Science.gov

Sample records for ovarian granulosa cell

  1. On the granulosa cells of ovarian follicles. II. Identification of different morphological patterns of granulosa cells in evolutive follicles.

    PubMed

    Zecchi, S; Repice, F; Balboni, G C

    1981-03-15

    An attempt has been made for identifying different types of granulosa cells in the wall of cavitary ovarian follicles. Human, porcine and rat ovaries have been examined at the light and electron microscopes. Some smears of granulosa cells as well as human foetal ovaries have been also studied. These preliminary results seem to confirm that in the granulosa layer of evolutive follicles the cells may present some different morphological and histochemical features.

  2. Ovarian follicle selection and granulosa cell differentiation.

    PubMed

    Johnson, A L

    2015-04-01

    The reproductive strategy for avian species that produce a sequence (or clutch) of eggs is dependent upon the maintenance of a small cohort of viable, undifferentiated (prehierarchal) follicles. It is from this cohort that a single follicle is selected on an approximate daily basis to initiate rapid growth and final differentiation before ovulation. This review describes a working model in which follicles within this prehierarchal cohort are maintained in an undifferentiated state by inhibitory cell signaling until the time of selection. Ultimately, follicle selection represents a process in which a single undifferentiated follicle per day is predicted to escape such inhibitory mechanisms to begin rapid growth and final maturation before ovulation. Several processes initiated within the granulosa cell layer at selection are dependent upon G protein-coupled receptors signaling via cyclic adenosine monophosphate (cAMP), and several critical processes are described herein. Finally, reference is made to several practical outcomes that can result from understanding the process of selection, including applications within the poultry industry. Proximal factors and processes that mediate follicle selection can either extend or decrease the length of the laying sequence, and thus directly influence overall egg production. In particular, any aberration that results in the selection of more than one follicle per day will result in decreased egg production. More generally, in wild birds these processes are modified by prevailing environmental conditions and by social interactions to influence clutch size. The elucidation of cellular processes that regulate follicle selection can assist in the development of assisted reproductive technologies for application in threatened and endangered avian species. © 2014 Poultry Science Association Inc.

  3. Effect of doxorubicin-induced ovarian toxicity on mouse ovarian granulosa cells.

    PubMed

    Zhang, Ting; He, Wan Hong; Feng, Ling Lin; Huang, Hao Guang

    2017-02-17

    The objective of this study was to identify the effect of doxorubicin-induced ovarian toxicity on mouse ovarian granulosa cells. After granulosa cells were treated with doxorubicin at the final concentrations of 0, 0.4, 0.8, and 1.6 μg/ml for 24 h, cell apoptosis was detected by DAPI staining or caspase-3/7 fluorescence probe; ROS was determined by 2', 7'-dichlorodihydrofluorescin diacetate fluorescence probe; mitochondrial membrane potential was detected by rhodamine-123 fluorescence probe; and mRNA expression levels of Bax, Bcl-2, p53, FSHR, StAR, P450scc and P450arom were analyzed by RT-PCR. Results indicated that doxorubicin could induce apoptosis of granulosa cells (p < 0.01); increase ROS generation (p < 0.05 or p < 0.01); decrease mitochondrial membrane potential (p < 0.05); increase mRNA expression levels of Bax, Bcl-2, and p53 (p < 0.001); enhance mRNA expression level of StAR (p < 0.01 or p < 0.001); and inhibit mRNA expression level of P450scc in granulosa cells (p < 0.05 or p < 0.001). The mRNA expression levels of FSHR and P450arom were not influenced by doxorubicin. We suggest that the ovarian toxicity of doxorubicin was associated with apoptosis of granulosa cells, ROS accumulation, and decline of mitochondrial membrane potential in granulosa cells. In addition, cell apoptosis was regulated by Bax, Bcl-2, and p53, and hormone generation could be influenced by StAR and P450scc.

  4. Ovarian Granulosa Cell Survival and Proliferation Requires the Gonad-Selective TFIID Subunit TAF4b

    PubMed Central

    Voronina, Ekaterina; Lovasco, Lindsay A.; Gyuris, Aron; Baumgartner, Robert A.; Parlow, Albert F.; Freiman, Richard N.

    2007-01-01

    Oocyte development in the mammalian ovary requires productive interactions with somatic granulosa cells of the ovarian follicle. Proliferating granulosa cells support the progression of follicular growth and maturation, multiplying dramatically as it unfolds. The cell cycle recruitment of granulosa cells is regulated at least in part by hormones such as follicle-stimulating hormone (FSH) and estrogen. Follicles recruited into the growth phase following formation of multiple layers of granulosa cells have two major fates: either to continue proliferation followed by differentiation, or to die by programmed cell death, or atresia. While many of the signaling pathways orchestrating ovarian follicle development are known, the downstream transcriptional regulators that integrate such signals in the mammalian ovary remain to be defined. Recent experiments in diverse organisms have revealed multiple instances of gonad-selective components of the basal transcriptional machinery. One such protein, TAF4b, is a gonadal-enriched coactivator subunit of the TFIID complex required for normal female fertility in the mouse. To determine the etiology of female infertility of the TAF4b-deficient mice, we have determined multiple functions of TAF4b during postnatal ovarian follicle development. Here we demonstrate that the TAF4b protein is expressed in the granulosa cell compartment of the mammalian ovarian follicle. Furthermore, TAF4b-deficient mouse ovaries contain reduced numbers of primordial as well as growing follicles and a concomitant increased proportion of apoptotic follicles in comparison to wild type counterparts. Importantly, TAF4b-null follicles are largely resistant to induction of proliferation in response to multiple hormonal stimuli including estrogen and FSH and demonstrate compromised granulosa cell survival. Together, these data suggest that TAF4b integrates a program of granulosa cell gene expression required for normal ovarian follicle survival and proliferation

  5. A mouse surgical model for metastatic ovarian granulosa cell tumor.

    PubMed

    Nadeau, Marie-Eve; Kaartinen, M Johanna; Laguë, Marie-Noëlle; Paquet, Marilène; Huneault, Louis M; Boerboom, Derek

    2009-12-01

    We recently described a genetically engineered mouse model that develops ovarian granulosa cell tumors (GCTs) that mimic many aspects of the advanced human disease, including distant dissemination. However, because the primary tumors killed their hosts before metastases were able to form, the use of these mice to study metastatic disease required the development of a simple, reliable, and humane surgical protocol for the excision of large GCTs from debilitated mice. Here we describe a protocol involving multimodal anesthesia, tumor removal through ventral midline celiotomy and perioperative fluid therapy, and analgesia that led to the postoperative survival of more than 90% of mice, despite the removal of tumors representing as much as 10% of the animal's body weight. Intraabdominal recurrence of the GCT did not occur in surviving animals, but most developed pulmonary or adrenal metastases (or both) by 12 wk after surgery. We propose that this mouse model of metastatic GCT will serve as a useful preclinical model for the development of novel treatment modalities and diagnostic techniques. Furthermore, our results delineate anesthetic and surgical principles for the removal of large abdominal tumors from mice that will be applicable to other models of human cancers.

  6. In vitro changes in porcine ovarian granulosa cells induced by copper.

    PubMed

    Roychoudhury, Shubhadeep; Bulla, Jozef; Sirotkin, Alexander V; Kolesarova, Adriana

    2014-01-01

    Objective of this in vitro study was to examine the secretion activity (progesterone and insulin-like growth factor I) of porcine ovarian granulosa cells after copper (Cu) addition and to outline a potential intracellular mediator (cyclin B1) of its effects. It also aimed at investigating the apoptotic potential of Cu on porcine ovarian granulosa cells after addition in vitro. Ovarian granulosa cells were incubated with copper sulphate (CuSO4·5H2O) at the doses 0.33, 0.40, 0.50, 1.0 and 2.0 μL mL(-1) for 18 h and compared with control group without Cu addition. Release of progesterone (P4) and insulin-like growth factor I (IGF-I) by granulosa cells was assessed by RIA, expression of cyclin B1 by immunocytochemistry and apoptosis by TUNEL assay. Observations show that P4 release by granulosa cells was inhibited while the release of IGF-I and cyclin B1 was stimulated significantly (P < 0.05) by CuSO4·5H2O addition at the dose 2.0 μL mL(-1). Also, addition of CuSO4.5H2O at the lowest dose used in the study (0.33 μL mL(-1)) significantly (P < 0.05) decreased apoptosis in granulosa cells. In conclusion, results indicate dose dependent effect of Cu on (1) secretion of steroid hormone progesterone and growth factor IGF-I, (2) expression of cyclin B1 as marker of proliferation of porcine ovarian granulosa cells, (3) apoptosis of porcine ovarian granulosa cells and, (4) that the effect of Cu on ovarian cell proliferation could be mediated by IGF-I and cyclin B1. Obtained data suggest interference of Cu in the pathways of proliferation of porcine ovarian granulosa cells through hormonal and intracellular peptide cyclin B1.

  7. Conditional Deletion of the Retinoblastoma (Rb) Gene in Ovarian Granulosa Cells Leads to Premature Ovarian Failure

    PubMed Central

    Andreu-Vieyra, Claudia; Chen, Ruihong; Matzuk, Martin M.

    2008-01-01

    The retinoblastoma protein (RB) regulates cell proliferation and survival by binding to the E2F family of transcription factors. Recent studies suggest that RB also regulates differentiation in a variety of cell types, including myocytes, neurons, adipocytes, and chondrocytes. Rb mutations have been found in ovarian cancer; however, the role of RB in normal and abnormal ovarian function remains unclear. To test the hypothesis that loss of Rb induces ovarian tumorigenesis, we generated an ovarian granulosa cell conditional knockout of Rb (Rb cKO) using the Cre/lox recombination system. Rb cKO females showed 100% survival and no ovarian tumor formation through 9 months of age, but they developed progressive infertility. Prepubertal Rb cKO females showed increased ovulation rates compared with controls, correlating with increased follicle recruitment, higher Fshr and Kitl mRNA levels, and lower anti-Müllerian hormone levels. In contrast, the ovulation rate of 6-wk-old females was similar to that of controls. Morphometric analysis of Rb cKO ovaries from 6-wk-old and older females showed increased follicular atresia and apoptosis. Rb cKO ovaries and preantral follicles had abnormal levels of known direct and indirect target genes of RB, including Rbl2/p130, E2f1, Ccne2, Myc, Fos, and Tgfb2. In addition, preantral follicles showed increased expression of the granulosa cell differentiation marker Inha, decreased levels of Foxl2 and Cyp19a1 aromatase, and abnormal expression of the nuclear receptors Nr5a1, Nr5a2, and Nr0b1. Taken together, our results suggest that RB is required for the temporal-specific pattern of expression of key genes involved in follicular development. PMID:18599617

  8. Role of ovarian theca and granulosa cell interaction in hormone productionand cell growth during the bovine follicular maturation process.

    PubMed

    Yada, H; Hosokawa, K; Tajima, K; Hasegawa, Y; Kotsuji, F

    1999-12-01

    We have investigated the possible role of theca and granulosa cell interaction in the control of the hormone-producing activity and growth of granulosa and theca cells during bovine ovarian follicular development, using a coculture system in which granulosa and theca cells were grown on opposite sides of a collagen membrane. When follicular cells were isolated from small follicles (3-5 mm), theca cells reduced estradiol, progesterone, and inhibin production by granulosa cells to 14 +/- 5%, 64 +/- 6%, and 27 +/- 4%, respectively, of the production by granulosa cells cultured alone. On the other hand, when the cells were isolated from large follicles (15-18 mm), theca cells increased these levels to 253 +/- 34%, 156 +/- 24%, and 287 +/- 45%, respectively. Theca cells did not affect the growth of granulosa cells. Androstenedione production by theca cells was augmented by granulosa cells to 861 +/- 190% (in small follicles) and 1298 +/- 414% (in large follicles), respectively. The growth of theca cells was also augmented by granulosa cells (small follicle, 210 +/- 43%, and large follicle, 194 +/- 24%, respectively). These results indicate that theca cells secrete factor(s) inhibiting the differentiation of immature while promoting that of matured granulosa cells; they also suggest that granulosa cells secrete factor(s) promoting both the differentiation and growth of theca cells throughout the follicular maturation process.

  9. In vitro attachment and invasion of chicken ovarian granulosa cells by Salmonella enteritidis phage type 8.

    PubMed Central

    Thiagarajan, D; Saeed, M; Turek, J; Asem, E

    1996-01-01

    The attachment and invasion of chicken ovarian granulosa cells by Salmonella enteritidis was examined in vitro. The attachment was inhibited by preincubation of granulosa cells with anti-chicken fibronectin antibody (approximately 70% reduction in attachment) or preincubation with a 14-kDa fimbrial protein isolated from S. enteritidis (68% reduction in attachment). Treatment of bacterial cells with the tetrapeptide RGDS before addition to granulosa cells resulted in inhibition of attachment (60% inhibition when 2 x 10(7) CFU of bacteria was treated with 500 microg of peptide). Treatment with the peptide GRGD resulted in similar magnitude of inhibition, indicating that extracellular matrix proteins play significant roles in the interaction of S. enteritidis with granulosa cells. In contrast, treatment of the bacterial cells with the peptide GRAD did not result in significant inhibition of attachment to the granulosa cells. S. enteritidis was found to attach specifically to fibronectin, collagen IV, and laminin-coated microtiter plate wells, with the rank order of attachment as follows: fibronectin > laminin > collagen IV. Light and transmission electron micrographs of S. enteritidis invasion of granulosa cells showed organisms with or without a surrounding membrane in the cytoplasm of granulosa cells. In some instances, dividing bacterial cells were observed in the cytoplasm. Results of this study demonstrated that S. enteritidis interacts with granulosa cells in a specific manner and can invade and multiply in these cells. The granulosa cell layer of the preovulatory follicles may be a preferred site for the colonization of the chicken ovaries by invasive strains of S. enteritidis. PMID:8945540

  10. Endometrial polypoid adenomyomatosis in a bitch with ovarian granulosa cell tumour and pyometra.

    PubMed

    Zanghì, A; Catone, G; Marino, G; Quartuccio, M; Nicòtina, P A

    2007-01-01

    Endometrial polypoid adenomyomatosis in an 8-year-old German shepherd bitch is described. The lesion was associated with ovarian granulosa cell tumour and pyometra; grossly, it consisted of sessile or pedunculated processes with both epithelial and non-epithelial components, in which smooth muscle cells were predominant. The endometrium was diffusely atrophic and showed multifocal squamous metaplasia. The findings are discussed as possible consequences of the functioning ovarian tumour and pyometra, but an involvement of growth factors is also proposed.

  11. Markers of stem cells in human ovarian granulosa cells: is there a clinical significance in ART?

    PubMed Central

    2012-01-01

    Background The purpose of the study was to determine the incidence of gene expression of Oct-4 and DAZL, which are typical markers for stem cells, in human granulosa cells during ovarian stimulation in women with normal FSH levels undergoing IVF or ICSI and to discover any clinical significance of such expression in ART. Methods Twenty one women underwent ovulation induction for IVF or ICSI and ET with standard GnRH analogue-recombinant FSH protocol. Infertility causes were male and tubal factor. Cumulus–mature oocyte complexes were denuded separately and granulosa cells were analyzed for each patient separately using quantitative reverse-transcription–polymerase chain reaction analysis for Oct-4 and DAZL gene expression with G6PD gene as internal standard. Results G6PD and Oct-4 mRNA was detected in the granulosa cells in 47.6% (10/21). The median of Oct-4 mRNA/G6PD mRNA was 1.75 with intra-quarteral range from 0.10 to 98.21. The OCT-4 mRNA expression was statistically significantly correlated with the number of oocytes retrieved; when the Oct-4 mRNA expression was higher, then more than six oocytes were retrieved (p=0.037, Wilcoxon rank-sum). No detection of DAZL mRNA was found in granulosa cells. There was no additional statistically significant correlation between the levels of Oct-4 expression and FSH basal levels or estradiol peak levels or dosage of FSH for ovulation induction. No association was found between the presence or absence of Oct-4 mRNA expression in granulosa cells and ovarian response to gonadotropin stimulation. Also, no influence on pregnancy was observed between the presence or absence of Oct-4 mRNA expression in granulosa cells or to its expression levels accordingly. Conclusions Expression of OCT-4 mRNA, which is a typical stem cell marker and absence of expression of DAZL mRNA, which is a typical germ cell marker, suggest that a subpopulation of luteinized granulosa cells in healthy ovarian follicles (47.6%) consists of stem cells

  12. A regulatory role of androgen in ovarian steroidogenesis by rat granulosa cells.

    PubMed

    Hasegawa, Toru; Kamada, Yasuhiko; Hosoya, Takeshi; Fujita, Shiho; Nishiyama, Yuki; Iwata, Nahoko; Hiramatsu, Yuji; Otsuka, Fumio

    2017-09-01

    Excess androgen and insulin-like growth factor (IGF)-I in the ovarian follicle has been suggested to be involved in the pathophysiology of polycystic ovary syndrome (PCOS). Here we investigated the impact of androgen and IGF-I on the regulatory mechanism of ovarian steroidogenesis using rat primary granulosa cells. It was revealed that androgen treatment with dihydrotestosterone (DHT) amplified progesterone synthesis in the presence of FSH and IGF-I, whereas it had no significant effect on estrogen synthesis by rat granulosa cells. In accordance with the effects of androgen on steroidogenesis, DHT enhanced the expression of progesterogenic factors and enzymes, including StAR, P450scc and 3βHSD, and cellular cAMP synthesis induced by FSH and IGF-I. Of note, treatment with DHT and IGF-I suppressed Smad1/5/8 phosphorylation and transcription of the BMP target gene Id-1, suggesting that androgen and IGF-I counteract BMP signaling that inhibits FSH-induced progesterone synthesis in rat granulosa cells. DHT was revealed to suppress the expression of BMP-6 receptors, consisting of ALK-2, ALK-6 and ActRII, while it increased the expression of inhibitory Smads in rat granulosa cells. In addition, IGF-I treatment upregulated androgen receptor (AR) expression and DHT treatment suppressed IGF-I receptor expression on rat granulosa cells. Collectively, the results indicate that androgen and IGF-I mutually interact and accelerate progesterone production, at least in part, by regulating endogenous BMP signaling in rat granulosa cells. Cooperative effects of androgen and IGF-I counteract endogenous BMP-6 activity in rat granulosa cells, which is likely to be functionally linked to the steroidogenic property shown in the PCOS ovary. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Retinoic Acid Regulates Calcium Signaling to Promote Mouse Ovarian Granulosa Cell Proliferation.

    PubMed

    Demczuk, Michael; Huang, Huiya; White, Carl; Kipp, Jingjing L

    2016-09-01

    Normal development of ovarian follicles is critical for female reproduction and endocrine function. We have identified retinoic acid (RA) and the RA-degrading enzyme CYP26B1 as regulators of ovarian follicle development and showed that RA and a CYP26 inhibitor stimulated ovarian granulosa cell proliferation. The mechanism underpinning RA-dependent proliferation, however, is not known. The current study was designed to examine the role of intracellular calcium (Ca(2+)) signaling in mediating the effects of RA on primary mouse granulosa cell proliferation. In single-cell Ca(2+) imaging experiments, treatment of cultured granulosa cells with RA increased the steady-state Ca(2+) content of the endoplasmic reticulum (ER) stores. This correlated with increased store-operated Ca(2+) entry (SOCE) and enhanced inositol 1,4,5-trisphosphate receptor (IP3R)-dependent Ca(2+) release. In proliferation assays, RA treatment or Cyp26b1 knockdown stimulated proliferation, whereas Cyp26b1 overexpression inhibited proliferation. When RA was given together with 2-aminoethoxydiphenylborane (2-APB), a blocker of IP3R-dependent ER Ca(2+) release and SOCE, with xestospongin C, a selective IP3R- receptor antagonist, or with 3,5-bis (trifluoromethyl)pyrazole (BTP-2), a specific SOCE blocker, the stimulatory effect of RA on cell proliferation was abolished. Further investigation showed that treatment with 2-APB or BTP-2 inhibited RA induction of RA response element (RARE) activation in granulosa cells, confirming an important role for Ca(2+) signaling in mediating RA actions. Overall, these data support a model in which RA regulates ovarian follicle development by stimulating granulosa cell proliferation and that this stimulatory effect is at least in part driven by the modulation of Ca(2+) signaling.

  14. Defective CFTR-regulated granulosa cell proliferation in polycystic ovarian syndrome.

    PubMed

    Chen, Hui; Guo, Jing Hui; Zhang, Xiao Hu; Chan, Hsiao Chang

    2015-05-01

    Polycystic ovarian syndrome (PCOS) is one of the most frequent causes of female infertility, featured by abnormal hormone profile, chronic oligo/anovulation, and presence of multiple cystic follicles in the ovary. However, the mechanism underlying the abnormal folliculogenesis remains obscure. We have previously demonstrated that CFTR, a cAMP-dependent Cl(-) and HCO3 (-) conducting anion channel, is expressed in the granulosa cells and its expression is downregulated in PCOS rat models and human patients. In this study, we aimed to investigate the possible involvement of downregulation of CFTR in the impaired follicle development in PCOS using two rat PCOS models and primary culture of granulosa cells. Our results indicated that the downregulation of CFTR in the cystic follicles was accompanied by reduced expression of proliferating cell nuclear antigen (PCNA), in rat PCOS models. In addition, knockdown or inhibition of CFTR in granulosa cell culture resulted in reduced cell viability and downregulation of PCNA. We further demonstrated that CFTR regulated both basal and FSH-stimulated granulosa cell proliferation through the HCO3 (-)/sAC/PKA pathway leading to ERK phosphorylation and its downstream target cyclin D2 (Ccnd2) upregulation. Reduced ERK phosphorylation and CCND2 were found in ovaries of rat PCOS model compared with the control. This study suggests that CFTR is required for normal follicle development and that its downregulation in PCOS may inhibit granulosa cell proliferation, resulting in abnormal follicle development in PCOS.

  15. mTOR Controls Ovarian Follicle Growth by Regulating Granulosa Cell Proliferation

    PubMed Central

    Yu, James; Yaba, Aylin; Kasiman, Corinna; Thomson, Travis; Johnson, Joshua

    2011-01-01

    We have shown that inhibition of mTOR in granulosa cells and ovarian follicles results in compromised granulosa proliferation and reduced follicle growth. Further analysis here using spontaneously immortalized rat granulosa cells has revealed that mTOR pathway activity is enhanced during M-phase of the cell cycle. mTOR specific phosphorylation of p70S6 kinase and 4E-BP, and expression of Raptor are all enhanced during M-phase. The predominant effect of mTOR inhibition by the specific inhibitor Rapamycin (RAP) was a dose-responsive arrest in the G1 cell cycle stage. The fraction of granulosa cells that continued to divide in the presence of RAP exhibited a dose-dependent increase in aberrant mitotic figures known as anaphase bridges. Strikingly, estradiol consistently decreased the incidence of aberrant mitotic figures. In mice treated with RAP, the mitotic index was reduced compared to controls, and a similar increase in aberrant mitotic events was noted. RAP injected during a superovulation regime resulted in a dose-dependent reduction in the numbers of eggs ovulated. Implications for the real-time regulation of follicle growth and dominance, including the consequences of increased numbers of aneuploid granulosa cells, are discussed. PMID:21750711

  16. Local effect of bisphenol A on the estradiol synthesis of ovarian granulosa cells from PCOS.

    PubMed

    Wang, Yuan; Zhu, Qinling; Dang, Xuan; He, Yaqiong; Li, Xiaoxue; Sun, Yun

    2017-01-01

    Close relationship between polycystic ovary syndrome (PCOS) and bisphenol A (BPA) has drawn much attention in recent years, while the underlying mechanisms are poorly understood. In our study, we aim to detect BPA concentration in the follicular fluid and investigate its effect on estradiol synthesis in human granulosa cells from PCOS and non-PCOS patients. Follicular fluid and granulosa cells were collected from women who underwent controlled ovarian stimulation for in vitro fertilization or intracytoplasmic sperm injection. BPA concentration in the follicular fluid from PCOS patients (440.50 ± 63.70 pg/ml) was significantly higher than that from non-PCOS patients (338.00 ± 57.88 pg/ml). Expression of aromatase and estradiol synthesis in cultured granulosa cells was examined after treatment with BPA from 0.01 to 1 μM for 24 h. Expression of aromatase and estradiol synthesis was downregulated by BPA in a dose-dependent manner in PCOS, but no effect was observed in granulosa cells from non-PCOS patients. These findings provide evidence that increased BPA concentration in the follicular fluid of PCOS patients may play an important role in its pathogenesis by attenuating the expression of aromatase in granulosa cells.

  17. Impact of FOXL2 mutations on signaling in ovarian granulosa cell tumors.

    PubMed

    Leung, Dilys T H; Fuller, Peter J; Chu, Simon

    2016-03-01

    Granulosa cell tumors (GCT) are unique sex-cord stromal tumors which account for ∼ 8% of all ovarian malignancies. They exhibit morphological, biochemical and hormonal features similar to proliferating granulosa cells of the preovulatory follicle, including estrogen and inhibin synthesis. A somatic missense mutation in the forkhead box L2 (FOXL2) gene (C134W) is unique to adult GCT, and absent in other ovarian cancers. FOXL2 is a transcription factor that plays a critical role in ovarian function, in particular, proliferation and differentiation of granulosa cells. The molecular mechanisms underlying the pathogenicity of the mutant FOXL2 remain unresolved. Here we review the molecular alterations known to be associated with mutant FOXL2 and the potential signaling implications. Several studies suggest that dysregulated FOXL2 function may alter cell cycle progression and apoptosis. Further insights into the molecular mechanism of GCT pathophysiology may identify therapeutic targets for the treatment of these tumors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The magnitude of gonadotoxicity of chemotherapy drugs on ovarian follicles and granulosa cells varies depending upon the category of the drugs and the type of granulosa cells.

    PubMed

    Yuksel, Aytac; Bildik, Gamze; Senbabaoglu, Filiz; Akin, Nazli; Arvas, Macit; Unal, Fehmi; Kilic, Yagmur; Karanfil, Isil; Eryılmaz, Baldan; Yilmaz, Pelin; Ozkanbaş, Can; Taskiran, Cagatay; Aksoy, Senai; Guzel, Yılmaz; Balaban, Basak; Ince, Umit; Iwase, Akira; Urman, Bulent; Oktem, Ozgur

    2015-12-01

    groups of 13 to receive a single IP injection of: saline (control), gemcitabine (200 mg/kg), cisplatin (50 mg/kg) or cyclophosphamide (200 mg/kg). The animals were euthanized 72 h later. Follicle counts and serum AMH levels were compared between the groups. In vitro cytotoxicity studies were performed using mitotic non-luteinized rat (SIGC) and human (COV434, HGrC1) granulosa cells, and non-mitotic luteinized human (HLGC) granulosa cells. The cells were plated at a density of 5000 cells/well using DMEM-F12 culture media supplemented with 10% FBS. Chemotherapy agents were used at their therapeutic blood concentrations. The growth of mitotic granulosa cells was monitored real-time using xCelligence system. Live/dead cell and apoptosis assays were also carried out using intravital Yo-Pro-1 staining and cleaved caspase-3 expression, respectively. Estradiol (E2), progesterone (P) and anti-Mullerian hormone (AMH) levels were assayed with ELISA. Cyclophosphamide and cisplatin caused massive atresia of both primordials and growing follicles in the rat ovary whereas gemcitabine impacted pre-antral/antral follicles only. Cyclophosphamide and cisplatin induced apoptosis of both mitotic non-luteinized and non-mitotic luteinized granulosa cells in vitro. By contrast, cytotoxicity of gemcitabine was confined to mitotic non-luteinized granulosa cells. This study tested only three chemotherapeutic agents. The experimental methodology described here could be applied to other drugs for detailed analysis of their ovarian cytotoxicity. These findings indicate that in vivo and in vitro cytotoxic actions of chemotherapy drugs on the ovarian follicles and granulosa cells vary depending upon the their mechanism of action and the nature of the granulosa cells. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. miR-22 inhibits mouse ovarian granulosa cell apoptosis by targeting SIRT1.

    PubMed

    Xiong, Fang; Hu, Lingqing; Zhang, Yun; Xiao, Xiao; Xiao, Juxia

    2016-02-24

    Granulosa cell (GC) apoptosis has been shown to be involved in follicular atresia, which is a degenerative process in ovarian follicles of mammals. However, the mechanism underlying the regulation of follicular atresia, particularly by microRNAs, is not well known. Real-time PCR (RT-PCR) was used to detect the expression level of miR-22 in healthy follicles (HF), early atretic follicles (EAF), and progressively atretic follicles (PAF). Flow cytometry was performed to assess the apoptosis of mouse granulosa cells (mGCs) treated with miR-22 mimics or negative control (NC) mimics. Regulation of the expression of SIRT1 by miR-22 was evaluated using a luciferase reporter assay system. To investigate the roles of SIRT1 in mGC apoptosis, the endogenous SIRT1 gene in mGCs was knocked down using an siRNA specific for SIRT1. miR-22 was increased during follicular atresia and suppressed granulosa cell apoptosis. The results of the luciferase reporter assay indicated that SIRT1 was a target gene of miR-22. In addition, knockdown of SIRT1 attenuated apoptosis in mGCs. miR-22 inhibits mGC apoptosis by downregulating SIRT1 directly in vitro. This study provides important insights into understanding the regulation mechanism of ovarian follicle atresia.

  20. miR-22 inhibits mouse ovarian granulosa cell apoptosis by targeting SIRT1

    PubMed Central

    Xiong, Fang; Hu, Lingqing; Zhang, Yun; Xiao, Xiao; Xiao, Juxia

    2016-01-01

    ABSTRACT Granulosa cell (GC) apoptosis has been shown to be involved in follicular atresia, which is a degenerative process in ovarian follicles of mammals. However, the mechanism underlying the regulation of follicular atresia, particularly by microRNAs, is not well known. Real-time PCR (RT-PCR) was used to detect the expression level of miR-22 in healthy follicles (HF), early atretic follicles (EAF), and progressively atretic follicles (PAF). Flow cytometry was performed to assess the apoptosis of mouse granulosa cells (mGCs) treated with miR-22 mimics or negative control (NC) mimics. Regulation of the expression of SIRT1 by miR-22 was evaluated using a luciferase reporter assay system. To investigate the roles of SIRT1 in mGC apoptosis, the endogenous SIRT1 gene in mGCs was knocked down using an siRNA specific for SIRT1. miR-22 was increased during follicular atresia and suppressed granulosa cell apoptosis. The results of the luciferase reporter assay indicated that SIRT1 was a target gene of miR-22. In addition, knockdown of SIRT1 attenuated apoptosis in mGCs. miR-22 inhibits mGC apoptosis by downregulating SIRT1 directly in vitro. This study provides important insights into understanding the regulation mechanism of ovarian follicle atresia. PMID:26912776

  1. Ovarian cellular fibromas lack FOXL2 mutations: a useful diagnostic adjunct in the distinction from diffuse adult granulosa cell tumor.

    PubMed

    McCluggage, W Glenn; Singh, Naveena; Kommoss, Stefan; Huntsman, David G; Gilks, C Blake

    2013-09-01

    Ovarian cellular fibromas are uncommon neoplasms, which may result in considerable diagnostic confusion with diffuse adult granulosa cell tumor. This is an important distinction, as the former usually exhibits benign behavior, whereas the latter is a low-grade malignant neoplasm capable of recurrence and metastasis. FOXL2 mutation (402C→G) has been demonstrated in >95% of ovarian adult granulosa cell tumors, only rarely in other ovarian sex cord-stromal neoplasms, and never in ovarian fibromas. In this study, we evaluated a series of ovarian cellular fibromas or mitotically active cellular fibromas (n=22), 3 with minor sex cord elements, for FOXL2 mutation. These were mostly received in consultation, often with a differential diagnosis of diffuse adult granulosa cell tumor. Immunohistochemically, 10 of 10 cases tested exhibited nuclear staining with FOXL2. FOXL2 (402C→G) mutation was not demonstrated in any of the 22 cellular or mitotically active cellular fibromas. Three additional neoplasms composed of cellular nodules of epithelioid cells in a background fibrous stroma, raising the possibility of adult granulosa cell tumor with a prominent fibrothecomatous component, were also tested; 2 of these were mutation negative, and 1 contained a FOXL2 mutation. FOXL2 mutation analysis is a useful adjunct in distinguishing between diffuse adult granulosa cell tumor (mutation present) and cellular fibroma (mutation absent). Mutation testing should be considered in problematic cases, as this will provide prognostic information for the patient.

  2. [Secondary amenorrhea and LH hypersecretion. An unusual report of a granulosa cell ovarian tumor].

    PubMed

    Arteaga, E; Campusano, C; Fernández, C

    1993-04-01

    Granulosa cell ovarian tumors are infrequent. Since they originate from the gonadal stroma, they retain a high secretory potential and some of their clinical manifestations may be secondary to the production of sexual steroids. A 36 year old woman with an ovarian tumor presenting as a secondary amenorrhea is reported. This patient had a positive progesterone test and her hormonal profile showed a maintained LH hypersecretion (> 75 mUl/ml) which, joined to the presence of a hypophyseal microadenoma lead to suspect the presence of a gonadotrophin secreting tumor. The absence of LH response to TRH and its adequate suppression using oral contraceptives discarded this diagnosis. The histopathology of the excised ovarian tumor demonstrated that it is was a granulosa cell tumor. The physiopathological explanation of the case is based on the maintained levels of estrogens produced by the tumor that, through a positive feed-back mechanism similar to that of the polycystic ovary syndrome, produced a tonic LH elevation and GnRH hyper response. After the tumor excision, ovulatory cycles resumed and the patient became pregnant, facts that confirm the postulated hypothesis.

  3. The role of FOXL2 in the pathogenesis of adult ovarian granulosa cell tumours.

    PubMed

    Rosario, Roseanne; Cohen, Paul A; Shelling, Andrew N

    2014-05-01

    It has been four years since the discovery of the FOXL2 402C>G mutation in adult ovarian granulosa cell tumours. Yet to date, there have been few studies which have investigated the precise role of the mutation in tumour pathogenesis. This review aims to summarise the research in this area, proposes a mechanism of action for the mutation, and explores the implications for clinical practice and future therapeutics. A literature search was performed with the keywords 'granulosa cell tumour' and 'FOXL2' on PubMed. Although the search returned 52 articles, of these only nine publications investigate the pathogenic effect of the mutant FOXL2 allele. Mutant FOXL2 maintains some of the transcriptional activity of the wildtype allele, but there is a subtle alteration of the expression in a unique suite of cancer-related genes. The mutation appears to deregulate the anti-proliferative transforming growth factor beta (TGF-β) pathway and this may contribute to the pathogenesis of adult GCTs. The inability of mutant FOXL2 to elicit an effective apoptotic signalling cascade may also be important in GCT pathogenesis. The 402C>G mutation in FOXL2 is central to the development of adult granulosa cell tumours. Based on the evidence, we suggest that FOXL2 is an oncogene or tumour suppressor depending on the genetic context that is the GCT subtype. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Antioxidant status and selected biochemical parameters of porcine ovarian granulosa cells exposed to lead in vitro.

    PubMed

    Capcarová, Marcela; Kolesárová, Adriana; Lukác, Norbert; Sirotkin, Alexander; Roychoudhury, Shubhadeep

    2009-12-01

    The objective of this study was to determine the activity of superoxide dismutase (SOD), total antioxidant status (TAS) and release of calcium, phosphorus, magnesium, sodium, potassium, total lipids, totals proteins, glucose, cholesterol and triglycerides by porcine ovarian granulosa cells cultured in vitro after lead acetate administration. The parameters were analyzed using semi-automated clinical chemistry analyzer Microlab 300, microprocessor-controlled analyzer EasyLite and spectrophotometer Genesys 10. Cells were cultured with lead acetate trihydrate [Pb(CH(3)COO)(2).3H(2)O] as follows: group Max (5 mg Pb(CH(3)COO)(2).3H(2)O/10 mL), group A (2.5 mg/10 mL), group B (0.83 mg/10 mL), group C (0.625 mg/10 mL), group D (0.455 mg/10 mL) and the control group without lead exposure for 18 hrs. The highest TAS was estimated in the control group without lead treatment in comparison with other groups (MAX, A, B, C, D). Statistical analyses showed significantly lower value (P < 0.05) in group B. The activity of SOD was the lowest in the control group in comparison to those exposed to in vitro lead culture. A significant decrease (P < 0.05) of calcium content in group MAX in comparison with control group was determined. Release of phosphorus by ovarian granulosa cells was significantly lower (P < 0.05; 0.01; 0.001) in all the treated groups in comparison with control group. Lead was found to stimulate the release of magnesium and potassium by granulosa cells, but the increase remained statistically insignificant. The highest concentration of glucose was noted in control group, but the differences were not significant either. No significant differences (P > 0.05) were detected in concentration of other studied parameters among observed groups, too.

  5. TLR4 activates NF-{kappa}B in human ovarian granulosa tumor cells

    SciTech Connect

    Woods, Dori C.; Johnson, A.L.

    2011-06-17

    Highlights: {yields} TLR4 is expressed in human ovarian granulosa tumor cells. {yields} Acting through TLR4, LPS and HSP60 induce a NF{kappa}B signaling cascade in human ovarian granulosa tumor cells. {yields} NF{kappa}B activation or inhibition did not alter chemosensitivity to TRAIL or cisplatin. -- Abstract: Previous studies have demonstrated expression of Toll-like receptors (TLRs) in the surface epithelium of normal ovaries (OSE) and in epithelial ovarian tumors. Most notably, OSE-derived cancers express TLR4, which activates the nuclear factor-kappa B (NF-{kappa}B) signaling cascade as a mediator of inflammatory response. Currently, there is considerable interest in elucidating the role of TLR-mediated signaling in cancers. Nevertheless, the expression of TLRs in granulosa cell tumors (GCTs) of the ovary, and the extent to which GCT expression of TLRs may influence cell-signaling pathways and/or modulate the efficacy of chemotherapeutics, has yet to be determined. In the present study, human GCT lines (COV434 and KGN) were utilized to evaluate expression of functional TLR4. TLR4 is expressed in GCT cell lines and ligation of TLR4 with bacterial lipopolysaccharide (LPS) led to I{kappa}B degradation and activation of NF-{kappa}B. NF-{kappa}B activation was confirmed by nuclear localization of NF-{kappa}B p65 following treatment with LPS and the naturally occurring ligand, HSP60. Notably, immunoneutralization of TLR4 blocked nuclear localization, and inhibition of NF-{kappa}B signaling attenuated LPS-induced TNF{alpha} plus increased doubling time in both cell lines. Contradictory to reports using human OSE cell lines, inhibition of NF-{kappa}B signaling failed to sensitize GCT lines to TRAIL or cisplatin. In summary, findings herein are the first to demonstrate a functional TLR-signaling pathway specifically in GCTs, and indicate that in contrast to OSE-derived cancers, inhibition of NF-{kappa}B does not sensitize GCTs to TRAIL or cisplatin.

  6. Ovarian tissue vitrification is more efficient than slow freezing in protecting oocyte and granulosa cell DNA integrity.

    PubMed

    Mathias, Freya Jothsna; D'Souza, Fiona; Uppangala, Shubhashree; Salian, Sujith Raj; Kalthur, Guruprasad; Adiga, Satish Kumar

    2014-12-01

    Ovarian tissue cryopreservation is the primary treatment modality currently available to women at risk of losing their ovarian function due to cytotoxic therapy. However, the impact of these techniques on the oocyte DNA integrity is not elucidated. Here we have investigated the effect of vitrification and conventional slow freezing of eight week old Swiss albino mouse ovarian tissues on the oocyte and granulosa cell DNA integrity using the comet assay. The intracellular levels of reactive oxygen species in oocytes was measured by 2',7'-dichlorodihydrofluorescein diacetate fluorescence. The cryopreservation of ovarian tissue by the slow freezing technique resulted in a significantly higher level of DNA fragmentation in oocytes in comparison to vitrification (p < 0.05) whereas DNA fragmentation in granulosa cells was significantly higher than the control (p < 0.01). Further, reactive oxygen species were significantly elevated in oocytes derived from slow freezing when compared to vitrification (p < 0.05). Therefore, we conclude that the ovarian tissue slow freeze-thawing makes the oocyte and granulosa cells more vulnerable to DNA damage whereas vitrification appears to be a safer method than slow freezing for ovarian tissue cryopreservation.

  7. Activation of Endoplasmic Reticulum Stress in Granulosa Cells from Patients with Polycystic Ovary Syndrome Contributes to Ovarian Fibrosis.

    PubMed

    Takahashi, Nozomi; Harada, Miyuki; Hirota, Yasushi; Nose, Emi; Azhary, Jerilee Mk; Koike, Hiroshi; Kunitomi, Chisato; Yoshino, Osamu; Izumi, Gentaro; Hirata, Tetsuya; Koga, Kaori; Wada-Hiraike, Osamu; Chang, R Jeffrey; Shimasaki, Shunichi; Fujii, Tomoyuki; Osuga, Yutaka

    2017-09-07

    Recent studies report the involvement of intra-ovarian factors, such as inflammation and oxidative stress, in the pathophysiology of polycystic ovary syndrome (PCOS), the most common endocrine disorder of reproductive age women. Endoplasmic reticulum (ER) stress is a local factor that affects various cellular events during a broad spectrum of physiological and pathological conditions. It may also be an important determinant of pro-fibrotic remodeling during tissue fibrosis. In the present study, we showed that ER stress was activated in granulosa cells of PCOS patients as well as in a well-established PCOS mouse model. Pharmacological inducers of ER stress, tunicamycin and thapsigargin, were found to increase the expression of pro-fibrotic growth factors, including transforming growth factor (TGF)-β1, in human granulosa cells, and their expression also increased in granulosa cells of PCOS patients. By contrast, treatment of PCOS mice with an ER stress inhibitor, tauroursodeoxycholic acid or BGP-15, decreased interstitial fibrosis and collagen deposition in ovaries, accompanied by a reduction in TGF-β1 expression in granulosa cells. These findings suggest that ER stress in granulosa cells of women with PCOS contributes to the induction of pro-fibrotic growth factors during ovarian fibrosis, and that ER stress may serve as a therapeutic target in PCOS.

  8. Modulation of steroidogenesis by vitamin D3 in granulosa cells of the mouse model of polycystic ovarian syndrome.

    PubMed

    Bakhshalizadeh, Shabnam; Amidi, Fardin; Alleyassin, Ashraf; Soleimani, Masoud; Shirazi, Reza; Shabani Nashtaei, Maryam

    2017-03-27

    Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder of women of reproductive age characterized by polycystic ovarian morphology, anovulation or oligomenorrhea, and hyperandrogenism. It is shown that disruption in the steroidogenesis pathway caused by excess androgen in PCOS is a critical element of abnormal folliculogenesis and failure in dominant follicle selection. Vitamin D plays an important role in the regulation of ovulatory dysfunction and can influence genes involved in steroidogenesis in granulosa cells. In the present study, we investigated the effects of vitamin D3 on steroidogenic enzyme expression and activities in granulosa cell using a PCOS mouse model. In our study, the PCOS mouse model was developed by the injection of dehydroepiandrosterone (DHEA) for 20 days. The mRNA and protein expression levels of genes involved in steroidogenesis in granulosa cells were compared between polycystic and normal ovaries using real-time PCR and Western blotting assays. Granulosa cells of DHEA-induced PCOS mice were then cultured with and without vitamin D3 and mRNA and protein expression levels of steroidogenic enzymes and serum 17beta-estradiol and progesterone levels were investigated using qRT-PCR, western blot, and radioimmunoassay, respectively. Steroidogenic enzymes including Cyp11a1, StAR, Cyp19a1, and 3β-HSD were upregulated in granulosa cells of PCOS mice when compared to normal mice. Treatment with vitamin D3 decreased mRNA and protein expression levels of steroidogenic enzymes in cultured granulosa cells. Vitamin D3 also decreased aromatase and 3β-HSD activity that leads to decreased 17beta-estradiol and progesterone release. This study suggests that vitamin D3 could modulate the steroidogenesis pathway in granulosa cells of PCOS mice that may lead to improving follicular development and maturation. This is a step towards a possible conceivable treatment for PCOS.

  9. Ovarian reserve status in young women is associated with altered gene expression in membrana granulosa cells.

    PubMed

    Skiadas, Christine C; Duan, Shenghua; Correll, Mick; Rubio, Renee; Karaca, Nilay; Ginsburg, Elizabeth S; Quackenbush, John; Racowsky, Catherine

    2012-07-01

    Diminished ovarian reserve (DOR) is a challenging diagnosis of infertility, as there are currently no tests to predict who may become affected with this condition, or at what age. We designed the present study to compare the gene expression profile of membrana granulosa cells from young women affected with DOR with those from egg donors of similar age and to determine if distinct genetic patterns could be identified to provide insight into the etiology of DOR. Young women with DOR were identified based on FSH level in conjunction with poor follicular development during an IVF cycle (n = 13). Egg donors with normal ovarian reserve (NOR) comprised the control group (n = 13). Granulosa cells were collected following retrieval, RNA was extracted and microarray analysis was conducted to evaluate genetic differences between the groups. Confirmatory studies were undertaken with quantitative RT-PCR (qRT-PCR). Multiple significant differences in gene expression were observed between the DOR patients and egg donors. Two genes linked with ovarian function, anti-Mullerian hormone (AMH) and luteinizing hormone receptor (LHCGR), were further analyzed with qRT-PCR in all patients. The average expression of AMH was significantly higher in egg donors (adjusted P-value = 0.01), and the average expression of LHCGR was significantly higher in DOR patients (adjusted P-value = 0.005). Expression levels for four additional genes, progesterone receptor membrane component 2 (PGRMC2), prostaglandin E receptor 3 (subtype EP3) (PTGER3), steroidogenic acute regulatory protein (StAR), and StAR-related lipid transfer domain containing 4 (StarD4), were validated in a group consisting of five NOR and five DOR patients. We conclude that gene expression analysis has substantial potential to determine which young women may be affected with DOR. More importantly, our analysis suggests that DOR patients fall into two distinct subgroups based on gene expression profiles, indicating that different

  10. Ovarian reserve status in young women is associated with altered gene expression in membrana granulosa cells

    PubMed Central

    Skiadas, Christine C.; Duan, Shenghua; Correll, Mick; Rubio, Renee; Karaca, Nilay; Ginsburg, Elizabeth S.; Quackenbush, John; Racowsky, Catherine

    2012-01-01

    Diminished ovarian reserve (DOR) is a challenging diagnosis of infertility, as there are currently no tests to predict who may become affected with this condition, or at what age. We designed the present study to compare the gene expression profile of membrana granulosa cells from young women affected with DOR with those from egg donors of similar age and to determine if distinct genetic patterns could be identified to provide insight into the etiology of DOR. Young women with DOR were identified based on FSH level in conjunction with poor follicular development during an IVF cycle (n = 13). Egg donors with normal ovarian reserve (NOR) comprised the control group (n = 13). Granulosa cells were collected following retrieval, RNA was extracted and microarray analysis was conducted to evaluate genetic differences between the groups. Confirmatory studies were undertaken with quantitative RT–PCR (qRT–PCR). Multiple significant differences in gene expression were observed between the DOR patients and egg donors. Two genes linked with ovarian function, anti-Mullerian hormone (AMH) and luteinizing hormone receptor (LHCGR), were further analyzed with qRT–PCR in all patients. The average expression of AMH was significantly higher in egg donors (adjusted P-value = 0.01), and the average expression of LHCGR was significantly higher in DOR patients (adjusted P-value = 0.005). Expression levels for four additional genes, progesterone receptor membrane component 2 (PGRMC2), prostaglandin E receptor 3 (subtype EP3) (PTGER3), steroidogenic acute regulatory protein (StAR), and StAR-related lipid transfer domain containing 4 (StarD4), were validated in a group consisting of five NOR and five DOR patients. We conclude that gene expression analysis has substantial potential to determine which young women may be affected with DOR. More importantly, our analysis suggests that DOR patients fall into two distinct subgroups based on gene expression profiles, indicating that different

  11. RNA-seq based gene expression analysis of ovarian granulosa cells exposed to zearalenone in vitro: significance to steroidogenesis

    PubMed Central

    Zhang, Guo-Liang; Zhang, Rui-Qian; Sun, Xiao-Feng; Cheng, Shun-Feng; Wang, Yu-Feng; Ji, Chuan-Liang; Feng, Yan-Zhong; Yu, Jie; Ge, Wei; Zhao, Yong; Sun, Shi-Duo; Shen, Wei; Li, Lan

    2017-01-01

    Zearalenone (ZEA) is a natural contaminant of various food and feed products representing a significant problem worldwide. Since the occurrence of ZEA in grains and feeds is frequent, the present study was carried out to evaluate the possible effects of ZEA on steroid production and gene expression of porcine granulosa cells, using RNA-seq analysis. Porcine granulosa cells were administered 10 μM and 30 μM ZEA during 72 h of culture in vitro. Following ZEA treatment the gene expression profile of control and exposed granulosa cells was compared using RNA-seq analysis. The results showed that in the exposed granulosa cells ZEA significantly altered the transcript levels, particularly steroidogenesis associated genes. Compared with the control group, 10 μM and 30 μM ZEA treatment significantly increased the mRNA expression of EDN1, IER3, TGFβ and BDNF genes and significantly reduced the mRNA expression of IGF-1 and SFRP2 genes. In particular, ZEA significantly decreased the expression of genes essential for estrogen synthesis including FSHR, CYP19A1 and HSD17β in granulosa cells. Furthermore, Q-PCR and Western-blot analysis also confirmed reduced expression of these genes in ZEA exposed granulosa cells. These effects were associated with a significant reduction of 17β-estradiol concentrations in the culture medium of granulosa cells. Collectively, these results demonstrated a concretely deleterious effect of ZEA exposure on the mRNA expression of steroidogenesis related genes and the production of steroid hormones in porcine ovarian granulosa cells in vitro. PMID:28969048

  12. Embryonic stem cell-derived granulosa cells participate in ovarian follicle formation in vitro and in vivo.

    PubMed

    Woods, Dori C; White, Yvonne A R; Niikura, Yuichi; Kiatpongsan, Sorapop; Lee, Ho-Joon; Tilly, Jonathan L

    2013-05-01

    Differentiating embryonic stem cells (ESCs) can form ovarian follicle-like structures in vitro, consisting of an oocyte-like cell surrounded by somatic cells capable of steroidogenesis. Using a dual-fluorescence reporter system in which mouse ESCs express green fluorescent protein (GFP) under the control of a germ cell-specific Pou5f1 gene promoter and red fluorescent protein (Discosoma sp red [DsRed]) driven by the granulosa cell-specific Forkhead box L2 (Foxl2) gene promoter, we first confirmed in vitro formation of follicle-like structures containing GFP-positive cells surrounded by DsRed-positive cells. Isolated DsRed-positive cells specified from ECSs exhibited a gene expression profile consistent with granulosa cells, as revealed by the detection of messenger RNAs (mRNAs) for Foxl2, follistatin (Fst), anti-Müllerian hormone (Amh), and follicle-stimulating hormone receptor (Fshr) as well as by production of both progesterone and estradiol. In addition, treatment of isolated DsRed-expressing cells with follicle-stimulating hormone (FSH) significantly increased estradiol production over basal levels, confirming the presence of functional FSH receptors in these cells. Last, ESC-derived DsRed-positive cells injected into neonatal mouse ovaries became incorporated within the granulosa cell layer of immature follicles. These studies demonstrate that Foxl2-expressing ovarian somatic cells derived in vitro from differentiating ESCs express granulosa cell markers, actively associate with germ cells in vitro, synthesize steroids, respond to FSH, and participate in folliculogenesis in vivo.

  13. Ovarian granulosa cell tumor: An uncommon presentation with primary amenorrhea and virilization in a pubertal girl.

    PubMed

    Kota, Sunil Kumar; Gayatri, Kotni; Pani, Jaya Prakash; Meher, Lalit Kumar; Kota, Siva Krishna; Modi, Kirtikumar D

    2012-09-01

    A 16-year-old girl presented with primary amenorrhea and excess hair growth on her body and face for the last three years, along with pain and a mass in her lower abdomen for last one year. Examination revealed hirsutism and other virilizing features, with an irregular mass in the lower abdomen corresponding to 16 weeks'gestation. Serum testosterone was 320 ng / dl and ultrasonogram of the pelvis revealed a solid mass of 5 × 4 cm in the left adnexa. Suspecting it to be a virilizing tumor of the left ovary, the patient was subjected to staging laparotomy, which revealed stage 1a ovarian involvement amenable to surgical resection alone. Histopathological examination confirmed the diagnosis of granulosa cell tumor of the ovary. Postoperatively the serum testosterone returned to 40 ng / dl and her menstrual cycle started after two months of surgery.

  14. Leptin siRNA promotes ovarian granulosa cell apoptosis and affects steroidogenesis by increasing NPY2 receptor expression.

    PubMed

    Ding, Xiaomeng; Kou, Xinxin; Zhang, Ye; Zhang, Xiaoli; Cheng, Guomei; Jia, Tianming

    2017-10-30

    Leptin has been found to be involved in the ovarian granulosa cell apoptosis and steroidogenesis. Loss of neuropeptide Y (NPY) can correct the obesity syndrome of mutant mice lacking of leptin (ob/ob). However, the association of NPY and leptin in ovarian granulosa cells and ovarian steroidogenesis has not been investigated. Here, C57BL/6J ob/ob mice and C57BL/6J (control) mice were intraperitoneally injected with PBS, leptin (0.4μg/g bodyweight) or BIIE0246 (NPY2 receptor [NPY2R] antagonist, 30μg/kg bodyweight) every day for 15days. We found that NPY2R mRNA expression in mouse ovary was suppressed by leptin treatment, but increased by leptin deficiency. Leptin or BIIE0246 treatment significantly increased E2, but notably decreased progesterone in both mice. A lower level of E2 and a higher level of progesterone was observed in ob/ob mice than in control mice. Further, we then knocked down leptin expression in human ovarian granulosa cells by siRNA transfection and treated the cells with DMSO or BIIE0246. In vitro experiments confirmed the findings in mice. siLeptin treatment decreased the secretion of E2, anti-Mullerian hormone (AMH), insulin-like growth factor (IGF)-1 and transforming growth factor (TGF)-β, and the cell proliferation, but increased the secretion of progesterone and cell apoptosis. Western blotting analysis of PCNA, Bcl-2 and Bax confirmed the results of cell proliferation and apoptosis. Activation of JAK2 and STAT3 was also suppressed by knocking down leptin. All the effects of siLeptin on ovarian granulosa cells were partially reversed by BIIE0246. In conclusion, knockdown of leptin significantly affected ovarian steroidogenesis and ovarian function through NPY. siLeptin transfection impaired the activation of JAK2/STAT3 and contributed to ovarian granulosa cell apoptosis partially through up-regulating NPY2R expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Concanavalin-A induces granulosa cell death and inhibits FSH-mediated follicular growth and ovarian maturation in female rats.

    PubMed

    Velasquez, Ethel V; Ríos, Mariana; Ortiz, María Elena; Lizama, Carlos; Nuñez, Elizabeth; Abramovich, Dalhia; Orge, Felipe; Oliva, Barbara; Orellana, Renán; Villalon, Manuel; Moreno, Ricardo D; Tesone, Marta; Rokka, Anne; Corthals, Garry; Croxatto, Horacio B; Parborell, Fernanda; Owen, Gareth I

    2013-05-01

    Reproductive success stems from a finely regulated balance between follicular maturation and atresia, in which the role of carbohydrate structure is poorly understood. Here, we describe for the first time a fraction of purified recombinant human FSH that is capable of bringing about the cell death of granulosa cells and preventing follicular maturation in a rat model. Further analysis by mass spectrometry revealed the presence of the lectin Concanavalin-A (Con-A) within this fraction of recombinant FSH. Using both the fractionated FSH and Con-A, the observed cell death was predominantly located to the granulosa cells. Ex vivo culture of rat follicles demonstrated that follicle degeneration occurred and resulted in the release of a denuded and deteriorated oocyte. Moreover, in vivo experiments confirmed an increase in atresia and a corresponding reduction confined to follicle in early antral stage. As a mechanism of action, Con-A reduces ovarian proliferation, Von Willebrand staining, and angiogenesis. Based on the observation that Con-A may induce granulosa cell death followed by follicle death, our results further demonstrate that follicular carbohydrate moiety is changing under the influence of FSH, which may allow a carbohydrate-binding lectin to increase granulosa cell death. The physiological consequences of circulating lectin-like molecules remain to be determined. However, our results suggest a potential exploitation of carbohydrate binding in fertility and ovarian cancer treatment. This work may shed light on a key role of carbohydrates in the still obscure physiological process of follicular selection and atresia.

  16. In vitro evaluation of the anti-apoptotic drug Z-VAD-FMK on human ovarian granulosa cell lines for further use in ovarian tissue transplantation.

    PubMed

    Fransolet, Maïté; Henry, Laurie; Labied, Soraya; Noël, Agnès; Nisolle, Michelle; Munaut, Carine

    2015-10-01

    Because ovarian granulosa cells are essential for oocyte survival, we examined three human granulosa cell lines as models to evaluate the ability of the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-FMK) to prevent primordial follicle loss after ovarian tissue transplantation. To validate the efficacy of Z-VAD-FMK, three human granulosa cell lines (GC1a, HGL5, COV434) were treated for 48 h with etoposide (50 μg/ml) and/or Z-VAD-FMK (50 μM) under normoxic conditions. To mimic the ischemic phase that occurs after ovarian fragment transplantation, cells were cultured without serum under hypoxia (1 % O(2)) and treated with Z-VAD-FMK. The metabolic activity of the cells was evaluated by WST-1 assay. Cell viability was determined by FACS analyses. The expression of apoptosis-related molecules was assessed by RT-qPCR and Western blot analyses. Our assessment of metabolic activity and FACS analyses in the normoxic experiments indicate that Z-VAD-FMK protects granulosa cells from etoposide-induced cell death. When cells are exposed to hypoxia and serum starvation, their metabolic activity is reduced. However, Z-VAD-FMK does not provide a protective effect. In the hypoxic experiments, the number of viable cells was not modulated, and we did not observe any modifications in the expressions of apoptosis-related molecules (p53, Bax, Bcl-xl, and poly (ADP-ribose) polymerase (PARP)). The death of granulosa cell lines was not induced in our ischemic model. Therefore, a protective effect of Z-VAD-FMK in vitro for further use in ovarian tissue transplantation could not be directly confirmed. It will be of interest to potentially use Z-VAD-FMK in vivo in xenograft models.

  17. Ovarian transcriptomes as a tool for a global approach of genes modulated by gonadotropic hormones in human ovarian granulosa cells.

    PubMed

    Friedmann, Sarit; Sarit, Freimann; Dantes, Ada; Ada, Dantes; Amsterdam, Abraham; Abraham, Amsterdam

    2005-04-01

    Follicle-stimulating hormone (FSH) is a key stimulant for the development of the ovarian follicle, while luteinizing hormone (LH) plays a major role in triggering ovulation and luteinization. Both FSH and LH are glycoprotein hormones that share the same alpha subunit but bind to specific seven transmembrane-domain G coupled receptors located on the cell membrane of the granulosa cells, which comprise the main somatic population of the ovarian follicle. These hormone-receptor complexes may trigger different signaling cascades, but the entire repertoire of genes modulated by these hormones is far from being understood, in particular on the transcriptional level. The development of DNA micro-arrays technique, using the entire genome profile of some mammalian species, allows a global approach and screening of multiple signal transduction pathways. This method opened new insights into the cellular and molecular events that control ovulation and desensitization of the corpus luteum to hyperstimulation by gonadotropic hormones. In addition, this technique permitted the discovery of novel members of the EGF family, such as epiregulin and amphiregulin, that were found to be expressed in the gonadotropin-stimulated cells and were discovered to play a crucial role in the mechanism of ovulation. However, because of the pitfalls in interpreting the data other approaches, for example, Northern blots and RT-PCR must be conducted in parallel to verify the validity of the data.

  18. Comparison of nine media in the culture of human ovarian granulosa lutein cells.

    PubMed

    Bouraki, Genovefa; Metallinou, Chryssa; Simopoulou, Mara; Charalabopoulos, Konstantinos; Asimakopoulos, Byron

    2012-01-01

    Cultures of human ovarian granulosa lutein (hGL) cells are broadly used in experimental studies. The choice of the culture medium is important for the optimization of the conditions for culture of hGL cells. To compare the efficiency of a basic salt solution and eight different defined media on the culture of hGL cells. Cultures of the HGL-5 cell line were maintained for 72 hours with DMEM/F12, RPMI-1640, Ham'sF10, Modified Ham'sF10®, HTFXtra®, Global®, Complete Multiblast®, Universal® or Earle's balanced salt solution (EBSS). At the end of the culturing period, the attachment, the viability and the total number of cells were measured. Culture in DMEM/F12 led to the highest score of all studied parameters, followed by RPMI-1640. The lowest performance was recorded with Complete Multiblast® and EBSS. The use of the other media gave mediocre results. Among the media tested, DMEM/F12 appears to be the best choice for the culture of hGL cells.

  19. Embryonic Stem Cell–Derived Granulosa Cells Participate in Ovarian Follicle Formation In Vitro and In Vivo

    PubMed Central

    Woods, Dori C.; White, Yvonne A. R.; Niikura, Yuichi; Kiatpongsan, Sorapop; Lee, Ho-Joon

    2013-01-01

    Differentiating embryonic stem cells (ESCs) can form ovarian follicle-like structures in vitro, consisting of an oocyte-like cell surrounded by somatic cells capable of steroidogenesis. Using a dual-fluorescence reporter system in which mouse ESCs express green fluorescent protein (GFP) under the control of a germ cell–specific Pou5f1 gene promoter and red fluorescent protein (Discosoma sp red [DsRed]) driven by the granulosa cell–specific Forkhead box L2 (Foxl2) gene promoter, we first confirmed in vitro formation of follicle-like structures containing GFP-positive cells surrounded by DsRed-positive cells. Isolated DsRed-positive cells specified from ECSs exhibited a gene expression profile consistent with granulosa cells, as revealed by the detection of messenger RNAs (mRNAs) for Foxl2, follistatin (Fst), anti-Müllerian hormone (Amh), and follicle-stimulating hormone receptor (Fshr) as well as by production of both progesterone and estradiol. In addition, treatment of isolated DsRed-expressing cells with follicle-stimulating hormone (FSH) significantly increased estradiol production over basal levels, confirming the presence of functional FSH receptors in these cells. Last, ESC-derived DsRed-positive cells injected into neonatal mouse ovaries became incorporated within the granulosa cell layer of immature follicles. These studies demonstrate that Foxl2-expressing ovarian somatic cells derived in vitro from differentiating ESCs express granulosa cell markers, actively associate with germ cells in vitro, synthesize steroids, respond to FSH, and participate in folliculogenesis in vivo. PMID:23536570

  20. Expression of betaglycan, an inhibin coreceptor, in normal human ovaries and ovarian sex cord-stromal tumors and its regulation in cultured human granulosa-luteal cells.

    PubMed

    Liu, Jianqi; Kuulasmaa, Tiina; Kosma, Veli-Matti; Bützow, Ralf; Vänttinen, Teemu; Hydén-Granskog, Christel; Voutilainen, Raimo

    2003-10-01

    Activins and inhibins are often antagonistic in the regulation of ovarian function. TGFbeta type III receptor, betaglycan, has been identified as a coreceptor to enhance the binding of inhibins to activin type II receptor and thus to prevent the binding of activins to their receptor. In this study we characterized the expression and regulation pattern of betaglycan gene in normal ovaries and sex cord-stromal tumors and in cultured human granulosa-luteal cells from women undergoing in vitro fertilization. Expression of betaglycan mRNA was detected by RT-PCR or Northern blotting in normal ovarian granulosa, thecal, and stroma cells as well as in granulosa-luteal cells. Immunohistochemical analysis revealed positive staining for betaglycan in antral and preovulatory follicular granulosa and thecal cells and in corpora lutea of normal ovaries. Furthermore, betaglycan expression was detected in the vast majority of granulosa cell tumors, thecomas, and fibromas, with weaker staining in granulosa cell tumors compared with fibrothecomas. In cultured granulosa-luteal cells, FSH and LH treatment increased dose-dependently the accumulation of betaglycan mRNA, as did the protein kinase A activator dibutyryl cAMP and the protein kinase C inhibitor staurosporine. In contrast, the protein kinase C activator 12-O-tetradecanoyl phorbol 13-acetate had no significant effect on betaglycan mRNA levels. Treatment with prostaglandin E(2) and with its receptor EP2 subtype agonist butaprost increased betaglycan mRNA accumulation and progesterone secretion dose- and time-dependently. In summary, betaglycan gene is expressed in normal human ovarian steroidogenic cells and sex cord-stromal ovarian tumors. The accumulation of its mRNA in cultured granulosa-luteal cells is up-regulated by gonadotropins and prostaglandin E(2), probably via the protein kinase A pathway. The specific expression and regulation pattern of betaglycan gene may be related to the functional antagonism of inhibins to

  1. Gene Expression Profiling Reveals Cyp26b1 to Be an Activin Regulated Gene Involved in Ovarian Granulosa Cell Proliferation

    PubMed Central

    Kipp, Jingjing L.; Golebiowski, Ann; Rodriguez, Guadalupe; Demczuk, Michael; Kilen, Signe M.; Mayo, Kelly E.

    2011-01-01

    Activin, a member of the TGF-β superfamily, is an important modulator of FSH synthesis and secretion and is involved in reproductive dysfunctions and cancers. It also regulates ovarian follicle development. To understand the mechanisms and pathways by which activin regulates follicle function, we performed a microarray study and identified 240 activin regulated genes in mouse granulosa cells. The gene most strongly inhibited by activin was Cyp26b1, which encodes a P450 cytochrome enzyme that degrades retinoic acid (RA). Cyp26b1 has been shown to play an important role in male germ cell meiosis, but its expression is largely lost in the ovary around embryonic d 12.5. This study demonstrated that Cyp26b1 mRNA was expressed in granulosa cells of follicles at all postnatal developmental stages. A striking inverse spatial and temporal correlation between Cyp26b1 and activin-βA mRNA expression was observed. Cyp26b1 expression was also elevated in a transgenic mouse model that has decreased activin expression. The Cyp26 inhibitor R115866 stimulated the proliferation of primary cultured mouse granulosa cells, and a similar effect was observed with RA and activin. A pan-RA receptor inhibitor, AGN194310, abolished the stimulatory effect of either RA or activin on granulosa cell proliferation, indicating an involvement of RA receptor-mediated signaling. Overall, this study provides new insights into the mechanisms of activin action in the ovary. We conclude that Cyp26b1 is expressed in the postnatal mouse ovary, regulated by activin, and involved in the control of granulosa cell proliferation. PMID:21084447

  2. Gonadotropin regulation of the rat proopiomelanocortin promoter: characterization by transfection of primary ovarian granulosa cells.

    PubMed

    Young, S L; Nielsen, C P; Lundblad, J R; Roberts, J L; Melner, M H

    1989-01-01

    To characterize the transcriptional effects of human (h)FSH and hCG on the POMC gene, primary rat granulosa cells were transiently transfected with a chloramphenicol acetyltransferase (CAT) reporter plasmid under the control of the POMC promoter and 5' region. POMC-CAT contains a fragment of the rat POMC gene, extending from nucleotide -704 to nucleotide +63, fused to the CAT gene. Treatment of POMC-CAT-transfected cells with either hFSH (20 ng/ml) or hCG (10 ng/ml) significantly increased CAT enzyme activity; however, neither hCG nor hFSH increased CAT enzyme activity in cells transfected with pSV2-CAT, a reporter plasmid under the control of the SV40 virus promoter and 5' region. The phosphodiesterase inhibitor isobutylmethylxanthine or the nonhydrolyzable cAMP analog cAMP-chlorothiophenyl significantly increased CAT activity in POMC-CAT-transfected granulosa cells. Human FSH stimulated transcription 10, 20, and 40 h after treatment, but FSH stimulation at the two earlier time points was 2.5- to 5.5-fold greater than that at 40 h. Gonadotropin-stimulated steroidogenesis was equivalent in POMC-CAT-transfected granulosa cells, untransfected, and mock-transfected cells. This indicates that transfection left the physiological hormone response intact. These data demonstrate the following. 1) 767 basepairs of the rat POMC gene are enough to confer gonadotropin stimulation on the CAT marker gene in granulosa cells. 2) Although the POMC promotor lacks a well conserved cAMP response element, either of two different pharmacological manipulations of granulosa cells that raise intracellular cAMP can also stimulate POMC-driven CAT expression. 3) Transfected primary cultures of granulosa cells provide a nontransformed, physiologically relevant model with which to study hormone-regulated gene expression.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Effects of resveratrol on growth and function of rat ovarian granulosa cells.

    PubMed

    Ortega, Israel; Wong, Donna H; Villanueva, Jesus A; Cress, Amanda B; Sokalska, Anna; Stanley, Scott D; Duleba, Antoni J

    2012-12-01

    To evaluate the effects of resveratrol on growth and function of granulosa cells. Previously, we demonstrated that resveratrol exerts profound proapoptotic effects on theca-interstitial cells. In vitro study. Research laboratory. Immature Sprague-Dawley female rats. Granulosa cells were cultured in the absence or presence of resveratrol. DNA synthesis was determined by thymidine incorporation assay, apoptosis by activity of caspases 3/7, cell morphology by immunocytochemistry, steroidogenesis by mass spectrometry, antimüllerian hormone (AMH), and vascular endothelial growth factor (VEGF) expression by polymerase chain reaction and Western blot. Resveratrol induced a biphasic effect on DNA synthesis, whereby a lower concentration stimulated thymidine incorporation and higher concentrations inhibited it. Additionally, resveratrol slightly increased the cell number and modestly decreased the activity of caspases 3/7 with no effect on cell morphology or progesterone production. However, resveratrol decreased aromatization and VEGF expression, whereas AMH expression remained unaltered. Resveratrol, by exerting cytostatic but not cytotoxic effects, together with antiangiogenic actions mediated by decreased VEGF in granulosa cells, may alter the ratio of theca-to-granulosa cells and decrease vascular permeability, and therefore may be of potential therapeutic use in conditions associated with highly vascularized theca-interstitial hyperplasia and abnormal angiogenesis, such as those seen in women with polycystic ovary syndrome. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    PubMed Central

    Ganesan, Shanthi; Keating, Aileen F.

    2015-01-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. PMID:25497287

  5. Enhanced Inflammatory Transcriptome in the Granulosa Cells of Women With Polycystic Ovarian Syndrome

    PubMed Central

    Adams, Jaye; Liu, Zhilin; Ren, Yi Athena; Wun, Wan-Song; Zhou, Wei; Kenigsberg, Shlomit; Librach, Clifford; Valdes, Cecilia; Gibbons, William

    2016-01-01

    Context: Polycystic ovarian syndrome (PCOS), the most common endocrine disorder of reproductive-aged women, is associated with systemic low-grade inflammation. Objective: We propose that increased or altered intrafollicular inflammatory reactions also occur in periovulatory follicles of PCOS patients. Design: Gene profiling and quantitative PCR (qPCR) analyses in granulosa-lutein cells (GCs) collected from PCOS and non-PCOS women undergoing in vitro fertilization were compared with serum and follicular fluid (FF) levels of cytokines and chemokines. Setting: This was a university-based study. Patients: Twenty-one PCOS and 45 control patients were recruited: demographic, hormone, body mass index, and pregnancy outcomes were abstracted from patient data files. Interventions: GC cytokine/chemokine mRNAs were identified and analyzed by gene-chip microarrays/qPCR before and after culture with human chorionic gonadotropin, DHT, IL-6, or IL-8; serum/FF cytokine levels were also analyzed. Main Outcome Measures: Relative serum/FF cytokine levels and GC cytokine expression before and after culture were compared and related to body mass index. Results: The following results were found: 1) PCOS GCs express elevated transcripts encoding cytokines, chemokines, and immune cell markers, 2) based on gene profiling and qPCR analyses, obese PCOS patients define a distinct PCOS disease subtype with the most dramatic increases in proinflammatory and immune-related factors, and 3) human chorionic gonadotropin and DHT increased cytokine production in cultured GCs, whereas cytokines augmented cytokine and vascular genes, indicating that hyperandrogenism/elevated LH and obesity in PCOS women augment intrafollicular cytokine production. Conclusions: Intrafollicular androgens and cytokines likely comprise a local regulatory loop that impacts GC expression of cytokines and chemokines and the presence of immune cells; this loop is further enhanced in the obese PCOS subtype. PMID:27228368

  6. Transcriptome profiling of granulosa cells of bovine ovarian follicles during growth from small to large antral sizes

    PubMed Central

    2014-01-01

    Background At later stages of folliculogenesis, the mammalian ovarian follicle contains layers of epithelial granulosa cells surrounding an antral cavity. During follicle development granulosa cells replicate, secrete hormones and support the growth of the oocyte. In cattle, the follicle needs to grow > 10 mm in diameter to allow an oocyte to ovulate, following which the granulosa cells cease dividing and differentiate into the specialised cells of the corpus luteum. To better understand the molecular basis of follicular growth and granulosa cell maturation, we undertook transcriptome profiling of granulosa cells from small (< 5 mm; n = 10) and large (> 10 mm, n = 4) healthy bovine follicles using Affymetrix microarrays (24,128 probe sets). Results Principal component analysis for the first two components and hierarchical clustering showed clustering into two groups, small and large, with the former being more heterogeneous. Size-frequency distributions of the coefficient of variation of the signal intensities of each probe set also revealed that small follicles were more heterogeneous than the large. IPA and GO enrichment analyses revealed that processes of axonal guidance, immune signalling and cell rearrangement were most affected in large follicles. The most important networks were associated with: (A) Notch, SLIT/ROBO and PI3K signalling, and (B) ITGB5 and extracellular matrix signalling through extracellular signal related kinases (ERKs). Upstream regulator genes which were predicted to be active in large follicles included STAT and XBP1. By comparison, developmental processes such as those stimulated by KIT, IHH and MEST were most active in small follicles. MGEA5 was identified as an upstream regulator in small follicles. It encodes an enzyme that modifies the activity of many target proteins, including those involved in energy sensing, by removal of N-acetylglucosamine from serine and threonine residues. Conclusions Our data suggest that as

  7. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    SciTech Connect

    Ganesan, Shanthi Keating, Aileen F.

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.

  8. Circadian Clock genes Per2 and clock regulate steroid production, cell proliferation, and luteinizing hormone receptor transcription in ovarian granulosa cells

    SciTech Connect

    Shimizu, Takashi; Hirai, Yuko; Murayama, Chiaki; Miyamoto, Akio; Miyazaki, Hitoshi; Miyazaki, Koyomi

    2011-08-19

    Highlights: {yields} Treatment with Per2 and Clock siRNAs decreased the number of granulosa cells and LHr expression. {yields}Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom. {yields} Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. {yields}Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. {yields} The expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. -- Abstract: Circadian Clock genes are associated with the estrous cycle in female animals. Treatment with Per2 and Clock siRNAs decreased the number of granulosa cells and LHr expression in follicle-stimulating hormone FSH-treated granulosa cells. Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom, whereas Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. Similarly, expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. Our data provide a new insight that Per2 and Clock have different action on ovarian granulosa cell functions.

  9. Induction of ovarian granulosa cell tumors in SWXJ-9 mice with dehydroepiandrosterone.

    PubMed

    Beamer, W G; Shultz, K L; Tennent, B J

    1988-05-15

    Spontaneous ovarian granulosa cell (GC) tumors develop in SWXJ-9 inbred mice at approximately the time of puberty. The effect of dehydroepiandrosterone (DHEA), a steroid secreted by the adrenals and reported to have antitumor actions, was examined in this ovarian tumor model. In contrast with expectations, administration of diet supplemented with 0.4% DHEA or Silastic capsules containing 10 mg DHEA resulted in a significant multifold increase in GC tumor incidence. Similar studies with metabolites of DHEA, i.e., testosterone (TESTO), dihydrotestosterone (DHT), and 17 beta-estradiol (E2), revealed that TESTO was as effective as DHEA in increasing GC tumor incidence. DHT was without effect, and E2 suppressed GC tumor incidence. Serum steroid levels and steroid target tissue responses were assessed to determine if a correlation between a change in level or response to specific steroids and GC tumorigenesis existed. In both tumor-free and GC tumor host mice, dietary or capsular treatment with DHEA, TESTO, or DHT resulted in substantial alteration in one or more of serum steroids, DHEA, androstenedione, TESTO, and DHT, in addition to the administered steroid. No consistent correlation was observed between changes in a single steroid or pattern of steroids and GC tumorigenesis. Although significant increases in serum estrogens could be detected in GC tumor hosts treated with DHEA but not TESTO, estrogens did not induce these tumors. Treatment with E2 increased only serum E2 levels. In tumor-free mice, DHEA and E2 treatments were associated with vaginal cytological evidence of estrogen action, whereas the androgens induced a leukocytic pattern. Eighty-eight % of GC tumor host mice, regardless of steroid treatment, showed a vaginal cytology pattern that included cornified cells. The evidence presented in this report leads us to hypothesize that (a) spontaneous and steroid-induced GC tumorigenesis in these mice have the same mechanism, and (b) subtle increases in DHEA or a

  10. α-SNAP is expressed in mouse ovarian granulosa cells and plays a key role in folliculogenesis and female fertility.

    PubMed

    Arcos, Alexis; Paola, Matilde de; Gianetti, Diego; Acuña, Diego; Velásquez, Zahady D; Miró, María Paz; Toro, Gabriela; Hinrichsen, Bryan; Muñoz, Rosa Iris; Lin, Yimo; Mardones, Gonzalo A; Ehrenfeld, Pamela; Rivera, Francisco J; Michaut, Marcela A; Batiz, Luis Federico

    2017-09-18

    The balance between ovarian folliculogenesis and follicular atresia is critical for female fertility and is strictly regulated by a complex network of neuroendocrine and intra-ovarian signals. Despite the numerous functions executed by granulosa cells (GCs) in ovarian physiology, the role of multifunctional proteins able to simultaneously coordinate/modulate several cellular pathways is unclear. Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (α-SNAP) is a multifunctional protein that participates in SNARE-mediated membrane fusion events. In addition, it regulates cell-to-cell adhesion, AMPK signaling, autophagy and apoptosis in different cell types. In this study we examined the expression pattern of α-SNAP in ovarian tissue and the consequences of α-SNAP (M105I) mutation (hyh mutation) in folliculogenesis and female fertility. Our results showed that α-SNAP protein is highly expressed in GCs and its expression is modulated by gonadotropin stimuli. On the other hand, α-SNAP-mutant mice show a reduction in α-SNAP protein levels. Moreover, increased apoptosis of GCs and follicular atresia, reduced ovulation rate, and a dramatic decline in fertility is observed in α-SNAP-mutant females. In conclusion, α-SNAP plays a critical role in the balance between follicular development and atresia. Consequently, a reduction in its expression/function (M105I mutation) causes early depletion of ovarian follicles and female subfertility.

