic as well as an environmentally adaptive design. Bayesian techniques have evolved to enable a class of processors capable of performing in such an uncertain, nonstationary (varying statistics), non-Gaussian, variable shallow ocean environment. A solution to this problem is addressed by developing a sequential Bayesian processor capable of providing a joint solution to the modal function tracking and environmental adaptivity problem. Here, the focus is on the development of both a particle filter and an unscented Kalman filter capable of providing reasonable performance for this problem. These processors are applied to hydrophone measurements obtained from a vertical array. The adaptivity problem is attacked by allowing the modal coefficients and/or wavenumbers to be jointly estimated from the noisy measurement data along with tracking of the modal functions while simultaneously enhancing the noisy pressure-field measurements.
Thapa, Deepak; Ahuja, Vanita
2014-01-01
Plantar fasciitis (PF) is the most common cause of chronic heel pain which may be bilateral in 20 to 30% of patients. It is a very painful and disabling condition which can affect the quality of life. The management includes both pharmacological and operative procedures with no single proven effective treatment modality. In the present case series, we managed three patients with PF (one with bilateral PF). Following a diagnostic medial calcaneal nerve (MCN) block at its origin, we observed reduction in verbal numerical rating scale (VNRS) in all the three patients. Two patients has relapse of PF pain which was managed with MCN block followed with pulsed radio frequency (PRF). All the patients were pain-free at the time of reporting. This case series highlights the possible role of combination of diagnostic MCN block near its origin followed with PRF as a new modality in management of patients with PF. PMID:24963184
A method to identify the main mode of machine tool under operating conditions
NASA Astrophysics Data System (ADS)
Wang, Daming; Pan, Yabing
2017-04-01
The identification of the modal parameters under experimental conditions is the most common procedure when solving the problem of machine tool structure vibration. However, the influence of each mode on the machine tool vibration in real working conditions remains unknown. In fact, the contributions each mode makes to the machine tool vibration during machining process are different. In this article, an active excitation modal analysis is applied to identify the modal parameters in operational condition, and the Operating Deflection Shapes (ODS) in frequencies of high level vibration that affect the quality of machining in real working conditions are obtained. Then, the ODS is decomposed by the mode shapes which are identified in operational conditions. So, the contributions each mode makes to machine tool vibration during machining process are got by decomposition coefficients. From the previous steps, we can find out the main modes which effect the machine tool more significantly in working conditions. This method was also verified to be effective by experiments.
Fan, X Q
2017-08-11
Retinoblastoma (RB) is the most common intraocular malignancy in childhood. It may seriously affect vision, and even threaten the life. The early diagnosis rate of RB in China remains low, and the majority of patients are at late phase with high rates of enucleation and mortality. The International Intraocular Retinoblastoma Classification and TNM staging system are guidances for therapeutic choices and bases for prognosis evaluation. Based on the sequential multi-method treatment modality, chemotherapy combined with local therapy is the mainstream in dealing with RB, which may maximize the results of eye saving and even vision retaining. New therapeutic techniques including supra-selective ophthalmic artery interventional chemotherapy and intravitreal chemotherapy can further improve the efficacy of treatment, especially the eye salvage rate. The overall level of RB treatment should be improved by promoting the international staging, new therapeutic techniques, and the sequential multiple modality treatment. (Chin J Ophthalmol, 2017, 53: 561 - 565) .
On the Contributions of Music to Media Productions.
ERIC Educational Resources Information Center
Seidman, Steven A.
1981-01-01
Traces music's role in the development of motion pictures and discusses ways for instructional designers to increase the effectiveness of productions through using music. Studies showing that tempo, modality, rhythm, and harmony interact with audience characteristics to determine affective responses to media are reviewed. Extensive references are…
Using Multimodal Social-Skills Groups with Kindergarten Children.
ERIC Educational Resources Information Center
Stickel, Sue A.
1990-01-01
Describes a group social skills counseling strategy for kindergarten children based on Lazarus's seven modalities: behavior, affect, sensation, imagery, cognition, interpersonal relationships, and drugs/biology. Concludes multimodal approach seems suited to needs of young child whose emerging awareness is vitally engaged in each of the seven…
Role of 18F-fluoride PET/CT in the assessment of multiple myeloma: initial experience.