  11. Mouse oocytes suppress miR-322-5p expression in ovarian granulosa cells

    PubMed Central

    SUMITOMO, Jun-ichi; EMORI, Chihiro; MATSUNO, Yuta; UENO, Mizuki; KAWASAKI, Kurenai; ENDO, Takaho A.; SHIROGUCHI, Katsuyuki; FUJII, Wataru; NAITO, Kunihiko; SUGIURA, Koji

    2016-01-01

    This study tested the hypothesis that oocyte-derived paracrine factors (ODPFs) regulate miRNA expression in mouse granulosa cells. Expression of mmu-miR-322-5p (miR-322) was higher in mural granulosa cells (MGCs) than in cumulus cells of the Graafian follicles. The expression levels of miR-322 decreased when cumulus cells or MGCs were co-cultured with oocytes denuded of their cumulus cells. Inhibition of SMAD2/3 signaling by SB431542 increased miR-322 expression by cumulus-oocyte complexes (COCs). Moreover, the cumulus cells but not the MGCs in Bmp15–/–/Gdf9+/– (double-mutant) mice exhibited higher miR-322 expression than those of wild-type mice. Taken together, these results show that ODPFs suppress the expression of miR-322 in cumulus cells. Gene ontology analysis of putative miR-322 targets whose expression was detected in MGCs with RNA-sequencing suggested that multiple biological processes are affected by miR-322 in MGCs. These results demonstrate that ODPFs regulate miRNA expression in granulosa cells and that this regulation may participate in the differential control of cumulus cell versus MGC functions. Therefore, the ODPF-mediated regulation of cumulus cells takes place at both transcriptional and post-transcriptional levels. PMID:27180925

  12. The differentiation of mammalian ovarian granulosa cells – living in the shadow of cellular developmental capacity.

    PubMed

    Chachuła, A; Kranc, W; Budna, J; Bryja, A; Ciesiólka, S; Wojtanowicz-Markiewicz, K; Piotrowska, H; Bukowska, D; Krajecki, M; Antosik, P; Brüssow, K P; Bruska, M; Nowicki, M; Zabel, M; Kempisty, B

    2016-01-01

    The mammalian cumulus-oocyte complex (COCs) promotes oocyte growth and development during long stages of folliculogenesis and oogenesis. Before ovulation, the follicle is formed by a variety of fully differentiated cell populations; cumulus cells (CCs) that tightly surround the female gamete, granulosa cells (GCs) and theca cells (TCs) which build the internal and external mass of the follicular wall. It is well documented that CCs surrounding the oocyte are necessary for resumption of meiosis and full maturation of the gamete. However, the role of the granulosa cells in acquisition of MII stage and/or full fertilization ability is not yet entirely known. In this article, we present an overview of mammalian oocytes and their relationship to the surrounding cumulus and granulosa cells. We also describe the processes of GCs differentiation and developmental capacity. Finally, we describe several markers of mammalian GCs, which could be used for positive identification of isolated cells. The developmental capacity of oocytes and surrounding somatic cells – a “fingerprint” of folliculogenesis and oogenesis.

  13. Movento influences development of granulosa cells and ovarian follicles and FoxO1 and Vnn1 gene expression in BALB/c mice

    PubMed Central

    Kafshgiri, Sakineh Kaboli; Parivar, Kazem; Baharara, Javad; Kerachian, Mohammad Amin; Roodbari, Nasim Hayati

    2016-01-01

    Objective(s): Pesticides has wide range of infertility in female reproductive. This study was done to evaluate the effect of movento pesticide on development of granulosa cells and ovarian follicles and FoxO1 and Vnn1 gene expression in BALB/c mice. Materials and Methods: In this study 40 healthy BALB/c mice 5-6 weeks age were used. Animals were randomly allocated into four groups. Control (without any intervention), three experimental groups received 25, 50 and 100 mg/kg movento dissolved in PBS by gavage for 21 days. Animals scarified after three weeks. For determining the effects of movento on granulosa cells in culture, treatments were conducted to movento (125, 250, 500 μg/ml) for 24 hr. We surveyed the expression of the FoxO1 and Vnn1 in granulosa cells in vitro, and its relation to cell death by flowcytometer and DAPI. Levels of FoxO1 and Vnn1 were analyzed by real-time PCR. Results: Exposure to movento significantly decreased ovarian weight and the number of primary, secondary and antral follicles. Further, treatment with different concentration of movento induced apoptosis on granulosa cells. Gene expression analysis showed the transcriptional expression of FoxO1 and vnn1 in granulosa cells. Level of Vnn1 mRNA in granulosa cells was decreased in granulosa cells and expression of FoxO1 significantly increased in treated groups in compare to controls (P-value <0.05). Conclusion: Exposure to movento significantly reduced the number of follicles and increased apoptosis of granulosa cells leading disruption of the reproductive system. Also movento reduced expression of Vnn1 and increased FoxO1 genes in a dose dependent manner. PMID:27917277

  14. Mouse ovarian granulosa cells produce urokinase-type plasminogen activator, whereas the corresponding rat cells produce tissue-type plasminogen activator

    PubMed Central

    1987-01-01

    It is well established that rat ovarian granulosa cells produce tissue plasminogen activator (tPA). The synthesis and secretion of the enzyme are induced by gonadotropins, and correlate well with the time of follicular rupture in vivo. We have found that in contrast, mouse granulosa cells produce a different form of plasminogen activator, the urokinase-type (uPA). As with tPA synthesis in the rat, uPA production by mouse granulosa cells is induced by gonadotropins, dibutyryl cAMP, and prostaglandin E2. However, dexamethasone, a drug which has no effect on tPA synthesis in rat cells inhibits uPA synthesis in the mouse. Results of these determinations made in cell culture were corroborated by examining follicular fluid, which is secreted in vivo predominantly by granulosa cells, from stimulated rat and mouse ovarian follicles. Rat follicular fluid contained only tPA, and mouse follicular fluid only uPA, indicating that in vivo, granulosa cells from the two species are secreting different enzymes. The difference in the type of plasminogen activator produced by the rat and mouse granulosa cells was confirmed at the messenger RNA level. After hormone stimulation, only tPA mRNA was present in rat cells, whereas only uPA mRNA was found in mouse cells. Furthermore, the regulation of uPA levels in mouse cells occurs via transient modulation of steady-state levels of mRNA, a pattern similar to that seen with tPA in rat cells. PMID:3040774

  15. Effect of inhibitor and activator of ghrelin receptor (GHS-R1a) on porcine ovarian granulosa cell functions.

    PubMed

    Sirotkin, Alexander V; Meszarošová, Monika; Grossmann, Roland; Benčo, Andrej; Valenzuela, Francisco

    2011-08-01

    It was previously shown, that ghrelin and its agonistic analogue, ghrelin 1-18, can be a stimulator of ovarian cell functions (promoter of proliferation, inhibitor of apoptosis and stimulator of hormones release). The aim of our studies was to compare the action of two ghrelin analogues - ghrelin 1-18, activator of ghrelin receptors (GHS-R1a), and (D-Lys3)-GHRP-6, its inhibitor, on porcine ovarian granulosa cell functions. Effects of (D-Lys3)-GHRP-6 added at doses of 0, 1, 10 or 100 ng/ml on the expression of markers of proliferation (PCNA, cyclin B1, MAPK/ERK1,2), apoptosis (bax, p53, caspase 3) and release of steroid hormones (progesterone, testosterone, estradiol) were examined. In addition, some effect of ghrelin 1-8 on some of these parameters (expression of MAPK/ERK1,2, bax, p53) were verified. It was shown, that (D-Lys3)-GHRP-6 promotes all markers of granulosa cell proliferation, inhibits all markers of apoptosis and stimulates the release of all three steroid hormones. Similar effects of (D-Lys3)-GHRP-6 (inhibitor of GHS-R1a) and ghrelin 1-18 (its stimulator) suggest that the examined effects of these substances on porcine ovaries are not mediated by GHS-R1a. Both chemical analogues could be potentially useful for stimulation of reproductive processes, at least in in vitro conditions.

  16. HtrA3 Is Downregulated in Cancer Cell Lines and Significantly Reduced in Primary Serous and Granulosa Cell Ovarian Tumors.

    PubMed

    Singh, Harmeet; Li, Ying; Fuller, Peter J; Harrison, Craig; Rao, Jyothsna; Stephens, Andrew N; Nie, Guiying

    2013-01-01

    Objective. The high temperature requirement factor A3 (HtrA3) is a serine protease homologous to bacterial HtrA. Four human HtrAs have been identified. HtrA1 and HtrA3 share a high degree of domain organization and are downregulated in a number of cancers, suggesting a widespread loss of these proteases in cancer. This study examined how extensively the HtrA (HtrA1-3) proteins are downregulated in commonly used cancer cell lines and primary ovarian tumors.Methods. RT-PCR was applied to various cancer cell lines (n=17) derived from the ovary, endometrium, testes, breast, prostate, and colon, and different subtypes of primary ovarian tumors [granulosa cell tumors (n=19), mucinous cystadenocarcinomas (n=6), serous cystadenocarcinomas (n=8)] and normal ovary (n = 9). HtrA3 protein was localized by immunohistochemistry.Results. HtrA3 was extensively downregulated in the cancer cell lines examined including the granulosa cell tumor-derived cell lines. In primary ovarian tumors, the HtrA3 was significantly lower in serous cystadenocarcinoma and granulosa cell tumors. In contrast, HtrA1 and HtrA2 were expressed in all samples with no significant differences between the control and tumors. In normal postmenopausal ovary, HtrA3 protein was localized to lutenizing stromal cells and corpus albicans. In serous cystadenocarcinoma, HtrA3 protein was absent in the papillae but detected in the mesenchymal cyst wall.Conclusion. HtrA3 is more extensively downregulated than HtrA1-2 in cancer cell lines. HtrA3, but not HtrA1 or HtrA2, was decreased in primary ovarian serous cystadenocarcinoma and granulosa cell tumors. This study provides evidence that HtrA3 may be the most relevant HtrA associated with ovarian malignancy.

  17. High concentration of insulin promotes apoptosis of primary cultured rat ovarian granulosa cells via its increase in extracellular HMGB1.

    PubMed

    Ni, Xiao-Rong; Sun, Zhou-Jun; Hu, Guo-Hua; Wang, Rong-Hui

    2015-03-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting women of reproductive age. Insulin resistance/hyperinsulinemia is a prevalent finding in women with PCOS, which indicates that insulin resistance/hyperinsulinemia may be an important player in the pathogenesis of the PCOS. However, the underlying mechanism of insulin resistance/hyperinsulinemia on the pathogenesis of the PCOS remains elusive. In this study, we found an increased high-mobility group box 1 (HMGB1) in the serum from women with PCOS having insulin resistance/hyperinsulinemia. Furthermore, we discovered that high concentration of insulin, which mimics insulin resistance model, promoted apoptosis in primary cultured rat ovarian granulosa cells (GCs) via its effect on the increase in extracellular HMGB1. Our data presented the first evidence that increased HMGB1 induced by insulin resistance/hyperinsulinemia promoted apoptosis of ovarian GCs, which provided new molecular basis for the PCOS pathogenesis.

  18. Effects of ovarian theca cells on granulosa cell differentiation during gonadotropin-independent follicular growth in cattle.

    PubMed

    Orisaka, Makoto; Mizutani, Tetsuya; Tajima, Kimihisa; Orisaka, Sanae; Shukunami, Ken-ichi; Miyamoto, Kaoru; Kotsuji, Fumikazu

    2006-06-01

    We investigated the effects of theca cells or FSH on granulosa cell differentiation and steroid production during bovine early follicular growth, using a co-culture system in which granulosa and theca cells were cultured on opposite sides of a collagen membrane. Follicular cells were isolated from early antral follicles (2-4 mm) that were assumed to be in gonadotropin-independent phase and just before recruitment into a follicular wave. Granulosa cells were cultured under serum-free conditions with and without theca cells or recombinant human FSH to test their effects on granulosa cell differentiation. Messenger RNA levels for P450 aromatase (aromatase), P450 cholesterol side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), LH receptor (LHr), and steroidogenic acute regulatory protein (StAR) in granulosa cells were measured by real-time quantitative RT-PCR analysis. FSH enhanced aromatase mRNA expression in granulosa cells, but did not alter estradiol production. FSH also enhanced mRNA expression for P450scc, LHr, and StAR in granulosa cells, resulting in an increase in progesterone production. In contrast, theca cells enhanced aromatase mRNA expression in granulosa cells resulting in an increase in estradiol production. Theca cells did not alter progesterone production and mRNA expression in granulosa cells for P450scc, 3beta-HSD, LHr, and StAR. The results of the present study indicate that theca cells are involved in both rate-limiting steps in estrogen production, i.e., androgen substrate production and aromatase regulation, and that theca cell-derived factors regulate estradiol and progesterone production in a way that reflects steroidogenesis during the follicular phase of the estrous cycle. Copyright 2006 Wiley-Liss, Inc.

  19. Ovarian granulosa cell tumors: a retrospective study of 27 cases and a review of the literature

    PubMed Central

    2013-01-01

    Background Granulosa tumors were described for the first time in 1855 by Rokitansky. These tumors are malignancies with a relatively favorable prognosis. They are characterized by a prolonged natural history and a tendency to late recurrences. The aim of this study is to investigate the epidemiological and pathological characteristics of granulosa cell tumors and to investigate the prognosis factor for recurrences. Methods The clinical data of patients who were treated in the period from January 2003 to December 2010 at the National Institute of Oncology in Rabat, Morocco for adult granulosa cell tumors of the ovary were investigated retrospectively. Data for age, clinical manifestation, imaging, diagnosis and treatment of the patients were reviewed and analyzed. Post-operative histology was obtained for all patients. Results Twenty-seven cases were retrieved. The median patient age was 53 years. The most common clinical manifestations at diagnosis were abdominal pain and vaginal bleeding. Mean tumor size was 14 cm. The majority of patients had stage I (63%, n = 17), while (18,5%, n = 5) had stage III, (7.4%, n = 2) had stage IV, and (11%, n = 3) of patients had an unknown stage. In the follow-up period (median = 63.44 months), five (18.51%) patients relapsed. The median time to relapse was 41.8 months, (range: 18 to 62 months). Conclusions Granulosa cell tumor of the ovary is an uncommon neoplasm. The adult form progresses slowly and often is diagnosed in an early stage of disease. Surgery is indicated. A prolonged post-therapeutic follow-up is necessary because of the risk of recurrences, late and exceptional for the adult form. PMID:23777285

  20. Mumps virus induces innate immune responses in mouse ovarian granulosa cells through the activation of Toll-like receptor 2 and retinoic acid-inducible gene I.

    PubMed

    Wang, Qing; Wu, Han; Cheng, Lijing; Yan, Keqin; Shi, Lili; Zhao, Xiang; Jiang, Qian; Wang, Fei; Chen, Yongmei; Li, Qihan; Han, Daishu

    2016-11-15

    Mumps virus (MuV) infection may lead to oophoritis and perturb ovarian function. However, the mechanisms underlying the activation of innate immune responses to MuV infection in the ovary have not been investigated. This study showed that Toll-like receptor 2 (TLR2) and retinoic acid-inducible gene I (RIG-I) cooperatively initiate innate immune responses to MuV infection in mouse ovarian granulosa cells. Ovarian granulosa cells infected with MuV significantly produced pro-inflammatory cytokines and chemokines, including interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemotactic protein 1 (MCP-1), and type 1 interferons (IFN-α and IFN-β). Knockdown of RIG-I significantly decreased MuV-induced cytokine expression. TLR2 deficiency reduced the expression of IL-1β, TNF-α, and MCP-1 but did not affect the expression of IFN-α and IFN-β in granulosa cells after infection with MuV. Intraperitoneal injection of MuV induced the ovarian innate immune responses in vivo, which suppressed estradiol synthesis and induced granulosa cell apoptosis. The results provide novel insights into the mechanisms underlying MuV-induced innate immune responses in the mouse ovary. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells.

    PubMed

    Ganesan, Shanthi; Keating, Aileen F

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6μM) for 24 or 48h. Cell viability was reduced (P<0.05) after 48h of exposure to 3 or 6μM PM. The NOR-G-OH DNA adduct was detected after 24h of 6μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Transcriptome profiling of granulosa cells from bovine ovarian follicles during atresia

    PubMed Central

    2014-01-01

    Background The major function of the ovary is to produce oocytes for fertilisation. Oocytes mature in follicles surrounded by nurturing granulosa cells and all are enclosed by a basal lamina. During growth, granulosa cells replicate and a large fluid-filled cavity (the antrum) develops in the centre. Only follicles that have enlarged to over 10 mm can ovulate in cows. In mammals, the number of primordial follicles far exceeds the numbers that ever ovulate and atresia or regression of follicles is a mechanism to regulate the number of oocytes ovulated and to contribute to the timing of ovulation. To better understand the molecular basis of follicular atresia, we undertook transcriptome profiling of granulosa cells from healthy (n = 10) and atretic (n = 5) bovine follicles at early antral stages (< 5 mm). Results Principal Component Analysis (PCA) and hierarchical classification of the signal intensity plots for the arrays showed primary clustering into two groups, healthy and atretic. These analyses and size-frequency plots of coefficients of variation of signal intensities revealed that the healthy follicles were more heterogeneous. Examining the differentially-expressed genes the most significantly affected functions in atretic follicles were cell death, organ development, tissue development and embryonic development. The overall processes influenced by transcription factor gene TP53 were predicted to be activated, whereas those of MYC were inhibited on the basis of known interactions with the genes in our dataset. The top ranked canonical pathway contained signalling molecules common to various inflammatory/fibrotic pathways such as the transforming growth factor-β and tumour necrosis factor-α pathways. The two most significant networks also reflect this pattern of tissue remodelling/fibrosis gene expression. These networks also contain molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming

  3. Transcriptomal profiling of bovine ovarian granulosa and theca interna cells in primary culture in comparison with their in vivo counterparts

    PubMed Central

    Hatzirodos, Nicholas; Glister, Claire; Hummitzsch, Katja; Irving-Rodgers, Helen F.; Knight, Philip G.; Rodgers, Raymond J.

    2017-01-01

    In vitro culture of ovarian granulosa cells and theca cells has been very important for our understanding of their function and regulation. One of the most eagerly sought attributes of cell culture is the use of chemically-defined conditions. However, even under such in vitro conditions cell behaviour could differ from the in vivo situation because of differences in oxygen tension, nutrients, adhesion matrix and other factors. To examine this further we compared the transcriptomes of both granulosa cells and cells from the theca interna that were cultured in what are arguably the best in vitro conditions for maintaining the ‘follicular’ phenotypes of both tissue types, as displayed by their respective freshly-isolated counterparts. The array data analysed are from recently published data and use the same sizes of bovine follicles (small antral 3–6 mm) and the same Affymetrix arrays. We conducted analysis using Partek, Ingenuity Pathway Analysis and GOEAST. Principal Component Analysis (PCA) and hierarchical clustering clearly separated the in vivo from the in vitro groups for both cells types and transcriptomes were more homogeneous upon culture. In both cell cultures behaviours associated with cell adhesion, migration and interaction with matrix or substrate were more abundant. However, the pathways involved generally differed between the two cell types. With the thecal cultures a gene expression signature of an immune response was more abundant, probably by leukocytes amongst the cells cultured from the theca interna. These results indicate differences between in vivo and in vitro that should be considered when interpreting in vitro data. PMID:28282394

  4. The influence of deoxynivalenol and zearalenone on steroid hormone production by porcine ovarian granulosa cells in vitro.

    PubMed

    Kolesarova, Adriana; Medvedova, Marina; Halenar, Marek; Sirotkin, Alexander V; Bulla, Jozef

    2017-09-25

    Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEA) are frequently occurring in feed of pigs together. The aim of this study was to evaluate the possible in vitro effects of DON and ZEA, alone or their combination on steroid secretion of porcine ovarian granulosa cells (GCs). A species-specific model with porcine ovarian GCs was used to study the potential endocrine disrupting effects of DON and ZEA alone and in co-exposure. Progesterone (P4) and estradiol (E2) were determined by radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA). The results of this study demonstrate that DON alone at the higher concentrations may act to stimulate P4 (at 1,000, 2,000, 3,000 and 5,000 ng mL(-1) but not 10 and 100 ng mL(-1)) and E2 (at 2,000, 3,000 and 5,000 ng mL(-1) but not 10, 100 and 1000 ng mL(-1)) secretion. The effects of ZEA on P4 and E2 secretion were not confirmed. DON in combination with the other fusariotoxin ZEA may impair steroidogenesis. Results aslo demonstrate different toxicological effects of fusariotoxins on follicle stimulating hormone-induced secretion of P4 and E2. All these results taken together suggest that fusariotoxin and their interactions can impact ovarian steroidogenesis, thereby demonstrating their potential reproductive effects in pigs.

  5. A Long Noncoding RNA, lncRNA-Amhr2, Plays a Role in Amhr2 Gene Activation in Mouse Ovarian Granulosa Cells.

    PubMed

    Kimura, Atsushi P; Yoneda, Ryoma; Kurihara, Misuzu; Mayama, Shota; Matsubara, Shin

    2017-09-14

    Anti-Müllerian hormone (AMH) is critical to the regression of Müllerian ducts during mammalian male differentiation and targets ovarian granulosa cells and testicular Sertoli and Leydig cells of adults. Specific effects of AMH are exerted via its receptor, AMH type II receptor (Amhr2), but the mechanism by which the Amhr2 gene is specifically activated is not fully understood. To see whether a proximal promoter was sufficient to Amhr2 gene activation, we generated transgenic mice that bore the enhanced green fluorescent protein (EGFP) gene driven by a 500-bp mouse Amhr2 gene promoter. None of the established 10 lines, however, showed appropriate EGFP expression, indicating that the 500-bp promoter was insufficient to Amhr2 gene activation. As a novel regulatory element, we found a long noncoding RNA, lncRNA-Amhr2, transcribed from upstream of the Amhr2 gene in ovarian granulosa cells and testicular Sertoli cells. In primary granulosa cells, knock down of lncRNA-Amhr2 resulted in a decrease of Amhr2 mRNA level, and transient reporter gene assay showed that lncRNA-Amhr2 activation increased Amhr2 promoter activity. The activity was correlated with lncRNA-Amhr2 transcription in stably transfected OV3121 cells that were derived from mouse granulosa cells. Moreover, by the Tet-on system, the induction of lncRNA-Amhr2 transcription dramatically increased Amhr2 promoter activity in OV3121 cells. These results indicate that lncRNA-Amhr2 plays a role in Amhr2 gene activation in ovarian granulosa cells by enhancing promoter activity, providing a novel insight into the Amhr2 gene regulation underlying the AMH signaling in the female reproductive system. Copyright © 2017 Endocrine Society.

  6. The effect of androgens on ovarian follicle maturation: Dihydrotestosterone suppress FSH-stimulated granulosa cell proliferation by upregulating PPARγ-dependent PTEN expression.

    PubMed

    Chen, Mei-Jou; Chou, Chia-Hung; Chen, Shee-Uan; Yang, Wei-Shiung; Yang, Yu-Shih; Ho, Hong-Nerng

    2015-12-17

    Intraovarian hyperandrogenism is one of the determining factors of follicular arrest in women with polycystic ovary syndrome (PCOS). Using androgenized rat models, we investigated the effects of androgens on metabolism, as well as on factors involved in follicular arrest and the reduced number of estrus cycles. The dihydrotestosterone (DHT)-treated rats had fewer estrus cycles, higher numbers of large arrested follicles and an increased in body weight gain compared with the dehydroepiandrostenedione (DHEA)- and placebo-treated rats. In cultured rat granulosa cells, DHT suppressed follicle stimulating hormone (FSH)-induced granulosa cell proliferation and increased the accumulation of cells in the G2/M phase. DHT decreased phosphorylated Akt (p-Akt) and cyclin D1 levels through increasing PTEN. DHT-promoted PTEN expression was regulated by peroxisome proliferator-activated receptor gamma (PPARγ) in granulosa cells. Meanwhile, in the large follicles of the DHT-treated rats, the expressions of PPARγ and PTEN were higher, but the expression of p-Akt and proliferating cell nuclear antigen (PCNA) were lower. Conclusively, DHT and DHEA produced differential effects on metabolism in prepubertal female rats like clinical manifestations of women with PCOS. DHT treatment may affect ovarian follicular maturation by altering granulosa cell proliferation through the regulation of enhancing PPARγ dependent PTEN/p-Akt expression in the granulosa cells.

  7. The effect of androgens on ovarian follicle maturation: Dihydrotestosterone suppress FSH-stimulated granulosa cell proliferation by upregulating PPARγ-dependent PTEN expression.

    PubMed Central

    Chen, Mei-Jou; Chou, Chia-Hung; Chen, Shee-Uan; Yang, Wei-Shiung; Yang, Yu-Shih; Ho, Hong-Nerng

    2015-01-01

    Intraovarian hyperandrogenism is one of the determining factors of follicular arrest in women with polycystic ovary syndrome (PCOS). Using androgenized rat models, we investigated the effects of androgens on metabolism, as well as on factors involved in follicular arrest and the reduced number of estrus cycles. The dihydrotestosterone (DHT)-treated rats had fewer estrus cycles, higher numbers of large arrested follicles and an increased in body weight gain compared with the dehydroepiandrostenedione (DHEA)- and placebo-treated rats. In cultured rat granulosa cells, DHT suppressed follicle stimulating hormone (FSH)-induced granulosa cell proliferation and increased the accumulation of cells in the G2/M phase. DHT decreased phosphorylated Akt (p-Akt) and cyclin D1 levels through increasing PTEN. DHT-promoted PTEN expression was regulated by peroxisome proliferator-activated receptor gamma (PPARγ) in granulosa cells. Meanwhile, in the large follicles of the DHT-treated rats, the expressions of PPARγ and PTEN were higher, but the expression of p-Akt and proliferating cell nuclear antigen (PCNA) were lower. Conclusively, DHT and DHEA produced differential effects on metabolism in prepubertal female rats like clinical manifestations of women with PCOS. DHT treatment may affect ovarian follicular maturation by altering granulosa cell proliferation through the regulation of enhancing PPARγ dependent PTEN/p-Akt expression in the granulosa cells. PMID:26674985

  8. Dephosphorylation of MAP2D enhances its binding to vimentin in preovulatory ovarian granulosa cells.

    PubMed

    Flynn, Maxfield P; Fiedler, Sarah E; Karlsson, Amelia B; Carr, Daniel W; Maizels, Evelyn T; Hunzicker-Dunn, Mary

    2016-08-01

    Preovulatory granulosa cells express the low-molecular-mass MAP2D variant of microtubule-associated protein 2 (MAP2). Activation of the luteinizing hormone choriogonadotropin receptor by human choriogonadotropin (hCG) promotes dephosphorylation of MAP2D on Thr256 and Thr259. We sought to evaluate the association of MAP2D with the cytoskeleton, and the effect of hCG on this association. MAP2D partially colocalized, as assessed by confocal immunofluorescence microscopy, with the vimentin intermediate filament and microtubule cytoskeletons in naive cells. In vitro binding studies showed that MAP2D bound directly to vimentin and β-tubulin. Phosphorylation of recombinant MAP2D on Thr256 and Thr259, which mimics the phosphorylation status of MAP2D in naive cells, reduces binding of MAP2D to vimentin and tubulin by two- and three-fold, respectively. PKA-dependent phosphorylation of vimentin (Ser32 and Ser38) promoted binding of vimentin to MAP2D and increased contraction of granulosa cells with reorganization of vimentin filaments and MAP2D from the periphery into a thickened layer surrounding the nucleus and into prominent cellular extensions. Chemical disruption of vimentin filament organization increased progesterone production. Taken together, these results suggest that hCG-stimulated dephosphorylation of MAP2D at Thr256 and Thr259, phosphorylation of vimentin at Ser38 and Ser72, and the resulting enhanced binding of MAP2D to vimentin might contribute to the progesterone synthetic response required for ovulation.

  9. Dephosphorylation of MAP2D enhances its binding to vimentin in preovulatory ovarian granulosa cells

    PubMed Central

    2016-01-01

    ABSTRACT Preovulatory granulosa cells express the low-molecular-mass MAP2D variant of microtubule-associated protein 2 (MAP2). Activation of the luteinizing hormone choriogonadotropin receptor by human choriogonadotropin (hCG) promotes dephosphorylation of MAP2D on Thr256 and Thr259. We sought to evaluate the association of MAP2D with the cytoskeleton, and the effect of hCG on this association. MAP2D partially colocalized, as assessed by confocal immunofluorescence microscopy, with the vimentin intermediate filament and microtubule cytoskeletons in naive cells. In vitro binding studies showed that MAP2D bound directly to vimentin and β-tubulin. Phosphorylation of recombinant MAP2D on Thr256 and Thr259, which mimics the phosphorylation status of MAP2D in naive cells, reduces binding of MAP2D to vimentin and tubulin by two- and three-fold, respectively. PKA-dependent phosphorylation of vimentin (Ser32 and Ser38) promoted binding of vimentin to MAP2D and increased contraction of granulosa cells with reorganization of vimentin filaments and MAP2D from the periphery into a thickened layer surrounding the nucleus and into prominent cellular extensions. Chemical disruption of vimentin filament organization increased progesterone production. Taken together, these results suggest that hCG-stimulated dephosphorylation of MAP2D at Thr256 and Thr259, phosphorylation of vimentin at Ser38 and Ser72, and the resulting enhanced binding of MAP2D to vimentin might contribute to the progesterone synthetic response required for ovulation. PMID:27335427

  10. Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles.

    PubMed

    Wigglesworth, Karen; Lee, Kyung-Bon; Emori, Chihiro; Sugiura, Koji; Eppig, John J

    2015-01-01

    Cumulus cells and mural granulosa cells (MGCs) have functionally distinct roles in antral follicles, and comparison of their transcriptomes at a global and systems level can propel future studies on mechanisms underlying their functional diversity. These cells were isolated from small and large antral follicles before and after stimulation of immature mice with gonadotropins, respectively. Both cell types underwent dramatic transcriptomic changes, and differences between them increased with follicular growth. Although cumulus cells of both stages of follicular development are competent to undergo expansion in vitro, they were otherwise remarkably dissimilar with transcriptomic changes quantitatively equivalent to those of MGCs. Gene ontology analysis revealed that cumulus cells of small follicles were enriched in transcripts generally associated with catalytic components of metabolic processes, while those from large follicles were involved in regulation of metabolism, cell differentiation, and adhesion. Contrast of cumulus cells versus MGCs revealed that cumulus cells were enriched in transcripts associated with metabolism and cell proliferation while MGCs were enriched for transcripts involved in cell signaling and differentiation. In vitro and in vivo models were used to test the hypothesis that higher levels of transcripts in cumulus cells versus MGCs is the result of stimulation by oocyte-derived paracrine factors (ODPFs). Surprisingly ∼48% of transcripts higher in cumulus cells than MGCs were not stimulated by ODPFs. Those stimulated by ODPFs were mainly associated with cell division, mRNA processing, or the catalytic pathways of metabolism, while those not stimulated by ODPFs were associated with regulatory processes such as signaling, transcription, phosphorylation, or the regulation of metabolism.

  11. MicroRNA Mediating Networks in Granulosa Cells Associated with Ovarian Follicular Development

    PubMed Central

    Zhang, Baoyun; Chen, Long; Feng, Guangde; Xiang, Wei; Zhang, Ke; Chu, Mingxing

    2017-01-01

    Ovaries, which provide a place for follicular development and oocyte maturation, are important organs in female mammals. Follicular development is complicated physiological progress mediated by various regulatory factors including microRNAs (miRNAs). To demonstrate the role of miRNAs in follicular development, this study analyzed the expression patterns of miRNAs in granulosa cells through investigating three previous datasets generated by Illumina miRNA deep sequencing. Furthermore, via bioinformatic analyses, we dissected the associated functional networks of the observed significant miRNAs, in terms of interacting with signal pathways and transcription factors. During the growth and selection of dominant follicles, 15 dysregulated miRNAs and 139 associated pathways were screened out. In comparison of different styles of follicles, 7 commonly abundant miRNAs and 195 pathways, as well as 10 differentially expressed miRNAs and 117 pathways in dominant follicles in comparison with subordinate follicles, were collected. Furthermore, SMAD2 was identified as a hub factor in regulating follicular development. The regulation of miR-26a/b on smad2 messenger RNA has been further testified by real time PCR. In conclusion, we established functional networks which play critical roles in follicular development including pivotal miRNAs, pathways, and transcription factors, which contributed to the further investigation about miRNAs associated with mammalian follicular development. PMID:28316977

  12. Extracellular matrix of the bovine ovarian membrana granulosa.

    PubMed

    Rodgers, R J; Irving Rodgers, H F

    2002-05-31

    Much is known about the control of the development of ovarian follicles by growth factors and hormones. The study of extracellular matrix in the ovary, though, is a relatively new area. To date much research has focused on identifying the matrix components present, and more recently, its production and the physiological roles. In this review we focus on the changes that occur in the follicular basal lamina from primordial follicles through to ovulation and formation of the corpus luteum, the changes that occur during follicular atresia, and we discuss our observations of a novel matrix which forms in the membrana granulosa. The follicular basal lamina changes considerably during follicular development in its expression pattern of type IV collagens. Of the laminin chains examined, there appears only to be an increase in amount, except for laminin alpha2. It is expressed only in a small proportion of healthy antral follicles and in the majority of atretic antral follicles. Call-Exner bodies have the same composition as the basal lamina, except they do not contain laminin alpha2, even when the follicular basal lamina does. The novel matrix that develops within the membrana granulosa is similar in composition to Call-Exner bodies which occur predominantly in preantral follicles, except that it is far more common in large antral follicles, does not induce polarization of the surrounding granulosa cells, and does not contain follicular fluid-like material as the Call-Exner bodies of some species do. The expression of this matrix occurs prior to and during the time when granulosa cells express steroidogenic enzymes. It does not exist in corpora lutea. In addition large luteal cells, derived from granulosa cells, do not appear to have a basal lamina. These findings suggest that the maturational changes in the membrana granulosa are accompanied by changes in the matrix.

  13. FOXL2, GATA4, and SMAD3 co-operatively modulate gene expression, cell viability and apoptosis in ovarian granulosa cell tumor cells.

    PubMed

    Anttonen, Mikko; Pihlajoki, Marjut; Andersson, Noora; Georges, Adrien; L'hôte, David; Vattulainen, Sanna; Färkkilä, Anniina; Unkila-Kallio, Leila; Veitia, Reiner A; Heikinheimo, Markku

    2014-01-01

    Aberrant ovarian granulosa cell proliferation and apoptosis may lead to granulosa cell tumors (GCT), the pathogenesis of which involves transcription factors GATA4, FOXL2, and SMAD3. FOXL2 gene harbors a point mutation (C134W) in a vast majority of GCTs. GATA4 is abundantly expressed in GCTs and its expression correlates with poor prognosis. The TGF-β mediator SMAD3 promotes GCT cell survival through NF-κB activation, and interacts with FOXL2. Here, we find that the expression patterns of these factors overlap in the normal human ovary and 90 GCTs, and positively correlate with each other and with their mutual target gene CCND2, which is a key factor for granulosa cell proliferation. We have explored the molecular interactions of FOXL2, GATA4, and SMAD3 and their roles in the regulation of CCND2 using co-immunoprecipitation, promoter transactivation, and cell viability assays in human GCT cells. We found that not only SMAD3, but also GATA4 physically interact with both wild type and C134W-mutated FOXL2. GATA4 and SMAD3 synergistically induce a 8-fold increase in CCND2 promoter transactivation, which is 50% reduced by both FOXL2 types. We confirmed that wild type FOXL2 significantly decreases cell viability. Interestingly, GATA4 and SMAD3 caused a marked reduction of GCT cell apoptosis induced by wild type FOXL2. Thus, the effects of GATA4 and SMAD3 on both cell viability and apoptosis are distinct from those of wild type FOXL2; a perturbation of this balance due to the oncogenic FOXL2 mutation is likely to contribute to GCT pathogenesis.

  14. FOXL2, GATA4, and SMAD3 Co-Operatively Modulate Gene Expression, Cell Viability and Apoptosis in Ovarian Granulosa Cell Tumor Cells

    PubMed Central

    Anttonen, Mikko; L'Hôte, David; Vattulainen, Sanna; Färkkilä, Anniina; Unkila-Kallio, Leila; Veitia, Reiner A.; Heikinheimo, Markku

    2014-01-01

    Aberrant ovarian granulosa cell proliferation and apoptosis may lead to granulosa cell tumors (GCT), the pathogenesis of which involves transcription factors GATA4, FOXL2, and SMAD3. FOXL2 gene harbors a point mutation (C134W) in a vast majority of GCTs. GATA4 is abundantly expressed in GCTs and its expression correlates with poor prognosis. The TGF-β mediator SMAD3 promotes GCT cell survival through NF-κB activation, and interacts with FOXL2. Here, we find that the expression patterns of these factors overlap in the normal human ovary and 90 GCTs, and positively correlate with each other and with their mutual target gene CCND2, which is a key factor for granulosa cell proliferation. We have explored the molecular interactions of FOXL2, GATA4, and SMAD3 and their roles in the regulation of CCND2 using co-immunoprecipitation, promoter transactivation, and cell viability assays in human GCT cells. We found that not only SMAD3, but also GATA4 physically interact with both wild type and C134W-mutated FOXL2. GATA4 and SMAD3 synergistically induce a 8-fold increase in CCND2 promoter transactivation, which is 50% reduced by both FOXL2 types. We confirmed that wild type FOXL2 significantly decreases cell viability. Interestingly, GATA4 and SMAD3 caused a marked reduction of GCT cell apoptosis induced by wild type FOXL2. Thus, the effects of GATA4 and SMAD3 on both cell viability and apoptosis are distinct from those of wild type FOXL2; a perturbation of this balance due to the oncogenic FOXL2 mutation is likely to contribute to GCT pathogenesis. PMID:24416423

  15. Autocrine/paracrine proliferative effect of ovarian GH and IGF-I in chicken granulosa cell cultures.

    PubMed

    Ahumada-Solórzano, S Marisela; Martínez-Moreno, Carlos G; Carranza, Martha; Ávila-Mendoza, José; Luna-Acosta, José Luis; Harvey, Steve; Luna, Maricela; Arámburo, Carlos

    2016-08-01

    It is known that growth hormone (GH) and its receptor (GHR) are expressed in granulosa cells (GC) and thecal cells during the follicular development in the hen ovary, which suggests GH is involved in autocrine/paracrine actions in the female reproductive system. In this work, we show that the knockdown of local ovarian GH with a specific cGH siRNA in GC cultures significantly decreased both cGH mRNA expression and GH secretion to the media, and also reduced their proliferative rate. Thus, we analyzed the effect of ovarian GH and recombinant chicken GH (rcGH) on the proliferation of pre-hierarchical GCs in primary cultures. Incubation of GCs with either rcGH or conditioned media, containing predominantly a 15-kDa GH isoform, showed that both significantly increased proliferation as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, proliferating cell nuclear antigen (PCNA) quantification and ((3)H)-thymidine incorporation ((3)H-T) assays in a dose response fashion. Both, locally produced GH and rcGH also induced the phosphorylation of Erk1/2 in GC cultures. Furthermore, GH increased IGF-I synthesis and its release into the GC culture incubation media. These results suggest that GH may act through local IGF-I to induce GC proliferation, since IGF-I immunoneutralization completely abolished the GH-induced proliferative effect. These data suggest that GH and IGF-I may play a role as autocrine/paracrine regulators during the follicular development in the hen ovary at the pre-hierarchical stage.

  16. N-hexane inhalation during pregnancy alters DNA promoter methylation in the ovarian granulosa cells of rat offspring.

    PubMed

    Li, Hong; Liu, Jin; Sun, Yan; Wang, Wenxiang; Weng, Shaozheng; Xiao, Shihua; Huang, Huiling; Zhang, Wenchang

    2014-08-01

    The N-hexane-induced impact on the reproductive system of the offspring of animals exposed to n-hexane has caused great concern. Pregnant Wistar rats inhaled 500, 2 500 or 12 500 ppm n-hexane during gestational days 1-20. Clinical characteristics and developmental indices were observed. Ovarian granulosa cells were extracted from F1 rats, the number of follicles was determined in ovarian slices and promoter methylation was assessed using MeDIP-Chip. Several methods were used to analyze the scanned genes, including the Gene Ontology Consortium tools, the DAVID Functional Annotation Clustering Tool, hierarchical clustering and KEGG pathway analysis. The results indicated that the live pups/litter ratio was significantly lowest in the 12 500 ppm group. A significant decrease in secondary follicles and an increase in atresic follicles were observed in the 12 500 ppm group. The number of shared demethylated genes was higher than that of the methylated genes, and the differentially methylated genes were enriched in cell death and apoptosis, cell growth and hormone regulation. The methylation profiles of the offspring from the 500 ppm and control groups were different from those of the 2500 and 12 500 ppm groups. Furthermore, the methylation status of genes in the PI3K-Akt and NF-kappa B signaling pathways was changed after n-hexane exposure. The Cyp11a1, Cyp17a1, Hsd3b1, Cyp1a1 and Srd5a1 promoters were hypermethylated in the n-hexane-exposed groups. These results indicate that the developmental toxicity of n-hexane in F1 ovaries is accompanied by the altered methylation of promoters of genes associated with apoptotic processes and steroid hormone biosynthesis.

  17. Conserved miR-10 family represses proliferation and induces apoptosis in ovarian granulosa cells

    PubMed Central

    Jiajie, Tu; Yanzhou, Yang; Hoi-Hung, Albert Cheung; Zi-Jiang, Chen; Wai-Yee, Chan

    2017-01-01

    Granulosa cells (GCs) are essential somatic cells in the ovary and play an important role in folliculogenesis. Brain-derived neurotropic factor (BDNF) and the TGF-β pathway have been identified as a critical hormone and signalling pathway, respectively, in GCs. In this study, we found that a conserved microRNA family that includes miR-10a and miR-10b repressed proliferation and induced apoptosis in human, mouse, and rat GCs (hGCs, mGCs and rGCs, respectively). Moreover, essential hormones and growth factors in the follicle, such as FSH, FGF9 and some ligands in the TGF-β pathway (TGFβ1, Activin A, BMP4 and BMP15), inhibited miR-10a and miR-10b expression in GCs. In contrast, the miR-10 family suppressed many key genes in the TGF-β pathway, suggesting a negative feedback loop between the miR-10 family and the TGF-β pathway in GCs. By using bioinformatics approaches, RNA-seq, qPCR, FISH, immunofluorescence, Western blot and luciferase reporter assays, BDNF was identified as a direct target of the miR-10 family in GCs. Additionally, reintroduction of BDNF rescued the effects of miR-10a and miR-10b in GCs. Collectively, miR-10a and miR-10b repressed GC development during folliculogenesis by repressing BDNF and the TGF-β pathway. These effects by the miR-10 family on GCs are conserved among different species. PMID:28112253

  18. Anti-Müllerian hormone inhibits growth of AMH type II receptor-positive human ovarian granulosa cell tumor cells by activating apoptosis.

    PubMed

    Anttonen, Mikko; Färkkilä, Anniina; Tauriala, Hanna; Kauppinen, Marjut; Maclaughlin, David T; Unkila-Kallio, Leila; Bützow, Ralf; Heikinheimo, Markku

    2011-11-01

    Ovarian granulosa cell tumors (GCTs) are sex cord stromal tumors that constitute 3-5% of all ovarian cancers. GCTs usually present with an indolent course but there is a high risk of recurrence, which associates with increased mortality, and targeted treatments would be desirable. Anti-Müllerian hormone (AMH), a key factor regulating sexual differentiation of the reproductive organs, has been implicated as a growth inhibitor in ovarian cancer. GCTs and normal granulosa cells produce AMH, but its expression in large GCTs is usually downregulated. Further, as the lack of specific AMH-signaling pathway components leads to GCT development in mice, we hypothesized that AMH inhibits growth of GCTs. Utilizing a large panel of human GCT tissue samples, we found that AMH type I receptors (ALK2, ALK3 and ALK6) and type II receptor (AMHRII), as well as their downstream effectors Smad1/5, are expressed and active in GCTs. AMHRII expression was detected in the vast majority (96%) of GCTs and correlated with AMH mRNA and protein expression. AMH mRNA level was low in large GCTs, confirming previous findings on low-AMH protein expression in large human as well as mouse GCTs. To study the functional role of AMH in this peculiar ovarian cancer, we utilized a human GCT cell line (KGN) and 10 primary GCT cell cultures. We found that the AMH-Smad1/5-signaling pathway was active in these cells, and that exogenous AMH further activated Smad1/5 in KGN cells. Furthermore, AMH treatment reduced the number of KGN cells and primary GCT cells, with increasing amounts of AMH leading to augmented activation of caspase-3 and subsequent apoptosis. All in all, these data support the premise that AMH is a growth inhibitor of GCTs.

  19. Granulosa cell responsiveness to follicle stimulating hormone during early growth of hen ovarian follicles.

    PubMed

    Johnson, A L; Lee, Jeeyoung

    2016-01-01

    In the laying hen ovary, the cyclic recruitment of a follicle represents a process in which a single follicle is selected to enter the rapid growth phase and undergo final maturation prior to ovulation. Published data support the proposal that final differentiation of the granulosa cell (GC) layer commences at the time of follicle selection. This process is characterized by the enhanced capacity for FSH-induced cell signaling via the protein kinase A/cyclic adenosine monophosphate (cAMP) pathway. One consequence of such signaling within the GC layer is the initial capacity for steroidogenesis (predominantly progesterone production) mediated by increased expression of mRNA encoding steroidogenic acute regulatory protein (STAR) and the cholesterol side-chain cleavage enzyme (CYP11A). Prior to selection, the GC layer remains minimally responsive to a 3 h challenge with FSH (10 ng/mL), in vitro, compared to that from the most recently selected 9- to 12-mm follicle. By comparison, when the duration of the cell culture prior to FSH challenge is increased to 18 h, GCs collected from 1- to 2-mm, 3- to 5-mm, and 6- to 8-mm follicles respond to a 3 h FSH challenge by increasing STAR expression and progesterone production, with the greatest response from GCs collected from 6- to 8-mm follicles. Culture with Bone Morphogenetic Protein 6 (BMP6) enhances both CYP11A expression and FSH responsiveness at each stage of development, with the greatest response again occurring in GCs from 6- to 8-mm follicles. Significantly, factors that activate mitogen activated protein kinase (MAPK) or protein kinase C (PKC) signaling prevent the ability of prolonged culture or culture with BMP6 to induce FSH-responsiveness and the initiation of GC differentiation at each stage of development. Collectively, these results provide further support for the hypothesis that prior to follicle selection, inhibitory cell signaling (e.g., MAPK, PKC) maintains the GC layer in an undifferentiated state in

  20. The transcription factor FOXL2 mobilizes estrogen signaling to maintain the identity of ovarian granulosa cells.

    PubMed

    Georges, Adrien; L'Hôte, David; Todeschini, Anne Laure; Auguste, Aurélie; Legois, Bérangère; Zider, Alain; Veitia, Reiner A

    2014-11-04

    FOXL2 is a lineage determining transcription factor in the ovary, but its direct targets and modes of action are not fully characterized. In this study, we explore the targets of FOXL2 and five nuclear receptors in murine primary follicular cells. We found that FOXL2 is required for normal gene regulation by steroid receptors, and we show that estrogen receptor beta (ESR2) is the main vector of estradiol signaling in these cells. Moreover, we found that FOXL2 directly modulates Esr2 expression through a newly identified intronic element. Interestingly, we found that FOXL2 repressed the testis-determining gene Sox9 both independently of estrogen signaling and through the activation of ESR2 expression. Altogether, we show that FOXL2 mobilizes estrogen signaling to establish a coherent feed-forward loop repressing Sox9. This sheds a new light on the role of FOXL2 in ovarian maintenance and function.

  1. MicroRNA-764-3p regulates 17β-estradiol synthesis of mouse ovarian granulosa cells by targeting steroidogenic factor-1.

    PubMed

    Wang, Lianlian; Li, Cong; Li, Rong; Deng, Youlin; Tan, Yixin; Tong, Chao; Qi, Hongbo

    2016-03-01

    Previous studies have reported that microRNA-764-3p (miR-764-3p) is one of the most up-regulated microRNAs (miRNAs) in TGF-β1-stimulated mouse ovarian granulosa cells. However, little is known about the roles and mechanisms of miR-764-3p in granulosa cell function during follicular development. In this study, we found that overexpression of miR-764-3p inhibited 17β-estradiol (E2) synthesis of granulosa cells through directly targeting steroidogenic factor-1 (SF-1). MiR-764-3p inhibited SF-1 by affecting its messenger RNA (mRNA) stability, which subsequently suppressed the expression levels of Cyp19a1 gene (aromatase, a downstream target of SF-1). In addition, SF-1 was involved in regulation of miR-764-3p-mediated Cyp19a1 expression in granulosa cells which contributed, at least partially, to the effects of miR-764-3p on granulosa cell E2 release. These results suggest that miR-764-3p functions to decrease steroidogenesis by targeting SF-1, at least in part, through inactivation of Cyp19a1. Taken together, our data provide mechanistic insights into the roles of miR-764-3p on E2 synthesis. Understanding of potential miRNAs affecting estrogen synthesis will help to diagnose and treat steroid-related diseases.

  2. Adult ovarian granulosa cell tumor transcriptomics: prevalence of FOXL2 target genes misregulation gives insights into the pathogenic mechanism of the p.Cys134Trp somatic mutation.

    PubMed

    Benayoun, B A; Anttonen, M; L'Hôte, D; Bailly-Bechet, M; Andersson, N; Heikinheimo, M; Veitia, R A

    2013-05-30

    Ovarian granulosa cell tumors (OGCT) are the most frequent kind of sex cord-stromal tumors, and represent ∼2-5% of all ovarian malignancies. OGCTs exist as two entities, juvenile and adult types, with specific clinical and pathological characteristics. The molecular pathogenesis of these tumors has just begun to be unraveled. Indeed, recent studies have indicated that mutation and/or misregulation of the key ovarian transcription factor FOXL2 has a role in OGCT formation, although the mechanisms remain unclear. To better understand the molecular characteristics of OGCT, we studied the transcriptomic profiles of ten human adult-type OGCT samples, as well as ethnically matched granulosa cell (GC) controls. We find that the OGCT samples analyzed herein exhibit several hallmarks of cancer, including increased expression of genes linked to cell proliferation, but decreased expression of those conferring sensitivity to cell death. Moreover, genes differentially expressed in OGCTs are significantly enriched for known FOXL2 target genes, consistently with the prevalence of FOXL2 somatic mutation in these tumors. Expression of these targets is altered in a way expected to promote malignant transformation, for instance, through induction of genes associated with faster cell cycling and downregulation of genes associated with cell death. Over time, such defects may be responsible at least partly for the malignant transformation of healthy GCs into OGCT. These insights into the molecular pathogenesis of OGCTs may open the way to new efforts in the development of more targeted therapeutic strategies for OGCT patients.

  3. Morphological evidence of apoptosis and the prevalence of apoptotic versus mitotic cells in the membrana granulosa of ovarian follicles during spontaneous and induced atresia in ewes.

    PubMed

    Jolly, P D; Smith, P R; Heath, D A; Hudson, N L; Lun, S; Still, L A; Watts, C H; McNatty, K P

    1997-04-01

    Apoptosis is a process by which granulosa cells are thought to be deleted during ovarian follicular atresia. The aims of the present studies, using sheep as the experimental model, were to determine 1) whether morphological changes in cells composing the membrana granulosa during the process of atresia conformed with the general criteria of apoptotic cell death as assessed using tissue sections stained with hematoxylin and eosin; 2) whether cells classified as apoptotic on the basis of their morphology contained fragmented DNA using an in situ 3' end-labeling technique; and 3) the degree of apoptosis and mitosis within the granulosa cell populations of large antral follicles (> or = 3 mm in diameter) during both spontaneous and experimentally induced atresia using stereological methods. The results showed that most degenerate granulosa cells in follicles undergoing atresia display the morphological characteristics of apoptosis, suggesting that this is the most common pathway of cell deletion. Typical features were cells containing nuclei with marginated chromatin; cells with a single small densely staining nucleus (pyknotic appearance); cells with multiple smaller, densely staining nuclear fragments; and densely staining membrane-bound bodies (apoptotic bodies) either singly or in clusters. Cells with morphological features more typical of oncosis or necrosis were sometimes observed, but mainly during the later stages of atresia. All cells classified as apoptotic on the basis of morphological criteria contained fragmented DNA as measured by 3' end-labeling. Apoptotic bodies and/or cells were found in all follicles examined, including those classified as healthy. The overall prevalence of apoptotic cells plus apoptotic bodies expressed as a percentage of the total granulosa cell number per follicle varied from 0.02% to 0.20% in healthy follicles, varied from 0.21% to 2.00% in follicles in early (primary) atresia, and was > 2.0% in follicles in later (secondary

  4. The transcription factor FOXL2 mobilizes estrogen signaling to maintain the identity of ovarian granulosa cells

    PubMed Central

    Georges, Adrien; L'Hôte, David; Todeschini, Anne Laure; Auguste, Aurélie; Legois, Bérangère; Zider, Alain; Veitia, Reiner A

    2014-01-01

    FOXL2 is a lineage determining transcription factor in the ovary, but its direct targets and modes of action are not fully characterized. In this study, we explore the targets of FOXL2 and five nuclear receptors in murine primary follicular cells. We found that FOXL2 is required for normal gene regulation by steroid receptors, and we show that estrogen receptor beta (ESR2) is the main vector of estradiol signaling in these cells. Moreover, we found that FOXL2 directly modulates Esr2 expression through a newly identified intronic element. Interestingly, we found that FOXL2 repressed the testis-determining gene Sox9 both independently of estrogen signaling and through the activation of ESR2 expression. Altogether, we show that FOXL2 mobilizes estrogen signaling to establish a coherent feed-forward loop repressing Sox9. This sheds a new light on the role of FOXL2 in ovarian maintenance and function. DOI: http://dx.doi.org/10.7554/eLife.04207.001 PMID:25369636

  5. The four and a half LIM domains 2 (FHL2) regulates ovarian granulosa cell tumor progression via controlling AKT1 transcription

    PubMed Central

    Hua, G; He, C; Lv, X; Fan, L; Wang, C; Remmenga, S W; Rodabaugh, K J; Yang, L; Lele, S M; Yang, P; Karpf, A R; Davis, J S; Wang, C

    2016-01-01

    The four and a half LIM domains 2 (FHL2) has been shown to play important roles in the regulation of cell proliferation, survival, adhesion, motility and signal transduction in a cell type and tissue-dependent manner. However, the function of FHL2 in ovarian physiology and pathology is unclear. The aim of this study was to determine the role and functional mechanism of FHL2 in the progression of ovarian granulosa cell tumors (GCTs). Immunohistochemical analysis indicated that FHL2 was overexpressed in GCT tissues. Cellular localization of FHL2 in GCT cells was cell cycle dependent. Knockdown of FHL2 suppressed GCT cell growth, reduced cell viability and inhibited cell migration. Consistently, ectopic expression of FHL2 in GCT cells with very low endogenous FHL2 promoted cell growth, improved cell viability and enhance cell migration. Importantly, overexpression of FHL2 promoted GCT progression in vivo. Mechanistic studies indicated that FHL2 regulates AKT1 gene expression in vitro and in vivo. Knockdown of FHL2 or AKT1 in GCT cell lines induced very similar phenotypes. Ectopic expression of constitutively active AKT1 rescued FHL2 knockdown-induced arrest of GCT cell growth and reduction of GCT cell viability, suggesting that FHL2 regulates GCT cell growth and viability through controlling AKT1 expression. Finally, co-immunoprecipitation and chromatin immunoprecipitation analyses indicated that FHL2 functions as a co-activator of NFκB and AP-1 to regulate AKT1 gene transcription. In conclusion, results from the present study indicate that FHL2 exerts its oncogenic action in GCT cells via controlling AKT1 gene expression. FHL2 is a promising target for the development of novel drugs against ovarian granulosa cell tumor. PMID:27415427

  6. The global effect of follicle-stimulating hormone and tumour necrosis factor α on gene expression in cultured bovine ovarian granulosa cells

    PubMed Central

    2014-01-01

    Background Oocytes mature in ovarian follicles surrounded by granulosa cells. During follicle growth, granulosa cells replicate and secrete hormones, particularly steroids close to ovulation. However, most follicles cease growing and undergo atresia or regression instead of ovulating. To investigate the effects of stimulatory (follicle-stimulating hormone; FSH) and inhibitory (tumour necrosis factor alpha; TNFα) factors on the granulosa cell transcriptome, bovine ovaries were obtained from a local abattoir and pools of granulosa cells were cultured in vitro for six days under defined serum-free conditions with treatments present on days 3–6. Initially dose–response experiments (n = 4) were performed to determine the optimal concentrations of FSH (0.33 ng/ml) and TNFα (10 ng/ml) to be used for the microarray experiments. For array experiments cells were cultured under control conditions, with FSH, with TNFα, or with FSH plus TNFα (n = 4 per group) and RNA was harvested for microarray analyses. Results Statistical analysis showed primary clustering of the arrays into two groups, control/FSH and TNFα/TNFα plus FSH. The effect of TNFα on gene expression dominated that of FSH, with substantially more genes differentially regulated, and the pathways and genes regulated by TNFα being similar to those of FSH plus TNFα treatment. TNFα treatment reduced the endocrine activity of granulosa cells with reductions in expression of FST, INHA, INBA and AMH. The top-ranked canonical pathways and GO biological terms for the TNFα treatments included antigen presentation, inflammatory response and other pathways indicative of innate immune function and fibrosis. The two most significant networks also reflect this, containing molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor β signalling, and these were up regulated. Upstream regulator analyses also predicted TNF, interferons γ and

  7. Gene for ovarian granulosa cell tumor susceptibility, Gct, in SWXJ recombinant inbred strains of mice revealed by dehydroepiandrosterone.

    PubMed

    Beamer, W G; Tennent, B J; Shultz, K L; Nadeau, J H; Shultz, L D; Skow, L C

    1988-09-15

    Spontaneous, malignant ovarian granulosa cell (GC) tumors occur in pubertal SWR and specific SWXJ recombinant inbred strains of mice. Treatment of these mice with dehydroepiandrosterone (DHEA), an adrenal secretory steroid with anticancer actions against spontaneous and carcinogen-induced tumors of different tissues, gave unexpected results. Diet supplemented with 0.4% DHEA (a) induced significantly more GC tumors in spontaneous tumor-susceptible strains (SWR and SWXJ-1, -4, and -9), (b) induced the first GC tumors observed in five previously tumor-free strains (SWXJ-6, -7, -8, -10, and -12), and (c) failed to induce GC tumors in SJL and in the remaining six SWXJ strains (SWXJ-2, -3, -5, -11, -13, and -14). The strain distribution pattern of DHEA-induced GC tumor susceptibility versus resistance was compared with strain distribution patterns for 35 different loci known to distinguish SWR and SJL progenitor strains. A complete match of DHEA-induced GC tumors with pancreas-2 (Pan-2) on mouse chromosome 4 was found. We have named this new locus GC tumor susceptibility (Gct), with the Gcts (susceptible) allele found in SWR and the Gctr (resistant) allele found in SJL mice. The Gct locus is closely linked to pancreas-2, Pan-2, but the order of genes is not yet confirmed. In addition, data from F1 progeny of matings between SWR and selected inbred strains provide suggestive evidence for a second gene controlling GC tumor incidence that we hypothesize involves steroid metabolism. Differences in GC tumor incidence data from reciprocal F1 progeny of matings between SWR and SJL mice reveal a strong maternal effect that may represent yet a third gene. These data support a heritable basis for GC tumorigenesis in the SWR model involving a small number of genes.

  8. Dynamics of the membrana granulosa during expansion of the ovarian follicular antrum.

    PubMed

    Rodgers, R J; Irving-Rodgers, H F; van Wezel, I L; Krupa, M; Lavranos, T C

    2001-01-22

    As an endocrine organ, the ovary has some unique characteristics. The formation, the maturation and the regression of the hormone producing cells really determine the timing, the amount and the type of hormone secreted. Here, we focus on the granulosa cells of ovarian follicles which express 17beta-hydroxysteroid dehydrogenase type 1 and cytochrome P450 aromatase. Follicles only produce estradiol late in follicular development before either ovulation or atresia ensues. We discuss the evidence that the membrana granulosa has many characteristics in common with other epithelia, including that it arises from stem cells. The corollary of this is that individual cells within the membrana granulosa are of different ages or stages of specialization. This is evident as regional differences across the membrana granulosa in terms of cell ages, shapes, gene expression, and even behaviour on cell death. We discuss theoretical considerations of the effects of antrum formation on the behavior of the membrana granulosa, and show evidence for differences between follicles in cell shapes, basal lamina phenotypes and location of younger cells, which we speculate is due to different rates of antrum expansion. Clearly, the membrana granulosa is dynamic, and this could explain much about the differences in the behaviors of cells from within the membrana granulosa, and between ovarian follicles.

  9. Stimulatory Effect of Insulin on 5α-Reductase Type 1 (SRD5A1) Expression through an Akt-Dependent Pathway in Ovarian Granulosa Cells

    PubMed Central

    Kayampilly, Pradeep P.; Wanamaker, Brett L.; Stewart, James A.; Wagner, Carrie L.; Menon, K. M. J.

    2010-01-01

    Elevated levels of 5α-reduced androgens have been shown to be associated with hyperandrogenism and hyperinsulinemia, the leading causes of ovulatory dysfunction in women. 5α-Dihydrotestosterone reduces ovarian granulosa cell proliferation by inhibiting FSH-mediated mitogenic signaling pathways. The present study examined the effect of insulin on 5α-reductase, the enzyme that catalyses the conversion of androgens to their 5α-derivatives. Granulosa cells isolated from immature rat ovaries were cultured in serum-free, phenol red-free DMEM-F12 media and treated with different doses of insulin (0, 0.1, 1.0, and 10.0 μg/ml) for different time intervals up to 12 h. The expression of 5α-reductase type 1 mRNA, the predominant isoform found in granulosa cells, showed a significant (P < 0.05) increase in response to the insulin treatment up to 12 h compared with control. The catalytic activity of 5α-reductase enzyme was also stimulated in a dose-depended manner (P < 0.05). Inhibiting the Akt-dependent signaling pathway abolished the insulin-mediated increase in 5α-reductase mRNA expression, whereas inhibition of the ERK-dependent pathway had no effect. The dose-dependent increase in 5α-reductase mRNA expression as well as catalytic activity seen in response to insulin treatment was also demonstrated in the human granulosa cell line (KGN). In addition to increased mRNA expression, a dose-dependent increase in 5α-reductase protein expression in response to insulin was also seen in KGN cells, which corroborated well with that of mRNA expression. These results suggest that elevated levels of 5α-reduced androgens seen in hyperinsulinemic conditions might be explained on the basis of a stimulatory effect of insulin on 5α-reductase in granulosa cells. The elevated levels of these metabolites, in turn, might adversely affect growth and proliferation of granulosa cells, thereby impairing follicle growth and ovulation. PMID:20810561

  10. Granulosa cell tumors of the ovary with a pseudopapillary pattern: a study of 14 cases of an unusual morphologic variant emphasizing their distinction from transitional cell neoplasms and other papillary ovarian tumors.

    PubMed

    Irving, Julie A; Young, Robert H

    2008-04-01

    Granulosa cell tumors of the ovary with a pseudopapillary pattern have received only passing mention in the literature. We have reviewed the clinicopathologic features of 10 cases of juvenile granulosa cell tumor and 4 cases of adult granulosa cell tumor with a pseudopapillary pattern. Twelve cases were received in consultation; the referring pathologist favored a diagnosis of a transitional cell neoplasm in 3 of these cases, and a retiform Sertoli-Leydig cell tumor in 2 cases; in most of the remainder, the diagnosis of granulosa cell tumor was considered but uncertainty expressed because of the unusual papillarylike pattern. All 14 tumors were unilateral, and the majority were predominantly cystic, 3 unilocular, and 6 multilocular. Multiple papillary projections lining the cyst wall were noted grossly in 10 cases; these ranged in size from 0.1 to 1.5 cm and were typically soft, edematous, fleshy, or rubbery. Microscopically, pseudopapillae were formed by intracystic cellular projections with surrounding necrotic debris and/or undulating folds of neoplastic cells in the absence of appreciable necrosis. In all tumors, thorough sampling revealed areas with architectural patterns and cytomorphology typical of granulosa cell tumor. Granulosa cell tumors of adult and juvenile type may have a pseudopapillary pattern that can be confused with other ovarian tumors with a papillary architecture. Identification of areas that are more characteristic of granulosa cell tumor resolves most cases, although immunohistochemistry can be used in more problematic tumors. This phenomenon seems to be related to the cystic change that is a feature of many granulosa cell tumors.

  11. GnRH agonist and GnRH antagonist protocols in ovarian stimulation: differential regulation pathway of aromatase expression in human granulosa cells.

    PubMed

    Khalaf, Mohamad; Mittre, Hervé; Levallet, Jérôme; Hanoux, Vincent; Denoual, Christine; Herlicoviez, Michel; Bonnamy, Pierre-Jacques; Benhaim, Annie

    2010-07-01

    Gonadotrophin-releasing hormone (GnRH) agonists and antagonists have been widely used to prevent premature LH surge during ovarian stimulation. However, studies have shown a significantly lower serum oestradiol concentration on the day of human chorionic gonadotrophin administration for cycles using GnRH antagonist. This study compared aromatase gene expression in granulosa lutein cells from 50 women randomly assigned to receive either GnRH agonist (group 1, n=28) or GnRH antagonist (group 2, n=22). The cellular mechanism involved in the observed effects was also investigated. GnRH antagonist treatment significantly affected serum oestradiol concentration (1894+/-138 versus 1074+/-63 pg/ml; P < or = 0.001), follicular-fluid oestradiol concentration in large follicles (18,565+/-2467 versus 10,184+/-1993 pg/ml; P < or = 0.05), aromatase activity (9600+/-1179 versus 5376+/-997 fmol/10(6) cells/h; P < or = 0.05) and mRNA aromatase/mRNA glyceraldehyde 3-phosphate dehydrogenase (15+/-3 versus 6+/-1; P < 0.05). Protein kinase C (PKC) activity in granulosa lutein cells from the GnRH antagonist group was 2.5-fold higher than in the GnRH agonist group. In-vitro experiments showed that selective down-regulation of PKC was only observed in GnRH-desensitized granulosa lutein cells. This report suggests that, in granulosa lutein cells, the modulation of the FSH-induced protein kinase A pathway by PKC was different in agonist versus antagonist cycles.

  12. Expression of factors involved in apoptosis and cell survival is correlated with enzymes synthesizing lysophosphatidic acid and its receptors in granulosa cells originating from different types of bovine ovarian follicles.

    PubMed

    Sinderewicz, Emilia; Grycmacher, Katarzyna; Boruszewska, Dorota; Kowalczyk-Zięba, Ilona; Staszkiewicz, Joanna; Ślężak, Tomasz; Woclawek-Potocka, Izabela

    2017-09-06

    Lysophosphatidic acid (LPA) regulates reproductive processes in the cow. Ovarian granulosa cells play a pivotal role in follicle growth and development. Nevertheless, the role of LPA in the local regulation of granulosa cell function in different follicle categories in the bovine ovary has not been investigated. Ovarian follicles were divided into healthy, transitional and atretic categories. The expression levels of AX, PLA2, LPARs and factors involved in apoptosis and cell survival processes in granulosa cells in different types of follicles were measured by real-time PCR. The correlations between the expression levels of AX, PLA2, LPARs and the examined factors were measured. The immunolocalization of AX, PLA2 and LPARs in different ovarian follicles was examined by immunohistochemistry. Statistical analyses were conducted in GraphPad using a one-way ANOVA followed by the Kruskal-Wallis multiple comparison test or a correlation analysis followed by Pearson's test. The expression levels of AX, PLA2 and LPARs, with the major role of LPAR2 and PLA2, were found in the granulosa cells originating from different follicle types. The expression levels of the factors involved in cell apoptosis (TNFα and its receptors, FAS, FASL, CASP3, CASP8, β-glycan, and DRAK2) were significantly higher in the granulosa cells of the atretic follicles compared to the healthy follicles. A number of correlations between LPARs, AX, PLA2 and factors associated with apoptosis were observed in the atretic but not in the healthy follicles. A greater expression of the factors involved in differentiation and proliferation in the granulosa cells (DICE1 and SOX2) was found in the healthy follicles in comparison with the atretic. A number of correlations between LPARs, AX, PLA2 and the factors associated with cell survival were observed in the healthy but not in the atretic follicles. Granulosa cells are the target of LPA action and the source of LPA synthesis in the bovine ovarian follicle. We

  13. Opiate receptor blockade on human granulosa cells inhibits VEGF release.

    PubMed

    Lunger, Fabian; Vehmas, Anni P; Fürnrohr, Barbara G; Sopper, Sieghart; Wildt, Ludwig; Seeber, Beata

    2016-03-01

    The objectives of this study were to determine whether the main opioid receptor (OPRM1) is present on human granulosa cells and if exogenous opiates and their antagonists can influence granulosa cell vascular endothelial growth factor (VEGF) production via OPRM1. Granulosa cells were isolated from women undergoing oocyte retrieval for IVF. Complementary to the primary cells, experiments were conducted using COV434, a well-characterized human granulosa cell line. Identification and localization of opiate receptor subtypes was carried out using Western blot and flow cytometry. The effect of opiate antagonist on granulosa cell VEGF secretion was assessed by enzyme-linked immunosorbent assay. For the first time, the presence of OPRM1 on human granulosa cells is reported. Blocking of opiate signalling using naloxone, a specific OPRM1 antagonist, significantly reduced granulosa cell-derived VEGF levels in both COV434 and granulosa-luteal cells (P < 0.01). The presence of opiate receptors and opiate signalling in granulosa cells suggest a possible role in VEGF production. Targeting this signalling pathway could prove promising as a new clinical option in the prevention and treatment of ovarian hyperstimulation syndrome.

  14. Oocyte--granulosa cell interactions.

    PubMed

    Canipari, R

    2000-01-01

    In the past, different protocols of ovulation induction, aimed to overcome problems of anovulatory infertility in humans, have been developed during IVF programmes. However, administration of exogenous hormones may cause severe health problems, e.g. ovarian hyperstimulation syndrome. To overcome this problem an attractive alternative is to develop in-vitro systems that allow follicle and oocyte growth and maturation. This paper reviews the current status of research on oocyte-granulosa cell interactions and on the autocrine and paracrine factors involved in follicle development. The ovarian follicle is a morphological and functional unit in which the somatic and germ cell components are intimately associated and interdependent. The co-ordinate development of follicle and oocyte leads to a number of modifications in the growing oocyte necessary for the acquisition of competence to mature correctly and to undergo fertilization and embryo development. The search for the optimal culture conditions and the correct balance of hormones necessary to obtain a fertilizable oocyte in vitro is extremely important for clinical and agricultural applications.

  15. Ammonia concentrations in different size classes of ovarian follicles of sheep (Ovis aries): Possible mechanisms of accumulation and its effect on oocyte and granulosa cell growth in vitro.

    PubMed

    Nandi, S; Gupta, P S P; Mondal, S

    2016-03-01

    The present study investigated the concentrations and the mechanisms of accumulation of ammonia in different sizes of ovarian follicles and the effect of ammonia on oocyte and granulosa cell growth and functions in vitro with sheep (Ovis aries) as an animal model. The effects of cyclicity, seasonality, phases of the estrous cycle, and seasons (environmental) on ammonia concentrations in follicular fluid were also investigated. The effect of ammonia on in vitro development of oocytes (maturation rate, viability rate, cleavage rate, morulae/blastocysts yield) recovered from different sizes of follicles was examined at the levels of 0, 50, 100, 150, 250, 300, and 500 μM. Same concentrations of ammonia were examined on growth parameters (metabolic activity, viability, cell number increment, monolayer formation, apoptosis rate) and hormone (progesterone, estrogen) secretion activity of granulosa cells in vitro. Results suggested as the follicle size increased, ammonia concentrations decreased. The ammonia concentrations in ovine follicular fluid were found to be 261.5 ± 32.4, 157.7 ± 19.2, and 42.9 ± 8.3 μM, respectively, for small, medium, and large follicles. The corresponding ranges were 290 to 238 μM, 184 to 142 μM, and 70 to 22 μM. The differences were due to more accumulation of fluid, less metabolic activity of granulosa cells, and elevation of protein, potassium, and chloride as the follicle size increased. The seasonality and phases of the estrous cycle did not have any effect on ammonia level in ovarian follicles. Ammonia concentrations in all size classes of follicles examined were significantly reduced in ewes during hot seasons compared to cold seasons and in acyclic animals compared to cyclic ones. Ammonia impaired oocyte development at 300 μM when the oocytes were isolated from small follicles and at 250 μM when the oocytes were isolated from medium and large follicles. In contrast, ammonia caused the negative impact on granulosa cells growth

  16. Transcriptomic analysis of gene cascades involved in protein kinase A and C signalling in the KGN line of human ovarian granulosa tumour cells1.

    PubMed

    Tremblay, Patricia G; Sirard, Marc-André

    2017-04-05

    The developmental competence of an oocyte is its capacity to resume maturation, undergo successful fertilization and reach the blastocyst stage. This competence is acquired through interaction with somatic cells of the follicle. Cumulus and granulosa cells support oocyte development while the oocyte influences follicular cell growth and differentiation. Studies suggest that follicle-stimulating hormone and luteinizing hormone play an essential role in oocyte competence acquisition through signalling initiated by protein kinases A and C (PKA and PKC) in granulosa cells. Using a microarray and RT-qPCR, the transcriptome of human granulosa-like tumour cells (KGN) treated for 24 h with forskolin (FSK) or phorbol 12-myristate 13-acetate (PMA) was analyzed to determine the effects of PKA and PKC stimulation on gene expression. Protein-kinase-driven signalling appeared to involve five major upstream regulators, namely EGF, TGFB1, VEGF, FGF2 and HGF. Genes associations with seven major ovarian functions were identified: PTGS2, IL8 and IL6 with inflammation; STAR, CYP11A1 and CYP19A1 with steroidogenesis; VEGFC, VEGFA and CXCR4 with angiogenesis; AREG, EGFR and SPRY2 with differentiation, BAX, BCL2L12 and CASP1 with apoptosis, CCND1, CCNB1 and CCNB2 with division and MMP1, MMP9 and TIMP1 with ovulation. These results indicate overall that signalling via both PKA and PKC potentiates gene regulation of functions such as inflammation and apoptosis, while functions such as differentiation, ovulation and angiogenesis are partial to one kinase or the other. These results improve understanding of the pathways underlying the most important changes that occur in the follicle prior to ovulation.

  17. Transcription factor p53 can regulate proliferation, apoptosis and secretory activity of luteinizing porcine ovarian granulosa cell cultured with and without ghrelin and FSH.

    PubMed

    Sirotkin, A V; Benco, A; Tandlmajerova, A; Vasícek, D; Kotwica, J; Darlak, K; Valenzuela, F

    2008-11-01

    The aim of our in vitro experiments was to examine the role of transcription factor p53 in controlling the basic functions of ovarian cells and their response to hormonal treatments. Porcine ovarian granulosa cells, transfected and non-transfected with a gene construct encoding p53, were cultured with ghrelin and FSH (all at concentrations of 0, 1, 10, or 100 ng/ml). Accumulation of p53, of apoptosis-related (MAP3K5) and proliferation-related (cyclin B1) substances was evaluated by immunocytochemistry. The secretion of progesterone (P(4)), oxytocin (OT), prostaglandin F (PGF), and E (PGE) was measured by RIA. Transfection with the p53 gene construct promoted accumulation of this transcription factor within cells. It also stimulated the expression of a marker of apoptosis (MAP3K5). Over-expression of p53 resulted in reduced accumulation of a marker of proliferation (cyclin B1), P(4), and PGF secretion and increased OT and PGE secretion. Ghrelin, when added alone, did not affect p53 or P(4), but reduced MAP3K5 and increased PGF and PGE secretion. Over-expression of p53 reversed the effect of ghrelin on OT, caused it to be inhibitory to P(4) secretion, but did not modify its action on MAP3K5, PGF, or PGE. FSH promoted the accumulation of p53, MAP3K5, and cyclin B1; these effects were unaffected by p53 transfection. These multiple effects of the p53 gene construct on luteinizing granulosa cells, cultured with and without hormones 1) demonstrate the effects of ghrelin and FSH on porcine ovarian cell apoptosis and secretory activity, 2) confirm the involvement of p53 in promoting apoptosis and inhibiting P(4) secretion in these cells, 3) provide the first evidence that p53 suppress proliferation of ovarian cells, 4) provide the first evidence that p53 is involved in the control of ovarian peptide hormone (OT) and prostaglandin (PGF and PGE) secretion, and 5) suggest that p53 can modulate, but probably not mediate, the effects of ghrelin and FSH on the ovary.

  18. Dienogest, a selective progestin, reduces plasma estradiol level through induction of apoptosis of granulosa cells in the ovarian dominant follicle without follicle-stimulating hormone suppression in monkeys.

    PubMed

    Sasagawa, S; Shimizu, Y; Nagaoka, T; Tokado, H; Imada, K; Mizuguchi, K

    2008-07-01

    Dienogest is a selective progestin that has been shown to arrest ovarian follicular development in women, without affecting gonadotropin secretion. As luteal progesterone or exogeneous progestins are known to suppress ovarian folliculogenesis via the inhibition of gonadotropin secretion, this action of dienogest on ovaries seems to be unique. To examine the underlying mechanism of the antifolliculogenic effect of dienogest, female cynomolgus monkeys were treated with a single oral dose of 0.1 mg/kg dienogest on day 7 of the menstrual cycle. Plasma FSH, estradiol (E2), and progesterone levels were measured up to 15 days after dosing. In an additional experiment, ovaries were excised 24 h after dosing for histological examinations. As a result, plasma E2 level declined within 24 h after dosing, while dienogest did not decreased FSH level prior to E2 decline. After decline of E2 level, the low level of E2 was sustained for more than 11 days. It is considered that a single oral dose of dienogest induced atresia of the dominant follicle. In the histological examination, two out of three animals showed decline in E2 level. The ovarian dominant follicles from these animals showed apoptotic changes in granulosa cells with scattered aromatase expression within 24 h after dosing. These results indicate that the induction of atresia of the ovarian dominant follicle by direct action would be a possible mechanism of dienogest to inhibit plasma E2 level.

  19. Effects of orexins A and B on expression of orexin receptors and progesterone release in luteal and granulosa ovarian cells.

    PubMed

    Cataldi, Natalia I; Lux-Lantos, Victoria A R; Libertun, Carlos

    2012-10-10

    Orexin-A and orexin-B are neuropeptides controlling sleep-wakefulness, feeding and neuroendocrine functions via their G protein-coupled receptors, orexin-1R and orexin-2R. They are synthesized in the lateral hypothalamus and project throughout the brain. Orexins and orexin receptors have also been described outside the brain. Previously we demonstrated the presence of both receptors in the ovary, their increased expression during proestrous afternoon and the dependence on the gonadotropins. Here we studied the effects of orexins on the mRNA expression of both receptors, by quantitative real-time PCR, on luteal cells from superovulated rat ovaries and granulosa cells from diethylstilbestrol-treated rat ovaries. Effects on progesterone secretion were also measured. In luteal cells, 1 nM of either orexin-A or orexin-B decreased progesterone secretion. Orexin-A treatment increased expression of both orexin-1R and orexin-2R mRNA. The effect on orexin-1R mRNA expression was abolished by an orexin-1R selective receptor antagonist SB-334867 and the effect on orexin-2R mRNA expression was abolished by a selective orexin-2R antagonist JNJ-10397049. Orexin-B did not modify orexin-1R mRNA expression, but increased orexin-2R mRNA expression. The effect of orexin-B on orexin-2R was abolished by a selective orexin-2R antagonist. Neither the expression of orexin receptors nor progesterone secretions by granulosa cells were affected by orexins. FSH, as positive control, increased both steroid hormones secretion, but did not induce the expression of OX receptors in granulosa cells isolated from late preantral/early antral follicles. Finally in ovaries obtained immediately after sacrifice, the expression of orexin-1R and orexin-2R was higher in superovulated rat ovaries compared to control or diethylstilbestrol treated rat ovaries. A selective presence and function of both orexinergic receptors in luteal and granulosa cells is described, suggesting that the orexinergic system may

  20. Modulation of in vitro DNA synthesis in the chicken ovarian granulosa cell follicular hierarchy by follicle-stimulating hormone and luteinizing hormone.

    PubMed

    McElroy, A P; Caldwell, D J; Proudman, J A; Hargis, B M

    2004-03-01

    Folliculogenesis in domestic hens appears to be controlled by numerous factors, particularly the gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The involvement of LH in follicular steroidogenesis has been described in some detail; however, the specific role of FSH has remained elusive. In 3 experiments, the effects of ovine (o)- or chicken (c)-derived FSH (oFSH, cFSH) or LH (oLH, cLH) were evaluated on in vitro DNA synthesis [3H-thymidine (3H-TdR) incorporation], indicative of cellular proliferation, of granulosa cells from F1, F3, or F5-6 preovulatory follicles. In experiment 1, oFSH or cFSH stimulated (P < 0.05) and oLH or cLH decreased DNA synthesis by F1 granulosa cells. In experiment 2, oFSH resulted in concentration-related changes in DNA synthesis by F5-6 granulosa cells; however, no significant changes were observed in F1 or F3 granulosa cells. No effect of oLH was observed on granulosa cell proliferation from any of the follicles. Similar to oFSH, cFSH resulted in concentration-related increases in DNA synthesis in granulosa cells from F5-6 follicles with smaller magnitude changes in proliferation of F1 or F3 granulosa cells. Granulosa cells from F5-6 or F3 follicles had small increases in DNA synthesis in response to cLH. These data support the proposed role for FSH in granulosa cell proliferation, possibly contributing to follicle growth, and suggest that in vitro 3H-TdR incorporation by granulosa cells may provide a sensitive and selective bioassay for chicken gonadotropin preparations. Furthermore, data suggest that proliferative responsiveness of granulosa cells to FSH or LH may differ depending on position of follicles in the preovulatory hierarchy.

  1. Involvement of the transcription factor STAT1 in the regulation of porcine ovarian granulosa cell functions treated and not treated with ghrelin.

    PubMed

    Benco, A; Sirotkin, A V; Vasícek, D; Pavlová, S; Zemanová, J; Kotwica, J; Darlak, K; Valenzuela, F

    2009-09-01

    The aim of our in vitro experiments was to study the role of the transcription factor STAT1 and the hormone ghrelin in controlling porcine ovarian function. The effects of treatment with ghrelin (0, 1, 10, 100 ng/ml), transfection-induced overexpression of transcription factor STAT1, and their combination on apoptosis (expression of apoptosis-related peptides caspase-3, BAX and anti-apoptotic peptide BCL2), proliferation (expression of proliferating cell nuclear antigene PCNA, proliferation-associated protein kinase MAPK/ERK1,2) and release of the hormones progesterone (P(4)), prostaglandin F (PGF) and oxytocin (OXT) in cultured porcine ovarian granulosa cells was evaluated using RIA, immunocytochemistry and SDS-PAGE-western immunoblotting. It was found that ghrelin, when given alone, increased the expression of proliferation-associated PCNA and MAPK/ERK1,2, decreased the accumulation of apoptosis-related substances caspase-3, BAX, BCL2, decreased P(4), and increased PGF and OXT release. Ghrelin tended to promote accumulation of STAT1 in both control and transfected cells, although in transfected cells ghrelin at 1 ng/ml decreased STAT1 accumulation. Transfection of porcine granulosa cells by a gene construct encoding STAT1 promoted the expression of STAT1 and apoptosis-related-BAX but the expression of BCL2 did not, and decreased the accumulation of proliferation-associated MAPK/ERK1,2 but not that of PCNA. It also promoted PGF and OXT but not P(4) release. Overexpression of STAT1 reversed the effect of ghrelin on STAT1, PCNA, PGF, OXT (from stimulatory to inhibitory), BCL2, P(4) (from inhibitory to stimulatory), prevented ghrelin effect on caspase-3 and BAX, but did not affect ghrelin's effect on MAPK/ERK1,2 expression. These results suggest that ghrelin directly affects porcine ovarian cells function - stimulates proliferation, inhibits apoptosis and affects secretory activity. Furthermore, they demonstrated the involvement of the transcription factor STAT1 in

  2. Plasma anti-Müllerian hormone as a biomarker for bovine granulosa-theca cell tumors: comparison with immunoreactive inhibin and ovarian steroid concentrations.

    PubMed

    El-Sheikh Ali, Hossam; Kitahara, Go; Nibe, Kazumi; Yamaguchi, Ryoji; Horii, Yoichiro; Zaabel, Samy; Osawa, Takeshi

    2013-11-01

    Granulosa-theca cell tumors (GTCTs) are the most frequently reported ovarian tumors in cattle. Clinically, GTCTs could be confused with other ovarian abnormalities; therefore, the only definitive diagnosis for such tumors is histopathology of a biopsy from the affected ovary. However, this is an invasive technique and unsuitable for farm conditions. As a result, the key aim of this study was to evaluate the diagnostic value of anti-Müllerian hormone (AMH), a glycoprotein hormone that is synthesized exclusively by ovarian granulosa cells, as a sensitive noninvasive biomarker for diagnosing GTCTs in cattle. To achieve this aim, we conducted two experiments. In experiment 1, four clinically healthy Japanese Black cows had blood samples taken daily over one estrous cycle to characterize their AMH profiles throughout the estrous cycle. Additionally, single blood samples were collected from 21 cyclic cows to clarify the physiological range of AMH. In experiment 2, cows with histologically confirmed GTCT (GTCT group, n = 9) and cows affected with cystic ovarian disease (COD group, n = 8) had one blood sample taken before extraction of the tumorous ovary or therapeutic treatment for the COD. Blood samples (n = 105) from cyclic cows (n = 25) in experiment 1 were assigned as a physiologically cyclic group (PC group). Plasma AMH, immunoreactive inhibin (ir-INH), estradiol-17β (E2), testosterone (T), and progesterone (P4) concentrations were assayed in all samples. In experiment 1, the mean plasma AMH concentration was 0.09 ± 0.003 ng/mL and did not show substantial fluctuation throughout the estrous cycle. In experiment 2, plasma AMH, ir-INH, and E2 concentrations were significantly elevated in the GTCT group in comparison with the PC group; among these parameters, only the AMH concentrations were significantly higher in the GTCT group than in the COD group. The area under the receiver operating characteristic curve of AMH for diagnosis of GTCT was 0.99 and was

  3. WNT5a is required for normal ovarian follicle development and antagonizes gonadotropin responsiveness in granulosa cells by suppressing canonical WNT signaling

    PubMed Central

    Abedini, Atefeh; Zamberlam, Gustavo; Lapointe, Evelyne; Tourigny, Catherine; Boyer, Alexandre; Paquet, Marilène; Hayashi, Kanako; Honda, Hiroaki; Kikuchi, Akira; Price, Christopher; Boerboom, Derek

    2015-01-01

    Whereas the roles of the canonical wingless-type MMTV (mouse mammary tumor virus) integration site family (WNT) signaling pathway in the regulation of ovarian follicle growth and steroidogenesis are now established, noncanonical WNT signaling in the ovary has been largely overlooked. Noncanonical WNTs, including WNT5a and WNT11, are expressed in granulosa cells (GCs) and are differentially regulated throughout follicle development, but their physiologic roles remain unknown. Using conditional gene targeting, we found that GC-specific inactivation of Wnt5a (but not Wnt11) results in the female subfertility associated with increased follicular atresia and decreased rates of ovulation. Microarray analyses have revealed that WNT5a acts to down-regulate the expression of FSH-responsive genes in vitro, and corresponding increases in the expression of these genes have been found in the GCs of conditional knockout mice. Unexpectedly, we found that WNT5a regulates its target genes not by signaling via the WNT/Ca2+ or planar cell polarity pathways, but rather by inhibiting the canonical pathway, causing both β-catenin (CTNNB1) and cAMP responsive element binding (CREB) protein levels to decrease via a glycogen synthase kinase-3β-dependent mechanism. We further found that WNT5a prevents follicle-stimulating hormone and luteinizing protein from up-regulating the CTNNB1 and CREB proteins and their target genes, indicating that WNT5a functions as a physiologic inhibitor of gonadotropin signaling. Together, these findings identify WNT5a as a key regulator of follicle development and gonadotropin responsiveness.—Abedini, A., Zamberlam, G., Lapointe, E., Tourigny, C., Boyer, A., Paquet, M., Hayashi, K., Honda, H., Kikuchi, A., Price, C., Boerboom, D. WNT5a is required for normal ovarian follicle development and antagonizes gonadotropin responsiveness in granulosa cells by suppressing canonical WNT signaling. PMID:26667040

  4. WNT5a is required for normal ovarian follicle development and antagonizes gonadotropin responsiveness in granulosa cells by suppressing canonical WNT signaling.

    PubMed

    Abedini, Atefeh; Zamberlam, Gustavo; Lapointe, Evelyne; Tourigny, Catherine; Boyer, Alexandre; Paquet, Marilène; Hayashi, Kanako; Honda, Hiroaki; Kikuchi, Akira; Price, Christopher; Boerboom, Derek

    2016-04-01

    Whereas the roles of the canonical wingless-type MMTV (mouse mammary tumor virus) integration site family (WNT) signaling pathway in the regulation of ovarian follicle growth and steroidogenesis are now established, noncanonical WNT signaling in the ovary has been largely overlooked. Noncanonical WNTs, including WNT5a and WNT11, are expressed in granulosa cells (GCs) and are differentially regulated throughout follicle development, but their physiologic roles remain unknown. Using conditional gene targeting, we found that GC-specific inactivation ofWnt5a(but notWnt11) results in the female subfertility associated with increased follicular atresia and decreased rates of ovulation. Microarray analyses have revealed that WNT5a acts to down-regulate the expression of FSH-responsive genesin vitro, and corresponding increases in the expression of these genes have been found in the GCs of conditional knockout mice. Unexpectedly, we found that WNT5a regulates its target genes not by signalingviathe WNT/Ca(2+)or planar cell polarity pathways, but rather by inhibiting the canonical pathway, causing both β-catenin (CTNNB1) and cAMP responsive element binding (CREB) protein levels to decreaseviaa glycogen synthase kinase-3β-dependent mechanism. We further found that WNT5a prevents follicle-stimulating hormone and luteinizing protein from up-regulating the CTNNB1 and CREB proteins and their target genes, indicating that WNT5a functions as a physiologic inhibitor of gonadotropin signaling. Together, these findings identify WNT5a as a key regulator of follicle development and gonadotropin responsiveness.-Abedini, A., Zamberlam, G., Lapointe, E., Tourigny, C., Boyer, A., Paquet, M., Hayashi, K., Honda, H., Kikuchi, A., Price, C., Boerboom, D. WNT5a is required for normal ovarian follicle development and antagonizes gonadotropin responsiveness in granulosa cells by suppressing canonical WNT signaling.

  5. T-2 toxin and its metabolite HT-2 toxin combined with insulin-like growth factor-I modify progesterone secretion by porcine ovarian granulosa cells.

    PubMed

    Maruniakova, Nora; Kadasi, Attila; Sirotkin, Alexander V; Bulla, Jozef; Kolesarova, Adriana

    2014-01-01

    The aim of this study was to examine the effect of A-trichothecenes T-2 and HT-2 toxins combined with insulin-like growth factor I (IGF-I) on the release of steroid hormone progesterone (P4) by porcine ovarian granulosa cells (GCs). The cells were incubated without (control) or with treatments of A-trichothecenes T-2 (100 and 1000 ng/mL)/ HT-2 (100 and 1000 ng/mL) combined with IGF-I (1, 10 and 100 ng/mL) for 24 h. Progesterone secretion was determined by RIA. The release of P4 by GCs after addition of T-2 toxin (at 100 ng/mL) combined with IGF-I (at 10 but not at 1 and 100 ng/mL) and HT-2 toxin (at 100 ng/mL) combined with IGF-I (at all doses) was significantly (P < 0.05) inhibited. On the other hand the release of P4 after addition of T-2/ HT-2 toxin (at 1000 ng/mL) combined with IGF-I (at all doses) was significantly (P < 0.05) stimulated. Alone IGF-I addition (at 10, 100 but not at 1 ng/mL) significantly (P < 0.05) stimulated P4 release by GCs. The results of our in vitro study indicate the T-2 and HT-2 toxins combined with IGF-I could modify progesterone secretion by porcine ovarian granulosa cells and potentially regulate process of steroidogenesis in the ovaries. Currently, occurrence of mycotoxins in food and feed is a worldwide problem and therefore study of these toxins as well as their interaction with different substances such as growth factors could be beneficial for better understanding of mechanism of their toxic effects in organism.

  6. Adult granulosa cell tumour-like areas occurring in ovarian epithelial neoplasms: report of a case series with investigation of FOXL2 mutation status.

    PubMed

    Singh, Naveena; Gilks, C Blake; Huntsman, David G; Smith, John H; Coutts, Michael; Ganesan, Raji; McCluggage, W Glenn

    2014-04-01

    To look for FOXL2 mutation in rare ovarian epithelial lesions showing stromal components with morphological features of adult granulosa cell tumour (AGCT). We report the 402C→G FOXL2 mutation status in five epithelial ovarian lesions in women aged 45-77 years showing stromal proliferations that were morphologically indistinguishable from AGCT. The lesions were mucinous cystadenoma, mixed epithelial cystadenoma, endometriotic cyst, mucinous borderline tumour (intestinal type), and mucinous carcinoma. In one case, the AGCT component formed a discrete nodule, and in the others it was distributed within the septa and cyst walls. FOXL2 mutation was present in two cases and absent in three cases. One mutation-positive case showed an AGCT nodule abutting a mucinous borderline tumour, interpreted as a collision tumour. The other positive case had an AGCT component within the septa of a mucinous carcinoma, and both components are likely to be neoplastic. In the three cases without FOXL2 mutation, the stromal component most likely represents a non-neoplastic AGCT-like proliferation. Areas typical of AGCT are rarely associated with epithelial ovarian lesions. These are heterogeneous and likely to be truly neoplastic in only a subset of cases. FOXL2 mutation testing may be useful in confirming a true neoplastic AGCT component. © 2013 John Wiley & Sons Ltd.

  7. [Precocious pseudopuberty secondary to granulosa cell tumor].

    PubMed

    Fernández, F; Jordán, J; Carmona, M; Oliver, A; Gracia, R; González, M; Peralta, A

    1984-12-01

    A case report of pseudoprecocity secondary to a unilateral ovarian tumor of granulosa cells is presented in a 13 month old female. Clinical manifestations appeared at two months of age as unilateral enlargement of the breast, development of pubic hair and vaginal discharge. Plasma estrogen levels were elevated, whereas there was no response of FSH and LH to LH-RH stimulation. The absence of a palpable abdominal mass and a normal ultrasound examination of the abdomen must be pointed out in our case. The suspected clinical and laboratory diagnosis was later confirmed by surgical abdominal examination and ovarian histopathology study. With the exception of a minimal breast enlargement which persists at two years of age, all other signs of pseudoprecocity have disappeared after the surgical removal of the neoplasm. The importance of surgical abdominal examination must be pointed out as a diagnostic method when clinical and laboratory findings suggest an ovarian tumor inspite of normal abdominal palpation, ultrasound and roentgenology.

  8. Beta-catenin directs the transformation of testis Sertoli cells to ovarian granulosa-like cells by inducing Foxl2 expression.

    PubMed

    Li, Yaqiong; Zhang, Lianjun; Hu, Yuqiong; Chen, Min; Han, Feng; Qin, Yan; Chen, Min; Cui, Xiuhong; Duo, Shuguang; Tang, Fuchou; Gao, Fei

    2017-09-12

    Sertoli and granulosa cells are two major types of somatic cells in the male and female gonads,respectively. Previous studies have shown that Sertoli and granulosa cells are derived from common progenitor cells and that differentiation of these two cell types is regulated by sex differentiation genes. The signaling pathway including the adhesion and transcription factor Ctnnb1 (cadherin-associated protein, beta 1, also known as β-catenin) regulates differentiation of granulosa cells in the absence of the transcription factor Sry, and over-activation of β-catenin in the presence of Sry leads to granulosa prior to sex determination. Surprisingly, our previous study found that β-catenin over-activation in Sertoli cells after sex determination can also cause disruption of the testicular cord and aberrant testis development. However, the underlying molecular mechanism was unclear. In this study, we found that constitutive activation of Ctnnb1 in Sertoli cells led to ectopic expression of the granulosa cell-specific marker FOXL2 in testes. Co-staining experiments revealed that FOXL2-positive cells were derived from Sertoli cells, and Sertoli cells were transformed into granulosa-like cells after Ctnnb1 over-activation. Further studies demonstrated that CTNNB1 induced Foxl2 expression by directly binding to transcription factor Tcf/Lef binding sites in the FOXL2 promoter region. We also found that directly over-expression of Foxl2 indecreased the expression of Sertoli cell-specific genes in primary Sertoli cells. Taken together, these results demonstrate that repression of β-catenin (CTNNB1) signaling is required for lineage maintenance of Sertoli cells. Our study provides a new mechanism for Sertoli cell lineage maintenance during gonad development. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  9. Menoprogen, a TCM Herbal Formula for Menopause, Increases Endogenous E2 in an Aged Rat Model of Menopause by Reducing Ovarian Granulosa Cell Apoptosis.

    PubMed

    Li, Yu; Ma, Hong; Lu, Ye; Tan, B J; Xu, L; Lawal, Temitope O; Mahady, Gail B; Liu, Daniel

    2016-01-01

    The effect of Menoprogen (MPG) on ovarian granulosa cell (GC) apoptosis was investigated in vitro and in vivo in an aged rat model of menopause. Intragastric administration of Menoprogen or estradiol valerate to 14-month-old senile female rats for eight weeks increased plasma E2 levels, as well as the weight of both ovarian and uterine tissues. Flow cytometric (FCM) analysis of isolated GCs from MPG-treated aged rats showed reductions in the G0/G1 ratio and apoptotic peaks. Isolated GCs also exhibited an increase in cell size and the number of cytoplastic organelles and intracellular gap junctions, the reappearance of secretory granules, and a lack of apoptotic bodies as determined by TEM. Results from a TdT-mediated dUTP nick end-labeling (TUNEL) assay revealed a reduction in TUNEL-positive GCs after MPG treatment. Immunohistochemical analysis showed a downregulation of proapoptotic Bax proteins and an upregulation of antiapoptotic Bcl-2 proteins. The addition of MPG-medicated serum to the media of cultured GCs also reduced cadmium chloride-induced apoptosis and downregulated caspase-3 protein expression. This work demonstrates that Menoprogen inhibits GC apoptosis in aged female rats and thereby increases E2 production. This represents a novel mechanism of action for this herbal medicine in the treatment of menopausal symptoms.

  10. Menoprogen, a TCM Herbal Formula for Menopause, Increases Endogenous E2 in an Aged Rat Model of Menopause by Reducing Ovarian Granulosa Cell Apoptosis

    PubMed Central

    Li, Yu; Ma, Hong; Lu, Ye; Tan, B. J.; Xu, L.; Lawal, Temitope O.; Mahady, Gail B.; Liu, Daniel

    2016-01-01

    The effect of Menoprogen (MPG) on ovarian granulosa cell (GC) apoptosis was investigated in vitro and in vivo in an aged rat model of menopause. Intragastric administration of Menoprogen or estradiol valerate to 14-month-old senile female rats for eight weeks increased plasma E2 levels, as well as the weight of both ovarian and uterine tissues. Flow cytometric (FCM) analysis of isolated GCs from MPG-treated aged rats showed reductions in the G0/G1 ratio and apoptotic peaks. Isolated GCs also exhibited an increase in cell size and the number of cytoplastic organelles and intracellular gap junctions, the reappearance of secretory granules, and a lack of apoptotic bodies as determined by TEM. Results from a TdT-mediated dUTP nick end-labeling (TUNEL) assay revealed a reduction in TUNEL-positive GCs after MPG treatment. Immunohistochemical analysis showed a downregulation of proapoptotic Bax proteins and an upregulation of antiapoptotic Bcl-2 proteins. The addition of MPG-medicated serum to the media of cultured GCs also reduced cadmium chloride-induced apoptosis and downregulated caspase-3 protein expression. This work demonstrates that Menoprogen inhibits GC apoptosis in aged female rats and thereby increases E2 production. This represents a novel mechanism of action for this herbal medicine in the treatment of menopausal symptoms. PMID:26981526

  11. The FOXL2 mutation (c.402C>G) in adult-type ovarian granulosa cell tumors of three Japanese patients: clinical report and review of the literature.

    PubMed

    Takahashi, Akimasa; Kimura, Fuminori; Yamanaka, Akiyoshi; Takebayashi, Akie; Kita, Nobuyuki; Takahashi, Kentaro; Murakami, Takashi

    2013-12-01

    Adult-type granulosa cell tumor (AGCT) is a rare class of malignant ovarian tumor with unique features, characterized by slow growth, late recurrence, relatively good prognosis and unified cause in almost all patients. The forkhead box L2 (FOXL2) gene encodes an essential transcription factor in the ovary. FOXL2 is important in female sex determination, follicle recruitment, and granulosa cell development. About 70-97% of AGCTs were reported to carry a somatic mutation c.402C>G (C134W) in the FOXL2 gene. However, it is unknown whether AGCTs of Japanese patients harbor the FOXL2 c.402C>G mutation. Here, we report a mutational analysis of the FOXL2 gene in four Japanese patients with AGCTs, and we review the literature to determine the precise incidence of FOXL2 mutations in AGCTs. All four patients were analyzed by immunohistochemistry for FOXL2. Genomic DNA was extracted from paraffin-embedded tissues, and was analyzed to detect the c.402C>G mutation in FOXL2 by direct sequencing. All tumors were stained with FOXL2. Three of the four tumors harbor the c.402C>G mutation. Based on the literature review, FOXL2 immunostaining is a highly specific marker for sex cord-stromal tumors (SCSTs), but it is not specific for AGCTs, one subtype of SCSTs. We identified 340 patients with the FOXL2 mutation (c.402C>G) and determined that the incidence of the mutation is 91.9% in AGCT patients. Therefore, this FOXL2 mutation is specific to AGCTs in the ovary and is useful for diagnosis of this disease.

  12. Chromosome X loci and spontaneous granulosa cell tumor development in SWR mice: epigenetics and epistasis at work for an ovarian phenotype.

    PubMed

    Dorward, Ann M; Yaskowiak, Edward S; Smith, Kerri N; Stanford, Kaitlyn R; Shultz, Kathryn L; Beamer, Wesley G

    2013-02-01

    Females of the SWR/Bm (SWR) inbred mouse strain possess a unique susceptibility to juvenile-onset tumors originating from the granulosa cells (GC) of the ovarian follicles. Tumor susceptibility is an inherited, polygenic trait in SWR females, minimally involving an oncogenic Granulosa cell tumor susceptibility (Gct) locus on chromosome (Chr) 4 (Gct1), and two GC tumor susceptibility modifier genes mapped to distinct regions of Chr X (Gct4 and Gct6). Shifts in the frequency of GC tumor initiation in the SWR female population from low penetrance to moderate penetrance, or phenotype switching between GC tumor-susceptible and GC tumor-resistant, is strongly influenced by the allelic contributions at Gct4 and Gct6. In addition to the allele-specific effects, GC tumor susceptibility is controlled by the mode of X-linked transmission with a dominant, paternal parent-of-origin effect. We took advantage of the robust paternal effect with a recombinant male progeny testing strategy to resolve the Gct4 locus interval to 1.345 million base (Mb) pairs. Based on the mapping resolution and the phenotype sensitivity to endogenous and exogenous androgen exposure, a promising candidate for Gct4 identity is the androgen receptor (Ar) gene. We explored the mechanism of allelic variation for Ar between SWR (low penetrance allele) and SJL/Bm (SJL) (moderate penetrance allele) using an SWR.SJL-X congenic strain resource and a quantitative gene expression method. We report the low GC tumor penetrance allele of the SWR strain correlates with significantly reduced Ar transcript levels in the female ovary at the pubertal transition.

  13. FOXL2 Mutation Status in Granulosa Theca Cell Tumors of the Ovary.

    PubMed

    Nolan, Amber; Joseph, Nancy M; Sangoi, Ankur R; Rabban, Joseph; Zaloudek, Charles; Garg, Karuna

    2017-03-17

    Ovarian sex-cord stromal tumors that have between 10% and 50% granulosa cells in a prominent fibrothecomatous background have been referred to as granulosa theca cell tumors or mixed granulosa theca cell tumors. The classification and prognosis of these tumors is not clear. Most adult granulosa cell tumors of the ovary harbor a mutation in the FOXL2 gene, whereas fibromas and thecomas lack this mutation. The aim of our study was to assess the FOXL2 mutation status of ovarian granulosa theca cell tumors and to correlate the mutation status with morphologic and clinical characteristics. A FOXL2 mutation was detected in 6 of 12 (50%) granulosa theca cell tumors. Tumors with higher cellularity of granulosa cells were more likely to harbor a FOXL2 mutation as were tumors in which the granulosa cells formed large lobules. No conclusions could be drawn regarding the clinical and prognostic significance of the presence of a mutation given the small number of cases and limited clinical follow-up. Our study shows that half of granulosa theca cell tumors harbor the same FOXL2 mutation that characterizes adult granulosa cell tumors but there is no outcome evidence to guide whether mutation status should alter the classification of the tumor or the management of the patient.

  14. Transgenic mice expressing inhibin α-subunit promoter (inhα)/Simian Virus 40 T-antigen (Tag) transgene as a model for the therapy of granulosa cell-derived ovarian cancer.

    PubMed

    Chrusciel, Marcin; Doroszko, Milena; Stelmaszewska, Joanna; Li, Xiangdong; Ziecik, Adam J; Coelingh-Bennink, Herjan J T; Huhtaniemi, Ilpo; Rahman, Nafis A

    2014-03-01

    Granulosa cell tumors are rare, 3-7.6% of primary ovarian tumors, although with poor prognosis as the tumor-related mortality rate is 37.3%, with 80% of deaths occurring on recurrence. We have created a transgenic (TG) murine model for gonadal somatic cell tumors by expressing the powerful viral oncogene, Simian Virus 40 T-antigen (Tag), under the regulation of murine inhibin α-subunit 6 kb promoter (inhα/Tag). Gonadotropin dependent ovarian granulosa cell tumors were formed in females by the age of 5-6 months, with a 100% penetrance. We have successfully used the inhα/Tag model to test different treatment strategies for ovarian tumors. With a gene therapy trial in inhα/Tag mice crossbred with inhα/HSV-TK (herpes simplex virus thymidine kinase) mice (double TG), we proved the principle that targeted expression of HSV-TK gene in gonadal somatic cell tumors enabled tumor ablation by anti-herpes treatment. When we aimed at targeted destruction of luteinizing hormone/chorionic gonadotropin receptor (LHCGR) expressing inhα/Tag tumor cells in vivo by a lytic peptide Hecate-CGβ conjugate, we could successfully kill the tumor cells, sparing the normal cells. We recently found high zona pellucida glycoprotein 3 (ZP3) expression in inhα/Tag granulosa cell tumors, as well as in human granulosa cell tumors. We tested the concept of treating the ovarian tumors of inhα/Tag mice by vaccination against the ectopically expressed ZP3. Immunotherapy with recombinant human (rh) ZP3 was highly successful with no objective side effects in inhα/Tag females, suggesting rhZP3 immunization as a novel strategy for the immunotherapy of ovarian granulosa cell tumors. Copyright © 2014 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  15. Astragalin, a Flavonoid from Morus alba (Mulberry) Increases Endogenous Estrogen and Progesterone by Inhibiting Ovarian Granulosa Cell Apoptosis in an Aged Rat Model of Menopause.

    PubMed

    Wei, Min; Mahady, Gail B; Liu, Daniel; Zheng, Zhi S; Lu, Ye

    2016-05-21

    To determine the mechanism by which the flavonoid glycoside astragalin (AST) reduces ovarian failure in an aged rat model of menopause. The in vivo effect of AST on granulosa cell (GC) apoptosis in aged female rats was determined using flow cytometry. In vitro, the effects of AST on cultured GCs were investigated using the MTT proliferation assay and western blot assays. Aged rats had significantly higher GC apoptosis as compared with young female rats. Treatment of aged rats with AST (all three doses; p < 0.01) or Progynova (p < 0.01) significantly reduced GC apoptosis as compared with the aged controls. The proportions of total apoptotic GCs was 25.70%, 86.65%, 47.04%, 27.02%, 42.09% and 56.42% in the normal, aged, 17β-estradiol (E₂), high dose AST, medium dose AST, and low dose AST-treated groups, respectively. Significant increases of serum E₂ and P₄ levels, as well as altered levels of serum follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels. In cultured rat GCs, AST stimulated GC proliferation, E₂ and progesterone (P₄) secretion, reduced apoptosis, reduced the level of the pro-apoptotic protein Bcl-2 (p < 0.01), but had no effect on BAX. AST enhanced ovarian function in aged female rats by increasing E₂ and P₄ levels, and reducing ovarian GC apoptosis via a mechanism involving Bcl-2. These data demonstrate a new pharmacological activity for AST, as well as a novel mechanism of action, and further suggest that AST may be a new therapeutic agent for the management of menopausal symptoms.

  16. Tissue localization of GM-CSF receptor in bovine ovarian follicles and its role on glucose uptake by mural granulosa cells.

    PubMed

    Peralta, O A; Bucher, D; Angulo, C; Castro, M A; Ratto, M H; Concha, Il

    2016-07-01

    The granulocyte-macrophage colony stimulating factor (GM-CSF) is a multifunctional cytokine implicated in proliferation, differentiation, and activation of several cell types including those involved in hematopoiesis and reproduction. In the present study, the expression of the α- and β-subunit genes of GM-CSF receptor during follicular development in cattle was assessed. The spatial association of α- and β-subunits of GM-CSF with follicle stimulating hormone receptor (FSHR) and 3β-hydroxysteroid dehydrogenase (3β-HSD), and the temporal associations with gene expression of hexose transporters (GLUTs) in granulosa cells of cattle were also evaluated. The effect of GM-CSF on the functionality of hexose transporters was also determined in an in vitro primary culture of granulosa cells. The spatial association of subunits of the GM-CSF receptor with 3β-HSD and FSHR suggests a potential steroidogenic regulation of GM-CSF in granulosa cells. Immunodetection of GLUTs and uptake kinetic assays confirmed expression and functionality of these genes for hexose transporters in granulosa cells of cattle. Treatment of granulosa cells with GM-CSF, FSH or insulin- like growth factor-I (IGF-I) alone increased 2-deoxyglucose (DOG) or 3-0-methylglucose (OMG) uptake; however, when cells were treated with various combination of these factors there were no additive effect. Unexpectedly, the combination of GM-CSF and FSH decreased DOG uptake compared to FSH treatment alone. Thus, the expression pattern of GM-CSF receptor subunit genes during follicle development in cattle and promotion of DOG and OMG uptake in granulosa cells indicate a role for GM-CSF, FSH and/or IGF-I alone in regulating granulosa cell metabolic activity, specifically by promoting glucose uptake. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Modulation of expression of 17-Hydroxylase/17,20 lyase (CYP17) and P450 aromatase (CYP19) by inhibition of MEK1 in a human ovarian granulosa-like tumor cell line.

    PubMed

    Huang, Xiao; Jin, Jiewen; Shen, Shanmei; Xia, Yanjie; Xu, Pei; Zou, Xiang; Wang, Hongwei; Yi, Long; Wang, Yong; Gao, Qian

    2016-01-01

    The differential steroid production in the theca and granulosa cells in ovary are resulted from unique enzyme expression profiles. Among them, c-fos, a downstream target of mitogen and extracellular signal-regulated kinases (MEK/ERK) signaling, takes part in this compartment. In this study, we investigated the effect of c-fos on the steady-state levels of CYP17 and CYP19 in human ovarian granulosa-like tumor cell line (KGN) by inhibiting MEK/ERK pathway with PD98059. As a result, our finding demonstrated the distinct distribution patterns of CYP17 and CYP19 in KGN. Moreover, the MEK/ERK pathway functions to inhibit the production of CYP17, while enhance the production of CYP19 in granulosa cells, probably involving a c-fos-dependent mechanism. In conclusion, factors such as c-fos may play a crucial role in the down-regulation of CYP17 and up-regulation of CYP19 in granulosa cells, thereby suppressing androstenedione synthesis.

  18. Pathogen-associated molecular patterns initiate inflammation and perturb the endocrine function of bovine granulosa cells from ovarian dominant follicles via TLR2 and TLR4 pathways.

    PubMed

    Price, Jennifer C; Bromfield, John J; Sheldon, I Martin

    2013-09-01

    Bacterial infections of the uterus or mammary gland commonly cause disease and infertility by perturbing growth and steroidogenesis of the dominant follicle in the ovary of cattle. Cells of the innate immune system use Toll-like receptors TLR2, TLR4, and TLR5 to recognize pathogen-associated molecular patterns (PAMPs) expressed by bacteria, leading to activation of MAPK and nuclear factor-κBκ pathways and production of inflammatory cytokines such as IL-1β and IL-6, and the chemokine IL-8. The present study tested whether granulosa cells from dominant follicles have functional TLR2, TLR4, and TLR5 pathways. Supernatants of primary bovine granulosa cells accumulated IL-1β, IL-6, and IL-8 when treated for 24 hours with Pam3CSK4 (PAM) that binds TLR2 or lipopolysaccharide (LPS) that binds TLR4 but not flagellin that binds TLR5. Granulosa cell responses to PAM or LPS were rapid, with increased phosphorylation of p38 and ERK1/2 within 30 minutes and increased abundance of IL6, IL1B, IL10, TNF, IL8, and CCL5 mRNA after 3 hours of treatment. Accumulation of IL-6 in response to PAM and LPS was attenuated using small interfering RNA targeting TLR2 and TLR4, respectively. Furthermore, treating granulosa cells with inhibitors targeting MAPK or nuclear factor-κB reduced the accumulation of IL-6 in response to LPS or PAM. Treatment with LPS or PAM reduced the accumulation of estradiol and progesterone, and the PAMPs reduced granulosa cell expression of CYP19A1 mRNA and protein. In conclusion, bacterial PAMPs initiate inflammation and perturb the endocrine function of bovine granulosa cells from dominant follicles via TLR2 and TLR4 pathways.

  19. Overexpression of miR-21 in stem cells improves ovarian structure and function in rats with chemotherapy-induced ovarian damage by targeting PDCD4 and PTEN to inhibit granulosa cell apoptosis.

    PubMed

    Fu, Xiafei; He, Yuanli; Wang, Xuefeng; Peng, Dongxian; Chen, Xiaoying; Li, Xinran; Wang, Qing

    2017-08-14

    Chemotherapy-induced premature ovarian failure (POF) is a severe complication affecting tumor patients at a childbearing age. Mesenchymal stem cells (MSCs) can partially restore the ovarian structure and function damaged by chemotherapy. miR-21 is a microRNA that can regulate cell apoptosis. This study discusses the repair effect and mechanism of MSCs overexpressing miR-21 on chemotherapy-induced POF. Rat MSCs and granulosa cells (GCs) were isolated in vitro. MSCs were transfected with miR-21 lentiviral vector (LV-miR-21) to obtain MSCs stably expressing miR-21 (miR-21-MSCs). The microenvironment of an ovary receiving chemotherapy was mimicked by adding phosphamide mustard (PM) into the cellular culture medium. The apoptosis rate and the mRNA and protein expression of target genes PTEN and PDCD4 were detected in MSCs. Apoptosis was induced by adding PM into the culture medium for GCs, which were cocultured with miR-21-MSCs. The apoptosis rate and the mRNA and protein expression of PTEN and PDCD4 were detected. The chemotherapy-induced POF model was built into rats by intraperitoneal cyclophosphamide injection. miR-21-MSCs were transplanted into the bilateral ovary. The rats were sacrificed at 15, 30, 45, and 60 days after the last injection. The ovarian weights, follicle count, estrous cycle, and sex hormone levels (estradiol (E2) and follicle-stimulating hormone (FSH)) were detected. Apoptosis of GCs was determined by TUNEL assay. The miR-21 and mRNA and protein expression of PTEN and PDCD4 were determined. The apoptosis decreased in MSCs transfected with miR-21. The mRNA and protein expression of target genes PTEN and PDCD4 was downregulated. GCs cocultured with miR-21-MSCs showed a decreased apoptosis, an upregulation of miR-21, and a downregulation of PTEN and PDCD4. Following the injection of miR-21-MSCs, the ovarian weight and follicle counts increased; E2 levels increased while FSH levels decreased, with less severe apoptosis of GCs. The miR-21 expression

  20. Ovarian superstimulation using FSH combined with equine chorionic gonadotropin (eCG) upregulates mRNA-encoding proteins involved with LH receptor intracellular signaling in granulosa cells from Nelore cows.

    PubMed

    Castilho, A C S; Nogueira, M F G; Fontes, P K; Machado, M F; Satrapa, R A; Razza, E M; Barros, C M

    2014-12-01

    The LH plays a key role in controlling physiological processes in the ovary acting via LH receptor (LHR). In general, the effects of LHR on the regulation of granulosa cell differentiation are mediated mainly via the Gs-protein/adenylyl cyclase/cAMP system; however, the LHR activation could also induce phospholipase C (PLC)/inositol trisphosphate (IP3) via Gq/11 system. Additionally, the expression of G-proteins (GNAS, GNAQ, and GNA11) and PLC β has been showed in bovine antral follicle, concomitant with an increase in LHR expression. To gain insight into the effects of superstimulation with FSH (P-36 protocol) or FSH combined with equine chorionic gonadotropin (eCG; P-36/eCG protocol) on the mRNA expression of proteins involved in LHR signaling in bovine granulosa cells, Nelore cows (Bos indicus) were treated with two superstimulatory protocols: P-36 protocol or P-36/eCG protocol (replacement of the FSH by eCG administration on the last day of treatment). Nonsuperstimulated cows were only submitted to estrous synchronization without ovarian superstimulation. The granulosa cells were harvested from follicles and mRNA abundance of GNAS, GNAQ, GNA11, PLCB1, PLCB, PLCB4, and adenylyl cyclase isoforms (ADCY3, ADCY4, ADCY6, ADCY8, and ADCY9) was measured by real-time reserve transcription followed by polymerase chain reaction. No differences on mRNA abundance of target genes were observed in granulosa cells of cows submitted to P-36 protocol compared with control group. However, the cows submitted to P-36/eCG protocol showed upregulation on the mRNA abundance of target genes (except ADCY8) in granulosa cells. Although the P-36 protocol did not regulate mRNA expression of the proteins involved in the signaling mechanisms of the cAMP and IP3 systems, the constant presence of GNAS, GNAQ, GNA11, PLCB1, PLCB3, PLCB4, and adenylyl cyclase isoforms (ADCY3, ADCY4, ADCY6, and ADCY9) mRNA and the upregulation of these genes in granulosa cells from cows submitted to P-36/e

  1. Differential Regulation of Gene and Protein Expression by Zinc Oxide Nanoparticles in Hen’s Ovarian Granulosa Cells: Specific Roles of Nanoparticles

    PubMed Central

    Zhao, Yong; Li, Lan; Zhang, Peng-Fei; Shen, Wei; Liu, Jing; Yang, Fen-Fang; Liu, Hong-Bo; Hao, Zhi-Hui

    2015-01-01

    Annually, tons and tons of zinc oxide nanoparticles (ZnO NPs) are produced in the world. And they are applied in almost all aspects of our life. Their release from the products into environment may pose issue for human health. Although many studies have reported the adverse effects of ZnO NPs on organisms, little is known about the effects on female reproductive systems or the related mechanisms. Quantitative proteomics have not been applied although quantitative transcriptomics have been used in zinc oxide nanoparticles (ZnO NPs) research. Genes are very important players however proteins are the real actors in the biological systems. By using hen’s ovarian granulosa cells, it was found that ZnO-NP-5μg/ml and ZnSO4-10μg/ml treatments produced the same amount of intracellular Zn and resulted in similar cell growth inhibition. And NPs were found in the treated cells. However, ZnO-NP-5μg/ml specifically regulated the expression of genes and proteins compared with that in ZnSO4-10μg/ml treatment. For the first time, this investigation reports that intact NPs produce different impacts on the expression of genes and proteins involved in specific pathways compared to that by Zn2+. The findings enrich our knowledge for the molecular insights of zinc oxide nanoparticles effects on the female reproductive systems. This also may raise the health concern that ZnO NPs may adversely affect the female reproductive systems through regulation of specific signaling pathways. PMID:26460738

  2. Regulation of MicroRNAs, and the Correlations of MicroRNAs and Their Targeted Genes by Zinc Oxide Nanoparticles in Ovarian Granulosa Cells

    PubMed Central

    Zhao, Yong; Li, Lan; Min, Ling-Jiang; Zhu, Lian-Qin; Sun, Qing-Yuan; Zhang, Hong-Fu; Liu, Xin-Qi; Zhang, Wei-Dong; Ge, Wei; Wang, Jun-Jie; Liu, Jing-Cai

    2016-01-01

    Zinc oxide (ZnO) nanoparticles (NPs) have been applied in numerous industrial products and personal care products like sunscreens and cosmetics. The released ZnO NPs from consumer and household products into the environment might pose potential health issues for animals and humans. In this study the expression of microRNAs and the correlations of microRNAs and their targeted genes in ZnO NPs treated chicken ovarian granulosa cells were investigated. ZnSO4 was used as the sole Zn2+ provider to differentiate the effects of NPs from Zn2+. It was found that ZnO-NP-5 μg/ml specifically regulated the expression of microRNAs involved in embryonic development although ZnO-NP-5 μg/ml and ZnSO4-10 μg/ml treatments produced the same intracellular Zn concentrations and resulted in similar cell growth inhibition. And ZnO-NP-5 μg/ml also specifically regulated the correlations of microRNAs and their targeted genes. This is the first investigation that intact NPs in ZnO-NP-5 μg/ml treatment specifically regulated the expression of microRNAs, and the correlations of microRNAs and their targeted genes compared to that by Zn2+. This expands our knowledge for biological effects of ZnO NPs and at the same time it raises the health concerns that ZnO NPs might adversely affect our biological systems, even the reproductive systems through regulation of specific signaling pathways. PMID:27196542

  3. MicroRNA-144 is regulated by CP2 and decreases COX-2 expression and PGE2 production in mouse ovarian granulosa cells.

    PubMed

    Zhou, Jiawei; Lei, Bin; Li, Huanan; Zhu, Lihua; Wang, Lei; Tao, Hu; Mei, Shuqi; Li, Fenge

    2017-02-09

    Mammalian folliculogenesis is a complex process in which primordial follicles develop into pre-ovulatory follicles, followed by ovulation to release mature oocytes. In this study, we explored the role of miR-144 in ovulation. miR-144 was one of the differentially expressed microRNAs, which showed 5.59-fold changes, in pre-ovulatory ovarian follicles between Large White and Chinese Taihu sows detected by Solexa deep sequencing. We demonstrated that overexpression of miR-144 significantly decreased the luciferase reporter activity under the control of the cyclooxygenase-2 (COX-2) or mothers against decapentaplegic homologue 4 (Smad4) 3'-untranslated region (3'-UTR) and suppressed COX-2 and Smad4 expression. In contrast, a miR-144 inhibitor increased COX-2 and Smad4 expression in mouse granulosa cells (mGCs). Meanwhile, Smad4 upregulated COX-2 expression, but this effect was abolished when the mGCs were treated with the transforming growth factor beta signalling pathway inhibitor SB431542. Moreover, luciferase reporter, chromatin immunoprecipitation and electrophoretic mobility shift assay results showed that the transcription factor CP2 upregulated miR-144 expression, which partially contributed to the suppression of COX-2 in mGCs. Both CP2 and miR-144 alter prostaglandin E2 (PGE2) production by regulating COX-2 expression. In addition, miR-144 regulated mGC apoptosis and affected follicular atresia, but these activities did not appear to be through COX-2 and Smad4. Taken together, we revealed an important CP2/miR-144/COX-2/PGE2/ovulation pathway in mGCs.

  4. The fungicide mancozeb induces toxic effects on mammalian granulosa cells

    SciTech Connect

    Paro, Rita; Tiboni, Gian Mario; Buccione, Roberto; Rossi, Gianna; Cellini, Valerio; Canipari, Rita; Cecconi, Sandra

    2012-04-15

    The ethylene-bis-dithiocarbamate mancozeb is a widely used fungicide with low reported toxicity in mammals. In mice, mancozeb induces embryo apoptosis, affects oocyte meiotic spindle morphology and impairs fertilization rate even when used at very low concentrations. We evaluated the toxic effects of mancozeb on the mouse and human ovarian somatic granulosa cells. We examined parameters such as cell morphology, induction of apoptosis, and p53 expression levels. Mouse granulosa cells exposed to mancozeb underwent a time- and dose-dependent modification of their morphology, and acquired the ability to migrate but not to proliferate. The expression level of p53, in terms of mRNA and protein content, decreased significantly in comparison with unexposed cells, but no change in apoptosis was recorded. Toxic effects could be attributed, at least in part, to the presence of ethylenthiourea (ETU), the main mancozeb catabolite, which was found in culture medium. Human granulosa cells also showed dose-dependent morphological changes and reduced p53 expression levels after exposure to mancozeb. Altogether, these results indicate that mancozeb affects the somatic cells of the mammalian ovarian follicles by inducing a premalignant-like status, and that such damage occurs to the same extent in both mouse and human GC. These results further substantiate the concept that mancozeb should be regarded as a reproductive toxicant. Highlights: ► The fungicide mancozeb affects oocyte spindle morphology and fertilization rate. ► We investigated the toxic effects of mancozeb on mouse and human granulosa cells. ► Granulosa cells modify their morphology and expression level of p53. ► Mancozeb induces a premalignant-like status in exposed cells.

  5. Rare virilizing granulosa cell tumor in an adolescent

    PubMed Central

    Bús, Dorottya; Buzogány, Mária; Nagy, Gyöngyi; Vajda, György

    2017-01-01

    Hormone-producing malignancies are rare in children or adolescent patients: Only 0.1% of all ovarian tumors and 4–5% of granulosa cell tumors occur in the sexually non-active ages. Granulosa cell tumors (GCTs) are sex cord-stromal tumors of the ovary, representing 7–8% of all ovarian neoplasms. A total of 95% of all GCTs are adult-type, and only 5% are diagnosed as juvenile-type GCT. A majority of children with juvenile-type GCT present with isosexual precocious pseudopuberty due to excessive estrogen production, although virilizing, testosterone-producing, juvenile-type GCTs are rare, occurring only in 2–3% of cases. The present case study reports on a case of a virilizing, juvenile-type GCT in a 14-year-old girl, along with a review of the literature. PMID:28123736

  6. The fungicide mancozeb induces toxic effects on mammalian granulosa cells.

    PubMed

    Paro, Rita; Tiboni, Gian Mario; Buccione, Roberto; Rossi, Gianna; Cellini, Valerio; Canipari, Rita; Cecconi, Sandra

    2012-04-15

    The ethylene-bis-dithiocarbamate mancozeb is a widely used fungicide with low reported toxicity in mammals. In mice, mancozeb induces embryo apoptosis, affects oocyte meiotic spindle morphology and impairs fertilization rate even when used at very low concentrations. We evaluated the toxic effects of mancozeb on the mouse and human ovarian somatic granulosa cells. We examined parameters such as cell morphology, induction of apoptosis, and p53 expression levels. Mouse granulosa cells exposed to mancozeb underwent a time- and dose-dependent modification of their morphology, and acquired the ability to migrate but not to proliferate. The expression level of p53, in terms of mRNA and protein content, decreased significantly in comparison with unexposed cells, but no change in apoptosis was recorded. Toxic effects could be attributed, at least in part, to the presence of ethylenthiourea (ETU), the main mancozeb catabolite, which was found in culture medium. Human granulosa cells also showed dose-dependent morphological changes and reduced p53 expression levels after exposure to mancozeb. Altogether, these results indicate that mancozeb affects the somatic cells of the mammalian ovarian follicles by inducing a premalignant-like status, and that such damage occurs to the same extent in both mouse and human GC. These results further substantiate the concept that mancozeb should be regarded as a reproductive toxicant.

  7. Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells

    PubMed Central

    Pöttler, Marina; Staicu, Andreas; Zaloga, Jan; Unterweger, Harald; Weigel, Bianca; Schreiber, Eveline; Hofmann, Simone; Wiest, Irmi; Jeschke, Udo; Alexiou, Christoph; Janko, Christina

    2015-01-01

    Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs) on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5) were treated with SPIONs, either coated with lauric acid (SEONLA) only, or additionally with a protein corona of bovine serum albumin (BSA; SEONLA-BSA), or with dextran (SEONDEX). Both micronuclei testing and the detection of γH2A.X revealed no genotoxic effects of SEONLA-BSA, SEONDEX or SEONLA. Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system. PMID:26540051

  8. Pro-nerve growth factor in the ovary and human granulosa cells

    PubMed Central

    Meinel, Sabine; Blohberger, Jan; Berg, Dieter; Berg, Ulrike; Dissen, Gregory A.; Ojeda, Sergio R.; Mayerhofer, Artur

    2016-01-01

    Background Pro-nerve growth factor must be cleaved to generate mature NGF, which was suggested to be a factor involved in ovarian physiology and pathology. Extracellular proNGF can induce cell death in many tissues. Whether extracellular proNGF exists in the ovary and may play a role in the death of follicular cells or atresia was unknown. Material and Methods Immunohistochemistry of human and Rhesus monkey ovarian sections was performed. IVF-derived follicular fluid and human granulosa cells were studied by RT-PCR, qPCR, Western blotting, ATP- and caspase-assays. Results and Conclusions Immunohistochemistry of ovarian sections identified proNGF in granulosa cells and Western blotting of human isolated granulosa cells confirmed the presence of proNGF. Ovarian granulosa cells thus produce proNGF. Recombinant human proNGF even at high concentrations did not affect the levels of ATP or the activity of caspase 3/7, indicating that in granulosa cells proNGF does not induce death. In contrast, mature NGF, which was detected previously in follicular fluid, may be a trophic molecule for granulosa cells with unexpected functions. We found that in contrast to proNGF, NGF increased the levels of the transcription factor early growth response 1 and of the enzyme choline acetyl-transferase. A mechanism for the generation of mature NGF from proNGF in the follicular fluid may be extracellular enzymatic cleavage. The enzyme MMP7 is known to cleave proNGF and was identified in follicular fluid and as a product of granulosa cells. Thus the generation of NGF in the ovarian follicle may depend on MMP7. PMID:26457789

  9. Expression and effect of NAMPT (visfatin) on progesterone secretion in hen granulosa cells.

    PubMed

    Diot, Mélodie; Reverchon, Maxime; Ramé, Christelle; Baumard, Yannick; Dupont, Joëlle

    2015-07-01

    In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is an adipokine produced by adipose tissue that is found in intracellular and extracellular compartments. The intracellular form of NAMPT is a nicotinamide phosphoribosyltransferase, whereas the extracellular form is considered an adipokine. In humans, NAMPT regulates energy metabolism and reproductive functions, such as ovarian steroidogenesis. To date, no study has investigated the role of NAMPT in hen ovaries. We investigated whether NAMPT is present in hen ovarian follicles and its role in granulosa cells. Using RT-PCR, western blotting and immunocytochemistry, we detected mRNA transcripts and proteins related to NAMPT in theca and granulosa cells from pre-ovulatory follicles. Using RT-PCR, we demonstrated that mRNA NAMPT levels were higher in granulosa cells than they were in theca cells and that during follicle development, theca cell levels decreased, whereas levels remained unchanged in granulosa cells. NAMPT protein quantities were significantly higher in theca cells than they were in granulosa cells, but they were unchanged during follicular development. Plasma NAMPT levels, as determined by ELISA and immunoblotting, were significantly lower in adult hens than they were in juveniles. In vitro, treatment with human recombinant NAMPT (100 ng/ml, 48 h) halved basal and IGF1-induced progesterone secretion, and this was associated with a reduction in STAR and HSD3B protein levels and MAPK3/1 phosphorylation levels in granulosa cells. These effects were abolished by the addition of FK866, a specific inhibitor of NAMPT enzymatic activity. Moreover, NAMPT had no effect on granulosa cell proliferation. In conclusion, NAMPT is present in hen ovarian cells and inhibits progesterone production in granulosa cells. © 2015 Society for Reproduction and Fertility.

  10. Two natural products, trans-phytol and (22E)-ergosta-6,9,22-triene-3β,5α,8α-triol, inhibit the biosynthesis of estrogen in human ovarian granulosa cells by aromatase (CYP19)

    SciTech Connect

    Guo, Jiajia; Yuan, Yun; Lu, Danfeng; Du, Baowen; Xiong, Liang; Shi, Jiangong; Yang, Lijuan; Liu, Wanli; Yuan, Xiaohong; Zhang, Guolin; Wang, Fei

    2014-08-15

    Aromatase is the only enzyme in vertebrates to catalyze the biosynthesis of estrogens. Although inhibitors of aromatase have been developed for the treatment of estrogen-dependent breast cancer, the whole-body inhibition of aromatase causes severe adverse effects. Thus, tissue-selective aromatase inhibitors are important for the treatment of estrogen-dependent cancers. In this study, 63 natural products with diverse structures were examined for their effects on estrogen biosynthesis in human ovarian granulosa-like KGN cells. Two compounds—trans-phytol (SA-20) and (22E)-ergosta-6,9,22-triene-3β,5α,8α-triol (SA-48)—were found to potently inhibit estrogen biosynthesis (IC{sub 50}: 1 μM and 0.5 μM, respectively). Both compounds decreased aromatase mRNA and protein expression levels in KGN cells, but had no effect on the aromatase catalytic activity in aromatase-overexpressing HEK293A cells and recombinant expressed aromatase. The two compounds decreased the expression of aromatase promoter I.3/II. Neither compound affected intracellular cyclic AMP (cAMP) levels, but they inhibited the phosphorylation or protein expression of cAMP response element-binding protein (CREB). The effects of these two compounds on extracellular regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinases (MAPKs), and AKT/phosphoinositide 3-kinase (PI3K) pathway were examined. Inhibition of p38 MAPK could be the mechanism underpinning the actions of these compounds. Our results suggests that natural products structurally similar to SA-20 and SA-48 may be a new source of tissue-selective aromatase modulators, and that p38 MAPK is important in the basal control of aromatase in ovarian granulosa cells. SA-20 and SA-48 warrant further investigation as new pharmaceutical tools for the prevention and treatment of estrogen-dependent cancers. - Highlights: • Two natural products inhibited estrogen biosynthesis in human ovarian granulosa cells. • They

  11. OAZ1 knockdown enhances viability and inhibits ER and LHR transcriptions of granulosa cells in geese

    PubMed Central

    Ma, Rong; He, Hui; Yi, Zhixin; Chen, Ziyu

    2017-01-01

    An increasing number of studies suggest that ornithine decarboxylase antizyme 1 (OAZ1), which is regarded as a tumor suppressor gene, regulates follicular development, ovulation, and steroidogenesis. The granulosa cells in the ovary play a critical role in these ovarian functions. However, the action of OAZ1 mediating physiological functions of granulosa cells is obscure. OAZ1 knockdown in granulosa cells of geese was carried out in the current study. The effect of OAZ1 knockdown on polyamine metabolism, cell proliferation, apoptosis, and hormone receptor transcription of primary granulosa cells in geese was measured. The viability of granulosa cells transfected with the shRNA OAZ1 at 48 h was significantly higher than the control (p<0.05). The level of putrescine and spermidine in granulosa cells down-regulating OAZ1 was 7.04- and 2.11- fold higher compared with the control, respectively (p<0.05). The CCND1, SMAD1, and BCL-2 mRNA expression levels in granulosa cells down-regulating OAZ1 were each significantly higher than the control, respectively (p<0.05), whereas the PCNA and CASPASE 3 expression levels were significantly lower than the control (p<0.05). The estradiol concentration, ER and LHR mRNA expression levels were significantly lower in granulosa cells down-regulating OAZ1 compared with the control (p<0.05). Taken together, our results indicated that OAZ1 knockdown elevated the putrescine and spermidine contents and enhanced granulosa cell viability and inhibited ER and LHR transcriptions of granulosa cells in geese. PMID:28362829

  12. Prohibitin( PHB) roles in granulosa cell physiology.

    PubMed

    Chowdhury, Indrajit; Thomas, Kelwyn; Thompson, Winston E

    2016-01-01

    Ovarian granulosa cells (GC) play an important role in the growth and development of the follicle in the process known as folliculogenesis. In the present review, we focus on recent developments in prohibitin (PHB) research in relation to GC physiological functions. PHB is a member of a highly conserved eukaryotic protein family containing the repressor of estrogen activity (REA)/stomatin/PHB/flotillin/HflK/C (SPFH) domain (also known as the PHB domain) found in diverse species from prokaryotes to eukaryotes. PHB is ubiquitously expressed in a circulating free form or is present in multiple cellular compartments including mitochondria, nucleus and plasma membrane. In mitochondria, PHB is anchored to the mitochondrial inner membrane and forms complexes with the ATPases associated with proteases having diverse cellular activities. PHB continuously shuttles between the mitochondria, cytosol and nucleus. In the nucleus, PHB interacts with various transcription factors and modulates transcriptional activity directly or through interactions with chromatin remodeling proteins. Many functions have been attributed to the mitochondrial and nuclear PHB complexes such as cellular differentiation, anti-proliferation, morphogenesis and maintenance of the functional integrity of the mitochondria. However, to date, the regulation of PHB expression patterns and GC physiological functions are not completely understood.

  13. Prohibitin (PHB) roles in granulosa cell physiology

    PubMed Central

    Chowdhury, Indrajit; Thomas, Kelwyn; Thompson, Winston E.

    2015-01-01

    Ovarian granulosa cells (GC) play an important role in the growth and development of the follicle in the process known as folliculogenesis. In the present review, we focus on the recent developments in prohibitin (PHB) research in relation to GC physiological functions. PHB is a member of highly conserved eukaryotic protein family containing the repressor of estrogen activity (REA)/stomatin/prohibitin/flotillin/HflK/C (SPFH) domain [also known as the PHB domain] found in divergent species from prokaryotes to eukaryotes. PHB is ubiquitously expressed either in circulating free form or is present in multiple cellular compartments including mitochondria, nucleus and plasma membrane. In mitochondria, PHB is anchored to the mitochondrial inner membrane (IMM), and form complexes with the ATPases Associated with diverse cellular Activities (m-AAA) proteases. PHB continuously shuttles between the mitochondria, cytosol and nucleus. In the nucleus, PHB interacts with various transcription factors and modulate transcriptional activity directly or through interactions with chromatin remodeling proteins. Multiple functions have been attributed to the mitochondrial and nuclear prohibitin complexes such as cellular differentiation, anti-proliferation, morphogenesis and maintaining the functional integrity of the mitochondria. However, to date, the regulation of PHB expression patterns and GC physiological functions are not completely understood. PMID:26496733

  14. Two natural products, trans-phytol and (22E)-ergosta-6,9,22-triene-3β,5α,8α-triol, inhibit the biosynthesis of estrogen in human ovarian granulosa cells by aromatase (CYP19).

    PubMed

    Guo, Jiajia; Yuan, Yun; Lu, Danfeng; Du, Baowen; Xiong, Liang; Shi, Jiangong; Yang, Lijuan; Liu, Wanli; Yuan, Xiaohong; Zhang, Guolin; Wang, Fei

    2014-08-15

    Aromatase is the only enzyme in vertebrates to catalyze the biosynthesis of estrogens. Although inhibitors of aromatase have been developed for the treatment of estrogen-dependent breast cancer, the whole-body inhibition of aromatase causes severe adverse effects. Thus, tissue-selective aromatase inhibitors are important for the treatment of estrogen-dependent cancers. In this study, 63 natural products with diverse structures were examined for their effects on estrogen biosynthesis in human ovarian granulosa-like KGN cells. Two compounds-trans-phytol (SA-20) and (22E)-ergosta-6,9,22-triene-3β,5α,8α-triol (SA-48)-were found to potently inhibit estrogen biosynthesis (IC50: 1μM and 0.5μM, respectively). Both compounds decreased aromatase mRNA and protein expression levels in KGN cells, but had no effect on the aromatase catalytic activity in aromatase-overexpressing HEK293A cells and recombinant expressed aromatase. The two compounds decreased the expression of aromatase promoter I.3/II. Neither compound affected intracellular cyclic AMP (cAMP) levels, but they inhibited the phosphorylation or protein expression of cAMP response element-binding protein (CREB). The effects of these two compounds on extracellular regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinases (MAPKs), and AKT/phosphoinositide 3-kinase (PI3K) pathway were examined. Inhibition of p38 MAPK could be the mechanism underpinning the actions of these compounds. Our results suggests that natural products structurally similar to SA-20 and SA-48 may be a new source of tissue-selective aromatase modulators, and that p38 MAPK is important in the basal control of aromatase in ovarian granulosa cells. SA-20 and SA-48 warrant further investigation as new pharmaceutical tools for the prevention and treatment of estrogen-dependent cancers.

  15. MicroRNA-145 Negatively Regulates Cell Proliferation Through Targeting IRS1 in Isolated Ovarian Granulosa Cells From Patients With Polycystic Ovary Syndrome.

    PubMed

    Cai, Guoqing; Ma, Xiangdong; Chen, Biliang; Huang, Yanhong; Liu, Shujuan; Yang, Hong; Zou, Wei

    2016-10-30

    Polycystic ovary syndrome (PCOS) is a complex, heterogeneous endocrine and metabolic disorder affecting 5% to 10% of reproductive-age women. A high rate of granulosa cell (GC) proliferation contributes to the abnormal folliculogenesis in patients with PCOS. Evidence has proved that dysregulation of microRNAs is involved in the pathogenesis of PCOS. In this study, we investigated the effect of miR-145 on cell proliferation and the underlying mechanism of miR-145 in isolated human GCs from the aspirated follicular fluid in women with PCOS. Our findings showed that miR-145 is downregulated in human GCs from PCOS. The miR-145 mimics suppress cell proliferation and promoted cell apoptosis in human GCs from PCOS. However, miR-145 inhibitor promotes cell proliferation and inhibited cell apoptosis. Moreover, using a dual-luciferase reporter assay, we confirmed that the insulin receptor substrate 1 (IRS1) gene is a direct target of miR-145. The miR-145 mimics inhibited messenger RNA and protein IRS1 expression levels, and silencing of IRS1 by small interfering RNA inhibits human GC proliferation, but IRS1 overexpression abrogates the suppressive effect of miR-145 mimics. Furthermore, miR-145 mimics can inhibit the activation of p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal-regulated kinase (ERK). The IRS1 overexpression abrogates the suppressive effect of miR-145 mimics on MAPK/ERK signaling pathways. Together, miR-145 mimics suppress cell proliferation by targeting and inhibiting IRS1 expression to inhibit MAPK/ERK signaling pathways. Our study further found that high concentrations of insulin decreases the miR-145 expression, upregulates IRS1, and promotes cell proliferation. These observations showed that miR-145 is a novel and promising molecular target for improving the dysfunction of GCs in PCOS.

  16. Molecular pathogenesis in granulosa cell tumor is not only due to somatic FOXL2 mutation.

    PubMed

    Wang, Wen-Chung; Lai, Yen-Chein

    2014-09-06

    Granulosa cell tumors are rare ovarian malignancies. Their characteristics include unpredictable late recurrent and malignant behavior. Recent molecular studies have characterized the FOXL2 402C > G mutation in adult-type granulosa cell tumor. In this study, we report an 80-year-old woman with a granulosa cell tumor arising from ovary. She presented with a huge pelvic mass with postmenopausal bleeding. No obvious intraperitoneal tumor implants were observed during operation. Final diagnosis was granulosa-theca cell tumor without capsule invasion. No recurrent disease was noted during 3-year post-operation follow-up period. Molecular studies showed a heterozygous FOXL2 402C > G mutation in the tumor by direct gene sequencing. In addition, DNA replication error, on analysis of the lengths of CAG repeats in androgen receptor gene, revealed defective DNA mismatch repair system in the granulosa cell tumor. We propose that the 402C > G mutation in FOXL2 is critical to the development of adult granulosa cell tumor. However, the malignant behavior of this tumor is driven by DNA mismatch repair deficiency. Unequal DNA copy numbers were noted on array comparative genomic hybridization. This implies that there is malignant potential even in the early stage of the granulosa cell tumor. Late malignant recurrence may be a late event of DNA repair function disability, not directly related to pathognomonic FOXL2 mutation.

  17. MicroRNA 21 Blocks Apoptosis in Mouse Periovulatory Granulosa Cells1

    PubMed Central

    Carletti, Martha Z.; Fiedler, Stephanie D.; Christenson, Lane K.

    2010-01-01

    MicroRNAs (miRNAs) play important roles in many developmental processes, including cell differentiation and apoptosis. Transition of proliferative ovarian granulosa cells to terminally differentiated luteal cells in response to the ovulatory surge of luteinizing hormone (LH) involves rapid and pronounced changes in cellular morphology and function. MicroRNA 21 (miR-21, official symbol Mir21) is one of three highly LH-induced miRNAs in murine granulosa cells, and here we examine the function and temporal expression of Mir21 within granulosa cells as they transition to luteal cells. Granulosa cells were transfected with blocking (2′-O-methyl) and locked nucleic acid (LNA-21) oligonucleotides, and mature Mir21 expression decreased to one ninth and one twenty-seventh of its basal expression, respectively. LNA-21 depletion of Mir21 activity in cultured granulosa cells induced apoptosis. In vivo, follicular granulosa cells exhibit a decrease in cleaved caspase 3, a hallmark of apoptosis, 6 h after the LH/human chorionic gonadotropin surge, coincident with the highest expression of mature Mir21. To examine whether Mir21 is involved in regulation of apoptosis in vivo, mice were treated with a phospho thioate-modified LNA-21 oligonucleotide, and granulosa cell apoptosis was examined. Apoptosis increased in LNA-21-treated ovaries, and ovulation rate decreased in LNA-21-treated ovaries, compared with their contralateral controls. We have examined a number of Mir21 apoptotic target transcripts identified in other systems; currently, none of these appear to play a role in the induction of ovarian granulosa cell apoptosis. This study is the first to implicate the antiapoptotic Mir21 (an oncogenic miRNA) as playing a clear physiologic role in normal tissue function. PMID:20357270

  18. Effects of BMAL1-SIRT1-positive cycle on estrogen synthesis in human ovarian granulosa cells: an implicative role of BMAL1 in PCOS.

    PubMed

    Zhang, Jiaou; Liu, Jiansheng; Zhu, Kai; Hong, Yan; Sun, Yun; Zhao, Xiaoming; Du, Yanzhi; Chen, Zi-Jiang

    2016-08-01

    Brain and muscle ARNT-like protein 1 (BMAL1) is necessary for fertility and has been found to be essential to follicle growth and steroidogenesis. Sirtuin1 (SIRT1) has been reported to interact with BMAL1 and function in a circadian manner. Evidence has shown that SIRT1 regulates aromatase expression in estrogen-producing cells. We aimed to ascertain if there is a relationship between polycystic ovary syndrome (PCOS) and BMAL1, and whether and how BMAL1 takes part in estrogen synthesis in human granulosa cells (hGCs). Twenty-four women diagnosed with PCOS and 24 healthy individuals undergoing assisted reproduction were studied. BMAL1 expression in their granulosa cells (GCs) was observed by quantitative real-time polymerase chain reaction (qRT-PCR). The level of expression in the PCOS group was lower than that of the group without PCOS (p < 0.05). We also analyzed estrogen synthesis and aromatase expression in KGN cell lines. Both were downregulated after BMAL1 and SIRT1 knock-down and, conversely, upregulated after overexpression treatments of these two genes in KGN cells. Both BMAL1 and SIRT1 had a mutually positive regulation, as did the phosphorylation of JNK. Furthermore, JNK overexpression increased estrogen synthesis activity and the expression levels of aromatase, BMAL1, and SIRT1. In KGN and hGCs, estrogen synthesis and aromatase expression were downregulated after treatment with JNK and SIRT1 inhibitors. In addition, BMAL1, SIRT1, and JNK expression levels were all downregulated. Our results demonstrate the effects of BMAL1 on estrogen synthesis in hGCs and suggest a BMAL1-SIRT1-JNK positive feedback cycle in this process, which points out an important role of BMAL1 in the development of PCOS.

  19. Effect of vitamin D3 on production of progesterone in porcine granulosa cells by regulation of steroidogenic enzymes.

    PubMed

    Hong, So-Hye; Lee, Jae-Eon; Kim, Hong Sung; Jung, Young-Jin; Hwang, DaeYoun; Lee, Jae Ho; Yang, Seung Yun; Kim, Seung-Chul; Cho, Seong-Keun; An, Beum-Soo

    2016-05-01

    1,25-dihydroxyvitamin D3 (VD3), an active form of Vitamin D, is photosynthesized in the skin of vertebrates in response to solar ultraviolet B radiation (UV-B). VD3 deficiency can cause health problems such as immune disease, metabolic disease, and bone disorders. It has also been demonstrated that VD3 is involved in reproductive functions. Female sex hormones such as estrogen and progesterone are biosynthesized mainly in ovarian granulosa cells as the ovarian follicle develops. The functions of sex hormones include regulation of the estrus cycle and puberty as well as maintenance of pregnancy in females. In this study, we isolated granulosa cells from porcine ovaries and cultured them for experiments. To examine the effects of VD3 on ovarian granulosa cells, the mRNA and protein levels of genes were analyzed by Real-time PCR and Western blotting assay. Production of progesterone from granulosa cells was also measured by ELISA assay. As a result, transcriptional and translational regulation of progesterone biosynthesis-related genes in granulosa cells was significantly altered by VD3. Furthermore, progesterone concentrations in porcine granulosa cell-cultured media decreased in response to VD3. These results show that VD3 was a strong regulator of sex steroid hormone production in porcine granulosa cells, suggesting that vitamin D deficiency may result in inappropriate sexual development of industrial animals and eventually economic loss.

  20. Effect of vitamin D3 on production of progesterone in porcine granulosa cells by regulation of steroidogenic enzymes

    PubMed Central

    Hong, So-Hye; Lee, Jae-Eon; Kim, Hong Sung; Jung, Young-Jin; Hwang, DaeYoun; Lee, Jae Ho; Yang, Seung Yun; Kim, Seung-Chul; Cho, Seong-Keun; An, Beum-Soo

    2016-01-01

    Abstract 1,25-dihydroxyvitamin D3 (VD3), an active form of Vitamin D, is photosynthesized in the skin of vertebrates in response to solar ultraviolet B radiation (UV-B). VD3 deficiency can cause health problems such as immune disease, metabolic disease, and bone disorders. It has also been demonstrated that VD3 is involved in reproductive functions. Female sex hormones such as estrogen and progesterone are biosynthesized mainly in ovarian granulosa cells as the ovarian follicle develops. The functions of sex hormones include regulation of the estrus cycle and puberty as well as maintenance of pregnancy in females. In this study, we isolated granulosa cells from porcine ovaries and cultured them for experiments. To examine the effects of VD3 on ovarian granulosa cells, the mRNA and protein levels of genes were analyzed by Real-time PCR and Western blotting assay. Production of progesterone from granulosa cells was also measured by ELISA assay. As a result, transcriptional and translational regulation of progesterone biosynthesis-related genes in granulosa cells was significantly altered by VD3. Furthermore, progesterone concentrations in porcine granulosa cell-cultured media decreased in response to VD3. These results show that VD3 was a strong regulator of sex steroid hormone production in porcine granulosa cells, suggesting that vitamin D deficiency may result in inappropriate sexual development of industrial animals and eventually economic loss. PMID:27533930

  1. Regulatory Mechanisms Underlying the Expression of Prolactin Receptor in Chicken Granulosa Cells

    PubMed Central

    Hu, Shenqiang; Duggavathi, Raj; Zadworny, David

    2017-01-01

    Prolactin (PRL) has both pro- and anti-gonadal roles in the regulation of avian ovarian functions through its interaction with the receptor (PRLR). However, neither the pattern of expression of PRLR nor its regulatory mechanisms during follicle development have been clearly defined. The objective of the present study was to investigate mechanisms of PRLR expression in chicken granulosa cells. Levels of PRLR transcript were highest in the stroma and walls of follicles < 2 mm in diameter and progressively declined with the maturation of follicles. In preovulatory follicles, PRLR was expressed at higher levels in granulosa than theca layers. FSH exerted the greatest stimulatory effect on PRLR and StAR expression in cultured granulosa cells of the 6–8 mm follicles but this effect declined as follicles matured to F1. In contrast, LH did not alter the expression of PRLR in granulosa cells of all follicular classes but increased levels of StAR in F2 and F1 granulosa cells. Both non-glycosylated- (NG-) and glycosylated- (G-) PRL upregulated basal PRLR expression in granulosa cells of the 6–8 mm, F3 or F1 follicles but had little effect in F2 follicles. Furthermore, FSH-stimulated PRLR expression was reduced by the addition of either isoform of PRL especially in F2 granulosa cells. These results indicate that PRLR is differentially distributed and regulated by FSH or PRL variants independently or in combination in the follicular hierarchy. By using activators and inhibitors, we further demonstrated that multiple signaling pathways, including PKA, PKC, PI3K, mTOR and AMPK, are not only directly involved in, but they can also converge to modulate ERK2 activity to regulate FSH-mediated PRLR and StAR expression in undifferentiated granulosa cells. These data provide new insights into the regulatory mechanisms controlling the expression of PRLR in granulosa cells. PMID:28107515

  2. Hormonal regulation of pigment epithelium-derived factor (PEDF) in granulosa cells.

    PubMed

    Chuderland, Dana; Ben-Ami, Ido; Kaplan-Kraicer, Ruth; Grossman, Hadas; Komsky, Alisa; Satchi-Fainaro, Ronit; Eldar-Boock, Anat; Ron-El, Raphael; Shalgi, Ruth

    2013-02-01

    Angiogenesis is critical for the development of ovarian follicles. Blood vessels are abrogated from the follicle until ovulation, when they invade it to support the developing corpus luteum. Granulosa cells are known to secrete anti-angiogenic factors that shield against premature vascularization; however, their molecular identity is yet to be defined. In this study we address the physiological role of pigment epithelium-derived factor (PEDF), a well-known angiogenic inhibitor, in granulosa cells. We have shown that human and mouse primary granulosa cells express and secrete PEDF, and characterized its hormonal regulation. Stimulation of granulosa cells with increasing doses of estrogen caused a gradual decrease in the PEDF secretion, while stimulation with progesterone caused an abrupt decrease in its secretion. Moreover, We have shown, by time- and dose-response experiments, that the secreted PEDF and vascular endothelial growth factor (VEGF) were inversely regulated by hCG; namely, PEDF level was nearly undetectable under high doses of hCG, while VEGF level was significantly elevated. The anti-angiogenic nature of the PEDF secreted from granulosa cells was examined by migration, proliferation and tube formation assays in cultures of human umbilical vein endothelial cells. Depleting PEDF from primary granulosa cells conditioned media accelerated endothelial cells proliferation, migration and tube formation. Collectively, the dynamic expression of PEDF that inversely portrays VEGF expression may imply its putative role as a physiological negative regulator of follicular angiogenesis.