Nishiyama, Yuji; Tateishi, Ukihide; Shizukuishi, Kazuya; Shishikura, Ayako; Yamazaki, Etsuko; Shibata, Hiroto; Yoneyama, Tomohiro; Ishigatsubo, Yoshiaki; Inoue, Tomio
2013-01-01
The aim of this study was to report our early experience with (18)F-fluoride PET/CT for detecting lesions and evaluate the usefulness of this modality in the assessment of multiple myeloma (MM). (18)F-fluoride PET/CT and (99m)Tc-MDP bone scintigraphy (BS) studies from 7 myeloma patients (4 male and 3 female, mean age 55 years) diagnosed according to standard criteria were reviewed retrospectively. Two reviewers visually and quantitatively analyzed the images and recorded their findings after reaching a consensus. Diagnostic certainty regarding the presence or absence of myeloma lesions was evaluated according to the reference standard consisting of whole-body magnetic resonance imaging and whole-body X-ray. A total of 93 affected areas were definite according to the reference standard. Of these, 83 affected areas (89 %) were identified on (18)F-fluoride PET/CT, whereas 54 affected areas (58 %) were found on BS. Mean SUVmax in the affected areas was 9.8 ± 3.2 (standard deviation) ranging from 5.0 to 21.2. A total of s17 lesions with bone fracture were also detected by (18)F-fluoride PET/CT and 2 lesions (12 %) were negative on BS. Our result showed that (18)F-fluoride PET was a possible modality to detect areas of lesions in patients with MM.
A high-temperature fiber sensor using a low cost interrogation scheme.
Barrera, David; Sales, Salvador
2013-09-04
Regenerated Fibre Bragg Gratings have the potential for high-temperature monitoring. In this paper, the inscription of Fibre Bragg Gratings (FBGs) and the later regeneration process to obtain Regenerated Fiber Bragg Gratings (RFBGs) in high-birefringence optical fiber is reported. The obtained RFBGs show two Bragg resonances corresponding to the slow and fast axis that are characterized in temperature terms. As the temperature increases the separation between the two Bragg resonances is reduced, which can be used for low cost interrogation. The proposed interrogation setup is based in the use of optical filters in order to convert the wavelength shift of each of the Bragg resonances into optical power changes. The design of the optical filters is also studied in this article. In first place, the ideal filter is calculated using a recursive method and defining the boundary conditions. This ideal filter linearizes the output of the interrogation setup but is limited by the large wavelength shift of the RFBG with temperature and the maximum attenuation. The response of modal interferometers as optical filters is also analyzed. They can be easily tuned shifting the optical spectrum. The output of the proposed interrogation scheme is simulated in these conditions improving the sensitivity.
A High-Temperature Fiber Sensor Using a Low Cost Interrogation Scheme
Barrera, David; Sales, Salvador
2013-01-01
Regenerated Fibre Bragg Gratings have the potential for high-temperature monitoring. In this paper, the inscription of Fibre Bragg Gratings (FBGs) and the later regeneration process to obtain Regenerated Fiber Bragg Gratings (RFBGs) in high-birefringence optical fiber is reported. The obtained RFBGs show two Bragg resonances corresponding to the slow and fast axis that are characterized in temperature terms. As the temperature increases the separation between the two Bragg resonances is reduced, which can be used for low cost interrogation. The proposed interrogation setup is based in the use of optical filters in order to convert the wavelength shift of each of the Bragg resonances into optical power changes. The design of the optical filters is also studied in this article. In first place, the ideal filter is calculated using a recursive method and defining the boundary conditions. This ideal filter linearizes the output of the interrogation setup but is limited by the large wavelength shift of the RFBG with temperature and the maximum attenuation. The response of modal interferometers as optical filters is also analyzed. They can be easily tuned shifting the optical spectrum. The output of the proposed interrogation scheme is simulated in these conditions improving the sensitivity. PMID:24008282