  3. Laparoscopic ovariectomy in two horses with granulosa cell tumors.

    PubMed

    Ragle, C A; Southwood, L L; Hopper, S A; Buote, P L

    1996-09-15

    Two mares were admitted for ovariectomy of unilateral granulosa cell tumors. Both mares were ovariectomized (1 unilateral and 1 bilateral) by use of a ventral abdominal laparoscopic technique. This approach required tilting the operative table 30 degrees to elevate the pelvis and to allow observation of the ovaries. Using a single laparoscopic portal and 3 to 4 instrument portals, a triangulation technique was used. The ovarian pedicles were isolated and secured via loop ligation. The ovaries then were divided from the ligated pedicle and placed within specimen bags for extraction. The specimen bags then were removed through a ventral midline celiotomy. Using this technique, it was determined that granulosa cell tumors or ovaries of up to 20 cm in diameter can be removed. Laparoscopic ovariectomy provided a means to provide tension-free dissection and ligation of the ovarian pedicle. In comparison to conventional techniques, this may improve suture security and reduce complications related to excessive pedicle tension. Improved observation during surgery, less pedicle tension, and minimal invasiveness made laparoscopic ovariectomy of these 2 mares advantageous.

  4. Opposing actions of TGF{beta} and MAP kinase signaling in undifferentiated hen granulosa cells

    SciTech Connect

    Woods, Dori C.; Haugen, Morgan J.; Johnson, A.L. . E-mail: johnson.128@nd.edu

    2005-10-21

    The present studies were conducted to establish interactions between transforming growth factor (TGF)-{beta} and the epidermal growth factor (EGF) family members, TGF{alpha} and betacellulin (BTC), relative to proliferation and differentiation of granulosa cells in hen ovarian follicles. Results presented demonstrate expression of TGF{beta} isoforms, plus TGF{alpha}, BTC, and ErbB receptors in prehierarchal follicles, thus establishing the potential for autocrine/paracrine signaling and cross-talk within granulosa cells at the onset of differentiation. Treatment with TGF{alpha} or BTC increases levels of TGF{beta}1 mRNA in undifferentiated granulosa cells, while the selective inhibitor of mitogen activated protein kinase signaling, U0126, reverses these effects. Moreover, TGF{beta}1 attenuates c-myc mRNA expression and granulosa cell proliferation, while TGF{alpha} blocks both these inhibitory effects. Collectively, these data provide evidence that EGF family ligands regulate both the expression and biological actions of TGF{beta}1 in hen granulosa cells, and indicate that the timely interaction of these opposing factors is an important modulator of both granulosa cell proliferation and differentiation.

  5. A spatial model showing differences between juxtacrine and paracrine mutual oocyte-granulosa cells interactions.

    PubMed

    Saadeldin, Islam M; Elsayed, Asmaa; Kim, Su Jin; Moon, Joon Hu; Lee, Byeong Chun

    2015-02-01

    The bidirectional communication between oocytes and granulosa cells are mediated by several factors via a local feedback loop(s). The current model was carried out to study the spatial mutual interaction of porcine denuded oocytes and granulosa cells either in direct contact (juxtacrine) or paracrine co-culture using transwell system. Transwell 0.4 μm polyester membrane inserts were used to permit oocytes-granulosa cells paracrine communication with a distance of 2 mm between them in co-culture. Oocytes were cultured with granulosa cells in a defined basic maturation medium for 44 h. In results, oocyte secreted factors (OSFs; GDF9 and BMP15) temporal expression showed progressive decrement by the end of culture in case of direct contact with granulosa cells while it was increased progressively in the paracrine co-culture groups. However, oocytes that were cultured in direct contact showed a significant increase in blastocyst development after parthenogenetic activation than the paracrine co-cultured ones (20% vs. 11.5%, respectively). By the end of culture, granulosa cell count in direct contact showed a significant decrease than the indirect co-culture group (1.2 x 105 cell/mL vs. 2.1 x 10(5) cell/mL, respectively). Steroids (P4 and E2) and steriodogenesis enzymes mRNA levels showed significant temporal alterations either after 22 h and 44 h of IVM in both juxtacrine and paracrine co-culture systems (P ≤ 0.05). CX43 was much more highly expressed in the granulosa of the direct contact group than the indirect co-culture group. These results indicate the difference in mutual communication between oocytes and granulosa cells that were cocultured either in direct contact (juxtacrine) or with a short distance (paracrine) and propose a new paradigm to study different ovarian follicular cells interaction.

  6. A novel nonradioactive method for measuring aromatase activity using a human ovarian granulosa-like tumor cell line and an estrone ELISA.

    PubMed

    Ohno, Ken; Araki, Naohiro; Yanase, Toshihiko; Nawata, Hajime; Iida, Mitsuru

    2004-12-01

    Aromatase is a key enzyme in steroidogenesis and plays an important role in sexual differentiation, fertility, and carcinogenesis. Importantly, a variety of chemicals in the environment may influence its activity and thereby disrupt endocrine function. In the current studies, we developed a novel nonradioactive method for measuring aromatase activity that uses a specific ELISA for estrone along with KGN human ovary granulosa-like carcinoma cells. This cell line has relatively high aromatase activity, and because it lacks 17alpha-hydroxylase, it secretes little or no androstenedione, 17beta-estradiol, or estrone. Therefore, aromatase activity can be assayed simply by measuring the production of estrone in the culture medium after addition of the substrate, androstenedione. Furthermore, by making a slight change in the commercial ELISA kit and optimizing the experimental conditions, we developed a sensitive aromatase assay that could measure a wide range of estrone concentrations with very low interference by androgens. We used this assay to investigate the effects of 23 chemicals that have been previously reported to affect aromatase activity in vitro. We confirmed that 17 of 23 test chemicals had inhibitory or inducible effects, although the specific effects of some were different than previously reported. In conclusion, we have developed a simple, sensitive, and nonradioactive assay that can be used for large-scale screening of compounds that can disrupt endocrine function by influencing aromatase activity.

  7. TGF-β signaling controls FSHR signaling-reduced ovarian granulosa cell apoptosis through the SMAD4/miR-143 axis

    PubMed Central

    Du, Xing; Zhang, Lifan; Li, Xinyu; Pan, Zengxiang; Liu, Honglin; Li, Qifa

    2016-01-01

    Follicle-stimulating hormone receptor (FSHR) and its intracellular signaling control mammalian follicular development and female infertility. Our previous study showed that FSHR is downregulated during follicular atresia of porcine ovaries. However, its role and regulation in follicular atresia remain unclear. Here, we showed that FSHR knockdown induced porcine granulosa cell (pGC) apoptosis and follicular atresia, and attenuated the levels of intracellular signaling molecules such as PKA, AKT and p-AKT. FSHR was identified as a target of miR-143, a microRNA that was upregulated during porcine follicular atresia. miR-143 enhanced pGC apoptosis by targeting FSHR, and reduced the levels of intracellular signaling molecules. SMAD4, the final molecule in transforming growth factor (TGF)-β signaling, bound to the promoter and induced significant downregulation of miR-143 in vitro and in vivo. Activated TGF-β signaling rescued miR-143-reduced FSHR and intracellular signaling molecules, and miR-143-induced pGC apoptosis. Overall, our findings offer evidence to explain how TGF-β signaling influences and FSHR signaling for regulation of pGC apoptosis and follicular atresia by a specific microRNA, miR-143. PMID:27882941

  8. The TATA Binding Protein Associated Factor 4b (TAF4b) Mediates FSH Stimulation of the IGFBP-3 Promoter in Cultured Porcine Ovarian Granulosa Cells

    PubMed Central

    Ongeri, Elimelda Moige; Verderame, Michael F.; Hammond, James M.

    2007-01-01

    We have established the gene for IGF binding protein 3 (IGFBP-3) as a target for FSH action. FSH effects on this gene require the PKA pathway as well as the PI-3 kinase and MAPK pathways. At the IGFBP-3 promoter, FSH effects depend on a site for TATA box binding protein (TBP) and formation of a high molecular weight transcription complex. To further elucidate FSH effects on the downstream events involving the TBP site, we cloned a pig TAF4b cDNA into a P-Flag expression vector. By co-transfecting granulosa cells with the IGFBP-3 promoter, we found that TAF4b mimics and enhances FSH induction of IGFBP-3 reporter activity. Using RT-PCR we showed that FSH stimulates expression of TAF4b. This would suggest that the role of TAF4b in follicular development is regulated by FSH. TAF4b may thus be the TFIID component that binds to the TBP site on the IGFBP-3 promoter and is essential for FSH induction of IGFBP-3. PMID:17888567

  9. Increasing cell plating density mimics an early post-LH stage in cultured bovine granulosa cells.

    PubMed

    Baufeld, Anja; Vanselow, Jens

    2013-12-01

    Cultured ovarian granulosa cells are essential models to study molecular mechanisms of gene regulation during folliculogenesis. Here, we characterize primary tissue culture models for bovine granulosa cells by morphological and physiological parameters and by novel molecular luteinization markers, as transcript abundance and DNA methylation levels. The data show that: (1) collagen substrate increased the number of attached, viable cells; (2) the expression of the key transcripts of estrogen synthesis, CYP19A1, could be induced and maintained in granulosa cells from small to medium but not from large follicles, whereas (3) only granulosa cells from large but not from smaller follicles were responsive to LH; (4) serum supplementation unfavorably transformed the cellular phenotype, induced proliferation and PCNA expression, reduced or abolished the transcript abundance of steroidogenic key genes and of gonadotropin receptor genes, CYP11A1, CYP19A1, FSHR and LHCGR but, however, did not increase the abundance of the luteinization-specific marker transcripts PTGS2, PTX3, RGS2 and VNN2; but (5) by increasing the plating density, estradiol production and the abundance of CYP19A1 transcripts, in particular those derived from the main ovarian promoter P2, were decreased concurrently leaving P2-specific DNA methylation levels unchanged, whereas progesterone secretion was stimulated and the expression of both luteinization-specific marker transcripts, RGS2 and VNN2, was significantly induced. From these data, we conclude that increasing the plating density induces a different, partly complementary, physiological and gene expression profile in cultured bovine granulosa cells and drives the cells towards an early post-LH stage of luteinization, even in the absence of luteinizing agents.

  10. The anti-Müllerian hormone (AMH) acts as a gatekeeper of ovarian steroidogenesis inhibiting the granulosa cell response to both FSH and LH.

    PubMed

    Sacchi, Sandro; D'Ippolito, Giovanni; Sena, Paola; Marsella, Tiziana; Tagliasacchi, Daniela; Maggi, Elena; Argento, Cindy; Tirelli, Alessandra; Giulini, Simone; La Marca, Antonio

    2016-01-01

    Anti Müllerian Hormone (AMH) has a negative and inhibitory role in many functions of human granulosa-lutein cells (hGCs) including notoriously the reduction of the aromatase CYP19A1 expression induced by follicle-stimulating hormone (FSH). No data have been provided on the possible role of AMH in modulating the response to luteinizing hormone (LH) (alone or combined with FSH) as well as its effect on other enzymes involved in steroidogenesis including aromatase P450scc. The aim of this study was to investigate the role of AMH as regulator of the basal and stimulated steroids production by hGCs. Primary culture of hGCs were incubated with hormones AMH, LH, and FSH, alone or in combination. The CYP19A1 and P450scc messenger RNA (mRNA) expression, normalized by housekeeping ribosomal protein S7 (RpS7) gene, was evaluated by reverse transcriptase quantitative PCR (RT-qPCR). Each reaction was repeated in triplicate. Negative controls using corresponding amount of vehicle control for each hormone treatment were performed. AMH did not modulate the basal mRNA expression of both aromatase genes at any of the concentrations tested. Meanwhile, the strong mRNA induction of CYP19A1 and P450scc generated by a 24-h gonadotropin treatment (alone and combined) was suppressed by 20 ng/ml AMH added to culture medium. These findings contribute in clarifying the relationship between hormones regulating the early phase of steroidogenesis confirming that AMH is playing a suppressive role on CYP19A1 expression stimulated by gonadotropin in hGCs. Furthermore, a similar inhibitory effect for AMH was observed on P450scc gene expression when activated by gonadotropin treatment.

  11. Urokinase redistribution from the secreted to the cell-bound fraction in granulosa cells of rat preovulatory follicles.

    PubMed

    Macchione, E; Epifano, O; Stefanini, M; Belin, D; Canipari, R

    2000-04-01

    Plasminogen activators (PAs) have been shown to be synthesized in ovarian follicles of several mammalian species, where they contribute to the ovulation process. The type of PA secreted by granulosa cells is species-specific. In fact, whereas in the rat, gonadotropins stimulate tissue-type PA (tPA) production, the same hormonal stimulation induces urokinase PA (uPA) secretion in mouse cells. To investigate in more detail the hormonal regulation of this system, we used the rat ovary as a model in which we analyzed the production of PAs by theca-interstitial (TI) and granulosa cells obtained from preovulatory follicles after gonadotropin stimulation. In untreated rats, uPA was the predominant enzyme in both TI and granulosa cells. After hormonal stimulation, an increase in uPA and tPA activity was observed in both cell types. Surprisingly, only tPA mRNA increased in a time-dependent manner in both cell types, while uPA mRNA increased only in TI cells and actually decreased in granulosa cells. These divergent results between uPA enzyme activity and mRNA levels in granulosa cells were explained by studying the localization of the enzyme. Analysis of granulosa cell lysates showed that after hormonal stimulation, 60-70% of the uPA behaved as a cell-associated protein, suggesting that uPA, already present in the follicle, accumulates on the granulosa cell surface through binding to specific uPA receptors. The redistribution of uPA in granulosa cells and the differing regulation of the two PAs by gonadotropins in the rat ovary suggest that the two enzymes might have different functions during the ovulation process. Moreover, the ability of antibodies anti-tPA and anti-uPA to significantly inhibit ovulation only when coinjected with hCG confirmed that the PA contribution to ovulation occurs at the initial steps.

  12. Sphingosine-1-phosphate, regulated by FSH and VEGF, stimulates granulosa cell proliferation.

    PubMed

    Hernández-Coronado, C G; Guzmán, A; Rodríguez, A; Mondragón, J A; Romano, M C; Gutiérrez, C G; Rosales-Torres, A M

    2016-09-15

    Sphingosine-1-phosphate (S1P) is a bioactive polar sphingolipid which stimulates proliferation, growth and survival in various cell types. In the ovary S1P has been shown protect the granulosa cells and oocytes from insults such as oxidative stress and radiotherapy, and S1P concentrations are greater in healthy than atretic large follicles. Hence, we postulate that S1P is fundamental in follicle development and that it is activated in ovarian granulosa cells in response to FSH and VEGF. To test this hypothesis we set out: i) to evaluate the effect of FSH and VEGF on S1P synthesis in cultured bovine granulosa cells and ii) to analyse the effect of S1P on proliferation and survival of bovine granulosa cells in vitro. Seventy five thousand bovine granulosa cells from healthy medium-sized (4-7mm) follicles were cultured in 96-well plates in McCoy's 5a medium containing 10ng/mL of insulin and 1ng/mL of LR-IGF-I at 37°C in a 5% CO2/air atmosphere at 37°C. Granulosa cell production of S1P was tested in response to treatment with FSH (0, 0.1, 1 and 10ng/mL) and VEGF (0, 0.01, 0.1, 1, 10 and 100ng/mL) and measured by HPLC. Granulosa cells produced S1P at 48 and 96h, with the maximum production observed with 1ng/mL of FSH. Likewise, 0.01ng/mL of VEGF stimulated S1P production at 48, but not 96h of culture. Further, the granulosa cell expression of sphingosine kinase-1 (SK1), responsible for S1P synthesis, was demonstrated by Western blot after 48h of culture. FSH increased the expression of phosphorylated SK1 (P<0.05) and the addition of a SK1 inhibitor reduced the constitutive and FSH-stimulated S1P synthesis (P<0.05). Sphingosine-1-phosphate had a biphasic effect on granulosa cell number after culture. At low concentration S1P (0.1μM) increased granulosa cell number after 48h of culture (P<0.05) and the proportion of cells in the G2 and M phase of the cell cycle (P<0.05), whereas higher concentrations decreased cell number (10μM; P<0.05) by an increase (P<0.05) in the

  13. [Peripheral precocious puberty caused by a juvenile granulosa cell ovarian tumor, with iso and heterosexual manifestations in a six years old girl].

    PubMed

    Schulin-Zeuthen, Carolina; Yamamoto, Masami; Pires, Yumay; Mayerson, David; Cattani, Andreina

    2003-01-01

    A six years old girl consulted due to mammary development. On physical examination, clitoris enlargement and a tumor localized in the abdominal-pelvic region were observed. Hormonal study disclosed elevated testosterone and estradiol levels. On exploratory laparotomy, a right ovarian tumor was observed and a right salpingooophorectomy was performed. The contemporary biopsy informed a disgerminoma, leading to a surgical staging of the tumor. The definitive pathological diagnosis was a juvenile granular cell tumor, limited to the ovary. In the postoperative period, estradiol and testosterone levels returned to normal values and the pseudopuberty reverted. The patient did not receive adjuvant treatment and after three years of follow up, there is no evidence of tumor recidivism.

  14. Ultrastructure of the basal lamina of bovine ovarian follicles and its relationship to the membrana granulosa.

    PubMed

    Irving-Rodgers, H F; Rodgers, R J

    2000-03-01

    Different morphological phenotypes of follicular basal lamina and of membrana granulosa have been observed. Ten preantral follicles (< 0. 1 mm), and 17 healthy and six atretic antral follicles (0.5-12 mm in diameter) were processed for light and electron microscopy to investigate the relationship the between follicular basal lamina and membrana granulosa. Within each antral follicle, the shape of the basal cells of the membrana granulosa was uniform, and either rounded or columnar. There were equal proportions of follicles cells and with rounded basal cells. Larger follicles had only rounded basal cells. Conventional basal laminae of a single layer adjacent to the basal granulosa cells were observed in healthy follicles at the preantral and antral stages. However, at the preantral stage, the conventional types of basal lamina were enlarged or even partially laminated. A second type of basal lamina, described as 'loopy', occurred in about half the preantral follicles and in half the antral follicles granulosa cells, but with additional layers or loops often branching from the innermost layer. Each loop was usually < 1 microm long and had vesicles (20-30 nm) attached to the inner aspect. Basal cellular processes were also common, and vesicles could be seen budding off from these processes. In antral follicles, conventional basal laminae occurred in follicles with rounded basal granulosa cells. Other follicles with columnar cells, and atretic follicles, had the 'loopy' basal lamina phenotype. Thus, follicles have different basal laminae that relate to the morphology of the membrana granulosa.

  15. Expression and localization of fibroblast growth factor (FGF) family in buffalo ovarian follicle during different stages of development and modulatory role of FGF2 on steroidogenesis and survival of cultured buffalo granulosa cells.

    PubMed

    Mishra, S R; Thakur, N; Somal, A; Parmar, M S; Reshma, R; Rajesh, G; Yadav, V P; Bharti, M K; Bharati, Jaya; Paul, A; Chouhan, V S; Sharma, G T; Singh, G; Sarkar, M

    2016-10-01

    The present study investigated the expression and localization of FGF and its functional receptors in the follicle of buffalo and the treatment of FGF2 on mRNA expression of CYP19A1 (aromatase), PCNA, and BAX (BCL-2 associated X protein) in cultured buffalo granulosa cells (GCs). Follicles were classified into four groups based on size and E2 level in follicular fluid (FF): F1, 4-6mm diameter, E2<0.5ng/ml of FF; F2, 7-9mm, E2=0.5-5ng/ml; F3, 10-13mm, E2=5-40ng/ml; F4, >14mm, E2>180ng/ml. The qPCR studies revealed that the mRNA expression of FGF1, FGF2 and FGF7 were maximum (P<0.05) in theca interna (TI) whereas the transcripts of FGFR1, FGFR2, FGFR2IIIB and FGFR2IIIC were up-regulated (P<0.05) in GCs of F4 follicles. Protein expression of most members were maximum (P<0.05) in F4 follicles except FGFR3 and FGFR4. All members were localized in GC and TI with a stage specific immunoreactivity. Primary culture of GCs with treatment of FGF2 at different dose-time combinations revealed that the mRNA expression and immunoreactivity of CYP19A1 and PCNA were maximum (P<0.05) whereas BAX was minimum (P<0.05) with 200ng/ml at 72h of incubation. The findings indicate that FGF family members are expressed in a regulated manner in buffalo ovarian follicles during different stages of development where FGF2 may promote steroidogenesis and GC survival through autocrine and paracrine manner.

  16. The effect of the immune system on ovarian function and features of ovarian germline stem cells.

    PubMed

    Ye, Haifeng; Li, Xiaoyan; Zheng, Tuochen; Liang, Xia; Li, Jia; Huang, Jian; Pan, Zezheng; Zheng, Yuehui

    2016-01-01

    In addition to its role in maintaining organism homeostasis, the immune system also plays a crucial role in the modulation of ovarian function, as it regulates ovarian development, follicular maturation, ovulation and the formation of the corpus luteum. Ovarian germline stem cells are pluripotent stem cells derived from the ovarian cortex that can differentiate into ovarian germ cells and primary granulosa cells. Recent work has demonstrated that the proliferation and differentiation of ovarian germline stem cells is regulated in part by immune cells and their secreted factors. This paper reviews the role of the immune system in the regulation of ovarian function, the relationship between immune components and ovarian germline stem cells and current research efforts in this field.

  17. Expression and localization of angiopoietin family in buffalo ovarian follicles during different stages of development and modulatory role of angiopoietins on steroidogenesis and survival of cultured buffalo granulosa cells.

    PubMed

    Mishra, S R; Thakur, N; Somal, A; Parmar, M S; Yadav, V P; Bharati, Jaya; Bharti, M K; Paul, A; Verma, M R; Chouhan, V S; Sharma, G Taru; Singh, G; González, L A; D'Occhio, M J; Sarkar, M

    2016-10-15

    The present study investigated the expression and localization of angiopoietin (ANPT) family members in buffalo ovarian follicles of different size. It also looked at the role of ANPTs in estradiol secretion and mRNA expression of phosphoinositide-3-kinase-protein kinase B signaling pathway cellular proliferation (phosphoinositide-dependant kinase and protein kinase B [AKT]) and proapoptotic (BAD) factors with caspase 3 in cultured buffalo granulosa cells (GCs). The mRNA and protein expression of ANPT-1 was greatest (P < 0.05), whereas ANPT-2 was reduced (P < 0.05) in preovulatory follicles as compared to F1 follicle. Tyrosine kinase with immunoglobulin-like and EGF-like domains 1 transcripts and protein expression did not change in all follicular groups, whereas tyrosine kinase with immunoglobulin-like and EGF-like domains 2 mRNA was highest (P < 0.05) in theca interna but not GC layer of preovulatory follicle. All members of ANPT family were localized in GC and theca interna showing a stage specific immunoreactivity. Cultured GCs were treated with ANPT-1 and ANPT-2 separately at doses of 1, 10, and 100 ng/mL and in combination at 100 ng/mL for three incubation periods (24, 48, and 72 hours). Estradiol secretion was highest (P < 0.05) at 100 ng/mL at 72 hours of incubation when GCs were treated with either protein alone. The mRNA expression of phosphoinositide-dependant kinase and AKT was highest (P < 0.05), and BAD with caspase 3 was lowest (P < 0.05) at 100 ng/mL at 72 hours of incubation, when cultured GCs were treated separately with each protein or in combination. The immuoreactivity of AKT, pAKT, and pBAD were maximal, whereas BAD was minimal with 100 ng/mL at 72 hours when cultured GCs treated with either protein alone. The findings indicate that ANPTs are expressed in a regulated manner in buffalo ovarian follicle during different stages of development where they may promote steroidogenesis and GC survival through autocrine and paracrine

  18. Transcriptome analysis of the potential roles of FOXL2 in chicken pre-hierarchical and pre-ovulatory granulosa cells.

    PubMed

    Wang, Jing; Zhao, Chengcheng; Li, Jinqiu; Feng, Yanping; Gong, Yanzhang

    2017-03-01

    Forkheadbox L2 (FOXL2) is a transcription factor involved in mammalian ovarian development, especially in granulosa cell differentiation. However, this factor's function in mature chicken ovary is unclear. To explore the function of FOXL2 in chicken granulosa cells, we performed RNA-seq to compare the transcriptomes of pre-hierarchical (phGCs) and pre-ovulatory granulosa cells (poGCs) by FOXL2 overexpression. We observed that focal adhesion might be one of the key pathways activated during the differentiation of granulosa cells, and FOXL2 might be involved in follicle selection by regulating the expression of cytokines and the concentration of cyclic adenosine monophosphate (cAMP). Interestingly, we observed that FOXL2 played different roles in phGCs and poGCs, which might contribute to homeostasis in the chicken follicle by inducing differentiation of granulosa cells in pre-hierarchal follicles and preventing premature ovulation in pre-ovulatory follicles. Taken together, the results of our study establish a framework for understanding the potential functions of FOXL2 in the chicken granulosa cell. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effect of Vitamin D3 on Biosynthesis of Estrogen in Porcine Granulosa Cells via Modulation of Steroidogenic Enzymes

    PubMed Central

    Hong, So-Hye; Lee, Jae-Eon; An, Sung-Min; Shin, Ye Young; Hwang, Dae Youn; Yang, Seung Yun; Cho, Seong-Keun; An, Beum-Soo

    2017-01-01

    Vitamin D3 is a fat-soluble secosteroid responsible for enhancing intestinal absorption of calcium, iron, and other materials. Vitamin D3 deficiency, therefore, can cause health problems such as metabolic diseases, and bone disorder. Female sex hormones including estrogen and progesterone are biosynthesized mainly in the granulosa cells of ovary. In this study, we isolated granulosa cells from porcine ovary and cultured for the experiments. In order to examine the effect of vitamin D3 on the ovarian granulosa cells, the mRNA and protein levels of genes were analyzed by real-time PCR and Western blot assay. The production of estrogen from the granulosa cells was also measured by the ELISA assay. Genes associated with follicle growth were not significantly altered by vitamin D3. However, it increases expression of genes involved in the estrogen-biosynthesis. Further, estrogen concentrations in porcine granulosa cell-cultured media increased in response to vitamin D3. These results showed that vitamin D3 is a powerful regulator of sex steroid hormone production in porcine granulosa cells, suggesting that vitamin D deficiency may result in inappropriate sexual development of industrial animals and eventually economic loss. PMID:28133513

  20. Growth differentiation factor 9 signaling requires ERK1/2 activity in mouse granulosa and cumulus cells.

    PubMed

    Sasseville, Maxime; Ritter, Lesley J; Nguyen, Thao M; Liu, Fang; Mottershead, David G; Russell, Darryl L; Gilchrist, Robert B

    2010-09-15

    Ovarian folliculogenesis is driven by the combined action of endocrine cues and paracrine factors. The oocyte secretes powerful mitogens, such as growth differentiation factor 9 (GDF9), that regulate granulosa cell proliferation, metabolism, steroidogenesis and differentiation. This study investigated the role of the epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinase 1 and 2 (ERK1/2; also known as MAPK3/1) signaling pathway on GDF9 action on granulosa cells. Results show that mitogenic action of the oocyte is prevented by pharmacological inhibition of the EGFR-ERK1/2 pathway. Importantly, EGFR-ERK1/2 activity as well as rous sarcoma oncogene family kinases (SFK) are required for signaling through SMADs, mediating GDF9, activin A and TGFbeta1 mitogenic action in granulosa cells. GDF9 could not activate ERK1/2 or affect EGF-stimulated ERK1/2 in granulosa cells. However, induction of the SMAD3-specific CAGA reporter by GDF9 in granulosa cells required active EGFR, SFKs and ERK1/2 as did GDF9-responsive gene expression. Finally, the EGFR-SFKs-ERK1/2 pathway was shown to be required for the maintenance of phosphorylation of the SMAD3 linker region. Together our results suggest that receptivity of granulosa cells to oocyte-secreted factors, including GDF9, is regulated by the level of activation of the EGFR and resulting ERK1/2 activity, through the requisite permissive phosphorylation of SMAD3 in the linker region. Our results indicate that oocyte-secreted TGFbeta-like ligands and EGFR-ERK1/2 signaling are cooperatively required for the unique granulosa cell response to the signal from oocytes mediating granulosa cell survival and proliferation and hence the promotion of follicle growth and ovulation.

  1. Transcriptomes of bovine ovarian follicular and luteal cells

    USDA-ARS?s Scientific Manuscript database

    RNA expression analysis was performed on four somatic ovarian cell types using a gene array panel: the granulosa cells (GCs) and theca cells (TCs) of the dominant follicle and the large luteal cells (LLCs) and small luteal cells (SLCs) of the corpus luteum. The normalized linear microarray data was ...

  2. FOXO1/3 Depletion in Granulosa Cells Alters Follicle Growth, Death and Regulation of Pituitary FSH

    PubMed Central

    Liu, Zhilin; Castrillon, Diego H.; Zhou, Wei

    2013-01-01

    The Forkhead boxO (FOXO) transcription factors regulate multiple cellular functions. FOXO1 and FOXO3 are highly expressed in granulosa cells of ovarian follicles. Selective depletion of the Foxo1 and Foxo3 genes in granulosa cells of mice reveals a novel ovarian-pituitary endocrine feedback loop characterized by: 1) undetectable levels of serum FSH but not LH, 2) reduced expression of the pituitary Fshb gene and its transcriptional regulators, and 3) ovarian production of a factor(s) that suppresses pituitary cell Fshb expression. Equally notable, and independent of FSH, microarray analyses and quantitative PCR document that depletion of Foxo1/3 alters the expression of specific genes associated with follicle growth vs. apoptosis by disrupting critical and selective regulatory interactions of FOXO1/3 with the activin or bone morphogenetic protein 2 (BMP2) pathways, respectively. As a consequence, both granulosa cell proliferation and apoptosis were decreased. These data provide the first evidence that FOXO1/3 divergently regulate follicle growth or death by interacting with the activin or BMP pathways in granulosa cells and by modulating pituitary FSH production. PMID:23322722

  3. FOXO1/3 depletion in granulosa cells alters follicle growth, death and regulation of pituitary FSH.

    PubMed

    Liu, Zhilin; Castrillon, Diego H; Zhou, Wei; Richards, Joanne S

    2013-02-01

    The Forkhead boxO (FOXO) transcription factors regulate multiple cellular functions. FOXO1 and FOXO3 are highly expressed in granulosa cells of ovarian follicles. Selective depletion of the Foxo1 and Foxo3 genes in granulosa cells of mice reveals a novel ovarian-pituitary endocrine feedback loop characterized by: 1) undetectable levels of serum FSH but not LH, 2) reduced expression of the pituitary Fshb gene and its transcriptional regulators, and 3) ovarian production of a factor(s) that suppresses pituitary cell Fshb expression. Equally notable, and independent of FSH, microarray analyses and quantitative PCR document that depletion of Foxo1/3 alters the expression of specific genes associated with follicle growth vs. apoptosis by disrupting critical and selective regulatory interactions of FOXO1/3 with the activin or bone morphogenetic protein 2 (BMP2) pathways, respectively. As a consequence, both granulosa cell proliferation and apoptosis were decreased. These data provide the first evidence that FOXO1/3 divergently regulate follicle growth or death by interacting with the activin or BMP pathways in granulosa cells and by modulating pituitary FSH production.

  4. Growth differentiation factor-9 has divergent effects on proliferation and steroidogenesis of bovine granulosa cells.

    PubMed

    Spicer, L J; Aad, P Y; Allen, D; Mazerbourg, S; Hsueh, A J

    2006-05-01

    In addition to gonadotropins, steroidogenesis and proliferation of granulosa cells during follicular development are controlled by a number of intraovarian factors including growth differentiation factor-9 (GDF-9), bone morphogenetic protein-4 (BMP-4), and IGF-I. The objective of this study was to determine the effect of GDF-9 and BMP-4 and their interaction with IGF-I and FSH on ovarian granulosa cell function in cattle. Granulosa cells from small (1-5 mm) and large (8-22 mm) follicles were collected from bovine ovaries and cultured for 48 h in medium containing 10% fetal calf serum and then treated with various hormones in serum-free medium for an additional 48 h. We evaluated the effects of GDF-9 (150-600 ng/ml) and BMP-4 (30 ng/ml) during a 2-day exposure on hormone-induced steroidogenesis and cell proliferation. In FSH plus IGF-I-treated granulosa cells obtained from small follicles, 300 ng/ml GDF-9 reduced (P < 0.05) progesterone production by 15% and 600 ng/ml GDF-9 completely blocked (P < 0.01) the IGF-I-induced increase in progesterone production. In comparison, 300 and 600 ng/ml GDF-9 decreased (P < 0.05) estradiol production by 27% and 71% respectively, whereas 150 ng/ml GDF-9 was without effect (P > 0.10). Treatment with 600 ng/ml GDF-9 increased (P < 0.05) numbers (by 28%) of granulosa cells from small follicles. In the same cells treated with FSH but not IGF-I, co-treatment with 600 ng/ml GDF-9 decreased (P < 0.05) progesterone production (by 28%), increased (P < 0.05) cell numbers (by 60%), and had no effect (P > 0.10) on estradiol production. In FSH plus IGF-I-treated granulosa cells obtained from large follicles, GDF-9 caused a dose-dependent decrease (P<0.05) in IGF-I-induced progesterone (by 13-48%) and estradiol (by 20-51%) production. In contrast, GDF-9 increased basal and IGF-I-induced granulosa cell numbers by over 2-fold. Furthermore, treatment with BMP-4 also inhibited (P < 0.05) steroidogenesis by 27-42% but had no effect on cell numbers

  5. Paraptosis-like cell death in Wistar rat granulosa cells.

    PubMed

    Torres-Ramírez, Nayeli; Escobar, María L; Vázquez-Nin, Gerardo H; Ortiz, Rosario; Echeverría, Olga M

    2016-10-01

    Follicular atresia, a common process present in all mammals, involves apoptotic and autophagic cell death. However, the participation of paraptosis, a type of caspase-independent cell death, during follicular atresia is unknown. This study found swollen endoplasmic reticulum in the granulosa cells of adult Wistar rats. Calnexin was used as a marker of the endoplasmic reticulum at the ultrastructural and optical levels. The cells with swelling of the endoplasmic reticulum were negative to the TUNEL assay and active caspase-3 immunodetection, indicating that this swelling is not part of any apoptotic or autophagic process. Additionally, immunodetection of the CHOP protein was used as a marker of endoplasmic reticulum stress, and this confirmed the presence of the paraptosis process. These data suggest that paraptosis-like cell death is associated with the death of granulosa cells during follicular atresia in adult Wistar rats.

  6. Changes in brain ribonuclease (BRB) mRNA in granulosa cells (GC) of dominant versus subordinate ovarian follicles of cattle and the regulation of BRB gene expression in bovine GC

    PubMed Central

    Dentis, J. L.; Schreiber, N. B.; Gilliam, J. N.; Schutz, L. F.; Spicer, L. J.

    2015-01-01

    Brain ribonuclease (BRB) is a member of the ribonuclease A superfamily that is constitutively expressed in a range of tissues, and is the functional homolog of human ribonuclease 1. This study was designed to characterize BRB gene expression in granulosa cells (GC) during development of bovine dominant ovarian follicles, and to determine the hormonal regulation of BRB in GC. Estrous cycles of Holstein cows (n = 18) were synchronized and cows were ovariectomized on either day 3 to 4 or day 5 to 6 post-ovulation during dominant follicle growth and selection. Ovaries were collected, follicular fluid (FFL) was aspirated, and GC were collected for RNA isolation and quantitative PCR. Follicles were categorized as small (1 to 5 mm; pooled per ovary), medium (5 to 8 mm; individually collected) or large (8.1 to 17 mm; individually collected) based on surface diameter. Estradiol (E2) and progesterone (P4) levels were measured by RIA in FFL. Abundance of BRB mRNA in GC was 8.6- to 11.8-fold greater (P < 0.05) in small (n = 31), medium (n = 66) and large (n = 33) subordinate E2-inactive (FFL E2 < P4) follicles than in large (n = 16) dominant E2-active (FFL E2 > P4) follicles. In the largest 4 follicles, GC BRB mRNA abundance was negatively correlated (P < 0.01) with FFL E2 (r = −0.65) and E2/P4 ratio (r = −0.46). In Exp. 2, GC from large (8 to 22 mm diameter) and small (1 to 5 mm diameter) follicles were treated with IGF1 (0 or 30 ng/mL), and/or tumor necrosis factor α (TNFα) (0 or 30 ng/mL); IGF1 increased (P < 0.05) BRB mRNA abundance and TNFα decreased (P < 0.001) the IGF1-induced BRB mRNA abundance in large-follicle GC. In Exp. 3 to 6, E2, FSH, fibroblast growth factor 9 (FGF9), cortisol, wingless 3A (WNT3A), or Sonic hedgehog (SHH) did not affect (P > 0.10) abundance of BRB mRNA in GC; thyroxine and LH increased (P < 0.05) whereas prostaglandin E2 (PGE2) decreased (P < 0.05) BRB mRNA abundance in small-follicle GC. Treatment of small-follicle GC with recombinant

  7. Changes in brain ribonuclease (BRB) messenger RNA in granulosa cells (GCs) of dominant vs subordinate ovarian follicles of cattle and the regulation of BRB gene expression in bovine GCs.

    PubMed

    Dentis, J L; Schreiber, N B; Gilliam, J N; Schutz, L F; Spicer, L J

    2016-04-01

    Brain ribonuclease (BRB) is a member of the ribonuclease A superfamily that is constitutively expressed in a range of tissues and is the functional homolog of human ribonuclease 1. This study was designed to characterize BRB gene expression in granulosa cells (GCs) during development of bovine dominant ovarian follicles and to determine the hormonal regulation of BRB in GCs. Estrous cycles of Holstein cows (n = 18) were synchronized, and cows were ovariectomized on either day 3 to 4 or day 5 to 6 after ovulation during dominant follicle growth and selection. Ovaries were collected, follicular fluid (FFL) was aspirated, and GCs were collected for RNA isolation and quantitative polymerase chain reaction. Follicles were categorized as small (1-5 mm; pooled per ovary), medium (5-8 mm; individually collected), or large (8.1-17 mm; individually collected) based on surface diameter. Estradiol (E2) and progesterone (P4) levels were measured by radioimmunoassay (RIA) in FFL. Abundance of BRB messenger RNA (mRNA) in GCs was 8.6- to 11.8-fold greater (P < 0.05) in small (n = 31), medium (n = 66), and large (n = 33) subordinate E2-inactive (FFL E2 < P4) follicles than in large (n = 16) dominant E2-active (FFL E2 > P4) follicles. In the largest 4 follicles, GCs BRB mRNA abundance was negatively correlated (P < 0.01) with FFL E2 (r = -0.65) and E2:P4 ratio (r = -0.46). In experiment 2, GCs from large (8-22 mm diameter) and small (1-5 mm diameter) follicles were treated with insulin-like growth factor 1 (IGF1; 0 or 30 ng/mL) and/or tumor necrosis factor alpha (0 or 30 ng/mL); IGF1 increased (P < 0.05) BRB mRNA abundance, and tumor necrosis factor alpha decreased (P < 0.001) the IGF1-induced BRB mRNA abundance in large-follicle GCs. In experiment 3 to 6, E2, follicle-stimulating hormone, fibroblast growth factor 9, cortisol, wingless 3A, or sonic hedgehog did not affect (P > 0.10) abundance of BRB mRNA in GCs; thyroxine and luteinizing hormone increased (P < 0.05), whereas

  8. Cell adhesion and apoptosis in ovarian stromal hyperplasia and hyperthecosis.

    PubMed

    Sharabidze, N; Burkadze, G; Sabakhtarashvili, M

    2006-02-01

    The aim of our study was to investigate cell adhesion and apoptosis in ovarian stromal hyperplasia and hyperthecosis in reproductive women with and without polycystic ovarian disease. We have studied 104 patients with a histological diagnosis of ovarian stromal hyperthecosis and stromal hyperplasia. Paraffin sections were stained by hematoxylin-eosin, von Gieson and immunohistochemistry for Bcl-2 (anti-apoptotic protein) and E-cadherin (cell adhesion marker). We assessed the number of Bcl-2-positive and E-cadherin-positive cells. The patients were divided into 4 groups: group 1-33 patients with polycystic ovarian disease and coexistent stromal hyperthecosis, group 2-28 patients with polycystic ovarian disease and coexistent stromal hyperplasia, group 3-24 patients with ovarian stromal hyperthecosis, group 4-19 patients with ovarian stromal hyperplasia. Our results suggest that in ovarian stromal hyperthecosis and stromal hyperplasia coexistent with polycystic ovarian disease, E-cadherin-positivity in internal and external theca cells, and granulosa cells is associated with Bcl-2 expression. Therefore, ovarian cells expressing Bcl-2 and maintaining E-cadherin-positivity may be the viable cells that escape the apoptotic process. In ovarian stromal hyperthecosis without polycystic ovarian disease, luteinized stromal cells are potentially resistant to apoptosis as they are positive for Bcl-2. In ovarian stromal hyperplasia without polycystic ovarian disease, hyperplastic stromal cells are potentially susceptible to apoptosis as they are negative for Bcl-2. E-cadherin is negative both in stromal hyperthecosis and hyperplasia suggesting that E-cadherin expression in ovary is limited to granulosa and theca cells only. Described characteristics of cell adhesion and apoptosis may play a role in pathogenesis of ovarian stromal hyperthecosis and stromal hyperplasia with and without polycystic ovarian disease.

  9. Soy promotes juvenile granulosa cell tumor development in mice and in the human granulosa cell tumor-derived COV434 cell line.

    PubMed

    Mansouri-Attia, Nadéra; James, Rebecca; Ligon, Alysse; Li, Xiaohui; Pangas, Stephanie A

    2014-10-01

    Soy attracts attention for its health benefits, such as lowering cholesterol or preventing breast and colon cancer. Soybeans contain isoflavones, which act as phytoestrogens. Even though isoflavones have beneficial health effects, a role for isoflavones in the initiation and progression of diseases including cancer is becoming increasingly recognized. While data from rodent studies suggest that neonatal exposure to genistein (the predominant isoflavone in soy) disrupts normal reproductive function, its role in ovarian cancers, particularly granulosa cell tumors (GCT), is largely unknown. Our study aimed to define the contribution of a soy diet in GCT development using a genetically modified mouse model for juvenile GCTs (JGCT; Smad1 Smad5 conditional double knockout mice) as well as a human JGCT cell line (COV434). While dietary soy cannot initiate JGCT development in mice, we show that it has dramatic effects on GCT growth and tumor progression compared to a soy-free diet. Loss of Smad1 and Smad5 alters estrogen receptor alpha (Esr1) expression in granulosa cells, perhaps sensitizing the cells to the effects of genistein. In addition, we found that genistein modulates estrogen receptor expression in the human JGCT cell line and positively promotes cell growth in part by suppressing caspase-dependent apoptosis. Combined, our work suggests that dietary soy consumption has deleterious effects on GCT development.

  10. Protein Kinase A: A Master Kinase of Granulosa Cell Differentiation

    PubMed Central

    Puri, Pawan; Little-Ihrig, Lynda; Chandran, Uma; Law, Nathan C.; Hunzicker-Dunn, Mary; Zeleznik, Anthony J.

    2016-01-01

    Activation of protein kinase A (PKA) by follicle stimulating hormone (FSH) transduces the signal that drives differentiation of ovarian granulosa cells (GCs). An unresolved question is whether PKA is sufficient to initiate the complex program of GC responses to FSH. We compared signaling pathways and gene expression profiles of GCs stimulated with FSH or expressing PKA-CQR, a constitutively active mutant of PKA. Both FSH and PKA-CQR stimulated the phosphorylation of proteins known to be involved in GC differentiation including CREB, ß-catenin, AKT, p42/44 MAPK, GAB2, GSK-3ß, FOXO1, and YAP. In contrast, FSH stimulated the phosphorylation of p38 MAP kinase but PKA-CQR did not. Microarray analysis revealed that 85% of transcripts that were up-regulated by FSH were increased to a comparable extent by PKA-CQR and of the transcripts that were down-regulated by FSH, 76% were also down-regulated by PKA-CQR. Transcripts regulated similarly by FSH and PKA-CQR are involved in steroidogenesis and differentiation, while transcripts more robustly up-regulated by PKA-CQR are involved in ovulation. Thus, PKA, under the conditions of our experimental approach appears to function as a master upstream kinase that is sufficient to initiate the complex pattern of intracellular signaling pathway and gene expression profiles that accompany GC differentiation. PMID:27324437

  11. Oxidative Stress in Granulosa-Lutein Cells From In Vitro Fertilization Patients.

    PubMed

    Ávila, Julio; González-Fernández, Rebeca; Rotoli, Deborah; Hernández, Jairo; Palumbo, Angela

    2016-12-01

    Ovarian aging is associated with gradual follicular loss by atresia/apoptosis. Increased production of toxic metabolites such as reactive oxygen species (ROS) and reactive nitrogen species as well as external oxidant agents plays an important role in the process of ovarian senescence and in the pathogenesis of ovarian pathologies such as endometriosis and polycystic ovary syndrome (PCOS). This review provides a synthesis of available studies of oxidative stress (OS) in the ovary, focusing on the most recent evidence obtained in mural granulosa-lutein (GL) cells of in vitro fertilization patients. Synthesis of antioxidant enzymes such as peroxiredoxin 4, superoxide dismutase, and catalase and OS damage response proteins such as aldehyde dehydrogenase 3, member A2 decreases with aging in human GL cells, favoring an unbalance in ROS/antioxidants that mediates molecular damage and altered cellular function. The increase in OS in the granulosa cell correlates with diminished expression of follicle-stimulating hormone receptor (FSHR) and a dysregulation of the FSHR signaling pathway and may be implicated in disrupted steroidogenic function and poor response to FSH in women with aging. Women with endometriosis and PCOS have lower antioxidant production capacity that may contribute to abnormal follicular development and infertility. Further investigation of the signaling pathways involved in cellular response to OS could shed light into molecular characterization of these diseases and development of new treatment strategies to improve reproductive potential in these women.

  12. Adding of ascorbic acid to the culture medium influences the antioxidant status and some biochemical parameters in the hen granulosa cells.

    PubMed

    Capcarova, M; Kolesarova, A; Kalafova, A; Bulla, J; Sirotkin, A V

    2015-07-01

    The aim of the present study was to determine the activity of superoxide dismutase (SOD), total antioxidant status (TAS) of the hen granulosa cells, and selected biochemical parameters, including calcium, phosphorus, sodium, potassium, glucose, cholesterol, proteins, in the culture medium of granulosa cells after exposing them to ascorbic acid in vitro conditions. Ovarian granulosa cells of hens were incubated with various doses of ascorbic acid (E1 0.09 mg/ml, E2 0.13 mg/ml, E3 0.17 mg/ml, E4 0.33 mg/ml, E5 0.5 mg/ml). Ascorbic acid did not manifest antioxidant potential and higher doses of ascorbic acid (0.17; 0.33 and 0.5 mg/ml) decreased the activity of SOD in granulosa cells. Vitamin application resulted in a significantly (p<0.05) higher accumulation of Na+ and K+ in culture media of granulosa cells and decreased the concentration of glucose and proteins. These results indicate that ascorbic acid might be involved in the regulation of selected biochemical and physiological processes in ovarian granulosa cells.

  13. Transforming growth factor-β1 up-regulates connexin43 expression in human granulosa cells

    PubMed Central

    Chen, Yu-Ching; Chang, Hsun-Ming; Cheng, Jung-Chien; Tsai, Horng-Der; Wu, Cheng-Hsuan; Leung, Peter C.K.

    2015-01-01

    cultures of human granulosa-lutein cells (P < 0.05). The small interfering RNA-mediated knockdown of ALK5, but not ALK4, abolished the TGF-β1-induced phosphorylation of SMAD2/3 and the up-regulation of Cx43. Furthermore, knockdown of SMAD2/3 or the common SMAD, SMAD4, abolished the stimulatory effects of TGF-β1 on Cx43 expression in SVOG cells. The TGF-β1-induced up-regulation of Cx43 contributed to the increase of GJIC between SVOG cells (P < 0.001). LIMITATIONS, REASONS FOR CAUTION The results of this study were generated from in vitro system and may not reflect the intra-ovarian microenvironment in vivo. WIDER IMPLICATIONS OF THE FINDINGS Our studies represent the first comprehensive research of molecular mechanisms of TGF-β1 in the regulation of Cx43 expression and GJIC in human granulosa cells and demonstrate that TGF-β1 may play a crucial role in the local modulation of cell–cell communication. Deepening our understanding of the molecular determinants will offer important insights into ovarian physiology and lead to the development of potential therapeutic methods for fertility regulation. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by an operating grant from the Canadian Institutes of Health Research to P.C.K.L. There are no conflicts of interest to declare. TRIAL REGISTRATION NUMBER NA. PMID:26202915

  14. Inactivation of the LOX-1 pathway promotes the Golgi apparatus during cell differentiation of mural granulosa cells.

    PubMed

    Weitzel, J M; Vernunft, A; Krüger, B; Plinski, C; Viergutz, T

    2014-12-01

    In female mammals, granulosa cells of the ovarian follicle differentiate into the corpus luteum after ovulation of the pregnable oocyte into the fallopian tube. During these differentiation processes several morphological alterations have to occur and the molecular basis is not fully understood. As an endpoint estradiol production from granulosa cells has to switch off in favor for progesterone production from the proceeding corpus luteum to sustain the developing embryo. Previously, we demonstrated that the multiligand receptor LOX-1 plays a critical role in steroid hormone synthesis of granulosa cells via intracellular calcium release from endoplasmic (ER)-dependent and ER-independent calcium pools. In the present study, we show that inhibition of LOX-1 leads to a rearrangement of ceramide from the basal membrane toward the Golgi apparatus. This activity is accomplished by a calcium-dependent phosphorylation of aromatase, the key step in estradiol production. Phosphorylated aromatase increased estradiol production in a dose-dependent manner. Our data indicate that the ceramide cascade is essential for proper granulosa cell function and ceramide redistribution serves as a first step in order to proceed with the prosperous differentiation into a corpus luteum.

  15. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells.

    PubMed

    Matsuda, Fuko; Inoue, Naoko; Manabe, Noboru; Ohkura, Satoshi

    2012-01-01

    The mammalian ovary is an extremely dynamic organ in which a large majority of follicles are effectively eliminated throughout their reproductive life. Due to the numerous efforts of researchers, mechanisms regulating follicular growth and atresia in mammalian ovaries have been clarified, not only their systemic regulation by hormones (gonadotropins) but also their intraovarian regulation by gonadal steroids, growth factors, cytokines and intracellular proteins. Granulosa cells in particular have been demonstrated to play a major role in deciding the fate of follicles, serving molecules that are essential for follicular growth and maintenance as well as killing themselves by an apoptotic process that results in follicular atresia. In this review, we discuss the factors that govern follicular growth and atresia, with a special focus on their regulation by granulosa cells. First, ovarian folliculogenesis in adult life is outlined. Then, we explain about the regulation of follicular growth and atresia by granulosa cells, in which hormones, growth factors and cytokines, death ligand-receptor system and B cell lymphoma/leukemia 2 (BCL2) family members (mitochondria-mediated apoptosis) are further discussed.

  16. Abnormal expression levels of BMP15/Smad1 are associated with granulosa cell apoptosis in patients with polycystic ovary syndrome.

    PubMed

    Cui, Xiangrong; Jing, Xuan; Wu, Xueqing; Bi, Xingyu; Liu, Junfen; Long, Zhijing; Zhang, Xiuping; Zhang, Dongdong; Jia, Hongxiang; Su, Dan; Huo, Kai

    2017-09-28

    Polycystic ovary syndrome (PCOS) is a common endocrine disorder that affects reproductive dysfunction and metabolism in women of childbearing age. An increasing number of studies have suggested that the bone morphogenetic protein 15 (BMP15) signalling pathway serves an important role in the pathogenesis of PCOS; however, the full mechanism remains unknown. The present study revealed that intrinsic follicular dysplasia may be associated with regulation disorders of ovarian granulosa cell apoptosis. Compared with the control group, body mass index, luteinising hormone and testosterone levels were significantly increased (P<0.05). The percentage of S phase cells was significantly higher, cells in G2/M phase cells was significantly lower, and cells undergoing apoptosis was significantly higher in the PCOS group compared with the control group (P<0.05). The expression levels of B‑cell lymphoma 2 was significantly decreased in granulosa cells of PCOS group, whereas the expression of caspase‑3 was higher than the control group (P<0.05). The rate of apoptosis of granulosa cells was measured by a terminal deoxynucleotide transferase dUTP nick‑end labelling assay. The relative mRNA expression levels of BMP receptor 2 and SMAD1 were significantly decreased in granulosa cells in the PCOS group compared with the control (P<0.05). In addition, the expression of BMP15 in follicular fluid and Smad1 in granulosa cells was significantly decreased in the PCOS group compared with the control (P<0.05). The data suggested that the BMP15/Smad1 signalling pathway may be involved in granulosa cell apoptosis, and may be a target for clinical treatment for PCOS.

  17. LOX-1 regulates estrogenesis via intracellular calcium release from bovine granulosa cells.

    PubMed

    Weitzel, J M; Vernunft, A; Krüger, B; Plinski, C; Viergutz, T

    2014-01-01

    Estradiol produced by ovarian granulosa cells triggers the luteinizing hormone surge which in turn initiates ovulation in female mammals. Disturbances in estradiol production from granulosa cells are a major reason for reproductive dysfunctions in dairy cows. Endogenous estradiol production might be altered by reactive oxygen species (ROS) such as oxidized low-density lipoprotein (ox-LDL). Inhibition of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), a receptor of ox-LDL, leads to increased estrogenesis in granulosa cells. This activity is mediated by calcium release from endoplasmic reticulum (ER)-dependent and ER-independent calcium pools. Inhibition of the LOX-1 signal transduction pathway is followed by mitochondrial alterations. The membrane potential ΔΨ increases and the ROS production decreases in mitochondria after blocking LOX-1. Our data indicate that blocking the LOX-1 receptor signal pathway might be a promising way to improve steroid hormone concentrations in metabolically highly active female mammals and, therefore, to defend against reproductive dysfunctions in humans and animals.

  18. Dedifferentiated follicular granulosa cells derived from pig ovary can transdifferentiate into osteoblasts

    PubMed Central

    Oki, Yoshinao; Ono, Hiromasa; Motohashi, Takeharu; Sugiura, Nobuki; Nobusue, Hiroyuki; Kano, Koichiro

    2012-01-01

    Transdifferentiation is the conversion of cells from one differentiated cell type into another. How functionally differentiated cells already committed to a specific cell lineage can transdifferentiate into other cell types is a key question in cell biology and regenerative medicine. In the present study we show that porcine ovarian follicular GCs (granulosa cells) can transdifferentiate into osteoblasts in vitro and in vivo. Pure GCs isolated and cultured in Dulbecco's modified Eagle's medium supplemented with 20% FBS (fetal bovine serum) proliferated and dedifferentiated into fibroblast-like cells. We referred to these cells as DFOG (dedifferentiated follicular granulosa) cells. Microarray analysis showed that DFOG cells lost expression of GC-specific marker genes, but gained the expression of osteogenic marker genes during dedifferentiation. After osteogenic induction, DFOG cells underwent terminal osteoblast differentiation and matrix mineralization in vitro. Furthermore, when DFOG cells were transplanted subcutaneously into SCID mice, these cells formed ectopic osteoid tissue. These results indicate that DFOG cells derived from GCs can differentiate into osteoblasts in vitro and in vivo. We suggest that GCs provide a useful model for studying the mechanisms of transdifferentiation into other cell lineages in functionally differentiated cells. PMID:22839299

  19. NO-mediated regulation of GLUT by T3 and FSH in rat granulosa cells.

    PubMed

    Tian, Ye; Ding, Yu; Liu, Juan; Heng, Dai; Xu, Kaili; Liu, Wenbo; Zhang, Cheng

    2017-03-17

    Thyroid hormones (THs) are important for normal reproductive function. Although 3,5,3'-triiodothyronine (T3) enhances follicle-stimulating hormone (FSH)-induced preantral follicle growth and granulosa cells development in vitro, little is known about the molecular mechanisms regulating ovarian development via glucose. In this study, we investigated whether and how T3 combines with FSH to regulate glucose transporter protein (GLUT) expression and glucose uptake in granulosa cells. Here, we present evidence that T3 and FSH co-treatment significantly increased GLUT-1/GLUT-4 expression, and translocation in cells, as well as glucose uptake. These changes were accompanied by upregulation of NOS3 expression, total NOS and NOS3 activity and NO content in granulosa cells. Furthermore, we found that activation of the mTOR and PI3K/Akt pathway is required for the regulation of GLUT expression, translocation, and glucose uptake by hormones. We also found that L-arginine (L-arg) up-regulated GLUT-1/GLUT-4 expression and translocation, which were related to increased glucose uptake, however, these responses were significantly blocked by L-NAME. In addition, inhibiting NO production attenuated T3 and FSH-induced GLUT expression, translocation, and glucose uptake in granulosa cells. Our data demonstrate that T3 and FSH co-treatment potentiates cellular glucose uptake via GLUT upregulation and translocation, which are mediated through the activation of the mTOR/PI3K/Akt pathway. Meanwhile, NOS3/NO are also involved in this regulatory system. These findings suggest that GLUT is a novel mediator of T3 and FSH-induced follicular development.

  20. Autocrine role of estrogens in the augmentation of luteinizing hormone receptor formation in cultured rat granulosa cells.

    PubMed

    Kessel, B; Liu, Y X; Jia, X C; Hsueh, A J

    1985-06-01

    The effects of estrogens on gonadotropin-stimulated luteinizing hormone (LH) receptor formation were examined in primary cultures of rat granulosa cells. Granulosa cells were cultured for 3 days with increasing concentrations of follicle-stimulating hormone (FSH) in the presence or absence of native and synthetic estrogens. Follicle-stimulating hormone stimulated LH receptor formation in a dose-dependent fashion, and estrogens enhanced the FSH-stimulated LH receptor content by decreasing the apparent ED50 of FSH. At 6.25 ng/ml FSH, the enhancement in LH receptor was estrogen dose dependent, with an ED50 value of about 3 X 10(-9) M for 17 beta-estradiol. The increased LH receptor content seen in cells treated with FSH and estrogen was correlated with increased cAMP production by these cells in response to LH stimulation. Time course studies revealed enhancement of FSH-stimulated LH receptor induction at 48 and 72 h of culture. Granulosa cells were also cultured with FSH for 2 days to induce functional LH receptors, then further cultured for 3 days with LH in the presence or absence of estrogens. At 30 ng/ml LH, increasing concentrations of estrogens maintained LH receptor content in a dose-dependent fashion, with their relative estrogenic potencies in keeping with reported binding affinities to estrogen receptors. An autocrine role of estrogens on LH receptor formation was further tested in granulosa cells treated with FSH and an aromatase substrate (androstenedione) to increase estrogen biosynthesis. Cotreatment with semipurified estrogen antibodies partially blocked the FSH stimulation of LH receptors, whereas nonimmune serum was ineffective. Also, inclusion of diethylstilbestrol prevented the inhibitory effect of the estrogen antibodies. Thus, local estrogens in ovarian follicles may play an autocrine role in granulosa cells to enhance LH receptor formation and to increase granulosa cell responsiveness to the LH surge, with subsequent ovulation and adequate

  1. Abnormal Mitochondrial Function and Impaired Granulosa Cell Differentiation in Androgen Receptor Knockout Mice

    PubMed Central

    Wang, Ruey-Sheng; Chang, Heng-Yu; Kao, Shu-Huei; Kao, Cheng-Heng; Wu, Yi-Chen; Yeh, Shuyuan; Tzeng, Chii-Reuy; Chang, Chawnshang

    2015-01-01

    In the ovary, the paracrine interactions between the oocyte and surrounded granulosa cells are critical for optimal oocyte quality and embryonic development. Mice lacking the androgen receptor (AR−/−) were noted to have reduced fertility with abnormal ovarian function that might involve the promotion of preantral follicle growth and prevention of follicular atresia. However, the detailed mechanism of how AR in granulosa cells exerts its effects on oocyte quality is poorly understood. Comparing in vitro maturation rate of oocytes, we found oocytes collected from AR−/− mice have a significantly poor maturating rate with 60% reached metaphase II and 30% remained in germinal vesicle breakdown stage, whereas 95% of wild-type AR (AR+/+) oocytes had reached metaphase II. Interestingly, we found these AR−/− female mice also had an increased frequency of morphological alterations in the mitochondria of granulosa cells with reduced ATP generation (0.18 ± 0.02 vs. 0.29 ± 0.02 µM/mg protein; p < 0.05) and aberrant mitochondrial biogenesis. Mechanism dissection found loss of AR led to a significant decrease in the expression of peroxisome proliferator-activated receptor γ (PPARγ) co-activator 1-β (PGC1-β) and its sequential downstream genes, nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM), in controlling mitochondrial biogenesis. These results indicate that AR may contribute to maintain oocyte quality and fertility via controlling the signals of PGC1-β-mediated mitochondrial biogenesis in granulosa cells. PMID:25941928

  2. EP3 Receptor Isoforms are Differentially Expressed in Subpopulations of Primate Granulosa Cells and Couple to Unique G-Proteins

    PubMed Central

    Kim, Soon Ok; Dozier, Brandy L.; Kerry, Julie A.; Duffy, Diane M.

    2013-01-01

    Prostaglandin E2 produced within the ovarian follicle is necessary for ovulation. Prostaglandin E2 is recognized by four distinct G-protein coupled receptors. Among them, PTGER3 (also known as EP3) is unique in that mRNA splicing generates multiple isoforms. Each isoform has a distinct amino acid composition in the C-terminal region, which is involved in G-protein coupling. To determine if monkey EP3 isoforms couple to different G-proteins, each EP3 isoform was expressed in Chinese hamster ovary (CHO) cells, and intracellular signals were examined after stimulation with the EP3 agonist sulprostone. Stimulation of EP3 isoform 5 (EP3-5) reduced cyclic adenosine monophosphate (cAMP) in a pertussis toxin-sensitive manner, indicating involvement of Gαi. Stimulation of EP3-9 increased cAMP, which was reduced by the general G-protein inhibitor GDP-β-S, and also increased intracellular calcium, which was reduced by pertussis toxin and GDP-β-S. So, EP3-9 likely couples to both Gαs and a pertussis toxin-sensitive G-protein to regulate intracellular signals. Stimulation of EP3-14 increased cAMP, which was further increased by pertussis toxin, so EP3-14 likely regulates cAMP via multiple G-proteins. Granulosa cell expression of all EP3 isoforms increased in response to an ovulatory dose of hCG. Two EP3 isoforms were differentially expressed in functional subpopulations of granulosa cells. EP3-5 was low in granulosa cells at the follicle apex while EP3-9 was high in cumulus granulosa cells. Differential expression of EP3 isoforms may yield different intracellular responses to prostaglandin E2 in granulosa cell subpopulations, contributing to the different roles played by granulosa cell subpopulations in the process of ovulation. PMID:24062570

  3. Effects of a trichothecene, T-2 toxin, on proliferation and steroid production by porcine granulosa cells.

    PubMed

    Caloni, Francesca; Ranzenigo, Giovanni; Cremonesi, Fausto; Spicer, Leon J

    2009-09-01

    Fusarium mycotoxins, such as trichothecenes and zearalenone, are produced by molds and contaminate a large variety of grains and feedstuffs worldwide. Mycotoxins of Fusarium fungi include the trichothecenes, deoxynivalenol and T-2 toxin (T2), and zearalenone, and have been implicated in poor reproductive performance in pigs. However, direct ovarian effects of T2 toxin have not been reported. Therefore, porcine granulosa cells (GC) from small follicles (1-5mm) were cultured for 2 days in 5% fetal bovine serum and 5% porcine serum-containing medium followed by 2 days in serum-free medium containing various doses of FSH, insulin-like growth factor-I and T2 (at various doses/combinations) to evaluate the influence of T2 on steroid production and cell proliferation. T2 at 1, 3, 30 and 300 ng/mL completely inhibited FSH plus IGF-I-induced estradiol production, whereas 0.3 ng/mL of T2 inhibited estradiol production by 40%. Progesterone production was less sensitive to the inhibitory effects of T2 with 0.3 ng/mL having no effect and 1 ng/mL inhibiting progesterone production by only 30%. At 30 and 300 ng/mL, T2 completely inhibited FSH plus IGF-I-induced progesterone production. The impact of T2 on the dose-response to IGF-I (0, 3, 10 and 30 ng/mL) was also evaluated; T2 blunted the stimulatory effect of 3-30 ng/mL of IGF-I on steroid production and cell proliferation. Serum-induced granulosa cell proliferation was decreased (P<0.05) by 40% after 1 day and by 56% after 2 days of T2 treatment. The present studies indicate for the first time that T2 may be able to alter in growth of the granulosa layer within ovarian follicles in addition to their effect on steroidogenesis. In conclusion, T2 has potent direct dose-dependent effects on granulosa cell proliferation and steroidogenesis. These direct ovarian effects could be one mechanism whereby contaminating Fusarium mycotoxins in feedstuffs could impact reproductive performance in swine.

  4. Oocyte-granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth.

    PubMed

    Thomas, Fiona H; Vanderhyden, Barbara C

    2006-04-12

    Ovarian folliculogenesis is regulated by both endocrine and intraovarian mechanisms that coordinate the processes of oocyte growth and somatic cell proliferation and differentiation. Within the follicle, paracrine interactions between the oocyte and surrounding granulosa cells are critical for normal cell development and function. This review focuses on the role of paracrine interactions during early oocyte and follicular development that ensure proper coordination of oocyte and somatic cell function. Particular emphasis is given to granulosa cell-derived Kit Ligand (KitL), whose functional importance for oocyte growth has been demonstrated by a wide range of in vivo and in vitro studies. Reported interactions between KitL and oocyte-derived growth differentiation factor-9 (GDF9) and bone morphogenetic protein-15 (BMP15) suggest the molecular basis of oocyte-granulosa cell interactions, but also hint at the complexity of these communications. These paracrine interactions and the structure of the oocyte-granulosa cell interface are follicle stage-specific and regulated by FSH. Elucidation of the molecular mechanisms that promote the development of healthy oocytes with good developmental competence has potential applications for improving fertility and for in vitro growth systems for oocytes from domestic animals and humans.

  5. Chicken granulosa cells show differential expression of epidermal growth factor (EGF) and luteinizing hormone (LH) receptor messenger RNA and differential responsiveness to EGF and LH dependent upon location of granulosa cells to the germinal disc.

    PubMed

    Yao, H H; Bahr, J M

    2001-06-01

    Granulosa cells in the chicken follicle exhibit different phenotypes according to their location relative to the germinal disc (GD). Granulosa cells proximal to the GD (referred to as proximal granulosa cells) are more proliferative, whereas granulosa cells distal to the GD (referred to as distal granulosa cells) are more differentiated. We have shown that epidermal growth factor (EGF) derived from the GD stimulated proliferation of granulosa cells proximal to the GD, whereas extraovarian LH promoted differentiation. We tested the hypothesis that phenotypic differences of granulosa cells are the result of differential responsiveness of granulosa cells to EGF and LH. We found that both granulosa and theca layers of chicken preovulatory follicles expressed mRNA for EGF receptor (EGFr) by polymerase chain reaction (PCR) analysis. However, only the granulosa layer showed differential expression of EGFr and LH receptor (LHr) mRNA. Competitive reverse transcription-PCR revealed that proximal granulosa cells expressed more EGFr mRNA but less LHr mRNA than distal granulosa cells. In addition, proximal granulosa cells proliferated more in response to EGF than their distal counterparts. We further demonstrated that EGF decreased LHr mRNA expression by granulosa cells in a dose-dependent manner, whereas EGF and LH had no effect on EGFr mRNA expression except at one dose of LH (15 ng/ml) that stimulated EGFr mRNA expression. Our findings suggest that EGF derived from the GD influences the phenotypes of granulosa cells. Granulosa cells proximal to the GD exhibit a proliferative phenotype possibly because they are exposed to and are more responsive to GD-derived EGF. Furthermore, GD-derived EGF decreases LHr mRNA expression by proximal granulosa cells and therefore results in less differentiated granulosa cell phenotype. In contrast, granulosa cells distal to the GD are not under the influence of EGF and exhibit a more differentiated phenotype.

  6. Presence of LH receptor mRNA in granulosa cells as a potential marker of oocyte developmental competence and characterization of the bovine splicing isoforms.

    PubMed

    Robert, C; Gagné, D; Lussier, J G; Bousquet, D; Barnes, F L; Sirard, M-A

    2003-03-01

    As the expression of the LH receptor (LH-R) in granulosa cells is thought to be associated with later stages of folliculogenesis, this study was undertaken to evaluate the presence of LH-R mRNA as a suitable marker for developmental competence of oocytes. Granulosa cells and cumulus-oocyte complexes (COCs) were recovered from cows that had received ovarian stimulation. The COCs were subjected to embryo production procedures in vitro to assess the embryonic potential of the oocyte, and the corresponding granulosa cells were used to evaluate the presence of LH-R mRNA by RT-PCR. The presence of LH-R transcripts in granulosa cells is not a key characteristic of a follicle bearing a competent oocyte, although a higher proportion of oocytes reach the blastocyst stage when LH-R mRNA is detected in the granulosa cells. Different LH-R isoforms were cloned and sequence discrepancies among six of the isoforms enabled the design of specific oligonucleotides to study the presence of the isoforms in different follicular cells. All LH-R transcripts studied and the 80 kDa protein product corresponding to the full length receptor were found in granulosa cells of small (< 4 mm) and large (> 5 mm) follicles. When the granulosa cells were cultured, the transcripts were downregulated by the culture conditions; downregulation was more acute in granulosa cells from small follicles. The addition of LH to the culture media enhanced LH-R mRNA downregulation. The presence of several LH-R transcript isoforms was tissue specific and in the theca cells LH-R mRNA was restricted mainly to cells from larger follicles. This finding indicates that the expression and the splicing of LH-R mRNA are regulated in a cell-specific and follicular size-specific manner.

  7. Induction of Fas-Mediated Apoptosis by Interferon-γ is Dependent on Granulosa Cell Differentiation and Follicular Maturation in the Rat Ovary

    PubMed Central

    Lee, Hye-Jeong; Kim, Ji Young; Park, Ji Eun; Yoon, Yong-Dal; Tsang, Benjamin K.; Kim, Jong-Min

    2016-01-01

    ABSTRACT Fas ligand (FasL) and its receptor Fas have been implicated in granulosa cell apoptosis during follicular atresia. Although interferon-gamma (IFN-γ) is believed to be involved in the regulation Fas expression in differentiated granulosa or granulosa-luteal cells, the expression of this cytokine and its role in the regulation of the granulosa cell Fas/FasL system and apoptosis during follicular maturation have not been thoroughly investigated. In the present study, we have examined the presence of IFN-γ in ovarian follicles at different stage of development by immunohistochemistry and related their relative intensities with follicular expression of Fas and FasL, and with differences in granulosa cell sensitivity to Fas activation by exogenous agonistic Anti-Fas monoclonal antibody (Fas mAb). Although IFN-γ immunostaining was detectable in oocyte and granulosa cells in antral follicles, most intense immunoreactivity for the cytokine was observed in these cells of preantral follicles. Intense immunoreactivity for IFN-γ was most evident in granulosa cells of atretic early antral follicles where increased Fas and FasL expression and apoptosis were also observed. Whereas low concentrations of IFN-γ (10-100 U/mL) significantly increased Fas expression in undifferentiated granulosa cells (from preantral or very early antral follicles) in vitro, very higher concentrations (≥ 1,000 U/mL) were required to up-regulate of Fas in differentiated cells isolated from eCG-primed (antral) follicles. Addition of agonistic Fas mAb to cultures of granulosa cells at the two stages of differentiation and pretreated with IFN-γ (100 U/mL) elicited morphological and biochemical apoptotic features which were more prominent in cells not previously exposed to the gonadotropin in vivo. These findings suggested that IFN-γ is an important physiologic intra-ovarian regulator of follicular atresia and plays a pivotal role in regulation of expression of Fas receptor and subsequent

  8. Differential display and suppressive subtractive hybridization used to identify granulosa cell messenger rna associated with bovine oocyte developmental competence.

    PubMed

    Robert, C; Gagné, D; Bousquet, D; Barnes, F L; Sirard, M A

    2001-06-01

    The main objective of this study was to identify mRNA expressed in the granulosa cells characterizing differentiated follicles bearing developmentally competent bovine oocytes. Analytical comparisons were made on mRNA pools of granulosa cells using differential display reverse transcription polymerase chain reaction (DDRT) analysis and suppressive subtractive hybridization (SSH). With DDRT, mRNA patterns of granulosa cells from small (< 4 mm) and large (> 8 mm) follicles cultured in the presence or absence of LH were compared to identify mRNA associated with follicular size or with the LH response. Nine clones were sequenced, and two were identified. One of the clones, DRAK 1, was associated with the presence of LH in the medium. Other comparisons directed toward the identification of mRNA associated with the presence of a competent oocyte were done on granulosa cells collected in vivo from superstimulated heifers. With the DDRT analysis, four clones associated with the oocyte developmental competence status were identified. With the SSH analysis, four clones specific to the presence of an incompetent oocyte were sequenced and none were identified, whereas 49 clones specific to the presence of a competent oocyte were sequenced and 18 were identified. Among these clones, early growth response 1, sprouty 2, cytochrome C oxidase, matrix metalloproteinase inducer, matrix metalloproteinase, epiregulin, prostaglandin receptor, and progesterone receptor were the most relevant to the ovarian physiology being examined.

  9. Cumulus and granulosa cell markers of oocyte and embryo quality

    PubMed Central

    Uyar, Asli; Torrealday, Saioa; Seli, Emre

    2013-01-01

    Lack of an objective, accurate, and noninvasive embryo assessment strategy remains one of the major challenges encountered in in vitro fertilization. Cumulus and mural granulosa cells reflect the characteristics of the oocyte, providing a noninvasive means to assess oocyte quality. Specifically, transcriptomic profiling of follicular cells may help identify biomarkers of oocyte and embryo competence. Current transcriptomics technologies include quantitative reverse transcriptase–polymerase chain reaction (qRT-PCR) for analysis of individual genes and microarrays and high-throughput deep sequencing for whole genome expression profiling. Recently, using qRT-PCR and microarray technologies, a multitude of studies correlated changes in cumulus or granulosa cell gene expression with clinically relevant outcome parameters, including in vitro embryo development and pregnancy. While the initial findings are promising, a clinical benefit from the use of identified biomarker genes remains to be demonstrated in randomized controlled trials. PMID:23498999

  10. Modulation of cultured porcine granulosa cell responsiveness to follicle stimulating hormone and epidermal growth factor

    SciTech Connect

    Buck, P.A.

    1986-01-01

    Ovarian follicular development is dependent upon the coordinated growth and differentiation of the granulosa cells which line the follicle. Follicle stimulating hormone (FSH) induces granulosa cell differentiation both in vivo and in vitro. Epidermal growth factor (EGF) stimulates granulosa cell proliferation in vitro. The interaction of these two effectors upon selected parameters of growth and differentiation was examined in monolayer cultures of porcine granulose cells. Analysis of the EGF receptor by /sup 125/I-EGF binding revealed that the receptor was of high affinity with an apparent dissociation constant of 4-6 x 10/sup -10/ M. The average number of receptors per cell varied with the state of differentiation both in vivo and in vitro; highly differentiated cells bound two-fold less /sup 125/I-EGF and this effect was at least partially induced by FSH in vitro. EGF receptor function was examined by assessing EGF effects on cell number and /sup 3/H-thymidine incorporation. EGF stimulated thymidine incorporation in both serum-free and serum-supplemented culture, but only in serum-supplemented conditions was cell number increased. EGF receptor function was inversely related to the state of differentiation and was attenuated by FSH. The FSH receptor was examined by /sup 125/I-FSH binding. EGF increased FSH receptor number, and lowered the affinity of the receptor. The function of these receptors was assessed by /sup 125/I-hCG binding and progesterone radioimmunoassay. If EGF was present continuously in the cultures. FSH receptor function was attenuated regardless of FSH receptor number. A preliminary effort to examine the mechanism of this interaction was performed by analyzing hormonally controlled protein synthesis with /sup 35/S-methionine labeling, SDS polyacrylamide gel electrophoresis and fluorography. FSH promoted the expression of a 27,000 dalton protein. This effect was attenuated by EGF.

  11. Effects of melatonin on the proliferation and apoptosis of sheep granulosa cells under thermal stress.

    PubMed

    Fu, Yao; He, Chang-Jiu; Ji, Peng-Yun; Zhuo, Zhi-Yong; Tian, Xiu-Zhi; Wang, Feng; Tan, Dun-Xian; Liu, Guo-Shi

    2014-11-14

    The cross-talk between oocyte and somatic cells plays a crucial role in the regulation of follicular development and oocyte maturation. As a result, granulosa cell apoptosis causes follicular atresia. In this study, sheep granulosa cells were cultured under thermal stress to induce apoptosis, and melatonin (MT) was examined to evaluate its potential effects on heat-induced granulosa cell injury. The results demonstrated that the Colony Forming Efficiency (CFE) of granulosa cells was significantly decreased (heat 19.70% ± 1.29% vs. control 26.96% ± 1.81%, p < 0.05) and the apoptosis rate was significantly increased (heat 56.16% ± 13.95% vs. control 22.80% ± 12.16%, p < 0.05) in granulosa cells with thermal stress compared with the control group. Melatonin (10⁻⁷ M) remarkably reduced the negative effects caused by thermal stress in the granulosa cells. This reduction was indicated by the improved CFE and decreased apoptotic rate of these cells. The beneficial effects of melatonin on thermal stressed granulosa cells were not inhibited by its membrane receptor antagonist luzindole. A mechanistic exploration indicated that melatonin (10⁻⁷ M) down-regulated p53 and up-regulated Bcl-2 and LHR gene expression of granulosa cells under thermal stress. This study provides evidence for the molecular mechanisms of the protective effects of melatonin on granulosa cells during thermal stress.

  12. Growth differentiation factor 8 suppresses cell proliferation by up-regulating CTGF expression in human granulosa cells.

    PubMed

    Chang, Hsun-Ming; Pan, Hui-Hui; Cheng, Jung-Chien; Zhu, Yi-Min; Leung, Peter C K

    2016-02-15

    Connective tissue growth factor (CTGF) is a matricellular protein that plays a critical role in the development of ovarian follicles. Growth differentiation factor 8 (GDF8) is mainly, but not exclusively, expressed in the mammalian musculoskeletal system and is a potent negative regulator of skeletal muscle growth. The aim of this study was to investigate the effects of GDF8 and CTGF on the regulation of cell proliferation in human granulosa cells and to examine its underlying molecular determinants. Using dual inhibition approaches (inhibitors and small interfering RNAs), we have demonstrated that GDF8 induces the up-regulation of CTGF expression through the activin receptor-like kinase (ALK)4/5-mediated SMAD2/3-dependent signaling pathways. In addition, the increase in CTGF expression contributes to the GDF8-induced suppressive effect on granulosa cell proliferation. Our findings suggest that GDF8 and CTGF may play critical roles in the regulation of proliferative events in human granulosa cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Apoptosis of bovine granulosa cells: Intracellular pathways and differentiation.

    PubMed

    Carou, M C; Cruzans, P R; Maruri, A; Farina, M G; Fiorito, C D; Olea, G; Lombardo, D M

    2017-06-01

    Follicular atresia in granulosa and theca cells occurs by apoptosis through weak hormonal stimulation. We have previously proposed an in vitro model to study this process by inducing apoptosis in BGC-1, a bovine granulosa cell line, and in primary cultures from ovaries with or without corpus luteum (CPGB+ and CPGB-, respectively), with different doses of gonadotropin releasing hormone (GnRH) analogs (leuprolide acetate (LA) as agonist and antide as antagonist). BGC-1 represent immature granulosa cells, whereas CPGB represent different degrees of luteinization. Our aim was to evaluate the intracellular pathways involved in the GnRH regulation of apoptosis in BGC-1. Treatment with LA 100nM but not with antide led to an increase in BAX over BCL-2 expression, showing antagonism of antide. All treatments inhibited phospholipase-D (PLD) activity compared to control, implying agonist behavior of antide. Progesterone in vitro production and 3β-hydroxysteroid dehydrogenase (3β-HSD) expression revealed different degrees of luteinization: BGC-1 were immature, whereas CPGB+ were less differentiated than CPGB-. We concluded that LA-induced apoptosis in BGC-1 occurs by activation of the mitochondrial pathway and by inhibition of PLD activity and that antide might work both as an antagonist of the intrinsic pathway and as an agonist of the extrinsic protection pathway by inhibiting PLD activity. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Paclitaxel and Carboplatin or Bleomycin Sulfate, Etoposide Phosphate, and Cisplatin in Treating Patients With Advanced or Recurrent Sex Cord-Ovarian Stromal Tumors

    ClinicalTrials.gov

    2016-03-16

    Ovarian Granulosa Cell Tumor; Ovarian Gynandroblastoma; Ovarian Sertoli-Leydig Cell Tumor; Ovarian Sex Cord Tumor With Annular Tubules; Ovarian Sex Cord-Stromal Tumor; Ovarian Sex Cord-Stromal Tumor of Mixed or Unclassified Cell Types; Ovarian Steroid Cell Tumor

  15. Granulosa cells express three inositol 1,4,5-trisphosphate receptor isoforms: cytoplasmic and nuclear Ca2+ mobilization

    PubMed Central

    Díaz-Muñoz, Mauricio; de la Rosa Santander, Patricia; Juárez-Espinosa, Anna Berenice; Arellano, Rogelio O; Morales-Tlalpan, Verónica

    2008-01-01

    Background Granulosa cells play an important endocrine role in folliculogenesis. They mobilize Ca2+ from intracellular stores by a coordinated action between 1,4,5 inositol trisphosphate and ryanodine receptors (IP3R and RyR). The aim of this study was to explore the isoforms of IP3Rs expressed in mouse C57BL/6 NHsd granulosa cells, characterizing their intranuclear localization and the relation with other Ca2+-handling proteins. Methods Ovarian tissue and granulosa cells were analyzed by multiphotonic and confocal microscopy to determine the intracellular presence of IP3R types 1, 2 and 3, RyR, thapsigargin-sensitive Ca2+-ATPase, and endomembranes. Cellular fractionation and Western blot assays were also used to further confirm the nuclear occurrence of the three IP3R isoforms. Free nuclear and cytosolic Ca2+ concentrations were measured using Fluo-4 AM by confocal microscopy. Results By using antibodies and specific fluorophores, was shown that granulosa cells endomembranes contain three isoforms of IP3R, the RyR, and the thapsigargin-sensitive Ca2+-ATPase (SERCA). Interestingly, all these proteins were also detected in the nuclear envelope and in well-defined intranuclear structures. Microsomal membranes depicted characteristic bands of the 3 types of IP3R, but also variants of lower molecular weight. Analysis of nuclear membranes and nucleoplasmic fraction confirmed the nuclear localization of the IP3R types 1, 2 and 3. We demonstrated ATP-induced Ca2+ transients in the nuclear and cytoplasmic compartments. Remarkably, the inhibitory effect on ATP-induced Ca2+ mobilization of brefeldin A was more accentuated in the cytoplasm than in the nucleus. Conclusion These findings provide evidence that granulosa cells, including nuclei, express the Ca2+-handling proteins that allow Ca2+ mobilization. All three IP3R were also detected in ovarian slices, including the nuclei of granulosa cells, suggesting that these cells use the three IP3R in situ to achieve their

  16. Proliferation of granulosa and thecal cells in germinal disc and non-disc regions during follicular growth in Japanese quail (Coturnix coturnix japonica): bromodeoxyuridine incorporation in situ.

    PubMed

    Yoshimura, Y; Okamoto, T; Tamura, T

    1996-05-01

    Proliferation of granulosa and thecal cells was analysed during ovarian follicular growth in laying Japanese quail. The birds were injected intraperitoneally with bromodeoxyuridine (BrdU) 10 or 4 h before ovulation, that is, before or after a preovulatory LH surge, respectively, and incorporation of BrdU by follicular tissues was detected immunocytochemically. Cells labelled with BrdU were seldom seen in the most immature follicles in the ovarian cortex, whereas many granulosa and thecal cells were labelled with BrdU in medium-sized white yolky follicles (approximately 13.3% and 14.4% in granulosa and theca layers, respectively). Ten and four hours before ovulation, the granulosa cells in the germinal disc and non-disc regions of the third largest yellow yolky follicle (F3) were labelled with BrdU (approximately 8.4% and 9.4% in germinal disc; 6.1% and 9.0% in the non-disc region), but only those in the germinal disc region were labelled (approximately 5.4% and 4.0%) in the largest yellow yolky follicle (F1). The percentage of thecal cells labelled with BrdU 4 h before ovulation was significantly higher than the percentage labelled 10 h before ovulation, and was higher in F3 (approximately 11.7%) than in F1 follicles (approximately 5.4%) 4 h before ovulation. These results show that proliferation of granulosa and thecal cells occurs in both germinal disc and non-disc regions in growing follicles, but when a follicle matures proliferation is reduced and in the case of granulosa cells it is restricted to the germinal disc region.

  17. Effects of nicotine administration on elemental concentrations in mouse granulosa cells, maturing oocytes and oviduct epithelium studied by X-ray microanalysis.

    PubMed

    Jin, Z; Jin, M; Nilsson, B O; Roomans, G M

    1998-10-01

    A normal maturation of the oocytes is dependent upon, among other things, normally functioning granulosa and corona radiata cells. Analyses performed during human in vitro fertilization programs have revealed that, in smokers, ovarian functions are affected and that smokers have a decreased fertilization rate. Further, animal studies have indicated that nicotine can reach the genital tractus, and that nicotine administration interferes with oocyte maturation, fertilization and early pregnancy. We applied X-ray microanalysis to monitor whether nicotine administration changed the ionic balance of cells in the reproductive tract (granulosa cells, oocytes and oviduct epithelial cells). The animals were given nicotine in the drinking water at a concentration of 108 mumol/l. After 15 days the animals were superovulated, ovaries and oviducts were frozen, and thick cryosections were prepared for energy-dispersive X-ray microanalysis. In the granulosa cells, the concentrations of Na and Cl increased after nicotine treatment, while the K concentrations decreased resulting in an increased Na/K ratio. The treated oocytes had a higher K concentration and a decreased Na/K ratio compared to the controls. In the epithelial cells of the oviduct, the concentrations of Na and K decreased after nicotine treatment without any changes in the Na/K ratio. Thus, heavy nicotine administration to mice causes significant changes in the ionic composition of the granulosa cells, the ovarian oocytes and the oviduct epithelium.

  18. Epithelialization and stromalization of porcine follicular granulosa cells during real-time proliferation - a primary cell culture approach.

    PubMed

    Ciesiółka, S; Bryja, A; Budna, J; Kranc, W; Chachuła, A; Bukowska, D; Piotrowska, H; Porowski, L; Antosik, P; Bruska, M; Brüssow, K P; Nowicki, M; Zabel, M; Kempisty, B

    2016-01-01

    The process of oocyte growth and development takes place during long stages of folliculogenesis and oogenesis. This is accompanied by biochemical and morphological changes, occurring from the preantral to antral stages during ovarian follicle differentiation. It is well known that the process of follicle growth is associated with morphological modifications of theca (TCs) and granulosa cells (GCs). However, the relationship between proliferation and/or differentiation of porcine GCs during long-term in vitro culture requires further investigation. Moreover, the expression of cytokeratins and vimentin in porcine GCs, in relation to real-time cell proliferation, has yet to be explored. Utilizing confocal microscopy, we analyzed cytokeratin 18 (CK18), cytokeratin 8 + 18 + 19 (panCK), and vimentin (Vim) expression, as well as their protein distribution, within GCs isolated from slaughtered ovarian follicles. The cells were cultured for 168 h with protein expression and cell proliferation index analyzed at 24-h intervals. We found the highest expression of CK18, panCK, and Vim occurred at 120 h of in vitro culture (IVC) as compared with other experimental time intervals. All of the investigated proteins displayed cytoplasmic distribution. Analysis of real-time cell proliferation revealed an increased cell index after the first 24 h of IVC. Additionally, during each period between 24-168 h of IVC, a significant difference in the proliferation profile, expressed as the cell index, was also observed. We concluded that higher expression of vimentin at 120 h of in vitro proliferation might explain the culmination of the stromalization process associated with growth and domination of stromal cells in GC culture. Cytokeratin expression within GC cytoplasm confirms the presence of epithelial cells as well as epithelial-related GC development during IVC. Moreover, expression of both cytokeratins and vimentin during short-term culture suggests that the process of GC proliferation

  19. Direct antigonadal activity of cannabinoids: suppression of rat granulosa cell functions.

    PubMed

    Adashi, E Y; Jones, P B; Hsueh, A J

    1983-02-01

    The direct effects of delta 9-tetrahydrocannabinol (THC) and related cannabinoids on ovarian granulosa cells were studied in vitro. Granulosa cells from immature, hypophysectomized, estrogen-treated rats were cultured for 2 days in an androstenedione-supplemented medium in the presence or absence of follicle-stimulating hormone (FSH) (10 ng/ml) with or without cannabinoids. FSH treatment increased progesterone and estrogen biosynthesis, whereas concomitant treatment with THC led to a dose-dependent inhibition of the FSH-stimulated accumulation of progesterone and estrogen with ED50 values of 3.5 +/- 0.3 X 10(-7) and 1.8 +/- 0.2 X 10(-6) M, respectively. Treatment with related but nonpsychoactive cannabinoids (cannabidiol, cannabinol, cannabigerol, or cannabichromene) was equally effective. The THC-induced inhibition of progesterone production was reversible and was associated with an inhibition of pregnenolone biosynthesis and a decrease of 3 beta-hydroxysteroid dehydrogenase activity. In addition, treatment with THC brought about a dose-dependent inhibition of the FSH-induced increase in luteinizing hormone (LH) receptors. The inhibitory effects of THC were not associated with changes in cell number, protein content, or cell viability. Thus, THC exerts direct inhibitory effects on FSH-dependent functions related to steroidogenesis and the acquisition of LH receptors, all of which are essential to follicular maturation. Because plasma concentrations of THC similar to those used in this study have been reported in human beings, repeated exposure of female users to THC may lead to ovarian dysfunction, due in part, to the direct antigonadal activity to THC.

  20. Granulosa cell-oocyte interactions: the phosphorylation of specific proteins in mouse oocytes at the germinal vesicle stage is dependent upon the differentiative state of companion somatic cells

    SciTech Connect

    Cecconi, S.; Tatone, C.; Buccione, R.; Mangia, F.; Colonna, R. )

    1991-05-01

    The role of granulosa cells in the regulation of mouse ovarian oocyte metabolism was investigated. Fully grown antral oocytes, isolated from surrounding cumulus cells, were cultured on monolayers of preantral granulosa cells in the presence of dbcAMP to prevent the resumption of meiosis. Under these conditions metabolic cooperativity was established between the two cell types as early as 1 hr after seeding. Moreover, cocultured oocytes phosphorylated two polypeptides of 74 and 21 kDa which are normally phosphorylated in follicle-enclosed growing oocytes but not in cumulus cell-enclosed fully grown oocytes at the germinal vesicle stage. When cocultured oocytes were allowed to resume meiosis, the 74 and 21 kDa proteins were synthesized but no longer phosphorylated even though intercellular coupling between the two cell types was maintained during radiolabeling. It appears therefore: (a) that the different protein kinase activity of growing and fully grown germinal vesicle-stage mouse oocytes is related to the differentiative state of granulosa cells, and (b) that the regulation of oocyte protein phosphorylation activity by granulosa cells is dependent on the meiotic stage of the oocyte.

  1. FOXL2 posttranslational modifications mediated by GSK3β determine the growth of granulosa cell tumours.

    PubMed

    Kim, Jae-Hong; Kim, Yong-Hak; Kim, Hong-Man; Park, Ho-Oak; Ha, Nam-Chul; Kim, Tae Heon; Park, Mira; Lee, Kangseok; Bae, Jeehyeon

    2014-01-01

    Approximately 97% of patients with ovarian granulosa cell tumours (GCTs) bear the C134W mutation in FOXL2; however, the pathophysiological mechanism of this mutation is unknown. Here we report how this mutation affects GCT development. Sequential posttranslational modifications of the C134W mutant occur where hyperphosphorylation at serine 33 (S33) by GSK3β induces MDM2-mediated ubiquitination and proteasomal degradation. In contrast, S33 of wild-type FOXL2 is underphosphorylated, leading to its SUMOylation and stabilization. This prominent hyperphosphorylation is also observed at S33 of FOXL2 in GCT patients bearing the C134W mutation. In xenograft mice, the S33 phosphorylation status correlates with the oncogenicity of FOXL2, and the inhibition of GSK3β efficiently represses GCT growth. These findings reveal a previously unidentified regulatory mechanism that determines the oncogenic attributes of the C134W mutation via differential posttranslational modifications of FOXL2 in GCT development.

  2. Regulation of granulosa cell cocaine and amphetamine regulated transcript (CART) binding and effect of CART signaling inhibitor on granulosa cell estradiol production during dominant follicle selection in cattle.

    PubMed

    Folger, Joseph K; Jimenez-Krassel, Fermin; Ireland, James J; Lv, Lihua; Smith, George W

    2013-12-01

    We previously established a potential role for cocaine and amphetamine regulated transcript (CARTPT) in dominant follicle selection in cattle. CARTPT expression is elevated in subordinate versus dominant follicles, and treatment with the mature form of the CARTPT peptide (CART) decreases follicle-stimulating hormone (FSH)-stimulated granulosa cell estradiol production in vitro and follicular fluid estradiol and granulosa cell CYP19A1 mRNA in vivo. However, mechanisms that regulate granulosa cell CART responsiveness are not understood. In this study, we investigated hormonal regulation of granulosa cell CART-binding sites in vitro and temporal regulation of granulosa cell CART-binding sites in bovine follicles collected at specific stages of a follicular wave. We also determined the effect of inhibition of CART receptor signaling in vivo on estradiol production in future subordinate follicles. Granulosa cell CART binding in vitro was increased by FSH, and this induction was blocked by estrogen receptor antagonist treatment. In follicles collected in vivo at specific stages of a follicular wave, granulosa cell CART binding in the F2 (second largest), future subordinate follicle increased during dominant follicle selection. Injection into the F2 follicle (at onset of diameter deviation) of an inhibitor of the o/i subclass of G proteins (previously shown to block CART actions in vitro) resulted in increased follicular fluid estradiol concentrations in vivo. Collectively, results demonstrate hormonal regulation of granulosa cell CART binding in vitro and temporal regulation of CART binding in subordinate follicles during dominant follicle selection. Results also suggest that CART signaling may help suppress estradiol-producing capacity of the F2 (subordinate) follicle during this time period.

  3. Juvenile granulosa cell tumor associated with Ollier disease

    PubMed Central

    Sampagar, Abhilasha Ashok; Jahagirdar, Rahul R.; Bafna, Vibha Sanjay; Bartakke, Sandip P.

    2016-01-01

    Juvenile granulosa cell tumor (JGCT) is a rare neoplasm of childhood. Interestingly, it is known to be associated with Ollier disease, which is a rare bone disease characterized by multiple enchondromatosis. There is paucity of literature about the co-occurence of these two conditions. However, this association is noteworthy because these two conditions share a common pathogenesis. We report a case of JGCT in a 2.5-year-old female child in which multiple enchondromas mimicking bony metastasis were an incidental finding during routine workup for tumor staging, thus leading to a diagnosis of Ollier disease. PMID:28144098

  4. Effect of epidermal growth factor on follicle-stimulating hormone-induced proliferation of granulosa cells from chicken prehierarchical follicles.

    PubMed

    Lin, Jin-xing; Jia, Yu-dong; Zhang, Cai-qiao

    2011-11-01

    The development of ovarian follicular cells is controlled by multiple circulating and local hormones and factors, including follicle-stimulating hormone (FSH) and epidermal growth factor (EGF). In this study, the stage-specific effect of EGF on FSH-induced proliferation of granulosa cells was evaluated in the ovarian follicles of egg-laying chickens. Results showed that EGF and its receptor (EGFR) mRNAs displayed a high expression in granulosa cells from the prehierarchical follicles, including the large white follicle (LWF) and small yellow follicle (SYF), and thereafter the expression decreased markedly to the stage of the largest preovulatory follicle. SYF represents a turning point of EGF/EGFR mRNA expression during follicle selection. Subsequently the granulosa cells from SYF were cultured to reveal the mediation of EGF in FSH action. Cell proliferation was remarkably increased by treatment with either EGF or FSH (0.1-100 ng/ml). This result was confirmed by elevated proliferating cell nuclear antigen (PCNA) expression and decreased cell apoptosis. Furthermore, EGF-induced cell proliferation was accompanied by increased mRNA expressions of EGFR, FSH receptor, and the cell cycle-regulating genes (cyclins D1 and E1, cyclin-dependent kinases 2 and 6) as well as decreased expression of luteinizing hormone receptor mRNA. However, the EGF or FSH-elicited effect was reversed by simultaneous treatment with an EGFR inhibitor AG1478. In conclusion, EGF and EGFR expressions manifested stage-specific changes during follicular development and EGF mediated FSH-induced cell proliferation and retarded cell differentiation in the prehierarchical follicles. These expressions thus stimulated follicular growth before selection in the egg-laying chicken.

  5. Expression of neurokinin B/NK3 receptor and kisspeptin/KISS1 receptor in human granulosa cells.

    PubMed

    García-Ortega, J; Pinto, F M; Fernández-Sánchez, M; Prados, N; Cejudo-Román, A; Almeida, T A; Hernández, M; Romero, M; Tena-Sempere, M; Candenas, L

    2014-12-01

    Are neurokinin B (NKB), NK3 receptor (NK3R), kisspeptin (KISS1) and kisspeptin receptor (KISS1R) expressed in human ovarian granulosa cells? The NKB/NK3R and kisspeptin/KISS1R systems are co-expressed and functionally active in ovarian granulosa cells. The NKB/NK3R and KISS1/KISS1R systems are essential for reproduction. In addition to their well-recognized role in hypothalamic neurons, these peptide systems may contribute to the control of fertility by acting directly on the gonads, but such a direct gonadal role remains largely unknown. This study analyzed matched mural granulosa cells (MGCs) and cumulus cells (CCs) collected from preovulatory follicles of oocyte donors at the time of oocyte retrieval. The samples were provided by 56 oocyte donor women undergoing ovarian stimulation treatment. Follicular fluid samples containing MGCs and cumulus-oocyte complexes were collected after transvaginal ultrasound-guided oocyte retrieval. RT-PCR, quantitative real-time PCR, immunocytochemistry and western blot were used to investigate the pattern of expression of the NKB/NK3R and KISS/KISS1R systems in MGCs and CCs. Intracellular free Ca(2+) levels, [Ca(2+)]i, in MGCs after exposure to NKB or KISS1, in the presence or not of tachykinin receptor antagonists, were also measured. NKB/NK3R and KISS1/KISS1R systems were expressed, at the mRNA and protein levels, in MGCs and CCs, with significantly higher expression in CCs. Kisspeptin increased the [Ca(2+)]i in the cytosol of human MGCs while exposure to NKB failed to induce any change in [Ca(2+)]i. However, the [Ca(2+)]i response to kisspeptin was reduced in the presence of NKB. The inhibitory effect of NKB was only partially mimicked by the NK3R agonist, senktide and marginally suppressed by the NK3R-selective antagonist SB 222200. Yet, a cocktail of antagonists selective for the NK1, NK2 and NK3 receptors blocked the effect of NKB. The granulosa and cumulus cells were obtained from oocyte donors undergoing ovarian

  6. Granulosa cells and retinoic acid co-treatment enrich potential germ cells from manually selected Oct4-EGFP expressing human embryonic stem cells.

    PubMed

    Chen, Hsin-Fu; Jan, Pey-Shynan; Kuo, Hung-Chih; Wu, Fang-Chun; Lan, Chen-Wei; Huang, Mei-Chi; Chien, Chung-Liang; Ho, Hong-Nerng

    2014-09-01

    Differentiation of human embryonic stem (HES) cells to germ cells may become clinically useful in overcoming diseases related to germ-cell development. Niches were used to differentiate HES cell lines, NTU1 and H9 Oct4-enhanced green fluorescence protein (EGFP), including laminin, granulosa cell co-culture or conditioned medium, ovarian stromal cell co-culture or conditioned medium, retinoic acid, stem cell factor (SCF) and BMP4-BMP7-BMP8b treatment. Flow cytometry showed that granulosa cell co-culture (P < 0.001) or conditioned medium (P = 0.007) treatment for 14 days significantly increased the percentages of differentiated H9 Oct4-EGFP cells expressing early germ cell marker stage-specific embryonic antigen 1(SSEA1); sorted SSEA1[+] cells did not express higher levels of germ cell gene VASA and GDF9. Manually collected H9 Oct4-EGFP[+] cells expressed significantly higher levels of VASA (P = 0.005) and GDF9 (P = 0.001). H9 Oct4-EGFP[+] cells developed to ovarian follicle-like structures after culture for 28 days but with low efficiency. Unlike SCF and BMP4, retinoic acid co-treatment enhanced VASA, GDF9 and SCP3 expression. A protocol is recommended to enrich differentiated HES cells with germ-cell potential by culture with granulosa cells, conditioned medium or retinoic acid, manual selection of Oct4-EGFP[+] cells, and analysis of VASA, GDF9 expression, or both. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  7. Induction of Ski Protein Expression upon Luteinization in Rat Granulosa Cells.

    PubMed

    Kim, Hyun; Kim, Dong Hun; Park, Soo Bong; Ko, Yeoung-Gyu; Kim, Sung-Woo; Do, Yoon Jun; Park, Jae-Hong; Yang, Boh-Suk

    2012-05-01

    Ski protein is implicated in proliferation/differentiation in a variety of cells. We had previously reported that Ski protein is present in granulosa cells of atretic follicles, but not in preovulatory follicles, suggesting that Ski has a role in apoptosis of granulosa cells. The alternative fate of granulosa cells other than apoptosis is to differentiate to luteal cells; however, it is unknown whether Ski is expressed and has a role in granulosa cells undergoing luteinization. Thus, the aim of the present study was to locate Ski protein in the rat ovary during luteinizationto predict the possible role of Ski. In order to examine the expression pattern of Ski protein along with the progress of luteinization, follicular growth was induced by administration of equine chorionic gonadtropin to immature female rats, and luteinization was induced by human chorionic gonadtropin treatment to mimic luteinizing hormone (LH) surge. While no Ski-positive granulosa cells were present in preovulatory follicle, Ski protein expression was induced in response to LH surge, and was maintained after the formation of the corpus luteum (CL). Though Ski protein is absent in granulosa cells of preovulatory follicle, its mRNA (c-Ski) was expressed and the level was unchanged even after LH surge. Taken together, these results demonstrated that Ski protein expression is induced in granulosa cells upon luteinization, and suggests that its expression is regulated post-transcriptionally.

  8. Ovotoxic Effects of Galactose Involve Attenuation of Follicle-Stimulating Hormone Bioactivity and Up-Regulation of Granulosa Cell p53 Expression

    PubMed Central

    Banerjee, Sayani; Chakraborty, Pratip; Saha, Piyali; Bandyopadhyay, Soma Aditya; Banerjee, Sutapa; Kabir, Syed N.

    2012-01-01

    Clinical evidence suggests an association between galactosaemia and premature ovarian insufficiency (POI); however, the mechanism still remains unresolved. Experimental galactose toxicity in rats produces an array of ovarian dysfunction including ovarian development with deficient follicular reserve and follicular resistance to gonadotrophins that characterize the basic tenets of human POI. The present investigation explores if galactose toxicity in rats attenuates the bioactivity of gonadotrophins or interferes with their receptor competency, and accelerates the rate of follicular atresia. Pregnant rats were fed isocaloric food-pellets supplemented with or without 35% D-galactose from day-3 of gestation and continuing through weaning of the litters. The 35-day old female litters were autopsied. Serum galactose-binding capacity, galactosyltransferase (GalTase) activity, and bioactivity of FSH and LH together with their receptor competency were assessed. Ovarian follicular atresia was evaluated in situ by TUNEL. The in vitro effects of galactose were studied in isolated whole follicles in respect of generation of reactive oxygen species (ROS) and expression of caspase 3, and in isolated granulosa cells in respect of mitochondrial membrane potential, expression of p53, and apoptosis. The rats prenatally exposed to galactose exhibited significantly decreased serum GalTase activity and greater degree of galactose-incorporation capacity of sera proteins. LH biopotency and LH-FSH receptor competency were comparable between the control and study population, but the latter group showed significantly attenuated FSH bioactivity and increased rate of follicular atresia. In culture, galactose increased follicular generation of ROS and expression of caspase 3. In isolated granulosa cells, galactose disrupted mitochondrial membrane potential, stimulated p53 expression, and induced apoptosis in vitro; however co-treatment with either FSH or estradiol significantly prevented

  9. Progesterone Signaling Mediated Through Progesterone Receptor Membrane Component-1 in Ovarian Cells with Special Emphasis on Ovarian Cancer

    PubMed Central

    Peluso, John J.

    2011-01-01

    Various ovarian cell types including granulosa cells and ovarian surface epithelial cells express the progesterone (P4) binding protein, Progesterone Receptor Membrane Component-1 (PGRMC1). PGRMC1 is also expressed in ovarian tumors. PGRMC1 plays an essential role in promoting the survival of both normal and cancerous ovarian cell in vitro. Given the clinical significance of factors that regulate the viability of ovarian cancer, this review will focus on the role of PGRMC1 in ovarian cancer, while drawing insights into the mechanism of PGRMC1’s action from cell lines derived from healthy ovaries as well as ovarian tumors. Studies using PGRMC1 siRNA demonstrated that P4’s ability to inhibit ovarian cells from undergoing apoptosis in vitro is dependent on PGRMC1. To confirm the importance of PGRMC1, the ability of PGRMC1-deplete ovarian cancer cell lines to form tumors in intact nude mice was assessed. Compared to PGRMC1-expressing ovarian cancer cells, PGRMC1-deplete ovarian cancer cells formed tumors in fewer mice (80% compared to 100% for controls). Moreover, the number of tumors derived from PGRMC1-deplete ovarian cancer cells was 50% of that observed in controls. Finally, the tumors that formed from PGRMC1-deplete ovarian cancer cells were about a fourth the size of tumors derived from ovarian cancer cells with normal levels of PGRMC1. One reason for PGRMC1-deplete tumors being smaller is that they had a poorly developed microvasculature system. How PGRMC1 regulates cell viability and in turn tumor growth is not known but part of the mechanism likely involves the regulation of genes that promote cell survival and inhibit apoptosis. PMID:21371489

  10. High fat diet triggers cell cycle arrest and excessive apoptosis of granulosa cells during the follicular development.

    PubMed

    Wu, Yanqing; Zhang, Zhenghong; Liao, Xinghui; Wang, Zhengchao

    2015-10-23

    The regulatory mechanism of granulosa cells (GCs) proliferation during the follicular development is complicated and multifactorial, which is essential for the oocyte growth and normal ovarian functions. To investigate the role of high fat diet (HFD) on the proliferation of GCs, 4-week old female mice were fed with HFD or normal control diet (NC) for 15 weeks or 20 weeks and then detected the expression level of some regulatory molecules of cell cycle and apoptosis. The abnormal ovarian morphology was observed at 20 weeks. Further mechanistic studies indicated that HFD induced-obesity caused elevated apoptotic levels in GCs of the ovaries in a time-dependent manner. Moreover, cell cycle progress was also impacted after HFD fed. The cell cycle inhibitors, p27(Kip1) and p21(Cip1), were significantly induced in the ovaries from the mice in HFD group when compared with that in the ovaries from the mice in NC group. Subsequently, the expression levels of Cyclin D1, D3 and CDK4 were also significantly influenced in the ovaries from the mice fed with HFD in a time-dependent manner. The present results suggested that HFD induced-obesity may trigger cell cycle arrest and excessive apoptosis of GCs, causing the abnormal follicular development and ovarian function failure.

  11. The modulatory role of transforming growth factor beta1 and androstenedione on follicle-stimulating hormone-induced gelatinase secretion and steroidogenesis in rat granulosa cells.

    PubMed

    Ke, Ferng-Chun; Chuang, Li-Chung; Lee, Ming-Ting; Chen, Yun Ju; Lin, Sui-Wen; Wang, Paulus S; Stocco, Douglas M; Hwang, Jiuan-Jiuan

    2004-05-01

    To investigate the potential roles of matrix metalloproteinases (MMPs) in ovarian granulosa cell differentiation, we studied the interactive effects of FSH and local ovarian factors, transforming growth factor beta1 (TGFbeta1) and androstenedione, on gelatinase secretion and progesterone production in rat ovarian granulosa cells. Granulosa cells of eCG-primed immature rats were treated once with various doses of FSH and TGFbeta1 and androstenedione alone or in combinations for 2 days. Conditioned media were analyzed for gelatinase activity using gelatin-zymography/densitometry and progesterone levels using enzyme immunoassay. Cell lysates were analyzed for steroidogenic acute regulatory (StAR) and cholesterol side-chain-cleavage (P450scc) enzyme protein levels. This study demonstrates for the first time that FSH dose-dependently increased the secretion of a major 63-kDa gelatinase and minor 92- and 67-kDa gelatinases. TGFbeta1 also dose-dependently increased the secretion of 63-kDa gelatinase, while androstenedione alone had no effect. The 92-kDa gelatinase was identified as the pro-MMP9 that could be cleaved by aminophenylmercuric acetate into the 83-kDa active form. Importantly, we show that TGFbeta1 and androgen act in an additive manner to enhance FSH stimulatory effects both on the secretion of gelatinases and the production of progesterone. We further show by immunoblotting that the enhancing effect of TGFbeta1 and androstenedione on FSH-stimulated steroidogenesis is partly mediated through the increased level of StAR protein and/or P450scc enzyme. In conclusion, this study indicates that, during antral follicle development, TGFbeta1 and androgen act to enhance FSH promotion of granulosa cell differentiation and that the process may involve the interplay of modulating cell- to-matrix/cell-to-cell interaction and steroidogenic activity.

  12. Apoptosis of bovine granulosa cells after serum withdrawal is mediated by Fas antigen (CD95) and Fas ligand.

    PubMed

    Hu, C L; Cowan, R G; Harman, R M; Porter, D A; Quirk, S M

    2001-02-01

    Ovarian follicular atresia occurs by apoptosis of granulosa and theca cells. The Fas antigen (Fas), a cell surface receptor that triggers apoptosis when activated by Fas ligand (FasL), may be involved in this process. A possible role of the Fas pathway in mediating serum withdrawal-induced apoptosis of granulosa cells was examined. Granulosa cells collected from 5- to 10-mm bovine follicles were cultured in DMEM-F12 containing serum for 3 days, deprived of serum, and live cells were counted at various times after serum withdrawal. Cell death increased significantly 6 h after serum withdrawal (21% +/- 7%; P: < 0.05 vs. 0 h) and continued to increase until 24 h (43% +/- 6%). No further increases in cell death were observed through 72 h. Detection of the translocation of phosphatidylserine to the outer surface of the cell membrane by annexin V binding indicated that cells died by apoptosis. Quantitative reverse transcriptase-polymerase chain reaction assays showed no changes in Fas mRNA levels but a 4.7-fold increase in FasL mRNA 3 h after serum withdrawal (P: < 0.05 vs. 0 h). FasL mRNA remained elevated through 24 h and returned to basal levels at 48 h. Immunohistochemical staining showed that both Fas and FasL protein increased on the cell surface within 3 h and remained elevated through 12 h (the last time point tested). Binding of FasL to Fas was blocked with two reagents that bind to the extracellular domain of FasL: an anti-FasL antibody and Fas:Fc, a chimeric protein consisting of the Fc portion of human immunoglobulin G and the extracellular domain of human Fas. Cell death 24 h after serum withdrawal was reduced 55% +/- 10% and 34% +/- 12% by anti-FasL antibody and Fas:Fc, respectively (P: < 0.05 vs. no blocking protein). In conclusion, serum withdrawal-induced apoptosis of bovine granulosa cells is mediated at least partially by Fas/FasL interactions. These results are consistent with a potential role of Fas in an autocrine or paracrine pathway to trigger

  13. Apelin (APLN) and Apelin Receptor (APLNR) in Human Ovary: Expression, Signaling, and Regulation of Steroidogenesis in Primary Human Luteinized Granulosa Cells.

    PubMed

    Roche, Jennifer; Ramé, Christelle; Reverchon, Maxime; Mellouk, Namya; Cornuau, Marion; Guerif, Fabrice; Froment, Pascal; Dupont, Joëlle

    2016-11-01

    Apelin (APLN) is a recently discovered adipokine involved in the regulation of various metabolic functions. Its receptor, APLNR, is expressed in reproductive tissues, however, its role in human ovarian cells is unknown. In this study, we identified APLN and APLNR in human ovarian follicles and analyzed their expression in granulosa cells and follicular fluid obtained from obese and nonobese patients, with or without polycystic ovary syndrome (PCOS). We also investigated the effect of APLN on steroidogenesis in cultured human luteinized granulosa cells (hGCs) from nonobese patients without PCOS. Using RT-PCR and immunoblotting, we found that APLN and APLNR were expressed in hGCs and cumulus and theca cells. We confirmed these data immunohistochemically and observed that APLNR and APLN are present in human oocytes at different stages of follicular development. In patients with PCOS, we observed that follicular fluid APLN concentration and granulosa cell APLN and APLNR mRNA expression was higher than that observed in control patients. In cultured hGCs from nonobese patients without PCOS, insulin-like growth factor 1 (IGF1) increased APLNR expression, and recombinant human APLN (APLN-13 and APLN-17) increased both basal and IGF1-induced steroid secretion. These effects on steroid production were reversed when cultured in the presence of ML221, an APLNR antagonist, which was associated with an increased 3beta-hydrosteroid dehydrogenase (HSD3B) protein concentration. We showed that these effects were dependent on the activation of the AKT and MAPK3/1 pathways using pharmacological inhibitors. Our results show that APLN and APLNR are present in human ovarian cells and APLN increases IGF1-induced steroidogenesis in granulosa cells through an increase in HSD3B protein expression and activation of the MAPK3/1 and Akt pathways. Therefore, APLN and APLNR may play a role in human follicular development and the pathogenesis of PCOS. © 2016 by the Society for the Study of

  14. Potassium channel antagonists influence porcine granulosa cell proliferation, differentiation, and apoptosis.

    PubMed

    Manikkam, Mohan; Li, Yan; Mitchell, Brianna M; Mason, Diane E; Freeman, Lisa C

    2002-07-01

    This investigation determined the effects of K(+) channel antagonists on proliferation, differentiation, and apoptosis of porcine granulosa cells. The drugs screened for functional effects included the class III antiarrhythmic agents MK-499 and clofilium, the chromanol I(Ks) antagonist 293B, the benzodiazepine I(Ks) antagonists L-735,821 and L-768,673, and the peptidyl toxins charybdotoxin (CTX) and margatoxin (MTX). Granulosa cell proliferation and differentiation were assessed by serial measurements of cell number and progesterone accumulation in the culture media, respectively. Granulosa cell apoptosis was evaluated using flow cytometry. Additional information about drug effects was obtained by immunoblotting to detect expression of proliferating cell nuclear antigen, p27(kip1) and the caspase-3 substrate poly(ADP-ribose) polymerase. The ERG channel antagonist MK-499 had no functional effects on cultured granulosa cells. However, the broad spectrum K(+) channel antagonist clofilium decreased, in a concentration-dependent fashion, the number of viable granulosa cells cultured, and these effects were associated with induction of apoptosis. All three I(Ks) antagonists (293B, L-735,821, and L-768,673) increased basal, but not FSH-enhanced progesterone accumulation on Day 1 after treatment without affecting the number of viable cells in culture, an effect that was blocked by pimozide. In contrast, CTX and MTX increased the number of viable cells in FSH-stimulated cultures on Day 3 after treatment without affecting progesterone output per cell. These data demonstrate that selective antagonism of granulosa cell K(+) channels with distinct molecular correlates, electrophysiological properties, and expression patterns can influence differential granulosa cell proliferation, steroidogenic capability, and apoptosis. Thus, K(+) channels may represent pharmacological targets for affecting Granulosa cell function and oocyte maturation, in vivo or in vitro.

  15. Gene expression patterns in granulosa cells and oocytes at various stages of follicle development as well as in in vitro grown oocyte-and-granulosa cell complexes.

    PubMed

    Munakata, Yasuhisa; Kawahara-Miki, Ryoka; Shiratsuki, Shogo; Tasaki, Hidetaka; Itami, Nobuhiko; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka

    2016-08-25

    Follicle development is accompanied by proliferation of granulosa cells and increasing oocyte size. To obtain high-quality oocytes in vitro, it is important to understand the processes that occur in oocytes and granulosa cells during follicle development and the differences between in vivo and in vitro follicle development. In the present study, oocytes and granulosa cells were collected from early antral follicles (EAFs, 0.5-0.7 mm in diameter), small antral follicles (SAFs, 1-3 mm in diameter), large antral follicles (LAFs, 3-7 mm in diameter), and in vitro grown oocyte-and-granulosa cell complexes (OGCs), which were cultured for 14 days after collection from EAFs. Gene expression was analyzed comprehensively using the next-generation sequencing technology. We found top upstream regulators during the in vivo follicle development and compared them with those in in vitro developed OGCs. The comparison revealed that HIF1 is among the top regulators during both in vivo and in vitro development of OGCs. In addition, we found that HIF1-mediated upregulation of glycolysis in granulosa cells is important for the growth of OGCs, but the cellular metabolism differs between in vitro and in vivo grown OGCs. Furthermore, on the basis of comparison of upstream regulators between in vivo and in vitro development of OGCs, we believe that low expression levels of FLT1 (VEGFA receptor), SPP1, and PCSK6 can be considered causal factors of the suboptimal development under in vitro culture conditions.

  16. Gene expression patterns in granulosa cells and oocytes at various stages of follicle development as well as in in vitro grown oocyte-and-granulosa cell complexes

    PubMed Central

    MUNAKATA, Yasuhisa; KAWAHARA-MIKI, Ryoka; SHIRATSUKI, Shogo; TASAKI, Hidetaka; ITAMI, Nobuhiko; SHIRASUNA, Koumei; KUWAYAMA, Takehito; IWATA, Hisataka

    2016-01-01

    Follicle development is accompanied by proliferation of granulosa cells and increasing oocyte size. To obtain high-quality oocytes in vitro, it is important to understand the processes that occur in oocytes and granulosa cells during follicle development and the differences between in vivo and in vitro follicle development. In the present study, oocytes and granulosa cells were collected from early antral follicles (EAFs, 0.5–0.7 mm in diameter), small antral follicles (SAFs, 1–3 mm in diameter), large antral follicles (LAFs, 3–7 mm in diameter), and in vitro grown oocyte-and-granulosa cell complexes (OGCs), which were cultured for 14 days after collection from EAFs. Gene expression was analyzed comprehensively using the next-generation sequencing technology. We found top upstream regulators during the in vivo follicle development and compared them with those in in vitro developed OGCs. The comparison revealed that HIF1 is among the top regulators during both in vivo and in vitro development of OGCs. In addition, we found that HIF1-mediated upregulation of glycolysis in granulosa cells is important for the growth of OGCs, but the cellular metabolism differs between in vitro and in vivo grown OGCs. Furthermore, on the basis of comparison of upstream regulators between in vivo and in vitro development of OGCs, we believe that low expression levels of FLT1 (VEGFA receptor), SPP1, and PCSK6 can be considered causal factors of the suboptimal development under in vitro culture conditions. PMID:27108636

  17. The effect of energy balance on the transcriptome of bovine granulosa cells at 60 days postpartum.

    PubMed

    Girard, Annie; Dufort, Isabelle; Sirard, Marc-André

    2015-11-01

    Dairy cows expend great amounts of energy during the lactation peak to cope with milk production. A state of negative energy balance (NEB) was suggested as a cause for the suboptimal fertility observed during this period, via an interaction with ovarian function. The objective of this study was to identify the impact of NEB on gene expression in granulosa cells of dairy cows at 60 days postpartum and to suggest a potential treatment to improve ovarian function. Dairy cows at 60 days postpartum from 10 typical medium-sized farms were synchronized using a single injection of prostaglandin. Dominant follicles  were collected 42 hours later by transvaginal aspiration. Blood concentrations of beta-hydroxybutyrate (BHB) on the day of aspiration were used to classify animals into two groups: severe NEB (high BHB, n = 12) and mild NEB (low BHB, n = 12). The transcriptomes of granulosa cells from both groups were contrasted using microarrays, and the differentially expressed genes were analyzed using Ingenuity Pathway Analysis to identify affected functions and potential upstream regulators. Genes linked with cellular organization (KRT4 and PPL), proliferation (TACSTD2), and fatty acids metabolism (VNN2) were downregulated in granulosa cells from animals with severe NEB. Several genes linked to decitabine, a hypomethylating agent, and with beta-estradiol, were downregulated in the severe NEB group. Numerous genes linked to vitamins A and D were also downregulated in this group of cows, suggesting a potential deficiency of these vitamins in dairy cows during the postpartum period. This study supports the idea that energy balance has an impact on follicular dynamics which could be detrimental to resumption of fertility after calving. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Role of Adjuvant Radiotherapy in Granulosa Cell Tumors of the Ovary

    SciTech Connect

    Hauspy, Jan; Beiner, Mario E.; Harley, Ian; Rosen, Barry; Murphy, Joan; Chapman, William; Le, Lisa W.; Fyles, Anthony; Levin, Wilfred

    2011-03-01

    Purpose: To review the role of adjuvant radiotherapy (RT) in the outcome and recurrence patterns of granulosa cell tumors (GCTs) of the ovary. Methods and Materials: The records of all patients with GCTs referred to the Princess Margaret Hospital University Health Network between 1961 and 2006 were retrospectively reviewed. The patient, tumor, and treatment factors were assessed by univariate and multivariate analyses using disease-free survival (DFS) as the endpoint. Results: A total of 103 patients with histologically confirmed GCTs were included in the present study. The mean duration of follow-up was 100 months (range, 1-399). Of the 103 patients, 31 received adjuvant RT. A total of 39 patients developed tumor recurrence. The tumor size, incidence of intraoperative rupture, and presence of concurrent endometrial cancer were not significant risk factors for DFS. The median DFS was 251 months for patients who underwent adjuvant RT compared with 112 months for patients who did not (p = .02). On multivariate analysis, adjuvant RT remained a significant prognostic factor for DFS (p = .004). Of the 103 patients, 12 had died and 44 were lost to follow-up. Conclusion: Ovarian GCTs can be indolent, with patients achieving long-term survival. In our series, adjuvant RT resulted in a significantly longer DFS. Ideally, randomized trials with long-term follow-up are needed to define the role of adjuvant RT for ovarian GCTs.

  19. Ovarian Germ Cell Tumors Treatment

    MedlinePlus

    ... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Ovarian Germ Cell Tumors Go to Health Professional Version Key Points ...

  20. FOXL2 molecular status in adult granulosa cell tumors of the ovary: A study of primary and metastatic cases.

    PubMed

    Zannoni, Gian Franco; Improta, Giuseppina; Petrillo, Marco; Pettinato, Angela; Scambia, Giovanni; Fraggetta, Filippo

    2016-08-01

    Granulosa cell tumors (GCTs) of the ovary are uncommon neoplasms, accounting for ~5% of all malignant ovarian tumors. GCTs are a relatively homogeneous group of tumors, categorized into two distinct subtypes, juvenile GCT and adult GCT (AGCT), likely arising from a limited set of molecular events usually involving the disruption of pathways that regulate granulosa cell proliferation. In the present study, the presence of forkheadbox L2 (FOXL2) c.402C>G mutation was investigated in a series of 42 samples of primary and metastatic AGCT of the ovary. The samples consisted of 37 primary and 5 metastatic ovarian AGCTs from 37 patients. FOXL2 mutational status was evaluated using a pyrosequencing approach on 2.5-µm sections of formalin-fixed paraffin-embedded tissue. FOXL2 c.402C>G mutation was found in 33/37 (89.2%) primary AGCTs and in 4/5 (80.0%) metastases, with the molecular status of the metastases recapitulating that of the primary tumors (4 mutated cases and 1 wild-type case). Overall, FOXL2 mutation is present in the majority of primary and metastatic AGCTs, and could be used as a valid tool in the diagnosis of the disease and in cases of metastatic lesions from an unknown primary origin. Moreover the concordance of FOXL2 molecular status in primary and associated metastases suggests its early appearance and genomic stability in AGCT tumorigenesis.

  1. CHEMERIN (RARRES2) decreases in vitro granulosa cell steroidogenesis and blocks oocyte meiotic progression in bovine species.

    PubMed

    Reverchon, Maxime; Bertoldo, Michael J; Ramé, Christelle; Froment, Pascal; Dupont, Joëlle

    2014-05-01

    CHEMERIN, or RARRES2, is a new adipokine that is involved in the regulation of adipogenesis, energy metabolism, and inflammation. Recent data suggest that it also plays a role in reproductive function in rats and humans. Here we studied the expression of CHEMERIN and its three receptors (CMKLR1, GPR1, and CCRL2) in the bovine ovary and investigated the in vitro effects of this hormone on granulosa cell steroidogenesis and oocyte maturation. By RT-PCR, immunoblotting, and immunohistochemistry, we found CHEMERIN, CMKLR1, GPR1, and CCRL2 in various ovarian cells, including granulosa and theca cells, corpus luteum, and oocytes. In cultured bovine granulosa cells, INSULIN, IGF1, and two insulin sensitizers-metformin and rosiglitazone-increased rarres2 mRNA expression whereas they decreased cmklr1, gpr1, and cclr2 mRNA expression. Furthermore, TNF alpha and ADIPONECTIN significantly increased rarres2 and cmklr1 expression, respectively. In cultured bovine granulosa cells, human recombinant CHEMERIN (hRec, 200 ng/ml) reduced production of both progesterone and estradiol, cholesterol content, STAR abundance, CYP19A1 and HMGCR proteins, and the phosphorylation levels of MAPK3/MAPK1 in the presence or absence of FSH (10(-8) M) and IGF1 (10(-8) M). All of these effects were abolished by using an anti-CMKLR1 antibody. In bovine cumulus-oocyte complexes, the addition of hRec (200 ng/ml) in the maturation medium arrested most oocytes at the germinal vesicle stage, and this was associated with a decrease in MAPK3/1 phosphorylation in both oocytes and cumulus cells. Thus, in cultured bovine granulosa cells, hRec decreases steroidogenesis, cholesterol synthesis, and MAPK3/1 phosphorylation, probably through CMKLR1. Moreover, in cumulus-oocyte complexes, it blocked meiotic progression at the germinal vesicle stage and inhibited MAPK3/1 phosphorylation in both the oocytes and cumulus cells during in vitro maturation. © 2014 by the Society for the Study of Reproduction, Inc.

  2. Influence of nicotine on progesterone and estradiol production of cultured human granulosa cells.

    PubMed

    Bódis, J; Hanf, V; Török, A; Tinneberg, H R; Borsay, P; Szabó, I

    1997-03-01

    The purpose of this study was to investigate the direct action of one of the main constituents of cigarette smoke on corpus luteum function. Progesterone and estradiol production were measured in the presence and absence of nicotine as free base or bitartrate salt with or without luteinizing hormone (LH) stimulation using radioimmunoassay in an in vitro granulosa cell culture system. Human granulosa cells were obtained from 19 patients undergoing in vitro fertilization embryo transfer treatment for infertility at the University Women's Hospital, Tübinge, Germany. Nicotine free base augmented estradiol secretion and inhibited progesterone secretion by human granulosa cells in a dose-dependent manner. Nicotine bitartrate had little effect on steroid secretion. If granulosa cells were stimulated with LH, both nicotine preparations suppressed estradiol secretion, however, only nicotine bitartrate additionally inhibited progesterone secretion. The results suggest that cigarette smoking specifically affects the control mechanisms of intraovarian processes which are responsible for normal luteal function.

  3. Modulation of gonadotrophin induced steroidogenic enzymes in granulosa cells by d-chiroinositol.

    PubMed

    Sacchi, Sandro; Marinaro, Federica; Tondelli, Debora; Lui, Jessica; Xella, Susanna; Marsella, Tiziana; Tagliasacchi, Daniela; Argento, Cindy; Tirelli, Alessandra; Giulini, Simone; La Marca, Antonio

    2016-08-31

    d-chiroinositol (DCI) is a inositolphosphoglycan (IPG) involved in several cellular functions that control the glucose metabolism. DCI functions as second messenger in the insulin signaling pathway and it is considered an insulin sensitizer since deficiency in tissue availability of DCI were shown to cause insulin resistance (IR). Polycystic ovary syndrome (PCOS) is a pathological condition that is often accompanied with insulin resistance. DCI can positively affects several aspect of PCOS etiology decreasing the total and free testosterone, lowering blood pressure, improving the glucose metabolism and increasing the ovulation frequency. The purpose of this study was to evaluate the effects of DCI and insulin combined with gonadotrophins namely follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on key steroidogenic enzymes genes regulation, cytochrome P450 family 19 subfamily A member 1 (CYP19A1) and cytochrome P450 side-chain cleavage (P450scc) in primary cultures of human granulosa cells (hGCs). We also investigated whether DCI, being an insulin-sensitizer would be able to counteract the expected stimulator activity of insulin on human granulosa cells (hGCs). The study was conducted on primary cultures of hGCs. Gene expression was evaluated by RT-qPCR method. Statistical analysis was performed applying student t-test, as appropriate (P < 0.05) set for statistical significance. DCI is able to reduce the gene expression of CYP19A1, P450scc and insulin-like growth factor 1 receptor (IGF-1R) in dose-response manner. The presence of DCI impaired the increased expression of steroidogenic enzyme genes generated by the insulin treatment in gonadotrophin-stimulated hGCs. Insulin acts as co-gonadotrophin increasing the expression of steroidogenic enzymes genes in gonadotrophin-stimulated granulosa cells. DCI is an insulin-sensitizer that counteracts this action by reducing the expression of the genes CYP19A1, P450scc and IGF-1R. The ability of DCI to

  4. Inhibition of NF-κB promotes autophagy via JNK signaling pathway in porcine granulosa cells

    SciTech Connect

    Gao, Hui; Lin, Lu; Haq, Ihtesham Ul; Zeng, Shen-ming

    2016-04-22

    The transcription factor nuclear factor-κB (NF-κB) plays an important role in diverse processes, including cell proliferation and differentiation, apoptosis and inflammation. However, the role of NF-κB in porcine follicle development is not clearly elucidated. In this study, we demonstrated that follicle stimulating hormone (FSH) increased the level of inhibitor of NF-κB (IκB) protein and promoted the cytoplasmic localization of p65, indicating that FSH inhibits the activation of NF-κB in porcine granulosa cells. Moreover, inhibition of NF-κB by FSH or another specific inhibitor of NF-κB, pyrrolidine dithiocarbamate (PDTC), could activate JNK signaling and enhance autophagic activity in porcine granulosa cells. Knockdown of RelA (p65) Subunit of NF-κB by RNA interference abrogated the activation of JNK signaling pathway and the increase of autophagic protein expression by FSH. Meanwhile, the functional significance of FSH or PDTC-mediated autophagy were further investigated. Our results demonstrated that the increased autophagy promoted progesterone secretion in porcine granulosa cells. Blockage of autophagy by chloroquine obviated the FSH or PDTC-induced progesterone production. Taken together, these results indicate that inhibition of NF-κB increased autophagy via JNK signaling, and promote steroidogenesis in porcine granulosa cells. Our results provide new insights into the regulation and function of autophagy in mammalian follicle development. - Highlights: • FSH inhibits the activation of NF-κB in porcine primary granulosa cells. • Inhibition of NF-κB by FSH promotes autophagy via JNK signaling in granulosa cells. • Increased autophagy contributes to progesterone production in granulosa cells. • This is the first report against beclin1 regulation in porcine granulosa cells.

  5. Expression and regulation of INTELECTIN1 in human granulosa-lutein cells: role in IGF-1-induced steroidogenesis through NAMPT.

    PubMed

    Cloix, Lucie; Reverchon, Maxime; Cornuau, Marion; Froment, Pascal; Ramé, Christelle; Costa, Caroline; Froment, Gisèle; Lecomte, Pierre; Chen, Wenyong; Royère, Dominique; Guerif, Fabrice; Dupont, Joëlle

    2014-08-01

    INTELECTIN (ITLN) is an adipokine involved in the regulation of insulin sensitivity and inflammatory and immunity responses. Serum ITLN levels are lower in obese, diabetic, and polycystic ovary syndrome (PCOS) women than in control subjects. ITLN has never been studied in ovarian cells. Here, we identified ITLN1 in human ovarian follicles and investigated the molecular mechanisms involved in the regulation of its expression in response to the insulin sensitizers metformin and rosiglitazone, in human granulosa-lutein cells (hGLCs) and in a human ovarian granulosa-like tumor cell line (KGN). We also studied the effects of human recombinant ITLN1 (hRom1) on steroid production and on the activation of various signaling pathways. Using RT-PCR, immunoblotting, and immunohistochemistry, we found that INTL1 is present in human follicular cells. Using ELISA, we showed that INTL levels are similar in plasma and follicular fluid (FF) in control patients, whereas they are higher in FF than in plasma in PCOS patients. In KGN cells and hGLCs, insulin (10(-8) M), insulin-like growth factor-1 (IGF-1; 10(-8) M), and metformin (10(-2) M or 10(-3) M) increased INTL1 expression (mRNA and protein) after 12 and 24 h of stimulation. For metformin, this effect was mediated by adenosine monophosphate-activated kinase (PRKA). Furthermore, hRom1 increased nicotinamide phosphoribosyltransferase (NAMPT) expression in KGN and hGLCs. We also showed that hRom1 increased IGF-1-induced progesterone and estradiol secretion and this was associated with an increase in the STAR and CYP19A1 protein levels and an increase in IGF-1R signaling. Furthermore, all these data were abolished when NAMPT was knocked down in KGN cells, suggesting that INTL1 improves IGF-1-induced steroidogenesis through induction of NAMPT in hGLCs. © 2014 by the Society for the Study of Reproduction, Inc.

  6. High fat diet triggers cell cycle arrest and excessive apoptosis of granulosa cells during the follicular development

    SciTech Connect

    Wu, Yanqing; Zhang, Zhenghong; Liao, Xinghui; Wang, Zhengchao

    2015-10-23

    The regulatory mechanism of granulosa cells (GCs) proliferation during the follicular development is complicated and multifactorial, which is essential for the oocyte growth and normal ovarian functions. To investigate the role of high fat diet (HFD) on the proliferation of GCs, 4-week old female mice were fed with HFD or normal control diet (NC) for 15 weeks or 20 weeks and then detected the expression level of some regulatory molecules of cell cycle and apoptosis. The abnormal ovarian morphology was observed at 20 weeks. Further mechanistic studies indicated that HFD induced-obesity caused elevated apoptotic levels in GCs of the ovaries in a time-dependent manner. Moreover, cell cycle progress was also impacted after HFD fed. The cell cycle inhibitors, p27{sup Kip1} and p21{sup Cip1}, were significantly induced in the ovaries from the mice in HFD group when compared with that in the ovaries from the mice in NC group. Subsequently, the expression levels of Cyclin D1, D3 and CDK4 were also significantly influenced in the ovaries from the mice fed with HFD in a time-dependent manner. The present results suggested that HFD induced-obesity may trigger cell cycle arrest and excessive apoptosis of GCs, causing the abnormal follicular development and ovarian function failure. - Highlights: • HFD induced-obesity leads to abnormal ovarian morphology. • HFD induced-obesity triggers excessive apoptosis in the ovary. • HFD induced-obesity up-regulates cell cycle inhibitors p21{sup Cip1} and p27{sup Kip1} in the ovary. • HFD induced-obesity causes cell cycle arrest in the ovary.

  7. Expression of progesterone receptor membrane component-2 within the immature rat ovary and its role in regulating mitosis and apoptosis of spontaneously immortalized granulosa cells.

    PubMed

    Griffin, Daniel; Liu, Xiufang; Pru, Cindy; Pru, James K; Peluso, John J

    2014-08-01

    Progesterone receptor membrane component 2 (Pgrmc2) mRNA was detected in the immature rat ovary. By 48 h after eCG, Pgrmc2 mRNA levels decreased by 40% and were maintained at 48 h post-hCG. Immunohistochemical studies detected PGRMC2 in oocytes and ovarian surface epithelial, interstitial, thecal, granulosa, and luteal cells. PGRMC2 was also present in spontaneously immortalized granulosa cells, localizing to the cytoplasm of interphase cells and apparently to the mitotic spindle of cells in metaphase. Interestingly, PGRMC2 levels appeared to decrease during the G1 stage of the cell cycle. Moreover, overexpression of PGRMC2 suppressed entry into the cell cycle, possibly by binding the p58 form of cyclin dependent kinase 11b. Conversely, Pgrmc2 small interfering RNA (siRNA) treatment increased the percentage of cells in G1 and M stage but did not increase the number of cells, which was likely due to an increase in apoptosis. Depleting PGRMC2 did not inhibit cellular (3)H-progesterone binding, but attenuated the ability of progesterone to suppress mitosis and apoptosis. Taken together these studies suggest that PGRMC2 affects granulosa cell mitosis by acting at two specific stages of the cell cycle. First, PGRMC2 regulates the progression from the G0 into the G1 stage of the cell cycle. Second, PGRMC2 appears to localize to the mitotic spindle, where it likely promotes the final stages of mitosis. Finally, siRNA knockdown studies indicate that PGRMC2 is required for progesterone to slow the rate of granulosa cell mitosis and apoptosis. These findings support a role for PGRMC2 in ovarian follicle development.

  8. Gene expression profiling of bovine ovarian follicular and luteal cells provides insight into cellular identities and functions

    USDA-ARS?s Scientific Manuscript database

    After ovulation, somatic cells of the ovarian follicle (theca and granulosa cells) become the small and large luteal cells of the corpus luteum. Aside from known cell type-specific receptors and steroidogenic enzymes, little is known about the differences in the gene expression profiles of these fou...

  9. A comparison of ovarian follicular and luteal cell gene expression profiles provides insight into cellular identities and functions

    USDA-ARS?s Scientific Manuscript database

    After ovulation, somatic cells of the ovarian follicle (theca and granulosa cells) become the small and large luteal cells of the corpus luteum. Aside from known cell type-specific receptors and steroidogenic enzymes, little is known about the differences in the gene expression profiles of these fou...

  10. Fractalkine restores the decreased expression of StAR and progesterone in granulosa cells from patients with polycystic ovary syndrome

    PubMed Central

    Huang, Shuo; Pang, Yanli; Yan, Jie; Lin, Shengli; Zhao, Yue; Lei, Li; Yan, Liying; Li, Rong; Ma, Caihong; Qiao, Jie

    2016-01-01

    Low progesterone levels are associated with luteal phase deficiency in women with polycystic ovary syndrome (PCOS). The mechanisms regulating progesterone biosynthesis in the granulosa cells from women with PCOS is largely unknown. Fractalkine is expressed in human ovaries, and is reported to regulate progesterone production in granulosa cells of healthy women. In the current study, we aimed to examine the role of fractalkine in women with PCOS. Reduced fractalkine levels were found in follicular fluid and granulosa cells, accompanied by decreased progesterone production and reduced steroidogenic acute regulatory protein (StAR) expression in the granulosa cells of patients with PCOS. Administration of fractalkine reversed the inhibition of progesterone and StAR expression. The mechanism mediating these effects may be associated with the inhibition of ERK activity in the granulosa cells from women with PCOS. Our findings revealed that fractalkine regulated steroidogenesis in follicular granulosa cells of women with PCOS. PMID:27386819

  11. Effects of an inhibitor of the γ-secretase complex on proliferation and apoptotic parameters in a FOXL2-mutated granulosa tumor cell line (KGN).

    PubMed

    Irusta, Griselda; Pazos, Maria Camila; Maidana, Camila Pazos; Abramovich, Dalhia; De Zúñiga, Ignacio; Parborell, Fernanda; Tesone, Marta

    2013-07-01

    Ovarian granulosa cell tumors (GCTs) represent 3%-5% of all ovarian malignancies. Treatments have limited proven efficacy and biologically targeted treatment is lacking. The aim of this study was to investigate the role of Notch signaling in the proliferation, steroidogenesis, apoptosis, and phosphatidylinositol 3-kinase (PI3K)/AKT pathway in a FOXL2-mutated granulosa tumor cell line (KGN) representative of the adult form of GCTs. When Notch signaling is initiated, the receptors expose a cleavage site in the extracellular domain to the metalloproteinase TACE and, following this cleavage, Notch undergoes another cleavage mediated by the presenilin-gamma-secretase complex. To achieve our goal, DAPT, an inhibitor of the gamma-secretase complex, was used to investigate the role of the Notch system in parameters associated with cell growth and death, using a human granulosa cell tumor line (KGN) as an experimental model. We observed that JAGGED1, DLL4, NOTCH1, and NOTCH4 were highly expressed in KGN cells as compared to granulosa-lutein cells obtained from assisted reproductive techniques patients. The proliferation and viability of KGN cells, as well as progesterone and estradiol production, decreased in the presence of 20 μM DAPT. Apoptotic parameters like PARP and caspase 8 cleavages, BAX, and BCLXs increased in KGN cells cultured with DAPT, whereas others such as BCL2, BCLXl, FAS, and FAS ligand did not change. AKT phosphorylation decreased and PTEN protein increased when Notch signaling was inhibited in KGN cells. We conclude that the Notch system acts as a survival pathway in KGN cells, and might be interacting with the PI3K/AKT pathway.

  12. Anti-Müllerian hormone (AMH) receptor type II expression and AMH activity in bovine granulosa cells.

    PubMed

    Poole, Daniel H; Ocón-Grove, Olga M; Johnson, Alan L

    2016-09-15

    Anti-Müllerian hormone (AMH) produced by granulosa cells has previously been proposed to play a role in regulating granulosa cell differentiation and follicle selection. Although AMH receptor type II (AMHR2) dimerizes with a type I receptor to initiate AMH signaling, little is known about the regulation of AMHR2 expression in bovine granulosa cells and the role of AMH in follicle development. The primary objectives of this study were to: (1) characterize AMHR2 expression in granulosa cells during follicle development; (2) identify factors that regulate AMHR2 mRNA expression in granulosa cells; and (3) examine the role of AMH signaling in granulosa cell differentiation and proliferation. Bovine granulosa cells were isolated from 5- to 8-mm follicles before selection and deviation, as well as from 9- to 12-mm and 13- to 24-mm follicles after selection. Analyses revealed that expression of AMHR2 was greater in 5- to 8-mm follicles compared with 13- to 24-mm follicles (P < 0.05). Granulosa cells treated with bone morphogenetic protein 6 (BMP6) or BMP15, but not BMP2, significantly increased AMHR2 expression when compared with control cultured cells (P < 0.05). In addition, expression of AMH was greater in granulosa cells cultured with BMP2, BMP6, or BMP15 when compared with controls (P < 0.05). Finally, treatment with recombinant human AMH, in vitro, inhibited CYP19A1 expression in a dose-related (10-100 ng/mL) fashion, and reduced granulosa cell proliferation at 48 and 72 hours (P < 0.05). Results from these studies indicate that AMH signaling plays a role in both regulating granulosa cell proliferation and preventing granulosa cells from 5- to 8-mm follicles from undergoing premature differentiation before follicle selection. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Effect of adiponectin on bovine granulosa cell steroidogenesis, oocyte maturation and embryo development

    PubMed Central

    2010-01-01

    Background Adiponectin is an adipokine, mainly produced by adipose tissue. It regulates several reproductive processes. The protein expression of the adiponectin system (adiponectin, its receptors, AdipoR1 and AdipoR2 and the APPL1 adaptor) in bovine ovary and its role on ovarian cells and embryo, remain however to be determined. Methods Here, we identified the adiponectin system in bovine ovarian cells and embryo using RT-PCR, immunoblotting and immunohistochemistry. Furthermore, we investigated in vitro the effects of recombinant human adiponectin (10 micro g/mL) on proliferation of granulosa cells (GC) measured by [3H] thymidine incorporation, progesterone and estradiol secretions measured by radioimmunoassay in the culture medium of GC, nuclear oocyte maturation and early embryo development. Results We show that the mRNAs and proteins for the adiponectin system are present in bovine ovary (small and large follicles and corpus luteum) and embryo. Adiponectin, AdipoR1 and AdipoR2 were more precisely localized in oocyte, GC and theca cells. Adiponectin increased IGF-1 10(-8) M-induced GC proliferation (P < 0.01) but not basal or insulin 10(-8) M-induced proliferation. Additionally, adiponectin decreased insulin 10(-8) M-induced, but not basal or IGF-1 10(-8) M-induced secretions of progesterone (P < 0.01) and estradiol (P < 0.05) by GC. This decrease in insulin-induced steroidogenesis was associated with a decrease in ERK1/2 MAPK phosphorylation in GC pre-treated with adiponectin. Finally, addition of adiponectin during in vitro maturation affected neither the percentage of oocyte in metaphase-II nor 48-h cleavage and blastocyst day 8 rates. Conclusions In bovine species, adiponectin decreased insulin-induced steroidogenesis and increased IGF-1-induced proliferation of cultured GC through a potential involvement of ERK1/2 MAPK pathway, whereas it did not modify oocyte maturation and embryo development in vitro. PMID:20219117

  14. A role for retinoids in human oocyte fertilization: regulation of connexin 43 by retinoic acid in cumulus granulosa cells.

    PubMed

    Best, Monica W; Wu, Juanjuan; Pauli, Samuel A; Kane, Maureen A; Pierzchalski, Keely; Session, Donna R; Woods, Dori C; Shang, Weirong; Taylor, Robert N; Sidell, Neil

    2015-06-01

    Retinoids are essential for ovarian steroid production and oocyte maturation in mammals. Oocyte competency is known to positively correlate with efficient gap junction intercellular communication (GJIC) among granulosa cells in the cumulus-oocyte complex. Connexin 43 (C x 43) is the main subunit of gap junction channels in human cumulus granulosa cells (CGC) and is regulated by all-trans retinoic acid (ATRA) in other hormone responsive cell types. The objectives of this study were to quantify retinoid levels in human CGC obtained during IVF oocyte retrievals, to investigate the potential relationship between CGC ATRA levels and successful oocyte fertilization, and to determine the effects of ATRA on C x 43 protein expression in CGC. Results showed that CGC cultures actively metabolize retinol to produce ATRA. Grouped according to fertilization rate tertiles, mean ATRA levels were 2-fold higher in pooled CGC from women in the highest versus the lowest tertile (P < 0.05). ATRA induced a rapid dephosphorylation of C x 43 in CGC and granulosa cell line (KGN) cultures resulting in a >2-fold increase in the expression of the functional non-phosphorylated (P0) species (P < 0.02). Similar enhancement of P0 by ATRA was shown in CGC and KGN cultures co-treated with LH or hCG which, by themselves, enhanced the protein levels of C x 43 without altering its phosphorylation profile. Correspondingly, the combination of ATRA+hCG treatment of KGN caused a significant increase in GJIC compared with single agent treatments (P < 0.025) and a doubling of GJIC from that seen in untreated cells (P < 0.01). These findings indicate that CGC are a primary site of retinoid uptake and ATRA biosynthesis. Regulation of C x 43 by ATRA may serve an important role in folliculogenesis, development of oocyte competency, and successful fertilization by increasing GJIC in CGC.

  15. A role for retinoids in human oocyte fertilization: regulation of connexin 43 by retinoic acid in cumulus granulosa cells

    PubMed Central

    Best, Monica W.; Wu, Juanjuan; Pauli, Samuel A.; Kane, Maureen A.; Pierzchalski, Keely; Session, Donna R.; Woods, Dori C.; Shang, Weirong; Taylor, Robert N.; Sidell, Neil

    2015-01-01

    Retinoids are essential for ovarian steroid production and oocyte maturation in mammals. Oocyte competency is known to positively correlate with efficient gap junction intercellular communication (GJIC) among granulosa cells in the cumulus-oocyte complex. Connexin 43 (Cx43) is the main subunit of gap junction channels in human cumulus granulosa cells (CGC) and is regulated by all-trans retinoic acid (ATRA) in other hormone responsive cell types. The objectives of this study were to quantify retinoid levels in human CGC obtained during IVF oocyte retrievals, to investigate the potential relationship between CGC ATRA levels and successful oocyte fertilization, and to determine the effects of ATRA on Cx43 protein expression in CGC. Results showed that CGC cultures actively metabolize retinol to produce ATRA. Grouped according to fertilization rate tertiles, mean ATRA levels were 2-fold higher in pooled CGC from women in the highest versus the lowest tertile (P < 0.05). ATRA induced a rapid dephosphorylation of Cx43 in CGC and granulosa cell line (KGN) cultures resulting in a >2-fold increase in the expression of the functional non-phosphorylated (P0) species (P < 0.02). Similar enhancement of P0 by ATRA was shown in CGC and KGN cultures co-treated with LH or hCG which, by themselves, enhanced the protein levels of Cx43 without altering its phosphorylation profile. Correspondingly, the combination of ATRA+hCG treatment of KGN caused a significant increase in GJIC compared with single agent treatments (P < 0.025) and a doubling of GJIC from that seen in untreated cells (P < 0.01). These findings indicate that CGC are a primary site of retinoid uptake and ATRA biosynthesis. Regulation of Cx43 by ATRA may serve an important role in folliculogenesis, development of oocyte competency, and successful fertilization by increasing GJIC in CGC. PMID:25877907

  16. Ovarian Sertoli-Leydig Cell Tumor with Elevated Inhibin B As a Cause of Secondary Amenorrhea in Adolescents with Germline DICER1 Mutation

    DTIC Science & Technology

    2017-04-06

    infancy and early childhood.8 The D/CERJ-related disorders have expanded to include other ovarian sex cord-stromal tumors Guveni le granulosa cell...in children and adolescents. Cancer. 1987; 59: 12 14 3. Schultz KA, Harris AK, Schneider OT, et al. Ovarian Sex Cord-Stromal Tumor. Journal of

  17. VISFATIN (NAMPT) Improves In Vitro IGF1-Induced Steroidogenesis and IGF1 Receptor Signaling Through SIRT1 in Bovine Granulosa Cells.

    PubMed

    Reverchon, Maxime; Rame, Christelle; Bunel, Audrey; Chen, Wenyong; Froment, Pascal; Dupont, Joëlle

    2016-03-01

    VISFATIN is a novel adipokine, also known as a nicotinamide phosphorybosyltransferase (NAMPT), that is able to modulate different processes, including lipid and glucose metabolism, oxidative stress, inflammation, and insulin resistance. Recent data suggest that it also plays a role in reproductive function in rats, humans, and chickens. Here we identified VISFATIN in the bovine ovary and investigated the in vitro effects of this hormone on granulosa cell steroidogenesis and proliferation and oocyte maturation. By RT-PCR, immunoblotting, and immunohistochemistry, we found VISFATIN in various ovarian cells, including granulosa and theca cells, corpus luteum, and oocytes. In cultured bovine granulosa cells, we showed that IGF1 (10(-8) M) and VISFATIN (10 and 100 ng/ml) but not FSH (10(-8) M) increased mRNA expression levels of NAMPT after 48 h of stimulation. Moreover, we observed that human recombinant VISFATIN (hVisf, 10 ng/ml, 48 h) increased the release of progesterone and estradiol secretion, and this was associated with an increase in the protein level of STAR, the HSD3B activity, and the phosphorylation levels of IGF1R and MAPK ERK1/2 in the presence or absence of IGF1 (10(-8) M). All these effects were abolished when NAMPT was knocked down and when the sirtuin pharmacological inhibitors CHIC-35 (60 nM) and EX-527 (0.5 μM) were preincubated in bovine granulosa cells. Thus, in cultured bovine granulosa cells, VISFATIN improves basal and IGF1-induced steroidogenesis and IGF1 receptor signaling through SIRT1. © 2016 by the Society for the Study of Reproduction, Inc.

  18. [Reconsidering the roles of female germ cells in ovarian development and folliculogenesis].

    PubMed

    Guigon, Céline J; Cohen-Tannoudji, Michel

    2011-01-01

    The production of fertilizable ova is the consequence of multiple events that start as soon as ovarian development and culminate at the time of ovulation. Throughout their development, germ cells are associated with companion somatic cells, which ensure germ cell survival, growth and maturation. Data obtained in vitro and in vivo on several animal models of germ cell depletion have led to uncover the many roles of germ cells on both ovarian development and folliculogenesis. During ovarian development, germ cells become progressively enclosed within epithelial structures called "ovigerous cords" constituted by pregranulosa cells, lined by a basement membrane. At the end of ovarian development, ovigerous cords fragment into primordial follicles, which are epithelial units constituted by an oocyte surrounded by a single layer of granulosa cells. Germ cells are necessary for the fragmentation of ovigerous cords into follicles, since in their absence, no follicle will form. Germ cells also ensure the differentiation of the ovarian somatic lineage, and they may inhibit the testis-differentiating pathway by preventing the conversion of pregranulosa cells into Sertoli cells, their counterpart in the testis. Regularly, primordial follicles are recruited into the growing follicle pool and initiate their growth. They develop through primary, preantral, antral and preovulatory stages before being ovulated. Interestingly, the action of the oocyte on companion somatic cells tightly depends on the follicular stage. In primordial follicles, the oocyte prevents the transdifferentiation of granulosa cells into cells resembling Sertoli cells. By contrast, as soon as the follicle enters growth, the oocyte regulates the functional differentiation of granulosa cells and at the latest stages, it prevents their premature maturation into luteal cells. Overall, these data demonstrate that the female germ cell act on companion somatic cells to regulate ovarian development and

  19. Polysialylation takes place in granulosa cells during apoptotic processes of atretic tertiary follicles.

    PubMed

    Kaese, Miriam; Galuska, Christina E; Simon, Peter; Braun, Beate C; Cabrera-Fuentes, Hector A; Middendorff, Ralf; Wehrend, Axel; Jewgenow, Katarina; Galuska, Sebastian P

    2015-12-01

    In the neuronal system, polysialic acid (polySia) is known to be involved in several cellular processes such as the modulation of cell-cell interactions. This highly negatively-charged sugar moiety is mainly present as a post-translational modification of the neural cell adhesion molecule (NCAM). More than 20 years ago, differently glycosylated forms of NCAM were detected in the ovaries. However, the exact isoform of NCAM, as well as its biological function, remained unknown. Our analysis revealed that granulosa cells of feline tertiary follicles express the polysialylated form of NCAM-140. Unexpectedly, polySia was only expressed in the granulosa layers of atretic follicles and not of healthy follicles. By contrast, only the un-polysialylated form of NCAM was present on the membrane of granulosa cells of healthy follicles. To study a possible cellular function of polySia in feline follicles, a primary granulosa cell culture model was used. Interestingly, loss of polySia leads to a significant inhibition of apoptosis, demonstrating that polySia is involved during atretic processes in granulosa cells. Thus, polySia might not only directly influence regeneration processes as shown, for example, in the neuronal system, but also apoptosis. © 2015 FEBS.

  20. Effect of cortisol on neurophysin I/oxytocin and peptidyl glycine-alpha-amidating mono-oxygenase mRNA expression in bovine luteal and granulosa cells.

    PubMed

    Ziolkowska, A; Mlynarczuk, J; Kotwica, J

    2013-01-01

    Cortisol stimulates the synthesis and secretion of oxytocin (OT) from bovine granulosa and luteal cells, but the molecular mechanisms of cortisol action remain unknown. In this study, granulosa cells or luteal cells from days 1-5 and 11-15 of the oestrous cycle were incubated for 4 or 8 h with cortisol (1 x 10(-5), 1 x 10(-7) M). After testing cell viability and hormone secretion (OT, progesterone, estradiol), we studied the effect of cortisol on mRNA expression for precursor of OT (NP-I/OT) and peptidyl glycine-alpha-amidating mono-oxygenase (PGA). The influence of RU 486 (1 x 10(-5) M), a progesterone receptor blocker and inhibitor of the glucocorticosteroid receptor (GR), on the expression for both genes was tested. Cortisol increased the mRNA expression for NP-I/OT and PGA in granulosa cells and stimulated the expression for NP-I/OT mRNA in luteal cells obtained from days 1-5 and days 11-15 of the oestrous cycle. Expression for PGA mRNA was increased only in luteal cells from days 11-15 of the oestrous cycle. In addition, RU 486 blocked the cortisol-stimulated mRNA expression for NP-I/OT and PGA in both types of cells. These data suggest that cortisol affects OT synthesis and secretion in bovine ovarian cells, by acting on the expression of key genes, that may impair ovary

  1. Cell-free DNA induced apoptosis of granulosa cells by oxidative stress.

    PubMed

    Guan, Yichun; Zhang, Wenjuan; Wang, Xingling; Cai, Pengfei; Jia, Qi; Zhao, Wenjie

    2017-10-01

    Cell-free DNA is a DNA fragment that is produced by cell apoptosis which can affect the micro-environment of cell apoptosis. The levels of Cell-free DNA have been associated with successful rate of in vitro fertilization-embryo transfer (IVF-ET) and embryonic development. Our aim is to determine the relationship between cell-free DNA and embryo quality. The mechanisms of cell-free DNA in granulose and the apoptosis will be determined also. The study enrolled patients who were undergone IVF for the first time and grouped the patients as pregnant (n=130) and non-pregnant (n=59). The relationship was determined by statistical analysis between the levels of cell-free DNA in the follicular fluid and clinical data of IVF patients. Flow cytometry was done to detect the rate of granulosa cell apoptosis and intracellular reactive oxygen species (ROS) level. Western blotting and fluorescent quantitative PCR detected the apoptosis-related gene expressions. Clinical data statistics showed that cell-free DNA levels were positively correlated with granulosa cell apoptosis and negatively correlated with embryo quality and pregnancy rates. High levels of cell-free DNA lead to increased ROS in granulosa cells and activated caspase through Fas/FasL that induced apoptosis. High levels of cell-free DNA triggers granulosa cell apoptosis and influences oocyte maturation embryo development and pregnancy rates in IVF treatments. Cell-free DNA can be as a secondary criteria and predictive marker for the quality control of IVF embryo. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Combination Chemotherapy and Peripheral Stem Cell Transplantation in Treating Patients With Stage III Ovarian Cancer

    ClinicalTrials.gov

    2016-03-17

    Malignant Ovarian Mixed Epithelial Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Primary Peritoneal Carcinoma; Stage III Ovarian Cancer; Undifferentiated Ovarian Carcinoma

  3. The Multifaceted Granulosa Cell Tumours—Myths and Realities: A Review

    PubMed Central

    Kanthan, Rani; Senger, Jenna-Lynn; Kanthan, Selliah

    2012-01-01

    Background. Granulosa cell tumors (GCTs), representing ~2% of ovarian tumours, are poorly understood neoplasms with unpredictable and undetermined biological behaviour. Design. 5 unusual presentations of GCT and a retrospective 14-year (1997–2011) surgical pathology review based on patient sex, age, tumour type and concurrent pathology findings are presented to discuss the “myths and realities” of GCTs in the context of relevant evidence-based literature. Results. The 5 index cases included (1) a 5 month-old boy with a left testicular mass, (2) a 7-day-old neonate with a large complex cystic mass in the abdomen, (3) a 76-year-old woman with an umbilical mass, (4) a 64-year-old woman with a complex solid-cystic pelvic mass, and (5) a 45 year-old woman with an acute abdomen. Pathological analysis confirmed the final diagnosis as (1) juvenile GCT, (2) macrofollicular GCT, (3) recurrent GCT 32 years later, (4) collision tumour: colonic adenocarcinoma and GCT, and (5) ruptured GCT. Conclusion. GCT is best considered as an unusual indolent neoplasm of low malignant potential with late recurrences that can arise in the ovaries and testicles in both the young and the old. Multifaceted clinical presentations coupled with the unpredictable biological behaviour with late relapses are diagnostic pitfalls necessitating a high degree of suspicion for accurate clinical and pathological diagnosis. PMID:23008780

  4. Expression of endothelin-1 gene and protein in human granulosa cells

    SciTech Connect

    Magini, A.; Granchi, S.; Susini, T.

    1996-04-01

    Previous studies in animal models indicated an autocrine/paracrine action of endothelin-1 (ET-1) in the ovary. We now report evidence on the presence of ET-1 in human ovary during reproductive life. Immunohistochemical and in situ hybridization studies demonstrated a positive signal into cytoplasm of granulosa cells (GC) of follicles at different growth stages. The concentration of ET-1-like immunoreactivity (ET-1-Li) was also measured by a specific RIA in human follicular fluid (FF). FF samples were obtained from women in an in vitro fertilization program undergoing gonadotropin stimulation (group A; n = 24) or no treatment (group B; n = 7). The mean ({+-}SD) ET-1-LI FF level in group A (4.85 {+-} 2.06 pg/mL) was significantly higher than that in group B (1.29 {+-} 0.43 pg/mL; P < 0.01), whereas the corresponding mean plasma levels were not significantly different and were not correlated to respective FF values. Our results indicate for the first time the presence of ET-1 and its messenger ribonucleic acid in the GC of the human ovary. The higher ET-1-LI levels found in the FF from women undergoing gonadotropin treatment suggest a modulation by gonadotropins and/or ovarian steroids of ET-1 production by GC. 19 refs., 4 figs., 1 tab.

  5. Effects of intramuscular administration of folic acid and vitamin B12 on granulosa cells gene expression in postpartum dairy cows.

    PubMed

    Gagnon, A; Khan, D R; Sirard, M-A; Girard, C L; Laforest, J-P; Richard, F J

    2015-11-01

    The fertility of dairy cows is challenged during early lactation, and better nutritional strategies need to be developed to address this issue. Combined supplementation of folic acid and vitamin B12 improve energy metabolism in the dairy cow during early lactation. Therefore, the present study was undertaken to explore the effects of this supplement on gene expression in granulosa cells from the dominant follicle during the postpartum period. Multiparous Holstein cows received weekly intramuscular injection of 320 mg of folic acid and 10 mg of vitamin B12 (treated group) beginning 24 (standard deviation=4) d before calving until 56 d after calving, whereas the control group received saline. The urea plasma concentration was significantly decreased during the precalving period, and the concentration of both folate and vitamin B12 were increased in treated animals. Milk production and dry matter intake were not significantly different between the 2 groups. Plasma concentrations of folates and vitamin B12 were increased in treated animals. Daily dry matter intake was not significantly different between the 2 groups before [13.5 kg; standard error (SE)=0.5] and after (23.6 kg; SE=0.9) calving. Average energy-corrected milk tended to be greater in vitamin-treated cows, 39.7 (SE=1.4) and 38.1 (SE=1.3) kg/d for treated and control cows, respectively. After calving, average plasma concentration of β-hydroxybutyrate tended to be lower in cows injected with the vitamin supplement, 0.47 (SE=0.04) versus 0.55 (SE=0.03) for treated and control cows, respectively. The ovarian follicle ≥12 mm in diameter was collected by ovum pick-up after estrus synchronization. Recovered follicular fluid volumes were greater in the vitamin-treated group. A microarray platform was used to investigate the effect of treatment on gene expression of granulosa cells. Lower expression of genes involved in the cell cycle and higher expression of genes associated with granulosa cell differentiation

  6. FMR1 and AKT/mTOR signalling pathways: potential functional interactions controlling folliculogenesis in human granulosa cells.

    PubMed

    Rehnitz, Julia; Alcoba, Diego D; Brum, Ilma S; Hinderhofer, Katrin; Youness, Berthe; Strowitzki, Thomas; Vogt, Peter H

    2017-08-04

    Granulosa cells (GCs) play a major role in folliculogenesis and are crucial for oocyte maturation and growth. In these cells, the mTOR/AKT signalling pathway regulates early folliculogenesis by maintaining the dormancy of primordial follicles, while FSH induces their further differentiation and maturation. Because changes in number of CGG triplets in FMR1 exon 1 (below or beyond normal values of 26-34 triplets) affect ovarian reserve and pre-mutations containing >54 CGG triplets represent a known risk factor for premature ovarian insufficiency/failure, we investigated in the human GC model (COV434) how FMR1/FMRP and mTOR/AKT are expressed and potentially interact during GC proliferation. As FMR protein (FMRP) is expressed mainly in human ovarian GCs, we used these after inducing their proliferation using recombinant FSH (rFSH) and the repression of the mTOR/AKT signalling pathway. We showed that AKT and mTOR expression levels significantly increase after stimulation with rFSH, while S6K and FMR1 expression decrease. After inhibiting mTOR and AKT, FMR1 and S6K expression significantly increased. Only AKT inhibition led to decreased FMRP levels, as expected due to the known FMR1/FMRP negative feedback loop. But rFSH and the mTOR inhibition increased them, indicating a decoupling of this FMR1/FMRP negative feedback loop in our model system. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  7. Safety of brilliant cresyl blue staining protocols on human granulosa and cumulus cells.

    PubMed

    Alcoba, Diego Duarte; Conzatti, Maiara; Ferreira, Gustavo Dias; Pimentel, Anita Mylius; Kussler, Ana Paula; Capp, Edison; von Eye Corleta, Helena; Brum, Ilma Simoni

    2016-02-01

    The selection of human immature oocytes destined for in vitro maturation (IVM) is performed according to their cumulus-oocyte complex (COC) morphology. In animal models, oocyte pre-selection with brilliant cresyl blue (BCB) staining improves fertilization and blastocyst rates and even increases the number of calves born. As the granulosa cells and cumulus cells (GCs and CCs) have a close relationship with the oocyte and are available in in vitro fertilization (IVF) programs, applying BCB staining to these cells may help to elucidate whether BCB shows toxicity to human oocytes and to determine the safest protocol for this dye. GCs and CCs were isolated from 24 patients who underwent controlled ovarian stimulation. After 48 h, cells were exposed to: Dulbecco's Modified Eagle Medium (DMEM) with or without phenol red, DPBS and mDPBS for 60 min; 13, 20 and 26 μM BCB for 60 min; and 60, 90 or 120 min to 13 μM BCB. Cellular viability was tested using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) and trypan blue assays. The 20 and 26 μM BCB exposures resulted in lower cell viability, similar to when cells were exposed to BCB for 90 or 120 min. GCs and CCs viabilities were equal among control group and 13 μM BCB group after 60 min. BCB staining was not toxic to GCs and CCs when the regime of 13 μM BCB for 60 min was used. Due to the close molecular/biochemical relationship between these cells and the gamete, we propose that it is unlikely that the use of BCB could interfere with the viability/health of human oocytes.

  8. Juvenile granulosa cell tumour of the ovary presenting with hyperprolactinaemic amenorrhoea and galactorrhoea

    PubMed Central

    Iqbal, Ahmed; Lubina-Solomon, Alexandra; Kew, Fiona M; Webster, Jonathan

    2016-01-01

    of an oestrogen-secreting tumour.JGCTs are rare hormonally active ovarian neoplasms mostly secreting steroid hormones.Serum inhibin can be used as a granulosa cell-specific tumour marker.JGCTs have an excellent prognosis in the early stages of the disease. PMID:27047664

  9. Juvenile granulosa cell tumour of the ovary presenting with hyperprolactinaemic amenorrhoea and galactorrhoea.

    PubMed

    Iqbal, Ahmed; Novodvorsky, Peter; Lubina-Solomon, Alexandra; Kew, Fiona M; Webster, Jonathan

    2016-01-01

    -secreting tumour.JGCTs are rare hormonally active ovarian neoplasms mostly secreting steroid hormones.Serum inhibin can be used as a granulosa cell-specific tumour marker.JGCTs have an excellent prognosis in the early stages of the disease.

  10. Melatonin modulates the functions of porcine granulosa cells via its membrane receptor MT2 in vitro.

    PubMed

    He, Ya-Mei; Deng, Hong-Hui; Shi, Mei-Hong; Bodinga, Bello Musa; Chen, Hua-Li; Han, Zeng-Sheng; Jiang, Zhong-Liang; Li, Qing-Wang

    2016-09-01

    Melatonin (N-acetyl-5-methoxytryptamine) is documented as a hormone involved in the circadian regulation of physiological and neuroendocrine function in mammals. Herein, the effects of melatonin on the functions of porcine granulosa cells in vitro were investigated. Porcine granulosa cells were cultivated with variable concentrations of melatonin (0, 0.001, 0.01, 0.1, 1.0, and 10ng/mL) for 48h. Melatonin receptor agonist (IIK7) and antagonist (Luzindole, 4P-PDOT) were used to further examine the action of melatonin. The results showed optimum cell viability and colony-forming efficiency of porcine granulosa cells at 0.01ng/mL melatonin for 48-h incubation period. The percentage of apoptotic granulosa cells was significantly reduced by 0.01 and 0.1ng/mL melatonin within the 48-h incubation period as compared with the rest of the treatments. Estradiol biosynthesis was significantly stimulated by melatonin supplementation and suppressed for the progesterone secretion; the minimum ratio of progesterone to estradiol was 1.82 in 0.01ng/mL melatonin treatment after 48h of cultivation. Moreover, the expression of BCL-2, CYP17A1, CYP19A1, SOD1, and GPX4 were up-regulated by 0.01ng/mL melatonin or combined with IIK7, but decreased for the mRNA levels of BAX, P53, and CASPASE-3, as compared with control or groups treated with Luzindole or 4P-PDOT in the presence of melatonin. In conclusion, the study demonstrated that melatonin mediated proliferation, apoptosis, and steroidogenesis in porcine granulosa cells predominantly through the activation of melatonin receptor MT2 in vitro, which provided evidence of the beneficial role of melatonin as well as its functional mechanism in porcine granulosa cells in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. PGRMC1 participates in late events of bovine granulosa cells mitosis and oocyte meiosis.

    PubMed

    Terzaghi, L; Tessaro, I; Raucci, F; Merico, V; Mazzini, G; Garagna, S; Zuccotti, M; Franciosi, F; Lodde, V

    2016-08-02

    Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in both oocyte and ovarian somatic cells, where it is found in multiple cellular sub-compartments including the mitotic spindle apparatus. PGRMC1 localization in the maturing bovine oocytes mirrors its localization in mitotic cells, suggesting a possible common action in mitosis and meiosis. To test the hypothesis that altering PGRMC1 activity leads to similar defects in mitosis and meiosis, PGRMC1 function was perturbed in cultured bovine granulosa cells (bGC) and maturing oocytes and the effect on mitotic and meiotic progression assessed. RNA interference-mediated PGRMC1 silencing in bGC significantly reduced cell proliferation, with a concomitant increase in the percentage of cells arrested at G2/M phase, which is consistent with an arrested or prolonged M-phase. This observation was confirmed by time-lapse imaging that revealed defects in late karyokinesis. In agreement with a role during late mitotic events, a direct interaction between PGRMC1 and Aurora Kinase B (AURKB) was observed in the central spindle at of dividing cells. Similarly, treatment with the PGRMC1 inhibitor AG205 or PGRMC1 silencing in the oocyte impaired completion of meiosis I. Specifically the ability of the oocyte to extrude the first polar body was significantly impaired while meiotic figures aberration and chromatin scattering within the ooplasm increased. Finally, analysis of PGRMC1 and AURKB localization in AG205-treated oocytes confirmed an altered localization of both proteins when meiotic errors occur. The present findings demonstrate that PGRMC1 participates in late events of both mammalian mitosis and oocyte meiosis, consistent with PGRMC1's localization at the mid-zone and mid-body of the mitotic and meiotic spindle.

  12. Paraoxonase (PON) 1, 2 and 3 expression in granulosa cells and PON1 activity in follicular fluid of dairy cows.

    PubMed

    Schneider, A; Absalon-Medina, V A; Esposito, G; Corrêa, M N; Butler, W R

    2013-12-01

    Normal metabolic activity in ovarian follicles may result in oxidative stress and damage to oocytes. The aim of this study was to evaluate expression of the natural anti-oxidants paraoxonase (PON) 1, 2 and 3 in granulosa cells and PON1 activity in follicular fluid (FF) and plasma of dairy cows. For the first experiment, ovaries were collected from cows at slaughter, after which follicles were dissected and classified as oestrogen active (EAF) or atretic (ATF). Expression of PON1, PON2 and PON3 mRNA was evaluated in granulosa cells, and activity of PON1 was measured in FF. PON1 mRNA was undetectable in granulosa cells, PON2 mRNA expression was not different between follicle types, and PON3 mRNA tended to be higher in EAF (p = 0.11). The activity of PON1 in FF was higher (p = 0.01) for EAF (82.6 ± 8.0 kU/L) than ATF (53.9 ± 6.8 kU/L), as were high-density lipoproteins (HDL), low-density lipoproteins (LDL) and total cholesterol concentrations. In the second experiment, we aimed to compare plasma and FF PON1 activity in early lactation Holstein cows (n = 15) with pre-ovulatory EAF. Activity of PON1 was twofold higher (p < 0.0001) in plasma (122.5 ± 11.1 kU/L) than in FF (61.4 ± 5.2 kU/L). Plasma concentrations were also higher (p < 0.0001) for HDL, LDL and total cholesterol when compared to FF. In conclusion, FF concentrations of PON1, HDL, LDL and total cholesterol were higher in healthy oestrogen active bovine follicles than in atretic follicles. PON1 was not expressed by granulosa cells indicating that high PON1 activity in bovine FF is apparently derived by transfer from blood in association with HDL. © 2013 Blackwell Verlag GmbH.

  13. Endometriosis as a detrimental condition for granulosa cell steroidogenesis and development: From molecular alterations to clinical impact.

    PubMed

    Sanchez, Ana Maria; Somigliana, Edgardo; Vercellini, Paolo; Pagliardini, Luca; Candiani, Massimo; Vigano, Paola

    2016-01-01

    Endometriosis is an estrogen-dependent chronic inflammatory condition that affects women in their reproductive period. Alterations in ovarian follicle morphology and function have been documented in affected women. The local intrafollicular environment has been as well examined by various groups. In the present review, we aimed to summarize the molecular evidence supporting the idea that endometriosis can negatively influence growth, steroidogenesis and the function of the granulosa cells (GCs). Reduced P450 aromatase expression, increased intracellular ROS generation and altered WNT signaling characterize the GCs of women with endometriosis. Clear evidence for an increased level of GC apoptosis has been provided in association with the downregulation of pro-survival factors. Other potentially negative effects include decreased progesterone production, locally decreased AMH production and lower inflammatory cytokine expression, although these have been only partially clarified. The possibility that endometriosis per se may influence IVF clinical results as a consequence of the detrimental impact on the local intrafollicular environment is also discussed.

  14. The effects of cetrorelix and triptorelin on the viability and steroidogenesis of cultured human granulosa luteinized cells.

    PubMed

    Metallinou, Chryssa; Köster, Frank; Diedrich, Klaus; Nikolettos, Nikos; Asimakopoulos, Byron

    2012-01-01

    We investigated the effects of the gonadotropin-releasing hormone (GnRH) agonist triptorelin as well the GnRH antagonist cetrorelix those of on the viability and steroidogenesis in human granulosa luteinized (hGL) cell cultures. The hGL cells were obtained from 34 women undergoing ovarian stimulation for IVF treatment. The cells were cultured for 48 h with or without 1 nM or 3 nM of cetrorelix or triptorelin in serum-free media. The cell viability was evaluated by the MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. The concentrations of estradiol and progesterone in culture supernatants were measured by ELISA. Treatment with triptorelin slightly increased cell viability, whereas treatment with 3 nM cetrorelix led to a significant decrease. Estradiol concentrations were reduced with 3 nM triptorelin. Cultures treated with high-dose of either cetrorelix or triptorelin tended to secrete less progesterone than controls. Cetrorelix significantly reduces the viability of hGL cells. Triptorelin and cetrorelix may have minor effects on steroidogenesis. These results suggest that GnRH analogues may influence ovarian functions.

  15. Transcriptome profiling of granulosa and theca cells during dominant follicle development in the horse.

    PubMed

    Donadeu, F Xavier; Fahiminiya, Somayyeh; Esteves, Cristina L; Nadaf, Javad; Miedzinska, Katarzyna; McNeilly, Alan S; Waddington, David; Gérard, Nadine

    2014-11-01

    Several aspects of equine ovarian physiology are unique among domestic species. Moreover, follicular growth patterns are very similar between horses and humans. This study aimed to characterize, for the first time, global gene expression profiles associated with growth and preovulatory (PO) maturation of equine dominant follicles. Granulosa cells (GCs) and theca interna cells (TCs) were harvested from follicles (n = 5) at different stages of an ovulatory wave in mares corresponding to early dominance (ED; diameter ≥22 mm), late dominance (LD; ≥33 mm) and PO stage (34 h after administration of crude equine gonadotropins at LD stage), and separately analyzed on a horse gene expression microarray, followed by validation using quantitative PCR and immunoblotting/immunohistochemistry. Numbers of differentially expressed transcripts (DETs; ≥2-fold; P < 0.05) during the ED-LD and LD-PO transitions were 546 and 2419 in GCs and 5 and 582 in TCs. The most prominent change in GCs was the down-regulation of transcripts associated with cell division during both ED-LD and LD-PO. In addition, DET sets during LD-PO in GCs were enriched for genes involved in cell communication/adhesion, antioxidation/detoxification, immunity/inflammation, and cholesterol biosynthesis. In contrast, the largest change in TCs during the LD-PO transition was an up-regulation of genes involved in immune activation, with other DET sets mapping to GPCR/cAMP signaling, lipid/amino acid metabolism, and cell proliferation/survival and differentiation. In conclusion, distinct expression profiles were identified between growing and PO follicles and, particularly, between GCs and TCs within each stage. Several DETs were identified that have not been associated with follicle development in other species.

  16. Insights into granulosa cell tumors using spontaneous or genetically engineered mouse models

    PubMed Central

    2016-01-01

    Granulosa cell tumors (GCTs) are rare sex cord-stromal tumors that have been studied for decades. However, their infrequency has delayed efforts to research their etiology. Recently, mutations in human GCTs have been discovered, which has led to further research aimed at determining the molecular mechanisms underlying the disease. Mouse models have been important tools for studying GCTs, and have provided means to develop and improve diagnostics and therapeutics. Thus far, several genetically modified mouse models, along with one spontaneous mouse model, have been reported. This review summarizes the phenotypes of these mouse models and their applicability in elucidating the mechanisms of granulosa cell tumor development. PMID:27104151

  17. Insights into granulosa cell tumors using spontaneous or genetically engineered mouse models.

    PubMed

    Kim, So-Youn

    2016-03-01

    Granulosa cell tumors (GCTs) are rare sex cord-stromal tumors that have been studied for decades. However, their infrequency has delayed efforts to research their etiology. Recently, mutations in human GCTs have been discovered, which has led to further research aimed at determining the molecular mechanisms underlying the disease. Mouse models have been important tools for studying GCTs, and have provided means to develop and improve diagnostics and therapeutics. Thus far, several genetically modified mouse models, along with one spontaneous mouse model, have been reported. This review summarizes the phenotypes of these mouse models and their applicability in elucidating the mechanisms of granulosa cell tumor development.

  18. Targeting Ovarian Carcinoma Stem Cells

    DTIC Science & Technology

    2012-05-01

    expertise with expertise in gynecologic oncology /ovarian carcinoma and in animal models of cancer this proposal will: 1) Identify, isolate, and...more numerous differentiated progeny characterizing the malignancy . Although the clinical significance of these cancer stem cells (CSC) has been...the dramatic initial response rates in ovarian carcinoma represent therapeutic effectiveness against the differentiated cancer cells making up the

  19. Comparison of the effects of human and chicken ghrelin on chicken ovarian hormone release.

    PubMed

    Sirotkin, Alexander V; Harrath, Abdel Halim; Grossmann, Roland

    2016-11-01

    The aim of the present experiments was to examine the species-specific and cell-specific effects of ghrelin on chicken ovarian hormone release. For this purpose, we compared the effects of chicken and human ghrelin on the release of estradiol (E), testosterone (T), progesterone (P) and arginine-vasotocin (AVT) by cultured fragments of chicken ovarian follicles and on the release of T and AVT by cultured ovarian granulosa cells. In cultured chicken ovarian fragments, both human and chicken ghrelin promoted E release. T output was stimulated by chicken ghrelin but not by human ghrelin. No effect of either human or chicken ghrelin on P release was observed. Human ghrelin promoted but chicken ghrelin suppressed AVT release by chicken ovarian fragments. In cultured ovarian granulosa cells, human ghrelin inhibited while chicken ghrelin stimulated T release. Both human and chicken ghrelin suppressed AVT output by chicken granulosa cells. These data confirm the involvement of ghrelin in the control of ovarian secretory activity and demonstrate that the effect of ghrelin is species-specific. The similarity of avian ghrelin on avian ovarian granulosa cells and ovarian fragments (containing both granulosa and theca cells) suggests that ghrelin can influence chicken ovarian hormones primarily by acting on granulosa cells.

  20. MV-NIS Infected Mesenchymal Stem Cells in Treating Patients With Recurrent Ovarian Cancer

    ClinicalTrials.gov

    2017-03-14

    Malignant Ovarian Brenner Tumor; Ovarian Clear Cell Adenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Adenocarcinoma; Ovarian Seromucinous Carcinoma; Ovarian Serous Adenocarcinoma; Ovarian Transitional Cell Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Undifferentiated Ovarian Carcinoma

  1. Spontaneous transformation of human granulosa cell tumours into an aggressive phenotype: a metastasis model cell line

    PubMed Central

    Imai, Misa; Muraki, Miho; Takamatsu, Kiyoshi; Saito, Hidekazu; Seiki, Motoharu; Takahashi, Yuji

    2008-01-01

    Background Granulosa cell tumours (GCTs) are frequently seen in menopausal women and are relatively indolent. Although the physiological properties of normal granulosa cells have been studied extensively, little is known about the molecular mechanism of GCT progression. Here, we characterise the unique behavioural properties of a granulosa tumour cell line, KGN cells, for the molecular analysis of GCT progression. Methods Population doubling was carried out to examine the proliferation capacity of KGN cells. Moreover, the invasive capacity of these cells was determined using the in vitro invasion assay. The expression level of tumour markers in KGN cells at different passages was then determined by Western blot analysis. Finally, the growth and metastasis of KGN cells injected subcutaneously (s.c.) into nude mice was observed 3 months after injection. Results During in vitro culture, the advanced passage KGN cells grew 2-fold faster than the early passage cells, as determined by the population doubling assay. Moreover, we found that the advanced passage cells were 2-fold more invasive than the early passage cells. The expression pattern of tumour markers, such as p53, osteopontin, BAX and BAG-1, supported the notion that with passage, KGN cells became more aggressive. Strikingly, KGN cells at both early and advanced passages metastasized to the bowel when injected s.c. into nude mice. In addition, more tumour nodules were formed when the advanced passage cells were implanted. Conclusion KGN cells cultured in vitro acquire an aggressive phenotype, which was confirmed by the analysis of cellular activities and the expression of biomarkers. Interestingly, KGN cells injected s.c. are metastatic with nodule formation occurring mostly in the bowel. Thus, this cell line is a good model for analysing GCT progression and the mechanism of metastasis in vivo. PMID:18980698

  2. Effects of porcine oocytes on the expression levels of transcripts encoding glycolytic enzymes in granulosa cells.

    PubMed

    Matsuno, Yuta; Onuma, Asuka; Fujioka, Yoshie A; Emori, Chihiro; Fujii, Wataru; Naito, Kunihiko; Sugiura, Koji

    2016-09-01

    Oocytes play critical roles in regulating the expression of transcripts encoding the glycolytic enzymes phosphofructokinase, platelet (PFKP) and lactate dehydrogenase A (LDHA) in granulosa cells in mice, but whether this is the case in pigs or other mammals has not been adequately investigated. Therefore, the aim of this study was to determine whether porcine oocytes regulate the expression levels of these transcripts in granulosa cells in vitro. Porcine cumulus cells expressed higher levels of PFKP and LDHA transcripts than mural granulosa cells (MGCs). However, co-culturing with oocytes had no significant effect on the isolated cumulus cells. While murine oocytes promoted the expression of both Pfkp and Ldha transcripts by murine MGCs, porcine oocytes promoted the expression of only Pfkp, but not Ldha transcripts by murine MGCs. Neither murine nor porcine oocytes affected PFKP and LDHA expression by porcine MGCs. Moreover, in the presence of porcine follicular fluid, porcine oocytes maintained the expression of PFKP, but not LDHA by porcine cumulus cells. Therefore, porcine oocytes are capable of regulating the expression of PFKP but not LDHA in granulosa cells in coordination with unknown factor(s) present in the follicular fluid.

  3. Oleic acid induces down-regulation of the granulosa cell identity marker FOXL2, and up-regulation of the Sertoli cell marker SOX9 in bovine granulosa cells.

    PubMed

    Yenuganti, Vengala Rao; Vanselow, Jens

    2017-07-26

    During negative energy balance, the concentration of different fatty acids, especially of oleic acid (OA) increases in the follicular fluid of cattle. Previously, we showed that OA induced morphological, physiological and molecular changes in cultured bovine granulosa cells. In our present study we analyzed effects of OA on the expression of markers for granulosa and Sertoli cell identity, FOXL2 and SOX9, respectively, in addition to effects on the FOXL2 regulated genes ESR2, FST, PTGS2 and PPARG. The results showed that OA down-regulated FOXL2, ESR2, FST and PPARG but up-regulated PTGS2 and SOX9. From these data we conclude that OA can compromise granulosa cell functionality and may initiate trans-differentiation processes in bovine granulosa cells. This novel mechanism may be causally involved in postpartum fertility problems of lactating dairy cows.

  4. Overexpression of glutamate–cysteine ligase protects human COV434 granulosa tumour cells against oxidative and γ-radiation-induced cell death

    PubMed Central

    Cortes-Wanstreet, Mabel M.; Giedzinski, Erich; Limoli, Charles L.; Luderer, Ulrike

    2009-01-01

    Ionizing radiation is toxic to ovarian follicles and can cause infertility. Generation of reactive oxygen species (ROS) has been implicated in the toxicity of ionizing radiation in several cell types. We have shown that depletion of the antioxidant glutathione (GSH) sensitizes follicles and granulosa cells to toxicant-induced apoptosis and that supplementation of GSH is protective. The rate-limiting reaction in GSH biosynthesis is catalysed by glutamate–cysteine ligase (GCL), which consists of a catalytic subunit (GCLC) and a regulatory subunit (GCLM). We hypothesized that overexpression of Gclc or Gclm to increase GSH synthesis would protect granulosa cells against oxidant- and radiation-induced cell death. The COV434 line of human granulosa tumour cells was stably transfected with vectors designed for the constitutive expression of Gclc, Gclm, both Gclc and Gclm or empty vector. GCL protein and enzymatic activity and total GSH levels were significantly increased in the GCL subunit-transfected cells. GCL-transfected cells were resistant to cell killing by treatment with hydrogen peroxide compared to control cells. Cell viability declined less in all the GCL subunit-transfected cell lines 1–8 h after 0.5 mM hydrogen peroxide treatment than in control cells. We next examined the effects of GCL overexpression on responses to ionizing radiation. ROS were measured using a redox-sensitive fluorogenic dye in cells irradiated with 0, 1 or 5 Gy of γ-rays. There was a dose-dependent increase in ROS within 30 min in all cell lines, an effect that was significantly attenuated in Gcl-transfected cells. Apoptosis, assessed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelling and activated caspase-3 immunoblotting, was significantly decreased in irradiated Gclc-transfected cells compared to irradiated control cells. Suppression of GSH synthesis in Gclc-transfected cells reversed resistance to radiation. These findings show that

  5. FOXL2-induced follistatin attenuates activin A-stimulated cell proliferation in human granulosa cell tumors

    SciTech Connect

    Cheng, Jung-Chien; Chang, Hsun-Ming; Qiu, Xin; Fang, Lanlan; Leung, Peter C.K.

    2014-01-10

    Highlights: •Activin A stimulates cell proliferation in KGN human granulosa cell tumor-derived cell line. •Cyclin D2 mediates activin A-induced KGN cell proliferation. •FOXL2 induces follistatin expression in KGN cells. •FOXL2-induced follistatin attenuates activin A-stimulated KGN cell proliferation. -- Abstract: Human granulosa cell tumors (GCTs) are rare, and their etiology remains largely unknown. Recently, the FOXL2 402C > G (C134W) mutation was found to be specifically expressed in human adult-type GCTs; however, its function in the development of human GCTs is not fully understood. Activins are members of the transforming growth factor-beta superfamily, which has been shown to stimulate normal granulosa cell proliferation; however, little is known regarding the function of activins in human GCTs. In this study, we examined the effect of activin A on cell proliferation in the human GCT-derived cell line KGN. We show that activin A treatment stimulates KGN cell proliferation. Treatment with the activin type I receptor inhibitor SB431542 blocks activin A-stimulated cell proliferation. In addition, our results show that cyclin D2 is induced by treatment with activin A and is involved in activin A-stimulated cell proliferation. Moreover, the activation of Smad signaling is required for activin A-induced cyclin D2 expression. Finally, we show that the overexpression of the wild-type FOXL2 but not the C134W mutant FOXL2 induced follistatin production. Treatment with exogenous follistatin blocks activin A-stimulated cell proliferation, and the overexpression of wild-type FOXL2 attenuates activin A-stimulated cell proliferation. These results suggest that FOXL2 may act as a tumor suppressor in human adult-type GCTs by inducing follistatin expression, which subsequently inhibits activin-stimulated cell proliferation.

  6. Insulin-like growth factors (IGFs) as autocrine/paracrine regulators of granulosa cell differentiation and growth: Studies with a neutralizing monoclonal antibody to IGF-I

    SciTech Connect

    Mondschein, J.S.; Canning, S.F.; Miller, D.Q.; Hammond, J.M. )

    1989-07-01

    Evidence that granulosa cells secrete and respond to insulin-like growth factors (IGFs) suggests, but does not prove, the importance of IGFs as intraovarian regulators. To further assess the role of these peptides in ovarian function, a neutralizing monoclonal antibody to IGF-I was employed to block the actions of IGFs in porcine follicular fluid and in granulosa cell-conditioned medium. In one series of experiments, granulosa cells from immature porcine follicles were cultured in medium containing porcine follicular fluid that had been charcoal-treated to remove steroids. As noted before, fluid from large follicles (LFF) stimulated progesterone production in a dose-dependent manner. The stimulatory effect of LFF (30% v/v) could be inhibited by greater than 50% by the anti-IGF monoclonal antibody. This inhibitory action was specific for the anti-IGF antibody and could be overcome by the addition of excess exogenous IGFs. In another series of experiments, granulosa cells were made dependent on endogenously produced IGFs by culturing them in a serum-free medium without exogenous growth factors. The effects of follicle-stimulating hormone (FSH), estradiol (E2), growth hormone (GH), and combinations thereof on progesterone production were inhibited by approximately 50% by the anti-IGF antibody. The effects of IGFs on indices of cell growth (judged by the criterion of being inhibited by the anti-IGF antibody) were less dramatic. A modest 18% increase in cell number was observed with FSH and E2 treatment in serum-free medium; this effect was virtually abolished by the antibody.

  7. Induction of Ski protein expression upon luteinization in rat granulosa cells without a change in its mRNA expression.

    PubMed

    Kim, Hyun; Yamanouchi, Keitaro; Matsuwaki, Takashi; Nishihara, Masugi

    2012-01-01

    The Ski protein is implicated in the proliferation/differentiation of a variety of cells. We previously reported that the Ski protein is present in granulosa cells of atretic follicles, but not in preovulatory follicles, suggesting that Ski has a role in apoptosis of granulosa cells. However, granulosa cells cannot only undergo apoptosis but can alternatively differentiate into luteal cells. It is unknown whether Ski is expressed and has a role in granulosa cells undergoing luteinization. Thus, the aim of the present study was to determine the localization of the Ski protein in the rat ovary during luteinization to examine if Ski might play a role in this process. In order to examine the Ski protein expression during the progression of luteinization, follicular growth was induced in immature female rats by administration of equine chorionic gonadotropin, and luteinization was induced by human chorionic gonadotropin treatment to mimic the luteinizing hormone (LH) surge. While no Ski-positive granulosa cells were present in the preovulatory follicle, Ski protein expression was induced in response to the LH surge and was maintained after formation of the corpus luteum (CL). Although the Ski protein is absent from the granulosa cells of the preovulatory follicle, its mRNA (c-ski) was expressed, and the level of c-ski mRNA was unchanged even after the LH surge. The combined results demonstrated that Ski protein expression is induced in granulosa cells upon luteinization, and suggested that its expression is regulated posttranscriptionally.

  8. Expression, Regulation, and Functional Characterization of FST Gene in Porcine Granulosa Cells.

    PubMed

    Zhou, QuanYong; Wan, MingChun; Wei, QiPeng; Song, QiongLi; Xiong, LiGen; Huo, JunHong; Huang, JiangNan

    2016-10-01

    Proliferation, differentiation, and estrogen secretion of granulosa cells are the key factors affecting the estrous after weaning in sows. The objective of this study was to evaluate the expression of Follistatin (FST) in the ovary of Xiushui Hang and Duroc sows at weaning and estrus, the effect of FSH on transcript abundance of FST gene in granulosa cells and the role of FST gene in the weaning to estrus using siRNAs targeted to FST gene. In the present study, expression of the FST mRNA was evaluated by real time PCR. The FST mRNA levels showed a reduction from weaning to the estrus in both Xiushui Hang and Duroc sows, and the mRNA levels in Duroc ovary was higher than in Xiushui Hang sows at the beginning of estrus. Granulosa cells were obtained from the two largest follicles around follicular deviation, FST expression was decreased sharply after treatment with FSH (250 ng/ml). Knockdown of FST by siRNA in porcine granulosa cells significantly increased cell proliferation and estrogen secretion. These results indicate that FST gene is a negative regulator of follicle growth and function during the weaning-estrus interval.

  9. Androgen and FSH synergistically stimulate lipoprotein degradation and utilization by ovary granulosa cells

    SciTech Connect

    Schreiber, J.R.; Nakamura, K.; Schmit, V.; Weinstein, D.B.

    1984-01-01

    Androgen can directly modulate the induction of steroidogenic enzymes by FSH (follicle stimulating hormone) in ovary granulosa cells. In studies of its mechanism of action, the authors examined the androgen effect on granulosa cell interaction with lipoproteins, the physiologic source of cholesterol. After granulosa cells were cultured for 48 hours with and without androgen and/or FSH, the cells were incubated for 24 hours with /sup 125/I-lipoproteins (human high density lipoprotein (HDL), rat HDL, or human low density lipoprotein (LDL)). The media were then analyzed for lipoprotein protein coat degradation products (mainly /sup 125/I-monoiodotyrosine) and progestin (mainly 20 alpha-dihydroprogesterone (20 alpha-DHP)). In the absence of FSH and androgen, 2 X 10(5) granulosa cells degraded basal levels of all three lipoproteins, but produced no measurable 20 alpha-DHP. The addition of 10(-7) M androstenedione (A), testosterone (T), or 5 alpha-dihydrotestosterone (DHT) had no effect on lipoprotein protein degradation or 20 alpha-DHP production. FSH alone stimulated lipoprotein protein degradation by 50 to 300% while the addition of androgen synergistically augmented the FSH-stimulated 20 alpha-DHP production as well as protein coat degradation of all three lipoproteins. DHT and T were both effective, indicating that androgens themselves, and not estrogen products, were responsible for the effect on lipoprotein protein degradation and 20 alpha-DHP production.

  10. Dual effect of insulin resistance and cadmium on human granulosa cells - In vitro study.

    PubMed

    Belani, Muskaan; Shah, Preeti; Banker, Manish; Gupta, Sarita

    2016-12-15

    Combined exposure of cadmium (Cd) and insulin resistance (IR) might be responsible for subfertility. In the present study, we investigated the effects of Cd in vitro in IR human granulosa cells. Isolated human granulosa cells from control and polycystic ovary syndrome (PCOS) follicular fluid samples were confirmed for IR by decrease in protein expression of insulin receptor-β. Control and IR human granulosa cells were then incubated with or without 32μM Cd. The combined effect of IR with 32μM Cd in granulosa cells demonstrated significant decrease in expression of StAR, CYP11A1, CYP19A1, 17β-HSD, 3β-HSD, FSH-R and LH-R. Decrease was also observed in progesterone and estradiol concentrations as compared to control. Additionally, increase in protein expression of cleaved PARP-F2, active caspase-3 and a positive staining for Annexin V and PI indicated apoptosis as the mode of increased cell death ultimately leading to decreased steroidogenesis, as observed through the combined exposure. Taken together the results suggest decrease in steroidogenesis ultimately leading to abnormal development of the follicle thus compromising fertility at the level of preconception. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Transcriptomic analysis of stage 1 versus advanced adult granulosa cell tumors

    PubMed Central

    Leung, Dilys; Gould, Jodee A.; Jobling, Tom; Fuller, Peter J.

    2016-01-01

    Ovarian granulosa cell tumors (GCT) are hormonally-active neoplasms characterized, in the adult-subtype, by a mutation in the FOXL2 gene (C134W). They exhibit an indolent course with an unexplained propensity for late recurrence; ∼80% of patients with aggressive, advanced stage tumors die from their disease; aside from surgery, therapeutic options are limited. To identify the molecular basis of advanced stage disease we have used whole transcriptome analysis of FOXL2 C134W mutation positive adult (a)GCT to identify genes that are differentially expressed between early (stage 1) and advanced (stage 3) aGCT. Transcriptome profiles for early (n = 6) and stage 3 (n = 6) aGCT, and for the aGCT-derived KGN, cell line identified 24 genes whose expression significantly differs between the early and stage 3 aGCT. Of these, 16 were more abundantly expressed in the stage 3 aGCT and 8 were higher in the stage 1 tumors. These changes were further examined for the genes which showed the greatest fold change: the cytokine CXCL14, microfibrillar-associated protein 5, insulin-like 3 and desmin. Gene Set Enrichment Analysis identified overexpression of genes on chromosome 7p15 which includes the homeobox A gene locus. The analysis therefore identifies a small number of genes with clearly discriminate patterns of expression arguing that the clinicopathological-derived distinction of the tumor stage is robust, whilst confirming the relative homogeneity of expression for many genes across the cohort and hence of aGCT. The expression profiles do however identify several overexpressed genes in both stage 1 and/or stage 3 aGCT which warrant further study as possible therapeutic targets. PMID:26893359

  12. Bilateral occurrence of granulosa-theca cell tumors in an Arabian mare

    PubMed Central

    Frederico, Lisa M.; Gerard, Mathew P.; Pinto, Carlos R.F.; Gradil, Carlos M.

    2007-01-01

    An Arabian mare was referred for right granulosa-theca cell tumor (GTCT) evaluation. The mare was presented 4.5 years later for a left GTCT, after successfully conceiving and delivering a normal foal in the interim. The concurrent or nonconcurrent occurrence of bilateral GTCT in mares appears to be rare. PMID:17542368

  13. Ferroportin mRNA is down-regulated in granulosa and cervical cells from infertile women.

    PubMed

    Moreno-Navarrete, José Maria; López-Navarro, Eva; Candenas, Luz; Pinto, Francisco; Ortega, Francisco J; Sabater-Masdeu, Mònica; Fernández-Sánchez, Manuel; Blasco, Victor; Romero-Ruiz, Antonio; Fontán, Marina; Ricart, Wifredo; Tena-Sempere, Manuel; Fernández-Real, José M

    2017-01-01

    To explore the relationship between iron and infertility by investigating iron-related gene expression in granulosa and uterine cervical cells. Case-control study. Two tertiary hospitals. Two independent cohorts of fertile (n = 18 and n = 17) and infertile (n = 31 and n = 35) women. In vitro fertilization. Gene expression levels of ferritin light chain (FTL), ferritin heavy chain (FTH), transferrin receptor (TFRC), and ferroportin (SLC40A1) mRNA were analyzed in granulosa and cervical cells. In the first cohort, fertile and infertile women were similar in body mass index. Ferroportin mRNA levels were decreased in granulosa cells from infertile women in parallel with increased serum hepcidin levels. A positive association between ferroportin and TFRC mRNA, a gene associated with intracellular iron deficiency, was observed only in granulosa cells from fertile women. The major findings were replicated in a second independent cohort. Ferroportin mRNAs and circulating hepcidin identify a subset of infertile women and may constitute a target for therapy. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. hCG-induced Sprouty2 mediates amphiregulin-stimulated COX-2/PGE2 up-regulation in human granulosa cells: a potential mechanism for the OHSS

    PubMed Central

    Cheng, Jung-Chien; Fang, Lanlan; Chang, Hsun-Ming; Sun, Ying-Pu; Leung, Peter C. K.

    2016-01-01

    Sprouty2 (SPRY2) is an important intracellular regulator for epidermal growth factor receptor (EGFR)-mediated ERK1/2 signaling. In human granulosa cells, although SPRY2 is expressed, its regulation and function remains complete unknown and must be defined. Our previous study has shown that human chorionic gonadotropin (hCG)/luteinizing hormone (LH) up-regulates the expression levels of EGF-like growth factor, amphiregulin (AREG), which subsequently contributes to the hCG/LH-induced COX-2 expression and PGE2 production. The aim of the present study was to investigate the effect of hCG on SPRY2 expression and the role of hCG-induced SPRY2 in AREG-stimulated COX-2 expression and PGE2 production in human granulosa cells. Our results demonstrated that the expression of SPRY2 was up-regulated by hCG treatment. Using pharmacological inhibitors and siRNA knockdown, we showed that activation of ERK1/2 signaling was required for hCG-induced up-regulation of SPRY2 expression. Further, SPRY2 knockdown attenuated the AREG-induced COX-2 expression and PGE2 production by inhibiting AREG-activated ERK1/2 signaling. Interestingly, we showed that SPRY2 expression levels were significantly increased in granulosa cells of ovarian hyperstimulation syndrome (OHSS) patients. These results for the first time elucidate the physiological roles of SPRY2 in human granulosa cells and suggest that aberrant expression of SPRY2 may contribute to the pathogenesis of OHSS. PMID:27539669

  15. A lectin-based cell microarray approach to analyze the mammalian granulosa cell surface glycosylation profile.

    PubMed

    Accogli, Gianluca; Desantis, Salvatore; Martino, Nicola Antonio; Dell'Aquila, Maria Elena; Gemeiner, Peter; Katrlík, Jaroslav

    2016-10-01

    The high complexity of glycome, the repertoire of glycans expressed in a cell or in an organism, is difficult to analyze and the use of new technologies has accelerated the progress of glycomics analysis. In the last decade, the microarray approaches, and in particular glycan and lectin microarrays, have provided new insights into evaluation of cell glycosylation status. Here we present a cell microarray method based on cell printing on microarray slides for the analysis of the glycosylation pattern of the cell glycocalyx. In order to demonstrate the reliability of the developed method, the glycome profiles of equine native uncultured mural granulosa cells (uGCs) and in vitro cultured mural granulosa cells (cGCs) were determined and compared. The method consists in the isolation of GCs, cell printing into arrays on microarray slide, incubation with a panel of biotinylated lectins, reaction with fluorescent streptavidin and signal intensity detection by a microarray scanner. Cell microarray technology revealed that glycocalyx of both uGCs and cGCs contains N-glycans, sialic acid terminating glycans, N-acetylglucosamine and O-glycans. The comparison of uGCs and cGCs glycan signals indicated an increase in the expression of sialic acids, N-acetylglucosamine, and N-glycans in cGCs. Glycan profiles determined by cell microarray agreed with those revealed by lectin histochemistry. The described cell microarray method represents a simple and sensitive procedure to analyze cell surface glycome in mammalian cells.

  16. Targeted Disruption of Nrg1 in Granulosa Cells Alters the Temporal Progression of Oocyte Maturation

    PubMed Central

    Kawashima, Ikko; Umehara, Takashi; Noma, Noritaka; Kawai, Tomoko; Shitanaka, Manami

    2014-01-01

    Neuregulin 1 (NRG1) is induced in granulosa cells by LH and acts on granulosa and cumulus cells during ovulation. In this study, we sought to determine the role of NRG1 in oocyte maturation by generating a granulosa cell–specific Nrg1 knockout mouse (Nrg1flox/flox;Cyp19a1Cre mice [gcNrg1KO]). In the gcNrg1KO mice, meiosis was induced 2 hours earlier than in control mice. More than 60% of the oocytes in the mutant mice spontaneously re-resumed meiosis beyond the MII stage. The percentage of successful fertilization was comparable in oocytes of both genotypes collected at 14 or 16 hours after human chorionic gonadotropin injection but was significantly lower in oocytes of the gcNrg1KO mice at 18 or 20 hours. The number of pups per litter was significantly decreased in gcNrg1KO mice. To determine the molecular events associated with the abnormal progression of meiosis in the gcNrg1KO mouse oocytes, the defects of cumulus/granulosa cell functions were analyzed. The expression of genes involved in luteinization and cumulus expansion was significantly higher at 2 hours after human chorionic gonadotropin injection in the gcNrg1KO mice; this was related to abnormal activation of protein kinase C (PKC) and phosphorylation of connexin-43 in cumulus cells. Changes in connexin-43 by PKC might lead to early meiotic resumption of oocytes in gcNrg1KO mice. We conclude that NRG1 is induced by LH in mural granulosa cells and exerts an important regulatory role in oocyte meiotic maturation and competence by reducing PKC activation in cumulus cells and preventing premature progression to the MII stage that leads to abnormal fertilization and fertility. PMID:24650175

  17. Effect of Holothuria leucospilota extracted saponin on maturation of mice oocyte and granulosa cells

    PubMed Central

    Moghadam, Fereshteh Delghandi; Baharara, Javad; Balanezhad, Saeedeh Zafar; Jalali, Mohsen; Amini, Elaheh

    2016-01-01

    Sea cucumbers saponins are triterpenoid glycosides which exert beneficial biomedical effects. This study was performed to assess the effect of saponin extracted from sea cucumber Holothuria leucospilota (H. leucospilota) on maturation of mice oocytes and granulosa cells. The germinal vesicles oocytes were collected from 6–8 weeks old Naval Medical Research Institute (NMRI) mice ovaries, randomly divided into untreated and four experimental groups and cultured In vitro. Maturation medium was supplemented with 0, 1, 2, 4 and 8 μg/ml saponin for 12 days. The rates of maturation were recorded through morphological observation by measurement of follicle diameter during treatment. After 4 days, the effects of saponin on granulosa cells were investigated by reactive oxygen species (ROS) measurement, super oxide dismutase (SOD) activity, caspase assay and tumor necrosis factor-alpha (TNF-α) expression. The oocyte maturation rate was significantly higher in treated groups (1 μg/ml). The ROS and SOD assays demonstrated the antioxidant potential of saponin. The caspase assay exhibited that optimum concentrations of saponin (1, 2 μg/ml) reduced caspase activity in granulosa cells. Flow cytometry showed that optimum concentration of saponin promoted oocyte maturation via down regulation of TNF-α as follicular degenerative factor in nursing cells. These results proposed that maturation rate were obtained after the incorporation of 1 μg/ml sea cucumber saponin. Moreover, the extracted saponin at concentrations of 1, 2 μg/ml enhanced follicle growth which is accompanied by attenuating ROS formation, elevating SOD activity and reducing TNF-α expression in granulosa cells. But, further examinations are required to understand precise mechanisms of saponin action on oocyte and granulosa cells. PMID:27168752

  18. Expression of scavenger receptor-BI and low-density lipoprotein receptor and differential use of lipoproteins to support early steroidogenesis in luteinizing macaque granulosa cells.

    PubMed

    Cherian-Shaw, Mary; Puttabyatappa, Muraly; Greason, Erin; Rodriguez, Annabelle; VandeVoort, Catherine A; Chaffin, Charles L

    2009-02-01

    An ovulatory hCG stimulus to rhesus macaques undergoing controlled ovarian stimulation protocols results in a rapid and sustained increase in progesterone synthesis. The use of lipoproteins as a substrate for progesterone synthesis remains unclear, and the expression of lipoprotein receptors [very-low-density lipoprotein receptor (VLDLR), low-density lipoprotein receptor (LDLR), and scavenger receptor-BI (SR-BI)] soon after human chorionic gonadotropin (hCG) (<12 h) has not been characterized. This study investigated lipoprotein receptor expression and lipoprotein (VLDL, LDL, and HDL) support of steroidogenesis during luteinization of macaque granulosa cells. Granulosa cells were aspirated from rhesus monkeys undergoing controlled ovarian stimulation before or up to 24 h after an ovulatory hCG stimulus. The expression of VLDLR decreased within 3 h of hCG, whereas LDLR and SR-BI increased at 3 and 12 h, respectively. Granulosa cells isolated before hCG were cultured for 24 h in the presence of FSH or FSH plus hCG with or without VLDL, LDL, or HDL. Progesterone levels increased in the presence of hCG regardless of lipoprotein addition, although LDL, but not HDL, further augmented hCG-induced progesterone. Other cells were cultured with FSH or FSH plus hCG without an exogenous source of lipoprotein for 24 h, followed by an additional 24 h culture with or without lipoproteins. Cells treated with hCG in the absence of any lipoprotein were unable to maintain progesterone levels through 48 h, whereas LDL (but not HDL) sustained progesterone synthesis. These data suggest that an ovulatory stimulus rapidly mobilizes stored cholesterol esters for use as a progesterone substrate and that as these are depleted, new cholesterol esters are obtained through an LDLR- and/or SR-BI-mediated mechanism.

  19. Expression of mRNA and protein of IL-18 and its receptor in human follicular granulosa cells.

    PubMed

    Salmassi, A; Fattahi, A; Nouri, M; Hedderich, J; Schmutzler, A G

    2017-04-01

    There is no information available about the IL-18 receptor in ovarian follicles, so the present study attempts to demonstrate the expression of IL-18 and its receptor in human granulosa cells (GCs). To evaluate the concentration of IL-18 in serum and follicular fluid (FF), we collected serum and FF from 102 women undergoing oocyte retrieval. Also, to detect expression of IL-18 and its receptor by luteinized GCs, these cells were pooled six times from a total of twenty individual patients with 5-16 follicles each. The IL-18 concentration was determined by ELISA and the expression of IL-18 and its receptor by immunocytochemistry and reverse transcription polymerase chain reaction. Our results showed that the median IL-18 concentration in serum, 159.27 pg/ml (IQR 121.41-210.1), was significantly higher than in FF, 142.1 pg/ml (IQR 95.7-176.5), p < 0.001. Moreover, we found that IL-18 and its receptor are expressed by GCs. The presence of IL-18 in FF and the expression of IL-18 and its receptor by GCs suggest an important role for this cytokine in ovarian function.

  20. Comprehensive analysis of genome-wide DNA methylation across human polycystic ovary syndrome ovary granulosa cell

    PubMed Central

    Peng, Zhaofeng; Wang, Linlin; Du, Linqing; Niu, Wenbin; Sun, Yingpu

    2016-01-01

    Polycystic ovary syndrome (PCOS) affects approximately 7% of the reproductive-age women. A growing body of evidence indicated that epigenetic mechanisms contributed to the development of PCOS. The role of DNA modification in human PCOS ovary granulosa cell is still unknown in PCOS progression. Global DNA methylation and hydroxymethylation were detected between PCOS’ and controls’ granulosa cell. Genome-wide DNA methylation was profiled to investigate the putative function of DNA methylaiton. Selected genes expressions were analyzed between PCOS’ and controls’ granulosa cell. Our results showed that the granulosa cell global DNA methylation of PCOS patients was significant higher than the controls’. The global DNA hydroxymethylation showed low level and no statistical difference between PCOS and control. 6936 differentially methylated CpG sites were identified between control and PCOS-obesity. 12245 differential methylated CpG sites were detected between control and PCOS-nonobesity group. 5202 methylated CpG sites were significantly differential between PCOS-obesity and PCOS-nonobesity group. Our results showed that DNA methylation not hydroxymethylation altered genome-wide in PCOS granulosa cell. The different methylation genes were enriched in development protein, transcription factor activity, alternative splicing, sequence-specific DNA binding and embryonic morphogenesis. YWHAQ, NCF2, DHRS9 and SCNA were up-regulation in PCOS-obesity patients with no significance different between control and PCOS-nonobesity patients, which may be activated by lower DNA methylaiton. Global and genome-wide DNA methylation alteration may contribute to different genes expression and PCOS clinical pathology. PMID:27056885

  1. Seminal plasma regulates ovarian progesterone production, leukocyte recruitment and follicular cell responses in the pig.

    PubMed

    O'Leary, S; Jasper, M J; Robertson, S A; Armstrong, D T

    2006-07-01

    Seminal plasma (SP) acts to influence the uterine endometrium after mating, activating synthesis of embryotrophic cytokines and inflammatory changes that condition the tract for embryo implantation and establishing pregnancy. The objective of this study was to investigate in pigs whether the ovary might also be responsive to SP exposure. Prepubertal gilts were synchronised with exogenous gonadotrophins and received transcervical treatment with pooled boar SP or PBS; then the ovarian tissue was recovered at 34 h (preovulation) and on days 5 and 9 after treatment. The ovarian response was assessed by measuring ovulation rate, number and size of corpora lutea, ovarian leukocyte populations, progesterone production in vivo, as well as responses of retrieved granulosa cells cultured in vitro. In SP-treated gilts, leukocyte recruitment into the ovarian tissues was increased fourfold at 34 h, with macrophages comprising the most abundant cell lineage. There was no effect of SP on the number of oocytes ovulated; however, the weight of corpora lutea was increased in SP-treated gilts. SP also induced an increase in plasma progesterone content seen from day 5 to at least day 9 after treatment. In addition, granulosa cells and thecal tissue retrieved from preovulatory follicles of SP-treated gilts were more responsive in vitro to growth factor- and gonadotrophin-stimulated cell proliferation and progesterone synthesis. These results suggest that uterine exposure to SP influences immune cell trafficking in the ovary and enhances steroidogenesis in early pregnancy. The effects of SP on ovarian function potentially contribute to reproductive success in the pig.

  2. Wt1 directs the lineage specification of sertoli and granulosa cells by repressing Sf1 expression.

    PubMed

    Chen, Min; Zhang, Lianjun; Cui, Xiuhong; Lin, Xiwen; Li, Yaqiong; Wang, Yaqing; Wang, Yanbo; Qin, Yan; Chen, Dahua; Han, Chunsheng; Zhou, Bin; Huff, Vicki; Gao, Fei

    2017-01-01

    Supporting cells (Sertoli and granulosa) and steroidogenic cells (Leydig and theca-interstitium) are two major somatic cell types in mammalian gonads, but the mechanisms that control their differentiation during gonad development remain elusive. In this study, we found that deletion of Wt1 in the ovary after sex determination caused ectopic development of steroidogenic cells at the embryonic stage. Furthermore, differentiation of both Sertoli and granulosa cells was blocked when Wt1 was deleted before sex determination and most genital ridge somatic cells differentiated into steroidogenic cells in both male and female gonads. Further studies revealed that WT1 repressed Sf1 expression by directly binding to the Sf1 promoter region, and the repressive function was completely abolished when WT1 binding sites were mutated. This study demonstrates that Wt1 is required for the lineage specification of both Sertoli and granulosa cells by repressing Sf1 expression. Without Wt1, the expression of Sf1 was upregulated and the somatic cells differentiated into steroidogenic cells instead of supporting cells. Our study uncovers a novel mechanism of somatic cell differentiation during gonad development. © 2017. Published by The Company of Biologists Ltd.

  3. A Hot-spot of In-frame Duplications Activates the Oncoprotein AKT1 in Juvenile Granulosa Cell Tumors

    PubMed Central

    Bessière, Laurianne; Todeschini, Anne-Laure; Auguste, Aurélie; Sarnacki, Sabine; Flatters, Delphine; Legois, Bérangère; Sultan, Charles; Kalfa, Nicolas; Galmiche, Louise; Veitia, Reiner A.

    2015-01-01

    Background Ovarian granulosa cell tumors are the most common sex-cord stromal tumors and have juvenile (JGCTs) and adult forms. In a previous study we reported the occurrence of activating somatic mutations of Gαs, which transduces mitogenic signals, in 30% of the analyzed JGCTs. Methods We have searched for alterations in other proteins involved in ovarian mitogenic signaling. We focused on the PI3K–AKT axis. As we found mutations in AKT1, we analyzed the subcellular localization of the mutated proteins and performed functional explorations using Western-blot and luciferase assays. Findings We detected in-frame duplications affecting the pleckstrin-homology domain of AKT1 in more than 60% of the tumors occurring in girls under 15 years of age. The somatic status of the mutations was confirmed when peritumoral DNA was available. The JGCTs without duplications carried point mutations affecting highly conserved residues. Several of these substitutions were somatic lesions. The mutated proteins carrying the duplications had a non-wild-type subcellular distribution, with a marked enrichment at the plasma membrane. This led to a striking degree of AKT1 activation demonstrated by a strong phosphorylation level and by reporter assays. Interpretation Our study incriminates somatic mutations of AKT1 as a major event in the pathogenesis of JGCTs. The existence of AKT inhibitors currently tested in clinical trials opens new perspectives for targeted therapies for these tumors, which are currently treated with standard non-specific chemotherapy protocols. PMID:26137586

  4. Further studies of the effects of follicular fluid and membrana granulosa cells on the spontaneous maturation of pig oocytes.

    PubMed

    Racowsky, C; McGaughey, R W

    1982-11-01

    Liberated cumulus-enclosed pig oocytes were cultured either alone in follicular fluid or with membrana granulosa cells in a complex serum based medium. After 24 h, oocytes were air-dried for cytogenetic analysis, meiotic stage was scored, and viability of granulosa cells was determined. Neither the release from meiotic arrest nor the progression of maturation to metaphase II was significantly inhibited by either of these follicular components. Co-culture of membrana granulosa cells and oocytes significantly stimulated maturation in one experimental series, while viability of the somatic cells was maintained in all experiments. These results do not support the concept of a stable oocyte maturation inhibitor of granulosa cell origin in follicular fluid.

  5. Bone morphogenetic protein 2 regulates cell-cell communication by down-regulating connexin43 expression in luteinized human granulosa cells.

    PubMed

    Wu, Yan-Ting; Chang, Hsun-Ming; Huang, He-Feng; Sheng, Jian-Zhong; Leung, Peter C K

    2017-03-01

    , the individual or concomitant small interfering RNA-mediated knockdown of ALK2 and ALK3, but not ALK6 attenuated the BMP2-induced increases in phosphorylated SMAD1/5/8 and down-regulation of Cx43 expression (P < 0.05). The knockdown of SMAD4 completely abolished the BMP2-induced down-regulation of Cx43 expression (P < 0.05). This experimental study was conducted in an in vitro cell culture system, and may not reflect a realistic intra-ovarian environment. Our results suggested that BMP2 may be involved in the local modulation of cell-cell communication in the luteal phase. This study also represents the first comprehensive research of molecular mechanisms of BMP2 in the down-regulation Cx43 in luteinized human granulosa cells. Such data may provide valuable insights into ovarian physiology and benefit the development of potential therapeutic methods for patients suffering from luteal insufficiency. N/A. This research was supported by an operating grant from the China-Canadian Joint Health Research Initiative Grants Program to P.C.K. Leung and J.Z. Sheng. The authors declare no competing interest with the contents of this article.

  6. Two Case Reports of a Malignant Germ Cell Tumor of Ovary and a Granulosa Cell Tumor: Interest of Tumoral Immunochemistry in the Identification and Management

    PubMed Central

    Bouquet de Jolinière, J.; Ben Ali, N.; Fadhlaoui, A.; Dubuisson, J. B.; Guillou, L.; Sutter, A.; Betticher, D.; Hoogewoud, H. M.; Feki, A.

    2014-01-01

    Objective: In this article, we present two case reports. The first case was a malignant germ cell tumor of the right ovary in a 23-year old woman and the second case was a bilateral undifferentiated granulosa cell tumor in a 71-year old woman. The aim of these reports is to illustrate the interest of the immunohistochemical analysis to define the correct diagnosis, to better classify these ovarian tumors and improve their management. Methods: In this study, we report two cases. The first case concerns a 23-year old woman (A) with a mixed germ cell tumor of the right ovary [dysgerminoma (75%), yolk sac tumor (20%), and a mature teratoma (5%)], and the second case concerns a 71-year old woman (B) with a bilateral non-differentiated and necrotic granulosa cell tumor of both ovaries. The staging system was used according to both the classifications: International Federation of Gynaecology and Obstetrics 1987 for ovarian cancer and TNM code 2009. Results: The immunostaining establishes the malignancy and the immunochemistry contributes to confirm effectively the right diagnosis (Tables 2 and 3). Conclusion: An immunohistochemical analysis is mandatory for the choice of chemotherapy to obtain a better response of the disease and improve the survival prognosis. The efficiency of the chemotherapy authorizes a conservative surgery including a unilateral salpingo-oophorectomy preserving fertility (A). Concerning the non-dysgerminoma tumor (B), and after a surgical staging and debulking, chemotherapy was recommended. The type of tumor and its histological feature conditioned the choice of treatment. The benefit of the immunohistological analysis in this case allowed the right adjuvant treatment. PMID:24982844

  7. The Therapeutic Potential of Umbilical Cord Mesenchymal Stem Cells in Mice Premature Ovarian Failure

    PubMed Central

    Wang, Shufang; Yu, Ling; Sun, Min; Mu, Sha; Wang, Changyong; Wang, Deqing; Yao, Yuanqing

    2013-01-01

    Mesenchymal stem cells, which are poorly immunogenic and have potent immunosuppressive activities, have emerged as promising cellular therapeutics for the treatment of several diseases. Mesenchymal-like cells derived from Wharton's Jelly, called umbilical cord matrix stem cells (UCMSCs), reportedly secrete a variety of cytokines and growth factors, acting as trophic suppliers. Here, we used UCMSCs to treat premature ovarian failure (POF). Ovarian function was evaluated by ovulation and the number of follicles. Apoptosis of the granulosa cells (GC) was analyzed by TUNEL staining. We found that after transplantation of the UCMSCs, apoptosis of cumulus cells in the ovarian damage model was reduced and the function of the ovary had been recovered. The sex hormone level was significantly elevated in mice treated with UCMSCs. The number of follicles in the treated group was higher than in the control group. Our results demonstrate that UCMSCs can effectively restore ovary functionality and reduce apoptosis of granulosa cells. We compared the RNA expression of the UCMSCs treated group with the POF model and wild-type control group and found that the UCMSC group is most similar to the wild-type group. Our experiments provide new information regarding the treatment of ovarian function failure. PMID:23998127

  8. Adenosine 3',5-cyclic monophosphate phosphodiesterase activity in granulosa cells from Booroola x Romney ewes with and without the F gene.

    PubMed

    McNatty, K P; Heath, D A; Lun, S; Hudson, N L

    1989-02-01

    Granulosa cells from ovarian follicles (greater than or equal to 1 mm diameter) in Booroola ewes which are homozygous (FF) or heterozygous (F+) for the F gene have previously been shown to produce significantly more cAMP in response to FSH or LH than those from similar sized follicles in ewes without the F gene (++). The aim of these studies was to test whether these F gene-specific differences arose because of differences in cAMP-phosphodiesterase (cAMP-PDE) activity. In the first study using 1 mumol cAMP/l as substrate, no F gene-specific effects were noted in cAMP-PDE activity in granulosa cells from small (1-2.5 mm diameter, n = 4 per genotype) or large (greater than or equal to 3 mm diameter, n = 4 per genotype) follicles from FF, F+ or ++ ewes, despite F gene-specific effects in FSH (1 microgram/ml)- and LH (0.1 microgram/ml)-induced cAMP accumulation in these same cell preparations. The overall mean levels of cAMP-PDE across all genotypes in cells from small and large follicles were 0.47 +/- 0.04 (S.E.M., n = 12) and 0.28 +/- 0.03 pmol cAMP/10(6) cells per min respectively; the mean PDE activity in cells from small follicles was significantly (P less than 0.05) higher compared with that in cells from large follicles. In a second study, granulosa cells from each genotype were pooled over all follicle sizes (greater than or equal to 1 mm diameter, one pool per genotype) and the rates of cAMP hydrolysis tested over a range of substrate concentrations (0-16 mumol/l) but no gene-specific differences with respect to the Michaelis constant and maximum velocity were noted.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Outcome of patients with recurrent adult-type granulosa cell tumors--a Taiwanese Gynecologic Oncology Group study.

    PubMed

    Wang, Peng-Hui; Sun, Hsu-Dong; Lin, Hao; Wang, Kung-Liahng; Liou, Wen-Shiung; Hung, Yao-Ching; Chiang, Ying-Cheng; Lu, Chien-Hsing; Lai, Hung-Cheng; Chang, Ting-Chang

    2015-06-01

    The aim of this study is to evaluate the long-term outcome of ovarian recurrent granulosa cell tumors (GCTs) in a large series of patients treated in Taiwanese Gynecologic Oncology Group (TGOG) centers and to define the prognostic parameters for survival. A retrospective multi-institutional review of patients with recurrent ovarian GCTs treated in TGOG centers was conducted. The clinical and pathological characteristics, treatment, and outcomes of patients with ovarian recurrent GCTs were analyzed using Kaplan-Meier and Cox proportional hazards analyses to determine the predictors for survival. A total of 44 patients from 16 medical centers were identified between January 1994 and December 2010. The median disease-free survival (DFS), postrecurrence survival, and overall survival (OS) were 61.5 months (range, 3.7-219.3 months), 55.8 months (range, 4.6-193.7 months), and 115.3 months (range, 17.2-390.6 months), respectively. In multivariate analysis, DFS (> 61.5 months versus ≤ 61.5 months, hazard ratio (HR) 0.15, 95% confidence interval (CI) 0.03-0.78, p = 0.024) at the initial operation after diagnosis of relapse was the only predictor that correlated with OS. DFS after the initial operation was the only important predictor for overall survival in patients with recurrent GCTs, regardless of treatment, suggesting that the natural behavior of the tumor is a critical factor for patients with recurrent GCTs. Copyright © 2015. Published by Elsevier B.V.

  10. Zinc-induced molt: evidence for a direct inhibitory effect on granulosa cell steroidogenesis.

    PubMed

    Johnson, A L; Brake, J

    1992-01-01

    Results from previous studies indicate that the use of dietary zinc may provide an effective means to initiate an induced molt in laying hens. Although much evidence indicates that high concentrations of zinc (10,000 to 20,000 ppm) cause the cessation of lay primarily by depressing feed intake, recent data suggest that lower concentrations (2,800 ppm) in a calcium-deficient diet may act via a direct action on the ovary. Therefore, a series of in vitro studies was conducted to evaluate whether zinc can affect granulosa cell progesterone production. Incubation of granulosa cells from the largest preovulatory (F1) follicle with zinc as zinc sulfate (.1 to 10 microM) had no effect on basal progesterone production. By contrast, ovine luteinizing hormone-stimulated progesterone production was inhibited (P less than .05) in a dose-related fashion by zinc in both the sulfate and acetate forms (1 to 10 microM). Furthermore, zinc attenuated oLH- and forskolin-induced cyclic adenosine monophosphate (cAMP) formation, and inhibited 8-bromo-cAMP- and calcium ionophore (A23187)-induced progesterone production. Such results indicate both pre- and post-cAMP sites of action for zinc's inhibitory actions on progesterone production in F1 granulosa cells. Finally, ovine follicle-stimulating hormone-stimulated cAMP accumulation and progesterone production in granulosa cells collected from 9- to 12-mm follicles (a stage of development representing the early, rapid growth phase) were suppressed (P less than .05) by co-incubation of cells with zinc.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. GnRH receptors in human granulosa cells: Anatomical localization and characterization by autoradiographic study

    SciTech Connect

    Latouche, J.; Crumeyrolle-Arias, M.; Jordan, D.; Kopp, N.; Augendre-Ferrante, B.; Cedard, L.; Haour, F. )

    1989-09-01

    The presence of receptors for GnRH in human ovary has been investigated by quantitative autoradiography. Simultaneous visualization and characterization of specific receptors on frozen sections were obtained on six pairs of human ovaries. Among them only one exhibited a large preovulatory follicle. This dominant follicle exhibited a specific and high affinity binding capacity for {sup 125}I-GnRHa exclusively localized on the granulosa cell layer. Analysis of saturation curve indicates a Kd value of 0.22 nM and Bmax of 9.6 fmol/mg protein. In contrast LH-hCG binding sites were present in all antral follicles. These data demonstrate for the first time the presence of high affinity GnRH receptors in human granulosa cells at a late stage of follicular maturation.

  12. Transcriptome profile of one-month-old lambs’ granulosa cells after superstimulation

    PubMed Central

    Wu, Yangsheng; Lin, Jiapeng; Li, Xiaolin; Han, Bing; Wang, Liqin; Liu, Mingjun; Huang, Juncheng

    2017-01-01

    Objective Superstimulatory treatment of one-month-old lambs can achieve synchronous development of numerous growing follicles. However, these growing follicles cannot complete maturation and ovulation. Oocyte maturation and competence are acquired during follicular development, in which granulosa cells play an essential role. Methods In this study, we applied RNA sequencing to analyze and compare gene expression between prepubertal and adult superstimulated follicle granulosa cells in sheep. Results There were more than 300 genes that significantly differed in expression. Among these differently expressed genes, many extracellular matrix genes (EGF containing Fibulin Like Extracellular Matrix Protein 1, pentraxin 3, adrenomedullin, and osteopontin) were significantly down-regulated in the superstimulated follicles. Ingenuity pathway and gene ontology analyses revealed that processes of axonal guidance, cell proliferation and DNA replication were expressed at higher levels in the prepubertal follicles. Epidermal growth factor, T-Box protein 2 and beta-estradiol upstream regulator were predicted to be active in prepubertal follicles. By comparison, tumor protein P53 and let-7 were most active in adult follicles. Conclusion These results may contribute to a better understanding of the mechanisms governing the development of granulosa cells in the growing follicle in prepubertal sheep. PMID:27189640

  13. Treatment Option Overview (Ovarian Germ Cell Tumors)

    MedlinePlus

    ... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Ovarian Germ Cell Tumors Go to Health Professional Version Key Points ...

  14. General Information about Ovarian Germ Cell Tumors

    MedlinePlus

    ... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Ovarian Germ Cell Tumors Go to Health Professional Version Key Points ...

  15. Biosynthesis of cellular and secreted proteins during follicle-stimulating hormone-induced granulosa cell differentiation.

    PubMed

    Knecht, M; Shinohara, O; Catt, K J

    1986-09-01

    The synthesis of cellular and secreted proteins by differentiating granulosa cells from diethylstilbestrol-treated immature rats was studied by one- and two-dimensional polyacrylamide gel electrophoresis. In cultured granulosa cells, FSH altered the relative biosynthesis of specific cellular and secreted proteins in a concentration- and time-dependent manner. The incorporation of [35S]methionine into cellular proteins of Mr 42,000, 48,000, and 58,000 was enhanced by increasing amounts of the gonadotropin, whereas the labeling of a 44,000 Mr protein was reduced. Similarly, FSH increased the labeling of secreted proteins with relative Mr of 16,000, 17,000, 20,000, 25,000, 36,000, 41,000, 46,000, 111,000, and 153,000, and decreased that of proteins with Mr of 38,000, 48,000, 191,000, and 250,000. The expression of specific proteins was related to the degree of cellular maturation, since some proteins were newly synthesized during the early stages of granulosa cell development (less than 6 h), whereas others were more evident in the middle (24 h) or later (48 h) phases of culture. Also, the level of specific protein synthesis was variable since certain proteins were progressively produced during culture, and the biosynthesis of others fluctuated or was reduced during development. The effects of FSH on protein synthesis were mimicked by other cAMP-inducing ligands, including cholera toxin, forskolin, and 8-bromo-cAMP. Removal of FSH at 24 h of culture was followed by reversion of the protein biosynthetic pattern at 48 h to that of control cells, indicating that continued exposure to the gonadotropin is required during development. Cells cultured in the absence of ligands for 24 h synthesized proteins characteristic of differentiated cells when subsequently cultured with forskolin. These results indicate that FSH selectively alters the biosynthesis of cell-associated and secreted proteins during granulosa cell maturation. The characterization of these gene products and

  16. Transcriptomes of bovine ovarian follicular and luteal cells.

    PubMed

    Romereim, Sarah M; Summers, Adam F; Pohlmeier, William E; Zhang, Pan; Hou, Xiaoying; Talbott, Heather A; Cushman, Robert A; Wood, Jennifer R; Davis, John S; Cupp, Andrea S

    2017-02-01

    Affymetrix Bovine GeneChip® Gene 1.0 ST Array RNA expression analysis was performed on four somatic ovarian cell types: the granulosa cells (GCs) and theca cells (TCs) of the dominant follicle and the large luteal cells (LLCs) and small luteal cells (SLCs) of the corpus luteum. The normalized linear microarray data was deposited to the NCBI GEO repository (GSE83524). Subsequent ANOVA determined genes that were enriched (≥2 fold more) or decreased (≤-2 fold less) in one cell type compared to all three other cell types, and these analyzed and filtered datasets are presented as tables. Genes that were shared in enriched expression in both follicular cell types (GCs and TCs) or in both luteal cells types (LLCs and SLCs) are also reported in tables. The standard deviation of the analyzed array data in relation to the log of the expression values is shown as a figure. These data have been further analyzed and interpreted in the companion article "Gene expression profiling of ovarian follicular and luteal cells provides insight into cellular identities and functions" (Romereim et al., 2017) [1].

  17. Goose broodiness is involved in granulosa cell autophagy and homeostatic imbalance of follicular hormones.

    PubMed

    Yu, Jing; Lou, Yaping; He, Ke; Yang, Songbai; Yu, Wensai; Han, Lu; Zhao, Ayong

    2016-05-01

    Broodiness is observed in most domestic fowls and influences egg production. The goose is one of the most important waterfowls, having strong broody behavior. However, whether autophagy and follicular internal environment play a role in the broodiness behavior of goose is unknown. In this report, we analyzed the follicular internal environment and granulosa cell autophagy of goose follicles. The results show that the contents of hormones, including prolactin (PRL), progesterone (P4), and estradiol (E2), increased in broody goose follicles. Most importantly, the level of granulosa cell autophagy in broody goose follicles was elevated, detected by electron microscopy and western blotting. Also, the expressions of positive regulators of autophagy, including miR-7, miR-29, miR-100, miR-181, PRLR, LC3, p53,Beclin1, Atg9, and Atg12, were up-regulated and the expressions of negative regulators of autophagy, including miR-34b and miR-34c, were down-regulated in broody goose follicles. Our results suggest that goose broodiness is involved in increased granulosa cell autophagy and homeostasis imbalance of internal environment in the follicles. This work contributes to our knowledge of goose broodiness and may influence egg production. © 2016 Poultry Science Association Inc.

  18. Estrogen receptors in granulosa cells govern meiotic resumption of pre-ovulatory oocytes in mammals.

    PubMed

    Liu, Wei; Xin, Qiliang; Wang, Xiao; Wang, Sheng; Wang, Huarong; Zhang, Wenqiang; Yang, Ye; Zhang, Yanhao; Zhang, Zhiyuan; Wang, Chao; Xu, Yang; Duan, Enkui; Xia, Guoliang

    2017-03-09

    In mammals, oocytes are arrested at the diplotene stage of meiosis I until the pre-ovulatory luteinizing hormone (LH) surge triggers meiotic resumption through the signals in follicular granulosa cells. In this study, we show that the estradiol (E2)-estrogen receptors (ERs) system in follicular granulosa cells has a dominant role in controlling oocyte meiotic resumption in mammals. We found that the expression of ERs was controlled by gonadotropins under physiological conditions. E2-ERs system was functional in maintaining oocyte meiotic arrest by regulating the expression of natriuretic peptide C and natriuretic peptide receptor 2 (NPPC/NPR2), which was achieved through binding to the promoter regions of Nppc and Npr2 genes directly. In ER knockout mice, meiotic arrest was not sustained by E2 in most cumulus-oocyte complexes in vitro and meiosis resumed precociously in pre-ovulatory follicles in vivo. In human granulosa cells, similar conclusions are reached that ER levels were controlled by gonadotropins and E2-ERs regulated the expression of NPPC/NPR2 levels. In addition, our results revealed that the different regulating patterns of follicle-stimulating hormone and LH on ER levels in vivo versus in vitro determined their distinct actions on oocyte maturation. Taken together, these findings suggest a critical role of E2-ERs system during oocyte meiotic progression and may propose a novel approach for oocyte in vitro maturation treatment in clinical practice.

  19. FOXL2-induced follistatin attenuates activin A-stimulated cell proliferation in human granulosa cell tumors.

    PubMed

    Cheng, Jung-Chien; Chang, Hsun-Ming; Qiu, Xin; Fang, Lanlan; Leung, Peter C K

    2014-01-10

    Human granulosa cell tumors (GCTs) are rare, and their etiology remains largely unknown. Recently, the FOXL2 402C>G (C134W) mutation was found to be specifically expressed in human adult-type GCTs; however, its function in the development of human GCTs is not fully understood. Activins are members of the transforming growth factor-beta superfamily, which has been shown to stimulate normal granulosa cell proliferation; however, little is known regarding the function of activins in human GCTs. In this study, we examined the effect of activin A on cell proliferation in the human GCT-derived cell line KGN. We show that activin A treatment stimulates KGN cell proliferation. Treatment with the activin type I receptor inhibitor SB431542 blocks activin A-stimulated cell proliferation. In addition, our results show that cyclin D2 is induced by treatment with activin A and is involved in activin A-stimulated cell proliferation. Moreover, the activation of Smad signaling is required for activin A-induced cyclin D2 expression. Finally, we show that the overexpression of the wild-type FOXL2 but not the C134W mutant FOXL2 induced follistatin production. Treatment with exogenous follistatin blocks activin A-stimulated cell proliferation, and the overexpression of wild-type FOXL2 attenuates activin A-stimulated cell proliferation. These results suggest that FOXL2 may act as a tumor suppressor in human adult-type GCTs by inducing follistatin expression, which subsequently inhibits activin-stimulated cell proliferation. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Differential antibacterial response of chicken granulosa cells to invasion by Salmonella serovars.

    PubMed

    Babu, Uma S; Harrison, Lisa M; Patel, Isha R; Ramirez, Gerardo A; Williams, Kristina M; Pereira, Marion; Balan, Kannan V

    2016-06-01

    In the United States, Salmonella enterica ser. Enteritidis (SE) is among the leading bacterial cause of foodborne illness via consumption of raw or undercooked eggs. The top Salmonella serovars implicated in U.S. foodborne outbreaks associated with chicken consumption include SE, Typhimurium (ST), Heidelberg (SH), Montevideo, Mbandka, Braenderup, and Newport. While enforcement actions target the eradication of SE from layer hens, there is a growing concern that other serovars could occupy this niche and be a cause of egg-transmitted human salmonellosis. Therefore, we tested the invasion and survival of SE, SH, ST, and Salmonella enterica ser. Hadar (S. Hadar) at 4 and 20 h post infection (hpi) in chicken ovarian granulosa cells (cGC); a cellular layer which surrounds the previtelline layer and central yolk in egg-forming follicles. We also evaluated cGC transcriptional changes, using an antibacterial response PCR array, to assess host response to intracellular SalmonellaWe observed that invasion of cGC by SE, SH, and ST was significantly higher than invasion by S. Hadar, with ST showing the highest level of invasion. The Bacterial Survival Index, defined as the ratio of intracellular bacteria at 20 and 4 h, were 18.94, 7.35, and 15.27 for SE, SH, and ST, respectively, with no significant difference in survival between SE or ST compared to SH. Evaluation of cGC anti-Salmonella gene responses indicated that at 4 hpi there was a significant decrease in Toll-like receptor (TLR)-4 mRNA in cGC infected with SE, whereas TLR5 and myeloid differentiation primary response gene 88 were significantly down regulated across all serovars. At 4 hpi, invasion by Salmonella serovars resulted in significant upregulation of several antimicrobial genes, and proinflammatory cytokines and chemokines (PICs). At 20 hpi, all the serovars induced PICs with SH being the strongest inducer. Additionally, SE, SH and ST differentially induced signal transduction pathways. Although only a single

  1. Granulosa cell tumor mutant FOXL2C134W suppresses GDF-9 and activin A-induced follistatin transcription in primary granulosa cells

    PubMed Central

    McTavish, Kirsten J.; Nonis, David; Hoang, Yvonne D.; Shimasaki, Shunichi

    2013-01-01

    A single somatic FOXL2 mutation (FOXL2C134W) was identified in almost all granulosa cell tumor (GCT) patients. In the pituitary, FOXL2 and Smad3 coordinately regulate activin stimulation of follistatin transcription. We explored whether a similar regulation occurs in the ovary, and whether FOXL2C134W has altered activity. We show that in primary granulosa cells, GDF-9 and activin increase Smad3-mediated follistatin transcription. In contrast to findings in the pituitary, FOXL2 negatively regulates GDF-9 and activin-stimulated follistatin transcription in the ovary. Knockdown of endogenous FOXL2 confirmed this inhibitory role. FOXL2C134W displayed enhanced inhibitory activity, completely ablating GDF-9 and activin-induced follistatin transcription. GDF-9 and activin activity was lost when either the smad binding element or the forkhead binding element were mutated, indicating that both sites are required for Smad3 actions. This study highlights that FOXL2 negatively regulates follistatin expression within the ovary, and that the pathogenesis of FOXL2C134W may involve an altered interaction with Smad3. PMID:23567549

  2. Ovarian cancers overexpress the antimicrobial protein hCAP-18 and its derivative LL-37 increases ovarian cancer cell proliferation and invasion.

    PubMed

    Coffelt, Seth B; Waterman, Ruth S; Florez, Luisa; Höner zu Bentrup, Kerstin; Zwezdaryk, Kevin J; Tomchuck, Suzanne L; LaMarca, Heather L; Danka, Elizabeth S; Morris, Cindy A; Scandurro, Aline B

    2008-03-01

    The role of the pro-inflammatory peptide, LL-37, and its pro-form, human cationic antimicrobial protein 18 (hCAP-18), in cancer development and progression is poorly understood. In damaged and inflamed tissue, LL-37 functions as a chemoattractant, mitogen and pro-angiogenic factor suggesting that the peptide may potentiate tumor progression. The aim of this study was to characterize the distribution of hCAP-18/LL-37 in normal and cancerous ovarian tissue and to examine the effects of LL-37 on ovarian cancer cells. Expression of hCAP-18/LL-37 was localized to immune and granulosa cells of normal ovarian tissue. By contrast, ovarian tumors displayed significantly higher levels of hCAP-18/LL-37 where expression was observed in tumor and stromal cells. Protein expression was statistically compared to the degree of immune cell infiltration and microvessel density in epithelial-derived ovarian tumors and a significant correlation was observed for both. It was demonstrated that ovarian tumor tissue lysates and ovarian cancer cell lines express hCAP-18/LL-37. Treatment of ovarian cancer cell lines with recombinant LL-37 stimulated proliferation, chemotaxis, invasion and matrix metalloproteinase expression. These data demonstrate for the first time that hCAP-18/LL-37 is significantly overexpressed in ovarian tumors and suggest LL-37 may contribute to ovarian tumorigenesis through direct stimulation of tumor cells, initiation of angiogenesis and recruitment of immune cells. These data provide further evidence of the existing relationship between pro-inflammatory molecules and ovarian cancer progression.

  3. [Effect of Foxo3a gene over-expression on the development of rat ovarian granulose cells and in prevention of cisplatin-induced ovarian damage in rats].

    PubMed

    Yang, Yue; Fang, Li-Hong; Wang, Xue-Feng

    2016-06-01

    To evaluate the effect of Foxo3a gene over-expression on the development of rat ovarian granulosa cells and in prevention of cisplatin-induced ovarian damage in rats. Rat ovarian granulose cells released mechanically from the ovaries were cultured in vitro and identified with HE staining and immunohistochemical staining for FSHR. A recombinant adenovirus carrying Foxo3a gene was constructed for infecting the granulose cells, and the cell growth and expressions of cyclin D1, p27, Bax, and Bim were detected; the cell apoptosis and cell cycle changes were detected using Hoechst/PI 33342 staining and flow cytometry, respectively. The transfected cells were challenged with cisplatin and the cell apoptosis was detected with flow cytometry. Over 90% of the cultured cells survived and contained more than 95% ovarian granulose cells. Infection of the cells with the recombinant adenovirus resulted in over-expressions of Foxo3a at the mRNA and protein levels at 36 h and 48 h after the infection, respectively. The infected cells showed suppressed proliferation, increased apoptotic rate and cell cycle arrest in G1 phase with increased expressions of Bim, p27, and cyclin D1 but without significant changes in Bax expression. Cisplatin exposure caused a significantly higher apoptosis rate in the infected cells than in the control cells. Over-expression of Foxo3a gene can promote granulose cell apoptosis by increasing Bim expression and cause cell cycle arrest in G1 phase by increasing cyclin D1 and p27 expressions, but can not prevent the toxic effects of cisplatin on ovarian granulosa cells.

  4. Involvement of the orphan nuclear receptor SF-1 in the effect of PCBs, DDT and DDE on the secretion of steroid hormones and oxytocin from bovine granulosa cells.

    PubMed

    Mlynarczuk, J; Wrobel, M H; Ziolkowska, A; Kotwica, J

    2013-12-01

    Polychlorinated biphenyls (PCBs), DDT and its metabolite (DDE) belong to estrogen-like endocrine disruptors. However, though their activity is approximately 1000-fold lower than the activity of estradiol (E2), this steroid's high concentration in follicular fluid and incubation media does not inhibit the influence of these xenobiotics. It was hypothesized that these xenobiotics might affect Steroidogenic Factor-1 (SF-1) and impair ovary function. To test this hypothesis, granulosa cells were obtained from ovarian follicles >1 or <1cm in diameter, which were treated with PCB-77, PCB-153, DDT or DDE (each at 10ng/ml), alone or jointly with an SF-1 antagonist (F0160). Treatment with the SF-1 antagonist inhibited (P<0.05) the secretion of P4 from cells of both sizes of follicles, as induced (P<0.05) by an SF-1 activator (HxP), DDE or PCB-153. All xenobiotics and HxP stimulated (P<0.05) the synthesis and secretion of oxytocin (OT). However, the effect on mRNA expression for NP-I/OT, which is OT precursor, was inhibited (P<0.05) by F0160 in all cultures treated with PCB-77, except for granulosa cells derived from follicles <1cm. Moreover, F0160 inhibited the effect on OT secretion of HxP, as well as all xenobiotics except for PCB-77 and DDE, in granulosa cells derived from follicles <1cm. Xenobiotic treatment did not affect (P>0.05) the expression for SF-1 mRNA. It is suggested that the SF-1 receptor may be involved in the adverse effects of xenobiotics on P4 secretion as well as the synthesis and secretion of OT.

  5. Oxidative Stress Induced by Zearalenone in Porcine Granulosa Cells and Its Rescue by Curcumin In Vitro

    PubMed Central

    Qin, Xunsi; Cao, Mingjun; Lai, Fangnong; Yang, Fan; Ge, Wei; Zhang, Xifeng; Cheng, Shunfeng; Sun, Xiaofeng; Qin, Guoqing; Shen, Wei; Li, Lan

    2015-01-01

    Oxidative stress (OS), as a signal of aberrant intracellular mechanisms, plays key roles in maintaining homeostasis for organisms. The occurrence of OS due to the disorder of normal cellular redox balance indicates the overproduction of reactive oxygen species (ROS) and/or deficiency of antioxidants. Once the balance is broken down, repression of oxidative stress is one of the most effective ways to alleviate it. Ongoing studies provide remarkable evidence that oxidative stress is involved in reproductive toxicity induced by various stimuli, such as environmental toxicants and food toxicity. Zearalenone (ZEA), as a toxic compound existing in contaminated food products, is found to induce mycotoxicosis that has a significant impact on the reproduction of domestic animals, especially pigs. However, there is no information about how ROS and oxidative stress is involved in the influence of ZEA on porcine granulosa cells, or whether the stress can be rescued by curcumin. In this study, ZEA-induced effect on porcine granulosa cells was investigated at low concentrations (15 μM, 30 μM and 60 μM). In vitro ROS levels, the mRNA level and activity of superoxide dismutase, glutathione peroxidase and catalase were obtained. The results showed that in comparison with negative control, ZEA increased oxidative stress with higher ROS levels, reduced the expression and activity of antioxidative enzymes, increased the intensity of fluorogenic probes 2’, 7’-Dichlorodihydrofluorescin diacetate and dihydroethidium in flow cytometry assay and fluorescence microscopy. Meanwhile, the activity of glutathione (GSH) did not change obviously following 60 μM ZEA treatment. Furthermore, the underlying protective mechanisms of curcumin on the ZEA-treated porcine granulosa cells were investigated. The data revealed that curcumin pre-treatment significantly suppressed ZEA-induced oxidative stress. Collectively, porcine granulosa cells were sensitive to ZEA, which may induce oxidative

  6. Steroid hormones promote bovine oocyte growth and connection with granulosa cells.

    PubMed

    Makita, Miho; Miyano, Takashi

    2014-09-01

    Many approaches have been investigated for growing oocytes in vitro in mammals. To support oocyte growth in vitro, the culture systems must meet certain conditions for maintaining connections between oocytes and surrounding granulosa cells. The aims of this study were to determine the effects of combinations of 17β-estradiol (E2) and androstenedione (A4) on in vitro growth of bovine oocytes and to determine the number of connections between the oocyte and granulosa cells. Oocyte-granulosa cell complexes (OGCs) collected from early antral follicles (0.4-0.7 mm in diameter) were cultured for 14 days in a medium with different concentrations of E2 and A4, either alone or in combinations. We then assessed the number of transzonal projections (TZPs), which extend from granulosa cells through the zona pellucida to the oolemma. During in vitro growth culture, OGC structures were maintained in the medium with steroid hormones. The mean diameter of oocytes grown in the medium with both E2 and A4 was increased from 95.8 μm to around 120 μm, larger than oocytes grown without steroid hormones (109.9 μm) and similar in size to in vivo fully grown oocytes (119.4 μm) from 4- to 6-mm antral follicles. In subsequent in vitro maturation culture (22 hours), 30% (12 of 40) and 34% (14 of 41) of oocytes grown with E2 or A4 alone, respectively, matured to metaphase II; meanwhile, oocytes grown with a combination of E2 and A4 matured to metaphase II at a high rate (58%, 23 of 40). Growing oocytes isolated from early antral follicles had many uniformly distributed TZPs throughout the zona pellucida. After 14 days of culture, there was a significant decrease in the number of TZPs in oocytes grown without steroid hormones, whereas the number of TZPs was maintained in oocytes grown with steroid hormones. In particular, oocytes grown with E2 alone or with a combination of E2 and A4 had numbers of TZPs similar to oocytes before growth culture. In conclusion, a combination of

  7. Pig membrana granulosa cells prevent resumption of meiosis in cattle oocytes.

    PubMed

    Kalous, J; Sutovsky, P; Rimkevicova, Z; Shioya, Y; Lie, B L; Motlik, J

    1993-01-01

    Membrana granulosa was isolated from healthy large antral follicles of prepubertal or cyclic gilts stimulated with PMSG or PMSG and hCG. Ultrastructural observations revealed that pieces of pig membrana granulosa were associated with the basement membrane. The cattle cumulus-enclosed oocytes (COC) were placed in the rolled pieces of the pig membrana granulosa (PMG). After 8 and 24 hr of coculture with PMG from prepubertal gilts, only 16% and 21% of oocytes underwent GVBD, respectively. PMG from PMSG-stimulated cyclic gilts blocked the resumption of meiosis in all COC. The inhibitory effect of heterologous granulosa cells was fully reversible. When COC were initially incubated for 2 and 4 hr, subsequent culture in PMG prevented GVBD in 100% and 36% of oocytes, respectively. This suggests that functional contact between COC and PMG was established during the first 2 hr of coculture. To follow metabolic cooperation between PMG and COC, PMG was prelabeled with 3H-uridine and cocultured with COC. Autoradiography on semithin sections revealed the intensive passage of 3H-uridine from PMG into the cumulus layer and an oocyte. COC placed in PMG after GVBD (8 and 12 hr of an initial incubation) did not extrude the first polar body. PMG isolated from cyclic gilts after PMSG and hCG stimulation also inhibited GVBD of COC. Since nearly all COC placed in PMG isolated 10 and 12 hr after hCG remained in the GV stage after 24 hr of coculture, the hCG stimulation did not substantially diminish the meiosis inhibiting activity of PMG.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. MDR1 overexpression inhibits chemotherapy-induced toxicity of granulosa cells

    PubMed Central

    Salih, Sana M

    2011-01-01

    OBJECTIVE To protect granulosa cells from chemotherapy-induced toxicity by retrovirus-mediated multidrug resistance gene (MDR1) transfection. DESIGN Laboratory study. SETTING Academic research laboratory in a university hospital. INTERVENTION(S) KK15 immortalized murine granulosa cell line was transiently transduced with sf91m3 retrovirus vector carrying MDR1 cDNA that encodes P-glycoprtoein (P-gp). Transduced cells were selected with colchicine and treated with doxorubicin or paclitaxel for 24–72 hours. The expression and function of MDR1 and the mRNA expression of selected steroidogenesis enzymes were evaluated by flow cytometry, cell viability assays, Western blot, and RT-PCR. MAIN OUTCOME MEASURE(S) Viability of sf91m3-transduced KK15 cells after treatment with doxorubicin and paclitaxel. RESULT(S) sf91m3-transduced KK15 demonstrated high expression of biologically active MDR1 as shown by flow cytometry analysis and immunoblotting using P-gp monoclonal antibody and Rhodamine 123 efflux assays. sf91m3-transduced KK15 exhibited significant resistance to toxicity of 10uM paclitaxel(p≤0.001). MDR1-transduced KK15 cells were also protected from doxorubicin toxicity (10nM to 2.5uM) as shown by cell viability assay (p≤0.02). Both flow cytometry and cell viability assay showed that the protection of KK15 from doxorubicin toxicity was lost at 5 uM of doxorubicin; equivalent to 500 times LD50 (p≥0.05). sf91m3-transduced KK15 showed normal mRNA expression of a panel of selected steroidogenesis enzymes. CONCLUSION(S) Retroviral gene delivery of human MDR1 inhibited chemotherapy- induced granulosa cell toxicity and offered chemoprotection in an in vitro model. PMID:21316663

  9. Secreted ovarian stromal substance inhibits ovarian epithelial cell proliferation.

    PubMed

    Karlan, B Y; Baldwin, R L; Cirisano, F D; Mamula, P W; Jones, J; Lagasse, L D

    1995-10-01

    Determine the effects of factors secreted by normal human ovarian stroma on the proliferation of benign and malignant ovarian epithelia, in vitro. Primary cultures of normal human ovarian surface epithelium (HOSE), human ovarian stromal tissue (HOST), and epithelial ovarian carcinomas (CSOC) were established from surgical specimens and characterized immunohistochemically using anti-cytokeratin, vimentin, and Factor VIII antibodies. Stroma-conditioned media (SCM) were collected over 3 days from confluent HOST cultures. The SCM were dialyzed, lyophilized, resuspended, and added to HOSE, CSOC, SKOV-3, and Caov-3 ovarian cancer cell cultures and growth inhibitory effects were assayed by MTS and [3H]thymidine uptake. SCM inhibited the growth and DNA synthesis of normal HOSE cells and cancer cells by 79-99% in > 10-cell lines studied to date. The inhibitory effect was rapid in onset with 31-82% reduction in DNA synthesis at 1 hr and approximately 50% return of activity by 23 hr following a 1-hr SCM pulse treatment. The SCM inhibitory activity was not abolished by boiling or by absorption with heparin-agarose. Size exclusion filtration places the molecular weight of the inhibitory substance between 1 and 3 kDa. Neither trypsin nor proteinase K treatments altered the inhibitory activity of SCM, while a Bligh-Dyer organic extraction placed the activity in the aqueous phase. A heat-stable, non-heparin-binding, low-molecular-weight, water-soluble substance secreted by normal ovarian stroma significantly inhibits HOSE and ovarian cancer cell proliferation. Derangements in normal ovarian stroma-epithelial interactions may contribute to growth dysregulation of the surface epithelia and result in ovarian carcinogenesis.

  10. Lysophosphatidic acid expression in theca cells depends on the type of bovine ovarian follicle.

    PubMed

    Sinderewicz, E; Grycmacher, K; Boruszewska, D; Kowalczyk-Zięba, I; Woclawek-Potocka, I

    2017-02-01

    Lysophosphatidic acid (LPA) exerts various actions on the mammalian reproductive system. In cows, LPA stimulates the synthesis and secretion of luteotropic factors in the ovary, which affects the growth and development of ovarian follicles. The role of LPA in granulosa cells, oocyte and oocyte-cumulus complex (COC) has previously been investigated; but its role in the theca layer, which is an important structural and functional component of the ovarian follicle, is still unclear. The goal of this study was to investigate the expression of LPA in theca cells originating from different bovine ovarian follicle types. Theca cells were separated from healthy, transitional and atretic ovarian follicles, based on intrafollicular estradiol: progesterone ratios. LPA concentration in the follicular fluid (FF) in different follicle types was measured, and expression of the enzymes responsible for LPA synthesis (autotaxin [AX], phospholipase A2 [PLA2]) and receptors for LPA (LPAR1-4) were determined. The obtained results confirmed the follicle-type dependent presence of LPA in the FF of the bovine ovarian follicles. The highest concentration of LPA was detected in follicles classified as healthy and dominant. LPAR1-4, PLA2 and AX expression in theca cells in all of the types of follicles examined were detected at mRNA and protein level. These results suggest that theca cells can be a source of LPA synthesis other than granulosa cells and COCs, as well as the target for its action in the bovine ovarian follicle, with PLA2 and LPAR4 playing major roles in LPA synthesis and action. © 2016 Blackwell Verlag GmbH.

  11. Active 3'-5' cyclic nucleotide phosphodiesterases are present in detergent-resistant membranes of mural granulosa cells.

    PubMed

    Bergeron, Annick; Guillemette, Christine; Sirard, Marc-André; Richard, François J

    2016-01-04

    Lipids rafts are specialised membrane microdomains involved in cell signalling that can be isolated as detergent-resistant membranes (DRMs). The second messenger cyclic AMP (cAMP) has a central role in cell signalling in the ovary and its degradation is carried out by the phosphodiesterase (PDE) enzyme family. We hypothesised that PDEs could be functionally present in the lipid rafts of porcine mural granulosa cell membranes. PDE6C, PDE8A and PDE11A were detected by dot blot in the DRMs and the Triton-soluble fraction of the mural granulosa cells membrane and the cytosol. As shown by immunocytochemistry, PDEs showed clear immunostaining in mural granulosa cell membranes and the cytosol. Interestingly, cAMP-PDE activity was 18 times higher in the DRMs than in the Triton-soluble fraction of cell membranes and was 7.7 times higher in the cytosol than in the DRMs. cAMP-PDE activity in mural granulosa cells was mainly contributed by the PDE8 and PDE11 families. This study shows that PDEs from the PDE8 and PDE11 families are present in mural granulosa cells and that the cAMP-PDE activity is mainly contributed by the cytosol. In the cell membrane, the cAMP-PDE activity is mainly contributed by the DRMs. In addition, receptors for prostaglandin E2 and LH, two G-protein-coupled receptors, are present in lipid rafts and absent from the non-raft fraction of the granulosa cell membrane. These results suggest that in these cells, the lipid rafts exist as a cell-signalling platform and PDEs are one of the key enzyme families present in the raft.

  12. Expression of PUMA in Follicular Granulosa Cells Regulated by FoxO1 Activation During Oxidative Stress.

    PubMed

    Liu, Ze-Qun; Shen, Ming; Wu, Wang-Jun; Li, Bo-Jiang; Weng, Qian-Nan; Li, Mei; Liu, Hong-Lin

    2015-06-01

    Many studies have demonstrated that oxidative stress-induced apoptosis is a main cause of follicular atresia. Reactive oxygen species (ROS)-induced granulosa cell (GC) apoptosis is regulated by a variety of signaling pathways involving numerous genes and transcription factors. In this study, we found expression of the p53-upregulated modulator of apoptosis (PUMA), a BH3-only Bcl-2 subfamily protein, in ovarian GCs during oxidative stress. By overexpression and knockdown of Forkhead box O1 (FoxO1), we found that FoxO1 regulates PUMA at the protein level. Moreover, as c-Jun N-terminal kinase (JNK) has been shown to activate FoxO1 by promoting its nuclear import, we used a JNK inhibitor to reduce FoxO1 activation and detected decreased PUMA messenger RNA expression and protein levels during oxidative stress. In addition, in vivo oxidative stress-induced upregulation of PUMA was found following injection of 3 nitropropionic acid in mice. In conclusion, oxidative stress increases PUMA expression regulated by FoxO1 in follicular GCs.

  13. The effect of oxytocin on oestradiol-17 beta and testosterone secretion by cultured human granulosa cells.

    PubMed

    Clamagirand, C; Plevrakis, I; Bussenot, I; Parinaud, J; Vieitez, G; Grandjean, H

    1991-07-01

    The effect of oxytocin at different concentrations was tested on the secretion of oestradiol-17 beta and testosterone by cultured human granulosa cells obtained by follicular punctures during in-vitro fertilization (IVF) attempts. Oxytocin had no effect on testosterone secretion, either in the absence or the presence of follicle stimulating hormone (FSH). It had no effect on oestradiol-17 beta in the absence of FSH. However, it decreased the FSH-stimulated secretion of oestradiol-17 beta in a certain number of cases. This inhibitory effect appears to be associated with cells more responsive to FSH and was identified in women found to be successful in achieving pregnancy during IVF attempts.

  14. SIRT1 induces resistance to apoptosis in human granulosa cells by activating the ERK pathway and inhibiting NF-κB signaling with anti-inflammatory functions.

    PubMed

    Han, Ying; Luo, Haining; Wang, Hui; Cai, Jun; Zhang, Yunshan

    2017-07-28

    SIRT1, a member of the sirtuin family, has recently emerged as a vital molecule in controlling ovarian function. The aims of the present study were to investigate SIRT1 expression and analyze SIRT1-mediated apoptosis in human granulosa cells (GCs). Human ovarian tissues were subjected to immunohistochemistry for localization of SIRT1 expression. SIRT1 knockdown in a human ovarian GC tumor line (COV434) was achieved by small interfering RNA, and the relationship between apoptosis and SIRT1 was assessed by quantitative reverse transcription polymerase chain reaction and western blotting. We further detected SIRT1 expression in human luteinized GCs. Associations among SIRT1 knockdown, SIRT1 stimulation (resveratrol) and expression of ERK1/2 and apoptotic regulatory proteins were analyzed in cell lines and luteinized GCs. Resveratrol downregulated the levels of nuclear factor (NF)-κB/p65, but this inhibitory effect was attenuated by suppressing SIRT1 activity. The NF-κB/p65 inhibitor pyrrolidine dithiocarbamate achieved similar anti-apoptosis effects. These results suggest that SIRT1 might play an anti-apoptotic role in apoptosis processes in GCs, possibly by sensing and regulating the ERK1/2 pathway, which has important clinical implications. Thus, our study provides a mechanistic link, whereby activation of SIRT1 function might help to sustain human reproduction by maintaining GCs as well as oocytes, offering a novel approach for developing a new class of therapeutic anti-inflammatory agents.

  15. In vitro culture of oocytes and granulosa cells collected from normal, obese, emaciated and metabolically stressed ewes.

    PubMed

    Tripathi, S K; Farman, M; Nandi, S; Mondal, S; Gupta, Psp; Kumar, V Girish

    2016-07-01

    The present study was undertaken to investigate the oocyte morphology, its fertilizing capacity and granulosa cell functions in ewes (obese, normal, metabolic stressed and emaciated). Ewes (Ovis aries) of approximately 3 years of age (Bellary breed) from a local village were screened, chosen and categorized into a) normal b) obese but not metabolically stressed, c) Emaciated but not metabolically stressed d) Metabolically stressed based on body condition scoring and blood markers. Oocytes and granulosa cells were collected from ovaries of the ewes of all categories after slaughter and were classified into good (oocytes with more than three layers of cumulus cells and homogenous ooplasm), fair (oocytes one or two layers of cumulus cells and homogenous ooplasm) and poor (denuded oocytes or with dark ooplasm). The good and fair quality oocytes were in vitro matured and cultured with fresh semen present and the fertilization, cleavage and blastocyst development were observed. The granulosa cells were cultured for evaluation of metabolic activity by use of the MTT assay, and cell viability, cell number as well as estrogen and progesterone production were assessed. It was observed that the good and fair quality oocytes had greater metabolic activity when collected from normal and obese ewes compared with those from emaciated and metabolically stressed ewes. No significant difference was observed in oocyte quality and maturation amongst the oocytes collected from normal and obese ewes. The cleavage and blastocyst production rates were different for the various body condition classifications and when ranked were: normal>obese>metabolically stressed>emaciated. Lesser metabolic activity was observed in granulosa cells obtained from ovaries of emaciated ewes. However, no changes were observed in viability and cell number of granulosa cells obtained from ewes with the different body condition categories. Estrogen and progesterone production from cultured granulosa cells were

  16. AKT is involved in granulosa cell autophagy regulation via mTOR signaling during rat follicular development and atresia.

    PubMed

    Choi, JongYeob; Jo, MinWha; Lee, EunYoung; Choi, DooSeok

    2014-01-01

    In this study, we examined whether granulosa cell autophagy during follicular development and atresia was regulated by the class I phosphoinositide-3 kinase/protein kinase B (AKT) pathway, which is known to control the activity of mammalian target of rapamycin (mTOR), a major negative regulator of autophagy. Ovaries and granulosa cells were obtained using an established gonadotropin-primed immature rat model that induces follicular development and atresia. Autophagy was evaluated by measuring the expression level of microtubule-associated protein light chain 3-II (LC3-II) using western blots and immunohistochemistry. The activity of AKT and mTOR was also examined by observing the phosphorylation of AKT and ribosomal protein S6 kinase (S6K) respectively. After gonadotropin injection, LC3-II expression was suppressed and phosphorylation of AKT and S6K increased in rat granulosa cells. By contrast, gonadotropin withdrawal by metabolic clearance promoted LC3-II expression and decreased phosphorylation of AKT and S6K. In addition, in-vitro FSH treatment of rat granulosa cells also indicated inhibition of LC3-II expression accompanied by a marked increase in phosphorylation of AKT and S6K. Inhibition of AKT phosphorylation using AKT inhibitor VIII suppressed FSH-mediated phosphorylation of S6K, followed by an increase in LC3-II expression. Furthermore, co-treatment with FSH and AKT inhibitor increased the levels of apoptosis and cell death of granulosa cells compared with the single treatment with FSH. Taken together, our findings indicated that AKT-mediated activation of mTOR suppresses granulosa cell autophagy during follicular development and is involved in the regulation of apoptotic cell death.

  17. Inside the granulosa transcriptome.

    PubMed

    D'Aurora, Marco; Sperduti, Samantha; Di Emidio, Giovanna; Stuppia, Liborio; Artini, Paolo Giovanni; Gatta, Valentina

    2016-12-01

    The somatic component of follicular structure is a mixture of different cell types, represented by Granulosa cells (GCs) that are the paracrine regulators of the oocyte growth. GCs finely support this process by a continuous bidirectional talk with oocyte, which ensure oocyte quality and competence. Specific pathways are involved in the cross-talk and in both GCs and oocyte development. This review summarizes data from GCs gene expression analysis concerning both their physiological role and their interaction with oocyte. We also explore the CGs transcriptome modifications induced by controlled ovarian stimulation (COS) or pathological conditions and their impact in reproduction. The transcriptome analysis of GCs could be a powerful tool to improve our knowledge about the pathways involved in oocyte development. This approach, associated with new technologies as RNA-seq could allow the identifications of new noninvasive biological markers of oocyte quality to increase the efficiency of clinical IVF. Moreover, GCs expression analysis could be useful to shed light on new therapeutic targets by providing new options for the treatment of infertility.

  18. Epidermal growth factor elevates intracellular pH in chicken granulosa cells.

    PubMed

    Li, M; Morley, P; Asem, E K; Tsang, B K

    1991-08-01

    Many bioregulators, such as epidermal growth factor (EGF), induce intracellular alkalinization by activating a membrane bound Na+/H+ antiporter. The present studies were designed to examine the influence of EGF on intracellular pH (pHi) in chicken granulosa cells. pHi in granulosa cells from the two largest preovulatory follicles of hens was determined spectrofluorometrically using the dye 2',7'-bis(carboxyethyl-5(6)-carboxyfluorescein. The resting pHi was 6.81 +/- 0.006 (n = 30) when the extracellular pH and sodium concentration (Na+o) were 7.3 and 144 mM, respectively. EGF (5-100 ng/ml) induced a concentration-dependent increase in pHi, which reached a maximum of 0.217 +/- 0.009 pH units at a concentration of 100 ng/ml EGF. Cytosolic alkalinization was observed within 10 min of the addition of EGF and lasted over the 60 min observation period. The increase in pHi was dependent upon the presence of Na+o, since the EGF effect was attenuated when Na+o was substituted with equimolar concentrations of nonpermeant choline chloride. The EGF-induced pHi change was also inhibited by amiloride, dimethyl amiloride, and ethylisopropyl amiloride, inhibitors of the Na+/H+ antiporter. The alkalinization effect of EGF was mimicked by transforming growth factor-alpha but not by insulin, insulin-like growth factor-I, or transforming growth factor-beta. These studies suggest for the first time that intracellular alkalinization resulting from activation of the Na+/H+ antiporter may be a part of the transmembrane signaling pathway in the action of EGF on chicken granulosa cells.

  19. Molecular basis of voltage-dependent potassium currents in porcine granulosa cells.

    PubMed

    Mason, Diane E; Mitchell, Kathy E; Li, Yan; Finley, Melissa R; Freeman, Lisa C

    2002-01-01

    The major objective of this study was to elucidate the molecular bases for K(+) current diversity in porcine granulosa cells (GC). Two delayed rectifier K(+) currents with distinct electrophysiological and pharmacological properties were recorded from porcine GC by using whole-cell patch clamp: 1) a slowly activating, noninactivating current (I(Ks)) antagonized by clofilium, 293B, L-735,821, and L-768,673; and 2) an ultrarapidly activating, slowly inactivating current (I(Kur)) antagonized completely by clofilium and 4-aminopyridine and partially by tetraethylammonium, charybdotoxin, dendrotoxin, and kaliotoxin. The molecular identity of the K(+) channel genes underlying I(Ks) and I(Kur) was examined using reverse transcription-polymerase chain reaction and immunoblotting to detect K(+) channel transcripts and proteins. We found that GC could express multiple voltage-dependent K(+) (Kv) channel subunits, including KCNQ1, KCNE1, Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv1.5, Kv1.6, Kvbeta1.3, and Kvbeta2. Coimmunoprecipitation was used to establish the hetero-oligomeric nature of granulosa cell Kv channels. KCNE1 and KCNQ1 were coassociated in GC, and their expression coincided with the expression of I(Ks). Extensive coassociation of the various Kv alpha- and beta-subunits was also documented, suggesting that the diverse electrophysiological and pharmacological properties of I(Kur) currents may reflect variation in the composition and stoichiometry of the channel assemblies, as well as differences in post-translational modification of contributing Kv channel subunits. Our findings provide an essential background for experimental definition of granulosa K(+) channel function(s). It will be critical to define the functional roles of specific GC K(+) channels, because these proteins may represent either novel targets for assisted reproduction or potential sites of drug toxicity.

  20. Endocrine disruptor effect of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on porcine ovarian cell steroidogenesis.

    PubMed

    Chaparro-Ortega, Andrea; Betancourt, Miguel; Rosas, Patricia; Vázquez-Cuevas, Francisco G; Chavira, Roberto; Bonilla, Edmundo; Casas, Eduardo; Ducolomb, Yvonne

    2017-10-02

    Previous studies with perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) indicate that they act as endocrine disruptors, in addition to inducing alterations and damaging reproductive health; however, the biological mechanisms by which these disorders are produced are not yet understood. The aim of this study was to analyze the effect of PFOS and PFOA on in vitro steroidogenic secretion in porcine theca and granulosa cells, with or without gonadotropic stimulation. Granulosa and theca cells were isolated and cultured. Cell nature was performed by immunocytochemistry. PFOS and PFOA effect on steroid secretion was analyzed by chemiluminescence. In the present study, alterations in steroidogenic secretion were found when administering PFOS (0.12, 1.2, 12, 120 or 240μM) or PFOA (0.012, 0.12, 1.2, 12 or 24μM) to theca and granulosa cells. When theca and granulosa cells were stimulated with 500ng/mL LH or 500ng/mL FHS, respectively and immediately followed with 1.2μM of PFOS or PFOA, the perfluorinated compounds inhibited the secretion of steroid hormones in both stimulated cell types. The results indicate that PFOS and PFOA act on steroidogenic ovarian cells as endocrine disruptors, which could affect the dependent functions of sexual steroids. Copyright © 2017. Published by Elsevier Ltd.

  1. Regulatory effect of hypoxia-inducible factor-1α on hCG-stimulated endothelin-2 expression in granulosa cells from the PMSG-treated rat ovary.

    PubMed

    Zhang, Jisen; Zhang, Zhenghong; Wu, Yanqing; Chen, Liyun; Luo, Qianping; Chen, Jiajie; Huang, Xiaohong; Cheng, Yong; Wang, Zhengchao

    2012-01-01

    Endothelin (ET)-2 plays a crucial role in ovarian ovulation in mammals. The present study was designed to test the hypothesis that hypoxia-inducible factor (HIF)-1α-mediated transcriptional activation contributes to the increased expression of ET-2 gene in response to hCG in rat ovarian granulosa cells (GCs) during gonadotropin-induced superovulation. By real-time RT-PCR analysis, ET-2 mRNA expression was found to significantly increase in cultured ovarian GCs after treatment with hCG, or even N-carbobenzoxyl-L-leucinyl-L-leucinyl-L-norvalinal (MG-132), while this increased ET-2 mRNA expression could also be blocked by ferrous ammonium sulfate (FAS) under human chorionic gonadotropin (hCG) treatment. Further analysis also found that these changes of ET-2 mRNA were consistent with HIF-1α expression or HIF-1 activity, and HIF-1α inhibitor echinomycin inhibited ovulation in rats. Taken together, these results indicate that ET-2 is transcriptionally activated by hCG through HIF-1α-mediated mechanism in GCs. This HIF-1α-induced transcriptional activation may be one of the important mechanisms mediating the increase of ET-2 expression in GCs during the gonadotropin-induced mammalian ovulatory process in vivo.

  2. Resistin is a survival factor for porcine ovarian follicular cells.

    PubMed

    Rak, Agnieszka; Drwal, Eliza; Wróbel, Anna; Gregoraszczuk, Ewa Łucja

    2015-10-01

    Previously, we demonstrated the expression of resistin in the porcine ovary, the regulation of its expression and its direct effect on ovarian steroidogenesis. The objective of this study was to examine the effect of resistin on cell proliferation and apoptosis in a co-culture model of porcine granulosa and theca cells. First, we analysed the effect of resistin at 1 and 10  ng/ml alone or in combination with FSH- and IGF1 on ovarian cell proliferation with an alamarBlue assay and protein expression of cyclins A and B using western blot. Next, the mRNA and protein expression of selected pro-apoptotic and pro-survival regulators of cell apoptosis, caspase-9, -8 and -3 activity and DNA fragmentation using real time PCR, western blot, fluorescent assay and an ELISA kit, respectively, were analysed after resistin treatment. Furthermore, we determined the effect of resistin on the protein expression of ERK1/2, Stat and Akt kinase. Using specific inhibitors of these kinases, we also checked caspase-3 activity and protein expression. We found that resistin, at both doses, has no effect on cell proliferation. The results showed that resistin decreased pro-apoptotic genes, which was confirmed on protein expression of selected factors. We demonstrate an inhibitory effect of resistin on caspase activity and DNA fragmentation. Finally, resistin stimulated phosphorylation of the ERK1/2, Stat and Akt and kinases inhibitors reversed resistin action on caspase-3 activity and protein expression to control. All of these results showed that resistin has an inhibitory effect on porcine ovarian cell apoptosis by activation of the MAPK/ERK, JAK/Stat and Akt/PI3 kinase signalling pathways. © 2015 Society for Reproduction and Fertility.

  3. Mutational analysis of FOXL2 p.C134W and expression of bone morphogenetic protein 2 in Japanese patients with granulosa cell tumor of ovary.

    PubMed

    Oseto, Kumiko; Suzumori, Nobuhiro; Nishikawa, Ryutaro; Nishikawa, Hiroshi; Arakawa, Atsushi; Ozaki, Yasuhiko; Asai, Hidekazu; Kawai, Michiyasu; Mizuno, Kimio; Takahashi, Satoru; Shirai, Tomoyuki; Yamada-Namikawa, Chisato; Nakanishi, Makoto; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Sugiura-Ogasawara, Mayumi

    2014-05-01

    To assess whether FOXL2 p.C134W mutation may play a role in the development of human ovarian tumors in the Japanese, we investigated the FOXL2 codon 134 mutation and protein expression of inhibin-α, bone morphogenetic protein 2 (BMP2) and follistatin (FST) in Japanese patients with granulosa cell tumor (GCT) of the ovary and other ovarian tumors. We analyzed 114 tumor tissues from ovarian tumors, including 44 adult-type and two juvenile-type GCT of the ovary and 68 ovarian tumors by DNA sequencing. Immunohistochemistry was also performed in the adult and juvenile GCT tissues by immunostaining inhibin-α, BMP2 and FST. We found the FOXL2 p.C134W mutation in 27 out of 44 (61.4%) adult-type GCT of the ovary, but none in other ovarian tumors. Histologically, all of the adult-type GCT sections were positive for inhibin-α, and the expression of BMP2 and FST was detected in 14 of 44 (31.8%) and zero of 47 (0%), respectively. No significant differences regarding the diagnosed age, preoperative serum carbohydrate antigen 125 levels, or BMP2 immunopositivity between the FOXL2 p.C134W mutation-positive and mutation-negative were found in the adult-type GCT patients. Our findings suggest that FOXL2 p.C134W mutation-positive adult-type GCT of the ovary may not be common in the Japanese as compared to the previous data. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  4. Metabolic Regulation of Ovarian Cancer Cell Death

    DTIC Science & Technology

    2012-07-01

    Following treatment with chemotherapeutic agents, responsive ovarian cancer cells undergo apoptotic cell death . Several groups have shown that the...apoptotic protease, caspase 2 (C2), is an essential activator of cell death in ovarian cancer cells treated with cisplatin and we have found, by knock

  5. PCSK6 regulated by LH inhibits the apoptosis of human granulosa cells via activin A and TGFβ2.

    PubMed

    Wang, Ying; Wang, Xiao-Hui; Fan, Deng-Xuan; Zhang, Yuan; Li, Ming-Qing; Wu, Hai-Xia; Jin, Li-Ping

    2014-07-01

    Mammalian proprotein convertases (PCs) play an important role in folliculogenesis, as they proteolytically activate a variety of substrates such as the transforming growth factor beta (TGFβ) superfamily. PC subtilism/kexin 6 (PCSK6) is a member of the PC family and is ubiquitously expressed and implicated in many physiological and pathological processes. However, in human granulosa cells, the expression of the PC family members, their hormonal regulation, and the function of PCs are not clear. In this study, we found that PCSK6 is the most highly expressed PC family member in granulosa cells. LH increased PCSK6 mRNA level and PCSK6 played an anti-apoptosis function in KGN cells. Knockdown of PCSK6 not only increased the secretion of activin A and TGFβ2 but also decreased the secretion of follistatin, estrogen, and the mRNA levels of FSH receptor (FSHR) and P450AROM (CYP19A1). We also found that, in the KGN human granulosa cell line, TGFβ2 and activin A could promote the apoptosis of KGN cells and LH could regulate the follistatin level. These data indicate that PCSK6, which is regulated by LH, is highly expressed in human primary granulosa cells of pre-ovulatory follicles and plays important roles in regulating a series of downstream molecules and apoptosis of KGN cells.

  6. Lhcgr Expression in Granulosa Cells: Roles for PKA-Phosphorylated β-Catenin, TCF3, and FOXO1

    PubMed Central

    Law, Nathan C.; Weck, Jennifer; Kyriss, Brandon; Nilson, John H.

    2013-01-01

    Ovarian follicles lacking FSH or FSH receptors fail to progress to a preovulatory stage, resulting in infertility. One hallmark of the preovulatory follicle is the presence of luteinizing hormone/choriogonadotropin receptors (LHCGR) on granulosa cells (GCs). However, the mechanisms by which FSH induces Lhcgr gene expression are poorly understood. Our results show that protein kinase A (PKA) and phosphoinositide 3-kinase (PI3K)/AKT pathways are required for FSH to activate both the murine Lhcgr-luciferase reporter and expression of Lhcgr mRNA in rat GCs. Based on results showing that an adenovirus (Ad) expressing a steroidogenic factor 1 (SF1) mutant that cannot bind β-catenin abolished FSH-induced Lhcgr mRNA, we evaluated the role of β-catenin in the regulation of Lhcgr gene expression. FSH promoted the PKA-dependent, PI3K-independent phosphorylation of β-catenin on Ser552 and Ser665. FSH activated the β-catenin/T-cell factor (TCF) artificial promoter-reporter TOPFlash via a PKA-dependent, PI3K-independent pathway, and dominant-negative (DN) TCF abolished FSH-activated Lhcgr-luciferase reporter and induction of Lhcgr mRNA. Microarray analysis of GCs treated with Ad-DN-TCF and FSH identified the Lhcgr as the most down-regulated gene. Chromatin immunoprecipitation results placed β-catenin phosphorylated on Ser552 and Ser675 and SF1 on the Lhcgr promoter in FSH-treated GCs; TCF3 was constitutively associated with the Lhcgr promoter. Transduction with an Ad-phospho-β-catenin mutant (Ser552/665/Asp) enhanced Lhcgr mRNA expression in FSH-treated cells greater than 3-fold. Finally, we identified a recognized PI3K/AKT target, forkhead box O1, as a negative regulator of Lhcgr mRNA expression. These results provide new understanding of the complex regulation of Lhcgr gene expression in GCs. PMID:23754802

  7. Role of macrophage colony-stimulating factor (M-CSF) in human granulosa cells.

    PubMed

    Xu, Song; Zhang, Zhifen; Xia, Li-Xia; Huang, Jian

    2016-12-01

    Macrophage colony-stimulating factor (M-CSF) has been proved to have a positive role in the follicular development. We investigated its effect on human granulosa cells and found that M-CSF could stimulate the production of E2. The production of FSH receptors was enhanced by M-CSF in vitro in a dose-dependent manner with or without the addition of tamoxifen (p <0.05). Correspondingly, FSH was also able to coordinate the expression of M-CSF and its receptor (p <0.05). That maybe important to maintain the level of Nppc and the meiotic arrest of the oocyte. The protein p-JAK2 and p-STAT3 in JAK/STAT-signaling pathway elevated after the influence of M-CSF (p < 0.05). These results suggest that M-CSF has a role in regulating the response of granulosa cells to gonadotropins. Its function is associated with JAK/STAT-signaling pathway.

  8. Influence of luteinizing hormone support on granulosa cells transcriptome in cattle.

    PubMed

    Nivet, Anne-Laure; Vigneault, Christian; Blondin, Patrick; Sirard, Marc-Andre

    2017-08-25

    In cows, the use of follicle-stimulating hormone (FSH) to stimulate follicular growth followed by a short period of FSH withdrawal has been shown to be beneficial for oocyte developmental competence. Although this treatment represents a useful optimization to generate highly competent oocytes, the underlying physiological process is not completely understood. The goal of this study was to investigate the role of luteinizing hormone (LH) action during FSH withdrawal before ovulation. To accomplish this, LH release was pharmacologically inhibited during the coasting period with gonadotropin-releasing hormone (GnRH) antagonists. Granulosa cells samples were obtained from cows stimulated with FSH during 3 days followed by a coasting period of 68 h and treated with a GnRH antagonist (cetrorelix group) or not (control). A significant reduction in the number of follicles at >10 mm diameter was observed with the cetrorelix group and gene expression of granulosa cells reveals that 747 transcripts are potentially regulated by LH. Further analysis indicates how the absence of LH may trigger early atresia, the upregulation of atretic agent as tumor protein P53 and transforming growth factor β1 and the inhibition of growth support. This work allows identification of genes that are associated with maintained follicular growth and conversely the ones leading to atresia in dominant pre-ovulatory follicles. © 2017 Japanese Society of Animal Science.

  9. The Luteinizing Hormone Receptor-Activated Extracellularly Regulated Kinase-1/2 Cascade Stimulates Epiregulin Release from Granulosa Cells

    PubMed Central

    Andric, Nebojsa; Ascoli, Mario

    2008-01-01

    We examine the pathways involved in the luteinizing hormone receptor (LHR)-dependent activation of the epidermal growth factor (EGF) network using cocultures of LHR-positive granulosa cells and LHR-negative test cells expressing an EGF receptor (EGFR)-green fluorescent protein fusion protein. Activation of the LHR in granulosa cells results in the release of EGF-like growth factors that are detected by measuring the phosphorylation of the EGFR-green fluorescent protein expressed only in the LHR-negative test cells. Using neutralizing antibodies and real-time PCR, we identified epiregulin as the main EGF-like growth factor produced upon activation of the LHR expressed in immature rat granulosa cells, and we show that exclusive inhibition or activation of the ERK1/2 cascade in granulosa cells prevents or enhances epiregulin release, respectively, with little or no effect on epiregulin expression. These results show that the LHR-stimulated ERK1/2 pathway stimulates epiregulin release. PMID:18653716

  10. Purinergic receptor-mediated intracellular Ca2+ oscillations in chicken granulosa cells.

    PubMed

    Morley, P; Vanderhyden, B C; Tremblay, R; Mealing, G A; Durkin, J P; Whitfield, J F

    1994-03-01

    These studies were designed to investigate the effects of extracellular ATP on intracellular calcium ion concentration ([Ca2+]i) and progesterone secretion in granulosa cells obtained from the two largest preovulatory follicles (F1 and F2) of hens. [Ca2+]i was measured in cells loaded with the Ca(2+)-responsive fluorescent dye fura-2. The resting [Ca2+]i in these cells was 99 +/- 7 nM (n = 22). There was a 5.7 +/- 0.7-fold increase in [Ca2+]i in all (n = 140) of the cells within 5 sec of adding a maximally stimulatory concentration (100 microM) of extracellular ATP. The initial spike was followed by [Ca2+]i oscillations that returned to the resting level between spikes. The frequency and amplitude of the [Ca2+]i oscillations were varied and persisted for 1-40 min. [Ca2+]i oscillations were also triggered by 100 microM UTP, UDP, GTP, GDP, ADP, and the nonhydrolyzable analog ATP gamma S. Adenosine, AMP, GMP, and UMP (all at 100 microM) were ineffective. The lowest ATP concentration to trigger a [Ca2+]i response was 1 microM. The sustained oscillatory phase of the response, but not the initial spike, was inhibited by incubating the cells in Ca(2+)-free medium containing 2 mM EGTA. The nucleotide-triggered [Ca2+]i oscillations were not affected by adding the dihydropyridine Ca2+ channel blockers verapamil (100 microM), methoxy-verapamil (D600; 100 microM), or nifedipine (10 microM), before or during the response. However, the oscillations, but not the initial spike, were prevented by pretreating the cells with a general Ca2+ channel blocker, lanthanum (1 mM) or cobalt (5 mM). Lanthanum and cobalt also promptly stopped the [Ca2+]i oscillations when added during the oscillatory phase. The nucleotide-triggered [Ca2+]i response was also abolished by pretreating the cells with an inhibitor of inositol phospholipid hydrolysis, neomycin (1.5 mM). In 3-h incubations, adenosine (100 microM) or ATP (100 microM) did not affect basal or LH (20 or 100 ng/ml)-stimulated progesterone

  11. Effects of non-esterified fatty acids on bovine granulosa cells and developmental potential of oocytes in vitro.

    PubMed

    Jorritsma, R; César, M L; Hermans, J T; Kruitwagen, C L J J; Vos, P L A M; Kruip, T A M

    2004-04-01

    High yielding dairy cows experience a negative energy balance (NEB) shortly after parturition, which is accompanied by high concentrations of non-esterified fatty acids (NEFA) in blood up to approximately 3 weeks post partum. We hypothesized that the elevated plasma NEFA concentration causes lower fertility by exerting negative effects on granulosa cells and oocytes in the ovary, leading to less viable embryos and insufficient corpora lutea. In two series of experiments, we studied the effects of a realistic NEFA (C18:1) concentration on both the proliferation and the progesterone production of follicular granulosa cells in vitro (part I) and on maturation, fertilization and developmental potential of oocytes (part II). For part I, granulosa cells were added to 4 groups of dishes with four different media and cultured for nine consecutive days. After a preculture period of 42h, the presence of NEFA had a negative effect on the proliferation of granulosa cells. No effect of NEFA on the amount of progesterone production per cell was observed. For part II, a total of 1804 cumulus-oocyte-complexes were collected from slaughterhouse ovaries. Using a subgroup of 690 COC, maturation medium with NEFA caused a delay in maturation. Using another 1114 COC, fertilization, cleavage, and embryonic development after maturation in presence of NEFA were significantly reduced. We concluded that the presence of NEFA in follicular fluid and blood of post partum cows may reduce fertility due to hampered embryonic development and subnormal CL function.

  12. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary

    PubMed Central

    Xu, Na; Zhu, Rui-Lou; Wang, Xiu-Xing; Chen, Zhong; Tao, Wei-Wei; Yao, Bing; Sun, Hai-Xiang; Huang, Xing-Xu; Xue, Bin; Li, Chao-Jun

    2017-01-01

    Folliculogenesis is a progressive and highly regulated process, which is essential to provide ova for later reproductive life, requires the bidirectional communication between the oocyte and granulosa cells. This physical connection-mediated communication conveys not only the signals from the oocyte to granulosa cells that regulate their proliferation but also metabolites from the granulosa cells to the oocyte for biosynthesis. However, the underlying mechanism of establishing this communication is largely unknown. Here, we report that oocyte geranylgeranyl diphosphate (GGPP), a metabolic intermediate involved in protein geranylgeranylation, is required to establish the oocyte-granulosa cell communication. GGPP and geranylgeranyl diphosphate synthase (Ggpps) levels in oocytes increased during early follicular development. The selective depletion of GGPP in mouse oocytes impaired the proliferation of granulosa cells, primary-secondary follicle transition and female fertility. Mechanistically, GGPP depletion inhibited Rho GTPase geranylgeranylation and its GTPase activity, which was responsible for the accumulation of cell junction proteins in the oocyte cytoplasm and the failure to maintain physical connection between oocyte and granulosa cells. GGPP ablation also blocked Rab27a geranylgeranylation, which might account for the impaired secretion of oocyte materials such as Gdf9. Moreover, GGPP administration restored the defects in oocyte-granulosa cell contact, granulosa cell proliferation and primary-secondary follicle transition in Ggpps depletion mice. Our study provides the evidence that GGPP-mediated protein geranylgeranylation contributes to the establishment of oocyte-granulosa cell communication and then regulates the primary-secondary follicle transition, a key phase of folliculogenesis essential for female reproductive function. PMID:28072828

  13. Theca cells and theca-cell conditioned medium inhibit the progression of FSH-induced meiosis of bovine oocytes surrounded by cumulus cells connected to membrana granulosa.

    PubMed

    van Tol, H T; Bevers, M M

    1998-11-01

    The effect of follicular cells and their conditioned media on the FSH-induced oocyte maturation of oocytes surrounded by cumulus cells connected to the membrana granulosa (COCGs) was investigated. COCGs and cumulus oocyte complexes (COCs) were cultured for 22 hr in M199 supplemented with 0.05 IU FSH/ml in either the presence of pieces of theca cell layer or in the presence of pieces of membrana granulosa. COCGs and COCs were also cultured for 22 hr in either theca-cell conditioned medium (CMt) or in granulosa cell conditioned medium (CMg), both supplemented with 0.05 IU FSH/ml. To investigate the importance of cell-cell contacts between granulosa cells and cumulus cells, oocytes were cultured as COCs in CMt, as COCs in CMt supplemented with pieces of membrana granulosa, or as COCGs in CMt. In all groups the medium was supplemented with 0.05 IU FSH/ml. After culture the nuclear status of the oocytes was assessed using orcein staining. Culture of COCGs in the presence of theca cells as well as in CMt resulted in a significantly decreased proportion of oocytes that had undergone germinal vesicle breakdown (GVBD) at the end of the culture period as compared to the control. Of the oocytes that resumed meiosis in the presence of theca cells or in CMt, the proportion of oocytes that progressed up to the MII stage was significantly reduced. This indicates the production of a meiosis-inhibiting factor by theca cells. Culture with COCs instead of COCGs resulted in comparable results although the effect was less pronounced. The significant effect on the progression of meiosis of oocytes cultured as COCGs or as COCs, obtained in the presence of granulosa cells or in CMg, was much weaker than the effect of theca cells or culture in CMt. Culture of COCs in CMt supplemented with layers of membrana granulosa and 0.05 IU FSH/ml, resulted in significantly less oocytes that resumed meiosis as compared to culture of COCs in CMt. Of the oocytes that showed GVBD, the proportion that

  14. Progestin and AdipoQ Receptor 7, Progesterone Membrane Receptor Component 1 (PGRMC1), and PGRMC2 and Their Role in Regulating Progesterone's Ability to Suppress Human Granulosa/Luteal Cells from Entering into the Cell Cycle.

    PubMed

    Sueldo, Carolina; Liu, Xiufang; Peluso, John J

    2015-09-01

    The present studies were designed to determine the role of progesterone receptor membrane component 1 (PGRMC1), PGRMC2, progestin and adipoQ receptor 7 (PAQR7), and progesterone receptor (PGR) in mediating the antimitotic action of progesterone (P4) in human granulosa/luteal cells. For these studies granulosa/luteal cells of 10 women undergoing controlled ovarian hyperstimulation were isolated, maintained in culture, and depleted of PGRMC1, PGRMC2, PAQR7, or PGR by siRNA treatment. The rate of entry into the cell cycle was assessed using the FUCCI cell cycle sensor to determine the percentage of cells in the G1/S stage of the cell cycle. PGRMC1, PGRMC2, PAQR7, and PGR mRNA levels were assessed by real-time PCR and their interactions monitored by in situ proximity ligation assays (PLAs). These studies revealed that PGRMC1, PGRMC2, PAQR7, and PGR were expressed by granulosa/luteal cells from all patients, with PGRMC1 mRNA being most abundant, followed by PAQR7, PGRMC2, and PGR. However, their mRNA levels showed considerable patient variation. P4's ability to suppress entry into the cell cycle was dependent on PGRMC1, PGRMC2, and PAQR7 but not PGR. Moreover, PLAs indicated that PGRMC1, PGRMC2, and PAQR7 formed a complex within the cytoplasm. Based on these studies, it is proposed that these three P4 mediators form a complex within the cytoplasm that is required for P4's action. Moreover, P4's ability to regulate human follicle development may be dependent in part on the expression levels of each of these P4 mediators.

  15. Effect of mono-(2-ethylhexyl) phthalate on steroid production of human granulosa cells

    SciTech Connect

    Reinsberg, Jochen Wegener-Toper, Petra; Ven, Katrin van der; Ven, Hans van der; Klingmueller, Dietrich

    2009-08-15

    The phthalate ester mono-(2-ethylhexyl) phthalate (MEHP) is the active metabolite of di-(2-ethylhexyl) phthalate, a high-production-volume chemical used as a plasticizer and solvent in numerous consumer products. MEHP has been demonstrated to be a reproductive toxicant in rodents decreasing estradiol and progesterone production in preovulatory granulosa cells. In the present study, we examined the effect of MEHP on steroid production of human granulosa-lutein (GL) cells. Human GL cells collected from women undergoing in vitro fertilization were cultured in medium containing FSH, hCG and 8-Br-cAMP, respectively, together with various concentrations of MEHP (0-500 {mu}mol L{sup -1}). After incubation for 48 h estradiol and progesterone were assayed in the spent culture medium. Furthermore, aromatase activity and mRNA levels of GL cells were determined. Basal as well as FSH-, hCG- and 8-Br-cAMP-stimulated estradiol production of GL cells was suppressed by MEHP in a dose-dependent manner (IC{sub 50} = 105 {mu}mol L{sup -1}, 138 {mu}mol L{sup -1}, 49 {mu}mol L{sup -1} and 78 {mu}mol L{sup -1}). Furthermore aromatase activity and mRNA levels were reduced in GL cells cultured with MEHP. In contrast, MEHP did not alter the production of progesterone up to a concentration of 167 {mu}mol L{sup -1}. The present data indicate that MEHP is a specific inhibitor of estradiol production in human GL cells with a post-cAMP site of action. The inhibition of estradiol production obviously results from a reduction of aromatase activity on the transcript level. As the in vitro effective doses of MEHP are within the range of real environmental exposure levels an inhibitory effect on estrogen production in vivo seems to be possi0009b.

  16. The effect of PCB126, 77, and 153 on the intracellular mobilization of Ca+2 in bovine granulosa and luteal cells after FSH and LH surge in vitro.

    PubMed

    Mlynarczuk, J; Kowalik, M

    2013-01-01

    Polychlorinated biphenyls (PCBs) are a group of persistent environmental pollutants that impair cattle reproduction. Among other effects, PCBs can disturb the intracellular mobilization of Ca(+2) in several cell types. Hence, it is possible that they disrupt the transduction of intracellular signals generated from gonadotropin (FSH/LH) receptors. In steroidogenic ovarian cells, a defect in Ca(+2) mobilization may have a detrimental influence on two important processes: the secretion of steroids (E2 or/and P4) and their morphological and functional differentiation. The aim of this study was to determine the influence of PCBs: 126 (dioxin-like) 77 (ambivalent) and 153 (estrogen-like) and a mixture of PCBs (Aroclor 1248) on these processes. Bovine granulosa and luteal cells were incubated for 72 hrs with PCBs (100 ng/ml), followed by Fura 2AM dye, and the fluctuations in intracellular Ca(+2) mobilization after FSH/LH treatment were determined using an inverted microscope coupled with a CCD camera. The intensity and area of fluorescence excited by UV light were detected in the green spectrum of visible light. Aroclor 1248 and PCBs 153 and 77 significantly decreased (P < 0.01-0.001) the effect of FSH on intracellular Ca(+2) mobilization in granulosa cells. In luteal cells, the most effective PCB on this process was PCB 77. The results revealed adverse effects of PCBs on the mobilization of intracellular Ca(+2). Moreover, the estrogen-like congeners were found to more effectively disturb this process than the dioxin-like PCB 126. Hence, it is possible for PCBs to have a negative influence on reproductive processes by affecting calcium mobilization.

  17. A Mixture Reflecting Polybrominated Diphenyl Ether (PBDE) Profiles Detected in Human Follicular Fluid Significantly Affects Steroidogenesis and Induces Oxidative Stress in a Female Human Granulosa Cell Line.

    PubMed

    Lefevre, Pavine L C; Wade, Mike; Goodyer, Cindy; Hales, Barbara F; Robaire, Bernard

    2016-07-01

    Brominated flame retardants are incorporated into consumer products to prevent flame propagation. These compounds leach into the domestic environment, resulting in chronic exposure. Pregnancy failure is associated with high levels of polybrominated diphenyl ethers (PBDEs), a major class of brominated flame retardants, in human follicular fluid, raising serious questions regarding their impact on female fertility. Our goal was to elucidate the effects of a mixture of PBDEs, similar to the profile found in human follicular fluid, on an immortalized human granulosa cell line, the KGN cell line. We showed that cell viability was altered and oxidative stress was induced as reflected by increased reactive oxygen species formation at 100 μM of the PBDE mixture. Transcriptomic analysis revealed that PBDE treatments of 1, 5, and 20 μM altered the expression of several genes involved in the reactive oxygen species signaling pathway. Significant dose-dependent reductions in progesterone and estradiol levels in the culture medium were measured after PBDE treatment; in parallel, the expression of genes involved in estradiol metabolism, namely CYP1A1, was up-regulated by 5 and 20 μM of the PBDE mixture. Treatment with 20 μM PBDE also increased the expression and secretion of the proinflammatory factor, IL-6, into the KGN cell culture medium. Our results demonstrate that PBDEs can alter human granulosa cell functions by inducing oxidative stress and disrupting steroidogenesis. These results indicate that PBDEs may be detrimental to ovarian functions and thus may adversely affect female reproductive health after chronic exposure.

  18. Effects of fumonisin B1 alone and combined with deoxynivalenol or zearalenone on porcine granulosa cell proliferation and steroid production.

    PubMed

    Cortinovis, Cristina; Caloni, Francesca; Schreiber, Nicole B; Spicer, Leon J

    2014-05-01

    Fumonisin B1 (FB1) is a Fusarium mycotoxin frequently occurring in corn in combination with deoxynivalenol (DON) and zearalenone. The aim of this study was to determine if FB1, alone and combined with DON or α-zearalenol (ZEA), zearalenone major active metabolite, can affect granulosa cell proliferation, steroid production, and gene expression in swine. Porcine granulosa cells were cultured for 2 days in serum-containing medium followed by 1 or 2 days in serum-free medium with or without added treatments. Fumonisin B1 had inhibitory effects on granulosa cell proliferation. Deoxynivalenol strongly inhibited cell growth, and no significant difference was detected in combination with FB1. α-Zearalenol showed a stimulatory effect on granulosa cell numbers even in combination with FB1. Regarding steroid production, FB1 increased progesterone production, and FB1 had no effect on estradiol production. Deoxynivalenol strongly inhibited progesterone and estradiol production, and FB1 had no significant effect on this response. α-Zearalenol increased progesterone production, and its combination with FB1 produced additive effects. α-Zearalenol had no effect on estradiol production, whereas it decreased estradiol production when co-treated with FB1. Fumonisin B1 was found to decrease CYP11A1 messenger RNA abundance, and the stimulatory effect of FB1 on progesterone production was found to be not dependent on 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity suggesting that FB1 increases progesterone production through a different mechanism. The results show that these Fusarium mycotoxins can influence porcine granulosa cell proliferation and steroid production, thereby demonstrating their potential reproductive effects on swine.

  19. Gonadotropin regulation of testosterone production by primary cultured theca and granulosa cells of Atlantic croaker: I. Novel role of CaMKs and interactions between calcium- and adenylyl cyclase-dependent pathways.

    PubMed

    Benninghoff, Abby D; Thomas, Peter

    2006-07-01

    Theca and granulosa cells for in vitro primary culture were obtained by enzymatic digestion of mature ovarian tissue from Atlantic croaker (Micropogonias undulatus) and separation from the other cell types by Percoll density-gradient centrifugation. Histochemical staining and treatment with pregnenolone confirmed the presence in the cultured cells of enzymes involved in synthesizing the major sex steroids in croaker ovaries: testosterone, estradiol, and 17alpha,20beta,21-trihydroxy-4-pregnen-3-one (20beta-S). Croaker theca and granulosa cells maintained their steroidogenic response to gonadotropin when cultured with serum-supplemented media and produced high levels of testosterone for up to 5 days, although estradiol production was low. Multiple signal transduction pathways mediating gonadotropin stimulation of androgen production were identified in Atlantic croaker ovarian theca and granulosa cells in primary co-culture. Inhibitors of voltage-sensitive calcium channels (VSCCs) and calmodulin decreased the steroidogenic response to gonadotropin, whereas activators of adenylyl cyclase and protein kinase A (PKA) increased testosterone production, indicating that both calcium and PKA-dependent signaling pathways are involved in the regulation of follicular steroid production. In addition, the first evidence in vertebrates for an involvement of calcium/calmodulin-dependent protein kinases (CaMKs) in gonadal steroidogenesis was obtained, since the stimulatory effects of gonadotropin on testosterone media accumulation were attenuated by specific inhibitors of CaMKs. Some interactions among the signaling pathways were observed as demonstrated by the positive effect of elevated intracellular calcium on adenylyl cyclase activity and the reduction of forskolin- and dbcAMP-induced testosterone production by inhibitors of VSCCs, calmodulin, and CaMKs.

  20. Presence of encircling granulosa cells protects against oxidative stress-induced apoptosis in rat eggs cultured in vitro.

    PubMed

    Tiwari, Meenakshi; Tripathi, Anima; Chaube, Shail K

    2017-01-01

    Increased oxidative stress (OS) due to in vitro culture conditions can affect the quality of denuded eggs during various assisted reproductive technologies (ARTs). Presence of intact granulosa cells may protect eggs from OS damage under in vitro culture conditions. The present study was aimed to investigate whether encircling granulosa cells could protect against hydrogen peroxide (H2O2)-induced egg apoptosis in ovulated cumulus oocyte complexes (COCs) cultured in vitro. The OS was induced by exposing COCs as well as denuded eggs with various concentrations of H2O2 for 3 h in vitro. The morphological changes, total reactive oxygen species (ROS) as well as catalase expression, Bax/Bcl-2, cytochrome c levels and DNA fragmentation were analysed in COCs as well as denuded eggs. Our results suggest that H2O2 treatment induced morphological apoptotic features in a concentration-dependent manner in denuded eggs cultured in vitro. The 20 µM of H2O2 treatment induced OS by elevating total ROS level, reduced catalase and Bcl-2 expression levels with overexpression of Bax and cytochrome c and induced DNA fragmentation in denuded eggs cultured in vitro. The presence of encircling granulosa cells protected H2O2-induced morphological apoptotic features by preventing the increase of Bax, cytochrome c expression levels and DNA fragmentation in associated egg. However, 20 µM of H2O2 was sufficient to induce peripheral granulosa cell apoptosis in COCs and degeneration in few denuded eggs cultured in vitro. Taken together our data suggest that the presence of encircling granulosa cells could be beneficial to protect ovulated eggs from OS damage under in vitro culture conditions during various ART programs.

  1. Telomerase activity is more significant for predicting the outcome of IVF treatment than telomere length in granulosa cells.

    PubMed

    Wang, Wenjun; Chen, Hong; Li, Ruiqi; Ouyang, Nengyong; Chen, Jinghua; Huang, Lili; Mai, Meiqi; Zhang, Ningfeng; Zhang, Qingxue; Yang, Dongzi

    2014-05-01

    Our previous study has demonstrated that luteinized granulosa cells (GCs) have the potential to proliferate and that the telomerase activity (TA) of luteinized GCs may predict the clinical outcomes of IVF treatment. However, in the field of telomere research, there have always been different opinions regarding the significance of TA and telomere length (TL). Thus, in the present study, we compared the effects of these two parameters on IVF treatment outcomes in the same individuals. TL did not differ significantly between the pregnant group and the non-pregnant group. The TA, number of retrieved oocytes and rate of blastocyst transfer were significantly higher in the pregnant group than in the non-pregnant group (0.8825 OD×mm, 12.75±2.20 and 34.48%, respectively, in the pregnant group vs 0.513 OD×mm, 11.60±0.93 and 14.89%, respectively, in the non-pregnant group (P<0.05)), while basal FSH level was lower in the pregnant group than in the non-pregnant group. The subjects did not differ with regard to ovarian stimulation or other clinical characteristics. A TA increase of 1 OD×mm increased the chance of becoming pregnant 4.769-fold (odds ratio: 5.769, 95% CI: 1.434-23.212, P<0.014). The areas under the receiver operating characteristic curves were 0.576 for TL and 0.674 for TA (P=0.271 and P<0. 012 respectively). The corresponding cut-off points were 4.470 for TL and 0.650 OD×mm for TA. These results demonstrate that TA is a better predictor of pregnancy outcomes following IVF treatment than TL. No other clinical parameters, including age, baseline FSH level or peak oestradiol level, distinguished between the pregnant group and the non-pregnant group as effectively as TA.

  2. Zona pellucida protein B2 messenger ribonucleic acid expression varies with follicular development and granulosa cell location.

    PubMed

    Benson, A P; Malloy, M N; Steed, J R; Christensen, V L; Fairchild, B D; Davis, A J

    2017-09-01

    The freshly ovulated ovum in avian species is surrounded by a protein layer called the inner perivitelline layer (IPVL). The IPVL contains zona pellucida proteins and 6 distinct zona pellucida genes have been identified (ZPA, ZPB1, ZPB2, ZPC, ZPD and ZPX1) in the chicken. In the present research, the expression of the mRNA for ZPA, ZPB2, and ZPX1 was investigated in 2 lines of turkey hens selected for either increased egg production (E line) or increased body weight (F line). Theca and granulosa cell expression of the mRNA for ZPA and ZPB2 was also investigated in hierarchical and prehierarchical follicles from broiler breeder hens. Granulosa tissue was collected from F1 through F4 and F1 through F10 follicles in E line and F line hens, respectively. A one cm2 section of the granulosa layer around the germinal disc (GD) and an equivalent sized nongerminal disc (NGD) area was also collected from the F1 and F2 follicles from other hens from each genetic line. Granulosa and theca tissue was collected from hierarchical and prehierarchical follicles of broiler breeder hens. Total RNA was extracted from the samples. Minor groove-binding probes and primers for detecting ZPA, ZPB2, and ZPX1, were made for real-time PCR analyses. Expression of ZPA, ZPB2, and ZPX1 was detected in all follicle sizes from both genetic lines of hens. No significant differences in ZPA and ZPX1 mRNA expression were detected between the GD and NGD granulosa cells. However, the expression of the mRNA for ZPB2 was significantly greater in the GD granulosa cells when compared to the NGD granulosa cells in F1 and F2 follicles from E line and F line hens. In broiler breeder hens, the mRNA expression of ZPA and ZPB2 was greatest in the smallest prehierarchical follicles. The results suggest that higher expression of ZPB2 in the germinal disc area may be important for the preferential binding of sperm to this region of the IPVL. © 2017 Poultry Science Association Inc.

  3. Association between expression of cumulus expansion markers and real-time proliferation of porcine follicular granulosa cells in a primary cell culture model.

    PubMed

    Ciesiółka, S; Budna, J; Bryja, A; Kranc, W; Chachuła, A; Dyszkiewicz-Konwińska, M; Piotrowska, H; Bukowska, D; Antosik, P; Bruska, M; Brüssow, K P; Nowicki, M; Zabel, M; Kempisty, B

    2016-01-01

    Folliculogenesis is a compound process that involves both ovarian follicle growth and oocyte development, which is tightly attached to the follicular wall. During this process, cells that form the follicle structure undergo substantial morphological and molecular modifications that finally lead to differentiation and specialization of ovarian follicular cells. The differentiation of ovarian cells encompasses formation of follicle, which is composed of theca (TCs), mural granulosa (GCs), and cumulus cells (CCs). It was previously hypothesized that GCs and CCs represent undifferentiated and highly specialized follicular cells, respectively, which may have similar primordial cell origins. In this study, we investigated the expression pattern of cumulus expansion markers such as COX2, HAS2, PTX3, and TSG6 in porcine GCs during short-term, in vitro culture. We hypothesized that these genes may display an important function in GCs in relation to cellular real-time proliferation. The expression pattern of COX2, HAS2, PTX3, and TSG6 was evaluated after using RT-qPCR in relation to confocal microscopy observations of protein expression and distribution during real-time proliferation of porcine follicular GCs. The COX2 and HAS2 mRNAs were highly expressed after 120 h of in vitro culture (IVC), whereas PTX3 and TSG6 mRNAs were increased during the first 24-48 h of IVC (P less than 0.001, P less than 0.01). Conversely, all of the encoded proteins were highly expressed after 144-168 h of IVC as compared to other culture periods (P less than 0.001, P less than 0.01). When analyzing the realtime proliferation of GCs in vitro, we observed a logarithmic increase of cell proliferation between 0 h and 120 h of IVC. However, after 120-168 h of IVC, the cells reached the lag phase of proliferation. Since it is well accepted that porcine GCs undergo luteinization shortly after 24-48 h of IVC, the expression pattern of investigated genes indicated that Cox2 and Has2 are independent from

  4. The influence of opioid peptides on steroidogenesis in porcine granulosa cells.

    PubMed

    Kaminski, T; Siawrys, C; Bogacka, I; Okrasa, S; Przala, J

    2004-02-01

    The present studies were undertaken to examine the influence of mu (beta-endorphin, DAMGO, FK 33-824), delta (met-enkephalin, leu-enkephalin, DPLPE) and kappa opioid receptor agonists (dynorphin A, dynorphin B, U 50488) used at different doses (1-1000 nM) alone and in combination with LH (100 ng/ml) on steroidogenesis in porcine granulosa cells derived from large follicles. The effects of mu, delta and kappa receptor agonists on both basal and LH-induced progesterone (P4) secretion were negligible. Agonists of mu opioid receptors reduced basal androstenedione (A4), testosterone (T) and oestradiol (E2) release. Co-treatment with LH entirely abolished the inhibitory effect of these agonists on A4 and E2 secretion and resulted in an increase in T release. The addition of delta receptor agonists was followed by a decrease in basal A4, T and E2 secretion. The cells incubated in the presence of LH increased the androgen production and abrogated the inhibitory effect of delta agonists on E2 output. Basal A4, T and E2 release was also suppressed by kappa receptor agonists. The presence of LH in culture media extended the inhibitory effect of these opioids on E2 output and caused either abolition of the inhibitory influence of kappa agonists or even augmentation of both androgen release in response to the opioids. In conclusion, these data support the involvement of three major types of opioid receptors in the regulation of porcine granulosa cell steroidogenesis.

  5. Expression of Tachykinins and Tachykinin Receptors and Interaction with Kisspeptin in Human Granulosa and Cumulus Cells.

    PubMed

    García-Ortega, Jordán; Pinto, Francisco M; Prados, Nicolás; Bello, Aixa R; Almeida, Teresa A; Fernández-Sánchez, Manuel; Candenas, Luz

    2016-06-01

    The neurokinin B/NK3 receptor (NK3R) and kisspeptin/kisspeptin receptor (KISS1R), two systems which are essential for reproduction, are coexpressed in human mural granulosa (MGC) and cumulus cells (CCs). However, little is known about the presence of other members of the tachykinin family in the human ovary. In the present study, we analyzed the expression of substance P (SP), hemokinin-1 (HK-1), NK1 receptor (NK1R), and NK2 receptor (NK2R) in MGCs and CCs collected from preovulatory follicles of oocyte donors at the time of oocyte retrieval. RT-PCR, quantitative RT-PCR, immunocytochemistry, and Western blotting were used to investigate the patterns of expression of tachykinin and tachykinin receptor mRNAs and proteins and the possible interaction between the tachykinin family and kisspeptin. Intracellular free Ca(2+) levels ([Ca(2+)]i) in MGCs after exposure to SP or kisspeptin in the presence of SP were also measured. We found that SP, HK-1, the truncated NK1R isoform NK1R-Tr, and NK2R were all expressed in MGCs and CCs. NK1R-Tr mRNA and NK2R mRNA and protein levels were higher in MGCs than in CCs from the same patients. Treatment of cells with kisspeptin modulated the expression of HK-1, NK3R, and KISS1R mRNAs, whereas treatment with SP regulated kisspeptin mRNA levels and reduced the [Ca(2+)]i response produced by kisspeptin. These data demonstrate that the whole tachykinin system is expressed and acts in coordination with kisspeptin to regulate granulosa cell function in the human ovary. © 2016 by the Society for the Study of Reproduction, Inc.

  6. Secretory function of ovarian cells and myometrial contractions in cow are affected by chlorinated insecticides (chlordane, heptachlor, mirex) in vitro.

    PubMed

    Wrobel, Michael Hubert; Mlynarczuk, Jaroslaw

    2017-01-01

    The aim of the study was to investigate the effect of chlordane, heptachlor and mirex, on hormonal regulation of the force of myometrial contractions. Myometrial, endometrial, granulosa and luteal cells as well as strips of myometrium from non-pregnant cows were incubated with three insecticides at environmentally relevant doses (0.1, 1 or 10ng/ml). None of the insecticides affected the viability of studied cells. Chlordane stimulated, while heptachlor and mirex inhibited, secretion of testosterone and estradiol from granulosa cells as well as secretion of progesterone from luteal cells, respectively. Secretion of oxytocin (OT) from granulosa cells was increased after incubation with all studied insecticides. Only mirex stimulated OT secretion from luteal cells, while heptachlor inhibited this effect. None of them affected synthesis of OT in luteal cells and prostaglandins (PGF2 and PGE2) secretion from uterine cells, except PGE2 secretion from endometrial cells was decreased when the cells were incubated with 0.1ng/ml of chlordane. Basal and OT-stimulated myometrial contractions were increased by mirex and decreased by heptachlor. The data show that the insecticides altered secretory function of ovarian cells. Heptachlor and mirex affected also myometrial contractions in vitro, but uterine secretion of prostaglandins were not involved in the mechanism of that adverse effect of insecticides. The data indicate on potential of these insecticides to disturb fertilisation, blastocyst implantation or even the length of gestation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Metastatic Granulosa Cell Tumor of the Testis: Clinical Presentation and Management

    PubMed Central

    Han, Min; Figenshau, Robert S.

    2016-01-01

    Granulosa cell tumors (GCTs) of the testis are rare sex cord-stromal tumors that are present in both juvenile and adult subtypes. While most adult GCTs are benign, those that present with distant metastases manifest a grave prognosis. Treatments for aggressive GCTs are not well established. Options that have been employed in previous cases include retroperitoneal lymph node dissection (RPLND), radiation, chemotherapy, or a combination thereof. We describe the case of a 57-year-old man who presented with a painless left testicular mass and painful gynecomastia. Serum tumor markers (alpha fetoprotein, human chorionic gonadotropin, and lactate dehydrogenase) and computed tomography of the chest and abdomen were negative. The patient underwent left radical orchiectomy. Immunohistochemical staining was consistent with a testicular GCT. He underwent a left-template laparoscopic RPLND which revealed 2/19 positive lymph nodes. Final pathological stage was IIA. He remains free of disease 32 months after surgery. PMID:27293952

  8. Evidence of a local negative role for cocaine and amphetamine regulated transcript (CART), inhibins and low molecular weight insulin like growth factor binding proteins in regulation of granulosa cell estradiol production during follicular waves in cattle

    PubMed Central

    Kobayashi, Yasuhiro; Jimenez-Krassel, Fermin; Ireland, James J; Smith, George W

    2006-01-01

    The ability of ovarian follicles to produce large amounts of estradiol is a hallmark of follicle health status. Estradiol producing capacity is lost in ovarian follicles before morphological signs of atresia. A prominent wave like pattern of growth of antral follicles is characteristic of monotocous species such as cattle, horses and humans. While our knowledge of the role of pituitary gonadotropins in support of antral follicle growth and development is well established, the intrinsic factors that suppress estradiol production and may help promote atresia during follicular waves are not well understood. Numerous growth factors and cytokines have been reported to suppress granulosa cell estradiol production in vitro, but the association of expression of many such factors in vivo with follicle health status and their physiological significance are not clear. The purpose of this review is to discuss the in vivo and in vitro evidence supporting a local physiological role for cocaine and amphetamine regulated transcript, inhibins and low molecular weight insulin like growth factor binding proteins in negative regulation of granulosa cell estradiol production, with emphasis on evidence from the bovine model system. PMID:16611367

  9. MicroRNA 17-92 cluster regulates proliferation and differentiation of bovine granulosa cells by targeting PTEN and BMPR2 genes.

    PubMed

    Andreas, Eryk; Hoelker, Michael; Neuhoff, Christiane; Tholen, Ernst; Schellander, Karl; Tesfaye, Dawit; Salilew-Wondim, Dessie

    2016-10-01

    Granulosa cell proliferation and differentiation are key developmental steps involved in the formation of the dominant follicle eligible for ovulation. This process is, in turn, regulated by spatiotemporally emerging molecular events. MicroRNAs (miRNAs) are one of the molecular signatures believed to regulate granulosa cell function by fine-tuning gene expression. Previously, we showed that the miR-17-92 cluster was differentially expressed in granulosa cells from subordinate and dominant follicles at day 19 of the estrous cycle. However, the role of this miRNA cluster in bovine follicular cell function is not known. Therefore, in the present study, we investigate the role of the miR-17-92 cluster in granulosa cell function by using an in vitro model. Target prediction and luciferase assay analysis revealed that the miR-17-92 cluster coordinately regulated the PTEN and BMPR2 genes. Overexpression of the miR-17-92 cluster by using a mimic promoted granulosa cell proliferation and reduced the proportion of differentiated cells. However, cluster inhibition resulted in decreased proliferation and increased differentiation in granulosa cells. This was further supported by expression analysis of marker genes of proliferation and differentiation. The role of the miR-17-92 cluster was cross-validated by selective knockdown of its target genes by the short interfering RNA technique. Suppression of the PTEN and BMPR2 genes revealed similar phenotypic and molecular alterations as observed when the granulosa cells were transfected with the miR-17-92 cluster mimic. Thus, the miR-17-92 cluster is involved in granulosa cell proliferation and differentiation by coordinately targeting the PTEN and BMPR2 genes.

  10. Involvement of ERK1/2 signaling pathway in atrazine action on FSH-stimulated LHR and CYP19A1 expression in rat granulosa cells

    SciTech Connect

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Glisic, Branka; Kaisarevic, Sonja; Kovacevic, Radmila; Andric, Nebojsa

    2013-07-01

    Worldwide used herbicide atrazine is linked to reproductive dysfunction in females. In this study, we investigated the effects and the mechanism of atrazine action in the ovary using a primary culture of immature granulosa cells. In granulosa cells, follicle-stimulating hormone (FSH) activates both cyclic adenosine monophosphate (cAMP) and extracellular-regulated kinase 1/2 (ERK1/2) cascades, with cAMP pathway being more important for luteinizing hormone receptor (LHR) and aromatase (CYP19A1) mRNA expression. We report that 48 h after atrazine exposure the FSH-stimulated LHR and CYP19A1 mRNA expression and estradiol synthesis were decreased, with LHR mRNA being more sensitive to atrazine than CYP19A1 mRNA. Inadequate acquisition of LHR in the FSH-stimulated and atrazine-exposed granulosa cells renders human chorionic gonadotropin (hCG) ineffective to stimulate amphiregulin (Areg), epiregulin (Ereg), and progesterone receptor (Pgr) mRNA expression, suggesting anti-ovulatory effect of atrazine. To dissect the signaling cascade involved in atrazine action in granulosa cells, we used U0126, a pharmacological inhibitor of ERK1/2. U0126 prevents atrazine-induced decrease in LHR and CYP19A1 mRNA levels and estradiol production in the FSH-stimulated granulosa cells. ERK1/2 inactivation restores the ability of hCG to induce expression of the ovulatory genes in atrazine-exposed granulosa cells. Cell-based ELISA assay revealed that atrazine does not change the FSH-stimulated ERK1/2 phosphorylation in granulosa cells. The results from this study reveal that atrazine does not affect but requires ERK1/2 phosphorylation to cause decrease in the FSH-induced LHR and CYP19A1 mRNA levels and estradiol production in immature granulosa cells, thus compromising ovulation and female fertility. - Highlights: • Atrazine inhibits estradiol production in FSH-stimulated granulosa cells. • Atrazine inhibits LHR and Cyp19a1 mRNA expression in FSH-stimulated granulosa cells. • Atrazine

  11. GnRH agonist versus GnRH antagonist in IVF/ICSI cycles with recombinant LH supplementation: DNA fragmentation and apoptosis in granulosa cells.

    PubMed

    Lavorato, Heloisa L; Oliveira, Joao Batista A; Petersen, Claudia G; Vagnini, Laura; Mauri, Ana L; Cavagna, Mario; Baruffi, Ricardo L R; Franco, Jose G

    2012-11-01

    To compare the level of apoptosis and DNA fragmentation in the human granulosa cell (GC) layer exposed to an agonist or antagonist of GnRH in intracytoplasmic sperm injection (ICSI) cycles supplemented with recombinant LH (rLH). Patients without ovulatory dysfunction, aged ≤37 years and in their first ICSI cycle were prospectively randomised to receive either a long GnRH agonist protocol or a multi-dose antagonist protocol. In both groups, recombinant FSH supplemented with rLH was used for ovarian stimulation, and the GCs were collected during oocyte denudation. The GCs were then analysed for DNA fragmentation by TUNEL assay and for apoptosis using the annexin-V assay. The outcomes were given as the percentage of GCs with DNA fragmentation and apoptosis out of the total number of GCs analysed. Comparison of the agonist versus the antagonist group was performed using the Mann-Whitney test. DNA fragmentation: 32 patients were included in either the GnRH agonist group (n=16) or the antagonist group (n=16). The percentage of GCs with positive DNA fragmentation did not differ significantly (P=0.76) between the agonist group (15.5 ± 9.4%) and the antagonist group (18.8 ± 13.3%). Apoptosis: 28 patients were included in either the GnRH agonist group (n=14) or the antagonist group (n=14). The percentage of GCs positive for apoptosis did not differ significantly (P=0.78) between the agonist group (34.6 ± 14.7%) and the antagonist group (36.5 ± 22%). The results suggest that therapy with either an agonist or antagonist of GnRH is associated with comparable levels of DNA fragmentation and apoptosis in granulosa cells in ICSI cycles supplemented with rLH. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Cell proliferation and progesterone synthesis depend on lipid metabolism in bovine granulosa cells.

    PubMed

    Elis, Sebastien; Desmarchais, Alice; Maillard, Virginie; Uzbekova, Svetlana; Monget, Philippe; Dupont, Joëlle

    2015-03-15

    In dairy cows, lipids are essential to support energy supplies for all biological functions, especially during early lactation. Lipid metabolism is crucial for sustaining proper reproductive function. Alteration of lipid metabolism impacts follicular development and affects oocyte developmental competence. Indeed, nonesterified fatty acids are able to decrease granulosa cell (GC) proliferation and affect estradiol synthesis, thus potentially affecting follicular growth and viability. The objective of this study was to assess the impact of lipid metabolism on bovine GCs, through the use of the lipid metabolism inhibitors etomoxir, an inhibitor of fatty acid (FA) oxidation through inhibition of carnitine palmitoyl transferase 1 (CPT1), and C75, an inhibitor of FA synthesis through inhibition of fatty acid synthase. We showed that etomoxir and C75 significantly inhibited DNA synthesis in vitro; C75 also significantly decreased progesterone synthesis. Both inhibitors significantly reduced AMPK (5' adenosine monophosphate-activated protein kinase) and acetyl-CoA carboxylase phosphorylation. Etomoxir also affected the AKT (protein kinase B) signaling pathway. Combined, these data suggest that both FA oxidation and synthesis are important for the bovine GCs to express a proliferative and steroidogenic phenotype and, thus, for sustaining follicular growth. Despite these findings, it is important to note that the changes caused by the inhibitors of FA metabolism on GCs in vitro are globally mild, suggesting that lipid metabolism is not as critical in GCs as was observed in the oocyte-cumulus complex. Further studies are needed to investigate the detailed mechanisms by which lipid metabolism interacts with GC functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. An immortalized steroidogenic goat granulosa cell line as a model system to study the effect of the endoplasmic reticulum (ER)-stress response on steroidogenesis.

    PubMed

    Yang, Diqi; Wang, Lei; Lin, Pengfei; Jiang, Tingting; Wang, Nan; Zhao, Fan; Chen, Huatao; Tang, Keqiong; Zhou, Dong; Wang, Aihua; Jin, Yaping

    2017-02-16

    With granulosa and theca cells, the ovaries are responsible for producing oocytes and secreting sex steroids such as estrogen and progesterone. Endoplasmic reticulum stress (ERS) plays an important role in follicle atresia and embryo implantation. In this study, goat granulosa cells were isolated from medium-sized (4-6 mm) healthy follicles. Primary granulosa cells were immortalized by transfection with human telomerase reverse transcriptase (hTERT) to establish a goat granulosa cell line (hTERT-GGCs). These hTERT-GGCs expressed hTERT and had relatively long telomeres at passage 50. Furthermore, hTERT-GGCs expressed the gonadotropin receptor genes CYP11A1, StAR, and CYP19A1, which are involved in steroidogenesis. Additionally, progesterone was detectable in hTERT-GGCs. Although the proliferation potential of hTERT-GGCs significantly improved, there was no evidence to suggest that the hTERT-GGCs are tumorigenic. In addition, thapsigargin (Tg) treatment led to a significant dose-dependent decrease in progesterone concentration and steroidogenic enzyme expression. In summary, we successfully generated a stable goat granulosa cell line. We found that Tg induced ERS in hTERT-GGCs, which reduced progesterone production and steroidogenic enzyme expression. Future studies may benefit from using this cell line as a model to explore the molecular mechanisms regulating steroidogenesis and apoptosis in goat granulosa cells.

  14. An immortalized steroidogenic goat granulosa cell line as a model system to study the effect of the endoplasmic reticulum (ER)-stress response on steroidogenesis

    PubMed Central

    YANG, Diqi; WANG, Lei; LIN, Pengfei; JIANG, Tingting; WANG, Nan; ZHAO, Fan; CHEN, Huatao; TANG, Keqiong; ZHOU, Dong; WANG, Aihua; JIN, Yaping

    2016-01-01

    With granulosa and theca cells, the ovaries are responsible for producing oocytes and secreting sex steroids such as estrogen and progesterone. Endoplasmic reticulum stress (ERS) plays an important role in follicle atresia and embryo implantation. In this study, goat granulosa cells were isolated from medium-sized (4–6 mm) healthy follicles. Primary granulosa cells were immortalized by transfection with human telomerase reverse transcriptase (hTERT) to establish a goat granulosa cell line (hTERT-GGCs). These hTERT-GGCs expressed hTERT and had relatively long telomeres at passage 50. Furthermore, hTERT-GGCs expressed the gonadotropin receptor genes CYP11A1, StAR, and CYP19A1, which are involved in steroidogenesis. Additionally, progesterone was detectable in hTERT-GGCs. Although the proliferation potential of hTERT-GGCs significantly improved, there was no evidence to suggest that the hTERT-GGCs are tumorigenic. In addition, thapsigargin (Tg) treatment led to a significant dose-dependent decrease in progesterone concentration and steroidogenic enzyme expression. In summary, we successfully generated a stable goat granulosa cell line. We found that Tg induced ERS in hTERT-GGCs, which reduced progesterone production and steroidogenic enzyme expression. Future studies may benefit from using this cell line as a model to explore the molecular mechanisms regulating steroidogenesis and apoptosis in goat granulosa cells. PMID:27746409

  15. Isolation of granulosa cells from follicular fluid; applications in biomedical and molecular biology experiments

    PubMed Central

    Aghadavod, Esmat; Zarghami, Nosratollah; Farzadi, Laya; Zare, Mina; Barzegari, Abolfazl; Movassaghpour, Ali Akbar; Nouri, Mohammad

    2015-01-01

    Background: Recently, a lot of research has been conducted to investigate the molecular mechanisms of the low quality of oocytes with granulosa cells (GCs). GCs are one of the major cell types found in follicular fluid and purification of these cells from the follicular fluid is very important for further studies. Although, there are different techniques of purification, a method for separation of highly-pure and minimally-damaged cells is necessary. In this paper, we presented a novel method for high purification of GCs with a large quantity and high purity. Materials and Methods: Follicular fluid was collected from patients who referred for in vitro fertilization and GCs in follicular fluid were extracted by Ficoll, Percoll and Red blood cell lysing buffer (RLB) methods. Then purity of extracted GCs was assessed by flow cytometry and morphological properties of GCs were observed by differential interference contrast microscopy. The purity of deoxyribonucleic acid and ribonucleic acid extracts was examined by NanoDrop 1000, pre-restriction fragment length polymorphism and electrophoresis techniques. Quality and quantity of extracting GCs were affected during the cell separation procedures. Results: Our results showed that each of purification method can affect quality and quantity of extracted cells. Conclusion: RLB method for extraction of GCs was shown to be a convenient procedure in comparison with Ficoll and Percoll methods. PMID:26918232

  16. Isolation of granulosa cells from follicular fluid; applications in biomedical and molecular biology experiments.

    PubMed

    Aghadavod, Esmat; Zarghami, Nosratollah; Farzadi, Laya; Zare, Mina; Barzegari, Abolfazl; Movassaghpour, Ali Akbar; Nouri, Mohammad

    2015-01-01

    Recently, a lot of research has been conducted to investigate the molecular mechanisms of the low quality of oocytes with granulosa cells (GCs). GCs are one of the major cell types found in follicular fluid and purification of these cells from the follicular fluid is very important for further studies. Although, there are different techniques of purification, a method for separation of highly-pure and minimally-damaged cells is necessary. In this paper, we presented a novel method for high purification of GCs with a large quantity and high purity. Follicular fluid was collected from patients who referred for in vitro fertilization and GCs in follicular fluid were extracted by Ficoll, Percoll and Red blood cell lysing buffer (RLB) methods. Then purity of extracted GCs was assessed by flow cytometry and morphological properties of GCs were observed by differential interference contrast microscopy. The purity of deoxyribonucleic acid and ribonucleic acid extracts was examined by NanoDrop 1000, pre-restriction fragment length polymorphism and electrophoresis techniques. Quality and quantity of extracting GCs were affected during the cell separation procedures. Our results showed that each of purification method can affect quality and quantity of extracted cells. RLB method for extraction of GCs was shown to be a convenient procedure in comparison with Ficoll and Percoll methods.

  17. Lysosomes are involved in induction of steroidogenic acute regulatory protein (StAR) gene expression and progesterone synthesis through low-density lipoprotein in cultured bovine granulosa cells.

    PubMed

    Zhang, Jin-You; Wu, Yi; Zhao, Shuan; Liu, Zhen-Xing; Zeng, Shen-Ming; Zhang, Gui-Xue

    2015-09-15

    Progesterone is an important steroid hormone in the regulation of the bovine estrous cycle. The steroidogenic acute regulatory protein (StAR) is an indispensable component for transporting cholesterol to the inner mitochondrial membrane, which is one of the rate-limiting steps for progesterone synthesis. Low-density lipoprotein (LDL) supplies cholesterol precursors for progesterone formation, and the lysosomal degradation pathway of LDL is essential for progesterone biosynthesis in granulosa cells after ovulation. However, it is currently unknown how LDL and lysosomes coordinate the expression of the StAR gene and progesterone production in bovine granulosa cells. Here, we investigated the role of lysosomes in LDL-treated bovine granulosa cells. Our results reported that LDL induced expression of StAR messenger RNA and protein as well as expression of cholesterol side-chain cleavage cytochrome P-450 (CYP11A1) messenger RNA and progesterone production in cultured bovine granulosa cells. The number of lysosomes in the granulosa cells was also significantly increased by LDL; whereas the lysosomal inhibitor, chloroquine, strikingly abolished these LDL-induced effects. Our results indicate that LDL promotes StAR expression, synthesis of progesterone, and formation of lysosomes in bovine granulosa cells, and lysosomes participate in the process by releasing free cholesterol from hydrolyzed LDL.

  18. Progesterone-receptor antagonists and statins decrease de novo cholesterol synthesis and increase apoptosis in rat and human periovulatory granulosa cells in vitro.

    PubMed

    Rung, Emilia; Friberg, P Anders; Shao, Ruijin; Larsson, D G Joakim; Nielsen, Eva Ch; Svensson, Per-Arne; Carlsson, Björn; Carlsson, Lena M S; Billig, Håkan

    2005-03-01

    Progesterone-receptor (PR) stimulation promotes survival in rat and human periovulatory granulosa cells. To investigate the mechanisms involved, periovulatory rat granulosa cells were incubated in vitro with or without the PR-antagonist Org 31710. Org 31710 caused the expected increase in apoptosis, and expression profiling using cDNA microarray analysis revealed regulation of several groups of genes with functional and/or metabolic connections. This regulation included decreased expression of genes involved in follicular rupture, increased stress responses, decreased angiogenesis, and decreased cholesterol synthesis. A decreased cholesterol synthesis was verified in experiments with both rat and human periovulatory granulosa cells treated with the PR-antagonists Org 31710 or RU 486 by measuring incorporation of [14C]acetate into cholesterol, cholesterol ester, and progesterone. Correspondingly, specific inhibition of cholesterol synthesis in periovulatory rat granulosa cells using 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (lovastatin, mevastatin, or simvastatin) increased apoptosis, measured as DNA fragmentation and caspase-3/7 activity. The increase in apoptosis caused by simvastatin was reversed by addition of the cholesterol synthesis-intermediary mevalonic acid. These results show that PR antagonists reduce cholesterol synthesis in periovulatory granulosa cells and that cholesterol synthesis is important for granulosa cell survival.

  19. Critical Role of FoxO1 in Granulosa Cell Apoptosis Caused by Oxidative Stress and Protective Effects of Grape Seed Procyanidin B2

    PubMed Central

    Zhang, Jia-Qing; Gao, Bin-Wen; Wang, Jing; Ren, Qiao-Ling; Chen, Jun-Feng; Ma, Qiang; Zhang, Zi-Jing; Xing, Bao-Song

    2016-01-01

    Reactive oxygen species (ROS) are closely related to the follicular granulosa cell apoptosis. Grape seed procyanidin B2 (GSPB2) has been reported to possess potent antioxidant activity. However, the GSPB2-mediated protective effects and the underlying molecular mechanisms in granulosa cell apoptosis process remain unknown. In this study, we showed for the first time that GSPB2 treatment decreased FoxO1 protein level, improved granulosa cell viability, upregulated LC3-II protein level, and reduced granulosa cell apoptosis rate. Under a condition of oxidative stress, GSPB2 reversed FoxO1 nuclear localization and increased its level in cytoplasm. In addition, FoxO1 knockdown inhibited the protective effects of GSPB2 induced. Our findings suggest that FoxO1 plays a pivotal role in regulating autophagy in granulosa cells, GSPB2 exerts a potent and beneficial role in reducing granulosa cell apoptosis and inducing autophagy process, and targeting FoxO1 could be significant in fighting against oxidative stress-reduced female reproductive system diseases. PMID:27057282

  20. Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells

    SciTech Connect

    Ramasharma, K.; Li, C.H.

    1987-05-01

    Human granulosa cells cultured with calf serum actively proliferated for 18-20 generations and secreted progesterone into the medium; progesterone levels appeared to decline with increase in generation number. Cells cultured under serum-free conditions secreted significant amounts of progesterone and insulin-like growth factor II (IGF-II). The progesterone secretion was enhanced by the addition of human follitropin, lutropin, and chorionic gonadotropin but not by growth hormone. These cells, when challenged to varying concentrations of human growth hormone, human chorionic somatomammotropin, human prolactin, chorionic gonadotropin, follitropin, and lutropin, secreted IGF-II into the medium as measured by specific IGF-II RIA. Among these human hormones, chorionic gonadotropin, follitropin, and lutropin were most effective in inducing IGF-II secretion from these cells. When synthetic lutropin-releasing hormone and ..cap alpha..-inhibin-92 were tested, only lutropin-releasing hormone was effective in releasing IGF-II. The results described suggest that cultured human granulosa cells can proliferate and actively secrete progesterone and IGF-II into the medium. IGF-II production in human granulosa cells was influenced by a multi-hormonal complex including human growth hormone, human chorionic somatomammotropin, and prolactin.

  1. Cellular heterogeneity in the membrana granulosa of developing rat follicles: assessment by flow cytometry and lectin binding.

    PubMed

    Kerketze, K; Blaschuk, O W; Farookhi, R

    1996-07-01

    The hormone-mediated maturation of ovarian follicles is apparently accompanied by position-specific differentiation of cells of the membrana granulosa. We have assessed the extent of this cellular heterogeneity by flow cytometry using a variety of fluorescein isothiocyanate-labeled lectins as probes. Follicular development was stimulated in immature rats by treatment with either diethylstilbestrol (DES) or equine CG (eCG). Lectin binding to monodispersed rat granulosa cells was then analyzed by flow cytometry. Our results demonstrate that there are two distinct populations of small (4-7 microM) and large (9-12 microM) granulosa cells in follicles from DES- and eCG-treated animals. Both populations appear to be mitotically active and show specific lectin-binding characteristics. Six lectins (canavalia ensiforms, triticum vulgaris, maclura pomifera, erythrina cristagalli, jacalin, and vicia villosa) bind equally to both small and large granulosa cells from the DES- and eCG-treated rats. In contrast, no binding to either cell population was detected with six other lectins (dolichos biflorus, griffonia simplicifolia-II, lycopersicon esculentum, datura stramonium, solanum tuberosum, and ulex europaeus). Furthermore, four galactose-binding lectins (bauhinia purpurea, glysine maximus, griffonia simplicifolia-I, and arachis hypogaea) were found to identify specific subsets of granulosa cells. Three of these lectins (bauhinia purpurea, glysine maximus, and griffonia simplicifolia-I) bind to only small granulosa cells from either DES- or eCG- treated immature rats. The fourth lectin (arachis hypogaea) identifies subpopulations of both small and large granulosa cells. Application of the four galactose-specific lectins to fixed sections of frozen ovaries demonstrated binding to the perioocyte and cumulus granulosa cells. We conclude that cellular heterogeneity exists within the follicular epithelium at various stages-specific lectin-binding sites.

  2. Cooperative Effects of FOXL2 with the Members of TGF-β Superfamily on FSH Receptor mRNA Expression and Granulosa Cell Proliferation from Hen Prehierarchical Follicles.

    PubMed

    Qin, Ning; Fan, Xian-Cong; Xu, Xiao-Xing; Tyasi, Thobela Louis; Li, Shi-Jun; Zhang, Ying-Ying; Wei, Man-Li; Xu, Ri-Fu

    2015-01-01

    Forkhead box L2 (FOXL2) is a member of the forkhead nuclear factor 3 gene family and plays an essential role in ovarian growth and maturation in mammals. However, its potential effects and regulative mechanism in development of chicken ovarian prehierarchical follicles remain unexplored. In this study, the cooperative effects of FOXL2 with activin A, growth differentiation factor-9 (GDF9) and follistatin, three members of the transforming growth factor beta (TGF-β) superfamily that were previously suggested to exert a critical role in follicle development was investigated. We demonstrated herein, using in-situ hybridization, Northern blot and immunohistochemical analyses of oocytes and granulosa cells in various sizes of prehierarchical follicles that both FOXL2 transcripts and FOXL2 proteins are predominantly expressed in a highly similar expression pattern to that of GDF9 gene. In addition, the FOXL2 transcript was found at lower levels in theca cells in the absence of GDF9. Furthermore, culture of granulosa cells (GCs) from the prehierarchical follicles (6-8 mm) in conditioned medium revealed that in the pcDNA3.0-FOXL2 transfected GCs, there was a more dramatic increase in FSHR mRNA expression after treatment with activin A (10 ng/ml) or GDF9 (100 ng/ml) for 24 h which caused a stimulatory effect on the GC proliferation. In contrast, a significant decrease of FSHR mRNA was detected after treatment with follistatin (50 ng/ml) and resulted in an inhibitory effect on the cell proliferation. The results of this suggested that FOXL2 plays a bidirectional modulating role involved in the intracellular FSHR transcription and GC proliferation via an autocrine regulatory mechanism in a positive or negative manner through cooperation with activin A and/or GDF9, and follistatin in the hen follicle development. This cooperative action may be mediated by the examined Smad signals and simultaneously implicated in modulation of the StAR, CCND2, and CYP11A1 expression.

  3. Cooperative Effects of FOXL2 with the Members of TGF-β Superfamily on FSH Receptor mRNA Expression and Granulosa Cell Proliferation from Hen Prehierarchical Follicles

    PubMed Central

    Qin, Ning; Fan, Xian-Cong; Xu, Xiao-Xing; Tyasi, Thobela Louis; Li, Shi-Jun; Zhang, Ying-Ying; Wei, Man-Li; Xu, Ri-Fu

    2015-01-01

    Forkhead box L2 (FOXL2) is a member of the forkhead nuclear factor 3 gene family and plays an essential role in ovarian growth and maturation in mammals. However, its potential effects and regulative mechanism in development of chicken ovarian prehierarchical follicles remain unexplored. In this study, the cooperative effects of FOXL2 with activin A, growth differentiation factor-9 (GDF9) and follistatin, three members of the transforming growth factor beta (TGF-β) superfamily that were previously suggested to exert a critical role in follicle development was investigated. We demonstrated herein, using in-situ hybridization, Northern blot and immunohistochemical analyses of oocytes and granulosa cells in various sizes of prehierarchical follicles that both FOXL2 transcripts and FOXL2 proteins are predominantly expressed in a highly similar expression pattern to that of GDF9 gene. In addition, the FOXL2 transcript was found at lower levels in theca cells in the absence of GDF9. Furthermore, culture of granulosa cells (GCs) from the prehierarchical follicles (6–8 mm) in conditioned medium revealed that in the pcDNA3.0-FOXL2 transfected GCs, there was a more dramatic increase in FSHR mRNA expression after treatment with activin A (10 ng/ml) or GDF9 (100 ng/ml) for 24 h which caused a stimulatory effect on the GC proliferation. In contrast, a significant decrease of FSHR mRNA was detected after treatment with follistatin (50 ng/ml) and resulted in an inhibitory effect on the cell proliferation. The results of this suggested that FOXL2 plays a bidirectional modulating role involved in the intracellular FSHR transcription and GC proliferation via an autocrine regulatory mechanism in a positive or negative manner through cooperation with activin A and/or GDF9, and follistatin in the hen follicle development. This cooperative action may be mediated by the examined Smad signals and simultaneously implicated in modulation of the StAR, CCND2, and CYP11A1 expression. PMID

  4. Human sperm acrosome reaction-initiating activity associated with the human cumulus oophorus and mural granulosa cells.

    PubMed

    Siiteri, J E; Dandekar, P; Meizel, S

    1988-04-01

    This report describes the detection and partial characterization of preovulatory human cumulus oophorus and mural granulosa cell-associated activity capable of initiating the human sperm acrosome reaction (AR) in vitro. Fragments of preovulatory human cumulus (cells plus extracellular matrix) were washed 3 times, incubated for 24 hr and the spent media and washes assayed for their ability to initiate the human sperm acrosome reaction (AR) in vitro. AR activity was present in the first two washes but not the third wash; however, AR activity was recovered in the spent medium after 3 X-washed fragments were incubated for 24 hr under conditions which maintained the viability of the cumulus cells. The spent media of preovulatory human mural granulosa cells contained AR-initiating activity after 1-3, 3-6, and 6-9 days of culture. The properties of the AR activity present in spent media of human cumulus fragments included resistance to loss of activity during treatment with pronase; resistance to loss of activity during treatment with chondroitinase ABC or bacterial hyaluronidase; heat stability after overnight incubation; lack of extraction by chloroform-methanol; an apparent molecular weight (MW) of 50,000, as determined by Sephadex G-75 column chromatography; conversion to a lower apparent MW activity by incubation with pronase. These properties are also characteristic of a fraction derived by Sephadex G-75 chromatography of preovulatory human follicular fluid which also has been shown to stimulate the human sperm acrosome reaction in vitro. The AR activity from spent media of human mural granulosa cells is also found in a 50,000 MW Sephadex G-75 fraction. We propose that the sources of the 50,000 MW human follicular fluid AR activity are the cumulus oophorus and the mural granulosa cells.

  5. The anti-Müllerian hormone (AMH) induces forkhead box L2 (FOXL2) expression in primary culture of human granulosa cells in vitro.

    PubMed

    Sacchi, Sandro; Marinaro, Federica; Xella, Susanna; Marsella, Tiziana; Tagliasacchi, Daniela; La Marca, Antonio

    2017-06-29

    Anti-Müllerian hormone (AMH) and forkhead box L2 (FOXL2) are two pivotal genes expressed in human granulosa cells (hGCs) where both genes share similar inhibitory functions on activation and follicular growth in order to preserve the ovarian follicle reserve. Furthermore, AMH and FOXL2 contribute to inhibit steroidogenesis, decreasing or preventing the activation of gonadotrophin-dependent aromatase CYP19A1 cytochrome P450 family 19 subfamily A member 1 (CYP19A1). The purpose of this study is to evaluate the role of AMH in regulating the expression of FOXL2. Primary cultures of hGCs were treated with increasing concentrations of recombinant human AMH (rhAMH; range 10-100 ng/ml) for 3 h. Negative controls were performed using corresponding amounts of AMH vehicle. Total RNA or proteins were purified and quantified by spectrophotometry. FOXL2 and CYP19A1 gene expression, normalized by reference gene ribosomal protein S7 (RpS7), was evaluated by RT-qPCR. Each reaction was repeated in triplicate. Statistical analysis was performed. Extracted proteins were analyzed by immunoblot using anti-FOXL2 and anti-β-actin as primary antibodies. rhAMH treatments tested did not modulate the basal expression of aromatase CYP19A1 gene. rhAMH (50 ng/ml) was able to increase FOXL2 gene expression and its intracellular content. This study demonstrated the existence of an AMH-FOXL2 relationship in hGCs. AMH is capable of increasing both gene and protein expression of FOXL2. Because FOXL2 induces AMH transcription, these ovarian factors could be finely regulated by a positive feedback loop mechanism to preserve the ovarian follicle reserve.

  6. Progesterone secretion by ovine granulosa cells: effects of nitric oxide and plane of nutrition.

    PubMed

    Grazul-Bilska, Anna T; Bass, Casie S; Kaminski, Samantha L; Perry, George A; Redmer, Dale A

    2015-11-01

    The aim was to evaluate the effects of nutritional plane on in vitro progesterone (P4) secretion by granulosa (G) cells cultured in the presence or absence of effectors of the nitric oxide (NO) system. Ewes were randomly assigned into three nutritional groups: control (C), overfed (O; 2 × C), or underfed (U; 0.6 × C). Follicular development was induced by FSH injections. On day 15 of the estrous cycle, G cells were isolated and cultured with or without DETA-NONOate (NO donor), L-NAME (NO synthase [S] inhibitor), Arg and (or) LH for 8 h. DETA-NONOate decreased basal and LH-stimulated P4 secretion, and L-NAME increased basal P4 secretion in all groups. In U, Arg decreased LH-stimulated P4 secretion. These data demonstrate that (i) plane of nutrition affects basal P4 secretion by G cells, (ii) the NO donor decreases, NOS inhibitor increases but Arg does not affect basal P4 secretion, and (iii) effects of Arg on LH-stimulated P4 secretion are affected by plane of nutrition in FSH-treated sheep. Thus, plane of nutrition affects G cell function, and the NO system is involved in the regulation of basal and LH-stimulated P4 secretion. The mechanism of the NO system effects on secretory activity of G cells remains to be elucidated.

  7. Oxidative Stress Induces Mouse Follicular Granulosa Cells Apoptosis via JNK/FoxO1 Pathway

    PubMed Central

    Weng, Qiannan; Liu, Zequn; Li, Bojiang; Liu, Kaiqing; Wu, Wangjun; Liu, Honglin

    2016-01-01

    The c-Jun N-terminal protein kinase (JNK) plays an important role in the regulation of cell apoptosis. Forkhead box O (FoxO) transcription factors are involved in diverse biological processes, including cellular metabolism, cell apoptosis, and cell cycle. However, the JNK/FoxO1 pathway involved in the process of apoptosis induced by oxidative stress remains to be elucidated. Here, we demonstrated that the JNK activity significantly increased in response to oxidative stress in mouse follicular granulosa cells (MGCs). SP600125, a selective JNK inhibitor, attenuated the oxidative stress-induced MGCs apoptosis. Oxidative stress enhanced the FoxO1 nuclear translocation by activating the JNK activity. Moreover, JNK mediated the dissociation of FoxO1 from 14-3-3 proteins in MGCs after the treatment with H2O2. Finally, oxidative stress up-regulated the expression of FoxO1 via JNK mediation of FoxO1 self-regulation in MGCs. Taken together, our findings suggest that JNK/FoxO1 is involved in the regulation of oxidative stress-induced cell apoptosis in MGCs. PMID:27936150

  8. Activin A, B and AB decrease progesterone production by down-regulating StAR in human granulosa cells.

    PubMed

    Chang, Hsun-Ming; Cheng, Jung-Chien; Huang, He-Feng; Shi, Feng-Tao; Leung, Peter C K

    2015-09-05

    Activins are homo- or heterodimers of inhibin β subunits that play important roles in the reproductive system. Our previous work has shown that activins A (βAβA), B (βBβB) and AB (βAβB) induce aromatase/estradiol, but suppress StAR/progesterone production in human granulosa-lutein cells. However, the underlying molecular determinants of these effects have not been examined. In this continuing study, we used immortalized human granulosa cells (SVOG) to investigate the effects of activins in regulating StAR/progesterone and the potential mechanisms of action. In SVOG cells, activins A, B and AB produced comparable down-regulation of StAR expression and progesterone production. In addition, all three activin isoforms induced equivalent phosphorylation of both SMAD2 and SMAD3. Importantly, the activin-induced down-regulation of StAR, increase in SMAD2/3 phosphorylation, and decrease in progesterone were abolished by the TGF-β type I receptor inhibitor SB431542. Interestingly, the small interfering RNA-mediated knockdown of ALK4 but not ALK5 reversed the activin-induced suppression of StAR. Furthermore, the knockdown of SMAD4 or SMAD2 but not SMAD3 abolished the inhibitory effects of all three activin isoforms on StAR expression. These results provide evidence that activins A, B and AB down-regulate StAR expression and decrease progesterone production in human granulosa cells, likely via an ALK4-mediated SMAD2/SMAD4-dependent pathway. Our findings provide important insights into the molecular mechanisms underlying the regulatory effects of activins on human granulosa cell steroidogenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Bisphenol-A exposure and gene expression in human luteinized membrana granulosa cells in vitro.

    PubMed

    Mansur, Abdallah; Israel, Ariel; Combelles, Catherine M H; Adir, Michal; Racowsky, Catherine; Hauser, Russ; Baccarelli, Andrea A; Machtinger, Ronit

    2017-02-01

    Does bisphenol-A (BPA) affect gene expression in human membrana granulosa cells (MGC)? In vitro, short exposure to supra-physiological concentrations of BPA alters human MGC gene expression. Exposure to BPA may interfere with reproductive endocrine signaling. In vitro studies, mostly in animal models, have shown an inverse correlation between exposure to BPA and follicular growth, meiosis, and steroid hormone production in granulosa cells. Primary cultures of MGC obtained from 24 patients undergoing IVF (for PGD, male factor infertility or unexplained infertility) were exposed to various concentrations of BPA (0, 0.02, 0.2, 2 or 20 µg/ml) for 48 h. The study was conducted in a university-affiliated hospital. Microarray analysis was used to identify genes exhibiting expression changes following BPA exposure. Genes significantly altered were identified based on changes greater than 2-fold relative to the control group (not treated by BPA) and a Student's t-test P-value <0.05. Statistical significance was adjusted for multiple comparisons using the Benjamini-Hochberg method. Alterations in the expression of genes that are involved in the enriched functional annotations altered by BPA at the concentration of 20 µg/ml were confirmed by real-time PCR. A distinct pattern of gene expression was observed in primary cultures of MGC exposed to the highest BPA concentration compared with untreated cells. We identified 652 genes that exhibited at least 2-fold differences in expression after BPA exposure (all P < 0.05 versus untreated). These genes were significantly enriched for annotations related to cell cycle progression, segregation of chromosomes, steroid metabolism, apoptosis, lipid synthesis, oocyte maturation and chromosomal alignment. No significant changes in gene expression were found at the lower doses of BPA most relevant to human exposure. N/A. Human exposure to BPA in vivo occurs over long periods of time. In this in vitro model, cells were exposed to the

  10. Identification of differential gene expression in in vitro FSH treated pig granulosa cells using suppression subtractive hybridization.

    PubMed

    Bonnet, A; Frappart, P O; Dehais, P; Tosser-Klopp, G; Hatey, F

    2006-07-07

    FSH, which binds to specific receptors on granulosa cells in mammals, plays a key role in folliculogenesis. Its biological activity involves stimulation of intercellular communication and upregulation of steroidogenesis, but the entire spectrum of the genes regulated by FSH has yet to be fully characterized. In order to find new regulated transcripts, however rare, we have used a Suppression Subtractive Hybridization approach (SSH) on pig granulosa cells in primary culture treated or not with FSH. Two SSH libraries were generated and 76 clones were sequenced after selection by differential screening. Sixty four different sequences were identified, including 3 novel sequences. Experiments demonstrated the presence of 25 regulated transcripts.A gene ontology analysis of these 25 genes revealed (1) catalytic; (2) transport; (3) signal transducer; (4) binding; (5) anti-oxidant and (6) structural activities. These findings may deepen our understanding of FSH's effects. Particularly, they suggest that FSH is involved in the modulation of peroxidase activity and remodelling of chromatin.

  11. Vasoactive intestinal peptide (VIP)-mediated expression and function of steroidogenic acute regulatory protein (StAR) in granulosa cells.

    PubMed

    Kowalewski, Mariusz P; Dyson, Matthew T; Boos, Alois; Stocco, Douglas M

    2010-10-26

    VIP is a peptide hormone capable of activating the cAMP/PKA pathway and modifying gonadal steroidogenic capacity. Less is known about the molecular mechanisms of VIP-mediated steroidogenesis and its role in regulating the steroidogenic acute regulatory protein (STAR). We examined the impact of VIP on STAR expression and function in immortalized (KK1) and primary mouse granulosa cells, where VIP strongly upregulated STAR expression and steroidogenesis. Inhibitors of the PKA and PKC pathways suggested that both are activated by VIP. VIP did not efficiently phosphorylate STAR (P-STAR); however, VIP together with cAMP-analogs that activate Type II PKA increased P-STAR and further increased steroidogenesis. Our results suggest that VIP-induced STAR expression and function in granulosa cells result from the preferential activation of Type I PKA. Furthermore, the PKA and PKC pathways appear to converge at regulating VIP-mediated Star transcription and translation.

  12. Transcriptomic Analysis and Meta-Analysis of Human Granulosa and Cumulus Cells

    PubMed Central

    Burnik Papler, Tanja; Vrtacnik Bokal, Eda; Maver, Ales; Kopitar, Andreja Natasa; Lovrečić, Luca

    2015-01-01

    Specific gene expression in oocytes and its surrounding cumulus (CC) and granulosa (GC) cells is needed for successful folliculogenesis and oocyte maturation. The aim of the present study was to compare genome-wide gene expression and biological functions of human GC and CC. Individual GC and CC were derived from 37 women undergoing IVF procedures. Gene expression analysis was performed using microarrays, followed by a meta-analysis. Results were validated using quantitative real-time PCR. There were 6029 differentially expressed genes (q < 10−4); of which 650 genes had a log2 FC ≥ 2. After the meta-analysis there were 3156 genes differentially expressed. Among these there were genes that have previously not been reported in human somatic follicular cells, like prokineticin 2 (PROK2), higher expressed in GC, and pregnancy up-regulated nonubiquitous CaM kinase (PNCK), higher expressed in CC. Pathways like inflammatory response and angiogenesis were enriched in GC, whereas in CC, cell differentiation and multicellular organismal development were among enriched pathways. In conclusion, transcriptomes of GC and CC as well as biological functions, are distinctive for each cell subpopulation. By describing novel genes like PROK2 and PNCK, expressed in GC and CC, we upgraded the existing data on human follicular biology. PMID:26313571

  13. Metabolic state defines the response of rabbit ovarian cells to leptin.

    PubMed

    Harrath, Abdel Halim; Østrup, Olga; Rafay, Jan; Koničková Florkovičová, Iveta; Laurincik, Jozef; Sirotkin, Alexander V

    2017-03-01

    Leptin is a hormone that mediates the effect of the metabolic state on several biological functions, including reproduction. Leptin affects reproductive functions via alterations in the release of hormonal regulators. However, the extent to which caloric restriction (CR) can affect the complex processes of reproduction by other mechanisms, such as altering ovarian functions via direct binding/response to leptin, is unknown. Therefore, the aim of the present study was to show basic ovarian cell functions and CR on the response of ovarian cells to leptin. Female rabbits were subjected to 50% CR restriction for 10days before ovulation. On the day of ovulation, both control and CR animals were sacrificed. Isolated granulosa cells were cultured for 2days with and without leptin (100ng/ml), and the accumulation of various markers was evaluated using immunocytochemistry; i.e., cell proliferation (PCNA and cyclin B1), apoptosis (bax), MAP/ERK1,2 kinase (MAPK), protein kinase A (PKA), and IGF-I. In addition, the release of IGF-I and estradiol (E2) by cells cultured with and without leptin (1, 10, 100, 1000, or 10,000ng/ml) was assessed by radioimmunoassay (RIA). In the granulosa cells of control animals, leptin promoted cyclin B1, MAPK, and PKA accumulation, but not that of PCNA, and reduced bax and IGF-I accumulation. These cells responded to leptin by increased IGF-I, but not E2 release. In cells of CR animals, leptin increased cyclin B1 accumulation, but decreased PCNA, MAPK, and IGF-I expression. Bax and PKA were not affected. Leptin resulted in a decrease in IGF-I release. CR modulated the influence of leptin on E2 release dose dependently, i.e., E2 increased at 10 and decreased at 10,000ng/ml. Therefore, CR modified the influence of leptin on PCNA, E2, bax, PKA, MAPK, and IGF-I release, but it did not change the effect of leptin on cyclin B1 and IGF-I accumulation within the cells. Our data showed that leptin directly affected proliferation, apoptosis, and hormone

  14. Effects of the phytoestrogen, genistein, and protein tyrosine kinase inhibitor-dependent mechanisms on steroidogenesis and estrogen receptor expression in porcine granulosa cells of medium follicles.

    PubMed

    Nynca, A; Nynca, J; Wąsowska, B; Kolesarova, A; Kołomycka, A; Ciereszko, R E

    2013-01-01

    The use of soy-based products in pig diets had raised concerns regarding the reproductive toxicity of genistein, the predominant isoflavone in soybeans. Genistein was reported to exhibit weak estrogenic activity but its mechanism of action is not fully recognized. The aim of the study was to examine the in vitro effects of genistein on (1) progesterone (P(4)) and estradiol (E(2)) secretion by porcine granulosa cells harvested from medium follicles, (2) the viability of cultured granulosa cells, and (3) the mRNA and protein expression of estrogen receptors α and β (ERα and ERβ) in these cells. In addition, to verify the role of protein tyrosine kinase (PTK)-dependent mechanisms possibly involved in genistein biological action, we tested the effects of lavendustin C, the nonsteroidal PTK inhibitor, on granulosa cell steroidogenesis. We found that genistein inhibited (P < 0.05) basal P(4) secretion by granulosa cells harvested from medium follicles of pigs. In contrast, lavendustin C did not affect basal P(4) secretion by the cells. Moreover, genistein increased (P < 0.05) basal granulosal secretion of E(2). In contrast, lavendustin C did not alter basal E(2) secretion by porcine granulosa cells. In addition, we demonstrated that genistein increased mRNA and protein expression of ERβ (P < 0.05) in the examined cells. The expression of ERα mRNA was not affected by genistein and ERα protein was not detected in the cultured granulosa cells of pigs. In summary, the genistein action on follicular steroidogenesis in pigs involved changes in the granulosal expression of ERβ. However, the genistein action on P(4) and E(2) production by granulosa cells harvested from medium follicles did not seem to be associated with PTK. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Identification of Polycystic Ovary Syndrome (PCOS) Specific Genes in Cumulus and Mural Granulosa Cells

    PubMed Central

    Aydos, Alp; Gurel, Aykut; Oztemur Islakoglu, Yasemin; Noyan, Senem; Gokce, Bagdagul; Ecemis, Tolga; Kaya, Cemil; Aksu, Arif Tarik

    2016-01-01

    Polycystic ovary syndrome (PCOS) is a metabolic and endocrine disorder which affects women of reproductive age with prevalence of 8–18%. The oocyte within the follicle is surrounded by cumulus cells (CCs), which connect with mural granulosa cells (MGCs) that are responsible for secreting steroid hormones. The main aim of this study is comparing gene expression profiles of MGCs and CCs in PCOS and control samples to identify PCOS-specific differentially expressed genes (DEGs). In this study, two microarray databases were searched for mRNA expression microarray studies performed with CCs and MGCs obtained from PCOS patients and control samples. Three independent studies were selected to be integrated with naive meta-analysis since raw meta-data from these studies were found to be highly correlated. DEGs in these somatic cells were identified for PCOS and control groups. This study enabled us to reveal dysregulation in MAPK (mitogen activated protein kinase), insulin and Wnt signaling pathways between CCs and MGCs in PCOS. The meta-analysis results together with qRT-PCR validations provide evidence that molecular signaling is dysregulated through MGCs and CCs in PCOS, which is important for follicle and oocyte maturation and may contribute to the pathogenesis of the syndrome. PMID:27997581

  16. Identification of Polycystic Ovary Syndrome (PCOS) Specific Genes in Cumulus and Mural Granulosa Cells.

    PubMed

    Aydos, Alp; Gurel, Aykut; Oztemur Islakoglu, Yasemin; Noyan, Senem; Gokce, Bagdagul; Ecemis, Tolga; Kaya, Cemil; Aksu, Arif Tarik; Gur Dedeoglu, Bala

    2016-01-01

    Polycystic ovary syndrome (PCOS) is a metabolic and endocrine disorder which affects women of reproductive age with prevalence of 8-18%. The oocyte within the follicle is surrounded by cumulus cells (CCs), which connect with mural granulosa cells (MGCs) that are responsible for secreting steroid hormones. The main aim of this study is comparing gene expression profiles of MGCs and CCs in PCOS and control samples to identify PCOS-specific differentially expressed genes (DEGs). In this study, two microarray databases were searched for mRNA expression microarray studies performed with CCs and MGCs obtained from PCOS patients and control samples. Three independent studies were selected to be integrated with naive meta-analysis since raw meta-data from these studies were found to be highly correlated. DEGs in these somatic cells were identified for PCOS and control groups. This study enabled us to reveal dysregulation in MAPK (mitogen activated protein kinase), insulin and Wnt signaling pathways between CCs and MGCs in PCOS. The meta-analysis results together with qRT-PCR validations provide evidence that molecular signaling is dysregulated through MGCs and CCs in PCOS, which is important for follicle and oocyte maturation and may contribute to the pathogenesis of the syndrome.

  17. STMN1 Promotes Progesterone Production Via StAR Up-regulation in Mouse Granulosa Cells

    PubMed Central

    Dou, Yun-De; Zhao, Han; Huang, Tao; Zhao, Shi-Gang; Liu, Xiao-Man; Yu, Xiao-Chen; Ma, Zeng-Xiang; Zhang, Yu-Chao; Liu, Tao; Gao, Xuan; Li, Lei; Lu, Gang; Chan, Wai-Yee; Gao, Fei; Liu, Hong-Bin; Chen, Zi-Jiang

    2016-01-01

    Stathmin 1 (STMN1) is a biomarker in several types of neoplasms. It plays an important role in cell cycle progression, mitosis, signal transduction and cell migration. In ovaries, STMN1 is predominantly expressed in granulosa cells (GCs). However, little is known about the role of STMN1 in ovary. In this study, we demonstrated that STMN1 is overexpressed in GCs in patients with polycystic ovary syndrome (PCOS). In mouse primary GCs, the overexpression of STMN1 stimulated progesterone production, whereas knockdown of STMN1 decreased progesterone production. We also found that STMN1 positively regulates the expression of Star (steroidogenic acute regulatory protein) and Cyp11a1 (cytochrome P450 family 11 subfamily A member 1). Promoter and ChIP assays indicated that STMN1 increased the transcriptional activity of Star and Cyp11a1 by binding to their promoter regions. The data suggest that STMN1 mediates the progesterone production by modulating the promoter activity of Star and Cyp11a1. Together, our findings provide novel insights into the molecular mechanisms of STMN1 in ovary GC steroidogenesis. A better understanding of this potential interaction between STMN1 and Star in progesterone biosynthesis in GCs will facilitate the discovery of new therapeutic targets in PCOS. PMID:27270953

  18. FSH protects mouse granulosa cells from oxidative damage by repressing mitophagy

    PubMed Central

    Shen, Ming; Jiang, Yi; Guan, Zhiqiang; Cao, Yan; Sun, Shao-chen; Liu, Honglin

    2016-01-01

    Oxidative stress has been implicated in triggering granulosa cell (GC) death during follicular atresia. Recent studies suggested that follicle-stimulating hormone (FSH) has a pivotal role in protecting GCs from oxidative injury, although the exact mechanism remains largely unknown. Here, we report that FSH promotes GC survival by inhibiting oxidative stress-induced mitophagy. The loss of GC viability caused by oxidative stress was significantly reduced after FSH treatment, which was correlated with impaired activation of mitophagy upon oxidative stress. Compared with FSH treatment, blocking mitophagy displayed approximate preventive effect on oxidative stress-induced GC death, but FSH did not further restore viability of cells pretreated with mitophagy inhibitor. Importantly, FSH suppressed the induction of serine/threonine kinase PINK1 during oxidative stress. This inhibited the mitochondrial translocation of the E3 ligase Parkin, which is required for the subsequent clearance of mitochondria, and ultimately cell death via mitophagy. In addition, knocking down PINK1 using RNAi confirmed the role of the FSH-PINK1-Parkin-mitophagy pathway in regulating GC survival under oxidative conditions. These findings introduce a novel physiological function of FSH in protecting GCs against oxidative damage by targeting PINK1-Parkin-mediated mitophagy. PMID:27901103

  19. Time- and Dose-Dependent Effects of 17 Beta-Estradiol on Short-Term, Real-Time Proliferation and Gene Expression in Porcine Granulosa Cells

    PubMed Central

    Ciesiółka, Sylwia; Budna, Joanna; Jopek, Karol; Bryja, Artur; Kranc, Wiesława; Borys, Sylwia; Jeseta, Michal; Chachuła, Adrian; Ziółkowska, Agnieszka; Antosik, Paweł; Bukowska, Dorota; Brüssow, Klaus P.; Bruska, Małgorzata; Nowicki, Michał

    2017-01-01

    The key mechanisms responsible for achievement of full reproductive and developmental capability in mammals are the differentiation and transformation of granulosa cells (GCs) during folliculogenesis, oogenesis, and oocyte maturation. Although the role of 17 beta-estradiol (E2) in ovarian activity is widely known, its effect on proliferative capacity, gap junction connection (GJC) formation, and GCs-luteal cells transformation requires further research. Therefore, the goal of this study was to assess the real-time proliferative activity of porcine GCs in vitro in relation to connexin (Cx), luteinizing hormone receptor (LHR), follicle stimulating hormone receptor (FSHR), and aromatase (CYP19A1) expression during short-term (168 h) primary culture. The cultured GCs were exposed to acute (at 96 h of culture) and/or prolonged (between 0 and 168 h of culture) administration of 1.8 and 3.6 μM E2. The relative abundance of Cx36, Cx37, Cx40, Cx43, LHR, FSHR, and CYP19A1 mRNA was measured. We conclude that the proliferation capability of GCs in vitro is substantially associated with expression of Cxs, LHR, FSHR, and CYP19A1. Furthermore, the GC-luteal cell transformation in vitro may be significantly accompanied by the proliferative activity of GCs in pigs. PMID:28337462

  20. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and phytoestrogen genistein on the activity and the presence of steroidogenic enzyme proteins in cultured granulosa cells of pigs.

    PubMed

    Piasecka-Srader, Joanna; Kolomycka, Agnieszka; Nynca, Anna; Ciereszko, Renata E

    2014-08-01

    Environmental estrogens such as dioxins (e.g. 2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD) and phytoestrogens (e.g. genistein; G) are known to influence endocrine and reproductive processes in humans and animals. Because living organisms are usually exposed to small, non toxic, doses of dioxins and phytoestrogens, the aims of the study were to determine the effects of small, environmentally relevant doses of TCDD (100pM) and/or genistein (500nM) on: (1) the activity of steroidogenic enzymes (cholesterol side-chain cleavage enzyme, P450scc; 3β-hydroxysteroid dehydrogenase, 3β-HSD and aromatase, P450arom) and (2) amount of protein of the enzymes in granulosa cells isolated from medium and large ovarian follicles of pigs. To determine the activity of the enzymes, the incubation medium was supplemented with specific steroid substrates (25-hydroxycholesterol; pregnenolone; testosterone) of particular steroidogenic enzymes (P450scc, 3β-HSD and P450arom, respectively). Subsequently, the production of progesterone (P450scc and 3β-HSD) or estradiol (P450arom) was compared in the presence and absence of the appropriate steroid precursor. Neither genistein nor genistein combined with TCDD affected activity of P450arom and relative amounts of steroidogenic enzyme proteins in the examined granulosa cells of pigs. In contrast, genistein alone and in combination with TCDD decreased P450scc and 3β-HSD activity as well as progesterone production in granulosa cells isolated from medium and large follicles of pigs. Because TCDD alone did not affect steroid hormone production or enzyme activity, the above effects should be ascribed solely to genistein. It appears that the effects of the examined doses of TCDD and genistein on granulosal cell functions were not additive. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Cells of Origin of Epithelial Ovarian Cancers

    DTIC Science & Technology

    2015-09-01

    lethal malignancy of the female reproductive system , largely due to the fact that most EOCs are diagnosed only after the cancer has metastasized into the...Epithelial ovarian cancer (EOC) is the most lethal malignancy of the female reproductive system , largely due to the fact that most EOCs are diagnosed only...ovarian cancer by defined multiple genetic changes in a mouse model system . Cancer Cell 1, 53-62. Quartuccio, S.M., Lantvit, D.D., Bosland, M.C., and

  2. High salt intake negatively impacts ovarian follicle development.

    PubMed

    Wang, Guang; Yeung, Cheung-Kwan; Zhang, Jing-Li; Hu, Xi-Wen; Ye, Yu-Xiang; Yang, Yong-Xia; Li, Jiang-Chao; Lee, Kenneth Ka Ho; Yang, Xuesong; Wang, Li-Jing

    2015-07-01

    Many human disorders induce high salinity in tissues and organs, interfering with their normal physiological functions. Using a mouse model, we demonstrated that high salt intake caused infertility. Specifically, we established that high salinity dramatically affects ovarian follicle development and the extent of follicular atresia. However, it did not significantly influence the primordial follicles. TUNEL assays revealed that high salt intake inhibited follicle development by inducing the granulosa and theca cells that surround the oocytes to undergo apoptosis. Furthermore, immunohistological staining for the proliferation markers Ki67 and PH3 showed that high salt intake also repressed granulosa cell proliferation. In vitro testing of granulosa cells also confirmed that high salt significantly repressed cell proliferation and promoted cell apoptosis. In summary, high salt consumption negatively impacts reproductive functions in female mice by interfering with ovarian folliculogenesis.

  3. Potential role of hCG in apoptosis of human luteinized granulosa cells

    PubMed Central

    HIRATA, Rei; HOJO, Takuo; SANO, Masahiro; HAYASHI, Nobuyoshi; OKUDA, Kiyoshi

    2014-01-01

    The corpus luteum (CL) forms after ovulation and acts as a temporary endocrine gland that produces progesterone (P4), a hormone that is essential for implantation and maintenance of pregnancy in mammals. In pregnant women, human chorionic gonadotropin (hCG) secreted by the conceptus prevents luteolysis. hCG also increases the survival of cultured human luteinized granulosa cells (hLGCs). To clarify the maintenance mechanism of the human CL, we investigated the effects of hCG and P4 receptor antagonists, onapristone (OP) and RU486, on the viability of hLGCs. With the patients’ consent, hLGCs were isolated from follicular aspirates for in vitro fertilization. The cells were cultured with hCG (0.1, 1, 10, 100 IU/ml), OP (10, 25, 50, 100 μM), RU486 (100 μM), P4 (1, 10, 25, 50 μM) or some combination of the four for 24 h. Cell viability was significantly increased by hCG (100 IU/ml) and significantly decreased by OP (100 μM) compared with the control. Cells treated with hCG and OP together were significantly less viable than the control and OP-treated cells. The combined treatment also significantly increased CASP3 activity and cleaved CASP3 protein expression. Furthermore, P4 addition reversed the reduction in cell viability caused by the combination of hCG and OP treatment. The overall findings suggest that hCG cooperates with P4 to increase survival of hLGCs and to induce apoptosis when P4 action supported by hCG is attenuated in the human CL. PMID:25451535

  4. Regression of subcutaneous lymphoma following removal of an ovarian granulosatheca cell tumor in a horse.

    PubMed

    Henson, K L; Alleman, A R; Cutler, T J; Ginn, P E; Kelley, L C

    1998-05-01

    A 9-year-old Arabian mare was admitted for evaluation of multiple subcutaneous nodules and infertility. Fine-needle aspiration of one of the subcutaneous nodules resulted in a cytologic diagnosis of histiolymphocytic lymphoma. Palpation per rectum and transrectal ultrasonography revealed a mass associated with the left ovary. Excision of the ovarian tumor was performed, and a histopathologic diagnosis of granulosa-theca cell tumor was made. After removal of the granulosa-theca cell tumor, subcutaneous nodules regressed. The referring veterinarian reported that the nodules had also disappeared and then recurred after administration of a synthetic progestin. To further characterize the lymphoma and investigate this possible hormonal relationship, immunophenotyping and estrogen and progesterone receptor assays were performed. The subcutaneous lymphoma was classified as a T-cell rich B-cell lymphoma, results of estrogen receptor assays were negative, and results of progesterone receptor assays were positive. Clinical observations of subcutaneous lymphoma in horses indicate that the waxing and waning nature of these tumors may be associated with the estrous cycle, pregnancy, foaling, and lactation. Clinical observations and identification of progesterone receptors suggest that a relationship between serum steroid hormone concentrations, such as estrogen and progesterone, and subcutaneous lymphoma may exists.

  5. Cumulin, an Oocyte-secreted Heterodimer of the Transforming Growth Factor-β Family, Is a Potent Activator of Granulosa Cells and Improves Oocyte Quality.

    PubMed

    Mottershead, David G; Sugimura, Satoshi; Al-Musawi, Sara L; Li, Jing-Jie; Richani, Dulama; White, Melissa A; Martin, Georgia A; Trotta, Andrew P; Ritter, Lesley J; Shi, Junyan; Mueller, Thomas D; Harrison, Craig A; Gilchrist, Robert B

    2015-09-25

    Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-specific growth factors with central roles in mammalian reproduction, regulating species-specific fecundity, ovarian follicular somatic cell differentiation, and oocyte quality. In the human, GDF9 is produced in a latent form, the mechanism of activation being an open question. Here, we produced a range of recombinant GDF9 and BMP15 variants, examined their in silico and physical interactions and their effects on ovarian granulosa cells (GC) and oocytes. We found that the potent synergistic actions of GDF9 and BMP15 on GC can be attributed to the formation of a heterodimer, which we have termed cumulin. Structural modeling of cumulin revealed a dimerization interface identical to homodimeric GDF9 and BMP15, indicating likely formation of a stable complex. This was confirmed by generation of recombinant heterodimeric complexes of pro/mature domains (pro-cumulin) and covalent mature domains (cumulin). Both pro-cumulin and cumulin exhibited highly potent bioactivity on GC, activating both SMAD2/3 and SMAD1/5/8 signaling pathways and promoting proliferation and expression of a set of genes associated with oocyte-regulated GC differentiation. Cumulin was more potent than pro-cumulin, pro-GDF9, pro-BMP15, or the two combined on GC. However, on cumulus-oocyte complexes, pro-cumulin was more effective than all other growth factors at notably improving oocyte quality as assessed by subsequent day 7 embryo development. Our results support a model of activation for human GDF9 dependent on cumulin formation through heterodimerization with BMP15. Oocyte-secreted cumulin is likely to be a central regulator of fertility in mono-ovular mammals. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Cumulin, an Oocyte-secreted Heterodimer of the Transforming Growth Factor-β Family, Is a Potent Activator of Granulosa Cells and Improves Oocyte Quality*

    PubMed Central

    Mottershead, David G.; Sugimura, Satoshi; Al-Musawi, Sara L.; Li, Jing-Jie; Richani, Dulama; White, Melissa A.; Martin, Georgia A.; Trotta, Andrew P.; Ritter, Lesley J.; Shi, Junyan; Mueller, Thomas D.; Harrison, Craig A.; Gilchrist, Robert B.

    2015-01-01

    Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-specific growth factors with central roles in mammalian reproduction, regulating species-specific fecundity, ovarian follicular somatic cell differentiation, and oocyte quality. In the human, GDF9 is produced in a latent form, the mechanism of activation being an open question. Here, we produced a range of recombinant GDF9 and BMP15 variants, examined their in silico and physical interactions and their effects on ovarian granulosa cells (GC) and oocytes. We found that the potent synergistic actions of GDF9 and BMP15 on GC can be attributed to the formation of a heterodimer, which we have termed cumulin. Structural modeling of cumulin revealed a dimerization interface identical to homodimeric GDF9 and BMP15, indicating likely formation of a stable complex. This was confirmed by generation of recombinant heterodimeric complexes of pro/mature domains (pro-cumulin) and covalent mature domains (cumulin). Both pro-cumulin and cumulin exhibited highly potent bioactivity on GC, activating both SMAD2/3 and SMAD1/5/8 signaling pathways and promoting proliferation and expression of a set of genes associated with oocyte-regulated GC differentiation. Cumulin was more potent than pro-cumulin, pro-GDF9, pro-BMP15, or the two combined on GC. However, on cumulus-oocyte complexes, pro-cumulin was more effective than all other growth factors at notably improving oocyte quality as assessed by subsequent day 7 embryo development. Our results support a model of activation for human GDF9 dependent on cumulin formation through heterodimerization with BMP15. Oocyte-secreted cumulin is likely to be a central regulator of fertility in mono-ovular mammals. PMID:26254468

  7. Low oxygen level increases proliferation and metabolic changes in bovine granulosa cells.

    PubMed

    Shiratsuki, Shogo; Hara, Tomotaka; Munakata, Yasuhisa; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka

    2016-12-05

    The present study addresses molecular backgrounds underlying low oxygen induced metabolic changes and 1.2-fold change in bovine granulosa cell (GCs) proliferation. RNA-seq revealed that low oxygen (5%) upregulated genes associated with HIF-1 and glycolysis and downregulated genes associated with mitochondrial respiration than that in high oxygen level (21%). Low oxygen level induced high glycolytic activity and low mitochondrial function and biogenesis. Low oxygen level enhanced GC proliferation with high expression levels of HIF-1, VEGF, AKT, mTOR, and S6RP, whereas addition of anti-VEGF antibody decreased cellular proliferation with low phosphorylated AKT and mTOR expression levels. Low oxygen level reduced SIRT1, whereas activation of SIRT1 by resveratrol increased mitochondrial replication and decreased cellular proliferation with reduction of phosphorylated mTOR. These results suggest that low oxygen level stimulates the HIF1-VEGF-AKT-mTOR pathway and up-regulates glycolysis, which contributes to GC proliferation, and downregulation of SIRT1 contributes to hypoxia-associated reduction of mitochondria and cellular proliferation.

  8. Cell-type-selective induction of c-jun by TAF4b directs ovarian-specific transcription networks

    PubMed Central

    Geles, Kenneth G.; Freiman, Richard N.; Liu, Wei-Li; Zheng, Shuang; Voronina, Ekaterina; Tjian, Robert

    2006-01-01

    Cell-type-selective expression of the TFIID subunit TAFII105 (renamed TAF4b) in the ovary is essential for proper follicle development. Although a multitude of signaling pathways required for folliculogenesis have been identified, downstream transcriptional integrators of these signals remain largely unknown. Here, we show that TAF4b controls the granulosa-cell-specific expression of the proto-oncogene c-jun, and together they regulate transcription of ovary-selective promoters. Instead of using cell-type-specific activators, our findings suggest that the coactivator TAF4b regulates the expression of tissue-specific genes, at least in part, through the cell-type-specific induction of c-jun, a ubiquitous activator. Importantly, the loss of TAF4b in ovarian granulosa cells disrupts cellular morphologies and interactions during follicle growth that likely contribute to the infertility observed in TAF4b-null female mice. These data highlight a mechanism for potentiating tissue-selective functions of the basal transcription machinery and reveal intricate networks of gene expression that orchestrate ovarian-specific functions and cell morphology. PMID:16473943

  9. Cell-type-selective induction of c-jun by TAF4b directs ovarian-specific transcription networks.

    PubMed

    Geles, Kenneth G; Freiman, Richard N; Liu, Wei-Li; Zheng, Shuang; Voronina, Ekaterina; Tjian, Robert

    2006-02-21

    Cell-type-selective expression of the TFIID subunit TAF(II)105 (renamed TAF4b) in the ovary is essential for proper follicle development. Although a multitude of signaling pathways required for folliculogenesis have been identified, downstream transcriptional integrators of these signals remain largely unknown. Here, we show that TAF4b controls the granulosa-cell-specific expression of the proto-oncogene c-jun, and together they regulate transcription of ovary-selective promoters. Instead of using cell-type-specific activators, our findings suggest that the coactivator TAF4b regulates the expression of tissue-specific genes, at least in part, through the cell-type-specific induction of c-jun, a ubiquitous activator. Importantly, the loss of TAF4b in ovarian granulosa cells disrupts cellular morphologies and interactions during follicle growth that likely contribute to the infertility observed in TAF4b-null female mice. These data highlight a mechanism for potentiating tissue-selective functions of the basal transcription machinery and reveal intricate networks of gene expression that orchestrate ovarian-specific functions and cell morphology.

  10. Effects of retinoic acid on maturation of immature mouse oocytes in the presence and absence of a granulosa cell co-culture system.

    PubMed

    Tahaei, Leila Sadat; Eimani, Hussein; Yazdi, Poopak Eftekhari; Ebrahimi, Bita; Fathi, Rouhollah

    2011-06-01

    Evaluation of the all-trans retinoic acid (t-RA) effects on in vitro maturation (IVM) and in vitro fertilization (IVF) of immature mouse oocytes in the presence and absence of granulosa cell monolayer. Denuded oocytes isolated from mice ovaries and matured in IVM medium alone (Control I), IVM medium in the presence of granulosa cells (Control II), IVM medium with t-RA (Experimental I) and IVM medium simultaneously with t-RA and granulosa cells (Experimental II). After 24 h, matured oocytes were fertilized in T6 medium and their development was followed until the blastocyst stage. Metaphase II oocytes ploidy were evaluated by chromosome counting. The t-RA group compared to the control groups showed no obvious abnormalities. Additionally maturation and embryo development rates significantly increased in the t-RA treated granulosa cell co-culture system. In conclusion, association of t-RA with granulosa cell co-culture during in vitro maturation increases meiosis resumption, formation of metaphase II oocytes, as well as 2-cell and blastocyst stage embryos.

  11. Hedgehog signaling pathway in small bovine ovarian follicles

    USDA-ARS?s Scientific Manuscript database

    The hedgehog signaling pathway is involved in the regulation of cell proliferation, differentiation, and turnover in a variety of mammalian embryonic and adult tissues including bovine ovarian granulosa and theca cells. Binding of hedgehog to the patch receptor derepresses smoothened resulting in t...

  12. Peroxiredoxin 2 inhibits granulosa cell apoptosis during follicle atresia through the NFKB pathway in mice.

    PubMed

    Yang, Shuhong; Luo, Aiyue; Hao, Xing; Lai, Zhiwen; Ding, Ting; Ma, Xiangyi; Mayinuer, Maitituohe; Shen, Wei; Wang, Xi; Lu, Yunping; Ma, Ding; Wang, Shixuan

    2011-06-01

    Peroxiredoxin 2 (PRDX2) has been known to act as an antioxidant enzyme whose main function is H(2)O(2) reduction in cells. We aimed to study the expression patterns of PRDX2 in mouse ovaries and explore the function of this protein in apoptosis of granulosa cells (GCs). We found that the expression of the PRDX2 protein in atretic follicle GCs was markedly higher than in healthy follicle GCs. In vitro, the transfection of siRNA targeting the Prdx2 gene inhibited the proliferation and induced the apoptosis of primary cultured GCs. Furthermore, suppression of PRDX2 resulted in the augmentation of endogenous H(2)O(2), and the ability to eliminate the exogenous H(2)O(2) was attenuated. The expression of PRDX2 and nuclear factor kappa-light-chain-enhancer of activated B cells (NFKB), whose activity was inhibited by binding to IKB, increased in GCs treated with various concentrations of H(2)O(2) for 30 min. However, no significant change in cytoplasmic IKB expression was observed. At 2 h after treatment with H(2)O(2), nuclear NFKB expression level was reduced, cytoplasmic IKB expression was increased, and PRDX2 expression was unchanged. Silencing of the Prdx2 gene caused early changes in NFKB and IKB expression in the primary cultured GCs compared to that in control cells. Taken together, these data suggest that PRDX2 plays an important role in inhibiting apoptosis in GCs and that PRDX2 actions may be related to the expression of NFKB and IKB.

  13. Comparative study of microRNA regulation on FOXL2 between adult-type and juvenile-type granulosa cell tumours in vitro.

    PubMed

    Rosario, Roseanne; Blenkiron, Cherie; Shelling, Andrew Neil

    2013-04-01

    Despite their distinct biology, granulosa cell tumours (GCTs) are treated similarly to other ovarian tumours. Predominantly expressed in granulosa cells, the transcription factor Forkhead Box L2 (FOXL2) is near absent in juvenile-type GCTs. This research aimed to investigate miRNAs as a mechanism of suppression of FOXL2 expression in juvenile-type GCTs. The miRNA abundance of two GCT cell lines COV434 and KGN was profiled using Affymetrix miRNA GeneChip arrays. Luciferase assays were used to confirm miRNA binding to the 3'UTR of FOXL2. Identified as promising candidates, the miR-17 miRNA family was targeted for knockdown with a miRNA sponge. Additionally, individual family members miR-17, miR-20b and miR-106a were knocked down using Anti-miR™ inhibitors. Subsequently, FOXL2 expression was analysed using RT-qPCR and Western blotting. The profiling of COV434 and KGN cells revealed unique miRNA signatures, with COV434 expressing miR-17 family miRNAs whilst KGN expressed members of the let-7 miRNA gene family. Luciferase assays confirmed miRNA binding to FOXL2's 3'UTR. Reduction of miR-17 family miRNAs increased FOXL2 mRNA expression, however luciferase assays performed in combination with the sponge suggested this is an indirect effect. As no changes in protein were observed, we propose another miRNA is repressing the translation of FOXL2 mRNA. Through miRNA profiling we have begun to unravel the profiles of GCTs, showing that juvenile and adult derived-cell lines are biologically distinct. By expanding on this discovery we may further elucidate the miRNA-mRNA pathways involved in GCT initiation and progression with potential for novel therapeutics for these cancers. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Hypermethylation of CDH13, DKK3 and FOXL2 promoters and the expression of EZH2 in ovary granulosa cell tumors.

    PubMed

    Xu, Yanmei; Li, Xia; Wang, Hongtao; Xie, Pengmu; Yan, Xun; Bai, Yu; Zhang, Tingguo

    2016-09-01

    Aberrant epigenetic modification is associated with the development and progression of cancer. Hypermethylation of tumor suppressor gene promoters and cooperative histone modification have been considered to be the primary mechanisms of epigenetic modification. Ovary granulosa cell tumors (GCTs) are relatively rare, a